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1 Introduction 

1.1 Apoptosis as cell fate and cellular stress resp onse 

Programmed cell death is a process that is indispensable for the normal development 

of multicellular organisms and is of vital importance throughout their life. During 

embryonic development, elimination of surplus cells is required for the proper shaping 

of organs and body parts and the creation of complex multicellular tissues. In the 

developing vertebrate nervous system, for instance, most types of neurons are initially 

produced in excess. Surplus neurons will eventually be eliminated after reaching their 

target tissue, based on competition for survival factors that are released by the target 

cells in limited amounts. This allows the number of neurons to be exactly matched to 

the number of target cells. Similar mechanisms are thought to operate both during 

development and adulthood of metazoans to balance the numbers of different cell 

types in other complex tissues and organs, such as the blood and the lymphoid system.  

In the adult organism, tissue maintenance requires the constant replacement of 

aged or damaged cells. This is achieved by the continuous proliferation of stem cell 

populations, from which different cell types are generated, and the predestined death 

of terminal differentiated cells. The normal lifespan of a differentiated cell depends on 

its function in the organism and ranges from several days (for instance, in the case of 

epithelia cells that form the lining of the small intestine) to many years (sensory 

receptor cells or neurons in the central nervous system, for example, have to last a 

lifetime). In contrast, cells with proliferative potential need to be eradicated 

immediately in case of damage to their genome, in order to prevent the passage of 

faulty genetic information to their progeny. In addition, programmed cell death is of 

particular importance in the immune system, for instance, to prevent the spreading of 

pathogens and to eliminate T-cells that are directed against endogenous proteins. 

Apoptosis - after the Greek word for “falling off” - is the prevailing form of 

programmed cell death and is characterized by the traceless removal of the apoptotic 

cell in the absence of an inflammatory response. Apoptosis is defined by stereotypical 

morphological changes including chromatin condensation, plasma membrane 

blebbing and cell shrinkage, followed by fragmentation into membrane-enclosed 

vesicles (Kerr et al. 1972). These visible transformations are the effects of 

biochemical changes including the fragmentation of chromosomal DNA and the 
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cleavage of a defined set of cellular proteins that includes major structural 

components of the cell (Earnshaw et al. 1999). Concurrent alterations on the cell 

surface, such as the exposure of specific phospholipids, mark the cell for recognition 

by phagocytic cells. Together, these processes prepare the apoptotic cell for 

engulfment and the efficient recycling of biochemical resources. The apoptotic core 

machinery responsible for these intricate processes is conserved in all metazoans. 

Apoptosis can be induced by different kinds of stimuli, of which two principal 

classes can be distinguished: 1) signals from the cells environment, such as lack of 

growth factors or survival signals, loss of matrix or cell-to-cell contact, and death 

signals through cytokines, and 2) various intracellular stress signals, created for 

example by the lack of nutrients, damage to the genome or the activation of 

oncogenes. In the adult organism proliferation and cell death are normally balanced to 

maintain equal cell numbers and tissue homeostasis. Defects in apoptosis regulation 

can therefore lead to the development of cancer, autoimmune disorders and acute or 

chronic degenerative diseases.  

1.2 Central mediators of the apoptotic program 

On the molecular level, apoptosis is characterized by the activation of the caspase 

family of cysteine proteases, in which a cysteine residue serves as the catalytic 

nucleophile. The name caspases refers to the cleavage of their substrates after a 

specific aspartate residue (Alnemri et al. 1996). Caspases reside in the cell as inactive 

precursors, referred to as pro-caspases, that are activated in a proteolytic cascade upon 

an apoptotic stimulus. They posses a large and a small subunit preceded by an N-

terminal pro-domain. Structural and biochemical evidence indicates that active 

caspases are dimers of identical catalytic units each containing an active site 

(Boatright and Salvesen 2003).  

According to their position in the apoptotic cascade mammalian caspases are 

classified as initiator or executioner caspases, also referred to as effector caspases 

(Thornberry and Lazebnik 1998). Initiator caspases are activated by recruitment to 

protein scaffolding complexes through proximity-induced dimerization (Boatright and 

Salvesen 2003). They are characterized by long pro-domains containing homophilic 

protein interaction motifs: caspase recruitment domains (CARDs) or death effector 

domains (DEDs). Via these motifs they can be recruited to caspase-activating 

scaffolding complexes at the plasma membrane and in the cytoplasm by DED or 
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CARD-containing adaptor molecules (Thornberry and Lazebnik 1998). Once 

activated, initiator caspases cleave and thereby activate the downstream effector 

caspases. Effector caspases have small or no pro-domains, lack the interaction motifs 

typical for initiator caspases and can instead be activated by cleavage through an 

upstream caspase, which separates their large and small subunits and removes the pro-

domain (Earnshaw et al. 1999). In addition to upstream caspases, activated effector 

caspases can perform this cleavage, thereby allowing further amplification of the 

apoptotic signal. Crystallographic studies revealed that one large and one small 

subunit associate to form the active site of the enzyme (Shi 2002). 

Among the numerous substrates of effector caspases are cytoskeletal proteins, 

nuclear structural proteins, components of the DNA repair machinery, protein kinases 

and other signaling molecules (Earnshaw et al. 1999). Proteolysis of these proteins 

eventually leads to chromatin degradation into nucleosomes, organelle destruction and 

other transformations that prepare the apoptotic cell for phagocytosis and allow the 

efficient recycling of its components (Salvesen and Dixit 1997; Budihardjo et al. 

1999). Thus, the concerted action of effector caspases ultimately leads to the 

disassembly of the cell. Based on the different initiation of the caspase cascade, two 

alternative apoptotic pathways are distinguished: the intrinsic apoptosis pathway and 

the extrinsic, or death receptor apoptosis pathway (Figure 1 and 2). 

1.3 The intrinsic apoptosis pathway 

The intrinsic or mitochondrial apoptosis pathway is activated in response to various 

cellular stress factors, such as damage to the genome or other irreparable internal 

damage, and certain developmental cues, such as lack of growth or survival factors 

(Figure 1). These signals activate pro-apoptotic members of the BCL-2 family, which 

are termed BH3-only proteins, due to their possession of only one type of BCL-2 

homology (BH) domains. Members include BAD, BID, BIM (BCL-2-interacting 

mediator of cell death), NOXA and PUMA (Huang and Strasser 2000). These proteins 

selectively respond to specific death signals: NOXA and PUMA, for example, are 

induced by p53 activity in response to DNA damage (Oda et al. 2000; Nakano and 

Vousden 2001); BAD is activated through dephosphorylation in response to a lack of 
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Figure 1. The intrinsic apoptosis pathway 

Various cellular stresses and developmental death cues induce the release of cytochrome c from 

mitochondria via the activation of pro-apoptotic members of the BCL2-family. Different pro-apoptotic 

BH3-only proteins (e.g. BAD, BIM, BID, PUMA) bind A) to anti-apoptotic BCL-2-family members 

(BCL-2, BCL-XL) and prevent them from interacting with BAX or BAK, which allows BAX/BAK to 

oligomerize and promote cytochrome c release from the mitochondria, and bind B) to BAX/BAK to 

promote their oligomerization. Cytosolic cytochrome c triggers apoptosome formation and activation of 

caspase-9, which in turn activates effector caspases. Caspase activation is inhibited by IAP proteins, 

which are counteracted by pro-apoptotic proteins that are released from the mitochondria 

(SMAC/DIABLO, OMI/HTRA2). Additional proteins (ENDO G, AIF) released from the mitochondria 

promote caspase-independent cell death pathways. 
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growth factors or survival signals (Zha et al. 1996). BH3-only proteinsinitiate the 

mitochondrial apoptosis pathway by promoting cytochrome c release from the 

mitochondria via other pro-apoptotic BCL2-family members, BAX or BAK (Eskes et 

al. 2000). Normally, BAX is located in the cytosol or is loosely attached to 

membranes; while BAK is bound to the mitochondria resident voltage-dependent 

anion channel protein 2 (VDAC2) (Danial and Korsmeyer 2004). In response to 

apoptotic stimuli, BAX and BAK can oligomerize and insert into the mitochondrial 

membrane (Danial and Korsmeyer 2004). Different BH-3 proteins are responsible for 

binding anti-apoptotic BCL-2-like proteins, such as BCL-XL, thereby releasing 

BAX/BAK from inhibition, and for binding and activating BAX/BAK to promote 

their oligomerization (Huang and Strasser 2000; Kuwana et al. 2005). BH3-only 

protein-induced oligomerization of BAX or BAK causes the concerted and complete 

release of cytochrome c and other apoptosis-promoting proteins from the entire 

mitochondria of the cell (Desagher et al. 1999; Goldstein et al. 2000; Wei et al. 2001). 

Cytosolic cytochrome c binds Apaf-1 (apoptotic protease activating factor 1); this 

induces Apaf-1 oligomerization and formation of a caspase 9-activating protein 

complex known as the apoptosome.  

The apoptosome is a wheel-like structure consisting of seven Apaf-1 

molecules in complex with cytochrome c (Acehan et al. 2002). Pro-caspase-9 is 

recruited to this complex via the Apaf-1 CARD domain, which becomes exposed on 

the apoptosome during its assembly (Srinivasula et al. 1998; Zou et al. 1999) 

Apoptosome-bound active caspase-9 cleaves and thereby activates the effector pro-

caspases-3 and -7 (Rodriguez and Lazebnik 1999). Thus, the activation of the caspase 

cascade through the intrinsic apoptosis pathway is initiated by mitochondria 

permeabilization, which induces the cytochrome c-dependent formation of a 

scaffolding complex for initiator caspase activation. The significance of this pathway 

for the response to intrinsic apoptosis stimuli is illustrated by the fact that cells lacking 

cytochrome c, Apaf-1 or caspase-9 are to a great extent resistant to stress-induced 

apoptosis (Green and Reed 1998). 

Recent work suggests that caspase-2 can function as initiator and effector 

caspase in the apoptotic response to selected intrinsic stimuli, including DNA damage 

and growth factor deprivation (Troy and Shelanski 2003). In contrast to caspase-9, 

pro-caspase-2 was proposed to be activated upstream of the mitochondria, by CARD-

dependent recruitment to a protein complex containing the adaptor proteins PIDD 
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(p53-induced protein with DD) and RAIDD (RIP1-associated apoptosis inducer with 

DD) (Tinel and Tschopp 2004) and seemed to be required for BAX-mediated 

cytochrome c release in response to DNA damage (Lassus et al. 2002). However, the 

absence of stress-induced caspase-2 activation in Bax/Bak double-deficient cells casts 

doubt on this notion (Ruiz-Vela et al. 2005). A direct role in promoting DNA damage-

induced mitochondrial cytochrome c release has also been reported for cytoplasmic 

p53, which was shown to induce BAX oligomerization (Chipuk et al. 2004) and 

histone H1.2, which induced cytochrome c release via BAK oligomerization in cells 

treated with ionizing radiation (Konishi et al. 2003). Translocation of  apoptosis-

promoting proteins such as capasase-2, p53 or histone H1.2 to the mitochondria is a 

conceivable mechanism through which a death signal generated in the nucleus can be 

relayed to the apoptotic machinery in the cytoplasm.  

Some apoptotic stimuli including DNA damage and oxidative stress apparently 

require the activation of BAX or BAK at the endoplasmatic reticulum, where they 

mediate Ca++ release to promote cell death (Scorrano et al. 2003). In summary, the 

intrinsic apoptosis pathway is initiated by BH3-only proteins and involves the 

BAX/BAK-dependent release of apoptosis promoting factors from organelles, most 

prominently the release of cytochrome c from the mitochondria.  

1.4 Death receptor-induced apoptosis 

Death receptor-induced apoptosis, also known as the extrinsic apoptosis pathway, is 

an important mechanism for the elimination of surplus cells during development. 

