## Beitrag

# zur Mikrostrukturierung von fotostrukturierbarem Glas mittels UV-Laserstrahlung

DISSERTATION zur Erlangung des akademischen Grades Doktoringenieur (Dr.-Ing.)

vorgelegt der Fakultät für Maschinenbau der Technischen Universität Ilmenau von

> Dipl.-Ing. Ulrike Brokmann geboren am 30. März 1970 in Bernau bei Berlin

urn:nbn:de:gbv:ilm1-2005000155

Gutachter:

Prof. Dr.-Ing. Dr. rer. oec. Dagmar Hülsenberg ( TU Ilmenau) Prof. Dr. rer. nat. habil. Stephan Sinzinger (TU Ilmenau) Doz. Dr. sc. nat. Doris Ehrt (FSU Jena)

Eröffnung des Promotionsverfahrens am: 29. November 2004 Tag der mündlichen Prüfung: 15. Juni 2005

### Kurzzusammenfassung

Wird ein fotosensibles Glas mit UV-Laserstrahlung belichtet, so können fotochemische Gefügemodifizierungen im Glas für einen geometrischen Mikrostrukturierungsprozess nach dem Fotoformverfahren genutzt werden. Für ein verbessertes Prozessverständnis erfolgt anhand einer direkt-schreibenden Belichtungsmethode die systematische Untersuchung des Einflusses von Belichtungsparametern auf Kenngrößen des Mikrostrukturierungsprozesses.

Nach einer kurzen Einführung erfolgt die Darstellung der zum Verständnis notwendigen Grundlagen zum Fotoformverfahren, zur UV-Laser-Belichtung und zum verwendeten fotostrukturierbaren Glas.

Der Hauptteil der Arbeit widmet sich der Analyse des Einflusses der Belichtungsparameter auf die 3 Prozessschritte des Fotoformverfahrens: UV-Laser-Belichtung (KrF- und XeCl-Excimerlaserstrahlung und  $(3\omega)$ Nd:YAG Festkörperlaserstrahlung), partielle Kristallisation durch Temperung und geometrische Mikrostrukturierung durch nasschemisches Ätzen. Der grundlegende Erkenntnisfortschritt besteht in der Beschreibung strahlungsinduzierter Gefügemodifizierungen auf optische Eigenschaften des Glases und den daraus folgenden Strukturveränderungen in partiell kristallisierten Bereichen getemperter Proben.

UV-Laser-belichtete Proben wurden mittels UV-VIS-Spektroskopie, TEM-, HREM-, REMund AFM-Analyse sowie optischer Lichtmikroskopie untersucht.

Die wesentlichen Ergebnisse sind: infolge UV-Laser-Belichtung erfolgt die Bildung von angeregten Zuständen an Ce<sup>3+</sup>-Ionen, Farbzentren an polyvalenten Elementen (Zinn, Antimon) und Trennstellensauerstoffen sowie Ag-Nanopartikel im Glas. Aus der Belichtung resultierende Gefügemodifizierungen beeinflussen die Größe einzelner Kristalle und deren Vernetzung, die Kristallisationstiefe und die laterale Ausdehnung kristallisierter Bereiche. Das Ätzratenverhältnis wird maßgeblich vom Grad der Vernetzung der einzelnen Kristalle bestimmt.

In einem abschließenden Kapitel wird der Einfluss von Belichtungsparametern auf die Glasmikrostrukturierung anhand strukturierter Gräben für die Belichtung mit XeCl-Excimerlaserstrahlung diskutiert.

Die potentiellen Anwendungsfelder für das vorgestellte Verfahren liegen auf den Gebieten der Mikrosensorik, -aktuatorik, -mechanik, -optik, -fluidtechnik und nicht zuletzt der Mikro-reaktionstechnik.

#### Abstract

The rationale of this PhD dissertation is the systematic elaboration of interaction parameters of UV-laser radiation with photosensitive glass. Photochemical modifications in the photosensitive glass can be used for geometrical micro structurization processes using UV-laser radiation. A directly writing-exposure-method is used to perform irradiations. All parameters concerning exposure and micro structurization processes are systematically investigated and discussed.

A short introduction includes all necessary information concerning the used glasses, exposure processes and micro structurization outlines basically required for further understanding of the topics. Subsequent sections describe the characterization of the used photosensitive glass prior to exposure. The photo form process consisting of:  $1^{st}$ : UV-laser exposure by 3 different laser types ( $3\omega$ )Nd:YAG solid-state laser, XeCl- and KrF-excimer laser),  $2^{nd}$ : thermally induced partial crystallization in exposed areas, and  $3^{rd}$ : dissolution of partially crystallized by wet chemical etching processes is systematically investigated in respect to exposure and other process determining parameters. The fundamental progress in knowledge is given by the description of radiation induced modifications in photo structurable glass to optical properties and consequential structure modifications in partial crystallized areas of thermal treated samples.

Samples were investigated with UV-VIS spectrometry, REM, TEM- and HREM, AFM as well as optical microscopic techniques. Regarding the irradiation process, four major processes were identified to be the most likely pathways for the formation of color centers: formation of  $(Ce^{3+})^+$  excitons, stimulated states of polyvalent elements (Sb, Sn), non-bridging-oxygens and formation of silver-nano-clusters inside the glass matrix. Irradiated samples crystallized during a subsequent thermal treatment were investigated in respect to their crystallized areas (crystallization depth, lateral geometry, crystal size and crystal network). After the final photo structurization step (etching), etch rate ratios were determined in dependence of exposure parameters. Results in the present study and potential fields of application for the systematically investigated photo structurization process are briefly discussed.

### Vorwort

Die vorliegende Arbeit entstand während meiner Zeit als wissenschaftliche Mitarbeiterin am Fachgebiet Glas- und Keramiktechnologie und als Doktorandin in der Nachwuchsforschergruppe "Electromagnetic Processing of Materials" der Technischen Universität Ilmenau in der Zeit von Februar 2000 bis Oktober 2004.

Mein besonderer Dank gilt Frau Prof. Dr. Dr. Dagmar Hülsenberg für die anspruchsvolle Themenstellung, die fachliche Betreuung während der Bearbeitung und nicht zuletzt für viele wertvolle Diskussionen, Anregungen und Kritiken, die zum Gelingen dieser Arbeit beigetragen haben. Weiterhin gilt mein besonderer Dank Herrn Dr. rer. nat. Werner Ertel-Ingrisch, der mir im Rahmen der Nachwuchsforschergruppe die Fertigstellung der Arbeit ermöglichte und mich stets mit Rat und Tat unterstützte.

Für die ausgezeichnete Zusammenarbeit möchte ich mich herzlich bei den derzeitigen und ehemaligen Mitarbeitern meiner Arbeitsgruppe, im besonderen Dipl.-Ing. Susanne Mrotzek, Dr.-Ing. Alf Harnisch, Dipl.-Ing. Karin Sönnichsen und Dr.-Ing. Stephan Hecht-Mijič bedanken.

Weiterhin gilt mein Dank allen Mitarbeitern des fakultätsübergreifenden Institutes für Werkstofftechnik der TU Ilmenau für die Unterstützung meiner Arbeit. Stellvertretend seien genannt: Frau Dr.-Ing. Kerstin Pfeifer für die Anfertigung von REM-Untersuchungen, Herr Dipl.-Ing. Jens Schawohl für die röntgendiffratometrischen Untersuchungen, Herr Dipl.-Ing. Thomas Mache für die Unterstützung bei AFM-Untersuchungen und Herr Winfried Gruner für den präzisen Bau der benötigten Probenhalterungen.

Die für diese Arbeit notwendigen UV-Laser wurden vom Lehrstuhl für Lasertechnik der RWTH-Aachen unter Leitung von Herrn Prof. Dr. rer. nat. Reinhard Poprawe zu Verfügung gestellt. Für die Organisation der Belichtungsversuche in Aachen und die zahlreichen Diskussionen danke ich Herrn Dr.-Ing. Michael Jacquorie und Herrn Dipl.-Phys. Marc Talkenberg.

Herrn Dr. H. Hofmeister vom MPI-Halle danke ich herzlich für die Untersuchung einer laserbestrahlten Probe mittels TEM und HREM. Frau Dr. Schmidt von der Fa. JASCO danke ich für die Unterstützung bei der Reflexionsmessung.

Der wichtigste Dank gilt meiner Familie für die tatkräftige Unterstützung und das Verständnis in den letzten Monaten der Fertigstellung der Arbeit.

## Inhaltsverzeichnis

| Inh | altsver | zeichnis                                                     | I  |
|-----|---------|--------------------------------------------------------------|----|
| Vei | rzeichn | is verwendeter Symbole und Abkürzungen                       | IV |
| 1   |         | Einleitung                                                   | 1  |
| 1.1 |         | Einführung                                                   | 1  |
| 1.2 |         | Kenntnisstand zu Beginn der Arbeit                           | 3  |
| 1   | .2.1    | Fotoformverfahren                                            | 3  |
|     | 1.2.1.1 | Überblick über die Prozessschritte                           | 3  |
|     | 1.2.1.2 | UV-Laser-Belichtung                                          | 4  |
|     | 1.2.1.3 | Temperung                                                    |    |
|     | 1.2.1.4 | Nasschemisches Ätzen                                         |    |
| 1.3 |         | Zielstellung der Arbeit und Vorgehensweise                   | 9  |
| 2   |         | Grundlagen                                                   | 11 |
| 2.1 |         | Lineare und nichtlineare optische Effekte                    | 11 |
| 2.2 |         | Allgemeines zur UV-VIS Strahlungsabsorption in Glas          | 15 |
| 2.3 |         | Charakterisierung des Ausgangsglases                         | 16 |
| 2   | .3.1    | Herstellung der Glasproben                                   | 16 |
| 2   | .3.2    | Bestimmung von Absorptionskanten und -banden                 | 17 |
| 2   | .3.3    | Bestimmung der optischen Eindringtiefe $\delta_{opt.}$       | 21 |
| 3   |         | Analyse des Belichtungs- und Strukturierungsprozesses        | 23 |
| 3.1 |         | Aufbau und Eigenschaften der verwendeten Laseranlagen        |    |
| 3   | .1.1    | Bearbeitungsanlage für Excimerlaserstrahlung                 | 23 |
| 3   | .1.2    | Bearbeitungsanlage für Nd:YAG Festkörperlaserstrahlung       | 25 |
| 3.2 |         | Parameter für die Belichtung mit gepulster UV-Laserstrahlung | 26 |
| 3.3 |         | Schwellwerte der Belichtungsenergiedichte                    |    |

| 3.3.1   | Vorbemerkung                                                               | 31   |
|---------|----------------------------------------------------------------------------|------|
| 3.3.2   | Bestimmung der oberen Schwellenenergiedichte $\epsilon_{Abt}$              | 31   |
| 3.3.3   | Bestimmung der unteren Schwellenenergiedichten $\epsilon_{S}$              | 33   |
| 3.4     | Optische Untersuchungen zur Belichtungswirkung                             | 34   |
| 3.4.1   | Vorgehensweise                                                             | 34   |
| 3.4.2   | Spektrale Transmission nach UV-Laser-Belichtung                            | 35   |
| 3.4.3   | Zusätzliche Absorption nach UV-Laser-Belichtung                            | 37   |
| 3.4.3.1 | Bildung von (Ce <sup>3+</sup> ) <sup>+</sup> -Zentren                      | 37   |
| 3.4.3.2 | Bildung weiterer Absorptionszentren im Glas durch UV-Laser-Belichtung.     | 45   |
| 3.4.3.3 | TEM-Analyse                                                                | 47   |
| 3.5     | Kristallisation laserbelichteter Proben                                    | 51   |
| 3.5.1   | Probenvorbereitung                                                         | 51   |
| 3.5.2   | Röntgenfeinstrukturanalyse                                                 | 52   |
| 3.5.3   | Bestimmung der Größe einzelner Lithiummetasilikatkristalle in Abhängigkeit |      |
|         | von den Belichtungsparametern $\lambda_L$ und $\epsilon_L$                 | 54   |
| 3.5.4   | Geometrische Ausdehnung kristallisierter Bereiche                          | 59   |
| 3.5.4.1 | Laterale Strukturgeometrie                                                 | 59   |
| 3.5.4.2 | Kristallisationstiefe                                                      | 66   |
| 3.6     | Ätzen laserbelichteter und kristallisierter Proben                         | 69   |
| 3.6.1   | Kenngrößen des Ätzprozesses                                                | 69   |
| 3.6.2   | Untersuchungsmethode                                                       | 70   |
| 3.6.3   | Ätzgeschwindigkeit laserbestrahlter und kristallisierter Probenbereiche    | 72   |
| 4       | Herstellung von Gräben mittels XeCI-Excimerlaserstrahlung                  | . 77 |
| 4.1     | UV-Laser-Belichtung                                                        | 77   |
| 4.2     | Temperung                                                                  | 77   |
| 4.3     | Ätzen                                                                      | 81   |
| 5       | Zusammenfassung                                                            | . 84 |
| 6       | Ausblick                                                                   | . 88 |

| Anhang                | IX    |
|-----------------------|-------|
| Abbildungsverzeichnis | xv    |
| Tabellenverzeichnis   | XVIII |
| Literaturverzeichnis  | XIX   |

## Verzeichnis verwendeter Symbole und Abkürzungen

Symbole

| a                                                  | Gitterkonstante                                               | [1]                  |
|----------------------------------------------------|---------------------------------------------------------------|----------------------|
| $A_L$                                              | Fläche des Laserstrahlquerschnitts in der Abbildungsebene     | [mm <sup>2</sup> ]   |
| А                                                  | Absorptionsgrad                                               | [1]                  |
| b <sub>o</sub> [BOS], b <sub>o</sub> [BUS]         | Breite einer kristallisierten Struktur (Belichtungsoberseite, | [µm]                 |
|                                                    | Belichtungsunterseite)                                        |                      |
| $b_{gi}$                                           | Ist-Grabenbreite auf der Belichtungsoberseite                 | [µm]                 |
| b <sub>gg</sub>                                    | Grabenbreite im Strukturgrund                                 | [µm]                 |
| $d, d_1, d_2$                                      | Probendicke (allgemein, Zustand 1, Zustand 2)                 | [µm]                 |
| d                                                  | Netzebenenabstand                                             | [nm]                 |
| d <sub>x</sub> , d <sub>y</sub>                    | Rohstrahlabmessung (x-Richtung, y-Richtung)                   | [mm]                 |
| d <sub>K</sub> , d <sub>K,min</sub>                | Kristallgröße, minimale Kristallgröße                         | [µm]                 |
| $d_{\varnothing}, d_L, d_{Str.}$                   | Durchmesser (allgemein, des Laserstrahls in der               | [mm]                 |
|                                                    | Abbildungsebene, der kristallisierten Struktur auf der        |                      |
|                                                    | Belichtungsoberseite)                                         |                      |
| Ē                                                  | Elektrische Feldstärke                                        | [V/m]                |
| E, E <sub>1</sub> , E <sub>2</sub>                 | Energie (allgemein, Niveau 1, Niveau 2)                       | [eV]                 |
| E <sub>p</sub>                                     | Pulsenergie                                                   | [mJ]                 |
| E <sub>Photon</sub>                                | Photonenengie                                                 | [eV]                 |
| E <sub>G</sub> ′                                   | Effektive Bandlücke                                           | [eV]                 |
| Eion                                               | Ionisationsenergie                                            | [eV]                 |
| F                                                  | Formfaktor                                                    | [1]                  |
| f                                                  | Pulswiederholfrequenz                                         | [Hz]                 |
| h <sub>ätz.(bel.)</sub> , h <sub>ätz(unbel.)</sub> | Ätztiefe (belichteter Bereich, unbelichteter Bereich)         | [µm]                 |
| h <sub>k</sub>                                     | Kristallisationstiefe                                         | [µm]                 |
| I, I <sub>e</sub> , I <sub>0</sub>                 | Intensität (allgemein, Eingangsintensität in eine Probe,      | [W/cm <sup>2</sup> ] |
|                                                    | Intensität auf der Probenoberfläche)                          |                      |
| I <sub>xy</sub>                                    | lokale Intensitätsverteilung in x- und y-Richtung             | [W/cm <sup>2</sup> ] |
| Κ                                                  | Kontrast                                                      | $[mm^{-1}]$          |
| m                                                  | Masse                                                         | [g]                  |
| $M^2$                                              | Strahlqualität                                                | [1]                  |
| n <sub>1</sub>                                     | Brechungskonstante                                            | [1]                  |

| n <sub>2</sub>                                     | Absorptionskonstante                                      | [1]                |
|----------------------------------------------------|-----------------------------------------------------------|--------------------|
| <u>n</u>                                           | komplexer Brechungsindex                                  | [1]                |
| n                                                  | Anzahl                                                    | [1]                |
| Ν                                                  | Pulszahl (Position des Laserstrahls = konstant)           | [1]                |
| Neff.                                              | Effektive Pulszahl                                        | [1]                |
| o.D., o.D <sub>bel.</sub> , o.D. <sub>unbel.</sub> | optische Dichte (allgemein, belichteter Zustand, unbe-    | [1]                |
| o.D. <sub>norm.</sub>                              | lichteter Zustand, normiert auf Laserstrahl-modifiziertes |                    |
|                                                    | Volumen)                                                  |                    |
| $p_L$                                              | normierte Leistungsdichte                                 | [1]                |
| P                                                  | Polarisation                                              | $[As/m^2]$         |
| P <sub>L</sub>                                     | Mittlere Leistung eines Lasers                            | [W]                |
| P <sub>Sp.</sub>                                   | Pulsspitzenleistung                                       | [kW]               |
| r                                                  | Radius                                                    | [nm]               |
| R                                                  | Reflexionsgrad                                            | [1]                |
| Ra                                                 | arithmetischer Mittenrauwert                              | [nm]               |
| S                                                  | Weg                                                       | [mm]               |
| S, S <sub>min</sub>                                | Steilheit (allgemein, minimaler Wert)                     | [1]                |
| t, t <sub>ätz.</sub> , t <sub>s</sub>              | Zeit (allgemein, Ätzzeit, Gesamtbelichtungszeit)          | [min]              |
| T, T <sub>1</sub> , T <sub>2</sub>                 | Transmissionsgrad (allgemein, Zustand 1, Zustand 2)       | [1], [%]           |
| T <sub>bel.</sub> , T <sub>unbel.</sub>            | Transmissionsgrad (belichteter Zustand der Probe,         | [1], [%]           |
|                                                    | unbelichteter Zustand der Probe)                          |                    |
| ü, ü <sub>x</sub> , ü <sub>y</sub>                 | Überlappungsgrad der Durchmesser zweier aufeinander       | [1]                |
|                                                    | folgender Laserpulse bezogen auf $d_L$ (allgemein, in x-  |                    |
|                                                    | Richtung, y-Richtung)                                     |                    |
| Vätz.(bel.), Vätz.(unbel.)                         | Ätzgeschwindigkeit (belichtete Probenbereiche, unbe-      | [µm/min]           |
|                                                    | lichtete Probenbereiche                                   |                    |
| v <sub>T</sub>                                     | Verfahrgeschwindigkeit des Positioniertisches             | [mm/s]             |
| V, V <sub>mod.</sub> , V <sub>Mess.</sub>          | Volumen in (allgemein, modifiziertes Probenvolumen,       | [mm <sup>3</sup> ] |
|                                                    | vom Messstrahl durchdrungenes Probenvolumen)              |                    |
| x, y, z                                            | Weg                                                       | [µm]               |
| $\alpha$ , $\alpha_{norm.}$                        | Linearer Absorptionskoeffizient (allgemein, normiert auf  | $[mm^{-1}]$        |
|                                                    | modifiziertes Probenvolumen)                              |                    |
| β                                                  | nichtlinearer Absorptionskoeffizient                      | [cm/W]             |
| Δ                                                  | Differenz                                                 |                    |

| $\varepsilon_L, \varepsilon_S, \varepsilon_{Abt.}$ | Belichtungsenergiedichte pro Puls (allgemein, untere  | [J/cm <sup>2</sup> ] |
|----------------------------------------------------|-------------------------------------------------------|----------------------|
|                                                    | Schwellenenergiedichte, obere Schwellenenergiedichte) |                      |
| $\lambda, \lambda_L$                               | Wellenlänge (allgemein, Wellenlänge der eingesetzten  | [nm]                 |
|                                                    | Laserstrahlung                                        |                      |
| $\delta_{opt.}$                                    | Optische Eindringtiefe                                | [mm]                 |
| τ                                                  | Pulsdauer                                             | [ns]                 |
| χ                                                  | elektrische Suszeptibilität                           | [1]                  |
| 9                                                  | Temperatur                                            | [°C]                 |
| Θ                                                  | Winkel                                                | [°]                  |
| $\Theta_{\rm x}, \Theta_{\rm y}$                   | Divergenzwinkel (x-Richtung, y-Richtung)              | [mrad]               |
| Ykrist., Yätz., YW                                 | Strukturwinkel (kristallisierte Struktur, Ätzwinkel,  | [°]                  |
|                                                    | Wandwinkel)                                           |                      |
| ω                                                  | Kreisfrequenz                                         | [1/s]                |
| ζ                                                  | Dichte                                                | [g/m <sup>3</sup> ]  |
| ν                                                  | Frequenz eines Lichtquants                            | [Hz]                 |

### Abkürzungen

| belichtet               |
|-------------------------|
| unbelichtet             |
| Belichtungsunterseite   |
| Belichtungsoberseite    |
| ätzen                   |
| Messstrahl              |
| minimal                 |
| modifiziert             |
| normiert                |
| kristallisiert          |
| keine Angabe            |
| femtosekunden           |
| arbitrary units         |
| oben genannt            |
| Atomic-Force-Microscopy |
| Elementarzelle          |
|                         |

| E     | Farbzentrum                                   |
|-------|-----------------------------------------------|
| NBOHC | Farbzentrum (Non-Bridging-Oxygen-Hole-Center) |
| FS21  | Glasbezeichnung                               |
| HREM  | Hochauflösende Rasterelektronenmikroskopie    |
| LMS   | Lithiummetasilikat                            |
| NIR   | near-infrared                                 |
| REM   | Rasterelektronenmikroskopie                   |
| TEM   | Transmissionselektronenmikroskopie            |
| UV    | ultraviolet                                   |
| VUV   | vacuum-ultraviolet                            |
| VIS   | visible                                       |
| YAG   | Yttrium-Aluminium-Granat                      |
| 2D    | zweidimensional                               |
| 3D    | dreidimensional                               |

## Konstanten

| $\lambda_{KrF-Excimerlaserstrahlung}$      | = | 248 nm                                                  |
|--------------------------------------------|---|---------------------------------------------------------|
| $\lambda_{XeCl-Excimerlaserstrahlung}$     | = | 308 nm                                                  |
| $\lambda_{(4\omega)Nd:YAG-Laserstrahlung}$ | = | 266 nm                                                  |
| $\lambda_{Stickstofflaserstrahlung}$       | = | 337 nm                                                  |
| $\lambda_{(3\omega)Nd:YAG-Laserstrahlung}$ | = | 355 nm                                                  |
| $\lambda_{Nd:YAG-Laserstrahlung}$          | = | 1,06 µm                                                 |
| c                                          | = | $2,998 \cdot 10^{10}  \text{cm/s}$                      |
| h                                          | = | $6,625 \cdot 10^{-34}  \mathrm{Js}$                     |
| $\in_0$                                    | = | 8,85419 $\cdot 10^{-12}$ As $\cdot V^{-1} \cdot m^{-1}$ |
| N <sub>A</sub>                             | = | $6,02204 \cdot 10^{23}  mol^{-1}$                       |

## 1 Einleitung

#### 1.1 Einführung

Der Trend zur Miniaturisierung in weiten Bereichen der Technik geht auf den Beginn der 1980er Jahre zurück. Seit dieser Zeit ist es der schnellen Entwicklung der Mikrosystemtechnik zu verdanken, dass ein Milliardenmarkt, basierend auf Anwendungsfeldern wie der Mikrosensorik, -aktuatorik, -mechanik, -akustik, -optik, -fluidtechnik und nicht zuletzt der Mikroreaktionstechnik, erschlossen wurde.

Es werden verschiedene Prozessansätze zur Herstellung mikrotechnischer Komponenten genutzt. Die planare 2D-Materialbearbeitung erfolgt meist mit batch-process kompatiblen Ansätzen, beispielsweise realisiert durch das Verfahren der Fotolithographie. Der große Vorteil besteht im einheitlichen Prozessablauf über eine große Anzahl gleichzeitig gefertigter Komponenten, die meist identisch sind. Eine sogenannte "low-cost" Fertigung ist möglich. Für die schnelle Prototypenfertigung bzw. das Screening ist dieser Ansatz wegen der hohen Eingangskosten für das Layout und die Fertigung der Masken jedoch nicht geeignet. Hinzu kommt, dass viele Materialien und geforderte Strukturgeometrien nicht kompatibel mit einem Lithographieprozess sind.

An dieser Stelle setzen direkt-schreibende Verfahren an, die durch maskenloses Nachbilden der vorgegebenen geometrischen Struktur und durch eine serielle Prozessführung gekennzeichnet sind. Neben der Möglichkeit der schnellen Prototypenfertigung sind sie ideal für die Kleinserienfertigung bei hohem Grad an Kundenanpassung. Weiterhin ist ein sogenannter "gemischter" Prozessansatz möglich, der die Vorteile der schnellen Prototypenfertigung mit den Vorteilen der Maskentechnologie verknüpft, beispielsweise bei der dynamischen Maskenprojektion. Diese ist eine Kombination aus Laser-Direkt-Schreiben und statischer Maskenbelichtung. Durch eine Relativbewegung zwischen Substrat und zwei oder mehr in den optischen Strahlengang geschobenen Blenden, werden Teile eines aufgeweiteten Laserstrahls derart auf die Substratoberfläche abgebildet, dass sich die Gesamtstruktur als Summe definierter Einzelsegmente ergibt. Der Vorteil besteht in einer Verkürzung der Gesamtbelichtungszeit bei nur geringfügig niedrigerer Prozessvariabilität.

Laserstrahlung ist aufgrund ihrer Eigenschaften, wie der Monochromasie, ihrer räumlichen und zeitlichen Kohärenz sowie der geringen Strahldivergenz, ideales Werkzeug für solche Anlagen. Charakteristisch für das Laser-Direkt-Schreiben ist der örtlich begrenzte, diskrete Energieeintrag in das Material, der zur Induzierung von Materialprozessen unter Nichtgleichgewichtsbedingungen führt und letztendlich eine echte 3D-Strukturierung ermöglicht /Piq2002/.

Die Glasmikrostrukturierung mittels UV-Lasern ist Gegenstand zahlreicher Forschungen mit dem Ziel der Herstellung von Mikrobohrungen durch Laserabtragen und der 3D-Laserinnengravur /Now93/, /Hor96/, /Pis99/, /Len2000/, /Jac2001/. Dies ist auch auf die Etablierung des Werkstoffes Glas in der Mikrotechnik und den Mangel an echten 3D-Verfahren zur Mikrostrukturierung zurückzuführen. Für viele mikrotechnische Anwendungen sind Eigenschaften des Glases, wie hohe optische Transparenz in einem großen Bereich des elektromagnetischen Spektrums, die Konstanz und Isotropie der Eigenschaften auch bei höheren Temperaturen, die chemische Resistenz und die erhöhte mechanische Festigkeit, zumindest eindimensional miniaturisierter Bauteile, bedeutend.

Spezielle Gläser für mikrotechnische Anwendungen sind die sogenannten fotostrukturierbaren Gläser. Im Rahmen dieser Arbeit wird der Begriff "Fotostrukturierbares Glas" im Zusammenhang mit der geometrischen Strukturierung zur Herstellung von Glasbauteilen für die Mikrotechnik verwendet. In diesem Sinne gilt ein Glas als fotostrukturierbar, wenn es die Eigenschaft der Fotosensibilität besitzt und wenn es nach partieller UV-Belichtung und thermischer Behandlung nur in den belichteten Bereichen kristallisiert ist. Die Kristallphase lässt sich in einem nasschemischen Prozess wesentlich schneller als die nichtkristallinen Glasbereiche lösen. Dieser dreistufige Prozess wird als Fotoformverfahren bzw. Fotoformprozess bezeichnet /Sto53/. Für mikrotechnische Anwendungen werden Lithiumalumosilikatgläser, deren chemische Zusammensetzung im Primärausscheidungsgebiet von Lithiummetasilikat (LMS) liegt, eingesetzt. Die kristalline Phase LMS besitzt eine gegenüber der Glasphase deutlich höhere Löslichkeit in verdünnter Flusssäure. Dies führt dazu, dass Mikrostrukturen mit hohen Aspektverhältnissen (bis 1:20) in diesen Gläsern realisierbar sind. In /Har98/ ist ein ausführlicher Überblick über das Fotoformverfahren und spezielle Verfahrensvarianten einschließlich praktischer Anwendungen gegeben.

Basierend auf einem Belichtungsprozess durch Direkt-Schreiben mit UV-Laserstrahlung wird ein Belichtungsverfahren für die geometrische Mikrostrukturierung eines am Fachgebiet für Glas- und Keramiktechnologie der TU Ilmenau entwickelten fotostrukturierbaren Glases untersucht und am Beispiel der Herstellung von Gräben für mikrofluidische Anwendungen getestet. Anhand UV-Laser-bestrahlter Glasproben erfolgen werkstoffliche Strukturuntersuchungen, die der Erweiterung des Prozessverständnisses beim Fotoformprozess dienen. Die der Arbeit zugrundeliegenden Forschungsergebnisse wurden ganz wesentlich auf Basis eines von der Deutschen Forschungsgemeinschaft geförderten Projektes: "Belichtung und Gefügemodifizierungen mittels UV-Laserstrahlung zur Mikrostrukturierung fotostrukturierbarer Gläser" (Förderkennzeichen: HU 560/14) in Zusammenarbeit mit dem Lehrstuhl für Lasertechnik der RWTH Aachen erarbeitet. Die abschließende Auswertung, sowie die Erstellung der Dissertationsschrift erfolgte im Rahmen der Nachwuchsforschergruppe "Electromagnetic Processing of Materials" der TU Ilmenau, finanziert durch das Thüringer Ministerium für Wissenschaft, Forschung und Kunst.

### 1.2 Kenntnisstand zu Beginn der Arbeit

#### 1.2.1 Fotoformverfahren

#### 1.2.1.1 Überblick über die Prozessschritte

Das zur Fotostrukturierung von Lithiumalumosilikatgläsern geeigneter Zusammensetzung angewandte Fotoformverfahren gliedert sich in die drei Prozessschritte:

- 1. Partielle UV-Belichtung
- 2. Thermische Behandlung
- 3. Nasschemisches Ätzen

Eine schematische Darstellung des Verfahrens mittels direktschreibender Belichtung ist in Abb. 1 dargestellt. Im Folgenden wird auf die einzelnen Prozessschritte näher eingegangen, wobei der Schwerpunkt auf die UV-Belichtung gelegt wird.



Abb. 1: Prozess der Fotostrukturierung mittels direkt-schreibender Belichtung

#### 1.2.1.2 UV-Laser-Belichtung

Die Funktion der partiellen UV-Belichtung besteht in der Initiierung des latenten Bildes, basierend auf strahlungsinduzierten Prozessen im Glas. Prinzipiell sind drei Methoden zur Belichtung fotostrukturierbarer Gläser möglich: Belichtung mittels geometrisch strukturierter Masken (Fotolithographie), mittels Direkt-Schreiben durch einen fokussierten Laserstrahl und mittels dynamischer Maskenprojektion. An dieser Stelle sei auf die detaillierte Beschreibung des Belichtungsprozesses mittels strukturierter Masken in /Schm94/ und /Har98/ verwiesen. Die im Rahmen dieser Arbeit angewendete Methode des Direkt-Schreibens mittels fokussiertem Laserstrahl unterscheidet sich von der herkömmlichen statischen Belichtung maskierter Glassubstrate mittels Maskaligner durch folgende Merkmale:

- Die Monochromasie der Laserstrahlung führt dazu, dass das fotostrukturierbare Glas Wellenlängen-selektiv belichtet werden kann. In Abhängigkeit von den für die Strahlungsabsorption im Glas dominierenden Prozessen (Ein-Photon-Absorption oder Mehr-Photonen-Absorption) und der Existenz von Schwellwerten der Belichtungsenergiedichte in Bezug auf die beabsichtigte Belichtungswirkung ist eine Modifizierung der Oberflächenbereiche und/oder des Glasvolumens möglich /Piq2002/.
- Die Belichtung durch Direktschreiben von Strukturen ist durch maskenloses Nachbilden einer vorgegebenen Geometrie gekennzeichnet. Des weiteren ermöglicht die serielle Prozessführung prinzipiell eine variable Prozesskontrolle bezüglich der Belichtungsparameter Wellenlänge der Laserstrahlung λ<sub>L</sub>, Belichtungsenergiedichte ε<sub>L</sub>, Pulszahl N,

Durchmesser des Laserstrahls in der Abbildungsebene  $d_L$  und der Fokuslage, bezogen auf die Glasprobe.

- Das Auflösungsvermögen geometrischer Strukturen im Glas hängt bei maskenloser Belichtung vom lokalen Intensitätsprofil des fokussierten Laserstrahls in der Abbildungsebene ab. Der Durchmesser einer belichteten Struktur  $d_{Str.}$  (kreisförmiger Laserstrahlquerschnitt vorausgesetzt) ist eine Funktion der Laserpulsenergie  $E_P$  und der unteren Schwellenenergiedichte  $\varepsilon_S$ , die zur fotochemischen Gefügemodifizierung des Glases benötigt wird. Da die untere Schwellenenergiedichte  $\varepsilon_S$  für ein und dieselbe Wellenlänge der verwendeten Laserstrahlung  $\lambda_L$  bei einem gegebenen Glas konstant ist, kann durch Variation der Belichtungsenergiedichte  $\varepsilon_L$  der Strukturdurchmesser  $d_{Str.}$  beeinflusst werden. Im Falle einer Belichtung im Fokus des Laserstrahls können Strukturdurchmesser kleiner als der Fokusdurchmesser erreicht werden, da die Energiedichte über den Fokusquerschnitt nicht konstant ist.
- Die Belichtung mit gepulster UV-Laserstrahlung ist dadurch gekennzeichnet, dass aufeinanderfolgende Laserpulse nicht auf die gleiche Stelle des Glassubstrates treffen, wenn das Glas während der Belichtung auf einem Tisch verschoben wird. Die Gesamtbelichtungszeit komplexer Strukturen t<sub>s</sub> hängt somit von der Vorschubgeschwindigkeit der Verfahreinheit v<sub>T</sub> ab. Die Vorschubgeschwindigkeit v<sub>T</sub> ist mit der Pulswiederholfrequenz f über den Überlappungsgrad ü aufeinanderfolgender Pulse verknüpft, siehe (1):

$$\ddot{\mathbf{u}} = 1 - \frac{\mathbf{v}_{\mathrm{T}}}{\mathbf{d}_{\mathrm{L}} \cdot \mathbf{f}} \tag{1}$$

Mit s als der Gesamtlänge der zu schreibenden 2D-Strukturgeometrie ergibt sich (2):

$$\mathbf{v}_{\mathrm{T}} = \frac{\mathbf{s}}{\mathbf{t}_{\mathrm{s}}} \tag{2}$$

Daraus folgend, kann die Gesamtbelichtungszeit t<sub>s</sub> nach (3) berechnet werden:

$$t_{\rm S} = \frac{\rm s}{\rm d_{\rm L} \cdot f \cdot (1-\ddot{\rm u})} \tag{3}$$

Die Nutzung von UV-Laserstrahlung für die Belichtung eines fotostrukturierbaren Glases, das in Kap. 2.3 beschrieben ist, wurden von Schmidt /Schm94/ und Harnisch /Har98/ untersucht. Das Ziel war der Vergleich der Belichtungswirkung, initiiert durch eine breitbandig emittierende Quecksilberdampf-Höchstdrucklampe eines Maskaligners, mit monochromatischer Strahlung eines XeCl-Excimerlasers der Wellenlänge  $\lambda_L = 308$  nm. Die Belichtung erfolgte statisch mit Maskierung der Substrate. In /Schm94/ wird auf eine Abhängigkeit der Belichtungstiefe von der Belichtungsenergiedichte und Pulszahl hingewiesen. Die Verringerung von Streueffekten bei der Laser-Belichtung wird auf den niedrigeren Aperturwinkel der Laseranlage zurückgeführt. In /Har98/ sind Versuche zur Belichtung mit einem KrF-Excimerlaser ( $\lambda_L = 248$  nm) und einem Stickstofflaser ( $\lambda_L = 337$  nm) bezüglich der Abhängigkeit der Kristallisationstiefe von der Belichtungsenergiedichte und Pulszahl dargestellt. Mittels speziell fokussierter Stickstofflaser-Belichtung und Temperung konnten erste vergrabene kristallisierte Bereiche im Glas hergestellt werden. Beide Laserwellenlängen liegen außerhalb des mittels Maskaligner-Belichtung ermittelten Hauptsensitivitätsbereiches für die Fotostrukturierung. Basierend auf diesen Ergebnissen wird auf die Notwendigkeit der weiteren Untersuchung der Wechselwirkung von fotostrukturierbarem Glas mit energiereicher UV-Laserstrahlung hingewiesen.

Umfangreiche Untersuchungen zur geometrischen Mikrostrukturierung des fotostrukturierbaren Glases FOTURAN<sup>®</sup> mittels gepulster UV-Laserstrahlung für die Herstellung von Mikroreaktoren sind durch eine Forschergruppe des Microtechnology Center der Aerospace Corporation (USA) in /Han97/, /Fuq99/, /Fuq2000/, /Liv2002/ veröffentlicht. Für die Belichtung werden gepulste Laserstrahlungen genutzt, die im Bereich hoher Absorption (KrF-Excimerlaserstrahlung:  $\lambda_L = 248$  nm und (4 $\omega$ )Nd:YAG Laser:  $\lambda_L = 266$  nm sowie im Bereich hoher Transmission ((3 $\omega$ )Nd:YAG Laser:  $\lambda_L = 355$  nm) des Glases liegen. Ihre wesentlichen Ergebnisse sind:

- Für λ<sub>L</sub> = 355 nm erfolgte die Bestimmung der Ätzrate in Abhängigkeit von der Leistungsdichte bei konstantem Laserstrahldurchmesser d<sub>L</sub> = 3 μm zur Nutzung für die 3D hinterschneidungsfreie Oberflächenstrukturierung von Glassubstraten. Es wird ein maximal erreichbares Ätzratenverhältnis zwischen umgebendem Glas und kristallisiertem Bereich von 1:30 angegeben. Für λ<sub>L</sub> = 248 nm ergibt sich das gleiche Resultat.
- Für  $\lambda_L = 266$  nm und 355 nm wurde ein Schwellwert für die minimal notwendige Belichtungsenergiedichte bei gegebener Pulszahl zur Formung eines latenten Bildes im Glas infolge Laser-Belichtung ermittelt. Die untere Schwellenenergiedichte  $\varepsilon_S$  bei konstanter Pulszahl N ist für die Belichtung mit  $\lambda_L = 266$  nm kleiner als für die Belichtung mit  $\lambda_L = 355$  nm. Dies wird auf die für  $\lambda_L = 266$  nm größere Absorption der Strahlung zurückgeführt. Aus den in /Fuq2000/ veröffentlichten Daten lassen sich die unteren

Schwellenenergiedichten  $\varepsilon_S$  für eine Einzelpulsbelichtung ableiten. Danach beträgt für die Belichtung mit  $\lambda_L = 266$  nm die untere Schwellenenergiedichte  $\varepsilon_S = 2 \text{ mJ/cm}^2$ . Für die Belichtung mit  $\lambda_L = 355$  nm ist  $\varepsilon_S = 30 \text{ mJ/cm}^2$ .

• Für die Belichtung mit  $\lambda_L = 266$  nm wird aus der Abnahme der Belichtungsenergiedichte  $\varepsilon_L$  über die Substratdicke mittels Lambert-Beerschem Gesetz die Ätztiefe h<sub>ätz.(bel.)</sub> als Funktion von  $\varepsilon_L$  und N mathematisch beschrieben. Der Vergleich mit experimentellen Daten zeigt, dass infolge der Laser-Belichtung mit steigender Pulszahl N eine Erhöhung des Absorptionskoeffizienten  $\alpha$  verbunden ist. Als Ursache für den Effekt wird Solarisation des Glases infolge Laser-Belichtung vermutet. Eine weiterführende Untersuchung des Gefüges zur Klärung des Effektes erfolgt nicht.

In zahlreichen japanischen und US-amerikanischen Patentanmeldungen sind Verfahrensweisen zur UV-Laser-Belichtung für die geometrische Mikrostrukturierung fotostrukturierbarer Gläser beschrieben. Die wichtigsten sind /Kon94a/, /Kon94b/, /Yab94/. Die zum Teil mehrstufige Belichtung erfolgt hier mit UV-Laserstrahlung an maskierten Substraten zur Herstellung von Grabenstrukturen. Die Einstellung von definierten Ätzstops in der Tiefe basiert auf der Abhängigkeit der Ätzrate von der Belichtungsenergiedichte und Pulszahl. In /Hel2002/ ist ein Verfahren zur Herstellung gestapelter, vergrabener Strukturen durch Belichtung mit  $(3\omega)$ Nd:YAG Laserstrahlung, beschrieben. Durch Fokussierung der Laserstrahlung, wobei die untere Schwellenenergiedichte ausschließlich im Glasvolumen erreicht wird, können 3D-hinterschneidungsfreie Strukturen im Glas erzeugt werden.

Von der geometrischen Strukturierung fotostrukturierbarer Gläser mittels fs-Laserstrahlung berichten aktuelle Veröffentlichungen /Che2002/, /Mas2003/. Zur Anwendung kommen meist Ti-Saphir-Laser, die bei entsprechender Frequenzvervielfachung Laserstrahlung im Wellenlängenbereich 400 nm  $\leq \lambda \leq 800$  nm emittieren. Für diesen Wellenlängenbereich, der bereits dem sichtbaren bis nahen infraroten Bereich entspricht und deutlich niedrigere Photonenenergien als im UV-Bereich aufweist, sind silikatische Gläser zu ca. 95% transparent. Dass dennoch eine auf Strahlungsabsorption basierende Wechselwirkung zwischen dem Glas und der Laserstrahlung stattfindet, wird auf Mehr-Photonen-Absorptionsprozesse zurückgeführt, die durch extrem hohe Leistungsdichten des Laserpulse unterstützt werden. Bei Pulsenergien von weniger als 1 mJ sind im Bereich des Fokus Leistungsdichten von 100 TW/cm<sup>2</sup> möglich. Im Glas entstehen als Folge Feldstärken von bis zu 10<sup>9</sup> V/cm, die eine lawinenartige Erzeugung von Bandlochzentren an Trennstellensauerstoffionen verursachen können und so eine Reduktion von Ag<sup>+</sup>-Ionen ermöglichen. Die fotochemische Gefügemodifizierung des Glases erfolgt hier nur im Bereich des Fokus, so dass eine 3D-Strukturierung des UVsensitiven Glases möglich ist /Kon2000/.

#### 1.2.1.3 Temperung

Ziel der Temperung ist die Entwicklung des latenten Bildes durch Kristallisation in den belichteten Glasbereichen. Während der Temperung bilden sich Silbercluster. Wenn diese in etwa 7nm groß sind und sich in Entmischungströpfchen befinden, wirken sie als Keime für die darauf aufwachsende Kristallphase Lithiummetasilikat /Mro2004/. Die kristallisierten Bereiche sind ein Gemisch aus einzelnen Kristallen und Restglasphase.

Die Größe der einzelnen Kristalle, die letztendlich Einfluss auf Strukturierungskenngrößen, wie das Auflösungsvermögen geometrischer Strukturen, Rauheiten von Strukturseitenwänden sowie mechanische und optische Kennwerte haben, hängt außer von der chemischen Zusammensetzung des Glases und den Parametern der Belichtung entscheidend vom Temperatur-Zeit-Regime der Temperung ab.

Für die Kristallisation fotostrukturierbarer Gläser sind sowohl einstufige /Schm94/, /Har98/, als auch zweistufige Temperprogramme üblich /Mro2004/. Bei einstufigen Temperregimes erfolgen die Keimbildung und Kristallisation bei ein und derselben Temperatur, aber zeitlich aufeinanderfolgend. Die Wahl der Tempertemperatur wird meist empirisch aus einem Kompromiss zwischen optimaler Keimanzahl und Kristallwachstumsgeschwindigkeit getroffen. Der Prozess kann durch Anwendung eines zweistufigen Temperregimes optimiert werden. Hier erfolgt die Temperung zunächst bei der Temperatur der maximalen Keimbildungszahl und anschließend bei der Temperatur der maximalen Kristallwachstumsgeschwindigkeit. Der Vorteil eines zweistufigen Temperregimes besteht bei richtiger Wahl des 9-t-Programms in einer optimalen Entwicklung des latenten Bildes mit einem Maximum an feinkristallisierter Phase. Der Nachteil besteht in einer deutlich längeren Prozesszeit.

Die komplexen Zusammenhänge des Kristallisationsprozesses wurden von Mrotzek /Mro2004/ untersucht und sind nicht Gegenstand dieser Arbeit. Bei eigenen Untersuchungen zur Kristallisation laserbestrahlter Proben wurde das einstufige Temperregime nach /Har98/ genutzt.

#### 1.2.1.4 Nasschemisches Ätzen

Die eigentliche geometrische Strukturierung des fotostrukturierbaren Glases erfolgt im letzten Prozessschritt, dem nasschemischen Ätzen. Dabei werden in verdünnter Flusssäure die partiell kristallisierten Bereiche herausgelöst. Es entstehen Durchbrüche und/oder Strukturen definierter Größe und Tiefe im Glas (vgl. Abb. 1). Umfangreiche Untersuchungen zum

Ätzprozess und zu Prozesstechniken sind in /Schm94/, /Har98/, /Mro2003/, /Lud2003/ dargestellt.

Die makroskopische Untersuchung von Parametern des Ätzprozesses in Abhängigkeit von Laserparametern ist anhand vollständig belichteter und kristallisierter Proben über die Bestimmung des zeitabhängigen Masseverlustes technisch nicht sinnvoll. Aufgrund von lokalen Intensitätsverteilungen im Laserstrahlquerschnitt (vgl. Kap. 3.2) und geringen Laserstrahldurchmessern d<sub>L</sub>, die eine rasterförmige Belichtung größerer Flächen erfordern würden, kann ausreichend viel homogen Laserstrahl-modifiziertes Material bisher nicht hergestellt werden. Eine andere Variante ist die Bestimmung von Ätzparametern über die geometrische Mikrostrukturierung (vgl. Kap. 3.6). Die geometrische Form der geätzten Struktur ist durch die Form des herausgelösten kristallisierten Bereiches geprägt. Um Aussagen über Ätzunterschiede, verursacht durch laserinduzierte Gefügeunterschiede, treffen zu können, ist es daher erforderlich, vorher die geometrische Form der kristallisierten Bereiche genau zu analysieren (vgl. Kap. 3.5).

## 1.3 Zielstellung der Arbeit und Vorgehensweise

Gesamtziel der Arbeit ist es, einen Beitrag zur weiteren Erforschung der Wechselwirkungsprozesse zwischen UV-Laserstrahlung und fotostrukturierbarem Glas zu leisten und Zusammenhänge zwischen Belichtungsparametern und Kenngrößen des Mikrostrukturierungsprozesses aufzuzeigen. Es wird ein besseres Prozessverständnis angestrebt, da die komplexen Wechselwirkungsmechanismen zwischen Glas und gepulster UV-Laserstrahlung bisher weitgehend unverstanden sind.

Ausgehend von einer Analyse der optischen Eigenschaften des Ausgangsglases FS21, dass zu Beginn der Arbeit als abgeschlossene Werkstoffentwicklung vorlag /Bru90/, erfolgte zunächst die Auswahl geeigneter UV-Laser und Parameterintervalle, die eine Belichtungswirkung im fotostrukturierbaren Glas erwarten lassen. Ziel dieser Überlegungen war es, einen Bereich für die Belichtungsparameter: Wellenlänge der Laserstrahlung  $\lambda_L$ , Belichtungsenergiedichte  $\varepsilon_L$ und Pulszahl N so einzugrenzen, dass die für den Fotostrukturierungsprozess notwendigen Belichtungswirkungen erzielt werden können, ohne eine Schädigung der Glasoberfläche durch Materialabtrag herbeizuführen.

Den Hauptteil der Arbeit nimmt die Analyse der Prozessschritte: Belichtung mittels UV-Laserstrahlung, partielle Kristallisation durch Temperung und Herauslösen kristallisierter Bereiche durch nasschemisches Ätzen ein. Spektralphotometrische Untersuchungen sowie eine TEM- und HREM-Analyse an UV-Laser-belichteten Proben erfolgten mit dem Ziel, strukturelle Veränderungen im Glas infolge der Laser-Belichtung zu detektieren. Die dabei auftretenden Phänomene (Absorptionserhöhungen im UV-VIS-Bereich) werden diskutiert. In weiterführenden Untersuchungen zum kristallisierten Zustand laserbelichteter und getemperter Probenbereiche wurden mittels Röntgenfeinstrukturanalyse, REM, optischer Lichtmikroskopie und AFM Kenngrößen des Prozesses (Kristallphase, Größe einzelner Kristalle, geometrische Ausdehnung kristallisierter Bereiche in den Proben) in Abhängigkeit von den Belichtungsparametern bestimmt. Im letzten Prozessschritt, dem Herauslösen kristallisierter Bereiche, erfolgte die Bestimmung von Ätzratenverhältnissen. Die dabei gewonnenen Erkenntnisse werden bewertet und anwendungsbezogen diskutiert.

Im Weiteren wird der Einfluss von Belichtungsparametern auf Kenngrößen des geometrischen Strukturierungsprozesses am Beispiel der Belichtung mit XeCl-Excimerlaserstrahlung anhand strukturierter Gräben diskutiert.

Abschließend erfolgt die Zusammenfassung der Ergebnisse. In Kap. 6 wird ein Ausblick auf weiterführende Forschungen gegeben.

## 2 Grundlagen

## 2.1 Lineare und nichtlineare optische Effekte

Die hohe Transparenz fotostrukturierbarer Gläser in einem weiten Bereich des elektromagnetischen Spektrums wird im UV-Bereich durch die in Kap. 2.3.2 erörterte Absorptionskante begrenzt. Diese Tatsache bedingt, dass im Bereich hoher bzw. niedriger Absorption unterschiedliche Reaktionen im Glas für den Fotostrukturierungsprozess bei Belichtung mit UV-Lasern ausgenutzt werden können. Im Folgenden werden die für den Belichtungsprozess des fotostrukturierbaren Glases relevanten Absorptionsmechanismen diskutiert. Neben linearen optischen Effekten werden bei Belichtungen mit UV-Lasern bei hinreichend hohen Belichtungsintensitäten zunehmend auch nichtlineare optische Effekte relevant.

Im Fall niedriger Strahlungsintensitäten ist die in einem isotropen, dielektischen Material induzierte Polarisation  $\vec{P}$  proportional zur elektrischen Feldstärke  $\vec{E}$  einer mit einem Material wechselwirkenden elektromagnetischen Welle. Im Fall eines harmonisch oszillierenden Feldes ändert sich die Polarisation ebenfalls harmonisch, und es gilt (4)

$$\vec{\mathbf{P}} = \boldsymbol{\epsilon}_0 \cdot \boldsymbol{\chi} \cdot \vec{\mathbf{E}} \tag{4}$$

mit der elektrischen Feldkonstante  $\in_0$  und der elektrischen Suszeptibilität  $\chi$  als dimensionslosen Proportionalitäts- bzw. Materialkonstanten. Dabei steht  $\chi$  über die Relation (5) mit dem Brechungsindex <u>n</u> im Zusammenhang /Gri82/.

$$\underline{\mathbf{n}} = \sqrt{1 + \chi} \tag{5}$$

In absorbierenden Medien ist <u>n</u> eine komplexe Größe, bestehend aus einem realen Anteil  $n_1$ , der Brechungskonstante, und einem Imaginärteil  $n_2$ , der Absorptionskonstante (6).

$$\underline{\mathbf{n}} = \mathbf{n}_1 + \mathbf{i} \cdot \mathbf{n}_2 \tag{6}$$

Beide Größen,  $n_1$  und  $n_2$ , sind Funktionen der Wellenlänge  $\lambda$ . Über (7) ist der Zusammenhang zwischen dem linearen Absorptionskoeffizienten  $\alpha$  sowie  $n_2$  und  $\lambda$  gegeben.

$$\alpha = \frac{4\pi}{\lambda} \cdot \mathbf{n}_2 \tag{7}$$

Die optischen Größen Brechungsindex <u>n</u> und Absorptionskoeffizient  $\alpha$  sind bei gegebener Wellenlänge Materialkonstanten. Es resultieren daraus zwei Grundprinzipien der linearen Optik: *das Superpositionsprinzip* (verschiedene Lichtwellen beeinflussen sich nicht und können ungestört überlagert werden) und *die Erhaltung der Frequenz* (bei Wechselwirkung von Licht mit Materie entstehen keine neuen Frequenzen) /Kli71/, /Fan83/, /Hec2001/.

Tritt UV-Laserstrahlung senkrecht auf die Oberfläche einer Glasprobe, so wird die einfallende Strahlung unter Vernachlässigung von Streueffekten teilweise an Grenzflächen reflektiert, im Innern der Probe absorbiert und transmittiert. Es gilt (8).

$$1 = R + A + T \tag{8}$$

R ist der Reflexionsgrad, A der Absorptionsgrad und T der Transmissionsgrad.

Der Reflexionsgrad R lässt sich nach den Fresnel'schen Gleichungen unter Berücksichtigung der Absorption berechnen /Fan83/. Allgemein gilt (9) für Vakuum und noch annähernd für Luft (bei Normaldruck).

$$R = \frac{(n_1 - 1)^2 + n_2^2}{(n_1 + 1)^2 + n_2^2}$$
(9)

Für Glas im Bereich vernachlässigbarer Absorption kann  $n_2 = 0$  gesetzt werden. Im Bereich der Absorptionskante eines Glases nimmt die Reflexion aufgrund einer starken Erhöhung von <u>n</u> zu /Fan83/.

Breitet sich Strahlung innerhalb einer absorbierenden Probe aus, nimmt die Intensität I längs des Weges z gemäß (10) ab.

$$-dI(z) = \alpha \cdot I(z)dz \tag{10}$$

Die Integration von (10) führt zum Lambert-Beerschen-Gesetz /Haf2003/ (11).

$$I(z) = I_{e} \cdot e^{-\alpha \cdot z} \tag{11}$$

Unter Berücksichtigung eines an der Belichtungsoberseite reflektierten Strahlungsanteils für die Eingangsintensität I<sub>e</sub> durch I<sub>e</sub> = I<sub>0</sub>(1 – R) folgt (12):

$$I(z) = I_0 \cdot (1 - R) \cdot e^{-\alpha \cdot z}$$
<sup>(12)</sup>

 $I_0$  ist die auf der Probenoberfläche auftreffende Intensität der Laserstrahlung, I(z) ist die Intensität der Strahlung innerhalb der Probe am Ort z und  $\alpha$  ist der lineare Absorptionskoeffizient des Glases für die verwendete Wellenlänge der Laserstrahlung. R bestimmt den Grad der Energieeinkopplung und  $\alpha$  die Lokalisierung der Energie innerhalb der Probe.  $\alpha$ kann ausgehend von (12) und (17) durch Messung des Transmissionsgrades einer Probe der Dicke d nach (13) berechnet werden.

$$\alpha = \frac{1}{d} \cdot \left[ \ln(1 - R) - \ln T \right]$$
<sup>(13)</sup>

Der Weg, der zur Schwächung der Intensität I<sub>0</sub> auf den e-ten Teil notwendig ist, wird als optische Eindringtiefe  $\delta_{opt.}$  bezeichnet (vgl. (14)).

$$\delta_{\text{opt.}} = \frac{1}{\alpha} \tag{14}$$

Die Gültigkeit von Gleichung (12) ist an niedrige Intensitäten gebunden, wobei "niedrig" sich auf die Amplitude des elektrischen Feldstärkevektors der Lichtstrahlen gewöhnlicher Lichtquellen bezieht. Der zugrunde liegende Prozess ist ein Ein-Photon-Absorptionsprozess. Lichtquanten (Photonen) der Energie E werden von Ionen des Glases absorbiert, wenn diese groß genug ist, um ein Elektron vom Energiezustand  $E_1$  (im allgemeinen vom Grundzustand) in einen höheren Energiezustand  $E_2$  (angeregter Zustand) zu überführen. Es gilt Gleichung (15)

$$\Delta \mathbf{E} = \mathbf{E}_2 - \mathbf{E}_1 \ge \mathbf{h} \cdot \frac{\mathbf{c}}{\lambda} \tag{15}$$

mit h dem Planck'schen Wirkungsquant und c der Lichtgeschwindigkeit im Vakuum.

Die Verweilzeit der angeregten Elektronen im höheren Energieniveau  $E_2$  ist begrenzt. Bei Rekombination der Elektronen mit positiven Lücken erfolgt die Abgabe der Energie entweder strahlend durch Emission von Photonen mit Energien, die dem Übergang  $E_2 \rightarrow E_1$ entsprechen oder nicht-strahlend durch Abgabe von Phononen.

Entspricht die Energie der Photonen genau dem Abstand der am Absorptionsprozess beteiligten Energieniveaus, so ist die Resonanzbedingung erfüllt. Für diesen Fall ist die Absorption durch das entsprechende Ion am wahrscheinlichsten. Die Wahrscheinlichkeit für einen Absorptionsprozess wächst außerdem mit der Anzahl der beteiligten Ionen im Glas, die sich im Energiezustand  $E_1$  befinden und mit steigender Energiedichte /Don90/.

Ist die Energie der Photonen größer als der Abstand der Energieniveaus E<sub>1</sub> und E<sub>2</sub>, so findet ebenfalls eine Absorption statt, und die überschüssige Energie wird in Schwingungsenergie umgewandelt (lokale Erwärmung). Bei Überschreitung einer charakteristischen Grenzenergie, dem sogenannten Ionisationspotential, ist die absorbierte Energie größer als die Bindungsenergie eines einzelnen Elektrons. Es kommt zur Ablösung des Elektrons (Ionisation). Als Folge dieser Ionisation können chemische Reaktionen auftreten /Kie77/, /Mil98/.

Für große Energie- bzw. Leistungsdichten der UV-Laserstrahlung treten Abweichungen vom linearen Zusammenhang in (4) auf, da die Polarisation nicht unendlich weit mit der elektrischen Feldstärke wachsen kann. Die elektrische Suszeptibilität  $\chi$  ist dann eine Funktion der elektrischen Feldstärke. Das Superpositionsprinzip und die Erhaltung der Frequenz gelten nicht mehr /Hec2001/. Daraus folgt u.a., dass die Absorption der Laserstrahlung im Material abhängig von der Intensität bzw. der eingesetzten Energiedichte  $\epsilon_L$  wird. Die Ursachen dafür sind nichtlineare Phänomene, wie z.B. die Zwei-Photonen-Absorption. Im Fall  $\Delta E < E_2 - E_1$  findet bei geringer Intensität normalerweise keine Absorption statt. Bei hinreichend großer Intensität der Strahlung können von einem Ion im einfachsten Fall zwei Photonen "gleichzeitig" absorbiert werden. Dabei geht ein Elektron von einem Zustand  $E_1$  über ein verbotenes Zwischenniveau in den Zustand  $E_2$  über. Die Anzahl der Zwei-Photonen-Absorption.

Bei UV-Laser-Belichtung von Glas im Bereich niedriger Absorption sind Zwei-Photonen-Absorptionsprozesse bei Verwendung von Energiedichten  $\varepsilon_L > 0,1$  J/cm<sup>2</sup> zu berücksichtigen /Esc88/ und können durch (16) /Ara88/ beschrieben werden.

$$- dI(z) = (\alpha \cdot I(z) + \beta \cdot I^{2}(z))dz$$
<sup>(16)</sup>

In (16) ist  $\alpha$  der bereits o.g. lineare Absorptionskoeffizient (Ein-Photon-Absorption) und  $\beta$  der nichtlineare Absorptionskoeffizient (Zwei-Photonen-Absorption). Zwei-Photonen-Absorptionsprozesse können die Bildung von Defektzuständen (zusätzlichen Absorptionszentren) im Glas verursachen, auf die in Kap. 3.4.3.2 näher eingegangen wird.

## 2.2 Allgemeines zur UV-VIS Strahlungsabsorption in Glas

Die Absorption von UV-Strahlung im Glas beruht auf der Wechselwirkung mit Elektronen, die mehr oder weniger stark gebunden sind. In oxidischen Gläsern ist der dominierende Mechanismus die Absorption durch die äußere Elektronenhülle der Sauerstoffionen. Der Bindungszustand der Sauerstoffionen im Glas bestimmt deshalb maßgeblich die Lage der Absorptionskante im UV, bzw. den Wellenlängenbereich, der durch den Übergang vom Gebiet hoher Absorption in den Bereich niedriger Absorption gekennzeichnet ist. Aus Sicht der Festkörperphysik ist die Absorptionskante im UV-Bereich ein Maß für die mittlere Bindungsenergie der Elektronen in der Glasmatrix, auch als optische Bandlücke E<sub>G</sub>` eines Glases bezeichnet. Die optische Bandlücke wird als der Energiebetrag definiert, der notwendig ist, um mittels Ein-Photon-Absorption ein gebundenes Elektron vom Valenzband in das Leitungsband zu transportieren. Des weiteren wird die Lage der Absorptionskante durch Lage und Form diskreter Absorptionsbanden, hervorgerufen durch weitere Absorptionszentren in diesem Spektralbereich, bestimmt. Sowohl für unbestrahlte als auch für Mehrkomponentengläser sind vielfältige Ursachen für die Entstehung von bestrahlte Absorptionszentren möglich. Die Stärke der Absorption richtet sich zum einen nach der Zusammensetzung:

- Vorhandensein von Verunreinigungen
- Anteil polyvalenter Elemente
- Polarisierungsfähigkeit der Netzwerkwandlerkationen
- Zusammensetzungsbedingte strukturelle Charakteristika:
  - Konzentration der Trennstellensauerstoffe
  - Kationenkoordination
  - Typen struktureller Gruppen

und zum anderen nach der Probenpräparation:

- Schmelzatmosphäre
- Wärmebehandlung im Transformationsbereich vor der Bestrahlung
- Wärmebehandlung nach der Bestrahlung.

Ein weiterer Effekt, der messtechnisch in einer Erhöhung der Absorption resultiert, sind optische Verluste infolge Streuung durch Partikel (z.B. metallische Partikel, Kristalle), durch Blasen, durch Phasenseparation und durch Dichteunterschiede.

Die Bestrahlung von Glas mit UV-Laserstrahlung führt im Fall hinreichend hoher Energiedichten durch Erzeugung von Elektronen-Loch-Paaren zu einer Erhöhung der optischen Absorption gegenüber unbestrahltem Glas. Diese strahlungsinduzierten optischen Absorptionen werden auch als Farbzentren bezeichnet und als strahlungsinduzierte Defektzustände beschrieben. Für oxidische Gläser mit Kationen ist der dominierende Defektzustand der Übergang eines Elektrons vom lokalisierten Niveau eines Ions zu einem höheren aber immer noch lokalisierten Energieniveau. Verbleibt das Elektron an einem Ion, spricht man in diesem Stadium von einem Elektronen-Loch-Paar oder Exciton. Erfolgt der Übergang des Elektrons vollständig zu einer anderen atomaren Spezies, spricht man von einem Ladungstransfer /Won76/. Diese Defekte liegen mit ihren Energiezuständen in der Lücke zwischen Leitungsband und Valenzband. Ist die Aufspaltung der Niveaus der Defekte oder der Abstand zum Leitungsband klein genug, erzeugen optische Photonen Übergänge in das Leitungsband mit den für den Defekt charakteristischen Absorptionsbanden. Diese liegen im UV- und im sichtbaren Bereich des elektromagnetischen Spektrum. Eine detaillierte Beschreibung der Natur von Farbzentren findet man in /Won76/. Weitere umfangreiche Untersuchungen zu Farbzentren in Gläsern sind in /Bis70/ und /Fri79/ dargestellt.

## 2.3 Charakterisierung des Ausgangsglases

#### 2.3.1 Herstellung der Glasproben

Das in der vorliegenden Promotionsschrift verwendete fotostrukturierbare Glas FS21 ist ein Lithiumalumosilikatglas. Die Hauptglaskomponenten sind SiO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub>, Li<sub>2</sub>O, Na<sub>2</sub>O und K<sub>2</sub>O. Die Fotosensibilität wurde durch Dotierung mit Ag<sub>2</sub>O, Ce<sub>2</sub>O<sub>3</sub>, SnO und Sb<sub>2</sub>O<sub>3</sub> erreicht. Es wurden Gläser mit und ohne Dotierung untersucht. In Anhang 1 sind die konkrete Zusammensetzung des Glases, das Schmelzregime und ausgewählten Eigenschaften angegeben.

Aus dem zylindrischen Glaskörper wurden durch die Prozessschritte Schneiden, Schleifen und mechanochemisches Polieren Wafer im 3inch-Format hergestellt. Die Dicke der Wafer für die Laser-Belichtungsversuche betrug zwischen 500 µm und 1000 µm. Zur Untersuchung optischer Eigenschaften des unbelichteten Glases wurde ein Wafer über den selben o.g. Schleif- und Polierprozess auf eine minimale Dicke von 28 µm abgedünnt. Die Rauheit der polierten Glasoberflächen, bestimmt als arithmetischer Mittenrauhwert Ra, beträgt Ra < 13 nm. In Vorbereitung auf die Untersuchungen wurden die Glasproben mit destilliertem Wasser und mit Ethanol gereinigt.

#### 2.3.2 Bestimmung von Absorptionskanten und -banden

Im Rahmen dieser Arbeit erfolgte die Bestimmung von Absorptionskanten durch Messung des Transmissionsgrades T in Abhängigkeit von der Wellenlänge nach (17).

$$T(\lambda) = \frac{I}{I_0}$$
(17)

T ist das Verhältnis aus durch die Glasprobe hindurchgelassener Intensität I und auf die Probe auftreffender Intensität I<sub>0</sub> für die jeweilige Wellenlänge der Strahlung /Haf2003/. Die Bestimmung von T ist abhängig von der Probendicke d, da innerhalb der Glasprobe eine exponentielle Intensitätsschwächung (vgl. Kap. 2) erfolgt. Als Maß für die Absorptionskante eines Glases wird die Wellenlänge  $\lambda$  angegeben, bei der der Transmissionsgrad T = 50% beträgt. Wenn nicht anders angegeben, dann beziehen sich die T-Werte in der Literatur meist auf eine Probendicke von d = 1 mm. Davon abweichend werden im Rahmen dieser Arbeit ermittelte Absorptionskanten anhand verwendeter Probendicken diskutiert.

Die Bestimmung des Transmissionsgrades für FS21 erfolgte mittels eines UV-VIS-NIR Spektralphotometers der Fa. SHIMADZU vom Typ: UV-2101/3101PC. In Abb. 2 ist der spektrale Transmissionsgrad T für FS21 mit und ohne Dotierung (vgl. Anhang 1) bei vergleichbaren Probendicken, sowie für extrem verschiedene Probendicken des dotierten Glases dargestellt. Zusätzlich ist die Lage der später eingesetzten Laserwellenlängen  $\lambda_L$ angegeben.



Abb. 2: Spektraler Transmissionsgrad T für FS21 dotiert und undotiert

Folgende Aussagen können Abb. 2 entnommen werden, die im Weiteren diskutiert werden:

- Im Wellenlängenbereich 360 nm  $\leq \lambda \leq 500$  nm beträgt der Transmissionsgrad für alle dargestellten Kurven T = 92,0 ± 0,5 % und ist für 28 µm  $\leq d \leq 980$  µm unabhängig von der Probendicke und der Dotierung, da die verwendeten Probendicken sehr viel kleiner als die optische Eindringtiefe in diesem Wellenlängenbereich sind (vgl. Kap. 2.3.3). Der Anteil absorbierter Strahlung ist sehr gering und kann vernachlässigt werden. Die Transmissionsverluste sind lediglich auf Reflexionen, die für Gläser mit Brechzahlen im Bereich n = 1,52 typischerweise 0,04 pro Grenzfläche betragen, zurückzuführen. Es gilt dann R = 1-T (vgl. Kap. 2).
- Der Übergang vom Bereich hoher Absorption in den Bereich hoher Transmission erstreckt sich für alle dargestellten Kurven insgesamt im Wellenlängenbereich 190 nm  $\leq \lambda \leq 360$  nm. Die Absorptionskante  $\lambda(T = 50\%)$  bzw. E<sub>G</sub>` variiert in Abhängigkeit von der Probendicke und der Dotierung. In Tab. 1 sind die Werte für o.g. Proben zusammengefasst.

| Probe                          | λ in nm | E <sub>G</sub> ' in eV |
|--------------------------------|---------|------------------------|
| FS21-dot. ( $d = 28 \ \mu m$ ) | 235     | 5,3                    |
| FS21-undot. (d = 941 $\mu$ m)  | 295     | 4,2                    |
| FS21-dot. (d = 980 $\mu$ m)    | 323     | 3,8                    |

Tab. 1: Absorptionskante bei T = 50%

- Die Absorptionskanten f
  ür dotiertes FS21 werden von einer Absorptionsbande mit einem Maximum bei λ = 310 nm überlagert. F
  ür FS21 mit d = 980 μm ist die Bande st
  ärker ausgepr
  ägt als f
  ür die Probe mit d = 28 μm. Die Absorptionskante f
  ür die 28 μm d
  ünne Probe ist stark zu kleineren Wellenl
  ängen und damit zu gr
  ößeren Photonenenergien der effektiven Bandl
  ücke E<sub>G</sub>` verschoben (vgl. Tab. 1). Dadurch ist in dieser Probe eine weitere Absorptionsbande mit einem Maximum bei λ = 210 nm zu erkennen, die durch Messungen an mehreren Proben mit 28 μm ≤ d ≤ 47 μm best
  ätigt wurde.
- Die Kurve der Probe FS21-undot. (d = 941 μm) lässt außer der Absorptionskante keine weiteren Absorptionsbanden im dargestellten Wellenlängenbereich erkennen.