Receptor-mediated cell death is especially prominent in the immune system, where it 

mediates the negative selection of self-reactive T-cells and continues to have a vital 

role in the adult organism, for example, in the killing of virus-infected cells or cancer 

cells and the elimination of T cells at the end of an immune response (Osborne et al. 

1996; Nagata 1997). The extrinsic apoptosis pathway is initiated by ligation of a death 

receptor on the plasma membrane (Ashkenazi and Dixit 1998) (Figure 2). Death 

receptors belong to the tumor necrosis factor (TNF) receptor superfamily of trans-

membrane proteins, whose defining feature is the possession of characteristic 

cysteine-rich extracellular domains (Smith et al. 1994); the death receptors contain an 

additional intracellular protein interaction motif termed death domain (DD). The death 

receptor subfamily includes Fas (also known as APO-1 or CD95), TNFR1 (TNF 
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receptor 1) and TRAIL (TNF—related apoptosis inducing ligand) receptor 1 and 2 

(Ashkenazi and Dixit 1998).  

Ligand binding induces either trimerization of receptor monomers or 

conformational changes in pre-formed receptor trimers, which converts their 

intracellular domains into a signaling platform that recruits adaptor proteins to form a 

death-inducing signaling complex (DISC) (Kischkel et al. 1995). Death domain-

containing adaptor proteins, such as FADD (Fas-associated death domain protein) and 

TRADD (TNFR-associated death domain protein), bind to the cytoplasmatic receptor 

tail via homophilic interaction with the receptor death domains. These proteins in turn 

recruit signaling molecules and the initiator pro-caspase-8 (and in humans, pro-

caspase 10) via DED protein binding motifs to a caspase-activating complex (Medema 

et al. 1997). Dependent on receptor type, caspase activation occurs directly at the 

membrane-associated DISC (for example in the well-studied FAS signaling pathway), 

or, alternatively, by association with a second TRADD-based signaling complex that 

is assembled in the cytosol after dissociation from the receptor, as has been shown for 

the TNFR1 signaling pathway (Harper et al. 2003; Micheau and Tschopp 2003). Once 

activated, caspase-8 and caspase-10 in turn activate effector pro-caspases 3 and 7, 

thereby initiating apoptosis.  

Depending on the context, however, direct effector caspase activation by 

caspase-8 varies in efficiency and is in certain cell types not sufficient for apoptosis 

execution (Scaffidi et al. 1998). In these cells, sometimes referred to as type II cells, 

cleavage of the BCL2 family protein BID by death receptor-activated caspase-8 is 

required for apoptosis. Upon cleavage, truncated BID translocates to the mitochondria 

to induce cytochrome c release via BAX/BAK oligomerization (Li et al. 1998; Luo et 

al. 1998; Desagher et al. 1999; Wei et al. 2001). In this way, the death receptor-

initiated apoptosis response can be executed via the intrinsic apoptosis pathway. Thus, 

the extrinsic apoptosis pathway can initiate the caspase cascade both directly, via 

death receptor-induced formation of caspase-8 activating scaffolding complexes, and 

via caspase-8 mediated cleavage of BID, which activates the mitochondria pathway of 

caspase activation. 
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Figure 2. The extrinsic (death receptor) apoptosis pathway 

Binding of death ligands to their cognate receptors leads to the formation of a death inducing signaling 

complex (DISC) at their intracellular domains, which contain docking sites for death domain (DD) 

containing adaptor proteins, such as FADD. Pro-caspase-8 is recruited by FADD via interaction of their 

death effector domains (DEDs). Caspase-8 is activated by proximity-induced dimerization and can 

activate effector caspases directly through cleavage and via the mitochondrial pathway through the 

cleavage of BID. Caspase-8 activation at the DISC is regulated by FLIP, which can form hetero-dimers 

with caspase-8 or occupy caspase-8 binding sites at the DISC; effector caspase activity is inhibited by 

IAPs. Ligand binding to decoy receptors can prevent the activation of death receptors on the cell 

surface. 
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1.5 Regulation of apoptosis pathways 

The process of apoptosis is subject to intricate regulation in manifold ways. Generally, 

apoptosis is counteracted by the parallel activation of survival pathways. Thus, the 

decision between survival and apoptosis generally results from the integration of 

multiple signals received by the cell. One important way of regulating the initiation of 

apoptosis is transcriptional and post-translational control of pro- and anti-apoptotic 

proteins. A critical control point in the intrinsic cell death pathway in mammals is the 

activity of pro-apoptotic and anti-apoptotic members of the BCL-2 protein family 

(Danial and Korsmeyer 2004).  

The pro-apoptotic members are grouped into multi-domain pro-apoptotic 

proteins, which possess three out of four conserved, function-defining regions termed 

BCL-2 homology (BH) domains, and BH3-only proteins, which possess only the 

amphipathic α helix of the BH3 domain (Adams and Cory 2001; Martinou and Green 

2001). Multi-domain  pro-apoptotic proteins, including BAX and BAK, mediate 

cytochrome c release from the mitochondria as homo-oligomers; BH3-proteins, such 

as BID, BAD and PUMA, initiate the intrinsic apoptosis pathway by promoting 

BAX/BAK activation (Huang and Strasser 2000). The activity of BH3 proteins is 

subject to transcriptional control and post-translational modification. PUMA and 

NOXA, for instance, are induced by p53 (Oda et al. 2000; Nakano and Vousden 

2001). BAD is activated by phosphorylation in response to a lack of survival signals 

(Zha et al. 1996) and BID is converted to its active form via caspase cleavage upon 

death receptor triggering (Li et al. 1998; Luo et al. 1998). 

The activity of BAX and BAK is negatively regulated by the anti-apoptotic  

members of the BCL-2 family, including BCL-2, BCL-XL and MCL-1, which show 

homology in all four BCL-2 homology domains. The founding member of the BCL-2 

family, the BCL-2 proto-oncogene identified in B-cell lymphomas, was found to 

block apoptosis following multiple physiological and pathological stimuli (Vaux et al. 

1988; McDonnell et al. 1989). Accordingly, Bcl-2 deficient mice display excessive 

apoptosis of lymphocytes in thymus and spleen (Veis et al. 1993). Anti-apoptotic 

BCL-2 proteins are thought to bind and sequester BH3-only proteins to prevent 

BAX/BAK activation, and to directly bind to BAX and BAK to keep them in their 

inactive conformation (Cheng et al. 2001; Martinou and Green 2001) (Figure 1). 

Because of the mutual inhibition of BCL-2 and BH-3 only proteins, the ratio of these 

molecules within a cell is a crucial determinant of the cells susceptibility to intrinsic 
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death signals. There is ample evidence that cells double-deficient for BAX and BAK 

are resistant to all stimuli that trigger death via the mitochondrial apoptosis pathway 

(Lindsten et al. 2000; Wei et al. 2001). This supports the notion that BAX and BAK 

are a requisite gateway to the intrinsic apoptosis pathway (Wei et al. 2001; Danial and 

Korsmeyer 2004).  

A second group of regulatory proteins, inhibitors of apoptosis proteins (IAPs), 

controls caspase activity downstream of cytochrome c release. Like BCL-2 family 

proteins, they are subject to transcriptional regulation and post-translational 

modifications. For instance, IAPs are induced by survival signals through activation of 

the NF-κB group of transcription factors (Wang et al. 1998) and can be inactivated by 

proteolytic cleavage. IAPs were initially characterized as baculovirus-encoded 

proteins that suppressed apoptosis in infected host cells (Clem 2001). They are 

characterized by zinc-binding baculoviral IAP repeat (BIR) domains. Mammalian 

homologues include c-IAP-1, c-IAP-2 and XIAP, which inhibit the activity of 

caspase-3, -7 and -9 (Salvesen and Duckett 2002; Shi 2002; Riedl and Shi 2004). 

XIAP (X-linked IAP) and c-IAP-1 and -2 inhibit active caspases-3 and -7 by blocking 

the enzyme’s substrate binding site (Roy et al. 1997; Deveraux et al. 1998; Riedl et al. 

2001; Suzuki et al. 2001; Scott et al. 2005). XIAP potently inhibits caspase-9 by 

trapping it in a catalytically inactive conformation (Srinivasula et al. 2001; Shiozaki et 

al. 2003).  

In mammals, the inhibition of caspases by IAPs is antagonized by binding of 

SMAC/DIABLO and OMI/HTRA2, two mitochondrial proteins released during 

apoptosis (Du et al. 2000; Suzuki et al. 2001; Verhagen et al. 2002). Both molecules 

possess conserved tetrapeptide IAP binding motifs (Wu et al. 2000; Hegde et al. 

2002). Omi/HTRA2 is a serine protease that neutralizes IAPs, presumably by cleavage 

(Suzuki et al. 2004). SMAC binds IAPs, thereby preventing them from targeting 

caspases (Wu et al. 2000; Yang and Du 2004) (Figure 1). Thus, the balance between 

IAPs and IAP antagonizing proteins is an important control factor for effector caspase 

activation. In addition, caspases themselves and other proteins that promote apoptosis 

downstream of cytochrome c release, are subject to transcriptional regulation 

(Earnshaw et al. 1999). Caspase-3 and Apaf-1, for instance, are under transcriptional 

control of E2F-1 (Muller et al. 2001). 
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The activation of initiator caspases by death receptors is regulated by the 

expression of FLIP (FLICE-like inhibitory protein; FLICE, FADD-like ICE like 

protease, one of the original names for caspase-8) (Krueger et al. 2001). FLIP is a 

caspase-8 homolog that lacks the catalytic cysteine, but can form hetero-dimers with 

caspase-8 that are catalytically active (Micheau et al. 2002). This mechanism appears 

to enhance caspase-8 activation at the DISC at low concentrations of FLIP, while high 

levels of FLIP inhibit activation of caspase-8 and -10, presumably by occupying 

caspase binding sites at the activation complex (Chang et al. 2002; Micheau and 

Tschopp 2003) (Figure 2). In addition, the very first step of the extrinsic apoptosis 

pathway – the activation of a death receptor - can be inhibited by the expression of 

decoy receptors - extracellular, truncated versions of death receptors that compete 

with receptors on the cell surface for ligand binding (Igney and Krammer 2002). 

Moreover, survival signals and death signals can be transduced by the same 

receptor. The most prominent example is provided by TNFR1, which activates an NF-

κB-dependent survival pathway but can also induce apoptosis (Karin 1998; Van 

Antwerp et al. 1998) (Figure 3). Cells deficient for components of the NF-κB pathway 

are sensitized to TNF-induced apoptosis (Wajant et al. 2003), indicating that NF-κB 

promotes  survival in response to TNF. The decision between life and death appears to 

be governed by differential complex formation between various DD and DED 

containing adaptor proteins (Danial and Korsmeyer 2004). Upon TNFR1 activation, 

the receptor DISC containing TRADD, TRAF2, c-IAP1 and the kinase RIP1, recruits 

and activates the IKK (Inhibitor of NF-κB kinase) complex (Micheau and Tschopp 

2003; Wajant et al. 2003). The resulting activation of NF-κB transcription factors 

induces the expression of anti-apoptotic proteins, such as c-IAP and FLIP (Van 

Antwerp et al. 1998), which interfere with caspase-8 activation in a TRADD-based 

cytosolic complex (Micheau and Tschopp 2003). The TNFR1 DISC also activates 

another major transcription factor, c-Jun/AP1, via activation of Jun kinase (JNK). 

However, the role of c-Jun/AP1 activity for cell survival remains to be clarified. Both 

pro-and anti-apoptotic effects have been reported (Liu 2003; Varfolomeev and 

Ashkenazi 2004).  