Die Lage der Absorptionskante von FS21 wird maßgeblich durch die Dotierung mit den im UV-Bereich Absorptionsbanden bildenden polyvalenten Kationen von Cer, Silber, Zinn und Antimon beeinflusst. Während der Glasschmelze und der Abkühlung stellen sich Redoxverhältnisse im Glas ein, die die komplexen Gleichgewichtszustände zwischen  $Ce^{3+}/Ce^{4+}$ ,  $Ag^{\pm 0}/Ag^{+}$ ,  $Sn^{2+}/Sn^{4+}$  und  $Sb^{3+}/Sb^{5+}$  bestimmen. Dabei gilt die Zuordnung der Absorptionsbande bei  $\lambda = 310$  nm zu dreiwertig positiv geladenen Cer-Ionen in FS21 als gesichert /Sto49/, /Str61/, /Bru90/.

Die Absorptionsbande bei  $\lambda = 210$  nm wurde spektralphotometrisch in vorangegangenen Arbeiten bisher nicht beobachtet, da Messungen an wesentlich dickeren Proben stattfanden. Aus der Literatur ist bekannt, dass die polyvalenten Kationen von Zinn und Antimon sowie Ag<sup>+</sup>-Ionen Absorptionsbanden im UV-Bereich verursachen. Nach /Ehr2001/ absorbiert in DURAN<sup>®</sup> ((mol%) 82 SiO<sub>2</sub> – 12 B<sub>2</sub>O<sub>3</sub> – 1 Al<sub>2</sub>O<sub>3</sub> – 5 Na<sub>2</sub>O/K<sub>2</sub>O) Sn<sup>4+</sup> bei  $\lambda = 180$  nm und Sn<sup>2+</sup> bei  $\lambda = 206$  nm. In /Mön2003b/ wird für Sb<sup>3+</sup> in einem Borosilikatglas eine Absorptionsbande bei  $\lambda = 217$  nm angegeben. Für Ag<sup>+</sup>-Ionen in einem Natriumboratglas werden Absorptionsbanden bei  $\lambda = 192$  nm und  $\lambda = 208$  nm angegeben /Bac86/. Übereinstimmend geben die Autoren an, dass die Lage der gefundenen Absorptionsbanden von der chemischen Zusammensetzung der Gläser und der Umgebung der betreffenden Ionen abhängt. Nach /Pac2002/ liegt in FS21 im unbelichteten Zustand Zinn überwiegend als  $\text{Sn}^{4+}$  und Antimon überwiegend als  $\text{Sb}^{3+}$  vor. Auch wenn für  $\text{Ag}^+$  (und  $\text{Sn}^{2+}$ ) eine gute Übereinstimmung mit der Absorptionsbande in FS21 bei  $\lambda = 210$  nm besteht, ist eine Übertragung der Ergebnisse nicht möglich. Deshalb kann im Rahmen dieser Arbeit keine eindeutige Aussage zur Ursache der Absorptionsbande bei  $\lambda = 210$  nm getroffen werden. Da aber  $\text{Sn}^{2+}$  im Glas FS21 kaum auftritt, liegt eine Zuordnung zu  $\text{Ag}^+$ -Ionen nahe.

Aus Tab. 1 ist weiter ersichtlich, dass bezüglich FS21-dot. ein großer Einfluss der Probendicke auf die Angabe der Absorptionskante als Maß für die optische Bandlücke besteht. Für Laserstrahlung der Wellenlänge  $\lambda_L = 248$  nm (E<sub>Photon</sub> = 5,0 eV) liegt dotiertes FS21 mit einer Probendicke von d = 980 µm innerhalb und einer Probendicke von d = 28 µm außerhalb der optischen Bandlücke. Dies bedeutet, dass zwischen Laserstrahlung und Glas in der Tiefe begrenzte Wechselwirkungsprozesse zu erwarten sind. Für die Wechselwirkung von Laserstrahlung der Wellenlänge  $\lambda_L = 248$  nm mit Ce<sup>3+</sup>-Ionen im Glas wird von einem Ein-Photon-Absorptionsprozess ausgegangen, da die Energie der Photonen mit 5 eV (vgl. Tab. 3) um 1 eV größer ist, als die notwendige Anregungsenergie von  $\Delta E = 4,0$  eV für den Elektronentransfer vom 4f- zum 5d-Niveau der Ce<sup>3+</sup>-Ionen. Strahlungsabsorption infolge Zwei-Photonen-Absorption durch weitere Absorptionszentren der Glasmatrix mit Anregungsenergien kleiner als 10 eV sind zumindest innerhalb einer Schichtdicke von 28 µm möglich, da für diese Probenstärke die optische Bandlücke zu  $\lambda = 235$  nm (E<sub>G</sub>` = 5,3 eV) verschoben ist.

Bezüglich Laserstrahlung der Wellenlänge  $\lambda_L = 308$  nm ( $E_{Photon} = 4,0$  eV) ist eine gegenüber  $\lambda_L = 248$  nm deutlich größere Wechselwirkungstiefe zu erwarten, da gegenüber  $\lambda_L = 248$  nm die Transmission für FS21-dot. sowohl für d = 28 µm als auch für d = 980 µm bei größeren Werten liegt. Ein Vergleich der Transmissionskurven von FS21 mit und ohne Dotierung (bei vergleichbaren Probendicken) zeigt, dass durch die Dotierung die Absorptionskante in den Bereich der optischen Bandlücke verschoben wird. Aufgrund der Absorptionsbandenbildung von Ce<sup>3+</sup> bei  $\lambda = 310$  nm wird die Ein-Photon-Absorption von  $\lambda_L = 308$  nm im Glas durch der resonanten Anregung des 4f  $\rightarrow$  5d Übergangs bei Ce<sup>3+</sup>-Ionen. Zwei-Photonen-Absorptionsprozesse durch Absorptionszentren der Glasmatrix mit Anregungsenergien kleiner als 8,0 eV sind wahrscheinlich.

Für Laserstrahlung der Wellenlänge  $\lambda_L = 355 \text{ nm}$  (E<sub>Photon</sub> = 3,5 eV) besitzt FS21 auch bei großen Probendicken (d > 900 µm) eine optische Transparenz von größer 90%. Das heißt, die Photonenenergie liegt außerhalb der optischen Bandlücke. Wechselwirkungsprozesse zwischen Laserstrahlung und dotiertem FS21 beruhen sowohl für die Absorption durch  $Ce^{3+}$ -Ionen als auch durch andere Absorptionszentren der Glasmatrix mit Anregungsenergien kleiner als 7,0 eV auf Zwei-Photonen-Absorptionsprozessen.

#### **2.3.3** Bestimmung der optischen Eindringtiefe $\delta_{opt.}$

An der Grenzfläche zwischen Glas und Umgebung (Luft) kommt es zur Reflexion von elektromagnetischer Strahlung nach dem Huygens-Fresnel-Prinzip /Hec2001/. Durch UV-Laser-Belichtung der Glasoberfläche werden gebundene Valenzelektronen in der Oberflächenschicht zu Schwingungen angeregt, die ihrerseits elektromagnetische Elementarwellen erzeugen und emittieren. Die Überlagerung dieser Elementarwellen ist die reflektierte elektromagnetische Welle. Im Bereich der Absorptionskante nimmt die Reflexion zu. In diesem Sinne sind Reflexionen Verluste, die zur Bestimmung charakteristischer Materialeigenschaften, wie z.B. des Absorptionskoeffizienten  $\alpha$  als Funktion der Wellenlänge, eliminiert werden müssen. Der Grad der Reflexion hängt ab von:

- der Wellenlänge der Strahlung,
- der Oberflächenbeschaffenheit der Probe,
- dem Einfallswinkel monochromatischer Strahlung,
- der chemischen Zusammensetzung der Probe,
- der Brechzahl,
- absorptiven Eigenschaften.

Die Bestimmung der optischen Eindringtiefe  $\delta_{opt.}$  für die eingesetzten Laserstrahlungen erfolgte durch Vergleichsmessungen des Transmissionsgrades mit vergleichbaren Proben unterschiedlicher Dicke. Unter der Annahme R = konstant für beide Proben gilt die Relation (18).

$$\frac{T_1}{T_2} = \frac{d_1}{d_2}$$
(18)

Durch Einsetzen von (12) und (17) in (18) ergibt sich für  $\delta_{opt.}$  (19).

$$\delta_{\text{opt.}} = \frac{d_2 - d_1}{\ln \frac{T_1}{T_2}}$$
(19)

Die Werte für  $\delta_{opt.}$  und die nach (14) berechneten Absorptionskoeffizienten sind für die Wellenlängen, die denen der eingesetzten Laserstrahlungen entsprechen, in Tab. 2 zusammengefasst. Die aus den Messwerten für T und d berechneten optischen Eindringtiefen gelten für Ein-Photon-Absorption bei niedrigen Strahlungsintensitäten. Aus Tab. 2 ist ersichtlich, dass, wie in Kap. 2.3.2 vermutet, für  $\lambda_L = 248$  nm die optische Eindringtiefe kleiner ist als die für die Belichtungsversuche verwendete Probendicke. Für  $\lambda_L = 308$  nm liegt die optische Eindringtiefe in der Größenordnung der Probendicke. Dagegen ist für  $\lambda_L = 355$  nm die optische Eindringtiefe sehr viel größer als die verwendeten Probendicken. Da die eingesetzten Laserstrahlungen die Intensitäten anderer gewöhnlicher Lichtquellen bei weitem übertreffen, ist davon auszugehen, dass die realen Wechselwirkungstiefen die berechneten optischen Eindringtiefen übersteigen können.

Tab. 2: Lineare Absorptionskoeffizienten  $\alpha$  und optische Eindringtiefen  $\delta_{opt.}$ 

| λin nm | α in mm <sup>-1</sup> | $\delta_{opt.}$ in mm |
|--------|-----------------------|-----------------------|
| 248    | 7,75                  | 0,129                 |
| 308    | 1,27                  | 0,787                 |
| 355    | 0,013                 | 74,0                  |
# 3 Analyse des Belichtungs- und Strukturierungsprozesses

# 3.1 Aufbau und Eigenschaften der verwendeten Laseranlagen

#### 3.1.1 Bearbeitungsanlage für Excimerlaserstrahlung

Da im Rahmen der vorliegenden Arbeit keine eigenen experimentellen Laseraufbauten erfolgten, werden im Folgenden nur die zum Verständnis der durchgeführten Untersuchungen notwendigen Parameter der Bearbeitungsanlagen dargestellt.

Der für die Belichtung des fotostrukturierbaren Glases verwendete Excimerlaser vom Typ LPX 325 i CC Nova Tube<sup>®</sup> der Fa. LAMBDA PHYSIK ist ein computergesteuerter, durch Hochspannungsentladung angeregter Gaslaser, der gepulste VUV/UV-Laserstrahlung im Bereich 157 nm  $\leq \lambda_L \leq 351$  nm erzeugen kann. Die Wellenlänge der verwendeten Laserstrahlung wird durch das Lasermedium im Resonator bestimmt. Der Rohstrahl besitzt einen rechteckigen Strahlquerschnitt mit zwei unterschiedlich stark ausgeprägten Intensitätsmaxima (vgl. Abb. 3).



Abb. 3: Leistungsdichteverteilung des LPX 325 i CC Nova Tube<sup>®</sup>-Rohstrahls als 3D-Plot Im mittleren Bereich der Seite d<sub>v</sub> ist die Homogenität des lokalen Leistungsdichte-

verteilungsprofils der Laserstrahlung für die Anwendung des Maskenprojektionsverfahrens

ausreichend. Die relativen Schwankungen  $\Delta I_y$  betragen dort  $\Delta I_y < 10\%$ . Entlang der Seite d<sub>x</sub> ist das Profil der Leistungsdichteverteilung Gauss-förmig.

Es wurden Laser-Belichtungsversuche mit ns-gepulster KrF-Excimerlaserstrahlung der Wellenlänge  $\lambda_L = 248$  nm und XeCl-Excimerlaserstrahlung der Wellenlänge  $\lambda_L = 308$  nm durchgeführt. Die Spezifikationen der eingesetzten Laserstrahlungen sind in Tab. 3 zusammengefasst. In Abb. 4 ist die Bearbeitungsstation für die Excimerlaserbearbeitung schematisch dargestellt.



## Abb. 4: Schematische Darstellung des Bearbeitungssystems zur Belichtung mittels Excimerlaserstrahlung

Die Strahlführung und –formung erfolgt horizontal über eine Homogenisatoreinheit, einen Umlenkspiegel, einen Strahlabschwächer, ein 3 Linsen-Objektivsystem /Hen96/ und eine Lochblende, die auf einem schwingungsgedämpften Tisch montiert sind. Der Arbeitsabstand zwischen Objektiv und Substrat beträgt 15 cm. Abbildungsverhältnisse bis zu 13:1 mit einem geometrischen Auflösungsvermögen von 1  $\mu$ m sind möglich. Das 3-Achsen-Positioniersystem der Fa. UNIDEX besteht aus mittels Schrittmotor angetriebenen Verfahrtischen, die in x-, y- und z-Richtung eine maximale Verfahrstrecke von 200 mm mit einer maximalen Verfahrgeschwindigkeit von 500 mm/s und einer Positioniergenauigkeit von <10  $\mu$ m

realisieren. Auf einer einachsigen Verfahrstrecke von 25 mm wird eine uniaxiale Wiederholgenauigkeit von  $< 2 \,\mu m$  erreicht. Die zu belichtende Glasprobe wird mittels einer graphitbeschichteten Halterung auf der x-y-Einheit befestigt. An der z-Achse ist das Objektiv befestigt. Zur Anpassung der Laserleistung an die experimentellen Erfordernisse wurde im Strahlengang ein neutraler Reflexionsfilter als Abschwächer positioniert.

#### 3.1.2 Bearbeitungsanlage für Nd:YAG Festkörperlaserstrahlung

Für die Versuche wurde ein diodengepumpter Q-Switch-Nd:YAG Festkörperlaser der Fa. Lambda Physik vom Typ StarLine<sup>TM</sup> 1000 verwendet. Die Grundwellenlänge des Lasers ist  $\lambda_L = 1064$  nm. Durch Frequenzverdreifachung kann die für die Versuche eingesetzte Wellenlänge  $\lambda_L = 355$  nm erzeugt werden. Die Spezifikation der eingesetzten Festkörperlaser-strahlung ist in Tab. 3 zusammengefasst. In Abb. 5 ist die Bearbeitungsstation für die Festkörperlaser-Belichtung von FS21 dargestellt.



# Abb. 5:Schematische Darstellung der Bearbeitungsstation zur Belichtung mittels(3ω)Nd:YAG:Laserstrahlung

Der Rohstrahl besitzt eine Gauss-förmige Intensitätsverteilung, wird über ein offenes Strahlführungssystem in die vertikal angeordnete Bearbeitungsoptik eingekoppelt und von oben senkrecht auf der Probenoberfläche abgebildet. Zur Variation der Laserleistung werden Neutralglasfilter (Fa. Schott, Typ NG) unmittelbar vor der Bearbeitungsoptik positioniert. Dadurch ist eine Reduzierung der Leistung ohne Beeinflussung der Leistungsdichteverteilung möglich. Die Substratmanipulation erfolgt über eine auf einem schwingungsisolierenden Granitaufbau montierte Vierachsenpositioniereinheit (drei Linearachsen und eine Drehachse) mit Linearmotorantrieben. Es werden maximale Verfahrgeschwindigkeiten von 500 mm/s bei einer Positioniergenauigkeit von 0,1 µm und einer Wiederholgenauigkeit von 1 µm erreicht.

| Wellenlänge $\lambda_L$ [nm]                                   | 248                        | 308                        | 355                        |
|----------------------------------------------------------------|----------------------------|----------------------------|----------------------------|
| Lasermedium                                                    | KrF                        | XeCl                       | Nd:YAG Stab                |
| Photonenenergie E <sub>Photon</sub> [eV]                       | 5,0                        | 4,0                        | 3,5                        |
| Mittlere Leistung P <sub>L</sub> [W]                           | 160                        | 300                        | 2,5                        |
| Pulsenergie E <sub>P</sub> [mJ]                                | 800                        | 2000                       | 2,5                        |
| Pulsdauer τ [ns]                                               | 25                         | 40                         | 10                         |
| maximale Pulsfolgefrequenz f [Hz]                              | 250                        | 250                        | 1000                       |
| Rohstrahlabmessungen                                           | $10 \cdot 20 \text{ mm}^2$ | $10 \cdot 20  \text{mm}^2$ | $d_{\rm roh} = 1-2 \rm mm$ |
| Divergenzwinkel $\Theta_x \cdot \Theta_y$ [mrad <sup>2</sup> ] | 1.2                        | 1.2                        | k.A.                       |
| Strahldurchmesser im Fokus $d_L$ [µm]                          | k.A.                       | k.A.                       | 9                          |
| Strahlqualität M <sup>2</sup>                                  | k.A.                       | k.A.                       | 1,3                        |

Tab. 3: Spezifikationen der eingesetzten Excimerlaser- und Festkörperlaserstrahlung

# 3.2 Parameter für die Belichtung mit gepulster UV-Laserstrahlung

Die Vergleichbarkeit der Belichtungsversuche mit unterschiedlichen Laserstrahlquellen wurde sichergestellt, indem Verfahrensparameterintervalle festgelegt wurden:

# Durchmesser d<sub>L</sub> der kreisförmigen Laserstrahlquerschnittsfläche in der Bearbeitungsebene

#### (definiert die Bearbeitungsfläche)

#### 80 $\mu$ m < d<sub>L</sub> < 100 $\mu$ m

Um die Belichtungswirkung der Excimerlaserstrahlung mit der der Festkörperlaserstrahlung vergleichen zu können, war eine Anpassung der Intensitätsprofile über dem Laserstrahlquerschnitt in der Abbildungsebene notwendig. Dazu wurde ein kreisförmiger Teil der Strahlung aus dem Gebiet eines Intensitätsmaximums durch eine Blende mit dem Durchmesser  $d_{\emptyset} = 1$  mm genutzt und der andere Teil ausgeblendet. In Abb. 6 ist ein Vergleich der lokalen Leistungsdichteverteilung der Excimerlaserstrahlung hinter der Blende mit einem berechneten, Gauss-förmigen Leistungsdichteprofil gleicher Halbwertsbreite dargestellt.



kreisförmige Blende mit Durchmesser  $d_{\emptyset} = 1$  mm

## Abb. 6: Lokale Leistungsdichteverteilung der Excimerlaserstrahlung im Vergleich zu einer Gauss-förmigen Leistungsdichteverteilung gleicher Halbwertsbreite

Die Leistungsdichte der Excimerlaserstrahlung besitzt steilere Flanken und eine homogenere Verteilung im mittleren Bereich im Vergleich zur Gauss-förmigen Leistungsdichteverteilung. Für die im Folgenden dargestellten Versuche wird von einer Vergleichbarkeit der angepassten Strahlprofile ausgegangen. Gegebenenfalls werden diesbezügliche Unterschiede diskutiert.

#### • Belichtungsenergiedichte $\varepsilon_L$ $\varepsilon_S < \varepsilon_L < \varepsilon_{Abt.}$

Im Fall gepulster Laserstrahlung ergibt sich die Pulsenergie  $E_P$  sowohl als Quotient aus der mittleren Leistung  $P_L$  einer Pulsfolge und der Pulswiederholfrequenz f, als auch aus dem Produkt aus Pulsspitzenleistung  $P_{Sp}$  und Pulsdauer  $\tau$  (20).

$$E_{\rm P} = \frac{P_{\rm L}}{f} = P_{\rm Sp.} \cdot \tau \tag{20}$$

Im Rahmen der Versuchsdurchführungen wurden die mittleren Leistungen der Laserstrahlungen P<sub>L</sub> innerhalb der jeweiligen Strahlführung gemessen und durch Einbringen von Strahlabschwächern in den Strahlengang (Filtern) variiert. Somit war, unter Berücksichtigung des Transmissionsgrades der Strahlabschwächer und der Optiken, eine Variation der Belichtungsenergiedichte  $\varepsilon_L$  in der Abbildungsebene möglich. Mittels (21) kann  $\varepsilon_L$  als Quotient aus Pulsenergie E<sub>P</sub> und Laserstrahlquerschnittsfläche A<sub>L</sub> berechnet werden.

$$\varepsilon_{\rm L} = \frac{P_{\rm L}}{f \cdot A_{\rm L}} = \frac{4 \cdot P_{\rm L}}{f \cdot \pi \cdot d_{\rm L}^2} \tag{21}$$

Zur Ermittlung der oberen Grenze des zu untersuchenden Energiedichteintervalls wurde die Schwellenenergiedichte für den nicht beabsichtigten Abtrag  $\varepsilon_{Abt.}$  von FS21 für die verwendete UV-Laserstrahlung bestimmt. Niedrige Energiedichten weit unterhalb der Abtragsschwelle wurden verwendet, um die Schwellenenergiedichte  $\varepsilon_{S}$  für die Initiierung der fotochemischen Reaktion bestimmen zu können (vgl. Kap. 3.3).

| Pulswiederholfrequenz f                                   | 20 Hz < f < 100 Hz                       |
|-----------------------------------------------------------|------------------------------------------|
| • Verfahrgeschwindigkeit v <sub>T</sub>                   | $1 \text{ mm/s} < v_T < 10 \text{ mm/s}$ |
| • Überlappungsgrad der Bearbeitungsflächen ü <sub>y</sub> | $0,1 < \ddot{u}_y < 0,75$                |
| • Pulszahl N (pro Bearbeitungsfläche A <sub>L</sub> )     | $1 \leq N \leq 4$                        |

Die Parameter Pulswiederholfrequenz f und Verfahrgeschwindigkeit  $v_T$  der Probe bestimmen den Überlappungsgrad  $\ddot{u}_x$  und  $\ddot{u}_y$  der einzelnen Bearbeitungsflächen (vgl. (1)). Da die Pulswiederholfrequenz f auch die Belichtungsenergiedichte  $\varepsilon_L$  beeinflusst, wurde f jeweils so gewählt, dass sowohl eine Variation der Belichtungsenergiedichte  $\varepsilon_L$  im o.g. Energiedichteintervall infolge definierter Strahlabschwächung als auch eine Variation des Überlappungsgrades  $\ddot{u}_y$  bei geeigneten Verfahrgeschwindigkeiten  $v_T$  der Probe möglich war.

Zur Belichtung größerer Flächen auf den Proben wurden einzelne Spuren, bestehend aus sich überlappenden Bearbeitungsflächen A<sub>L</sub>, nebeneinander gesetzt. In Abb. 7 sind Ausschnitte der verwendeten Belichtungsraster schematisch dargestellt. Die Spuren besitzen in x-Richtung einen konstanten Überlappungsgrad von  $\ddot{u}_x = 0,15 \cdot d_L$ , um nahezu durchgehend belichtete Bereiche für die anschließenden spektroskopischen Untersuchungen zu erhalten. Die Spurbreite ist durch d<sub>L</sub> festgelegt. Innerhalb der Spur wurde der Überlappungsgrad  $\ddot{u}_v^{(1)}$  der

<sup>&</sup>lt;sup>1)</sup> Der Einfachheit halber wird im Folgenden bei der Angabe von ü das  $d_L$  weggelassen. Wenn z.B  $\ddot{u}_y = 0,1$  geschrieben ist, dann ist  $\ddot{u}_y = 0,1 \cdot d_L$  gemeint.

einzelnen Bearbeitungsflächen  $A_L$  variiert. In den überlappenden Bereichen der Bearbeitungsflächen ergeben sich daraus folgend verschiedene effektive Pulszahlen  $N_{eff.}$  in Abhängigkeit von  $\ddot{u}_y$ . Diese sind durch verschiedene Grautöne (vgl. Legende in Abb. 7) gekennzeichnet. Je dunkler ein Bereich gefärbt ist, desto größer ist  $N_{eff.}$ 



Abb. 7: Schematische Darstellung überlappender Laserpulse auf der Substratoberfläche

Mit dieser Belichtungsmethode können nur näherungsweise homogen belichtete Flächen im Bereich einiger mm<sup>2</sup> belichtet werden, wie dies für die in Kap. 3.4.2 dargestellten spektralphotometrischen Untersuchungen für eine Variation der Pulszahl notwendig wäre. Die Variation von  $\ddot{u}_y$  in den Stufen  $\ddot{u}_y = 0,1$ ; 0,5 und 0,75 führt zu überlappenden Bereichen, die überwiegend konstanten N<sub>eff.</sub> der Zuordnung in Tab. 4 entsprechen.

Tab. 4:Zuordnung des Überlappungsgrades üy zu überwiegenden effektiven PulszahlenNeff. für die Einzelpulsbelichtung

| Üy   | N <sub>eff.</sub> |
|------|-------------------|
| 0,1  | 1                 |
| 0,5  | 2                 |
| 0,75 | 4                 |

Mit Hilfe einer geometrischen Abschätzung wurden die Abweichungen ermittelt, die zwischen einer belichteten Fläche durch Variation von  $N_{eff.}$  nach o. g. Methode gegenüber einer gleichgroßen homogen belichteten Fläche gleicher Pulszahl bestehen. Die Abschätzung bezieht sich auf die Fläche einer Elementarzelle eines Rasters mit variablem  $\ddot{u}_y$ . In Abb. 7 ist die Elementarzelle in den dargestellten Rastern bezeichnet. Sie ergibt sich für alle  $\ddot{u}_y$  aus der Verbindung der Mittelpunkte von 4 Bearbeitungsflächen, die die Eckpunkte eines Viereckes bilden. Der Flächeninhalt einer Elementarzelle wird bei konstantem d<sub>L</sub> mit steigender Überlappung  $\ddot{u}_y$  kleiner.

Für die Belichtung mit  $\ddot{u}_y = 0,1$  ergibt sich eine Übereinstimmung  $N_{eff.} = 1$  mit N = 1 von ca. 70%. Das bedeutet, etwa 30% einer rasterförmig belichteten Fläche nach o. g. Methode weichen von  $N_{eff.} = 1$  ab. Diese Flächenanteile enthalten  $N_{eff.} = 0$  und  $N_{eff.} = 2$ .

Für die Belichtung mit  $\ddot{u}_x = 0,5$  ( $N_{eff.} = 2$ ) ergibt sich eine Übereinstimmung von 85% mit einer entsprechend homogen belichteten Fläche gleicher Größe. Die abweichenden Flächenanteile beziehen sich hier auf  $N_{eff.} = 1$ .

Erfolgt die Belichtung mit  $\ddot{u}_y = 0.75$ , dann entsprechen ca. 70% der Fläche einer mit N = 4 homogen belichteten Fläche gleicher Größe. Abweichende Flächenanteile sind überwiegend mit N<sub>eff.</sub> = 3 belichtet.

Daraus muss abgeleitet werden, dass ein Einfluss der o.g. Belichtungsmethode auf die Ergebnisse der im Folgenden dargestellten spektralphotometrischen Untersuchungen (vgl. Kap. 3.4.2 und 3.4.3) nicht ohne weiteres vernachlässigt werden kann. Gegebenenfalls wird eine Korrektur der Messergebnisse vorgenommen. Mit o.g. Belichtungsmethode kann aber die Pulszahl mit einem hinreichend großen Flächenanteil variiert werden. Unter Kenntnis der genannten Randbedingungen erfolgt für die in Kap. 3 dargestellten Versuche die Angabe der Pulszahl als N<sub>eff.</sub> mit den in Tab. 4 zugehörigen Überlappungen.

### 3.3 Schwellwerte der Belichtungsenergiedichte

#### 3.3.1 Vorbemerkung

Die Belichtung des fotostrukturierbaren Glases erfolgte ausschließlich zur Initiierung fotochemischer Reaktionen im Glas. Diese sind an Schwellwerte der Belichtungsenergiedichte  $\varepsilon_L$  bei gegebener Pulszahl N gebunden. Infolge der UV-Laserbestrahlung des Glases treten folgende zwei Grenzfälle auf.

Die untere Schwellenenergiedichte  $\varepsilon_{S}$  wird als die Energiedichte definiert, bei deren Bestrahlung in FS21 ein latentes Bild erzeugt werden kann, so dass daraus folgend während der Temperung eine hinreichend große Dichte an LMS-Kristallen entsteht, die in 10%-iger Flusssäure eine Ätzselektivität zwischen bestrahlten und unbestrahlten Probenbereichen ermöglicht. Das latente Bild basiert auf der strahlungsinduzierten fotochemischen Reaktion (22), die während des anschließenden Temperprozesses die zur Silberkeimbildung notwendige fotothermische Reaktion (23) nach sich zieht /Sto56/.

$$Ce^{3+} + hv \rightarrow (Ce^{3+})^+ + e^-$$
 (22)

$$Ag^{+} + e^{-} \rightarrow Ag^{\pm 0}$$
(23)

Die obere Schwellenenergiedichte  $\varepsilon_{Abt.}$  (Abtragsschwelle) wird als die Energiedichte definiert, bei deren Bestrahlung die Dichte der zerstörten Bindungen gerade so groß ist, dass noch keine Schädigung der Probenoberfläche durch Aufschmelzen oder Materialabtrag erfolgt.

Sowohl die Ausprägung des latenten Bildes als auch die Dichte der zerstörten Bindungen sind eine Funktion der chemischen Zusammensetzung und der Struktur des Glases sowie der Prozessparameter der Belichtung.

#### 3.3.2 Bestimmung der oberen Schwellenenergiedichte $\varepsilon_{Abt.}$

Zur Bestimmung der Abtragsschwelle  $D_{Abt.}$  wurde bei vorgegebener Pulszahl N die Energiedichte pro Puls  $\varepsilon_L$  stufenweise soweit erhöht, bis eine Schädigung der Oberfläche in Form von punktförmigen Zerstörungen oder Aufschmelzungen auf der Probenoberfläche gerade erreicht wurde. Die nächstmögliche kleinere Energiedichte (bei der dann eine Oberflächenschädigung gerade noch nicht eintritt) wurde als Schwellenenergiedichte des Abtrags  $\varepsilon_{Abt.}$  erfasst. In Abb. 8 ist  $\varepsilon_{Abt.}$  in Abhängigkeit von N für die eingesetzten Laserstrahlungen dargestellt.



Abb. 8: Schwellenenergiedichten  $\varepsilon_{Abt.}$  in Abhängigkeit von der Pulszahl N für Laserstrahlungen der Wellenlängen  $\lambda_L = 248$  nm, 308 nm und 355 nm

Aus Abb. 8 lassen sich folgende Aussagen entnehmen, die im Weiteren diskutiert werden:

- An der Abtragschwelle, die die Grenze zwischen der fotochemischen Gefügemodifizierung und der Zerstörung der Oberfläche markiert, ist der Zusammenhang zwischen der eingesetzten Belichtungsenergiedichte und der Pulszahl nichtlinear.
- ε<sub>Abt.</sub> nimmt in Abhängigkeit von der Pulszahl unterschiedliche Werte an und ist f
  ür hohe Pulszahlen kleiner als f
  ür niedrige.
- Mit Abnahme von  $\lambda_L$  (Zunahme von  $E_{Photon}$ ) ist eine Abnahme der Pulszahlabhängigkeit verbunden.
- Durch Extrapolation können die Schwellwerte des Abtrages für eine Einzelpulsbelichtung bestimmt werden. Bei Einzelpulsbelichtung ist für die Belichtung mit  $\lambda_L = 248$  nm  $\varepsilon_{Abt.}$ mit 5.6 J/cm<sup>2</sup> am kleinsten. Die Werte insgesamt liegen im Bereich 4 J/cm<sup>2</sup> <  $\epsilon_{Abt.}$  < 5,6 J/cm<sup>2</sup>. Laserstrahlungen der Für Wellenlänge  $\lambda_L = 308 \text{ nm}$  $(\varepsilon_{Abt.} = 22,4 \text{ J/cm}^2)$  und 355 nm  $(\varepsilon_{Abt.} = 21,5 \text{ J/cm}^2)$  besteht mit  $\Delta \varepsilon_{Abt.} = 0,9 \text{ J/cm}^2$  bei Einzelpulsbelichtung nur ein geringer Unterschied zwischen den Schwellenenergiedichten des Abtrags. Dagegen sind die Unterschiede in der Pulszahlabhängigkeit von EAbt. für  $\lambda_L$  = 308 nm und 355 nm deutlich. Dies führt dazu, dass in Abhängigkeit von der Pulszahl für  $\lambda_L = 355$  nm niedrigere Werte für  $\varepsilon_{Abt}$  erreicht werden.

Die Abtragsschwelle hängt vom Grad der Farbzentrenbildung im Glas und vom Grad nichtlinearer Absorptionsprozesse während der Belichtung des Glases ab. Für beide Effekte existiert eine Mindestenergiedichte, die im Glas absorbiert werden muss /Bue94/, /Jac2001/. Weiterhin beeinflusst die Oberflächenbeschaffenheit einer mittels Wasser mechanochemisch polierten Oberfläche die absorptiven Eigenschaften des Glases. Nach /Dun80/ führt die UV-Bestrahlung einer derartigen Glasoberflächen zu Strukturdefekten infolge photochemischer Prozesse innerhalb der Gelhydratschicht. Diese ist gegenüber tiefergelegenen Probenbereichen durch eine abweichende chemische Zusammensetzung, insbesondere durch eine starke Anreicherung an wechselwirkenden OH-Gruppen und ein ungeordneteres SiO<sub>2</sub>-Netzwerk gekennzeichnet.

Die gegenüber  $\lambda_L = 308$  nm und 355 nm niedrigeren Werte für  $\varepsilon_{Abt.}$  bei  $\lambda_L = 248$  nm sind auf die stärkere Absorption dieser Photonen durch das Glasnetzwerk, hauptsächlich durch die Valenzelektronen der Trennstellensauerstoffionen, zurückzuführen. Aufgrund einer geringen Wechselwirkungstiefe dieser Laserstrahlung ist sowohl von einem Einfluss der Oberfläche als auch von der Bildung von Strukturdefekten (Farbzentren) in tiefer gelegenen Probenbereichen auszugehen. Die geringe Pulszahlabhängigkeit von  $\varepsilon_{Abt.}$  für  $\lambda_L = 248$  nm lässt vermuten, dass die strahlungsinduzierten Gefügemodifizierungen durch den ersten Laserpuls im wesentlichen aus Strukturdefekten bestehen, die die eingesetzte Laserstrahlung weitestgehend absorbieren, sodass die Bildung weiterer Absorptionszentren durch nachfolgende Laserpulse vermindert wird.

Für die Belichtung mit  $\lambda_L = 308$  nm und  $\lambda_L = 355$  nm sind die o.g. Werte für  $\varepsilon_{Abt.}$  bei Einzelpulsbelichtung nahezu identisch. Die Erniedrigung von  $\varepsilon_{Abt.}$  mit steigendem N für  $\lambda_L > 300$  nm kann auf schrittweise induzierte Gefügemodifizierungen und Strukturveränderungen im Glas zurückgeführt werden. Aufeinanderfolgende Laserpulse führen zu einer Akkumulation von Defektzuständen in der Glasstruktur, die in einer Erhöhung des Absorptionskoeffizienten resultieren und damit mit steigendem N eine Verschiebung von  $\varepsilon_{Abt.}$  zu kleineren Werten verursachen. Diese Defektakkumulation ist bei Belichtung mit  $\lambda_L = 308$  nm ( $E_{Photon} = 4 \text{ eV}$ ) gegenüber  $\lambda_L = 355$  nm niedriger, da die Fotoionisation der Ce<sup>3+</sup>-Ionen bei einer Ionisationsenergie von  $E_{ion} = 3,95$  eV [Str61] dominiert.

#### 3.3.3 Bestimmung der unteren Schwellenenergiedichten ε<sub>S</sub>

Die Bestimmung der unteren Schwellenenergiedichte  $\varepsilon_S$  für die fotochemische Gefügemodifizierung in Abhängigkeit von der Pulszahl N würde eine Variation der Belichtungsenergiedichte zu extrem kleinen Werten erfordern, um  $\varepsilon_S$  für hohe Pulszahlen (N > 100) ermitteln zu können. Dies war bei den eingesetzten Laseranlagen nicht möglich. Aus diesem Grund erfolgte die Bestimmung von  $\varepsilon_8$  für die Einzelpulsbelichtung.

Die untere Schwellenenergiedichte  $\varepsilon_S$  wurde über das Strukturierungsergebnis definiert. Sie war erreicht, wenn nach dem Ätzen belichteter und getemperter Glasproben lichtmikroskopisch keine Selektivität zwischen belichteten und unbelichteten Glasgebieten festgestellt werden konnte. In Tab. 5 ist  $\varepsilon_S$  (N = 1) für die eingesetzten Laserstrahlungen angegeben.

| Tab 5 <sup>.</sup> | Untere So | chwellenenerg | iedichten a  | Ee für N = 1                          |
|--------------------|-----------|---------------|--------------|---------------------------------------|
| 1 uo. o.           |           |               | iouronicon o | J J J J J J J J J J J J J J J J J J J |

| $\lambda_L$ in nm | ε <sub>s</sub> in J/cm <sup>2</sup>                           |
|-------------------|---------------------------------------------------------------|
| 248               | $0,017 \text{ J/cm}^2 \le \epsilon_S \le 0,05 \text{ J/cm}^2$ |
| 308               | < 0,6 J/cm <sup>2</sup>                                       |
| 355               | 0,115 J/cm <sup>2</sup>                                       |

Die Werte für  $\varepsilon_S$  sind für die Belichtung mit  $\lambda_L = 355$  nm deutlich größer als für die Belichtung mit  $\lambda_L = 248$  nm. Dies weist auf einen Zwei-Photonen-Absorptionsprozess der fotochemischen Gefügemodifizierung von FS21 mittels Belichtung mit  $\lambda_L = 355$  nm hin, der höhere Belichtungsenergiedichten erfordert. Für die Belichtung mit  $\lambda_L = 308$  nm kann keine Angabe gemacht werden, da es nicht möglich war  $\varepsilon_L$  in den Bereich der unteren Schwellenenergiedichte  $\varepsilon_S$  zu drosseln.

Für die Belichtung mit  $\lambda_L = 248$  nm wurde  $\varepsilon_S$  für die Einzelpulsbelichtung zusätzlich aus der Kristallisationstiefe h<sub>k</sub> abgeleitet (vgl. 3.5.4.2). Mit  $\varepsilon_S = 0,038$  J/cm<sup>2</sup> wurde ein Wert ermittelt, der für diese Belichtung im o.g. Intervall (Tab. 5) liegt.

# 3.4 Optische Untersuchungen zur Belichtungswirkung

#### 3.4.1 Vorgehensweise

Proben aus fotostrukturierbarem Glas FS21 wurden nach dem in Kap. 3.2 beschriebenen Belichtungsverfahren unterhalb der Abtragsschwelle, aber mit den für den Belichtungsprozess notwendigen Belichtungsenergiedichten UV-Laser-belichtet. Im Folgenden werden die Zusammenhänge zwischen der Variation der Belichtungsparameter und der Änderung der Gefügestruktur des Glases nach der UV-Laser-Belichtung diskutiert. Die Ergebnisse basieren auf Messungen der spektralen Transmission, TEM- und HREM-Untersuchungen.

#### 3.4.2 Spektrale Transmission nach UV-Laser-Belichtung

Mittels optischer Spektroskopie wurde der Transmissionsgrad T bestrahlter Proben in Abhängigkeit von der Wellenlänge bestimmt. In Abb. 9 ist die spektrale Transmission für unbelichtetes und für laserbelichtetes fotosensitives Glas FS21 in Abhängigkeit von  $\lambda_L$  bei  $\varepsilon_L = 2 \text{ J/cm}^2$  im Wellenlängenbereich 200 nm  $\leq \lambda \leq 500$  nm dargestellt. Die Darstellung für  $\varepsilon_L = 2 \text{ J/cm}^2$  wurde gewählt, da Unterschiede in der Belichtungswirkung auf die spektrale Transmission durch Variation der eingesetzten Laser deutlich veranschaulicht werden können.



Abb. 9: Spektraler Transmissionsgrad T (d = 1 mm) von FS21-unbelichtet und FS21belichtet mit  $\lambda_L = 248$ , 308 bzw. 355 nm;  $\epsilon_L = 2 \text{ J/cm}^2$ ; N<sub>eff.</sub> = 1

Die Gesamtabsorption aller laserbelichteten Glasproben hat im Wellenlängenbereich 250 nm  $\leq \lambda \leq 500$  nm gegenüber der unbelichteten Glasprobe zugenommen. Zusätzlich ist die Absorptionskante des Glases bei den laserbelichteten Proben in Richtung größerer Wellenlängen verschoben. In Tab. 6 ist, abweichend vom sonst üblichen, die Verschiebung der Absorptionskante als Differenz der Wellenlängen zwischen laserbelichtetem und unbelichtetem Glas für T = 10 % angegeben.

Tab. 6: Verschiebung der Absorptionskante  $\Delta\lambda$  für die eingesetzten Laserstrahlungen  $\lambda_L$ , T= 10 %

| $\lambda_L$ in nm | Δλ in nm   |
|-------------------|------------|
| 248               | 10 ± 1     |
| 308               | $20 \pm 1$ |
| 355               | $1 \pm 1$  |

Für die Belichtung mit  $\lambda_L = 355$  nm konnte praktisch keine Verschiebung der Absorptionskante festgestellt werden. Die Verschiebung der Absorptionskante um  $\Delta \lambda = 20$  nm infolge der Belichtung mit  $\lambda_L = 308$  nm ist größer als die Verschiebung um  $\Delta \lambda = 10$  nm infolge der Belichtung mit  $\lambda_L = 248$  nm. Als Ursache der Verschiebung wird die Entstehung strahlungsinduzierter Absorptionen im dargestellten Wellenlängenbereich festgestellt, auf die in Kap. 3.4.3 näher eingegangen wird. Die Absorptionsbande der Ce<sup>3+</sup>-Ionen bei  $\lambda = 310$  nm bleibt nach Belichtung mit  $\lambda_L = 248$  nm bzw. mit  $\lambda_L = 355$  nm in der Lage nahezu unverändert, nur auf unterschiedlichem absolutem Niveau, erhalten. Im Kurvenverlauf der mit  $\lambda_L = 308$  nm belichteten Probe konnte dagegen keine entsprechende Bande für Ce<sup>3+</sup> mehr festgestellt werden. Für diese Effekte werden zwei Ursachen angenommen:

Zum einen hat die unterschiedliche optische Eindringtiefe  $\delta_{opt.}$  für verschiedene Laserwellenlängen Einfluss auf die Größe des Glasvolumens, mit dem die Laserstrahlung wechselwirkt (vgl.  $\delta_{opt.}$  (Tab. 2) in Kap. 2.3.3). Das bedeutet, für die Belichtung mit  $\lambda_L = 248$  nm wurde nicht über die gesamte Probendicke Fotoionisation erreicht, so dass die Ce<sup>3+</sup>-Bande weitgehend erhalten bleibt.

Zum anderen beeinflusst die Photonenenergie der Laserstrahlung die Wahrscheinlichkeit der Wechselwirkung zwischen Laserstrahlung und im Glas enthaltenen Ce<sup>3+</sup>-Ionen. Laserstrahlung mit  $\lambda_L = 308$  nm liegt im Bereich des Absorptionsmaximums von Ce<sup>3+</sup>, woraus eine gegenüber der Belichtung mit  $\lambda_L = 248$  nm und  $\lambda_L = 355$  nm deutlich höhere Wechselwirkungswahrscheinlichkeit mit diesen Ionen resultiert.

Im Kurvenverlauf der mit  $\lambda_L = 248$  nm belichteten Probe deutet sich außerdem im Wellenlängenbereich 330 nm  $\leq \lambda \leq 500$  nm eine sehr breit ausgeprägte Bande an. Diese Probe war nach der Laser-Belichtung mit  $\varepsilon_L = 2$  J/cm<sup>2</sup> graubräunlich verfärbt. Die graubräunliche Verfärbung tritt bei Belichtung mit  $\lambda_L = 248$  nm für  $\varepsilon_L \geq 1$  J/cm<sup>2</sup>, mit  $\lambda_L = 308$  nm für  $\varepsilon_L \geq 3$  J/cm<sup>2</sup> und mit  $\lambda_L = 355$  nm für  $\varepsilon_L \geq 10$  J/cm<sup>2</sup> auf, d. h. bei den letzten beiden Fällen bei

höheren Energiedichten als den für Abb. 9 benutzten  $\varepsilon_L = 2 \text{ J/cm}^2$ . Die Ursachen für diesen Effekt werden in Kap. 3.4.3.2 und 3.4.3.3 erörtert.

Signifikante Änderungen des Transmissionsgrades T wurden nur nach der Belichtung mit variierten Belichtungsenergiedichten  $\varepsilon_L$  im Bereich  $\varepsilon_S < \varepsilon_L < \varepsilon_{Abt.}$  festgestellt. Für die Variation des Überlappungsgrades  $\ddot{u}_y$  ( $\ddot{u}_y = 0,1$ ; 0,5 und 0,75) betrug bei allen belichteten Proben die Änderung des gemessenen Transmissionsgrades  $\Delta T < 0,2$  % und lag damit innerhalb der Messgenauigkeit von  $\pm 0,3$  % des UV-VIS-Spektralphotometers. Die Ursachen dafür liegen, neben der allgemein geringeren Abhängigkeit des Prozesses von der Pulszahl, im relativ hohen Anteil an Probenbereichen, in denen N<sub>eff.</sub> andere als die für  $\ddot{u}_y$  hauptsächlich festgestellten annimmt (vgl. Kap. 3.2).

#### 3.4.3 Zusätzliche Absorption nach UV-Laser-Belichtung

#### **3.4.3.1** Bildung von (Ce<sup>3+</sup>)<sup>+</sup>-Zentren

Zur Lokalisierung strahlungsinduzierter Absorptionen ist es günstig, die gemessenen Transmissionsspektren z.B. als optische Dichte o.D. darzustellen. Die Umrechnung erfolgt nach (24) /Haf2003/.

$$o.D. = -\log T \tag{24}$$

Die Erhöhung der Absorption infolge Laser-Belichtung gegenüber unbestrahltem Glas ergibt sich aus der Differenz der optischen Dichten  $\Delta o.D.$  und wird nach (25) berechnet:

$$\Delta o.D. = -\log T_{bel.} - (-\log T_{unbel.}) = \log \frac{T_{unbel.}}{T_{bel.}}$$
(25)

In Abb. 10 ist  $\Delta o.D.$  in Abhängigkeit von der Wellenlänge  $\lambda$  und  $\varepsilon_L$  für Belichtungen mit  $\lambda_L = 248$  nm,  $\lambda_L = 308$  nm und  $\lambda_L = 355$  nm dargestellt. Zusätzlich ist  $\Delta o.D.$  einer mittels breitbandig emittierenden Hg-Dampfhöchstdrucklampe vom Typ: MA6 LH350 HBO350W/S (integriert in einem Maskaligner Typ: Karl Süss MA56) belichteten Probe dargestellt. Bei dieser Probe betrug die Belichtungsenergiedichte über alle Wellenlängen den für den Maskaligner-Prozess optimalen Wert von  $\varepsilon = 60$  J/cm<sup>2</sup> /Mro2004/. Durch die Belichtung stieg die o.D. in jedem Fall. Die unbelichtete Probe ist mit der Abszisse ( $\Delta o.D. = 0$ ) identisch.







Abb. 10: Differenz der optischen Dichten ( $\Delta o.D. = o.D._{bel.} - o.D._{unbel.}$ ) in Abhängigkeit von  $\lambda$  und  $\epsilon_L$  für N<sub>eff.</sub> = 1: a)  $\lambda_L = 248$  nm, b)  $\lambda_L = 308$  nm, c)  $\lambda_L = 355$ nm, d) Vergleich für  $\epsilon_L = 5$  J/cm<sup>2</sup>

Aus Abb. 10 lassen sich zunächst folgende Effekte ableiten, die im Weiteren näher erörtert werden:

- Für sämtliche UV-Laser-belichteten Proben wurde eine zusätzliche Absorption für λ ≤ 450 nm festgestellt. Die zusätzliche Absorption tritt bei der mittels einer Hg-Dampfhöchstdrucklampe belichteten Probe im Wellenlängenbereich λ ≤ 380 nm auf.
- Die durch UV-Belichtung hervorgerufene zusätzliche Absorption besitzt ein Maximum bei  $\lambda = 270$  nm, das in seiner Intensität in Abhängigkeit von der Belichtungsquelle bzw. der Wellenlänge der Laserstrahlung  $\lambda_L$  und der Belichtungsenergiedichte  $\varepsilon_L$  variiert. Die Wirkung durch die Belichtung mit der Hg-Dampfhöchstdrucklampe auf  $\Delta o.D.$  deckt sich nahezu mit  $\varepsilon_L = 2$  J/cm<sup>2</sup> für die Belichtung mit dem XeCl-Excimerlaser (vgl. Abb. 10b).
- Im Wellenlängenbereich 340 nm ≤ λ ≤ 450 nm fällt Δo.D. für λ<sub>L</sub> = 248 nm und λ<sub>L</sub> = 308 nm größer aus als für λ<sub>L</sub> = 355 nm. Für einige Laser-bestrahlte Proben steht diese Erhöhung von Δo.D. im Zusammenhang mit einer leichten graubräunlichen Verfärbung der bestrahlten Glasbereiche (vgl. Kap. 3.4.2).
- Die höchsten Werte für Δo.D. im Peakmaximum werden durch die Belichtung mit λ<sub>L</sub> = 308 nm und ε<sub>L</sub> ≥ 2 J/cm<sup>2</sup> erreicht. Für die Belichtung mit λ<sub>L</sub> = 248 nm und λ<sub>L</sub> = 355 nm werden selbst bei Belichtungsenergiedichten, die im Bereich der Abtragsschwellen (vgl. Kap. 3.3.2) liegen, niedrigere Werte als für die optimierte Maskaligner-Belichtung erreicht. Ein Vergleich bezüglich λ<sub>L</sub> bei konstantem ε<sub>L</sub> = 5 J/cm<sup>2</sup> (vgl. Abb. 10 d) zeigt, dass Δo.D. im Peakmaximum in der Reihenfolge λ<sub>L</sub> = 355 nm, 248 nm, 308 nm ansteigt.

Der qualitativ gleichwertige Verlauf von  $\Delta o.D.$  in Abhängigkeit von  $\lambda$  für die Belichtung mit UV-Laserstrahlung der Wellenlängen  $\lambda_L = 248$  nm, 308 nm und 355 nm sowie der Belichtung mittels einer breitbandig emittierenden Hg-Dampfhöchstdrucklampe deutet darauf hin, dass die infolge der UV-Belichtung ablaufenden fotochemischen Prozesse im Glas bei Belichtungsenergiedichten unterhalb der Abtragsschwelle vergleichbar sind.

Das Peakmaximum von  $\Delta o.D.$  bei  $\lambda = 270$  nm kann der Entstehung von Excitonen an Ce<sup>3+</sup>-Ionen, die eine positive Partialladung erhalten (Ce<sup>3+</sup>)<sup>+</sup>, zugeordnet werden /Str61/, /Str62/, /Kor72/, /Arb90/. Nach Stroud verursachen Ce<sup>4+</sup>-Ionen in Gläsern, die mit dem fotostrukturierbaren Glas FS21 vergleichbar sind, Absorptionsbanden mit einem Maximum bei  $\lambda = 240$  nm. (Ce<sup>3+</sup>)<sup>+</sup>-Ionen dagegen verursachen ein Absorptionsmaximum bei  $\lambda \ge 250$  nm. Von Korn wird das Absorptionsmaximum der (Ce<sup>3+</sup>)<sup>+</sup>- Ionen in einem Lithium-AluminiumSilikatglas ((Gew.%) 80 SiO<sub>2</sub> - 4Al<sub>2</sub>O<sub>3</sub> - 10,5Li<sub>2</sub>O<sub>3</sub> - 5,5K<sub>2</sub>O - 0,04AgCl - 0,02Ce<sub>2</sub>O<sub>3</sub>) mit

 $\lambda = 270 \text{ nm}$  und von Arbuzov in einem mit CeO<sub>2</sub> dotierten Glas der Zusammensetzung: (mol%) 22 R<sub>2</sub>O-3 CaO-75 SiO<sub>2</sub> (R = Li, Na, K) mit 4,5 eV ( $\lambda \approx 275 \text{ nm}$ ) angegeben.

Die Unterschiede zwischen der  $(Ce^{3^+})^+$  und  $Ce^{4^+}$  Absorption spiegeln die Unterschiede in der die Ionen umgebenden Struktur wieder. Die Fotoionisation von  $Ce^{3^+}$  verändert die Bindung zu den umgebenden Ionen. Diese verlagern sich zwangsläufig zu neuen Gleichgewichtspositionen. Diese Verlagerung ist durch die Starrheit des Netzwerkes bei Raumtemperatur begrenzt. Dadurch können die umgebenden Ionen nicht exakt die Position einnehmen, die Ce<sup>4+</sup> im Glasnetzwerk benötigen würde. Man schreibt deshalb  $(Ce^{3^+})^+$  und meint Ce<sup>4+</sup> mit der Ionen-Umgebung von Ce<sup>3+</sup>.

Das bedeutet, sowohl in der mittels Hg-Dampfhöchstdrucklampe als auch in den mittels UV-Laser belichteten Proben erfolgt die fotochemische Gefügemodifizierung des Glases nach (22). In /Kor72/ wird davon ausgegangen, dass die Fotoelektronen aus den entstandenen Excitonen bei Temperaturerhöhung von nicht näher definierten "positiven Zentren", wie zum Beispiel Ag<sup>+</sup>-Ionen, eingefangen werden, was in diesem Fall einem Ladungstransfer nach (23) entspricht. In eigenen Untersuchungen wurde festgestellt, dass durch Temperung UVbestrahlter FS21-Glasproben bei  $\vartheta = 450^{\circ}$ C (t = 1h) die Absorption von (Ce<sup>3+</sup>)<sup>+</sup> bei  $\lambda = 270$  nm gelöscht werden kann und eine zusätzliche Absorption mit einem Maximum bei  $\lambda = 410$  nm (basierend auf Silberkolloidbildung) entsteht. Dass nach dieser Temperung mittels optischer Spektroskopie wieder eine  $Ce^{3+}$ -Absorptionsbande festgestellt werden kann. deutet darauf hin, dass kein Koordinationswechsel bei den  $(Ce^{3+})^+$ -Ionen im Vergleich zu  $Ce^{3+}$  stattfindet. Während dieser Temperung wirken neben  $Ag^+$ -Ionen auch  $(Ce^{3+})^+$ -Ionen als Elektronenfallen. Denkbar ist darüber hinaus zum Beispiel ein Elektronenhopping, basierend auf thermisch induzierten Umladungsprozessen zwischen den polyvalenten Elementen Zinn und Antimon. Des weiteren können Defektzustände im Glasnetzwerk, aufgrund fehlerhafter stöchiometrischer Zusammensetzung im Mikrobereich, Quelle für bewegliche Elektronen sein. Diese Vermutungen können mit der Tatsache begründet werden, dass für FS21 der spezifische elektrische Widerstand bei  $\vartheta \ge 200^{\circ}$ C im Bereich eines Halbleiters liegt (vgl. Anhang 1).

Die Intensität des Absorptionspeaks mit einem Maximum von  $\lambda = 270$  nm ist von  $\varepsilon_L$  abhängig. Die Ausdehnung dieses Peaks in langwellige Randbereiche führt dazu, dass, anders als erwartet,  $\Delta o.D.$  im Absorptionsmaximum der Ce<sup>3+</sup>-Ionen nicht kleiner wird (man würde eventuell sogar negative Werte erwarten), sondern steigt. Der Effekt führt gleichzeitig zur Verschiebung der Absorptionskante zu größeren Wellenlängen und bewirkt damit eine

Erhöhung der Absorptionskoeffizienten des Glases für die eingesetzten Laserstrahlungen mit  $\lambda_L > 270$  nm. Die Ursache dafür können Farbzentren weiterer Ionen sein, die in einem ähnlichen spektralen Bereich absorbieren, wie die o.g.  $(Ce^{3+})^+$ -Zentren. Infrage kommen unter anderem z.B. Fe<sup>3+</sup>-Verunreinigungen. Nach /Ehr2001/ führt die Bestrahlung eines silikatischen Glases mit Laserstrahlung der Wellenlänge  $\lambda_L = 248$  nm zu einer Defektbildung der Form  $(Fe^{3+})^-$  mit einer Absorptionsbande bei  $\lambda = 280$  nm.

Um den Einfluss der Bildung von  $(Ce^{3^+})^+$ -Absorptionszentren auf die Änderung des Absorptionskoeffizienten für die eingesetzten Laserstrahlungen zu verdeutlichen, ist in Abb. 11  $\Delta o.D_{norm.}$  in Abhängigkeit von  $\varepsilon_L$  und  $\lambda_L$  für  $\lambda = 270$  nm dargestellt. In

Abb. 12 ist die Erhöhung der Absorptionskoeffizienten  $\Delta \alpha_{norm.}$  für die eingesetzten Laserstrahlungen in Abhängigkeit von  $\varepsilon_L$  und  $\lambda_L$  gezeigt. Die Normierung von o.D. und  $\alpha$  erfolgte bezüglich des tatsächlich Laserstrahl-modifizierten Glasvolumens (vgl. Anhang 2).



Abb. 11: Erhöhung der Absorption im Absorptionsmaximum von  $(Ce^{3^+})^+$  bei  $\lambda = 270$  nm  $\Delta o.D_{norm.}$  in Abhängigkeit von  $\varepsilon_L$  und  $\lambda_L$ 



Abb. 12: Erhöhung des Absorptionskoeffizienten  $\Delta \alpha_{norm.}$  für die eingesetzten Laserstrahlungen in Abhängigkeit von der  $\epsilon_L$  und  $\lambda_L$ 

Die graphische Darstellung der Daten in halblogarithmischem Maßstab (vgl. Abb. 11 und Abb. 12) führt zu Geraden mit positivem Anstieg. Für alle laserbelichteten Proben wurde festgestellt, dass mit steigendem  $\varepsilon_L$  eine Erhöhung von  $\Delta o.D_{norm.}$  im Absorptionsmaximum von  $(Ce^{3+})^+$  bei  $\lambda = 270$  nm sowie eine Erhöhung von  $\Delta \alpha_{norm.}$  des Glases für die verwendeten Laserstrahlungen verbunden ist.

Aus Abb. 11 und

Abb. 12 lassen sich drei wesentliche Zusammenhänge ableiten:

• Im Energiedichtebereich 0,6 J/cm<sup>2</sup>  $\leq \epsilon_L \leq 11$  J/cm<sup>2</sup> ist  $\Delta o.D_{norm.}$  nach Laser-Belichtung mit  $\lambda_L = 308$  nm deutlich größer als bei Belichtung mit  $\lambda_L = 248$  nm und 355 nm bei gleichzeitig stärkster Abhängigkeit von  $\epsilon_L$ . Diese Zusammenhänge gelten auch für die Darstellung von  $\Delta \alpha_{norm.}$ 

Die Ursache dafür ist die hohe Umwandlungsrate von  $Ce^{3+}$  in  $(Ce^{3+})^+$  durch Belichtung des Glases mit Laserstrahlung, deren Photonenenergie resonant mit den  $Ce^{3+}$ -Absorptionszentren in FS21 ist. Dieser Prozess ist stark von der Belichtungsenergiedichte  $\varepsilon_L$  abhängig. Die gleichfalls relativ starke Abhängigkeit  $\Delta \alpha_{norm.}$  von  $\varepsilon_L$  ist auf eine gegenüber der Belichtung mit  $\lambda_L = 248$  nm und  $\lambda_L = 355$  nm stärkere Absorptionserhöhung im langwelligen Randbereich des  $(Ce^{3+})^+$ -Absorptionsmaximums zurückzuführen, die, wie o.g., aus größeren Werten für  $\Delta o.D.$  bei  $\lambda_L = 308$  nm folgt und damit eine stärkere Verschiebung der Absorptionskante zu größeren Wellenlängen verursacht (vgl. Tab. 6). • Im Energiedichtebereich 0,1 J/cm<sup>2</sup>  $\leq \epsilon_L \leq 5$  J/cm<sup>2</sup> sind  $\Delta o.D_{norm.}$  und  $\Delta \alpha_{norm.}$  für die Belichtung mit  $\lambda_L = 355$  nm kleiner als für die Belichtung mit  $\lambda_L = 248$  nm. Die Abhängigkeit  $\Delta o.D_{norm.}$  von  $\epsilon_L$  ist für  $\lambda_L = 355$  nm größer als für  $\lambda_L = 248$  nm. Bezüglich des Absorptionskoeffizienten ist für  $\lambda_L = 248$  nm die Abhängigkeit  $\Delta \alpha_{norm.}$  von  $\epsilon_L$  größer als für  $\lambda_L = 355$  nm.

Aufgrund der größeren Photonenenergie von  $\lambda_L = 248$  nm, die einen Ein-Photon-Prozess der  $Ce^{3+}$ -Absorption ermöglicht, ist die Umwandlungsrate von  $Ce^{3+}$  in  $(Ce^{3+})^{+}$  für die Belichtung mit  $\lambda_L = 248$  nm größer als für  $\lambda_L = 355$  nm. Die Absorption von Photonen bei  $\lambda_L = 355$  nm durch Ce3+ im Glas ist nur über einen Zwei-Photonen-Absorptionsprozess möglich. Das bedeutet, bei vergleichbarem  $\epsilon_L$  kann mittels  $\lambda_L = 248$  nm mehr Ce<sup>3+</sup> ionisiert werden als durch  $\lambda_L = 355$  nm, vorausgesetzt, Ce<sup>3+</sup>-Ionen sind der dominierende Absorptionskanal für beide Laserstrahlungen. Für diesen Fall würde man aber für  $\lambda_L = 248$  nm eine gegenüber  $\lambda_L = 355$  nm stärkere Abhängigkeit  $\Delta o.D._{norm}$  von  $\varepsilon_L$  erwarten. Da dies nicht zutrifft, muss für  $\lambda_{\rm L} = 248$  nm davon ausgegangen werden, dass außer Ce<sup>3+</sup>-Ionen weitere Absorptionszentren. z.B. Trennstellensauerstoffionen und/oder Brückensauerstoffionen, deren Anregungsenergien im kurzwelligen Randbereich der  $(Ce^{3+})^+$ -Absorptionsbande liegen, in Frage kommen (vgl. auch Kap. 3.4.3.2). Die Folge dieser Wechselwirkung ist die Induzierung von Farbzentren mit im kurzwelligen Randbereich von  $(Ce^{3+})^+$ . Die Absorptionen Erhöhung des Absorptionskoeffizienten für  $\lambda_L = 248$  nm wird dadurch maßgeblich beeinflusst und führt dazu, dass  $\Delta \alpha_{norm}$  in Abhängigkeit von  $\varepsilon_L$  stärker ansteigt als für  $\lambda_L = 355$  nm.

Ergänzend sei darauf hingewiesen, dass in /Jac2001/ für Silikatgläser ein Mechanismus für eine sogenannte selbstinduzierte Absorption infolge Bestrahlung mit  $\lambda_L = 248$  nm beschrieben ist. Dieser beruht auf der strahlungsinduzierten Entstehung von Excitonen an Sauerstoffionen des Glasnetzwerkes. Die Rekombination der angeregten Elektronen mit positiven Lücken im Glasnetzwerk kann u.a. unter Multi-Phononen-Abgabe erfolgen. In einem begrenzten Bereich des Glasnetzwerkes führt dies zur Anregung (im Extremfall auch zum Bruch) weiterer Molekülfragmente, die Defektzustände mit charakteristischen Absorptionsbanden ausbilden.

• Durch den hinreichend großen Abstand der Photonenenergie von  $\lambda_L = 355$  nm zum  $(Ce^{3+})^+$ -Absorptionsmaximum, erhöht sich der Absorptionskoeffizient für  $\lambda_L = 355$  nm mit  $\Delta \alpha_{norm.} < 0.2$  cm<sup>-1</sup> nur geringfügig, da die Belichtung des Glases mit dieser Wellenlänge im wesentlichen zur Erzeugung von  $(Ce^{3+})^+$  mit einem Absorptionsmaximum bei  $\lambda = 270$  nm führt.

Die Absorptionserhöhung im langwelligen Randbereich dieses Absorptionspeaks ist deutlich schwächer ausgeprägt als bei der Belichtung mittels  $\lambda_L = 248$  nm und 308 nm. Dies führt dazu, dass praktisch keine Abhängigkeit für  $\Delta \alpha_{norm}$  von  $\varepsilon_L$  festgestellt worden ist. Durch die geringe Absorption kann die Strahlung nahezu ungehindert in das Glas eindringen und damit an allen Orten wirksam werden. Die Folge ist eine vollständige Durchbelichtung von Substraten mit Probendicken die im Bereich einiger mm liegen können. Die Erhöhung der induzierten (Ce<sup>3+</sup>)<sup>+</sup>-Bildung könnte über eine Pulsfolge erzielt werden, da infolge der Belichtung mit  $\lambda_L = 355$  nm eine Erhöhung des Absorptionskoeffizienten für diese Laserstrahlung erzielt werden kann. Da für die Einzelpulsbelichtung die Erhöhung von  $\alpha$  für  $\lambda_L = 355$  nm nahezu nicht von  $\varepsilon_L$  abhängt, kann die fotochemische Gefügemodifizierung insgesamt in einem relativ breiten Energiedichtebereich erfolgen, in dem ein optimales Energiedichte / Pulszahl – Verhältnis erwartet wird.

Im Gegensatz dazu ist die fotochemische Gefügemodifizierung durch Belichtung mit  $\lambda_L = 248$  nm auf einen Oberflächenbereich beschränkt. Vergleichbare Belichtungswirkungen gegenüber der Belichtung mit  $\lambda_L = 355$  nm können hier mit niedrigeren Belichtungsenergiedichten (gleiche Pulszahl vorausgesetzt) erzielt werden. Für die fotochemische Gefügemodifizierung stellt die Belichtung mit  $\lambda_L = 308$  nm ein Optimum dar. Die resonante Wechselwirkung der Strahlung mit den Ce<sup>3+</sup>-Ionen im Glas, die hohe Abhängigkeit der fotochemischen Gefügemodifizierung nach (22) von der Belichtungsenergiedichte  $\varepsilon_L$  bei Einzelpulsbelichtung und die hohe optische Eindringtiefe der Strahlung ermöglichen eine schnelle und effektive Durchbelichtung von Substraten zur Herstellung von Mikrostrukturen mit hohem Aspektverhältnis.

#### 3.4.3.2 Bildung weiterer Absorptionszentren im Glas durch UV-Laser-Belichtung

Da die Absorption von UV-Strahlung mit Photonenenergien  $E_{Photon} > 3 \text{ eV}$  (entspricht  $\lambda \approx 414 \text{ nm}$ ) generell an Wechselwirkungsprozesse mit Elektronen gebunden ist, muss, wie o.g., davon ausgegangen werden, dass, neben der Wechselwirkung zwischen UV-Laserstrahlung und dreiwertig positiv geladenen Cer-Ionen, im fotostrukturierbaren Glas FS21 auch Wechselwirkungen mit anderen geladenen Ionen und Molekülgruppen stattfinden. Die meisten Wechselwirkungsprozesse verursachen zusätzliche Absorptionen im UV-Bereich Deren Analyse mittels spektroskopischer Verfahren ist äußerst aufwendig da sich

Bereich. Deren Analyse mittels spektroskopischer Verfahren ist äußerst aufwendig, da sich die Absorptionsspektren stark überlagern und eine eindeutige Bandenseparation meist mit der aufwendigen Herstellung kalibrierter Standardproben verbunden ist. Im Rahmen dieser Arbeit wurde darauf verzichtet. Stattdessen wurde im Rahmen einer Literaturrecherche nach

Ursachen für Absorptionserhöhungen im UV durch UV-Laser-Belichtung gesucht. Dabei wurde insbesondere auf Gläser Wert gelegt, die Strukturgruppen ähnlich wie FS21 enthalten.

Die Wechselwirkung von UV-Laserstrahlung mit den Trennstellen- und Brückensauerstoffen im Glas ist äußerst wahrscheinlich. In /Esc88/ sind Untersuchungen zur Farbzentrenbildung auf Basis sich bildender Defekte in kommerziellen Kieselgläsern durch KrF-Excimerlaser-Bestrahlung dargestellt. Sowohl in Kieselgläsern mit niedrigem als auch mit hohem Anteil an OH-Gruppen erfolgte die Bildung von s.g. E'-Zentren mit einem Absorptionsmaximum bei 5,8 eV ( $\lambda$  = 210 nm). Diese Zentren bestehen aus Brückensauerstoffen, bei denen ein Elektron des Valenzbandes auf ein höheres energetisches Niveau gehoben wurde. E'- Zentren sind bei Raumtemperatur stabil und heilen bei Temperaturen im Bereich  $130^{\circ}C \le 9 \le 230^{\circ}C$  aus. Eine weitere Gruppe stellen die s.g. NBOHC (Non-Bridging-Oxygen-Hole-Center) dar. Diese entstehen in Gläsern mit niedrigem Gehalt an OH-Gruppen durch Aufbrechen der Si-O Bindung und in Gläsern mit hohem OH-Gruppen-Anteil durch Dissoziation einer OH-Gruppe. Sie verursachen eine Absorption bei 4,8 eV ( $\lambda = 257$  nm). Diese Zentren sind bei Raumtemperatur metastabil und heilen zum Teil infolge der Diffusion von Wasserstoffionen durch das Glasnetzwerk aus. Eine dritte Gruppe bilden die s.g. Peroxy-Radikale ( $O_2$ ). Sie entstehen primär durch Kombination von Lückensauerstoffen mit E'-Zentren. Sie verursachen eine Absorption bei 7,8 eV ( $\lambda$  = 163 nm) und sind extrem stabil. Die Ausheilung erfolgt erst bei Temperaturen um 650°C. Weiterhin wird angegeben, dass die Pulsenergiedichte einen Einfluss auf die Defektkonzentration besitzt. Die Konzentration der Defekte nimmt mit steigender Pulsenergiedichte zu. Für Pulsenergiedichten  $\varepsilon_L > 100 \text{ mJ/cm}^2$  werden nichtlineare Effekte dominant. Es sind dann Zwei-Photonen-Absorptionsprozesse möglich.