In addition to the mechanisms described so far, recent evidence suggests that the 

cleavage of effector caspase substrates constitutes an important control point in 

apoptosis regulation (Chau and Wang 2003). The cleavage of proteins, which 
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Figure 3. TNFR1 signaling pathways 

Engagement of TNF with TNFR1 results in the formation of a receptor-proximal complex containing 

the adaptor proteins TRADD, RIP and TRAF2, which in turn recruit c-IAP proteins and IKK. This 

signaling complex initiates NFκB and JNK activation. A second complex based on TRADD, RIP and 

TRAF2 is formed in the cytosol and recruits FADD and pro-caspase-8. Caspase-8 activation in this 

complex initiates the apoptotic caspase cascade. Caspase-8 activation is inhibited by NF-κB-induced 

expression of FLIP and other anti-apoptotic proteins. 

 

 

normally inhibit caspase activation, seems to create a positive feedback loop that 

drives further caspase activation (Chau and Wang 2003). An IKK mutant resistant to 

cleavage by effector caspases, for instance, was able to protect cells from TNF-

induced apoptosis (Tang et al. 2001). Likewise, a caspase-cleavage resistant variant of 

the Retinoblastoma protein can suppress caspase activation and apoptosis in several 

cellular contexts (Harbour 2000; Chau and Wang 2003). These data indicated that 

cleavage of certain key substrates may be a required step in the execution of 

apoptosis. 
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In summary, apoptosis pathways are regulated by various mechanisms at 

several control points, whose relative importance depends on the apoptotic stimulus 

and the cellular context. Negative regulation of apoptosis is usually the effect of the 

simultaneous activity of survival pathways Key regulators of the mitochondria 

apoptosis pathway are pro- and anti-apoptotic proteins of the BCL-2 family. IAP 

proteins and IAP antagonizing proteins control caspase activation downstream of 

cytochrome c release.. 

1.6 The retinoblastoma protein as a regulator of 

proliferation and apoptosis 

RB, the product of the retinoblastoma-susceptibility gene (RB), was the first tumor 

suppressor protein to be identified (Sherr 1996). In individuals heterozygous for a 

germline mutation in the RB gene, acquisition of a second mutation in the wild-type 

RB allele in embryonic retinoblasts results in the development of retinoblastoma in 

early childhood, a mechanism that was first suggested by a pioneering statistical study 

of human retinoblastomas (Knudson 1971). The tumor suppressor function of RB is 

consistent with the critical role of the Rb protein in cell cycle regulation (Figure 3). 

RB inhibits proliferation by repressing transcription of genes required for DNA 

synthesis through its interaction with the E2F family of transcription factors (Nevins 

et al. 1997; Harbour 2000). Active RB binds E2Fs and converts them into 

transcriptional repressors by recruiting chromatin-modifying enzymes (Harbour 2000; 

Nielsen et al. 2001). Mitogenic signaling drives cell cycle progression through the 

activation of cyclin-dependent kinases (CDKs), which phosphorylate RB (Morgan et 

al. 1998). The hyperphosphorylation of RB by cyclin D-CDK4/6 complexes in mid 

G1 inactivates its transcriptional repressor activity by disrupting the interaction with 

E2F and chromatin modifying enzymes (Bremner et al. 1995; Knudsen and Wang 

1996; Mittnacht 1998).  

The elimination of Rb by gene targeting in mice was found to result in 

embryonic lethality (around embryonic day 13.5) and revealed additional functions of 

Rb during development (Clarke et al. 1992; Jacks et al. 1992; Lee et al. 1992). Rb-

null  mutant embryos suffer from ectopic proliferation in the developing central 

nervous system (CNS), consistent with the established role of Rb-E2F in cell cycle 

regulation. Intriguingly, Rb deficient embryos also display massive apoptosis in  
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Figure 4. Inhibition of cell cycle progression by RB 

Hypophosphorylated RB binds the E2F transcription factor, a hetero-dimer of DP and E2F, and recruits 

chromatin-modifying enzymes to form a complex, which suppresses “S phase genes”, whose 

transcription is required for DNA synthesis. Upon phosphorylation by CDKs in mid G1, RB dissociates 

from E2F, which then activates the transcription of S-phase genes. RB is re-activated through 

dephosphorylation at the end of mitosis. 

 

 

the CNS and exhibit defects in the terminal differentiation of myocytes and 

erythrocytes. These observations strongly indicated additional roles for RB in the 

process of terminal differentiation and apoptosis regulation. The terminal 

differentiation of a progenitor cell into a quiescent post-mitotic cell is usually 

accompanied with the loss of its proliferative potential, a characteristic effectively 

preventing tumor development. Thus, the promotion of terminal differentiation, which 

has been confirmed in several contexts (Lipinski and Jacks 1999; Ferguson and Slack 

2001), is another mechanism potentially contributing to the tumor suppressor activity 

of RB. At the same time, the phenotype of Rb-deficient mice, which indicated that RB 

is normally required to inhibit apoptosis, seemed to contradict RB’s well-established 

growth suppressing function. Despite this apparent conundrum, several lines of 

evidence now support the ability of RB to suppress apoptosis (Harbour 2000; Chau 

and Wang 2003). Together, these studies revealed an intriguing dual role of RB: as an 

inhibitor of both cell growth and death (Chau and Wang 2003). 
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In addition to E2F transcription factors and chromatin modifying enzymes, RB 

interacts with an astounding variety of cellular proteins (Morris and Dyson 2001). The 

affinity of RB to its binding partners was shown to be intricately regulated: three 

distinct peptide-binding pockets have been identified in RB to bind (a) the C-terminal 

region of E2F (Xiao et al. 2003), (b) the LxCxE peptide motif, e.g. in viral E7 protein 

or cellular histone methyl-transferase (Lee et al. 1998; Robertson et al. 2000), and (c) 

the PENF homology motif, e.g., in cellular proteins such as c-Abl tyrosine kinase and 

Serpin 2B (Darnell et al. 2003). Each of these peptide-binding pockets is 

independently regulated by specific CDK phosphorylation sites (Knudsen and Wang 

1996). Mutation of nine out of sixteen CDK sites is required to create an RB variant 

with constitutive growth suppressing function (Knudsen and Wang 1997). This 

variant, termed PSM-RB (phosphorylation site mutated RB), lacks seven 

phosphorylation sites in the C-region and two phosphorylation sites in the insert 

region of RB (Knudsen and Wang 1997) (Figure 5). PSM-RB is a potent inhibitors of 

proliferation in various cellular contexts (Knudsen and Wang 1997; Knudsen et al. 

1998; Sever-Chroneos et al. 2001).  

In addition to changes in its phosphorylation status, regulated cleavage and 

degradation control the activity of the RB protein. RB is an effector caspase substrate 

and caspase cleavage induces its degradation during apoptosis (Tan and Wang 1998). 

Mutation of the C-terminal caspase cleavage site (Figure 5) generates a protein termed 

RB-MI (mutated in ICE-site) that is resistant to caspase cleavage and can suppress 

apoptosis in response to various stimuli (Tan and Wang 1998). The MI mutation has 

moreover been introduced into the mouse Rb-1 gene by gene targeting to create 

RbMI/MI ’knockin’ mice (Chau et al. 2002). In these animals, Rb-MI conferred tissue-

specific protection from endotoxin-induced apoptosis. Moreover, fibroblasts derived 

from these animals were specifically protected from TNFR1- induced apoptosis, but 

remained sensitive to apoptosis in response to DNA damage (Chau et al. 2002). These 

observations indicate that elimination of RB is a required step in selective apoptosis 

pathways. A fundamental question in this context is, whether apoptosis suppression by 

RB is connected to its growth suppressing activity and may thus be antagonized by 

phosphorylation as well as degradation. In particular, the role of E2F-dependent cell-

cycle regulation for apoptosis suppression by RB is not fully understood. The ectopic  
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Figure 5. Domain structure of the Retinoblastoma protein  

The A and B pocket domains are shaded in red; CDK phosphorylation sites are indicated by diamonds. 

Two conserved caspase consensus sites are indicated by stars, one -DEAD886G- at the C terminus (Tan 

et al. 1997), the other - DSID349- in the N-terminal domain (Fattman et al. 2001). Residues that are 

mutated in RB-MI or PSM-RB are shown in red. 

 

 

S-phase entry and enhanced apoptosis of cells in the developing CNS of Rb-/- embryos 

are absent in Rb-/-E2F1-/- double null mutant animals (Tsai et al. 1998). Moreover, 

E2F1 was shown to control the expression of both S-phase- specific and apoptosis-

promoting genes, including Apaf-1 and caspase-3 (Muller et al. 2001). These data 

suggest that RB controls developmental apoptosis by suppressing the transcription of 

E2F regulated pro-apoptotic genes. On the other hand, RB is able to block the TNF-

induced apoptosis pathway, which is independent of transcription (Chau and Wang 

2003). Thus, the central question remains, whether apoptosis suppression by RB 

obligatory depends on the regulation of gene expression, or if RB can act through 

other mechanisms to inhibit apoptosis. Moreover, the relative significance of RB-

dependent apoptosis suppression for each of the various apoptosis pathways in 

developmentally mature cells remains to be elucidated. 
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1.7 Objectives 

The first aim of this work was to examine the role of RB in the negative regulation of 

different cell death pathways. To this end, it was intended to examine the potential of 

constitutively active RB variants to inhibit apoptosis induced by DNA damage, 

general kinase inhibition and tumor necrosis factor-α. Cell lines with stable 

expression of RB variants that were resistant to CDK-mediated phosphorylation, 

caspase-induced degradation, or both, were to be generated. The growth inhibitory 

activity of CDK-phosphorylation resistant variants required the use of a cell line that 

allowed inducible gene expression (TET off system). This system was expected to 

allow a comprehensive analysis of the effects of RB-induced growth arrest and 

caspase-resistant RB activity on the cellular response to different apoptotic stimuli. 

The second aim was to elucidate the mechanism for RB-dependent regulation 

of apoptosis in response to extracellular death stimuli. In particular, it was intended to 

identify the control point for the inhibition of TNFR1-induced apoptosis in fibroblasts 

derived from mice expressing caspase-resistant Rb (Rb-MI). To identify putative Rb-

dependent changes in the expression of apoptosis-related genes, it was decided to 

conduct a microarray-based gene expression analysis of TNF-treated RbMI/MI cells. 

The alternative possibility of a post-transcriptional anti-apoptotic function of Rb-MI 

was to be addressed by a step-wise analysis of the mitochondrial apoptosis pathway in 

RbMI/MI cells. This approach implied a detailed in vitro analysis of the cytochrome c 

release capacity of cytosolic extracts from TNF-treated cells. In summary, this study 

aimed to gain insights into the regulation of apoptosis by RB to shed light on the dual 

role of RB as a regulator of proliferation and cell death. 
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2 Results 

2.1 Effect of constitutively active RB variants on cell death 

response to different stimuli 

To compare the potential of constitutively active RB variants to inhibit apoptosis in 

response to different types of stimuli, cell lines with stable expression of RB variants 

were generated. The growth inhibitory activity of CDK-phosphorylation resistant 

variants required the use of a parental cell line that allowed inducible gene expression. 

Therefore, the Rat fibroblast cell line Rat-16 (Sever-Chroneos et al. 2001) was used, 

which has been engineered to express the TET-VP fusion protein and provides tight 

control of tetracycline-regulated gene expression (TET off system). Rat fibroblasts are 

suitable for the analysis of inducible RB expression, because they express Rb at very 

low endogenous levels that are not detectable in most assays (e.g. Figure 2c).  