In FS21 ist davon auszugehen, dass sowohl Brückensauerstoffe ( $\equiv$ Si-O-Si $\equiv$ ) als auch Trennstellensauerstoffe ( $\equiv$ Si-O-R mit R = Li<sup>+</sup>, Na<sup>+</sup>, K<sup>+</sup> oder H<sup>+</sup>) vorhanden sind. Für die eingesetzte Laserstrahlung der Wellenlänge  $\lambda_L = 248$  nm und Belichtungsenergiedichten im Bereich 0,1 J/cm<sup>2</sup>  $\leq \varepsilon_L \leq 4,5$  J/cm<sup>2</sup> ist die Existenz o.g. Farbzentren als Elektronendonatoren mit Absorptionsbanden im Bereich  $\lambda < 260$  nm somit wahrscheinlich.

Eine weitere Möglichkeit besteht in der Wechselwirkung von UV-Laserstrahlung mit den polyvalenten Elementen Zinn und Antimon. In /Ehr2001/ werden für ein Zinn-dotiertes Borosilikatglas (vgl. Kap. 2.3.2) nach Bestrahlung mit KrF-Excimerlaserstrahlung Absorptionserhöhungen bei  $\lambda = 255$  nm, 280 nm und  $\lambda = 340$  nm angegeben und der Defektbildung an Sn<sup>2+</sup>-Ionen im Glas zugeschrieben. Nach /Mön2003b/ wurde in einem Borosilikatglas durch Bestrahlung mit KrF-Excimerlaserstrahlung ( $\lambda_L = 248$  nm) eine Absorptionsbande induziert, die nach Meinung der Autoren auf die Entstehung von  $(Sb^{3+})^+$  zurückzuführen ist. Das Maximum dieses Absorptionspeaks liegt bei  $\lambda = 340$  nm.

In /Kor72/ wird für das bereits genannte Lithium-Aluminium-Silikatglas (vgl. Kap. 3.4.3.1) angegeben, dass Silberionen, die Fotoelektronen eingefangen haben, eine Absorptionsbande bei  $\lambda = 340$  nm verursachen. Von Dmitryuk wird für die strahlungsinduzierte Silberreduktion in Phosphatglas ein Absorptionsmaximum bei  $\lambda = 360$  nm angeben /Dmi95/. Aus /Wey51/ ist bekannt, dass kolloidales Silber im Glas aufgrund Miescher-Streuung Absorption im Bereich 430 nm  $\leq \lambda \leq 450$  nm verursacht.

In FS21 liegen Zinn und Antimon nach der Schmelze überwiegend in Form von Sn<sup>4+</sup> und Sb<sup>3+</sup> vor /Pac2002/. Inwieweit bei Belichtung eine Reduktion oder Oxidation von Zinn und Antimon im fotostrukturierbaren Glas ablaufen, kann auf Basis der Untersuchungen nicht festgestellt werden. Zinn und Antimon können sowohl als Elektronendonatoren als auch als Elektronenakzeptoren wirken /Bam77/. Die Absorptionserhöhung im Wellenlängenbereich 340 nm  $\leq \lambda \leq 450$  nm (vgl. Abb. 10) ist möglicherweise auf eine Überlagerung von Absorptionsbanden, basierend auf einer Vielzahl absorbierender o.g. Ionenzustände bzw. Partikelbildung, zurückzuführen. Diese Überlagerung führt dazu, dass kein eindeutiger Absorptionspeak ausgebildet wird.

#### 3.4.3.3 TEM-Analyse

Das Ziel der TEM-Untersuchungen war, die Ursache der spektralphotometrisch gemessenen Absorptionserhöhung im Wellenlängenbereich 340 nm  $\leq \lambda \leq 450$  nm nach UV-Laser Belichtung näher zu beleuchten. Wie in Kap. 3.4.3.2 bereits vermutet, kommt die laserinduzierte Bildung von Silberpartikeln in Frage. Die Bildung von Silberpartikeln, als heterogene Keime für die LMS-Kristallisation durch UV-Laser-Belichtung, ist aus Sicht des Fotostrukturierungsprozesses bedeutungsvoll (vgl. Kap. 1.2.1.3). Aus diesem Grund erfolgte die Untersuchung auf Silberpartikel im Glas nach UV-Laser-Belichtung mittels TEM-Analyse in Zusammenarbeit mit dem Max-Planck-Institut für Mikrostrukturphysik in Halle. Die Analyse einer UV-Laser-bestrahlten Probe zur Detektion von Ag-Nanopartikeln erfolgte mit einem 100kV-TEM (JEM1010). Für die Hochauflösungsabbildung von Gitterebenen in Partikeln wurde ein JEM 4010 mit 400 kV Beschleunigungsspannung eingesetzt. Als Probenmaterial dienten eine unbehandelte und eine UV-Laser-bestrahlte Probe. Über ein planares Präparationsverfahren (Schleifen, Polieren und Dünnen mittels Ionenstrahl) wurden die Proben bis auf eine durchstrahlbare Dicke unter 100 nm abgedünnt. Folgende Anforderungen wurden an die zu analysierende UV-Laser-bestrahlte Probe gestellt:

- Aus Gründen der Probenpräparation ist es notwendig, dass die fotochemische Gefügemodifizierung infolge UV-Laser-Belichtung über die gesamte Probendicke erfolgt.
- Die Anzahl vermuteter Ag-Nanopartikel im Bildfenster des TEM ist proportional der resultierenden Absorptionserhöhung. Aus diesem Grund ist eine möglichst große Absorptionserhöhung Δo.D. im Wellenlängenbereich 340 nm ≤ λ ≤ 450 nm vorzuziehen.

Aufgrund der hohen optischen Eindringtiefe  $\delta_{opt.}$  und der gegenüber der Belichtung mit  $\lambda_L = 355$  nm deutlich stärkeren Absorptionserhöhung im o.g. Wellenlängenbereich (vgl. Abb. 10b und c), die ebenfalls mit einer stärkeren Verfärbung verbunden war, wurde eine mit  $\lambda_L = 308$  nm bestrahlte Probe ausgewählt und mittels TEM (vgl. Abb. 13) und HREM (vgl. Abb. 14 und Abb. 15) untersucht. Eine mit  $\varepsilon_L = 13,6$  J/cm<sup>2</sup> belichtete Probe wies analog zur größten Absorptionserhöhung die intensivste Verfärbung auf.



Abb. 13: TEM-Aufnahme einer mit XeCl-Excimerlaserstrahlung bestrahlten Probe ( $\lambda_L = 308 \text{ nm}, \epsilon_L = 13,6 \text{ J/cm}^2, N_{\text{eff.}} = 1$ )

In Abb. 13 sind verschiedene Partikel mit unterschiedlicher Helligkeit, Kontrast zur Umgebung und Größe zu erkennen, die bei einer unbelichteten Probe nicht gefunden wurden. Mittels HREM-Untersuchung wurden Partikelgrößen und deren Netzebenenabstände untersucht. Die Ergebnisse beziehen sich auf eine Anzahl von 571 Partikel. Für diese

Partikelanzahl wurde eine breite Größenverteilung von 3 nm bis 16 nm ( $\pm$  2 nm) detektiert. Die am häufigsten vorkommende Partikelgröße liegt bei 6  $\pm$  2 nm.

In Abb. 14 ist das Ergebnis der Auswertung von Netzebenenabständen an allen untersuchten Partikeln anhand von Diffraktogrammen (erstellt durch Fourier-Transformation) der jeweiligen HREM-Aufnahmen dargestellt. Deshalb ist als Abszisse der reziproke Netzebenenabstand 1/d in willkürlichen Einheiten dargestellt. Die Messpunkte in dieser Graphik geben an, wie oft die jeweiligen Abstände bei den ausgemessenen Partikeln aufgetreten sind. Weiterhin sind in Abb. 14 drei vertikale Linien dort eingezeichnet, wo sich die reziproken Abstände der (111), (200) und (220) Netzebenen von Silber befinden.

Zusätzlich sind in Abb. 14 weitere Peaks mit zum Teil niedrigerer Intensität zu erkennen. Die zugehörigen gemessenen Netzebenenabstände sind in Tab. 7 aufgelistet.



Abb. 14: Ergebnis der Bestimmung der Netzebenenabstände anhand von 571 Partikel

| Peak-Nr. | d in nm |
|----------|---------|
| 1        | 0,3398  |
| 2        | 0,2735  |
| 3        | 0,2520  |
| 4        | 0,2336  |
| 5        | 0,2178  |
| 6        | 0,2021  |
| 7        | 0,1950  |
| 8        | 0,1884  |
| 9        | 0,1794  |
| 10       | 0,1447  |

 Tab. 7:
 Gemessene Netzebenenabstände d aller untersuchten 571 Partikel

Neben Ag-Nanopartikeln, die entsprechend der counts am häufigsten vorkommen, treten in dem fotostrukturierbaren Glas nach Laser-Belichtung noch andere kristalline Nanopartikel auf, deren Natur anhand der vorliegenden Untersuchungen nicht eindeutig geklärt werden konnte. Während es ziemlich unwahrscheinlich erscheint, dass es sich dabei um metallisches Antimon oder Zinn handelt, können Legierungen oder Oxide unter Beteiligung von Ag, Sb und Sn nicht ausgeschlossen werden /Hof2004/. Ein Beispiel für ein Silberteilchen mit einigen planaren Gitterdefekten ist in Abb. 15 zu sehen.



Abb. 15: HREM Aufnahme eines Silberpartikels in fotostrukturierbarem Glas FS21 nach Belichtung mit  $\lambda_L = 308$  nm ( $\epsilon_L = 13,6$  J/cm<sup>2</sup>, N<sub>eff.</sub> = 1)

Die Vermutung, dass die in Kap. 3.4.3.2 diskutierten Absorptionsbande im Wellenlängenbereich 340 nm  $\leq \lambda \leq 450$  nm durch Silberpartikel verursacht wird, konnte mittels TEM- und HREM-Untersuchung somit weitgehend bestätigt werden. Aufgrund der Unterschiede zwischen der unbestrahlten und bestrahlten Probe ist davon auszugehen, dass die Bildung von Silberpartikeln in fotostrukturierbarem Glas durch UV-Laser-Belichtung möglich ist. Es sei

zwischen der unbestrahlten und bestrahlten Probe ist davon auszugehen, dass die Bildung von Silberpartikeln in fotostrukturierbarem Glas durch UV-Laser-Belichtung möglich ist. Es sei darauf hingewiesen, dass die Absorption von UV-Laserstrahlung zu lokalen Erwärmungen im Glasnetzwerk durch Anregung von Schwingungen führen kann, die mit steigender Belichtungsenergiedichte  $\varepsilon_L$  zunehmen. Folglich könnten innerhalb eines Laserpulses sowohl die fotochemische (22) als auch die fotothermische Reaktion (23) einschließlich der Kolloidbildung von Silber ablaufen. Dieser Effekt kann visuell durch eine graubräunliche Verfärbung der Probe bei Belichtung mit  $\lambda_L = 308$  nm ab  $\varepsilon_L = 3$  J/cm<sup>2</sup> beobachtet werden (vgl. Kap. 3.4.2). Die Bildung von Silberpartikeln der Größe 6 nm setzt die Diffusion von Ag-Atomen durch das Glasnetzwerk bei erhöhter Temperatur voraus. Da die Dauer eines Laserpulses mit  $\tau = 40$  ns bei  $\lambda_L = 308$  nm extrem niedrig ist, müssen die Diffusionswege der Silberatome extrem kurz sein.

Es ist zusätzlich möglich, dass die Lage und Form der mittels Transmissionsmessung festgestellten Absorptionsbande außer von Silberpartikeln auch von anderen Partikeln (z. B. Antimon- und Zinnoxid) mit insgesamt breiter Größenverteilung herrührt. Im Rahmen dieser Arbeit konnte nicht geklärt werden, ob ausschließlich die Silberpartikel als heterogene Keime für die Kristallisation genutzt werden. Die am häufigsten auftretende Partikelgröße von  $6 \pm 2$  nm, verursacht durch XeCl-Excimerlaserstrahlung (nur Belichtung, keine Temperung), steht in Übereinstimmung mit der für den Wachstumsprozess von LMS notwendigen Keimgröße in FS21 /Mro2004/.

Es wird vermutet, dass für die Belichtung mit  $\lambda_L = 248$  nm und  $\lambda_L = 355$  nm in der Nähe von  $\varepsilon_{Abt.}$  ähnliche Effekte auftreten, da zumindest die Absorptionserhöhungen im o.g. Wellenlängenbereich qualitativ vergleichbar sind. Eine Untersuchung an entsprechenden Proben erfolgte im Rahmen dieser Arbeit nicht.

# 3.5 Kristallisation laserbelichteter Proben

#### 3.5.1 Probenvorbereitung

Mit UV-Laser belichtete Proben (nach der in Kap. 3.2 beschriebenen Methode) wurden 60 min bei  $\vartheta = 570^{\circ}$ C auf einer mit Bornitrid beschichteten Edelstahlplatte in einem Labor-

Muffelofen der Fa. Nabertherm<sup>®</sup> getempert. Belichtete Bereiche weisen nach dem Temperprozess braun gefärbte Kristallisationen in Form eines punktförmigen Rasters auf (vgl. Abb. 20). Die im Folgenden dargestellten Untersuchungen beziehen sich auf die Analyse der entstandenen Kristallphase und deren geometrische Ausdehnung im Glas. Zu Beginn der Ausführungen werden die notwendigen Probenpräparationen kurz beschrieben und die genutzten Messbedingungen angegeben.

#### 3.5.2 Röntgenfeinstrukturanalyse

Die Identifizierung der durch den thermischen Prozess entstandenen Kristallphase erfolgte mittels Röntgendiffraktometrie am Fachgebiet für Werkstoffe der Elektrotechnik der TU Ilmenau mit dem Gerät Siemens XRD D 5000.

Bei den zu untersuchenden Proben wurden zunächst die kristallisierten Bereiche durch einen Schleifprozess weitestgehend isoliert. Dies umfasst das Trennen von kristallisierten und nicht kristallisierten Probenbereichen senkrecht zur Belichtungsoberseite. Für die Belichtung mit  $\lambda_L = 248$  nm wurden auch parallel zur Belichtungsoberseite, ausgehend von der Belichtungsunterseite (aufgrund begrenzter Kristallisationstiefe) nicht kristallisierte Bereiche entfernt. Unbelichtete und damit auch nicht kristallisierte Probenbereiche zwischen den Bearbeitungsflächen bei Belichtung mit  $\ddot{u}_y = 0,1$  waren in den präparierten Proben weiterhin enthalten. Daraus resultiert ein methodisch bedingter Anteil an Glasphase, der in Abhängigkeit von  $\ddot{u}_y$  und der eingesetzten Laserstrahlung schwankt (vgl. Abb. 20). Die präparierten Proben wurden anschließend auf eine Korngröße kleiner 63 µm mechanisch in einem Achat-Mörser zerkleinert. Folgende Messbedingungen kamen zur Anwendung:

| • | Röntgenstrahlung:         | CuKa1                |
|---|---------------------------|----------------------|
| • | Wellenlänge:              | 1,540598 Å           |
| • | Detektor:                 | Szintillationszähler |
| • | Anodenspannung:           | 40 kV                |
| • | Kathodenstrom:            | 30 mA                |
| • | Winkelbereich $2\Theta$ : | 10° - 50°            |
| • | Schrittweite:             | 0,05°                |

In Abb. 16 ist exemplarisch das Röntgendiffraktogramm nach Temperung für die Belichtung von FS21 mit  $\lambda_L$  = 308 nm dargestellt.



Abb. 16: Röntgendiffraktogramm für FS21; belichtet mit  $\lambda_L = 308$  nm,  $\varepsilon_L = 5$  J/cm<sup>2</sup>, N<sub>eff</sub> = 1 und getempert. Die Balken kennzeichnen Lage und Intensität der erwarteten Beugungsreflexe der LMS-Kristalle.

Es wurde nachgewiesen, dass die infolge UV-Laser-Belichtung und thermischer Behandlung entstandene Kristallphase eindeutig LMS ist. Das Analyseergebnis weist unabhängig von den Parametern  $\lambda_L$ ,  $\varepsilon_L$  und N<sub>eff</sub> nahezu identische Peaks auf. Die starke Untergrunderhöhung im Winkelbereich von  $2\Theta = 15^{\circ}$  ...  $30^{\circ}$ , die bei allen Messungen beobachtet wurde, deutet auf einen erheblichen Anteil amorpher Phase in der Probe hin. Entsprechend der Glaszusammensetzung werden nur etwa 20% Kristallphase erwartet /Ehr99/. Hinzu kommen o.g. amorphe Probenanteile, die aus der Belichtungsmethode resultieren. Dies führte dazu, dass ohne aufwendige Herstellung von Kalibrierproben eine quantitative Abschätzung der Anteile an LMS in Abhängigkeit von den Belichtungsparametern nicht möglich war. Es wurden durch Vergleich der counts keine signifikanten Unterschiede zwischen den Röntgendiffraktogrammen festgestellt.

# 3.5.3 Bestimmung der Größe einzelner Lithiummetasilikatkristalle in Abhängigkeit von den Belichtungsparametern $\lambda_L$ und $\epsilon_L$

In Auswertung rasterelektronenmikroskopischer Untersuchungen wurde die Größe einzelner LMS-Kristalle abgeschätzt /Bro2004/. Da LMS-Kristalle in verdünnter Flusssäure eine viel größere Löslichkeit als die umgebende Glasmatrix besitzen, werden durch REM-Aufnahmen angeätzter Proben nur die Abdrücke der Kristalle in der Glasmatrix sichtbar. Die Präparation für die REM-Aufnahmen umfasste:

- Herstellung einer Bruchfläche senkrecht zur Belichtungsoberseite
- Ätzen in 0,5%-iger Flusssäure, t = 5min
- Bedampfen der Probe mit Gold zur Verhinderung elektrostatischer Aufladungen

Es wurden nur Proben mit  $\ddot{u}_y = 0,1$  eingesetzt. Die untersuchten Probenbereiche lagen alle in der Nähe der Belichtungsoberseite und im Zentrum einer Bearbeitungsfläche. In Abb. 17 ist der Abdruck eines isolierten LMS-Kristalls, den dieser in der Glasmatrix hinterlässt, nachdem er herausgelöst wurde, gezeigt. Diese sternförmigen Skelettkristalle sind typisch für die Kristallisation von LMS in FS21 /Sch94/.



Abb. 17: Links: REM-Aufnahme des Abdrucks eines LMS-Skelettkristalls in fotosensiblem FS21, Rechts: Vereinfachte Darstellung der geometrischen Form eines LMS-Skelettkristalls Es wurde die abgebildete Fläche, wie in Abb. 17 (rechts) dargestellt, vermessen. Die Bestimmung von  $d_K$  (im Folgenden als Kristallgröße bezeichnet) im kristallisierten Gebiet der Proben ist schwierig, da die Lage der Kristallformationen in der sie umgebenden Glasmatrix regellos ist (vgl. Abb. 18). Die Bestimmung von  $d_K$  wurde aus diesem Grund dahingehend vereinfacht, dass nur Abdrücke mit mindestens zwei gleich langen Achsen vermessen wurden. Der durch  $d_K$  gekennzeichnete Bereich besitzt die gegenüber der Glasmatrix erhöhte Löslichkeit in verdünnter Flusssäure im Mikrostrukturierungsprozess von FS21. Durch Ätzen dieser Bereiche entstehen Ätzgruben, die maßgeblich die Rauheit der Strukturseitenwände und die geometrische Form der Strukturen bestimmen.

Die Größenschwankung zwischen Kristallen ein und derselben laserbelichteten Struktur im Bildfeld des REM beträgt weniger als  $\pm 0,1 \,\mu$ m. Der geübte Betrachter erkennt für  $\lambda_L = 308$  nm die kleinste durchschnittliche Kristallgröße im Negativ. Mit kleiner werdender Kristallgröße ist eine Zunahme der Kristallanzahl verbunden. Daraus folgt, dass das Wachstum kleiner Kristalle im Zusammenhang mit einer erhöhten Keimanzahl stehen muss. In Abb. 19 ist d<sub>K</sub> in Abhängigkeit von  $\lambda_L$  und  $\varepsilon_L$  an ausgewählten Proben dargestellt.



Abb. 18: Gefügestruktur nach Belichtung mit  $\varepsilon_L = 5 \text{ J/cm}^2$  und Temperung in Abhängigkeit von der Wellenlänge der Laserstrahlung. Links:  $\lambda_L = 248 \text{ nm}$ , Mitte:  $\lambda_L = 308 \text{ nm}$ , Rechts:  $\lambda_L = 355 \text{ nm}$ .



Abb. 19: Kristallgröße  $d_K$  in Abhängigkeit von  $\varepsilon_L$  und  $\lambda_L$ 

Folgende Aussagen lassen sich aus Abb. 19 ableiten, die im Weiteren diskutiert werden:

- Für die Belichtung mit  $\lambda_L = 355$  nm nimmt die Größe der Kristalle von  $d_K = 1,7 \mu m$  bis  $d_K = 0,6 \mu m$  mit steigender Belichtungsenergiedichte  $\varepsilon_L$  ab.
- Für die Belichtung mit  $\lambda_L = 248$  nm und  $\lambda_L = 308$  nm konnte keine gesicherte Abhängigkeit der Kristallgröße d<sub>K</sub> von  $\varepsilon_L$  festgestellt werden.
- Bei Variation der Wellenlänge der Laserstrahlung bei konstanter Belichtungsenergiedichte  $\varepsilon_L$  durchläuft d<sub>K</sub> für  $\lambda_L = 308$  nm ein Minimum. Für  $\varepsilon_L = 2$  J/cm<sup>2</sup> sinkt d<sub>K</sub> auf 0,4 µm ab.

Für die Belichtung mit  $\lambda_L = 355$  nm wurde eine Abhängigkeit d<sub>K</sub> von  $\epsilon_L$  festgestellt. Aus Abb. 10c und Abb. 19 lässt sich ableiten, dass die Größe der Kristalle im Zusammenhang mit der Bildung von (Ce<sup>3+</sup>)<sup>+</sup> während der UV-Laser-Belichtung gebracht werden kann. Mit steigender Belichtungsenergiedichte  $\epsilon_L$  entsteht, resultierend aus der steigenden Anzahl an Zwei-Photonen-Absorptionsprozessen, mehr (Ce<sup>3+</sup>)<sup>+</sup> im Glas. Dass heißt, es werden mehr bewegliche Fotoelektronen geschaffen, die mit Ag<sup>+</sup> rekombinieren können. Somit stehen mehr Silberatome für den Keimbildungsprozess zur Verfügung. Es können mehr Silberkeime entstehen. Die Erhöhung der Keimanzahl hat eine Erniedrigung der Kristallgröße zur Folge. Diese Annahme gilt unter der Voraussetzung, dass sich der Photonenstrom während der UV-Laser-Belichtung in den tröpfchenförmigen Entmischungen des Glases (in denen während der Temperung das LMS aufgrund der geeigneten chemischen Zusammensetzung dieser Bereiche kristallisiert) genauso ausbreitet wie in der die Tröpfchen umgebenden Glasphase. Cer und Silber sind auch in der Glasmatrix enthalten.

Wie oben bereits genannt, führt bei konstantem, modifiziertem Glasvolumen eine Erhöhung der Dichte der Kristallisationskeime zur Zunahme der Kristallanzahl und wegen einem durch die chemische Zusammensetzung vorgegebenen Anteil an kristallisationsfähigem Material zu einer Abnahme der Kristallgröße d<sub>K</sub>. Die Keimdichte besitzt aufgrund der gegebenen Konzentration von Ag<sup>+</sup>-Ionen im Glas einen Grenzwert, der dazu führt, dass die Kristallgröße d<sub>K</sub> einen unteren Grenzwert d<sub>K,min</sub> nicht unterschreiten kann. Aus dem absoluten Silbergehalt des Glases FS21 kann d<sub>K,min</sub> theoretisch berechnet werden (vgl. Anhang 3). Im vorliegenden Fall beträgt d<sub>K,min</sub>  $\approx$  51 nm. Dieser Wert liegt weit unterhalb der tatsächlich vorhandenen minimalen Kristallgrößen für alle eingesetzten Laserstrahlungen. Die wichtigsten Ursachen dafür sind:

- Silber befindet sich auch dort, wo gemäß der Zusammensetzung der entmischten Phase kein LMS wachsen kann /Mro2004/. Dieser Anteil wird somit nicht für die Keimbildung wirksam.
- Es erfolgt kein vollständiger Umsatz des Silbers von  $Ag^+ zu Ag^{\pm 0}$ .
- Das Überschreiten des kritischen Keimradius zur Kristallisation von LMS f
  ür einige Silberpartikel als Folge einer vorhandenen Gr
  ö
  ßenverteilung, f
  ührt sofort zur Verringerung der Keimanzahl und damit zu gr
  ö
  ßeren Kristallen /Mro2004/.

Die Folge ist eine deutlich reduzierte Anzahl an wirksamen Keimen für den Kristallisationsprozess von LMS und damit eine Vergrößerung der einzelnen Kristalle. Eine Möglichkeit die Größe der LMS-Kristalle praktisch zu verkleinern besteht darin, die Entmischung des Glases so zu steuern, dass mehr und kleinere Tröpfchen entstehen in denen Silber von kristallisationsfähigen Material umgeben ist.

Aus Abb. 19 wird für  $\lambda_L = 355$  nm deutlich, dass die Kristallgröße d<sub>K</sub> einen minimalen Grenzwert anstrebt, der praktisch gegeben ist durch das Erreichen der Abtragsschwelle bei  $\varepsilon_L = 21,5$  J/cm<sup>2</sup> (N = 1) und durch die zur Keimbildung verfügbare Silberkonzentration im Glas. Minimale Kristallgrößen von d<sub>K</sub> = 0,6 ± 0,1 µm werden mit Belichtungsenergiedichten im Bereich kurz unterhalb der Abtragsschwelle erreicht und sind insgesamt größer als solche, die infolge der Belichtung mit  $\lambda_L = 308$  nm entstanden. Die Abhängigkeit der Kristallgröße d<sub>K</sub> von  $\varepsilon_L$  bietet die Möglichkeit, gezielt Kristallgrößen durch die Belichtung mit  $\lambda_L = 355$  nm einzustellen. Auf diese Weise ist es zum Beispiel möglich, Oberflächenrauheiten an geätzten Strukturseitenwänden, z.B. für das Anhaften von Zellen in Biochips, Biosensoren oder Bioreaktoren, gezielt zu beeinflussen.

 $\lambda_{\rm L} = 248 \text{ nm}$  und Für die Belichtung mit 308 nm sind bei vergleichbaren Belichtungsenergiedichten  $\varepsilon_L$  die Konzentration der gebildeten (Ce<sup>3+</sup>)<sup>+</sup>-Ionen größer und die Kristallgröße kleiner als für die Belichtung mit  $\lambda_L = 355$  nm. In diesem Fall kann die größere Anzahl von Fotoelektronen aus der Ce<sup>3+</sup>-Anregung im Zusammenhang mit erhöhter Keimbildung und damit kleineren Kristallen gebracht werden. Im Widerspruch zur Belichtung mit  $\lambda_L = 355$  nm steht allerdings die nicht nachgewiesene Abhängigkeit der Kristallgröße von  $\epsilon_L$ , und das, obwohl die Konzentration von  $(Ce^{3+})^+$  mit steigendem  $\epsilon_L$ größer wird. Für die Belichtung mit  $\lambda_L = 308$  nm wurde in Kap.3.4.3.1 die stärkste Abhängigkeit der Bildung von  $(Ce^{3+})^+$  von  $\varepsilon_L$  gefunden. Die Ursachen dafür können im Rahmen der Arbeit nicht eindeutig geklärt werden. Für die Laserstrahlungen  $\lambda_L = 248$  nm und 308 nm erfolgt die Fotoionisation von Ce<sup>3+</sup> durch einen Ein-Photon-Absorptionsprozess. Die Energie der Photonen ist aber auch hoch genug, um z.B. Valenzelektronen der Trennstellensauerstoffe in Form von Zwei-Photonen-Absorptionsprozessen anzuregen, eventuell sogar abzulösen (vgl. Kap.2.3.2). Es wird vermutet, dass für die Belichtung mit  $\lambda_L = 248$  nm und 308 nm neben der Erzeugung von Fotoelektronen durch die Ionisation von Ce3+ auch ein erheblicher Anteil an Fotoelektronen durch Fotoionisation anderer Ionen (polyvalente Elemente Zinn und Antimon bzw. Trennstellensauerstoffe) entsteht. Diese können ebenfalls von Ag<sup>+</sup>-Ionen eingefangen werden. Die verringerte Kristallgröße infolge erhöhter Keimbildung, resultierend aus der Entstehung zusätzlicher Fotoelektronen, kann dann natürlich nicht mehr mit der Bildung von (Ce<sup>3+</sup>)<sup>+</sup> im Glas in Verbindung gebracht werden. Für diesen Fall ist auch keine Abhängigkeit der Kristallgröße von EL zu erwarten, da durch die Fotoionisation weiterer Ionen ein Überschuss an Fotoelektronen zur Silberreduzierung vorhanden ist. Für sehr kleine Belichtungsenergiedichten in der Nähe der unteren Schwellenenergiedichte wird bei Belichtung mit  $\lambda_L = 308$  nm eine Abhängigkeit d<sub>K</sub> von  $\varepsilon_{L}$  vermutet, da die Absorption dieser Laserstrahlung durch Ce<sup>3+</sup> dominant ist.

Ein weiterer Effekt, der aus der Entstehung zusätzlicher Fotoelektronen resultiert, ist die erhöhte Defektkonzentration mit steigendem  $\varepsilon_L$ . Wie in Kap.3.4.3.2 und 3.4.3.3 dargestellt, kann bei hinreichend hohen Energiedichten die Entstehung erhöhter Konzentrationen an Fotoelektronen zur Reduzierung weiterer Kationen im Glas führen. Es ist sogar Partikelbildung in der Größenordnung 6 nm infolge lokaler Erwärmung möglich. Inwieweit
diese Partikel am Kristallisationsprozess beteiligt sind, kann nicht gesagt werden. Hierzu sind weitere Untersuchungen notwendig.

#### 3.5.4 Geometrische Ausdehnung kristallisierter Bereiche

#### 3.5.4.1 Laterale Strukturgeometrie

Die Analyse der lateralen geometrischen Ausdehnung kristallisierter Bereiche im Glas nach UV-Laser-Belichtung und Temperung erfolgte mittels lichtmikroskopischer Untersuchungen senkrecht zur Belichtungsoberseite. Laserbelichtete Probenbereiche weisen nach dem Temperprozess Kristallisationen in Form eines punktförmigen Rasters auf. Die kristallisierten Bereiche sind braun gefärbt (vgl. Abb. 20).



Abb. 20: Belichtungsoberseite kristallisierter Proben nach Laser-Belichtung ( $\epsilon_L = 1,0 \text{ J/cm}^2$ ) und Temperung. Links:  $\lambda_L = 248 \text{ nm}$  ( $d_L = 92 \text{ µm}$ ), Mitte:  $\lambda_L = 308 \text{ nm}$  ( $d_L = 200 \text{ µm}$ ), Rechts:  $\lambda_L = 355 \text{ nm}$  ( $d_L = 80 \text{ µm}$ )

Für die Belichtung mit  $\lambda_L = 248$  nm und  $\lambda_L = 308$  nm haben die kreisförmigen Rasterpunkte einen um 3-7 µm kleineren Durchmesser als d<sub>L</sub> in der Abbildungsebene. Überlappungsbereiche der einzelnen Bearbeitungsflächen sind dunkler gefärbt. Für maximalen Überlappungsgrad ü<sub>y</sub> = 0,75 (hier nicht gezeigt) geht das punktförmige Raster der kristallisierten Bereiche in nahezu flächige Kristallisation über. Es besteht kein Zusammenhang zwischen der Größe des Strukturdurchmessers d<sub>Str.</sub> auf der Belichtungsoberseite der Glasprobe und der Belichtungsenergiedichte  $\varepsilon_L$ .

Die Strukturdurchmesser  $d_{Str.}$  waren nach Belichtung mit  $\lambda_L = 355$  nm bei Belichtungsenergiedichten  $\varepsilon_L < 10 \text{ J/cm}^2$  und Temperung deutlich kleiner als der Durchmesser des Laserstrahls in der Abbildungsebene  $d_L$ . Mit Zunahme von  $\varepsilon_L$  ist im Gegensatz zur Belichtung mit  $\lambda_L = 248$  nm und 308 nm eine Vergrößerung von  $d_{Str.}$  auf der Belichtungsoberseite verbunden (vgl. Abb. 21).



Abb. 21: Durchmesser der nach Temperung kristallisierten Struktur d<sub>Str.</sub> in Abhängigkeit von  $\varepsilon_L$  (Belichtungsoberseite) für die Belichtung mit  $\lambda_L = 355$  nm

Die Ursache für diesen Effekt liegt in der lokalen Überschreitung der für den fotochemischen Schwellenenergiedichte  $\varepsilon_{\rm S} = 0,115 \text{ J/cm}^2$  (vgl. Prozess notwendigen Tab. 5) im Intensitätsprofil des Laserstrahlquerschnitts. Das Intensitätsprofil über dem Laserstrahlquerschnitt ist bei der Excimerlaserstrahlung im Vergleich zum Gauss-förmigen Profil der Festkörperlaserstrahlung offensichtlich durch eine deutlich höhere Flankensteilheit gekennzeichnet. Für Festkörperlaserstrahlung wirkt sich deshalb eine Erhöhung von  $\varepsilon_L$  auf den Randbereich der bestrahlten Fläche stärker aus, was sich in der Abhängigkeit der sichtbaren Strukturdurchmesser von  $\varepsilon_L$  zeigt.

Der Durchmesser der kristallisierten Struktur  $d_{Str.}$  entspricht dem Laserstrahldurchmesser  $d_L$  erst bei hohen Energiedichten  $\epsilon_L = 18 \dots 20 \text{ J/cm}^2$  nahe der Abtragsschwelle  $\epsilon_{Abt.} = 21,5 \text{ J/cm}^2$  (vgl. Abb. 21). Aus Sicht der geometrischen Mikrostrukturierung bedeutet dies, dass minimale Strukturdimensionen mit  $d_{Str.} < d_L$  bei Belichtung des Glases im Fokus des Laserstrahls möglich sind.

Für die Laser-Belichtung mit  $\lambda_L = 248$  nm, 308 nm und 355 nm wurden nach der Temperung Unterschiede im optischen Kontrast zwischen kristallisiertem und nicht kristallisiertem Glasbereich festgestellt (vgl. Abb. 20 ). Der Kontrastunterschied basiert auf unterschiedlicher Größe und Anzahl der LMS-Kristalle in diesem Bereich. Dies wirkt sich auf die im nachfolgenden Ätzprozess erreichbare Flankensteilheit von geometrischen Konturen aus. Deshalb wird geprüft, nach welchen Abhängigkeiten der Kontrast entsteht. Grundsätzlich wurde festgestellt, dass für die Belichtung mit Festkörperlaserstrahlung der Kontrast geringer ist als für die Belichtung mit Excimerlaserstrahlung. Mittels Rasterkraftmikroskopie wurde im Übergangsbereich Glas / kristallisierter Bereich ein geometrischer Absatz festgestellt. Die amorphen Glasbereiche um die kristallisierten Strukturen sind leicht erhöht. In Abb. 22 sind exemplarisch Ausschnitte aus den Übergangsbereichen Glas / kristallisierter Bereich für die Belichtung mit Excimerlaserstrahlung ( $\lambda_L = 308$  nm) und Festkörperlaserstrahlung ( $\lambda_L = 355$  nm) dargestellt.



Abb. 22: AFM-Scann im Übergangsbereich Glas / kristallisierte Struktur nach UV-Laser-Belichtung mit  $\varepsilon_L = 5 \text{ J/cm}^2$  (N = 1) und Temperung. Links:  $\lambda_L = 308 \text{ nm}$ , Rechts:  $\lambda_L = 355 \text{ nm}$ 

Die mittels  $\lambda_L = 308$  nm und Temperung hergestellte Struktur weist im Übergangsbereich amorph/kristallin eine relativ hohe Strukturkantensteilheit (gemeint ist die Steilheit des Übergangs in Bezug auf eine Stufe) auf. Die kreisförmige Kontur des kristallisierten Bereiches ist gegenüber der Belichtung mit  $\lambda_L = 355$  nm deutlich zu erkennen. Der infolge Laser-Belichtung mit  $\lambda_L = 355$  nm niedrigere Kontrast wird in erster Linie wie schon o.g. auf Unterschiede im lokalen Leistungsdichteprofil zwischen Excimerlaserstrahlung und Festkörperlaserstrahlung zurückgeführt. Die gegenüber der Excimerlaserstrahlung geringere Flankensteilheit der lokalen Intensitätsverteilung eines Laserpulses in Kombination mit der Abhängigkeit der Kristallgröße d<sub>K</sub> von der Belichtungsenergiedichte  $\varepsilon_L$  führt insgesamt zu einer Größenverteilung der Lithiummetasilikatkristalle über d<sub>Str.</sub>. Die Kristalle sind im Randbereich der Struktur größer als im Zentrum.

Bei der Belichtung mit Excimerlaserstrahlung konnte eine Abhängigkeit des Kontrastes von der Belichtungsenergiedichte und der Pulszahl festgestellt werden. Sowohl eine Erhöhung von  $\epsilon_L$  als auch eine Erhöhung von N<sub>eff.</sub> wirken sich kontrastmindernd auf den Übergangsbereich Glas / kristallisierter Bereich aus. Bei hohen Belichtungsenergiedichten bzw. Pulszahlen kommt der sogenannte Überbelichtungseffekt zum Tragen /Schm94/. Dieser hat seine Ursache in nichtlinearen optischen Effekten, die bei hohen Intensitäten auftreten.

wurde beispielsweise blaues Fluoreszenzlicht beobachtet. Diese Strahlung breitet sich ungerichtet in eigentlich unbelichtete Strukturrandgebiete aus und es kommt dort zu einer zwar verminderten, aber dennoch vorhandenen fotochemischen Gefügemodifizierung. Während der Temperung bildet sich ein Hof mit niedriger Kristalldichte um die eigentlich laserbelichtete und kristallisierte Struktur. Die Folge ist eine Abnahme des optischen Kontrastes (Strukturkantenschärfe) im Lichtmikroskop und eine Verringerung der geometrischen Strukturkantensteilheit im Übergangsbereich Glas / kristallisierter Bereich. In Abb. 23 und Abb. 24 sind Beispiele gezeigt. Für Abb. 23 erfolgte die Belichtung mit  $\lambda_L = 248$  nm und einer Belichtungsenergiedichte  $\varepsilon_L = 5$  J/cm<sup>2</sup> als Einzelpulsbelichtung nahe der Abtragsschwelle bei  $\varepsilon_S = 5,6$  J/cm<sup>2</sup>. Ein Beispiel für die Pulszahlerhöhung bei konstantem  $\varepsilon_L$  ist in Abb. 24 zu sehen. Mit steigendem N<sub>eff.</sub> ist eine Verschlechterung des optischen Kontrastes zwischen kristallisierten Bereichen und Glasbereichen zu erkennen.



Abb. 23: Kristallisierte Strukturen (senkrecht zur Belichtungsoberseite) nach Belichtung mit  $\lambda_L = 248$  nm ( $\epsilon_L = 5$  J/cm<sup>2</sup>, N<sub>eff.</sub> = 1) und Temperung



Abb. 24: Kristallisierte Strukturen (senkrecht zur Belichtungsoberseite) nach Belichtung mit  $\lambda_L = 308$  nm ( $\epsilon_L = 1 \text{ J/cm}^2$ , N<sub>eff.</sub> variiert von links nach rechts in der Reihenfolge: 4, 8, 12, 16 (vgl. Kap. 4.1))

Die Bestimmung der Strukturkantensteilheit in Abhängigkeit von EL und Neff, erfolgte an Linienstrukturen, die zur Herstellung von Gräben belichtet wurden (vgl. Kap. 4.1). Dazu wurde das Höhenprofil z entlang einer Strecke x (die bei dem verwendeten Scanner maximal Übergangsbereich Glas kristallisierte 80µm betrug) im / Struktur mittels Rasterkraftmikroskopie erfasst (vgl. Abb. 25). Da die Strukturkantensteilheit im wesentlichen dadurch bestimmt wird, wie sich der Anstieg im Bereich der Strukturkante ändert, wurde aus diesen Daten die Steilheit S durch Ableitung der Höhe z nach dem Weg x berechnet: S = dz/dx (vgl. Abb. 26). Es ist zu erkennen, dass im Bereich der kristallisierten Struktur  $(60 \ \mu m \le x \le 80 \ \mu m)$  die Steilheit S annähernd konstant Null ist. Im Bereich des Überganges von unbelichtetem Glas (beginnend mit x = 0) zur kristallisierten Struktur fällt die Steilheit zunächst nahezu linear über eine Wegstrecke  $\Delta x$  ab, da der Übergang vom unbelichteten Glasbereich zum partiell kristallisierten aufgrund des größeren spezifischen Volumens (der geringeren Dichte) des Glases durch einen negativen Anstieg gekennzeichnet ist. Im weiteren Verlauf steigt S entsprechend der durch den thermischen Prozess oberhalb der Transformationstemperatur des Glases entstandenen sphärischen Glasoberfläche nichtlinear an (vgl. Abb. 22 links), bleibt aber im negativen Bereich. Je steiler der Anstieg von S im Übergangsbereich Glas / kristallisierter Bereich ist, desto kontrastreicher erscheint die kristallisierte Struktur im Lichtmikroskop. Deshalb erfolgt die Definition der Strukturkantenschärfe (Kontrast) gemäß (26):

$$K = \frac{\Delta S}{\Delta x} = \frac{\Delta S}{x_2 - x_1}$$
(26)

wobei  $x_1$  der Position für  $S = S_{min}$  und  $x_2$  der Position S = 0 im kristallisierten Bereich entspricht. In Abb. 27 ist K in Abhängigkeit von  $\varepsilon_L$  für  $N_{eff.} = 4$  und  $N_{eff.} = 16$  dargestellt. Die exponentiellen Ausgleichsfunktionen geben den Trend der Messergebnisse an.



Abb. 25: Höhenprofil z in Abhängigkeit von der Entfernung x für zwei verschiedene Belichtungsenergiedichte – Pulszahl - Kombinationen im Übergangsbereich Glas / kristallisierter Bereich nach Belichtung mit  $\lambda_L = 308$  nm und Temperung



Abb. 26: Steilheit S in Abhängigkeit von der Entfernung x für zwei verschiedene Belichtungsenergiedichte – Pulszahl - Kombinationen im Übergangsbereich Glas / kristallisierter Bereich nach Belichtung mit  $\lambda_L = 308$  nm und Temperung



Abb. 27: Strukturkantenschärfe K kristallisierter Strukturen in Abhängigkeit von  $\varepsilon_L$  und N<sub>eff.</sub> nach Belichtung mit  $\lambda_L = 308$  nm und Temperung

Aus Abb. 27 kann Folgendes abgeleitet werden:

- Die Strukturkantenschärfe K nimmt mit steigender Belichtungsenergiedichte  $\varepsilon_L$  ab.
- Eine Erhöhung von  $N_{eff.}$  bei konstantem  $\epsilon_L$  führt ebenfalls zu einer Abnahme von K.
- Im Energiedichtebereich 0,6 J/cm<sup>2</sup>  $\leq \epsilon_L \leq 1$  J/cm<sup>2</sup> ist die Abhängigkeit der Kantenschärfe K von der Belichtungsenergiedichte  $\epsilon_L$  für N<sub>eff.</sub> = 4 deutlich größer als für N<sub>eff.</sub> = 16.
- Im Energiedichtebereich 4 ≤ ε<sub>L</sub> ≤ ε<sub>Abt.</sub> ist f
  ür beide Kurvenverl
  äufe eine Ann
  äherung zu erwarten.

Die Verringerung von K mit steigendem  $\varepsilon_L$  und N<sub>eff.</sub> ist, wie o.g., auf einen erhöhten Photonenfluss in unbelichtete Strukturrandbereiche zurückzuführen. Wie in Kap. 3.4.3.1 beschrieben, ist bei der Belichtung mit  $\lambda_L = 308$  nm die Erhöhung von  $\varepsilon_L$  mit einer relativ starken Änderung des Absorptionskoeffizienten verbunden. Für lokal aufeinanderfolgende Laserpulse erfährt die laterale Ausbreitung des Photonenflusses auf diese Weise eine Dämpfung, was sich für diese Laserwellenlänge in der niedrigen Abhängigkeit K von  $\varepsilon_L$  im Energiedichtebereich 4 J/cm<sup>2</sup>  $\leq \varepsilon_L \leq \varepsilon_{Abt.}$  äußert.

Dennoch sind für eine kontrastreiche Strukturabbildung mittels XeCl-Excimerlaserstrahlung niedrige Belichtungsenergiedichten mit  $\varepsilon_L < 1 \text{ J/cm}^2$  und kleine effektive Pulszahlen vorteilhaft. Für eine optimale geometrische Auflösung von Mikrostrukturen ist die Ermittlung optimaler Belichtungsenergiedichte – Pulszahl – Kombinationen zur Erzeugung vieler kleiner Kristalle ohne Zusatzeffekte wie Streuung in unbelichtete Randbereiche notwendig.

#### 3.5.4.2 Kristallisationstiefe

Unter der Kristallisationstiefe  $h_k$  wird die geometrische Ausdehnung des kristallisierten Bereiches innerhalb der Probe in Strahlrichtung nach Laser-Belichtung und Temperung verstanden. Die Untersuchung von  $h_k$  in Abhängigkeit von  $\varepsilon_L$  und  $N_{eff.}$  erfolgte an Querschliffen mittels Lichtmikroskopie.

Die Kristallisationstiefe  $h_k$  steht im Zusammenhang mit der optischen Eindringtiefe  $\delta_{opt.}$  der Laserstrahlung. FS21 besitzt für  $\lambda_L \ge 308$  nm eine optische Eindringtiefe  $\delta_{opt.} > 700 \ \mu\text{m}$ . Das hat zur Folge, dass alle Proben nach entsprechender Laser-Belichtung und Temperung über die gesamte Probendicke durchkristallisiert waren. Für die Belichtung mit  $\lambda_L = 248$  nm ist die Kristallisationstiefe  $h_k$  im Glassubstrat begrenzt (vgl. Abb. 28) und für  $\epsilon_L > 0,1$  J/cm<sup>2</sup> größer als  $\delta_{opt.} = 129 \ \mu\text{m}$  (vgl. Tab. 2)



Abb. 28: Querschliff einer laserbelichteten und getemperten Probe, belichtet mit  $\lambda_L = 248 \text{ nm}, \epsilon_L = 0.5 \text{ J/cm}^2, N_{eff.} = 1$ 

Die Kristallisationstiefe  $h_k$  kann für die Belichtung mit  $\lambda_L = 248$  nm für eine Einzelpulsbelichtung berechnet werden, wenn folgende Randbedingungen erfüllt werden:

- h<sub>k</sub> ist die Tiefe, bei der die Belichtungsenergiedichte ε<sub>L</sub> auf den unteren Schwellwert ε<sub>S</sub> abgefallen ist.
- Für niedrige Intensitäten bzw. Belichtungsenergiedichten  $\varepsilon_L$  ist die Ein-Photon-Absorption durch Ce<sup>3+</sup>-Ionen dominant. Die Abnahme der eingestrahlten Energiedichte  $\varepsilon_L$ innerhalb der Probe entlang des Weges z kann unter Berücksichtigung eines reflektierten Anteils an der Belichtungsoberseite durch das Lambert-Beersche-Gesetz beschrieben werden. Für die notwendige untere Schwellenenergiedichte  $\varepsilon_S$  bei der Kristallisationstiefe h<sub>k</sub> gilt dann (27).

$$\varepsilon_{s} = (1 - R) \cdot \varepsilon_{L} \cdot e^{-\alpha \cdot h_{k}}$$
<sup>(27)</sup>

Umstellen nach  $h_k$  ergibt (28).

$$h_{k} = \frac{1}{\alpha} \cdot \left[ \ln(\varepsilon_{L}(1 - R)) - \ln \varepsilon_{S} \right]$$
<sup>(28)</sup>

In Abb. 29 ist die gemessene Kristallisationstiefe  $h_k$  in Abhängigkeit von  $\varepsilon_L$  und  $N_{eff.}$  dargestellt. Zusätzlich enthält die Darstellung den Kurvenverlauf für die nach (28) berechnete Kristallisationstiefe  $h_k$  mit den Parametern:  $\alpha = 7,75 \text{ mm}^{-1}$ ;  $R = 0,11^{20}$  und  $\varepsilon_S = 0,038 \text{ J/cm}^2$ .



Abb. 29: Kristallisationstiefe  $h_k$  in Abhängigkeit von der Belichtungsenergiedichte  $\varepsilon_L$  nach Belichtung mit  $\lambda_L = 248$  nm und Temperung

Aus Abb. 29 können folgende Aussagen entnommen werden, die im Weiteren diskutiert werden:

- Mit steigendem  $\varepsilon_L$  und N<sub>eff.</sub> ist eine Vergrößerung der gemessenen und der berechneten Kristallisationstiefe verbunden.
- Für  $\varepsilon_L = 0,05 \text{ J/cm}^2$  ist die stärkste Zunahme von  $h_k$  mit steigendem  $N_{eff.}$  vorhanden. Im Bereich 1 J/cm<sup>2</sup>  $\leq \varepsilon_L \leq 4,5 \text{ J/cm}^2$  sind die Unterschiede in  $h_k$  mit steigendem  $N_{eff.}$  nicht

<sup>&</sup>lt;sup>2)</sup> Die Bestimmung des Reflexionsgrades R erfolgte mit Unterstützung der Fa. Jasco in einem UV-VIS-NIR Spektralphotometer vom Typ V-570 mit Reflexionsaufsatz (Ulbrichtkugel). Die Reflexion wurde als diffuse Reflexion gemessen. Der gemessene Wert von R = 0,11 steht in Übereinstimmung mit einem berechneten Wert, der sich bei bekanntem  $\alpha$  (vgl. Kap. 2.3.3, Tab. 2) aus (12) ergibt.

mehr signifikant. Die Zunahme der Kristallisationstiefe mit steigendem  $\epsilon_L$  fällt in diesem Energiedichtebereich insgesamt niedriger aus als im Bereich 0,05 J/cm<sup>2</sup>  $\leq \epsilon_L < 1$  J/cm<sup>2</sup>.

- Für  $\varepsilon_L = 0,05 \text{ J/cm}^2$  und  $N_{\text{eff.}} = 1$  entspricht die gemessene Kristallisationstiefe der berechneten. Das gilt auch für  $\varepsilon_L = 0,1 \text{ J/cm}^2$  und  $N_{\text{eff.}} = 4$
- Die Kurvenverläufe der gemessenen Kristallisationstiefen weisen einen geringeren Anstieg auf als der Verlauf der berechneten Kristallisationstiefe.
- Für ε<sub>L</sub> ≤ 0,1 J/cm<sup>2</sup> sind die gemessenen Kristallisationstiefen h<sub>k</sub> < δ<sub>opt.</sub> Das heißt, die bei ≈ 100 µm Tiefe noch vorhandene Strahlungsenergiedichte liegt unterhalb von ε<sub>S</sub>.

Die festgestellte Erhöhung von  $h_k$  mit steigendem  $\epsilon_L$  und  $N_{eff.}$  ist darauf zurückzuführen, dass die untere Schwellenenergiedichte  $\epsilon_S$  für die fotochemische Gefügemodifizierung auch in größerer Tiefe erreicht wird. Mit Zunahme von  $\epsilon_L$  fällt die Erhöhung von  $h_k$  für steigende  $N_{eff.}$ jedoch geringer aus, da ein erhöhter Absorptionskoeffizient eine geringere optische Eindringtiefe bedeutet und somit gegensätzlich wirkt. Für  $\epsilon_L > 4$  J/cm<sup>2</sup> (nahe der Abtragsschwelle von  $\epsilon_{Abt.} = 5,6$  J/cm<sup>2</sup>) ist im Pulszahlbereich  $1 < N_{eff.} < 4$  praktisch kein Unterschied zwischen den gemessenen Kristallisationstiefen vorhanden. Dieser Effekt tritt als Folge der Intensitätsabhängigkeit von  $\alpha$  aufgrund nichtlinearer Absorptionsprozesse im Glas, die nach /Esc88/ für  $\epsilon_L > 1$  J/cm<sup>2</sup> relevant sind, auf.

Für die geringe Belichtungsenergiedichte  $\varepsilon_L = 0,05 \text{ J/cm}^2$ , die im Bereich der unteren Schwellenenergiedichte  $\varepsilon_S$  liegt, wird von einem Ein-Photon-Absorptionsprozess für die fotochemische Gefügemodifizierung ausgegangen (vgl. Kap. 2.3.2). Nichtlineare Absorptionsprozesse sind nach /Esc88/ vernachlässigbar. In diesem Fall kann die untere Schwellenenergiedichte  $\varepsilon_S = 0,038 \text{ J/cm}^2$  für die Einzelpulsbelichtung durch Bestimmung der Kristallisationstiefe h<sub>k</sub> aus (27) ermittelt werden.

## 3.6 Ätzen laserbelichteter und kristallisierter Proben

#### 3.6.1 Kenngrößen des Ätzprozesses

Der dritte und letzte Schritt im Prozess der geometrischen Mikrostrukturierung von FS21 mittels UV-Laserstrahlung ist das Herauslösen kristallisierter Probenbereiche in verdünnter Flusssäure (vgl. Abb. 1). Infolge der größeren Löslichkeit von Lithiummetasilikatkristallen gegenüber der nichtkristallisierten Glasmatrix entstanden aus den partiell kristallisierten

Bereichen Durchbrüche oder Vertiefungen. Die Verzahnung der Kristalle führt trotz nur partieller Kristallisation in den belichteten Bereichen von ca. 20 % /Ehr99/ dazu, dass auch das die Kristalle umgebende Glas, quasi als µm-Bröckchen, beim Ätzprozess aus den belichteten geometrischen Strukturen herausgespült wird.

Eine wichtige Kenngröße für den geometrischen Mikrostrukturierungsprozess ist die Bestimmung der Ätzgeschwindigkeit unbelichteter Probenbereiche  $v_{atz.(unbel.)}$  bezogen auf belichtete und kristallisierte Probenbereiche  $(v_{atz.(bel.)})$  in Abhängigkeit von den Belichtungsparametern. Dieses Verhältnis wird als Ätzratenverhältnis bezeichnet und kann für konstante Ätzzeiten t<sub>ätz.</sub> nach (29) berechnet werden.

$$\frac{\mathbf{v}_{\text{ätz.(unbel.)}}}{\mathbf{v}_{\text{ätz.(bel.)}}} = \frac{\mathbf{h}_{\text{ätz.(unbel.)}}}{\mathbf{h}_{\text{ätz.(bel.)}}}$$
(29)

Somit entspricht das Ätzratenverhältnis dem Quotienten aus der gemessenen Ätztiefe an unbelichteten Probenbereichen (h<sub>ätz.(unbel.)</sub>) und belichteten Probenbereichen (h<sub>ätz.(bel.)</sub>). Für die Belichtung mittels Maskaligner wurde für FS21 ein durchschnittliches (geometriebezogenes) Ätzratenverhältnis von 1:18 in /Har98/ ermittelt.

#### **3.6.2** Untersuchungsmethode

Zur Bestimmung der Ätztiefe in Abhängigkeit von den Parametern der Belichtung wurden die nach der in Kap. 3.2 beschriebenen Methode belichteten Proben getempert (vgl. Kap. 3.5.1), senkrecht in einen Kunststoffprobenhalter eingespannt und gleichzeitig im Säurebad zweiseitig geätzt. Folgende Parameter wurden verwendet:

- Konzentration der Flusssäure: 10%
- Temperatur des Ätzbades:  $30^{\circ}C \pm 2 K$
- Variation der Ätzzeit:  $0,5 \text{ min} \le t_{\text{åtz.}} \le 12 \text{ min}$
- Konstante Ultraschallunterstützung während des Ätzens (einmalig optimiert)
- Spülen geätzter Proben mit destilliertem Wasser
- Trocknen gespülter Proben mit Stickstoff

Die Bestimmung von  $h_{atz.(unbel.)}$  in Abhängigkeit von  $t_{atz.}$  erfolgte durch Ermittlung der Probendicke an unbelichteten Probenbereichen vor und nach dem Ätzen. Dabei ist zu

beachten, dass aufgrund des zweiseitigen Ätzprozesses (gleichmäßiger Ätzangriff vorausgesetzt)  $h_{\text{ätz.(unbel.)}} = (\Delta d)/2$  entspricht.

Zur Bestimmung von hätz.(bel.) in Abhängigkeit von tätz. wurde nach jedem Ätzschritt senkrecht Ätztiefe Belichtungsoberseite die lichtmikroskopisch mittels definierter zur Tiefenfokussierung gemessen. Dabei wurde ausgehend von der Belichtungsoberseite auf den Strukturgrund fokussiert. Die Änderung der für den Betrachter scharf abgebildeten Ebene in z-Richtung entspricht der geätzten Tiefe und kann direkt am Lichtmikroskop abgelesen werden. Wie im Weiteren gezeigt, ist die Bestimmung von hatz. (bel.) zum Teil starken Schwankungen unterworfen. Die wesentlichen Ursachen dafür sind Inhomogenitäten im Glas (Schlieren) und die Abhängigkeit des Ätzprozesses von der Lage der Probe im Ätzbad und damit vebundener ungleichmäßiger Ätzmittelaustausch an der zu ätzenden Schicht bei Verwendung von Ultraschall als Prozessunterstützung /Lud2003/.

Um dennoch Aussagen zur Abhängigkeit der Ätzgeschwindigkeit kristallisierter Probenbereiche von Parametern der Belichtung zu erhalten, wurde hätz.(bel.) als Mittelwert aus 10 Einzelmessungen pro Probe ermittelt. Dabei wurden 5 Messpunkte in der ersten Spur und 5 Messpunkte in der letzten Spur gesetzt. Soweit nicht anders beschrieben, beziehen sich alle Messwerte auf die Belichtung mit  $N_{eff} = 1$ . Bereiche mit Überlappungen der Einzelpulse wiesen zum Teil eine geringfügig größere Ätztiefe auf als Bereiche ohne Überlappung. Aus diesem Grund wurde hätz.(bel.) stets im Zentrum der Bearbeitungsfläche eines Laserpulses bestimmt. Aufgrund der genannten Unterschiede in Bezug auf die laterale Ausdehnung kristallisierter Bereiche zwischen der Belichtung mit Festkörperlaserstrahlung und Excimerlaserstrahlung (vgl. Kap. 3.5.4.1) erfolgte der Ätzangriff bei den mit  $\lambda_L = 248$  nm bzw. 308 nm belichteten Proben überwiegend großflächig. Für Proben, die mit  $\lambda_L$  = 355 nm belichtet wurden, trifft dies nur für solche zu, die mit  $\varepsilon_L \ge 5 \text{ J/cm}^2$  belichtet wurden, da dann der Durchmesser der kristallisierten Bereiche d<sub>Str.</sub> größenordnungsmäßig im Bereich des Laserstrahldurchmessers  $d_L$  lag und der Anteil unbelichteter Zwischenbereiche vernachlässigbar war. Für  $\epsilon_L < 5 \text{ J/cm}^2$  wurden kreisförmige Durchbrüche geätzt. Da die Ätzgeschwindigkeit der kristallisierten Bereiche neben dem Löslichkeitsunterschied zwischen unbelichtetem und kristallisiertem Bereich auch durch den Ätzmittelaustausch und den Abtransport herausgelöster Partikel beeinflusst wird /Har98/, ist ein Vergleich der Ergebnisse kritisch zu betrachten.

## 3.6.3 Ätzgeschwindigkeit laserbestrahlter und kristallisierter Probenbereiche

Unbelichtete und getemperte Probenbereiche besitzen eine Ätzgeschwindigkeit von  $v_{atz.(unbel.)} = 1,4 \pm 0,2 \mu m/min$ . Im Folgenden werden die gemessenen Ätztiefen  $h_{atz.(bel.)}$  in Abhängigkeit von der Ätzzeit  $t_{atz.}$  für die eingesetzten Laserstrahlungen untersucht und die Abhängigkeiten von den Belichtungsparametern diskutiert.

Für die **Belichtung mit**  $\lambda_L = 248$  nm wurde  $h_{atz.(bel.)}$  als Funktion von  $t_{atz.}$  in Abhängigkeit von  $\varepsilon_L$  und  $N_{eff.}$  untersucht. Wie in Kap. 3.6.2 dargestellt, ist die Ätztiefe überlappender Bereiche geringfügig erhöht. Die Messwerte für  $N_{eff.} = 2$  und 4 wurden in der Mitte der o.g. Spuren ermittelt. Aus Proben, die mit  $\varepsilon_L < 1$  J/cm<sup>2</sup> belichtet wurden, war spätestens nach 8 min die Kristallphase herausgelöst, sodass die weitere Ätzgeschwindigkeit in diesen Probenbereichen auf die des unbelichteten Glases absank. Aufgrund starker Schwankungen von  $h_{atz.(bel.)}$ , die auf o.g. Ursachen zurückgeführt werden, konnte kein signifikanter Unterschied der Ätztiefen in Abhängigkeit von  $\varepsilon_L$  und  $N_{eff.}$  festgestellt werden. Nach /Har98/ nimmt die Streuung von  $h_{atz.(bel.)}$  mit steigender Ätzzeit stark zu. Dies wurde auch in eigenen Untersuchungen festgestellt. In Abb. 30 ist daher  $h_{atz.(bel.)}$  in Abhängigkeit von  $t_{atz}$  als Mittelwert über alle eingesetzten  $\varepsilon_L$  und  $N_{eff.}$  dargestellt. Die Streuung von  $h_{atz.(bel.)}$  beträgt im Mittel 15%. Im Gegensatz zu /Har98/ wird in Abb. 30 der Ausgleichskurve eine konstante Ätzgeschwindigkeit zugrunde gelegt. Die Gründe dafür sind:

- Es erfolgte überwiegend flächiger Ätzabtrag mit ausreichendem Ätzmittelaustausch und Partikeltransport.
- Die Gesamtätzzeit betrug nur 1/5 der bei Harnisch /Har98/ angewendeten.
- Der Streubereich von h<sub>ätz.(bel.)</sub> erlaubt die Annahme eines linearen Zusammenhangs zwischen h<sub>ätz.(bel.)</sub> und t<sub>ätz.</sub>



Abb. 30: Mittlere Ätztiefe  $h_{atz.(bel.)}$  in Abhängigkeit von  $t_{atz.}$  nach Belichtung mit  $\lambda_L = 248$  nm, Temperung und Ätzen.

Aus Abb. 30 kann für 0,5 min  $\leq t_{atz.} \leq 4$  min eine mittlere Ätzgeschwindigkeit  $v_{atz.(bel.)} = 28 \ \mu m/min$  abgeleitet werden. Damit beträgt für die Belichtung mit  $\lambda_L = 248$  nm das mittlere Ätzratenverhältnis 1:20, was dem in /Har98/ gefundenen Wert sehr nahe kommt.

Für die **Belichtung mit**  $\lambda_L = 308$  nm (N<sub>eff.</sub> = 1) wurde h<sub>ätz.(bel.)</sub> in Abhängigkeit von  $\varepsilon_L$  und t<sub>ätz.</sub> untersucht (vgl. Abb. 31). Aus Abb. 31 können folgende Aussagen entnommen werden:

- Mit steigender Ätzzeit  $t_{atz.}$  ist für alle  $\varepsilon_L$  eine Zunahme von  $h_{atz.(bel.)}$  verbunden.
- Für t<sub>ätz.</sub> > 1 min fällt die Zunahme von h<sub>ätz.(bel.)</sub> für ε<sub>L</sub> > 8 J/cm<sup>2</sup> geringer aus als für kleinere Belichtungsenergiedichten ε<sub>L</sub>.
- Die mittlere Ätzgeschwindigkeit beträgt im Bereich 0,6 J/cm<sup>2</sup>  $\leq \epsilon_L \leq 6,5$  J/cm<sup>2</sup>  $v_{atz.(bel.)} = 32 \pm 1,5 \mu$ m/min, woraus sich ein Ätzratenverhältnis von ca. 1:22 ergibt. Im Bereich 8,6 J/cm<sup>2</sup>  $\leq \epsilon_L \leq 13,6$  J/cm<sup>2</sup> beträgt  $v_{atz.(bel.)}$  im Mittel  $25 \pm 3 \mu$ m/min und resultierend daraus ergibt sich ein Ätzratenverhältnis von ca. 1:18. Die Unterschiede in den Ätzratenverhältnissen zwischen den beiden genannten Belichtungsenergiedichtebereichen sind für  $t_{atz.} \geq 2$  min signifikant.

Daraus kann abgeleitet werden, dass im Energiedichtebereich  $0,6 \le \epsilon_L \le \epsilon_{Abt.}$  das Ätzratenverhältnis und damit das Aspektverhältnis von Strukturen über den Belichtungsparameter  $\epsilon_L$  beeinflusst werden kann. Dies ist für 3D-hinterschneidungsfreie Mikrostrukturen von Bedeutung. Inwieweit dies auch für  $\epsilon_L < 0,6$  J/cm<sup>2</sup> gilt, konnte im Rahmen dieser Arbeit nicht geklärt werden.

Im Bereich 0,6 J/cm<sup>2</sup>  $\leq \epsilon_L \leq 6,5$  J/cm<sup>2</sup> ist das Ätzratenverhältnis geringfügig größer als für die Belichtung mit  $\lambda_L = 248$  nm. Eine Ursache könnte in der geringeren Kristallgröße der mit  $\lambda_L = 308$  nm belichteten und kristallisierten Proben liegen. Da aber für beide Laser-Belichtungen keine Abhängigkeit d<sub>K</sub> von  $\epsilon_L$  festgestellt wurde (vgl. Kap. 3.5.3), werden die Ursachen vielmehr in Unterschieden der Vernetzung der Kristalle vermutet.



Abb. 31: Mittlere Ätztiefe  $h_{atz.(bel.)}$  in Abhängigkeit von  $\varepsilon_L$  und  $t_{atz.}$  nach Belichtung mit  $\lambda_L = 308 \text{ nm} (N_{eff.} = 1)$ , Temperung und Ätzen

Für die **Belichtung mit**  $\lambda_L = 355$  nm (N<sub>eff.</sub> = 1) wurde h<sub>ätz.(bel.)</sub> in Abhängigkeit von  $\varepsilon_L$  und t<sub>ätz.</sub> untersucht (vgl. Abb. 32).



Abb. 32:  $h_{ätz.(bel.)}$  in Abhängigkeit von  $\varepsilon_L$  und  $t_{ätz.}$  nach Belichtung mit  $\lambda_L = 355$  nm, Temperung und Ätzen

Aus Abb. 32 können folgende Aussagen entnommen werden:

- Im Energiedichtebereich 0,1 J/cm<sup>2</sup> <  $\epsilon_L$  < 1 J/cm<sup>2</sup> ist für 0,5 min  $\leq t_{atz.} \leq 4$  min  $h_{atz.(bel.)}$ signifikant kleiner als im Bereich 1 J/cm<sup>2</sup>  $\leq \epsilon_L \leq 20$  J/cm<sup>2</sup>. Signifikante Unterschiede der Ätztiefen  $h_{atz.(bel.)}$  in Abhängigkeit von  $t_{atz.}$  sind erst für  $\epsilon_L > 0,8$  J/cm<sup>2</sup> vorhanden.
- Für 1 J/cm<sup>2</sup> ≤ ε<sub>L</sub> ≤ 20 J/cm<sup>2</sup> wurde keine signifikante Abhängigkeit der Ätztiefe von ε<sub>L</sub> festgestellt. Die mittlere Ätzgeschwindigkeit beträgt in diesem Energiedichtebereich v<sub>ätz.(bel.)</sub> = 33 ± 1,9 μm/min. Das entspricht einem Ätzratenverhältnis von ca. 1:23.

Wie eingangs erwähnt, erfolgte der Ätzangriff auf kristallisierte Bereiche an Proben, die mit  $\lambda_L = 355 \text{ nm}$  und  $\varepsilon_L < 5 \text{ J/cm}^2$  belichtet wurden, auf isolierte Einzelstrukturen. Eine strukturbedingte Behinderung des Ätzmittelaustausches gegenüber flächig geätzten Probenbereichen (gilt für solche, die mit  $\varepsilon_L > 5 \text{ J/cm}^2$  belichtet wurden) ist die Folge und führt im Allgemeinen zu einer scheinbar niedrigeren Ätzgeschwindigkeit der Kristallphase in Einzelstrukturen. Aus Abb. 32 ist aber zu erkennen, dass signifikante Unterschiede von  $h_{\text{ätz.(bel.)}}$  in Abhängigkeit von  $\varepsilon_L$  nur im Bereich 0,1 J/cm<sup>2</sup> <  $\varepsilon_L < 1 \text{ J/cm}^2$  auftreten, d.h. es kann von einem vergleichbaren Einfluss des Ätzmittelaustausches in den geätzten Strukturen ausgegangen werden. Im Bereich 1 J/cm<sup>2</sup> <  $\varepsilon_L \leq 20 \text{ J/cm}^2$  sind sowohl Einzelstrukturen, als auch flächig kristallisierte Bereiche geätzt worden. Da  $h_{\text{ätz.(bel.)}}$  in diesem Bereich keine

signifikante Abhängigkeit von  $\varepsilon_L$  aufweist, ist davon auszugehen, dass ein prozessbedingter Einfluss auf die Ätzgeschwindigkeit im vorliegenden Fall vernachlässigt werden kann.