Four Rat-16-based cell lines were generated that expressed wild-type RB 

(WT-RB), caspase site-mutated RB (RB-MI), phosphorylation site-mutated RB 

(PSM-RB), or PSM-RB-MI, respectively, each under the control of the tetracycline-

regulated promoter. Upon switching to tetracycline-free media, expression of wild-

type RB, or one of its variants, was induced in each of the four cell lines and each of 

the proteins localized correctly to the nucleus (Figure 1a-h). Proliferation in these cell 

lines was monitored through pulse labeling of replicating cells with 

bromodeoxyuridine (BrdU). Cells that incorporated BrdU during DNA synthesis were 

stained with a FITC-conjugated anti-BrdU antibody. Co-staining of all cells with 

propidium iodide allowed to determine the percentage of cells in S-phase. As 

previously reported (Knudsen and Wang 1997; Knudsen et al. 1998), expression of 

PSM-RB inhibited DNA synthesis causing the majority of the cells to arrest in G1 by 

24 hr after the removal of tetracycline (Figure 2a, b). Likewise, expression of PSM-

RB-MI inhibited DNA replication (Figure 2b). However, expression of WT-RB or 

RB-MI did not interfere with the proliferation of Rat-16 cells (Figure 2b), because 

these proteins could be inactivated by phosphorylation (Figure 2c). 
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Figure 1. Induced expression and nuclear localization of RB variants in Rat-16 cells. 

The indicated cell lines were seeded on coverslips and cultured in the absence of tetracycline for 24 h. 

Cells were fixed and RB was detected by indirect immunofluorescence. Representative pictures are 

shown at 60 x magnification. 

 

 

2.1.1 Doxorubicin-induced activation of caspases is  attenuated 

in Rat-16 cells arrested by PSM-RB 

Having thus characterized the established cell lines, the effect of each of the four RB 

proteins on the cellular response to DNA damage was examined. DNA damage was 

induced by doxorubicin, a chemotherapeutic anti-tumor agent of the anthracyclin type. 

Doxorubicin acts via several mechanisms, including topoisomerase II inhibition and 

free radical formation, that cause DNA double strand breaks and result in inhibition of 

DNA replication (Panaretakis et al. 2002). Rat-16 fibroblasts express the p53 protein, 

which is stabilized in response to doxorubicin treatment (Figure 3a). In addition, 

doxorubicin induced cleavage of Parp to an 89 kD fragment, which is typically 

observed in apoptotic cells (Figure 3b). However, doxorubicin did not induce acute 

cell death in Rat-16 cells: after 48 hours treatment with doxorubicin the analysis of 

cellular membrane integrity showed no increase in the number of dead or necrotic 

cells (Figure 3c) and almost no cells with the sub-G1 DNA content characteristic of 

apoptotic cells could be detected (not shown). 



Results 

  20 

Figure 2. Effect of RB variants on Rat-16 cell cycle progression 

(a) Inhibition of BrdU incorporation by PSM-RB. PSM-RB cells were cultured with (uninduced, left 

panel) or without (induced, right panel) tetracycline (TET) for 24 h and pulse labeled with BrdU. Cells 

were fixed and stained with FITC-conjugated BrdU antibody and propidium iodide and analyzed by 

flow cytometry. Shown are representative density plots of FITC (BrdU) and propidium iodide (DNA 

content) signal intensity. (b) Summary of the effect of RB variants on BrdU incorporation. The 

indicated cell lines (WT, WT-RB; etc.) were cultured with (uninduced) or without (induced) TET for 6 

h or 24 h and analyzed as in (a). 10 000 gated events were counted and the percentage of S-Phase 

(BrdU-positive) cells was calculated. (c) Phosphorylation status of RB variants 24 h after induction. 

The indicated cell lines were cultured with (uninduced) or without (induced) TET for 24 h, and RB was 

detected in whole cell lysates by immunoblotting. pRB, hyperphosphorylated RB; RB, 

unphosphorylated RB 

 

 

The resistance of Rat-16 cells to doxorubicin-induced acute cell death was not 

affected by induction of RB or one of its variants in any of the four cell lines (Figure 

3c). However, doxorubicin did cause a drastic reduction in clonogenic survival of Rat-

16 cells (Figure 4a). PSM-RB and PSM-RB-MI cells were cultured with or without 

tetracycline for 24 hr, and then treated with doxorubicin for 24 hours. After treatment, 

equal numbers of cells were replated in tetracycline-containing media and allowed to 

grow for one week. At that point, surviving cells were stained with crystal violet to 

determine the percentage of surviving doxorubicin-treated cells. Virtually no cell 

proliferation could be detected in the doxorubicin-treated samples (Figure 4a).  
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Figure 3. Doxorubicin (DOX) induces p53 accumulation and Parp cleavage but does not induce acute 

cell death in Rat-16 cells 

(a) Stabilization of p53 protein in DOX-treated Rat-16 cells. Uninduced RB-MI and PSM-RB cells 

were treated with DOX for the indicated times. Equal amounts of protein from whole cell lysates were 

resolved by SDS-PAGE and p53 was detected by immunoblotting. (b) Cleavage of Parp in DOX-

treated Rat-16 cells. Uninduced PSM-RB cells were treated as in (a) and Parp was detected by 

immunoblotting. (c) Quantification of cell death in Rat-16 cells. The indicated cell lines were cultured 

with or without TET for 24 h and subsequently treated with DOX for 48 h in the presence (white bars) 

or absence (black bars) of TET. Uptake of propidium iodide (PI) was analyzed by flow cytometry.  

 

 

Induction of PSM-RB or PSM-RB-MI for 24 hours before and during drug treatment, 

did not affect clonogenic survival (Figure 3d). These results suggest that doxorubicin 

activates p53 to induce long-term growth arrest rather than acute apoptosis in Rat-16 

cells. Growth arrest caused by PSM-RB or PSM-RB-MI prior to drug treatment had 

no impact on the permanent growth arrest and the resulting lack of clonogenic 

survival caused by the exposure to doxorubicin. Although doxorubicin did not activate 

apoptosis, it induced cleavage of Parp (Figure 3b) and cleavage of WT-RB and  
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Figure 4. Doxorubicin (DOX) induces long-term growth arrest in Rat-16 cells. 

(a) Lack of clonogenic survival in DOX-treated Rat-16 cell populations. The indicated cell lines were 

cultured with (uninduced) or without TET (induced) for 24 h and subsequently treated with DOX for 24 

h in the presence (white bars) or absence (black bars) of TET. Cells were washed and replated in TET 

containing media and clonogenic survival was assayed after 7 days in culture. NT, no treatment (b) 

DOX induces dephosphorylation and cleavage of RB. The indicated cell lines were cultured without 

TET for 24 h and subsequently treated with DOX for the indicated times and RB was detected in whole 

cell lysates by immunoblotting. ∆RB, truncated RB resulting from cleavage at the C-terminal DEAD 

sequence; pRB, phosphorylated RB; RB, unphosphorylated RB 

 

 

PSM-RB to a size corresponding to ∆RB (Figure 4b). This cleavage product was not 

observed with RB-MI or PSM-RB-MI (Figure 4b), confirming cleavage to be at the 

site that is eliminated by the MI mutation. It has previously been shown that the C-

terminal cleaved ∆RB is unstable (Tan et al. 1997); this might explain the very faint 

∆RB band on these blots. However, despite the cleavage reaction, RB protein levels 

were not significantly reduced in doxorubicin-treated cells. This observation suggests 

that the low levels of detectable ∆RB simply reflect the minor extent of RB cleavage 

under these conditions. While in untreated WT-RB and RB-MI cells, the majority of 

RB was in its hyperphosphorylated form, dephosphorylated RB accumulated in 

doxorubicin-treated cells (Figure 4b). The resulting change in the ratio between 

dephosphorylated and hyperphosphorylated forms of RB is consistent with the 

observation that doxorubicin induced growth arrest in Rat-16 cells.  

The characteristic cleavage fragments of RB and Parp indicated that 

doxorubicin activated caspases despite the absence of apoptosis. To confirm this 

notion, caspase activity was measured in cell extracts using the synthetic tetrapeptide  
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Figure 5. Inducible expression of PSM-RB or PSM-RB-MI inhibits caspase activation in response to 

doxorubicin (DOX) 

(a) DEVDase activity in DOX-treated Rat-16 cells. The indicated cell lines were cultured with 

(uninduced) or without TET (induced) for 24 h and subsequently treated with DOX for the indicated 

times in the presence (white bars) or absence (black bars) of TET. Equal amounts of protein from 

whole cell lysates were incubated with a fluorogenic caspase-3 substrate (Ac-DEVD-AMC) for 30 min. 

For each time point, the fold increase in fluorescence intensity relative to uninduced, untreated control 

cells is given as DEVDase activity. (b) Levels of cleaved caspase-3 in DOX-treated Rat-16 cells. The 

indicated cell lines were treated as in (a). Equal amounts of protein from whole cell lysates were 

resolved by SDS-PAGE and cleaved caspase-3 (upper panel) and pro-caspase-3 (lower panel) were 

detected by immunoblotting. 

 

 

substrate Ac-DEVD-AMC (Figure 5). Caspase cleavage of Ac-DEVD-AMC releases 

the 7-amino-4-methylcoumarin (AMC) reporter group, which can then be detected in  

a fluorometric assay. When cultured with tetracycline (RB expression off), DEVDase 

activity increased 7-10 fold after 24 hours treatment with doxorubicin in each of the 

four cell lines (Figure 5a, white bars). In addition, cleaved caspase-3 could be detected 

by immunoblotting in doxorubicin-treated samples (Figure 5b, TET + lanes, upper 
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panel). Interestingly, expression of PSM-RB or PSM-RB-MI for 24 hours prior to 

doxorubicin treatment caused a reduction in DEVDase activation while expression  

of WT-RB or RB-MI had no significant effect (Figure 5a, black bars). Consistently, 

cleaved caspase-3 accumulated to a similar level in uninduced and induced RB-MI 

cells, but reached considerably lower levels in cells induced for PSM-RB expression 

(Figure 5b, TET - lanes, upper panel). Evidently, induced expression of PSM-RB did 

not reduce protein levels of pro-caspase-3 (Figure 5b, lower panel). Thus, PSM-RB 

apparently did not interfere with pro-caspase-3 expression, but inhibited the 

processing of pro-caspase-3 to its active form.  

To determine if the establishment of PSM-RB-induced cell cycle arrest was 

required for the reduction of caspase activation, PSM-RB was induced for only 6 

hours prior to doxorubicin treatment. After 6 hours, PSM-RB protein accumulated to a 

level that was already significantly higher than the endogenous RB (Figure 6b, 

endogenous RB not detectable on this blot), but the percentage of cells in S-phase was 

still the same as in uninduced cells (Figure 2b). Doxorubicin added 6 hours after 

induction of PSM-RB expression caused a level of caspase activity comparable to 

uninduced cells (Figure 6a). This result suggested that either cell cycle arrest or an 

excessive level of PSM-RB was required for the attenuation of caspase activation. 

In order to test, if starvation-induced cell cycle arrest can inhibit caspase 

activation in cells without PSM-RB expression, uninduced WT-RB cells were 

synchronized in quiescence by serum withdrawal prior to doxorubicin treatment. 