Aus diesem Grund kann abgeleitet werden, dass das Ätzratenverhältnis keine Funktion der Kristallgröße d<sub>K</sub> ist, solange sich die LMS-Kristalle untereinander berühren (vgl. Abb. 18). Trotz Abnahme von d<sub>K</sub> mit steigendem  $\varepsilon_L$  im Energiedichtebereich 1 J/cm<sup>2</sup> <  $\varepsilon_L$  < 20 J/cm<sup>2</sup> (vgl. Kap. 3.5.3), sind für konstante t<sub>ätz</sub> keine signifikanten Unterschiede von h<sub>ätz.(bel.)</sub> vorhanden. Erst für  $\varepsilon_L > 0.8$  J/cm<sup>2</sup> ist die Verzahnung der Kristalle ausreichend, um eine signifikante Änderung des Ätzratenverhältnisses im Vergleich zu  $\varepsilon_L < 0.8$  J/cm<sup>2</sup> zu erreichen, welches in guter Übereinstimmung mit dem aus der Belichtung mit  $\lambda_L = 308$  nm im Bereich 0,6 J/cm<sup>2</sup> ≤  $\varepsilon_L \le 6.5$  J/cm<sup>2</sup> steht. Unterschiede gibt es nur bezüglich der geometrischen Auflösung des Strukturrandes (vgl. Abb. 33). Aufgrund kleinerer Kristalle erscheint nach dem Ätzprozess der Rand der geätzten Strukturen infolge Belichtung mit  $\lambda_L = 308$  nm weniger "ausgefranst" als infolge Belichtung mit  $\lambda_L = 355$  nm.



Abb. 33: REM-Aufnahme von Sacklöchern nach Belichtung ( $\varepsilon_L = 1 \text{ J/cm}^2$ , N<sub>eff.</sub> = 1), Temperung und Ätzen; Links:  $\lambda_L = 308 \text{ nm}$ ; Rechts:  $\lambda_L = 355 \text{ nm}$ 

# 4 Herstellung von Gräben mittels XeCI-Excimerlaserstrahlung

#### 4.1 UV-Laser-Belichtung

Die Belichtung zur Herstellung von einfachen Grabenstrukturen erfolgte mittels gepulster XeCl-Excimerlaserstrahlung der Wellenlänge  $\lambda_L = 308$  nm /Bro2003/. Der Durchmesser des Laserstrahls auf der Probenoberfläche betrug d<sub>L</sub> = 260 µm. Um den Einfluss auf das Strukturierungsergebnis zu analysieren, wurden die Parameter Belichtungsenergiedichte  $\varepsilon_L$  im Bereich 0,6 J/cm  $\leq \varepsilon_L \leq 4$  J/cm<sup>2</sup> und Pulsanzahl N (vgl. Tab. 8) variiert. Da in einem schreibenden Belichtungsverfahren mit gepulster Laserstrahlung eine Linienstruktur nur über die geometrische Aneinanderreihung einzelner Pulse erreicht wird, wurde in Spurrichtung eine Überlappung der Einzelpulse von ü = 0,75 gewählt. Diese Überlappung ermöglichte eine weitgehend geradlinige Strukturkante der Gräben. Für die Variation der Pulszahl bedeutet dies allerdings, dass Pulszahlen N<sub>eff.</sub> < 4 nicht prozessierbar sind (vgl. Kap. 3.2).

Tab. 8: Übersicht zu verwendeter Pulszahlvariation für N<sub>eff.</sub>

| Ν | Üy   | N <sub>eff.</sub> |
|---|------|-------------------|
| 1 | 0,75 | 4                 |
| 2 | 0,75 | 8                 |
| 3 | 0,75 | 12                |
| 4 | 0,75 | 16                |

 $\epsilon_L$  und N wurden so gewählt, dass nach der Belichtung alle Proben transparent waren. Lichtmikroskopisch konnte keine Schädigung der Oberfläche festgestellt werden.

## 4.2 Temperung

Die belichteten Proben wurden mit der in Kap. 3.5.1 beschriebenen Methode zur partiellen Kristallisation gebracht. Um Aussagen über die geometrische Ausdehnung der partiellen Kristallisationen zu erzielen, wurden die Proben lichtmikroskopisch senkrecht zur Belichtungsoberseite (BOS), Belichtungsunterseite (BUS) und im Querschliff untersucht. In Abb. 34 sind die geometrischen Verhältnisse an einer kristallisierten geometrischen Struktur

(Loch) in fotostrukturierbarem Glas nach UV-Laser-Belichtung und Temperung im Querschnitt schematisch dargestellt.



# Abb. 34: Schematische Darstellung der geometrischen Verhältnisse an einer kristallisierten geometrischen Struktur in fotostrukturierbarem Glas nach UV-Laser-Belichtung und Temperung im Querschnitt

Bei der lichtmikroskopischen Untersuchung am Querschliff wurde für alle Versuche eine Kristallisationstiefe  $h_k = 717 \,\mu m$  festgestellt. Dies entspricht der Probendicke d der belichteten Proben. Senkrecht zur Oberfläche der BOS und BUS wurden die Strukturbreiten bestimmt. In Abb. 35 ist die Strukturbreite auf der Belichtungsoberseite b<sub>o</sub>(BOS) in Abhängigkeit von ɛL und von Neff. dargestellt. In Abb. 35 ist zu erkennen, dass mit steigender Energiedichte EL und steigender Pulszahl Neff. bei konstantem Laserstrahldurchmesser dL eine Vergrößerung von b<sub>0</sub>(BOS) verbunden ist, wobei sich die Energiedichteerhöhung stärker als die Pulszahlerhöhung auf die Vergrößerung von b<sub>o</sub>(BOS) auswirkt. Nur für die Belichtung mit  $\epsilon_L \le 1 \text{ J/cm}^2$  ist die Erhöhung von  $b_o(BOS)$  für  $N_{eff.} = 16$  gegenüber  $N_{eff.} = 4$  signifikant. Für  $\varepsilon_L < 1 \text{ J/cm}^2$  ist  $b_0(BOS)$  kleiner als der Laserstrahldurchmesser  $d_L$  in der Abbildungsebene. Die Erhöhung von b<sub>o</sub>(BOS) in diesem Energiedichtebereich kann deshalb auf die lokale Überschreitung der Schwellenenergiedichte  $\varepsilon_{S}$  im Strahlquerschnitt auf der Substratoberfläche zurückgeführt werden. Lichtmikroskopisch für wurde  $1 \text{ J/cm}^2 < \varepsilon_L \le 4 \text{ J/cm}^2$  (N<sub>eff</sub> = 4) eine Verschlechterung des Kontrastes im Übergangsgebiet Glas / kristallisierter Bereich festgestellt. Dies bedeutet, dass die Zunahme von bo(BOS) mit steigender Belichtungsenergiedichte und Pulszahl durch den Überbelichtungseffekt (vgl. Kap. 3.5.4.1) verursacht wird.



Abb. 35:  $b_0[BOS]$  in Abhängigkeit von  $\varepsilon_L$  und  $N_{eff.}$ ,  $\Delta b_0(BOS)$ :  $\pm 10 \ \mu m$ 

In Abb. 36 ist die Strukturbreite auf der Belichtungsunterseite  $b_0(BUS)$  in Abhängigkeit von der Energiedichte  $\epsilon_L$  und von der Pulszahl N<sub>eff.</sub> dargestellt.



Abb. 36: Breite der kristallisierten Struktur auf der Belichtungsunterseite  $b_0(BUS)$  in Abhängigkeit von  $\epsilon_L$  und  $N_{eff.}$ , Messgenauigkeit  $b_0(BUS)$ :  $\pm 10 \mu m$ 

In Abb. 36 ist zu erkennen, dass

- die Strukturbreiten auf der Belichtungsunterseite b<sub>o</sub>(BUS) generell kleiner sind als auf der Belichtungsoberseite (vgl. Abb. 35).
- im Bereich 0,6 J/cm<sup>2</sup> <  $\epsilon_L$  < 2 J/cm<sup>2</sup> b<sub>o</sub>(BUS) mit steigender Energiedichte und steigender Pulszahl zunimmt.
- die Erhöhung von  $b_o(BUS)$  auf der Substratoberfläche stärker von  $\epsilon_L$  als von  $N_{eff.}$ beeinflusst wird. Für  $\epsilon_L \ge 2 \text{ J/cm}^2$  kann bezüglich  $b_o(BUS)$  keine Abhängigkeit von  $\epsilon_L$  und N festgestellt werden.

Die gegenüber  $b_0(BOS)$  niedrigeren Werte für  $b_0(BUS)$  können auf eine Laserstrahlquerschnittsbezogene Intensitätsabnahme mit zunehmender Eindringtiefe in das Glas als Folge der Strahlungsabsorption zurückgeführt werden. Für  $\varepsilon_L < 1$  J/cm<sup>2</sup> wirkt sich diese Intensitätsabnahme stärker auf das lokale Leistungsdichteprofil eines Laserpulses aus als für höhere Energiedichten. Im Bereich 2 J/cm<sup>2</sup>  $< \varepsilon_L < 4$  J/cm<sup>2</sup> hat die Intensitätsabnahme auf die laterale Ausdehnung der fotochemischen Gefügemodifizierung keinen Einfluss mehr.

Der Strukturwinkel  $\gamma_{krist.}$  beeinflusst die geometrischen Abmaße geätzter Mikrostrukturen in fotostrukturierbarem Glas und kann nach (30) berechnet werden:

$$\gamma_{\text{krist.}} = \arctan\left(\frac{b_o(\text{BOS}) - b_o(\text{BUS})}{2d}\right)$$
(30)

In Tab. 9 sind die Strukturwinkel  $\gamma_{krist.}$  in Abhängigkeit von  $\varepsilon_L$  dargestellt. Da für  $\gamma_{krist.}$  keine Abhängigkeit von N<sub>eff.</sub> festgestellt wurde, erfolgt hier die Angabe als Mittelwert über variierte Pulszahlen N<sub>eff.</sub>

Tab. 9: Mittelwerte der Strukturwinkel  $\gamma_{krist.}$  in Abhängigkeit von  $\varepsilon_L$ 

| $\epsilon_L$ in J/cm <sup>2</sup> ] | γ <sub>krist.</sub> in ° |
|-------------------------------------|--------------------------|
| 0,6                                 | 0,4                      |
| 1,0                                 | 0,6                      |
| 2,0                                 | 0,5                      |
| 3,0                                 | 1,3                      |
| 4,0                                 | 1,8                      |

Im Bereich 0,6 J/cm<sup>2</sup>  $\leq \epsilon_L \leq 2$  J/cm<sup>2</sup> sind die Werte für  $\gamma_{krist.}$  nur wenig von  $\epsilon_L$  abhängig und um mehr als 50 % kleiner als für  $\epsilon_L > 2$  J/cm<sup>2</sup>. Dies ist auf die Vergrößerung von b<sub>o</sub>(BOS) mit steigendem  $\epsilon_L$  bei ansonsten konstantem b<sub>o</sub>(BUS) im gleichen Belichtungsenergiedichtebereich zurückzuführen.

# 4.3 Ätzen

Die belichteten und getemperten Proben wurden unter Verwendung der in Kap. 3.6.2 genannten Bedingungen insgesamt 15 min, ausgehend von der Belichtungsoberseite, einseitig geätzt. Infolge der größeren Löslichkeit von LMS gegenüber der nicht kristallisierten Glasmatrix entstanden aus den kristallisierten Bereichen Grabenstrukturen (vgl. Abb. 37):



Abb. 37: Geätzte Grabenstrukturen im Querschnitt nach Belichtung mit  $\lambda_L = 308$  nm ( $\epsilon_L = 0.6$  J/cm<sup>2</sup>, Variation N<sub>eff.</sub>), Temperung und Ätzen

In Abb. 38 sind die geometrischen Verhältnisse an geätzten Gräben im Querschnitt angegeben.



| $h_{\scriptscriptstyle{atz}}$ | Ätztiefe                                                                                                 |
|-------------------------------|----------------------------------------------------------------------------------------------------------|
| $b_{gi}$                      | Ist-Grabenbreite<br>auf der Belichtungsoberseite                                                         |
| $b_{gg}$                      | Grabenbreite im Strukturgrund                                                                            |
| $\gamma_{ m krist.}$          | Winkel der kristallisierten Struktur<br>bezüglich der lotrechten Einstrahlrichtung<br>der Laserstrahlung |
| $\gamma_{\text{ätz.}}$        | Ätzwinkel gegenüber der<br>kristallisierten Struktur                                                     |
| $\gamma_{\rm W}$              | Wandwinkel der geätzten Grabenstruktur                                                                   |
| d                             | Probendicke                                                                                              |
| b <sub>o</sub> (BOS)          | Strukturbreite auf der Oberfläche<br>der Belichtungsoberseite                                            |
| b <sub>o</sub> (BUS)          | Strukturbreite auf der Oberfläche<br>der Belichtungsunterseite                                           |

## Abb. 38: Schematische Darstellung der geometrische Verhältnisse an einer geätzten Grabenstruktur im Querschnitt

Eine wichtige Kenngröße des Mikrostrukturierungsprozesses von fotostrukturierbarem Glas ist der Wandwinkel einer geätzten Struktur  $\gamma_W$  (vgl. Abb. 38).  $\gamma_W$  setzt sich additiv aus dem Strukturwinkel  $\gamma_{krist.}$  und dem Ätzwinkel  $\gamma_{ätz.}$  zusammen.  $\gamma_{ätz.}$  entsteht, weil auch die nichtkristallisierten Glasbereiche etwas in Flusssäure löslich sind (vgl. Kap. 3.6.3) und kann nach (31) berechnet werden.

$$\gamma_{atz.} = \arctan\left(\frac{b_{gi} - b_{gg}}{2h_{atz.}}\right) - \arctan\left(\frac{b_o(BOS) - b_o(BUS)}{2d}\right)$$
(31)

Die geätzten Grabenstrukturen wurden lichtmikroskopisch untersucht und die in Abb. 38 angegebenen Strukturmaße  $h_{atz.}$ ,  $b_{gi}$  und  $b_{gg}$  in Abhängigkeit von der Energiedichte  $\varepsilon_L$  und  $N_{eff.}$  bestimmt. Aus den Messwerten wurde  $\gamma_{atz.}$  entsprechend (31) berechnet. Im Bereich  $0,6 \text{ J/cm}^2 < \varepsilon_L < 1 \text{ J/cm}^2$  ist  $\gamma_{atz.} = 5^\circ \pm 1^\circ$ . Das mittlere Ätzratenverhältnis beträgt 1:18. Eine Abhängigkeit von der Pulszahl konnte nicht festgestellt werden. Für den Bereich  $1 \text{ J/cm}^2 < \varepsilon_L < 4 \text{ J/cm}^2$  war die Ermittlung von  $\gamma_{atz.}$  nicht möglich. Die Ist-Grabenbreite auf der Belichtungsoberseite  $b_{gi}$  war wegen schlechter Kantenschärfe (vgl. Kap. 3.5.4.1) der Strukturen starken Schwankungen unterworfen. Zur Veranschaulichung sind in Abb. 39 und Abb. 40 Grabenstrukturen mit und ohne Streueffekt der Strahlung durch Überbelichtung dargestellt.



Abb. 39: Geätzte Grabenstrukturen (links) und vergrößerter Ausschnitt aus dem Bereich einer Strukturkante (rechts), nach Belichtung ( $\lambda_L = 308 \text{ nm}$ ;  $\epsilon_L = 0,6 \text{ J/cm}^2$ ;  $N_{eff.} = 12$ ), Temperung und Ätzen



Abb. 40: Geätzte Grabenstruktur (links) und vergrößerter Ausschnitt aus dem Bereich der Strukturkante (rechts), nach Belichtung ( $\lambda_L = 308 \text{ nm}$ ;  $\epsilon_L = 3,0 \text{ J/cm}^2$ ; N<sub>eff.</sub> = 12), Temperung und Ätzen

## 5 Zusammenfassung

Die Belichtung des fotostrukturierbaren Glases FS21 mit intensiver UV-Laserstrahlung zur geometrischen Mikrostrukturierung nach dem Fotoformverfahren erfolgte mit dem Ziel, Zusammenhänge in der Wechselwirkung Glas / Laserstrahlung auf Basis werkstoffkundlicher Untersuchungen zu klären.

Ein direkt-schreibendes Verfahren mittels UV-Laserstrahlung bietet neben der hohen Flexibilität die Möglichkeit, durch Ausnutzung von Schwellwerten der Belichtungsenergiedichte gezielt Volumeneffekte, wie z.B. definierte Tiefenstrukturierung oder 3Dhinterschneidungsfreie Strukturen, zu erzeugen.

Den im Rahmen dieser Arbeit durchgeführten Untersuchungen lag folgender Ansatz zu Grunde: Die Belichtung zur fotochemischen Gefügemodifizierung des Glases erfolgt mit UV-Laserstrahlungen der Wellenlängen 248 nm, 308 nm und 355 nm. Während eines anschließenden einstufigen Temperprogrammes bilden sich heterogene Keime in Form von Silberpartikeln, auf denen die Kristallphase Lithiummetasilikat LMS aufwächst. In einem 3. Schritt, dem Ätzprozess, werden die kristallisierten Glasbereiche in verdünnter Flusssäure herausgelöst. Im Ergebnis dessen entstehen Mikrostrukturen im Glas in Form von Durchbrüchen und/oder Vertiefungen.

Zunächst erfolgte die Analyse des optischen Ausgangszustandes unbelichteter Glasproben. Die Lage der Absorptionskante im UV-Bereich und die Absorptionsbande dreiwertig positiv geladener Ce-Ionen im Glas bewirken, dass unterschiedliche Absorptionsmechanismen an der fotochemischen Gefügemodifizierung beteiligt sind. Es wird grundsätzlich zwischen einer Ein-Photon-Absorption und einer Zwei-Photonen-Absorption unterschieden, wobei herausgestellt wird, dass durch die Wechselwirkung der Laserstrahlungen mit verschiedenen Strukturgruppen des Glases immer beide Absorptionsmechanismen mit unterschiedlicher Dominanz in Abhängigkeit von den eingesetzten Wellenlängen auftreten.

Die Wechselwirkung zwischen Laserstrahlung der Wellenlänge  $\lambda_L = 248$  nm und FS21 ist im wesentlichen dadurch gekennzeichnet, dass aufgrund der hohen Absorption durch das Glas in der Tiefe begrenzte fotochemische Gefügemodifizierungen auftreten und die Absorption durch Ce<sup>3+</sup>-Ionen mittels Ein-Photon-Absorption erfolgt. Besonders effektiv ist die fotochemische Gefügemodifizierung bei der Belichtung mit  $\lambda_L = 308$  nm. Ce<sup>3+</sup>-Ionen sind für diese Belichtung durch Ein-Photon-Absorption der dominierende Absorptionskanal. Fotochemische Gefügemodifizierungen sind mit einer Eindringtiefe von > 700 µm möglich. Mit  $\lambda_L = 355$  nm wurde eine Laserstrahlung eingesetzt, die im Bereich niedriger Absorption

des Glases liegt. Absorptionsprozesse im Glas sind deshalb grundsätzlich an die Absorption von mindestens zwei Photonen bei im Vergleich zu  $\lambda_L = 248$  nm und 308 nm höheren Belichtungsenergiedichten gebunden.

Die fotochemische Gefügemodifizierung ist an Schwellwerte der Belichtungsenergiedichte gebunden. Über eine Einzelpulsbelichtung wurden die minimalen Belichtungsenergiedichten  $\varepsilon_S$  für die Belichtung mit  $\lambda_L = 248$  nm und  $\lambda_L = 355$  nm bestimmt und für  $\lambda_L = 308$  nm eingegrenzt (vgl. Kap. 3.3.3). Der obere Grenzwert der Belichtungsenergiedichte ist durch die Herbeiführung einer Oberflächenschädigung in Form von Ausbrüchen oder Aufschmelzungen gekennzeichnet. Hier wurden für alle eingesetzten Laserstrahlungen Schwellenenergiedichten  $\varepsilon_{Abt.}$  als Funktion der Pulszahl N ermittelt. Der Zusammenhang zwischen  $\varepsilon_{Abt.}$  und N ist nichtlinear, was in der Diskussion (vgl. Kap. 3.3.2) auf nichtlineare optische Effekte, wie der Bildung von Farbzentren und damit verbundene Erhöhung von Absorptionskoeffizienten, zurückgeführt werden konnte.

Unterhalb der Abtragsgrenze wurden Belichtungen mit Variation der Belichtungsparameter  $\lambda_L$ ,  $\varepsilon_L$  und N<sub>eff.</sub> mit den für den Belichtungsprozess notwendigen Belichtungsenergiedichten durchgeführt. Wichtigstes Werkzeug der Analyse struktureller Veränderungen des Glases infolge UV-Laser-Belichtung war die spektralphotometrische Untersuchung laserbestrahlter Proben (vgl. Kap. 3.4). Es erwies sich als unzureichend, die fotochemischen Gefügemodifizierungen ausschließlich Änderungen des Transmissionsgrades aus laserbestrahlter Proben zu interpretieren, da, wie in vorangegangenen Kapiteln dargestellt, die Methode der rasterförmigen Belichtung und die optischen Eindringtiefen der Laserstrahlungen die Messwerte von T beeinflussen. Es hat sich als günstig erwiesen, die gemessenen Transmissionskurven in eine Absorptionserhöhung bezüglich unbelichteten Glases als Differenz optischer Dichten umzurechnen. In Auswertung einer Literaturrecherche konnten die in Kap. 3.4.3.1 und 3.4.3.2 diskutierten Absorptionserhöhungen im Zusammenhang mit der Bildung von (Ce<sup>3+</sup>)<sup>+</sup>-Zentren und der Bildung weiterer Farbzentren, wobei Defektzustände an Trennstellensauersoffionen äußerst wahrscheinlich sind, gebracht werden. Die Entstehung der  $(Ce^{3+})^+$ -Zentren variiert mit  $\lambda_L$  und  $\varepsilon_L$ . Für die Belichtung mit  $\lambda_{\rm L} = 308$  nm wurde die größte Umwandlungsrate von Ce<sup>3+</sup> in (Ce<sup>3+</sup>)<sup>+</sup> ermittelt. Damit verbunden ist die stärkste Erhöhung des Absorptionskoeffizienten für nachfolgende Laserpulse dieser Laserstrahlung. Dieses Ergebnis bestätigt die Annahme einer resonanten Wechselwirkung von  $\lambda_L = 308$  nm mit den Ce<sup>3+</sup>-Ionen des Glases. Für  $\lambda_L = 248$  nm wird die Bildung von Absorptionszentren im kurzwelligen Randbereich der  $(Ce^{3+})^+$ -Bande als mögliche Ursache für die gegenüber  $\lambda_{\rm L} = 308$  nm geringere Umwandlungsrate von Ce<sup>3+</sup> in  $(Ce^{3^+})^+$  herausgearbeitet und als maßgebliche Ursache für die Erhöhung des Absorptionskoeffizienten für aufeinanderfolgende Pulse genannt. Die Absorption von  $\lambda_L = 355$  nm durch Zwei-Photonen-Absorption erfolgt durch  $Ce^{3^+}$ -Ionen im Glas. Wechselwirkungen dieser Laserstrahlung mit Trennstellensauerstoffionen des Glases sind aufgrund der geringeren Photonenenergie weniger wahrscheinlich. Die Entstehung von Absorptionszentren mit  $\lambda < 355$  nm beeinflusst den Absorptionskoeffizienten für aufeinanderfolgende Pulse dieser Laserstrahlung nur unwesentlich.

Für die Belichtung mit  $\lambda_L = 308$  nm konnte mittels einer TEM- und HREM-Analyse die Absorptionserhöhung im Wellenlängenbereich 340 nm  $\leq \lambda \leq 450$  nm teilweise auf die strahlungsinduzierte Bildung von Silbernanopartikeln der mittleren Größe von 6 nm zurückgeführt werden.

Basierend auf spektralphotometrischen Untersuchungen laserbestrahlter Glasproben wurden in den folgenden Kapiteln die Ergebnisse zur thermisch induzierten Kristallisation und zum Ätzprozess kristallisierter Probenbereiche interpretiert.

Die wesentlichen Ergebnisse aus den Untersuchungen zur Kristallisation in Abhängigkeit von den Belichtungsparametern  $\lambda_L$  und  $\varepsilon_L$  bei Einzelpulsbelichtung sind:

- Die Größe einzelner LMS-Kristalle variiert in Abhängigkeit von  $\lambda_L$ . Für die Belichtung mit  $\lambda_L = 308$  nm wird eine minimale Kristallgröße von ca. 400 nm ermittelt. Bei der Belichtung mit  $\lambda_L = 355$  nm ergibt sich eine Abhängigkeit der Kristallgröße von  $\varepsilon_L$  (vgl. Kap. 3.5.3).
- Die laterale Ausdehnung kristallisierter Probenbereiche wird maßgeblich durch Unterschiede im lokalen Leistungsdichteprofil zwischen der eingesetzten Excimerlaserstrahlung und der Festkörperlaserstrahlung beeinflusst. Für Belichtungen mit Festkörperlaserstrahlung ist eine Zunahme des Durchmessers kristallisierter Bereiche d<sub>Str.</sub> mit steigendem ε<sub>L</sub> verbunden. d<sub>Str.</sub> kann Werte kleiner als der Laserstrahldurchmesser in der Abbildungsebene annehmen, was prinzipiell eine geometrische Mikrostrukturierung mit Ausdehnungen, die kleiner als der Fokusdurchmesser der Laserstrahlung sind, ermöglicht (vgl. Kap. 3.5.4.1).
- Entscheidenden Einfluss auf die geometrische Auflösung von Mikrostrukturen im Glas hat die Größe einzelner Kristalle im Randbereich der Strukturen (optisch auch als Kontrast im Übergangsbereich Glas / kristallisierter Bereich wirksam). Das Gaussförmige Strahlprofil der Festkörperlaserstrahlung wirkt sich gegenüber der hohen

Flankensteilheit der eingesetzten Excimerlaserstrahlung prinzipiell kontrastmindernd aus. Bei der Belichtung mit Excimerlaserstrahlung wurde ein Einfluss von  $\varepsilon_L$  und N herausgearbeitet. Für kontrastreiche Abbildungen geometrischer Strukturen sind niedrige Belichtungsenergiedichten bzw. Pulszahlen vorzuziehen (vgl. Kap. 3.5.4.1).

• Die Kristallisationstiefe  $h_k$  laserbelichteter Probenbereiche steht im Zusammenhang mit der optischen Eindringtiefe der Strahlung. Lediglich für die Belichtung mit  $\lambda_L = 248$  nm war  $h_k$  bei den verwendeten Probendicken begrenzt und variierte mit der Belichtungsenergiedichte  $\varepsilon_L$ . Für eine Einzelpulsbelichtung mit  $\lambda_L = 248$  nm beträgt  $h_k$ maximal 330 µm (vgl. Kap. 3.5.4.2). Eine definierte Tiefenstrukturierung ist mittels  $\lambda_L = 248$  nm möglich.

Die Untersuchung des Ätzprozesses laserbelichteter und kristallisierter Probenbereiche konzentrierte sich auf die Bestimmung von Ätzratenverhältnissen in Abhängigkeit von den Belichtungsparametern  $\lambda_L$  und  $\epsilon_L$  (vgl. Kap. 3.6). Das wesentliche Ergebnis ist, dass die erzielten mittleren Ätzgeschwindigkeiten in den kristallisierten Bereichen vergleichbar sind mit denen, die bei Belichtung mittels Maskaligner erreicht werden. Für die Belichtung mit  $\lambda_L = 308 \text{ nm}$  und  $\lambda_L = 355 \text{ nm}$  konnte eine Abhängigkeit der Ätzgeschwindigkeit herausgearbeitet werden. Die kristallisierter Bereiche von **E**L Abnahme der Ätzgeschwindigkeit für  $\varepsilon_L > 8 \text{ J/cm}^2$  bei der Belichtung mit  $\lambda_L = 308 \text{ nm}$  wird auf laserinduzierte strukturelle Veränderungen der die Kristalle umgebenden Glasmatrix zurückgeführt. Bei der Belichtung mit  $\lambda_L = 355$  nm und  $\epsilon_L > 0.8$  J/cm<sup>2</sup> wird ein mittleres Ätzratenverhältnis von 1:23 erreicht. Es besteht kein Zusammenhang zwischen der Kristallgröße und der Ätzgeschwindigkeit, solange sich die Kristalle berühren. Prinzipiell kann aus den Untersuchungen abgeleitet werden, dass das Ätzratenverhältnis vom Grad der Vernetzung der Kristalle abhängt.

Im abschließenden Kapitel 4 wurden für die Belichtung mit  $\lambda_L = 308$  nm Untersuchungen zur geometrischen Mikrostrukturierung durchgeführt. Ziel war die Erzeugung von Gräben für mikrofluidische Anwendungen. Es stellte sich heraus, dass infolge eines lokalen Intensitätsprofiles der Laserstrahlung die kristallisierten Bereiche einen Strukturwinkel  $\gamma_{krist.}$  aufweisen. Dieser Effekt kann beispielsweise für eine 3D-hinterschneidungsfreie Strukturierung bei entsprechender Formung des Strahlprofils ausgenutzt werden. Für eine geometrische Strukturierung mit hoher Kantenschärfe der Strukturränder sind Belichtungsenergiedichten  $\epsilon_L \leq 1$  J/cm<sup>2</sup> bei geringen Pulszahlen (N<sub>eff.</sub>  $\leq$  16) notwendig.

### 6 Ausblick

Gegenüber der Maskaligner-Belichtung steht mit fokussierter UV-Laserstrahlung für die Belichtung fotostrukturierbarer Gläser ein flexibles Werkzeug zur Herstellung von 3Dhinterschneidungsfreien Strukturen zur Verfügung. Um dieses Potential z.B. für die Herstellung vergrabener Strukturen oder von Hinterschneidungen bei definierter Tiefenstrukturierung nutzen zu können, ist es erforderlich, in weiteren Untersuchungen die unteren Schwellenenergiedichten  $\varepsilon_8$  für die fotochemische Gefügemodifizierung als Funktion der Pulszahl zu bestimmen. Dies erfordert eine extreme Abschwächung der UV-Laserstrahlung in Energiedichtebereiche  $\varepsilon < 0,1$  J/cm<sup>2</sup> bei gleichbleibender Strahlqualität.

Im Rahmen dieser Arbeit wurden Parameterintervalle bezüglich der Wellenlänge der eingesetzten Laserstrahlungen  $\lambda_L$ , der Belichtungsenergiedichte  $\epsilon_L$  und der Pulszahl N als N<sub>eff.</sub> für die fotochemische Gefügemodifizierung angegeben. Die Wahl dieser Parameter beeinflusst u.a. die Strahlungsabsorption im UV/VIS-Bereich des elektromagnetischen Spektrums laserbelichteter Proben, die Genauigkeit der geometrischen Auflösung von Mikrostrukturen im Glas, die Qualität von Oberflächen in geätzten Strukturen, das Ätzratenverhältnis und die Strukturtiefe in einem Substrat. Hieraus ergeben sich eine Vielzahl von Möglichkeiten zur Parameteroptimierung für Anwendungen auf dem Gebiet der Mikrooptik, Mikrofluidik, Mikroreaktionstechnik sowie der Biosensorik.

In vielen Anwendungen (z.B. bei der Herstellung von mechanischen Führungen oder optischen Wellenleitern) sind parallele Seitenwände in Strukturen erforderlich. Mittels geeigneter Strahlformung können im Glasvolumen Bereiche derart modifiziert werden, dass man über einen einseitigen Ätzprozess, ausgehend von der Belichtungsunterseite, einem Wandwinkel der geätzten Struktur entgegenwirken kann.

Nicht zuletzt bietet die Möglichkeit mittels XeCl-Excimerlaserstrahlung Ag-Nanopartikel im Glasvolumen zu erzeugen, Anlass zur weiteren Erforschung des Phänomens. Die Anwendungen liegen hier auf dem Gebiet der farbigen Innenglasmarkierung.

# Anhang

# Anhang 1: Glaszusammensetzung, Schmelzregime und ausgewählte Eigenschaften von FS21

| Grundglas-Bestandteile         | Anteile in Gew%                |                      |  |
|--------------------------------|--------------------------------|----------------------|--|
|                                | FS21 dot.                      | FS21 undot.          |  |
|                                | (chemische Analyse des Glases, | (theoretische        |  |
|                                | Quelle: /Prü99/)               | Zusammensetzung)     |  |
| SiO <sub>2</sub>               | 73,1                           | 74,29                |  |
| Li <sub>2</sub> O              | 12,7<br>6,87<br>2,7            | 11,61<br>7,2<br>2,74 |  |
| $Al_2O_3$                      |                                |                      |  |
| Na <sub>2</sub> O              |                                |                      |  |
| K <sub>2</sub> O               | 3,9                            | 4,16                 |  |
| Dotanden                       |                                |                      |  |
| Ag <sub>2</sub> O              | 0,16                           | -                    |  |
| Sb <sub>2</sub> O <sub>3</sub> | 0,4                            | -                    |  |
| SnO                            | 0,09 -                         |                      |  |
| CeO <sub>2</sub>               | < 0,03                         | < 0,03 -             |  |
| Summe                          | 99,95                          | 100                  |  |

Glaszusammensetzung

Für beide Gläser ist das Gemenge des Grundglases gleich. Die Dotierung bei FS21 dot. erfolgt additiv.