Parallel populations of quiescent cells were then treated with doxorubicin either after 

the re-addition of serum or under conditions of continuous serum starvation (Figure 

6c). Cells that had re-entered the cell cycle (white bars) activated DEVDase to the 

same level as control cells that had not been serum-starved (grey bars). In contrast, 

cells that had remained quiescent (black bars) showed greatly reduced caspase 

activation in response to doxorubicin. Taken together, these results suggest that PSM-

RB and PSM-RB-MI interfered with doxorubicin-induced caspase activation, most 

likely by blocking cell cycle progression. It should be noted that cell cycle arrest did 

not prevent doxorubicin from causing damage, because induction of growth arrest by 

PSM-RB or PSM-RB-MI did not rescue clonogenic survival of doxorubicin-treated 

cells (Figure 4a). Thus, PSM-RB and PSM-RB-MI affected caspase activation but not 

induction of permanent growth arrest by doxorubicin in Rat-16 cells.  
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Figure 6. Cell cycle arrest inhibits caspase activation in response to doxorubicin (DOX) 

(a) DEVDase activity after DOX treatment of unarrested PSM-RB cells. PSM-RB cells were cultured 

with (uninduced) or without TET (induced) for only 6 h and subsequently treated with DOX for the 

indicated times in the presence (white bars) or absence (black bars) of TET. At each time point 

DEVDase activity in whole cell lysates was determined as described in Figure 5. (b) PSM-RB protein 

levels 6 h and 24 h after induction. PSM-RB cells were treated as in (a). Equal amounts of protein from 

whole cell lysates were resolved by SDS-PAGE and RB was detected by immunoblotting. (c) 

DEVDase activity in DOX-treated WT-RB cells. WT-RB cells were cultured in the presence of TET 

and either serum starved for 3 days followed by 8 h culture in 10 % serum (white bars), continuously 

serum starved for 3 days + 8h (black bars) or cultured in 10 % serum for 24 h (grey bars). Subsequently 

cells were treated with DOX in 10 % (white and grey bars) or 0.1 % serum (black bars) for the 

indicated times. Whole cell lysates were analyzed as in (a). 
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2.1.2 Staurosporine-induced apoptosis of Rat-16 cel ls is not 

prevented by PSM-RB 

Staurosporine (STS), a broad-spectrum inhibitor of protein kinases, is a potent inducer 

of apoptosis in a wide range of cell types, including Rat fibroblasts (Yoshida et al. 

1997). Similar to DNA damage inducing agents, STS can alternatively induce growth 

arrest. Previous studies have suggested STS-induced G1 arrest to be mediated by RB 

(Schnier et al. 1996; Orr et al. 1998; Chen et al. 2000). Therefore, it was examined 

whether staurosporine-induced apoptosis of Rat-16 cells can be prevented by PSM-

RB-mediated cell cycle arrest. Treatment with 1 µM staurosporine induced a high 

level of DEVDase activity (Figure 7a) and phosphatidyl-serine exposure (annexin-V 

staining) on the plasma membrane (not shown) within a few hours. The level of 

DEVDase activity induced by staurosporine was ten times higher than that induced by 

doxorubicin (compare Y-axis values in Figure 5a and 7a). Induction of cell cycle 

arrest by either PSM-RB or PSM-RB-MI did not affect staurosporine-induced caspase 

activation: levels of DEVDase activity were similar in uninduced (white bars) and 

induced (black bars) cells (Figure 7a).  

Moreover, PSM-RB cleavage to ∆RB and, to a minor extent, alternative 

fragments (*RB), was observed with time in staurosporine-treated cells (Figure 7b). 

The *RB fragments may result from cleavage at a previously described internal 

caspase site (Fattman et al. 2001), or reflect cleavage by non-caspase apoptotic 

proteases. Consistently, *RB generation could not be prevented by mutation of the C-

terminal caspase site and was thus also observed in staurosporine PSM-RB-MI cells. 

Moreover, alternative cleavage events evidently induced RB degradation and caused 

the loss of PSM-RB-MI, despite the fact that the MI mutation prevented the formation 

of ∆RB (Fig. 7b). In summary, it was shown that PSM-RB-induced G1 arrest had no 

effect on staurosporine-induced apoptosis in Rat-16 cells. Moreover, mutation of the 

C-terminal caspase site did not prevent RB degradation during staurosporine-induced 

apoptosis. 
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Figure 7. Staurosporine (STS)-induced caspase activation is not affected by PSM-RB variants 

(a) DEVDase activity in STS-treated Rat-16 cells. PSM-RB and PSM-RB-MI cells were cultured with 

(uninduced) or without TET (induced) for 24 h and subsequently treated with STS for the indicated 

times in the presence (white bars) or absence (black bars) of TET. DEVDase activity was analyzed as 

in Figure 5. (b) PSM-RB and PSM-RB-MI protein degradation in STS-treated Rat-16 cells. PSM-RB 

and PSM-RB-MI cells were treated as in (a). Equal amounts of protein from whole cell lysates were 

resolved by SDS-PAGE and RB was detected by immunoblotting. ∆RB and *RB indicate cleavage 

fragments of RB. 
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2.1.3 Inducible expression of RB variants sensitizes  Rat-16 cells 

to TNF-induced apoptosis 

Tumor necrosis factor (TNF), in combination with cycloheximide (CHX), is known to 

induce caspase-dependent (apoptotic) and caspase-independent (necrotic) cell death in 

cultured fibroblasts (Liu et al. 1996; Humphreys and Wilson 1999; Denecker et al. 

2001; Lin et al. 2004). TNF/CHX-induced death of Rat-16 cells, measured by the 

uptake of propidium iodide (PI), was only partially inhibited by the broad-spectrum 

caspase inhibitor z-VAD-fmk (Figure 8, left panel); and not associated with DNA 

fragmentation, as measured by sub-G1 DNA content (Fig. 9a, white bars) or caspase 

activity (not shown). These results suggest that Rat-16 cells undergo necrotic death in 

response to TNF/CHX. The percentage of PI positive cells was the same in uninduced 

(white bars) and induced (black bars) PSM-RB cells, indicating that PSM-induced 

cell-cycle arrest did not prevent TNF-induced cell death. Interestingly, the expression 

of PMS-RB caused a significant increase in sub-G1 DNA content following 

TNF/CHX treatment (Figure 9a, black bars). Increased DNA fragmentation and Parp 

cleavage were observed, with both mouse and human TNF (Figure 9).  Expression of 

PSM-RB also increased nuclear condensation, which was blocked by z-VAD-fmk 

(Figure 8), indicating that this was a caspase-dependent process. The enhanced DNA 

fragmentation was not caused by the withdrawal of tetracycline in parental Rat-16 

cells that did not express PSM-RB (not shown) and was thus not an unspecific effect 

of culture conditions. Taken together, these results indicated that PSM-RB expression 

enhanced the apoptotic response of Rat-16 cells to TNF.  

Moreover, induction of RB variants that could be inactivated by 

phosphorylation (WT-RB, RB-MI) also enhanced the apoptotic response to TNF/CHX 

in Rat-16 cells (Figure 9 and data not shown). Mutation of the caspase-cleavage site 

(MI) in either RB-MI or PSM-RB-MI did not prevent or decrease the apoptosis 

enhancing effect (Figure 9), consistent with the observation that TNF/CHX did not 

cause a significant level of RB cleavage or degradation in Rat-16 cells (Figure 9b). 

Although the cleavage of Parp indicated caspase activation (Figure 9b, lower panel), 

∆RB was not detected in cells treated with TNF/CHX (Figure 9b, upper panel). It is 

possible that ∆RB was rapidly degraded or that caspase activity was not high enough 

to allow accumulation of the cleavage product during apoptosis.  
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Figure 8. Caspase inhibition can prevent TNF-induced cell shrinkage but not death in PSM-RB 

expressing cells. PSM-RB cells were cultured with or without TET for 24 h and subsequently treated 

with m TNF/CHX for 48 h in the presence (white bars) or absence (black bars) of TET with (+) or 

without (-) prior addition of 50 µM z-VAD-fmk. Uptake of PI (a) and cell size and shape (b) were 

analyzed by flow cytometry  

 

 

Alternatively, the C-terminal cleavage site may not be accessible to caspases in 

TNF/CHX-treated Rat-16 cells. Importantly, the observation that RB was cleaved at 

this site in cells treated with doxorubicin or staurosporine (Figure 5 and 7b, 

respectively) indicated that RB cleavage is not generally impaired in Rat-16 cells.  

Since all four RB proteins caused a sensitization to TNF, but WT-RB and RB-

MI did not inhibit proliferation (Figure 2b), the effect did not correlate with cell cycle 

arrest. Consistently, induction of PSM-RB expression for only 6 hours prior to 

TNF/CHX treatment was sufficient to sensitize cells to TNF-induced apoptosis 

(Figure 10a).  To test how cell-cycle arrest by serum-starvation would affect the TNF 

response of Rat-16 cells, uninduced cells were synchronized in quiescence by serum 

starvation before the induction of PSM-RB. Serum-starved cells were incubated for 24 

hours with or without tetracycline and subsequently treated with TNF/CHX. Clearly, 

serum starvation sensitized Rat-16 cells to TNF–induced apoptosis, probably due to a 

limitation of survival factors (Figure 10b). Induction of PSM-RB variants had no 

additive effect on the apoptosis sensitivity of serum-starved cells: cells that were 
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Figure 9. Induced expression of RB and its variants sensitizes to TNF-induced apoptosis 

(a) Levels of cells with subG1 DNA content in TNF-treated Rat-16 cells. PSM-RB and RB-MI cells 

were cultured with (uninduced) or without TET (induced) for 24 h and subsequently treated with 

recombinant mouse or human TNF (mTNF, hTNF) and cycloheximide (CHX) for 48 h in the presence 

(white bars) or absence (black bars) of TET. Cells were stained with PI and analyzed by flow 

cytometry. (b) RB and Parp protein levels in TNF-treated PSM-RB and PSM-RB-MI expressing cells. 

PSM-RB and PSM-RB-MI cells were cultured without TET for 24 h and subsequently treated with 

mTNF/CHX (MC) or hTNF/CHX (HC) for the indicated times. Equal amounts of protein from whole 

cell lysates were resolved by SDS-PAGE and RB (upper panel) and Parp (lower panel) were detected 

by immunoblotting on the same membrane. ∗ indicates the faint RB band visible due to incomplete 

stripping. 
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Figure 10. Effect of cell cycle arrest on sensitivity to TNF-induced apoptosis 

(a) Sensitization does not correlate with PSM-RB-induced cell cycle arrest. PSM-RB cells were 

cultured without TET for 6 h (black bars) or 24 h (grey bars) or left uninduced (white bars) and 

subsequently treated with mouse TNF plus CHX (TNF/CHX) for the indicated times in the presence or 

absence of TET. Levels of cells with subG1 DNA content were determined by flow cytometry. (b) 

Sensitization by serum starvation. PSM-RB cells were cultured in 10 % serum (upper panel) or 

synchronized in quiescence by culture in 0.1 % serum for 3 days (lower panel) in the presence of TET. 

During the last 24 h, PSM-RB expression was induced in half of the samples (- TET). Subsequently, 

cells were treated with mouse TNF plus CHX (TNF/CHX) as indicated in the presence (+ TET) or 

absence (- TET) of TET and/or serum. Cell cycle distribution and subG1 DNA content were 

determined by flow cytometry. Shown are histograms of 10 000 gated events.  
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Figure 11. Sensitization to TNF-induced apoptosis by aphidicolin (APH) 

Uninduced PSM-RB cells were first synchronized in quiescence by culture in 0.1 % serum for 3 days. 

Subsequently, cells were cultured in 10 % serum for 16 h and treated with APH (lower panel) or 

DMSO (upper panel) for 22 h. Cells were then treated with TNF/CHX as indicated and pulse labeled 

with BrdU. Cells were fixed and stained with FITC-conjugated BrdU antibody and propidium iodide 

and analyzed by flow cytometry. Shown are representative density plots of FITC (BrdU) and propidium 

iodide (DNA content) signal intensity. Cells with subG1 DNA content are indicated. 

 

 

quiescent at the time of PSM-RB induction showed the same levels of apoptosis as 

uninduced cells (Figure 10b, lower panel), while in parallel populations, that were 

proliferating in 10% serum when PSM-RB was induced, the number of apoptotic cells 

following TNF/CHX treatment was again markedly increased compared to uninduced 

cells (Figure 10b, upper panel). This observation suggests that RB-dependent 

suppression of survival gene expression might be responsible for the sensitization to 

TNF-induced apoptosis. Alternatively, interference with replication fork movement, a 

function previously described for PSM-RB (Sever-Chroneos et al. 2001), might cause 

a replication stress response that enhanced the cells susceptibility to a second stress 

signal (Figure 27c). This notion was supported by the observation that aphidicolin-

induced S-phase arrest augmented TNF-induced apoptotic DNA fragmentation in Rat-

16 cells (Figure 11). Aphidicolin causes cell cycle arrest in early S-phase by selective 

inhibition of DNA polymerase alpha (Spadari et al. 1985). Cells were first arrested by 

serum starvation and then treated with aphidicolin in the presence of serum for 16 

hours prior to TNF/CHX treatment. Synchronization of the population in early S-
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phase was reflected by the accumulation of BrdU-positive cells with G1 DNA content 

and the absence of BrdU positive cells with intermediate DNA content indicative of S 

phase cells (Figure 11 lower left hand panel). Interestingly, treatment with TNF/CHX 

also prevented BrdU incorporation (Fig. 11, upper right hand panel), indicating 

inhibition of DNA replication by CHX, most likely due to the reduction in histone 

biosynthesis (Venkatesan 1977; Bonner et al. 1988). Again, TNF/CHX treatment did 

not cause apoptosis in the absence of RB overexpression (Fig. 11, upper right hand 

panel). Cells arrested with aphidicolin, however, underwent substantial apoptosis 

following treatment with TNF/CHX (Figure 11, lower right hand panel). This result is 

consistent with a previous report that aphidicolin sensitized fibroblastic cells to TNF-

induced apoptosis (Gera et al. 1993) and supports the notion that G1/S arrest or 

replication stress can sensitize cells to TNF-induced apoptosis. In the Rat-16 

expression system, sensitization to TNF-induced apoptosis might be a non-

physiological activity of RB and RB variants that is associated with conditions of 

overexpression. 

Taken together, the analysis of RB expressing Rat-16 cells showed that RB-

dependent cell cycle arrest is not generally associated with resistance to apoptosis. In 

Rat-16 cells, PSM-RB induced G1/S arrest could inhibit DNA damage-induced 

caspase activation, but did not affect caspase activation in response to staurosporine. 

RB expression sensitized Rat-16 cells to TNF-induced apoptosis independent from the 

induction of cell cycle arrest. Sensitization to TNF/CHX treatment was also caused by 

serum starvation or the inhibition of DNA replication by aphidicolin.  
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2.2 Analysis of altered TNF response in  RbMI/MI fibroblasts 

2.2.1 Response of wild-type and RbMI/MI cells to selective 

activation of TNF receptors 

Mutation of the conserved C-terminal caspase recognition site in the Rb sequence 

generates a protein (termed Rb-MI) that is resistant to caspase cleavage in several 

different cellular contexts (Tan and Wang 1998; Chau and Wang 2003). For example, 

expression of Rb-MI has been shown to protect fibroblasts from TNF-induced 

apoptosis (Tan et al. 1997) and cultured neurons from apoptosis caused by potassium 

deprivation (Boutillier 2000). The MI mutation has been introduced into the mouse 

Rb-1 gene (Chau et al. 2002) in Dr. Wang’s laboratory to generate RbMI/MI knockin 

mice. In these animals, Rb-MI conferred tissue-specific protection from endotoxin-

induced apoptosis (Chau et al. 2002). Fibroblasts derived from RbMI/MI embryos were 

protected from apoptosis induced by human TNF (hTNF) (Chau et al. 2002) and this 

work). Interestingly, RbMI/MI fibroblasts remained sensitive to apoptosis induced by 

murine TNF-α (mTNF) and the Rb-MI protein was degraded in mTNF-treated cells. 

This observation is consistent with the notion that Rb degradation is required for TNF-

induced apoptosis and demonstrates that mechanisms other than C-terminal caspase 

cleavage can eliminate Rb during death receptor-induced apoptosis. 

TNF exerts its diverse biological activities via two different receptors: type 1 

TNF-α receptor (TNFR1) and type 2 TNF-α receptor (TNFR2). Both receptors 

belong to the death receptor family but differ in tissue distribution and intracellular 

signaling (Wajant et al. 2003). In murine cells, hTNF only activates TNFR1, while 

mTNF naturally triggers both types. Thus, a different response of murine cells to 

human and mouse TNF might be explained by the signaling of either one or both 

types of TNF receptors. To test this, wild-type and RbMI/MI fibroblasts were treated 

with agonistic antibodies that specifically activate only one of the two TNF receptors 

(Figure 13). Analysis of cell death based on membrane integrity (PI uptake assay) 

showed that treatment with TNFR1-activating antibody (anti-TNFR1) plus 

cycloheximide (CHX) for 16 h caused massive death in wild-type, but not in RbMI/MI 

cells (Figure 13a). Treatment with TNFR2-activating antibody (anti-TNFR2) plus 

CHX did not cause significant death by itself in wild-type or RbMI/MI cells. Moreover, 

co-treatment with anti-TNFR2 did not increase the level of cell death in anti-TNFR1–

treated wild-type cells. By contrast, in RbMI/MI cells, which were resistant to cell death 
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induced by anti-TNFR1, the combined treatment with anti-TNFR1 and anti-TNFR2 

(plus CHX) induced death to the same extent as in wild-type cells (Figure 13a).  

The different sensitivity of wild-type and RbMI/MI cells to TNFR1-induced cell 

death correlated with differences in caspase-3 activation (Figure 13b). In wild-type 

cells, treatment with both human and mouse TNF and treatment with anti-TNFR1 

caused the processing of pro-caspase-3 to the active, cleaved form. Levels of cleaved 

caspase-3 in wild-type cells were the same after hTNF and mTNF treatment as well as 

anti-TNFR1 treatment and were not enhanced by co-treatment of wild-type cells with 

anti-TNFR1I and anti-TNFR1 (Figure 13b, left lanes). Again, RbMI/MI cells did not 

respond to treatment with hTNF or anti-TNFR1: only mTNF or the combined 

treatment with both TNF receptor-activating antibodies caused a significant 

processing of pro-caspase 3 to the active form (Figure 13b, right lanes). Thus, the 

different sensitivity of wild-type and RbMI/MI cells to human TNF was mirrored by a 

different sensitivity to TNFR1-activating antibody. Thus, the different effect of human 

and mouse TNF on RbMI/MI cells could be attributed to their different capacity to 

activate the two TNF receptors. Taken together, these results show, that RbMI/MI cells 

are specifically protected from apoptosis induced by TNFR1.  

The possibility that this resistance was due to a reduced expression of TNFR1 

in RbMI/MI cells was ruled out by the comparison of TNFR1 protein levels in wild-type 

and RbMI/MI cells by immunoblotting (Figure 14a). Similar levels of TNFR1 could be 

detected in lysates from wild-type and RbMI/MI cells; the identity of the band 

corresponding to TNFR1 was confirmed by its absence in TNFR1-/- cells.  

Previous studies have linked apoptosis in Rb-/- embryos to deregulated 

proliferation (Macleod et al. 1996). Moreover, cells in S-phase are known to be more 

susceptible to a number of apoptotic stimuli (Meikrantz and Schlegel 1995). To test 

for a possible correlation between inhibition of proliferation and protection from 

apoptosis in RbMI/MI cells, cell cycle progression of wild-type and RbMI/MI cells was 

analyzed by BrdU pulse labeling of replicating cells (Figure 14b). Untreated cells of 

both genotypes showed comparable levels of cells in S-phase (Figure 14b, 0 h). 

Treatment with hTNF/CHX inhibited BrdU (5-bromodeoxyuridine) incorporation in 

both wild-type (+/+) and RbMI/MI cells (MI/MI); this effect was probably due to CHX 

dependent inhibition of protein and DNA synthesis (Venkatesan 1977; Bonner et al. 

1988). Among wild-type cells, levels of proliferating cells dropped faster than with 

RbMI/MI cells (compare +/+ and MI/MI at 6 h), which was consistent with the onset of 
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apoptosis in wild-type but not RbMI/MI cells within this time course (Figure 13). 

Similar results were obtained with RbMI/MI MEFS (Chau et al. 2002). Thus, for the 

apoptosis response to TNFR1 activation, the apoptosis suppressing activity of Rb-MI 

could be separated from its growth suppressor function. 

 

2.2.2 Gene expression analysis of TNF response in RbMI/MI cells 

Rb-/-E2F-1-/- double-deficient embryos are partially rescued from the aberrant 

apoptosis observed in Rb-/- animals (Tsai et al. 1998). E2F-1 has been shown to 

regulate several pro-apoptotic genes including Apaf-1 and caspase-3 (Muller et al. 

2001). Consistently, the expression of Apaf-1 is deregulated in Rb-/- embryos (Moroni 

et al. 2001). Moreover mutation of Apaf-1 or caspase-3 can prevent ectopic apoptosis 

of Rb-deficient neurons (Guo et al. 2001; Simpson et al. 2001). These data indicate 

that Rb-dependent suppression of apoptosis during embryonic development is 

mediated by E2F1-dependent suppression of genes required for mitochondria-

dependent apoptosis. Thus, the protection of RbMI/MI fibroblasts from TNF-induced 

cell death might also be due to Rb-dependent suppression of E2F1-regulated pro-

apoptotic genes. On the other hand, the observation that cell death in response to TNF 

is enhanced in the presence of inhibitors of transcription and translation, like 

actinomycin and cycloheximide, suggests that the TNF-induced apoptosis pathway 

does not require new gene transcription.  

To directly assess the role of TNF-induced changes in gene expression in the 

apoptosis response of RbMI/MI fibroblasts, an extensive analysis of TNF-induced 

changes in gene expression was conducted via DNA microarray-based gene 

expressing profiling. The fact that the Rb-MI protein was inactivated and degraded in 

mTNF-treated cells, allowed the comparison of transcriptional changes in response to 

TNF in the presence (during hTNF treatment) and absence (during mTNF treatment) 

of active Rb-MI. In this way, the response to TNF could be examined for Rb-

dependent changes in gene expression in a single cell line, thus avoiding variations 

due to possible intrinsic differences between individual cell lines. To test whether Rb-

MI regulates the transcription of apoptosis-related genes in RbMI/MI fibroblasts, 

transcriptional changes in RbMI/MI cells were therefore compared between human and  
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Figure 13. RbMI/MI cells are resistant to apoptosis induced by TNFR1 

(a) Percentage of dead (PI-positive) wild-type (+/+) and RbMI/MI (MI/MI) cells after treatment with 

agonistic antibodies against TNF receptors. Cells were treated with the indicated antibodies (I, anti-

TNFR1; II, anti-TNFR1I) for 16 h and PI positive cells were quantified by flow cytometry. (b) 

Differential activation of caspase-3 in wild-type and RbMI/MI cells. Cells were treated as indicated with 

TNF (h, hTNF; m, mTNF) plus cycloheximide (CHX) for 6 h or agonistic antibodies (I, anti-TNFR1; 

II, anti-TNFR1I) plus CHX for 7 h. Lysates were resolved by SDS-Page and pro-caspase-3 (upper 

panel), cleaved caspase-3 (middle panel) and tubulin (lower panel) were detected by immunoblotting. 

 

 

murine TNF treatment via an oligonucleotide microarray analysis. Briefly, biotin-

labeled cRNA was generated from cellular mRNA and hybridized to a GeneChip 

oligonucleotide array, representing a mouse genomic library of approximately 12 000 

known genes and expressed sequences. To this end, total RNA was isolated from 

untreated control cells and cells treated with human or murine TNF plus 

cycloheximide (CHX). 
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Figure14. Normal expression of TNFR1 and continuing proliferation of TNF-resistant RbMI/MI cells  

(a) TNFR1 protein levels. Whole cell lysates from wild-type, RbMI/MI cells and TNFR-/- cells were 

resolved by SDS page, and TNFR1 and tubulin were detected by immunoblotting. (b) Time course of 

TNF-induced changes in the proliferative index of wild-type and RbMI/MI cells. Cells were treated with 

hTNF/CHX for the indicated times and pulse-labeled with BrdU during the last hour. The percentage of 

BrdU-positive cells was determined by flow cytometry. 