#### Schmelzregime:

- Einwägen der Rohstoffe für 750g geschmolzenes Glas
- Homogenisieren des Gemenges auf Rollenbank, 1 Stunde
- Einsetzen von 1/3 des Gemenges in einen Super-Kanthal-Ofen der Fa. Nabertherm bei 1500°C unter Verwendung eines Platin-Schmelztiegels (1Liter)
- 2-maliges Nachlegen im Abstand von 15 min (je 1/3 der Gesamtmenge)
- 1 Stunde Schmelze bei 1500°C
- 3 Stunden Schmelze bei 1500°C und gleichzeitiges Rühren mit 15 min<sup>-1</sup>
- 15 min ohne Rührer abstehen
- Ausgießen der Schmelze in vorgewärmte Graugußform mit 75 mm Durchmesser

• Abtempern des Glaszylinders in einem Laborkammerofen der Fa. Nabertherm, beginnend bei 530°C, natürliche Ofenabkühlung

## Eigenschaften FS21 /Har98/:

| • | thermischer Ausdehnungskoeffizient $\alpha_{20-400 ^\circ \text{C}}$                | $10,6 \pm 0,$            | 13. 10-6 K -1               |
|---|-------------------------------------------------------------------------------------|--------------------------|-----------------------------|
| • | Transformationstemperatur T <sub>g</sub>                                            | 450 °C                   |                             |
| • | Temperatur T <sub><math>\kappa</math>-100</sub> , bei der $\rho_e = 10^8 \Omega cm$ | 134 °C                   |                             |
| • | spezifischer elektrischer Widerstand $\rho_e$                                       | 20 °C                    | $5,63 \cdot 10^9 \Omega cm$ |
|   |                                                                                     | 200 °C                   | $4,74 \cdot 10^6 \Omega cm$ |
| • | Brechzahl n (weißes Licht)                                                          | 1,522                    |                             |
| • | Dichte $\rho_m$                                                                     | 2,3758 g/cm <sup>3</sup> |                             |
| • | Wärmeleitfähigkeit K                                                                | 25 °C                    | 1,19 W/mK                   |
|   |                                                                                     | 150 °C                   | 1,5 W/mK                    |
|   |                                                                                     | 300 °C                   | 2,06 W/mK                   |

# Anhang 2: Normierung der Änderung des Absorptionskoeffizienten Δα bezüglich des vom Laserstrahl modifizierten Glasvolumens

Im Rahmen der Arbeit gilt für  $\Delta \alpha_{norm.}$  (32).

$$\Delta \alpha_{\text{norm}} = \Delta \alpha \cdot \mathbf{F} \tag{32}$$

Der Korrekturfaktor F resultiert aus der unterschiedlichen Absorption der eingesetzten UV-Laserstrahlung im fotosensiblen Glas. In vertikaler Richtung ist die Eindringtiefe der Laserstrahlung mit Wellenlängen  $\lambda_L < 308$  nm kleiner als die verwendete Probendicke (700 µm). Ein Maß für diese Begrenzung ist die erreichte Kristallisationstiefe h<sub>k</sub> in Abhängigkeit von  $\lambda_L$ ,  $\varepsilon_L$  und N<sub>eff.</sub>. Für die Belichtungen mit  $\lambda_L$ = 248 nm (Pulszahl N<sub>eff</sub> = 1) beträgt die maximale Kristallisationstiefe (nach Belichtung und Temperung) ca. 330 µm. In lateraler Ausdehnung wurden unterschiedliche Durchmesser der kristallisierten Strukturen für Excimerlaser- und (3 $\omega$ ) Nd:YAG-Laser-Belichtung ermittelt. Dies hatte zur Folge, dass der Transmissionsmessung nach UV-Laser-Belichtung unterschiedliche Volumina, in denen infolge der Belichtung eine fotochemische Reaktion stattfand, zugrunde lagen. Die Messung der spektralen Transmission T erfolgte gerätebedingt integral über modifizierte und nicht modifizierte Bereiche. Um diesen Einfluss auf das Messergebnis zu eliminieren, wurde ein geometrischer Korrekturfaktor entsprechend (33) definiert.

$$F = \frac{V_{mod}}{V_{Me\beta}}$$
(33)

Das Glasvolumen, das bei der Transmissionsmessung im Spektralphotometer vom Messstrahl durchdrungen wird, ist gegeben durch  $V_{MeB.} = h \cdot b \cdot d$ . Die lateralen Abmessungen des Messstrahls auf der Oberfläche der Probe sind bekannt und betragen Höhe h =16 mm und Breite b =2 mm. d ist die gemessene Probendicke in mm.  $V_{mod}$  ist das Glasvolumen, das infolge der UV-Laser-Belichtung fotochemisch modifiziert wurde. Da fotosensibles Glas nach der UV-Belichtung transparent erscheint, man also nach der Belichtung das Volumen visuell nicht erkennen kann, in dem fotochemische Reaktionen stattgefunden haben, wurden für die Bestimmung von V<sub>mod</sub> folgende Annahmen getroffen:

- Die fotochemische Modifizierung des Glases ist in den belichteten Bereichen gleichmäßig. Die Intensitätsabnahme der UV-Laserstrahlung gemäß des Lambert-Beerschen-Gesetzes in der Tiefe wird vernachlässigt.
- Das Gesamtvolumen des fotochemisch modifizierten Glasgebietes ergibt sich aus dem mit N<sub>eff.</sub> = 1 belichteten und kristallisierten Flächenanteil in der Querschnittsfläche des Messstrahls A<sub>(N<sub>eff.</sub>=1)</sub> und der Kristallisationstiefe h<sub>k</sub>. V<sub>mod</sub> wird definiert (34).

$$\mathbf{V}_{\mathrm{mod}} = \mathbf{A}_{(\mathbf{N}_{\mathrm{eff.}}=1)} \cdot \mathbf{h}_{\mathrm{k}}$$
(34)

# Anhang 3: Berechnung von d<sub>K,min</sub> bei vollständigem Umsatz von im Glas FS21 enthaltenem Silber für die Keimbildung

- Silberionen werden im Glasnetzwerk als einwertig, positiv geladene Netzwerkwandlerkationen eingebaut und besitzen bei erhöhter Temperatur eine erhöhte Beweglichkeit, sodass Diffusion durch das Netzwerk möglich ist.
- Silberkeime bestehen ausschließlich aus Silberatomen.
- Die Silberkeime und deren einzelne Atome besitzen annähernd die geometrische Form einer Kugel. Die Anordnung der Silberatome in der kristallinen Struktur des Keims entspricht der hexagonal dichtesten Kugelpackung.
- Alle im Glas enthaltenden Silberatome tragen zur Keimbildung bei.
- Die Größe der Silberkeime ist konstant.
- Die Silberkeime im Glas sind der Einfachheit halber in Form eines dreidimensionalen Rasters angeordnet. Die Verteilung ist gleichmäßig, mit konstantem Abstand der Keime untereinander.
- Ausgehend von der Oberfläche der Silberkeime ist ein gleichmäßiges Wachstum der Kristalle in alle Wachstumsrichtungen vorhanden. Der Keim befindet sich im Zentrum des Kristalls.
- Die minimale Kristallgröße bei maximaler Keimzahl ist erreicht, wenn sich zwei benachbarte Kristalle berühren. Damit entspricht d<sub>K,min</sub> dem Abstand der Keime. Diese Annahme gilt nur, wenn alles Material kristallisieren könnte.

Zunächst erfolgt die **Berechnung der Anzahl der Silberatome n**<sub>Ag</sub>, die in einer 750 g Glasschmelze (Menge entspricht einer Charge, die im Labormaßstab üblicherweise geschmolzen wird) enthalten ist. Silber wird über den Rohstoff AgNO<sub>3</sub> in das Glas eingebracht und als Ag<sub>2</sub>O in das Glasnetzwerk eingebaut. Laut chemischer Analyse beträgt der tatsächliche Anteil an Ag<sub>2</sub>O im Glas 0,16 Gew.%. Dies entspricht einer Menge von 1,2 g Ag<sub>2</sub>O und 0,01036 mol Ag im Glas. Mit der Avogadroschen Konstante (N<sub>A</sub> = 6,02204 · 10<sup>23</sup> mol<sup>-1</sup>) kann die Anzahl der Silberatome in der FS21-Charge zu  $6,24 \cdot 10^{21}$  Silberatome berechnet werden.

Ausgehend vom kugelförmigen Volumen der Keime  $V_{Keim}$  ergibt sich die Anzahl der Silberatome pro Keim  $n_{Ag(Keim)}$  aus dem Verhältnis des Keimvolumens zum Volumen der

Elementarzelle eines Silbergitters  $V_{EZ(Ag)}$  mit der Gitterkonstanten  $a_{Ag} = 408,626$  pm /JCP2000/ nach (35)

$$n_{Ag(Keim)} = \frac{V_{Keim}}{V_{EZ(Ag)}} = \frac{\frac{4}{3}\pi \cdot r_{Keim}^{3}}{a_{Ag}^{3}}$$
(35)

Für eine Keimgröße von 7 nm<sup>3)</sup> (gemeint ist der Durchmesser eines kugelförmigen Keims) ist  $n_{Ag(Keim)} \approx 2632$ .

Die Anzahl der Keime n<sub>Keim</sub> in 750g Glas kann nach (36) berechnet werden

$$n_{Keim} = \frac{n_{Ag}}{(n_{Ag} / Keim)}$$
(36)

und beträgt  $n_{\text{Keim}} \approx 2,371 \cdot 10^{18}$ .

**Die Ermittlung** des Keimabstandes x und damit **der minimalen Kristallgröße**  $d_{K,min}$  folgt aus der Aufteilung des Glasvolumens V<sub>Glas</sub> in einzelne Lithiummetasilikatkristallwürfel der Größe d<sup>3</sup>, in deren Zentrum sich der Keim befindet. Es gilt (37).

$$d_{K,\min} = \sqrt[3]{\frac{V_{Glas}}{n_{Keim}}} = \sqrt[3]{\frac{m_{Glas}}{\zeta_{Glas} \cdot n_{Keim}}}$$
(37)

Mit  $m_{Glas} = 750 \text{ g}$ , der Dichte des Glases  $\zeta_{Glas} = 2,38 \cdot 10^6 \text{ g} \cdot \text{m}^{-3}$  und der o.g. Keimanzahl  $n_{Keim}$  ergibt sich eine minimale Kristallgröße  $d_{K,min} \approx 51 \text{ nm}$ .

<sup>&</sup>lt;sup>3)</sup> Die Festlegung der Keimgröße auf 7 nm erfolgte auf Basis von Untersuchungen zur Keimbildung und Kristallisation in FS21 in /Mro2004/. Es wurde festgestellt, dass die Kristallisation von LMS in einem einstufigen Temperprozess auf Silberkeimen dieser Größe stattfindet.
## Abbildungsverzeichnis

| Abb. 1:  | Prozess der Fotostrukturierung mittels direkt-schreibender Belichtung                                                                                                                                                                                                          | 4  |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Abb. 2:  | Spektraler Transmissionsgrad T für FS21 dotiert und undotiert                                                                                                                                                                                                                  | 18 |
| Abb. 3:  | Leistungsdichteverteilung des LPX 325 i CC Nova Tube <sup>®</sup> -Rohstrahls als 3D-Plot                                                                                                                                                                                      | 23 |
| Abb. 4:  | Schematische Darstellung des Bearbeitungssystems zur Belichtung mittels<br>Excimerlaserstrahlung                                                                                                                                                                               | 24 |
| Abb. 5:  | Schematische Darstellung der Bearbeitungsstation zur Belichtung mittels (3ω)Nd:YAG:Laserstrahlung                                                                                                                                                                              | 25 |
| Abb. 6:  | Lokale Leistungsdichteverteilung der Excimerlaserstrahlung im Vergleich<br>zu einer Gauss-förmigen Leistungsdichteverteilung gleicher Halbwertsbreite                                                                                                                          | 27 |
| Abb. 7:  | Schematische Darstellung überlappender Laserpulse auf der Substratoberfläche                                                                                                                                                                                                   | 29 |
| Abb. 8:  | Schwellenenergiedichten $\varepsilon_{Abt.}$ in Abhängigkeit von der Pulszahl N für<br>Laserstrahlungen der Wellenlängen $\lambda_L = 248$ nm, 308 nm und 355 nm                                                                                                               | 32 |
| Abb. 9:  | Spektraler Transmissionsgrad T (d = 1 mm) von FS21-unbelichtet und FS21-<br>belichtet mit $\lambda_L$ = 248, 308 bzw. 355 nm; $\epsilon_L$ = 2 J/cm <sup>2</sup> ; N <sub>eff.</sub> = 1                                                                                       | 35 |
| Abb. 10: | Differenz der optischen Dichten ( $\Delta o.D. = o.D{bel.} - o.D{unbel.}$ ) in Abhängigkeit von $\lambda$ und $\epsilon_L$ für $N_{eff.} = 1$ : a) $\lambda_L = 248$ nm, b) $\lambda_L = 308$ nm, c) $\lambda_L = 355$ nm, d) Vergleich für $\epsilon_L = 5$ J/cm <sup>2</sup> | 39 |
| Abb. 11: | Erhöhung der Absorption im Absorptionsmaximum von $(Ce^{3+})^+$ bei $\lambda = 270$ nm<br>$\Delta o.D_{norm.}$ in Abhängigkeit von $\varepsilon_L$ und $\lambda_L$                                                                                                             | 42 |
| Abb. 12: | Erhöhung des Absorptionskoeffizienten $\Delta \alpha_{norm.}$ für die eingesetzten Laserstrahlungen in Abhängigkeit von der $\epsilon_L$ und $\lambda_L$                                                                                                                       | 43 |
| Abb. 13: | TEM-Aufnahme einer mit XeCl-Excimerlaserstrahlung bestrahlten Probe<br>( $\lambda_L = 308 \text{ nm}, \epsilon_L = 13,6 \text{ J/cm}^2, N_{eff.} = 1$ )                                                                                                                        | 48 |
| Abb. 14: | Ergebnis der Bestimmung der Netzebenenabstände anhand von 571 Partikel                                                                                                                                                                                                         | 49 |
| Abb. 15: | HREM Aufnahme eines Silberpartikels in fotostrukturierbarem Glas FS21 nach Belichtung mit $\lambda_L = 308$ nm ( $\epsilon_L = 13,6$ J/cm <sup>2</sup> , N <sub>eff.</sub> = 1)                                                                                                | 50 |
| Abb. 16: | Röntgendiffraktogramm für FS21; belichtet mit $\lambda_L = 308$ nm, $\epsilon_L = 5$ J/cm <sup>2</sup> , $N_{eff} = 1$ und getempert. Die Balken kennzeichnen Lage und Intensität der erwarteten Beugungsreflexe der LMS-Kristalle.                                            | 53 |
| Abb. 17: | Links: REM-Aufnahme des Abdrucks eines LMS-Skelettkristalls in<br>fotosensiblem FS21, Rechts: Vereinfachte Darstellung der geometrischen<br>Form eines LMS-Skelettkristalls                                                                                                    | 54 |
| Abb. 18: | Gefügestruktur nach Belichtung mit $\varepsilon_L = 5 \text{ J/cm}^2$ und Temperung in<br>Abhängigkeit von der Wellenlänge der Laserstrahlung. Links: $\lambda_L = 248 \text{ nm}$ ,<br>Mitte: $\lambda_L = 308 \text{ nm}$ , Rechts: $\lambda_L = 355 \text{ nm}$ .           | 55 |
| Abb. 19: | Kristallgröße $d_K$ in Abhängigkeit von $\epsilon_L$ und $\lambda_L$                                                                                                                                                                                                           | 56 |

| Abb. 20: | Belichtungsoberseite kristallisierter Proben nach Laser-Belichtung<br>( $\epsilon_L = 1,0 \text{ J/cm}^2$ ) und Temperung. Links: $\lambda_L = 248 \text{ nm} (d_L = 92 \text{ µm})$ , Mitte:<br>$\lambda_L = 308 \text{ nm} (d_L = 200 \text{ µm})$ , Rechts: $\lambda_L = 355 \text{ nm} (d_L = 80 \text{ µm})$ | . 59 |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Abb. 21: | Durchmesser der nach Temperung kristallisierten Struktur d <sub>Str.</sub> in Abhängigkeit von $\varepsilon_L$ (Belichtungsoberseite) für die Belichtung mit $\lambda_L = 355$ nm                                                                                                                                 | . 60 |
| Abb. 22: | AFM-Scann im Übergangsbereich Glas / kristallisierte Struktur nach UV-Laser-<br>Belichtung mit $\epsilon_L = 5 \text{ J/cm}^2 (N = 1)$ und Temperung. Links: $\lambda_L = 308 \text{ nm}$ ,<br>Rechts: $\lambda_L = 355 \text{ nm}$                                                                               | . 61 |
| Abb. 23: | Kristallisierte Strukturen (senkrecht zur Belichtungsoberseite) nach Belichtung mit $\lambda_L = 248 \text{ nm} (\epsilon_L = 5 \text{ J/cm}^2, N_{eff.} = 1)$ und Temperung                                                                                                                                      | . 62 |
| Abb. 24: | Kristallisierte Strukturen (senkrecht zur Belichtungsoberseite) nach Belichtung mit $\lambda_L = 308 \text{ nm} (\epsilon_L = 1 \text{ J/cm}^2, N_{\text{eff.}}  variiert von links nach rechts in der Reihenfolge: 4, 8, 12, 16 (vgl. Kap. 4.1))$                                                                | . 63 |
| Abb. 25: | Höhenprofil z in Abhängigkeit von der Entfernung x für zwei verschiedene<br>Belichtungsenergiedichte – Pulszahl - Kombinationen im Übergangsbereich<br>Glas / kristallisierter Bereich nach Belichtung mit $\lambda_L = 308$ nm und Temperung.                                                                    | . 64 |
| Abb. 26: | Steilheit S in Abhängigkeit von der Entfernung x für zwei verschiedene<br>Belichtungsenergiedichte – Pulszahl - Kombinationen im Übergangsbereich<br>Glas / kristallisierter Bereich nach Belichtung mit $\lambda_L = 308$ nm und Temperung.                                                                      | . 65 |
| Abb. 27: | Strukturkantenschärfe K kristallisierter Strukturen in Abhängigkeit von $\varepsilon_L$ und N <sub>eff.</sub> nach Belichtung mit $\lambda_L$ = 308 nm und Temperung bei T = 570°C, t = 1h                                                                                                                        | . 65 |
| Abb. 28: | Querschliff einer laserbelichteten und getemperten Probe, belichtet mit $\lambda_L = 248 \text{ nm}, \epsilon_L = 0.5 \text{ J/cm}^2, N_{eff.} = 1$                                                                                                                                                               | . 67 |
| Abb. 29: | Kristallisationstiefe $h_k$ in Abhängigkeit von der Belichtungsenergiedichte $\epsilon_L$<br>nach Belichtung mit $\lambda_L = 248$ nm und Temperung                                                                                                                                                               | . 68 |
| Abb. 30: | Mittlere Ätztiefe $h_{atz.(bel.)}$ in Abhängigkeit von $t_{atz.}$ nach Belichtung mit $\lambda_L = 248$ nm, Temperung und Ätzen.                                                                                                                                                                                  | . 73 |
| Abb. 31: | Mittlere Ätztiefe $h_{atz.(bel.)}$ in Abhängigkeit von $\varepsilon_L$ und $t_{atz.}$ nach Belichtung mit $\lambda_L = 308 \text{ nm} (N_{eff.} = 1)$ , Temperung und Ätzen                                                                                                                                       | . 74 |
| Abb. 32: | $h_{atz.(bel.)}$ in Abhängigkeit von $\epsilon_L$ und $t_{atz.}$ nach Belichtung mit $\lambda_L = 355$ nm,<br>Temperung und Ätzen                                                                                                                                                                                 | . 75 |
| Abb. 33: | REM-Aufnahme von Sacklöchern nach Belichtung ( $\epsilon_L = 1 \text{ J/cm}^2$ , $N_{eff.} = 1$ ),<br>Temperung und Ätzen; Links: $\lambda_L = 308 \text{ nm}$ ; Rechts: $\lambda_L = 355 \text{ nm}$                                                                                                             | . 76 |
| Abb. 34: | Schematische Darstellung der geometrischen Verhältnisse an einer<br>kristallisierten geometrischen Struktur in fotostrukturierbarem Glas nach UV-<br>Laser-Belichtung und Temperung im Querschnitt                                                                                                                | . 78 |
| Abb. 35: | $b_0[BOS]$ in Abhängigkeit von $\varepsilon_L$ und $N_{eff.}$ , $\Delta b_0(BOS)$ : ± 10 µm                                                                                                                                                                                                                       | . 79 |
| Abb. 36: | Breite der kristallisierten Struktur auf der Belichtungsunterseite bo(BUS) in                                                                                                                                                                                                                                     |      |
|          | Abhängigkeit von $\epsilon_L$ und $N_{eff.}$ , Messgenauigkeit $b_o(BUS)$ : $\pm 10 \mu m$                                                                                                                                                                                                                        | . 79 |
| Abb. 37: | Geätzte Grabenstrukturen im Querschnitt nach Belichtung mit $\lambda_L = 308$ nm ( $\epsilon_L = 0.6$ J/cm <sup>2</sup> , Variation N <sub>eff</sub> ), Temperung und Ätzen                                                                                                                                       | . 81 |

| Abb. 38: | Schematische Darstellung der geometrische Verhältnisse an einer geätzten<br>Grabenstruktur im Querschnitt                                                                                                                                    | 82 |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Abb. 39: | Geätzte Grabenstrukturen (links) und vergrößerter Ausschnitt aus dem Bereich einer Strukturkante (rechts), nach Belichtung ( $\lambda_L = 308 \text{ nm}$ ; $\epsilon_L = 0,6 \text{ J/cm}^2$ ; N <sub>eff.</sub> = 12), Temperung und Ätzen | 83 |
| Abb. 40: | Geätzte Grabenstruktur (links) und vergrößerter Ausschnitt aus dem Bereich der Strukturkante (rechts), nach Belichtung ( $\lambda_L = 308 \text{ nm}$ ; $\epsilon_L = 3,0 \text{ J/cm}^2$ ; N <sub>eff.</sub> = 12), Temperung und Ätzen     | 83 |

## Tabellenverzeichnis

| Tab. 1: | Absorptionskante bei T = 50%                                                                                                 | . 19 |
|---------|------------------------------------------------------------------------------------------------------------------------------|------|
| Tab. 2: | Lineare Absorptionskoeffizienten $\alpha$ und optische Eindringtiefen $\delta_{opt}$                                         | . 22 |
| Tab. 3: | Spezifikationen der eingesetzten Excimerlaser- und Festkörperlaserstrahlung                                                  | . 26 |
| Tab. 4: | Zuordnung des Überlappungsgrades $\ddot{u}_y$ zu überwiegenden effektiven Pulszahlen $N_{eff.}$ für die Einzelpulsbelichtung | . 30 |
| Tab. 5: | Untere Schwellenenergiedichten $\epsilon_S$ für N = 1                                                                        | . 34 |
| Tab. 6: | Verschiebung der Absorptionskante $\Delta\lambda$ für die eingesetzten Laserstrahlungen                                      |      |
|         | $\lambda_{L}, T = 10 \%$                                                                                                     | . 36 |
| Tab. 7: | Gemessene Netzebenenabstände d aller untersuchten 571 Partikel                                                               | . 50 |
| Tab. 8: | Übersicht zu verwendeter Pulszahlvariation für Neff.                                                                         | . 77 |
| Tab. 9: | Mittelwerte der Strukturwinkel $\gamma_{krist.}$ in Abhängigkeit von $\epsilon_L$                                            | . 80 |

## Literaturverzeichnis

| /Ara88/   | K. Arai, H. Imai, H. Hosono, Y. Abe, H. Imagawa: Two-photonprocesses in defect formation by excimer lasers in synthetic silica glasses. Appl. Phys. Lett. Bd. 53 (20), 1891-1893, 1988             |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| /Arb90/   | V. I. Arbuzov, M. N. Tolstoi: Photochemical Properties of Activated Glass.<br>Journal of Non-Crystalline Solids 123, , 258-265, 1990                                                               |
| /Bac86/   | H. Bach, F. G. K. Baucke: Ultraviolet absorption spectrum of the $Ag^+$ ion in glass. Physics and Chemistry of Glasses, Vol. 27, No. 5, 1986                                                       |
| /Bac98/   | H. Bach, N. Neuroth: The Properties of Optical Glass. Springer Verlag, 1998                                                                                                                        |
| /Bam77/   | C. R. Bamford: Colour Generation and Control in Glass. Glass Science and Technology 2, Elsevier Scientific Publishing Company, Amsterdam – Oxford – New York, 1977                                 |
| /Bis70/   | A. Bishay: Radiation induced color centers in multicomponent glasses. Journal of Non-Crystalline Solids 3, 54-114, 1970                                                                            |
| /Bro2003/ | U. Brokmann, M. Talkenberg, A. Harnisch, EW. Kreutz, D. Hülsenberg, R. Poprawe: Laserbelichtung von fotostrukturierbarem Glas. Materialwissenschaft und Werkstofftechnik, Vol. 34/7, 660-670, 2003 |
| /Bro2004/ | U. Brokmann, A. Harnisch, W. Ertel-Ingrisch, D. Hülsenberg: UV laser radiation for microstructuring of photostructurable glasses. Glass Sci. Technol., 77, Nr.5, 249-252, 2004                     |
| /Bru90/   | R. Bruntsch: Strukturierung von Glas als Ergebnis der Wechselwirkung mit<br>Licht. Habilitationsschrift TU Ilmenau, 1990                                                                           |
| /Bue94/   | C. Buerhop: Glasbearbeitung mit Hochleistungslasern. Dissertation Universität Erlangen-Nürnberg, 1994                                                                                              |
| /Che2002/ | Y. Cheng, K. Sugioka, M. Masuda, K. Toyoda, M. Kawachi, K. Shihoyama, K. Midorikawa: 3D microstructuring inside FOTURAN glass by femtosecond laser. RIKEN Review, (2003), 50, 101-106              |
| /Dmi95/   | A.V. Dmitryuk, N.D. Soloveva, N.T. Timofeev: The Problem of Silver Atoms Stabilization in Glass. Glass Sci. Technol. 68 C1, 1995                                                                   |
| /Don90/   | A. Donges: Elementare Quantenoptik. Hüthig Buch Verlag GmbH, Heidelberg, 1990                                                                                                                      |
| /Dun80/   | H. H. Dunken: Physikalische Chemie der Glasoberfläche. VEB Deutscher Verlag für Grundstoffindustrie Leipzig, 1980                                                                                  |
| /Ehr2001/ | D. Ehrt, P. Ebeling, U. Natura, U. Kolberg, K. Naumann, S. Ritter: Redox equilibrium and ultraviolet radiation induced defects in glasses. Int. Cong. on Glass, Vol.1; 84-93; 2001                 |
| /Ehr99/   | A. Ehrhardt: Beitrag zur Entwicklung fotostrukturierbarer Gläser und Glaskeramiken mit unterschiedlichen thermischen Ausdehnungskoeffizienten. Dissertation TU Ilmenau, 1999                       |
| /Esc88/   | G.C. Escher: KrF laser induced color centers in commercial fused silica. S. 30-<br>37, SPIE Proceedings, 998, Murray Hill 1988                                                                     |

| /Fan83/   | I. Fanderlik: Optical Properties of Glass, Volume 5 Science and Technology.<br>Elsevier Amsterdam, 1983                                                                                                              |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| /Fri79/   | E. J. Friebele, D. L. Griscom: Radiation effects in glass. in: Treatise on materials Science and Technology, Vol. 17, Glass II, Academic Press New York, 1979                                                        |
| /Fuq2000/ | P.D. Fuqua, D.P. Taylor, H. Helvajian, W. W. Hansen, M.H. Abraham: A UV Direct-Write Approach for Formation of Embedded Structures in Photostructurable Glass-Ceramics. Mat. Res. Soc. Symp. Proc., 624, 79-86, 2000 |
| /Fuq99/   | P. Fuqua, S.W. Janson, W.W. Hansen, H. Helvajian: Fabrication of True 3D Microstructures in Glass/Ceramic Materials by Pulsed UV Laser Volumetric Exposure Techniques. SPIE Proc., 3618, 213-220, 1999               |
| /Gri82/   | E. Grimsehl: Lehrbuch der Physik. Bd. 3: Optik, BSB B.G. Teubner Verlagsgesellschaft, 1982                                                                                                                           |
| /Haf2003/ | H. Haferkorn: Optik– Physikalisch-technische Grundlagen und Anwendungen.<br>WILEY-VCH Verlag GmbH & Co. KgaA Weinheim, 2003                                                                                          |
| /Han97/   | W.W. Hansen, S.W. Janson, H. Helvajian: Direct-Write UV Laser<br>Microfabrication of 3D Structures in Lithium Aluminosilicate Glass. SPIE<br>Proc., 2991, 104-112, 1997                                              |
| /Har2000/ | A. Harnisch, D. Hülsenberg: Mechanical properties of microstructurable glasses. Glass Sci. Technol., 73, Nr.3, 2000                                                                                                  |
| /Har98/   | A. Harnisch: Beitrag zur Entwicklung von Herstellungstechnologien für komplexe Bauteile aus fotostrukturiertem Glas. Dissertation TU Ilmenau, 1998                                                                   |
| /Hec2001/ | E. Hecht: Optik. Oldenbourg Wissenschaftsverlag GmbH, München, 2001                                                                                                                                                  |
| /Hel2002/ | H. Helvajian et. al.: Ultraviolet methode of embedding structures in photocerams. United States Patent, No. US 2002/0139769 A1, Oct. 3, 2002                                                                         |
| /Hen96/   | T. Henning, M. Scholl, L. Unnebrink, U. Habich, R. Lebert, G. Herziger: Beam shaping for laser materials processing with non-rotationaly symmetric optical elements. Proceedings of SPIE 3092, 126-129, 1996         |
| /Hof2004/ | H. Hofmeister (MPI-Halle), Mitteilung im Rahmen der Auswertung der TEM-<br>und HREM-Untersuchung an einer laserbestrahlten Glasprobe, 2004                                                                           |
| /Hor96/   | H. Hornberger, R. Weißmann: Machining of silica glasses using excimer laser radiation. Ber. Glass Sci. Technol., 69, Nr.2, 1996                                                                                      |
| /Jac2001/ | M. Jacquorie: Mikrostrukturierung von Glas mittels Excimerlaserstrahlung für die Mikroreaktionstechnologie. Dissertation D82 RWTH Aachen, 2001                                                                       |
| /JCP2000/ | Powder Diffraction File No. 87-0597. <sup>®</sup> 2000 JCPDS-International Centre for Diffraction Data                                                                                                               |
| /Kie77/   | J. Kiefer: Ultraviolette Strahlen. Walter de Gruyter Berlin New York, 1977                                                                                                                                           |
| /Kli71/   | J. L. Klimontowitsch: Laser und nichtlineare Optik. BSB B. G. Teubner Verlagsgesellschaft, Leipzig, 1971                                                                                                             |
| /Kon2000/ | Y. Kondo, S. Fujiwara, T. Suzuki, T. Mitsuyu, T. Yoko, K. Hirao: Wavelength dependence of photoreduction of Ag <sup>+</sup> ions in glasses through the multiphoton process. J. Appl. Phys., 88(3), 1244-1250, 2000  |

| /Kon94a/   | N. Kondo, H. Ono: Method of processing photosensitive glass with a pulsed laser to form grooves. United States Patent, No. 5.314.522, May 24, 1994                                                   |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| /Kon94b/   | N. Kondo, H. Ono: Method of processing photosensitive glass with sections of differing exposure energies and article. United States Patent, No. 5.322.538, Jun. 21, 1994                             |
| /Kor72/    | H. Korn, W. Hinz: Fotochemische Reaktionen im Lithium-Aluminium-<br>Silikatglas. Silikattechnik 23, Heft 3, 1972                                                                                     |
| /Len2000/  | A. Lenk, L. Morgenthal: Damage-free Laser Micro Marking of Glass. Glastechn. Ber. Glass Sci. Technol.73, Nr.9, 2000)                                                                                 |
| /Liv2002/  | F.E. Livingston, W.W. Hansen, A. Huang, H. Helvajian: Effect of Laser Parameters on the Exposure and Selective Etch Rate in Photostructurable Glass. SPIE Proc., Vol. 4637, 404-412, 2002            |
| /Lud2003/  | <ul> <li>Y. Ludwig: Parameteruntersuchungen zum Ätzprozess von fotostrukturierbarem Glas. Sudienjahresarbeit TU Ilmenau (unveröffentlicht), 2003</li> </ul>                                          |
| /Mas2003/  | M. Masuda, K. Sugioka, Y. Cheng, N. Aoki, M. Kawachi, K. Shihoyama, K. Toyoda, K. Midorikawa: 3d Microfabrication in Photosensitive Glass by Femtosecond Laser. SPIE Proc., Vol. 4830, 576-580, 2003 |
| /Mil98/    | J. H. Miller, R. F. Haglund (jr.): Laser Ablation and Desorption. Academic Press, 1998                                                                                                               |
| /Mön2003a/ | D. Möncke, D. Ehrt: Photoreduktion von polyvalenten Ionen in Gläsern durch UV-Licht. 77. Glastechnische Tagung, Proceedings, Leipzig, 2003                                                           |
| /Mön2003b/ | D. Möncke, D. Ehrt: Photoionisation of As, Sb, Sn and Pb in metaphosphate glasses. Journal of Non-Crystalline Solids (in press), 2003                                                                |
| /Mro2003/  | S. Mrotzek, A. Harnisch, G. Hungenbach, H. Strahl, D. Hülsenberg: Processing techniques for photostructurable glasses. Glass Sci. Technol. 76, 2003                                                  |
| /Mro2004/  | S. Mrotzek: Dissertation TU Ilmenau (in Vorbereitung), 2004                                                                                                                                          |
| /Now93/    | R. Nowak , S. Metev, G. Sepold: Excimer laser processing of BK7 and BGG31 glasses. Ber. Glass Sci. Technol.66, Nr.9, 1993                                                                            |
| /Pac2002/  | F. Pacholik: Mikrostrukturierbarkeit in Abhängigkeit vom Dotandenzusatz in einem Alkalialumosilikatglas. Diplomarbeit TU Ilmenau, 2002                                                               |
| /Pav86/    | N.M. Pavluškin: Vitrokeramik. VEB Deutscher Verlag für Grundstoffindustrie, Leipzig, 1986                                                                                                            |
| /Piq2002/  | A. Piqué, D. B. Chrisey: Direct-write technologies for Rapid Prototyping<br>Applications. Academic Press San Diego San Francisco, 2002                                                               |
| /Pis99/    | S. Pissadakis, L. Reekie, M. Hempstead, M.N. Zervas, J.S. Wilkinson: Ablated gratings on glass by 193-nm excimer laser radiation. Appl. Phys. A 69, S739-S741, 1999                                  |
| /Prü99/    | Prüfbericht zum Laborauftrag Nr. 608/99, Zentrum für Glas- und Umweltanalytik GmbH, 11/1999                                                                                                          |
| /Schm94/   | K. Schmidt: Spezielle Verfahren der Mikrostrukturierung von Glas.<br>Dissertation TU Ilmenau, 1994                                                                                                   |

| /Sto49/ | S. D. Stookey: Photosensitive Glass. Industrial and Engineering Chemistry, Vol. 41, No. 4, 1949                                                                             |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| /Sto53/ | S. D. Stookey: Chemical Machining of Photosensitive Glass. Industrial and Engineering Chemistry, Vol. 45, 1953                                                              |
| /Sto56/ | S. D. Stookey, F. W. Schuler: Ultraviolet and X-Ray Irradiation Effects in Special "Photosensitive" Glasses. IV. International Congress on Glass, Paris, 390-395, 1956      |
| /Str61/ | J. S. Stroud: Photoionisation of $Ce^{3+}$ in Glass. The Journal of Chemical Physics, Vol. 35, No. 3, 1961                                                                  |
| /Str62/ | J. S. Stroud: Color Centers in a Cerium-Containing Silicate Glass The Journal of Chemical Physics, Vol. 37, No. 4, 1962                                                     |
| /Vog92/ | W. Vogel: Glaschemie. Springer Verlag, 1992                                                                                                                                 |
| /Wey51/ | W.A. Weyl: Coloured Glasses. The Society of Glass Technology, 1951                                                                                                          |
| /Won76/ | L. Wong, C.A. Angell: Glass – Structure by Spectroscopy. Marcel Dekker Inc. New York and Basel, 1976                                                                        |
| /Yab94/ | A. Yabe, H. Njino, N. Kondo, H. Ono, T. Takahasi, Y. Takahasi, T. Matsumura: Methode of processing photosensitive glass. United States Patent, No. 5.374.291, Dec. 20, 1994 |