 

 

2.2.2.1 Preparation of biotin-labeled cRNA as hybri dization probe 

From total cellular RNA, double stranded cDNA was synthesized in a reverse 

transcription reaction (Figure 15). The use of oligo-dT-primers that hybridize with the 

distinctive poly A-signal of mRNA ensured the selective synthesis of expressed 

sequences. In addition, the T7 promoter sequence was contained in the oligo-dT-

primers and was thus added to each cDNA sequence. The in this way generated cDNA 

pool served as the template for the synthesis of biotin-labeled cRNA. The T7 

promoter allowed the in vitro translation of cDNA by T7 RNA polymerase. In this 

step, cRNA was amplified in a linear way and labeled through the incorporation of 

biotinylated ribonucleotides. The resulting pool of biotin-labeled cRNA (biotin-

cRNA) quantitatively represented the cellular mRNA content at the time of sample 

collection.  

For hybridization, biotinylated molecules were fragmented to a more uniform 

size ranging between approximately 40 to 200 base pairs. This helps to minimize 

differences in hybridization kinetics between diverse RNA molecules that would 

result in their over-or underrepresentation on the DNA array. The quality and size  
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distribution of RNA and cRNA samples was analyzed by gel electrophoresis (Figure 

16). RNA and biotin-labeled cRNA samples were resolved on ethidium bromide-

stained agarose gels and visualized under UV light. In total RNA (Figure 16a), 

ribosomal RNAs (28 S and 18 S rRNA) are visible as distinct bands due to their 

relative abundance in the cell. The visual absence of rRNA degradation is an indicator 

for high quality of the preparation. Biotin-cRNAs show a  size distribution ranging 

from ca. 500 bp to 1.5 kB, which is typical for mRNA representing cRNA (Figure 

16b, lanes 1-3). Fragmentation resulted in a homogeneous size distribution from ca. 

50 to 200 bp (Figure 16b, lanes 4-6). 

2.2.2.2 Analysis of DNA microarray hybridization dat a 

For each condition (untreated, hTNF-treated, mTNF-treated), total cellular RNA 

samples were collected from three independent experiments. Biotin-labeled cRNA 

from each sample was incubated with a separate oligonucleotide microarray. 

Following hybridization of biotin-labeled cRNA with DNA oligos on the microarray, 

unbound cRNA was washed away and biotin-cRNAs bound to the chip were stained 

with a streptavidin-conjugated fluorescent dye. Finally, excess dye was washed away 

and the chip was analyzed with a fluorescent microarray scanner. The amount of light 

emitted from each spot on the array is determined by the number of oligonucleotide 

bound cRNA molecules at this location and is thus proportional to the abundance of 

the corresponding mRNA in the sample. Therefore, the fluorescence intensity values 

for all spots can therefore be translated into expression values for each gene 

represented on the array. Since scanned images of different chips vary in their overall 

brightness the comparison of expression levels across different samples (and thus, 

separate chips) requires normalization of signal intensities. Data was normalized 

against an array with median overall intensity using DNA-Chip Analyzer (dChip) 

software (Li and Hung Wong 2001; Li and Wong 2001).  

Upon normalization, the data was compared via a statistical analysis that 

calculates the significance of changes in gene expression based on the standard 

deviation in data from repeated measurements. This analysis was performed using 

software (SAM, significance analysis of microarrays, (Tusher et al. 2001) that 

calculates two statistical parameters for each gene: the “relative difference in 

expression” (d) between two states (e.g. untreated and treated), which is based on the  
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Figure 15. Flow chart for the preparation of biotin-labeled cRNA as hybridization probes for 

GeneChip® gene expression arrays (modified from Affymetrix GeneChip® Expression Analysis 

Technical Manual) 
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Figure 16. Size distribution of cellular RNA and biotin-labeled cRNA 

(a) Total RNA (1 µg) isolated from untreated (lane 1), hTNF/CHX-treated (lane 2) and mTNF/CHX-

treated (lane 3) RbMI/MI cells was resolved on an 1 % ethidium bromide-stained agarose gel and 

visualized under UV light. (b) Biotin-labeled cRNA (cRNA) derived from the samples shown in (a) 

was visualized on an ethidium bromide-stained gel before (lanes 1-3) and after (lanes 4-6) 

fragmentation. DNA length standard (1 kB ladder) was loaded as reference; 0.5; 1; 1.5 and 3 kB bands 

are labeled. 

 

 

ratio of average change in expression to standard deviation in the data for an 

individual gene, and the “expected relative difference in expression” (dE), which is the 

average of multiple d values, which are calculated for random permutations of the 

data for the same gene. If there is no significant change in gene expression, 

permutation of the data does not change the d value, so that dE is equal to d. If the 

observed d value differs from the expected value by more than a given threshold, the 

change in gene expression is called significant.  

To identify all significant changes in gene expression, the experimentally 

observed d values of all genes are plotted versus the expected dE values in a scatter 

plot. Genes with a positive change in expression (upregulated genes) are represented 

by points above the d=dE line, downregulated genes are represented by points below 

this line. Depending on the threshold ∆ after which a change in expression is called 

significant the SAM software calculates the false discovery rate (FDR), which is the 

percentage of genes identified by chance. By adjusting ∆,  the number of estimated 

false positive genes was reduced to less than one. 

 

 



Results 

  42 

The results of the SAM analysis for TNF-treated RbMI/MI fibroblasts are summarized in 

Figure 17. The comparison of human TNF-treated cells with murine TNF-treated cells 

yielded no significantly induced or repressed genes (Figure 17a). In the scatter plot of 

observed versus expected d values, all genes are represented by points on or very 

close to the d=dE line (FDR < 1 for ∆ = 0.5). By contrast, the comparison of untreated 

cells with either human-TNF treated cells (Figure 17b) or murine TNF-treated cells 

(not shown) yielded a set of 67 known genes that showed a significant  and at least 

1.25 fold change in expression (FDR < 1 for ∆ = 2.4). Most of them (64) were 

upregulated in TNF-treated samples. Among these were 18 apoptosis-related genes 

(Table 1). Seven out of the nine most highly ranked apoptosis-related genes (score ≥ 

10) were previously reported to be induced by TNF, indicating the validity of the 

assay (Table 1). In summary, while a number of known TNF-regulated genes were 

induced in response to TNF, no Rb-dependent changes in gene expression could be 

observed in TNF treated RbMI/MI fibroblasts. 



Results 

  43 

 

Figure 17. Significance analysis of DNA microarray hybridization data 

(a) Relative changes in gene expression between hTNF-treated and mTNF-treated RbMI/MI cells. No 

significant changes in gene expression are identified by the SAM analysis; all genes are represented by 

points on or very close to the d=dE line (FDR < 1 for ∆ = 0.5). 

(b) Relative changes in gene expression between untreated and hTNF-treated RbMI/MI cells. For ∆ = 2.4, 

a significant change in gene expression is identified for 94 genes (FDR <1 for ∆ = 2.4). Most of them 

are represented by points above the d=dE line, indicating a positive change in expression level. Data 

was analyzed using the SAM algorithm for a two-class, unpaired response. 
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Gene Gene name Score 
Fold 

change  

A20 tumor necrosis factor-α-induced protein 3 61.7 1.6 

Rel B v-rel oncogene related protein B 30.4 1.4 

NF-κκκκB2/p100 nuclear factor of κ gene enhancer in B-cells 2 20.5 1.3 

Caspase-11 caspase-11 18.3 1.4 

TNFaip2 tumor necrosis factor-α-induced protein 2 16.3 1.4 

Tnfrsf6 TNF receptor superfamily member 6 16.3 1.4 

IκκκκB-αααα NF-κB � inhibitor α 15.5 1.4 

TNF-αααα tumor necrosis factor α 13.6 1.3 

NF-κκκκB1/p105 nuclear factor of κ gene enhancer in B-cells 1 10.2 1.3 

Birc2/Miap2 baculoviral IAP repeat-containing 2/murine IAP 2 9.6 1.3 

Fos FBJ osteosarcoma oncogene 8.8 1.5 

Tank TRAF family member-associated NF-κB activator 8.8 1.3 

Ttp zinc finger protein 36/tristetraproline 8.4 1.3 

Gadd45-ββββ growth arrest and DNA damage-inducible 45 β 7.8 1.3 

IL-6 interleukin 6 7.5 1.9 

Bid BH3 interacting domain death agonist 7.3 1.4 

PhIda1 T-cell death associated gene 7.1 1.4 

JunB Jun-B oncogene 6.9 1.3 

 
Table 1. List of genes induced upon TNF treatment in RbMI/MI cells. Genes are ordered by their score 

assigned by significance analysis (SAM). Genes that have previously been identified as NF-κB targets 

are printed bold. “Fold change” refers to the fold change in expression level compared to untreated 

control cells. 
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2.2.3 Analysis of mitochondria-mediated apoptosis i n TNF-

treated wild-type and RbMI/MI cells  

The gene expression analysis described above had confirmed efficient NF-κB 

activation by human TNF in RbMI/MI fibroblasts (Table 1). Together with NF-κB, 

JNK/AP-1 is activated in response to TNF by a receptor-proximal signaling complex 

via the TRAF2 adaptor protein; and has been reported to modulate the TNF-induced 

apoptosis response (Varfolomeev and Ashkenazi 2004). To test, if JNK activation 

occurs differentially in hTNF-treated wild-type and RbMI/MI cells, phosphorylation of 

the JNK substrate c-jun was analyzed by immunoblotting with a phospho-specific 

antibody directed against phosphorylated serine 63 of c-jun (Figure 18a). Cells were 

lysed by adding hot SDS sample buffer directly to the tissue culture dish to eliminate 

phosphatase activity in the lysate. C-jun phosphorylation occurred to the same extent 

and with the same time-course in both wild-type and RbMI/MI cells. Phospho-c-jun was 

detectable as early as 15 min after treatment and was maintained for at least one hour 

(Figure 18a). Thus, the TNFR1 DISC-mediated activation of both the NF-κB and the 

Jun/AP1 transcription factor pathway was unaffected in TNF-treated  RbMI/MI cells. 

The Bcl-2 homolog Mcl-1 has been identified as an early control point of cell 

death pathways and degradation of Mcl-1 has been shown to be a pre-requisite for 

TNF-induced apoptosis (Danial and Korsmeyer 2004). Therefore, it was determined if 

Mcl-1 is efficiently degraded in RbMI/MI cells (Figure 18b). Mcl-1 degradation was 

observed in both wild-type and Rb MI/MI cells within the same time frame (Figure 18b). 

These data suggest that Mcl-1 degradation was not prevented by Rb-MI and thus 

could not account for the absence of TNF-induced apoptosis in RbMI/MI cells. 

Analysis of caspase-3 processing by immunoblot had indicated differential 

caspase-3 activation in wild-type and RbMI/MI cells in response to human and mouse 

TNF. Caspase processing, however, does not necessarily correlate with effector 

caspase activity in vivo, because cleaved caspases-3 and -7 can be subject to inhibition 

by IAPs (Salvesen and Duckett 2002; Shi 2002). Therefore, an enzymatic activity 

assay was performed to confirm differential effector caspase activation in TNF-treated 

wild-type and RbMI/MI fibroblasts. DEVDase activity was measured in extracts from 

untreated control cells and TNF-treated cells (Figure 19a) using the fluorogenic 

caspase substrate Ac-DEVD-AMC. In wild-type cells, both human and mouse TNF 
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Figure 18. Normal c-jun phosphorylation and Mcl-1 cleavage in hTNF-treated RbMI/MI cells 

(a) Human TNF induces c-jun phosphorylation in wild-type and RbMI/MI cells. Equal numbers of cells 

were treated with 10 ng/ml human TNF (hTNF) plus cycloheximide (CHX) for the indicated times and 

lysed in hot SDS sample buffer. Lysates were resolved by SDS-PAGE and phosphorylated c-jun was 

detected by immunoblotting. Tubulin was detected to confirm equal loading. (b) Human TNF- induced 

Mcl-1 degradation. Wild-type and RbMI/MI cells were treated with hTNF/CHX for the indicated times. 

Equal amounts of protein from whole cell lysates were resolved by SDS-Page and Mcl-1 was detected 

by immunoblotting. ∗ indicates a cross-reactive band 

 

 

induced DEVDase activity, while in RbMI/MI cells only mouse TNF caused a 

significant increase in DEVDase activity (Figure 19a). These results confirm that 

caspase-3 type effector caspases are rapidly and efficiently activated in hTNF-treated 

and mTNF-treated wild-type cells as well as mTNF-treated RbMI/MI cells, but not 

hTNF-treated in RbMI/MI cells. 

Effector caspase activation in the TNFR apoptosis pathway can be achieved 

via direct cleavage of caspase-3 (-6, -7) by caspase-8, or in a proteolytic cascade 

initiated by active caspase-9, which is itself activated by apoptosome-mediated 

oligomerization (Srinivasula et al. 1998; Rodriguez and Lazebnik 1999). Apoptosome 

formation is triggered by the release of cytochrome c from mitochondria, which can 

be induced by death receptors via caspase-8-mediated generation of truncated BID (Li 

et al. 1998; Luo et al. 1998). Truncated BID (tBID) translocates to the mitochondria 
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membrane and is thought to initiate cytochrome c release by promoting 

oligomerization of BAX or BAK (Desagher et al. 1999; Wei et al. 2001). In addition 

to cytochrome c, other pro-apoptotic factors like Omi/Hrta2 and Smac/Diablo are 

released from mitochondria (Kuwana and Newmeyer 2003). To test if the 

mitochondrial apoptosis pathway is impaired in RbMI/MI cells, TNF-induced release of 

cytochrome c and Smac was analyzed by immunoblotting of cytosolic cell extracts 

(Figure 19b). In wild-type cells, both human and mouse TNF induced release of 

cytochrome c and Smac into the cytosol. In RbMI/MI cells, only mTNF/CHX treatment 

caused cytochrome c and Smac release from mitochondria (Figure 19b). This result 

showed that the defect in the apoptosis response of hTNF-treated RbMI/MI cells occurs 

at the level of or upstream of mitochondria. 

To test, if tBid is generated in RbMI/MI cells, lysates from TNF-treated cells 

were analyzed for the presence of cleaved Bid (Figure 19c). A Bid cleavage fragment 

of the expected size could be detected in lysates from hTNF-treated wild-type cells 

and mTNF-treated wild-type and RbMI/MI cells, but not in RbMI/MI cells treated with 

human TNF. Thus, the cleavage of Bid in TNF-treated wild-type and RbMI/MI cells 

correlated with the release of pro-apoptotic factors from the mitochondria (Figure 19b, 

c), effector caspase activation (Figure 19a) and cell death (Chau et al. 2002) and 

Figure 22). This observation suggested impaired tBid generation as a possible cause 

for the apoptosis-resistance of RbMI/MI cells. 

 

2.2.4 In vitro analysis of cytochrome c release 

To confirm the correlation between tBid generation and cytochrome c release in wild-

type and RbMI/MI 3T3 cells, the capacity of cytosolic extracts derived from TNF-

treated cells to release cytochrome c was analyzed in an in vitro assay (outlined in 

Figure 20). Freshly isolated mouse liver mitochondria were incubated with cytosolic 

extracts and subsequently pelleted by centrifugation. The release of cytochrome c into 

the supernatant was detected by immunoblot analysis of supernatant and pellet 

fractions (Figure 21). Cytosolic extracts from hTNF-treated, but not untreated wild- 

type cells caused the complete release of cytochrome c from mitochondria into the 

supernatant after at least 3 hours of TNF/CHX treatment (Figure 21a, lanes +/+ 3, 5). 
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Figure 19. Differential response of wild-type and RbMI/MI cells to human and mouse TNF 

(a) Mouse but not human TNF induces DEVDase activity in RbMI/MI cells. Wild-type and RbMI/MI cells 

were treated with hTNF/CHX for 4 h. Equal amounts of protein from whole cell lysates were incubated 

with the fluorogenic caspase substrate Ac-DEVD-AMC for 30 min and fluorescence intensity was 

measured in triplicate samples. (b) Mouse but not human TNF induces release of cytochrome c and 

Smac from mitochondria in RbMI/MI cells. Wild-type and RbMI/MI cells were treated with hTNF/CHX for 

5 h. Equal amounts of protein from cytosolic extracts were resolved by SDS-Page and cytochrome c 

and Smac were detected by immunoblotting. (c) Mouse but not human TNF induces cleavage of Bid in 

RbMI/MI cells. Wild-type and RbMI/MI cells were treated as in (b). Equal amounts of protein from whole 

cell lysates were resolved by SDS-Page and Bid was detected by immunoblotting. 
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Figure 20. Outline of an in vitro cytochrome c release assay. 

Mitochondria were isolated from mouse liver and incubated with cytosolic extracts prepared from 

cultured cells. Following incubation, mitochondria and cytosol were separated and each fraction was 

analyzed for the presence of cytochrome c. 

 

 

In contrast, cytochrome c remained in the mitochondrial fraction after incubation with 

extracts from TNF-treated RbMI/MI cells. The addition of recombinant truncated Bid 

,termed NC-Bid (Kuwana et al. 2002), to the reaction was sufficient to induce 

cytochrome c release in the presence of RbMI/MI cell extracts (Figure 21b, MI/MI 

lanes), consistent with the notion that the lack of tBid causes the absence of 

cytochrome c release in RbMI/MI cells.  

Moreover, titration of the cytochrome c release capacity of NC-Bid in the 

presence of extracts from hTNF-treated RbMI/MI cells and untreated wild-type cells 

showed that there is no specific inhibitory activity in RbMI/MI cells (Figure 21b, MI/MI 

vs. +/+ lanes). Finally, extracts from TNF-treated wild-type cells were able to 

efficiently induce cytochrome c release from mitochondria isolated from RbMI/MI mice 

(Figure 21c, MI/MI mito), excluding the possibility that a mitochondrial defect 

prevents cytochrome c release in TNF-treated RbMI/MI cells. Taken together, these 

results confirm the notion that in RbMI/MI cells cytochrome c is not released in response 

to hTNF, because no truncated Bid is generated.  



Results 

  50 

Figure 21. In vitro analysis of cytochrome c release 

(a) Cytosolic extracts from hTNF-α-treated wild-type but not RbMI/MI cells induce cytochrome c release 

from mitochondria in vitro. Wild-type and RbMI/MI cells were treated with hTNF/CHX for the indicated 

times. Cytosolic extracts were prepared and incubated with mouse liver mitochondria for 45 min. 

Mitochondria were pelleted by centrifugation and supernatants and pellets analyzed for cytochrome c 

by immunoblotting. B, buffer (b) Recombinant truncated Bid (NC-Bid) can restore cytochrome c 

release activity in cytosolic extracts from hTNF-treated RbMI/MI cells. Wild-type and RbMI/MI cells were 

treated with hTNF/CHX for 3 h in the presence of the indicated concentrations of NC-Bid and analyzed 

for cytochrome c releasing activity as in (a). (c) Mitochondria from RbMI/MI mice release cytochrome c 

in the presence of cytosolic extracts from hTNF-α-treated wild-type cells. Wild-type cells were treated 

with hTNF/CHX for the indicated times. Cytosolic extracts were incubated with mitochondria isolated 

from wild-type (+/+ mito) or RbMI/MI (MI/MI mito) mice. Cytochrome c release was analyzed as in (a). 
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2.2.5 TNF dosage effects in RbMI/MI cells 

The analysis of mTNF-treated RbMI/MI cells had shown that RbMI/MI cells are 

principally capable of cleaving Bid to induce mitochondria permeabilization (Figure 

18b, c). Titration of TNF over a wide range of concentrations indicated that apoptosis 

could be triggered in RbMI/MI cells by high concentrations of TNF (Figure 22a). While 

RbMI/MI cells were resistant to 10 ng/ml hTNF, a ten-fold higher dose induced cell 

death in almost 60% of RbMI/MI cells compared to nearly 80% in wild-type cells 

(Figure 22a). This observation suggests that TNF concentration, sensed via the 

number of ligated TNF receptors per cell, can qualitatively alter the cellular response 

to TNF. 

Upon ligand binding, TNF receptors are internalized by vesicle-mediated 

endocytosis. Interestingly, the TNF-induced internalization of TNFR1 was recently 

shown to be a pre-requisite for the induction of apoptosis by TNF (Schneider-Brachert 

et al. 2004). Altered membrane dynamics at low temperatures allow binding of TNF 

to its receptor, but prevent receptor internalization, thus leading to the accumulation of 

ligand-receptor complexes on the cell surface. When TNF-receptor triggering was 

synchronized by this pre-loading of TNF receptors, the dose response curve for TNF-

induced death at 37°C was shifted to lower concentrations in both wild-type and 

RbMI/MI cells (Figure 22b): for wild-type cells the death curve now already nearly 

reached a plateau at 10 ng/ml hTNF. In RbMI/MI cells, ca. 30 ng/ml hTNF were enough 

to induce about 75% of the cell death level seen in wild-type cells after synchronized 

triggering of pre-loaded receptors. Consistently, synchronized TNFR activation 

induced effector caspase activity in both wild-type and RbMI/MI cells (Figure 22c), 

while RbMI/MI cell extracts had been devoid of caspase activity after treatment with 

low doses of hTNF (Figure 19a). Activation of caspase-3 by synchronized TNFR 

triggering could also be detected in both wild-type and RbMI/MI cells by substrate 

affinity labeling. To this end, cell lysates were incubated with biotin-z-VAD-fmk in 

vitro. Active caspase-3 irreversibly binds to biotin-z-VAD-fmk and can be 

precipitated with streptavidin-conjugated sepharose and detected by immunoblotting 

(Figure 19d). Both assays indicated that effector caspase activation in RbMI/MI cells by 

synchronized TNFR-triggering did not reach wild-type levels. 

 

 



Results 

  52 

Figure 22. Mitochondria-mediated apoptosis is induced by synchronized activation of TNF receptors in 

RbMI/MI cells 

(a) Protection from cell death is dose dependent in RbMI/MI cells. Wild-type and RbMI/MI cells were 

treated with the indicated doses of hTNF/CHX for 24 h and cell death was quantified by analysis of PI 

uptake. (b) Synchronized TNF receptor triggering shifts TNF dose response curve. Cells were first 

incubated with the indicated doses of hTNF/CHX at 4°C for 90 min, then shifted to 37°C for 24 h. Cell 

death was analyzed as in (a). (c, d) Synchronized TNF receptor triggering induces caspase activation in 

RbMI/MI cells (c) Wild-type and RbMI/MI cells were pre-incubated with 33 ng/ml hTNF/CHX at 4°C for 90 

min, then shifted to 37°C for the indicated times. Caspase activity was measured with the fluorogenic 

substrate assay described in Figure 5. (d) Wild-type and RbMI/MI cells were first incubated with 33 ng/ml 

hTNF/ CHX at 4°C for 90 min, then shifted to 37°C for 5 h.  Lysates were incubated with biotin-z-

VAD-fmk and biotin-labeled active caspase-3 was precipitated with streptavidin-conjugated sepharose 

and detected by immunoblotting. (e) Synchronized TNF receptor triggering induces mitochondria-

dependent apoptosis in the presence of Rb-MI. Cells were treated as in (d). Rb was immunoprecipitated 

from whole cell lysates and detected by immunoblotting. Whole cell lysates were analyzed for Bid; 

cytosolic extracts were analyzed for cytochrome c (cyt c) and Smac. ∗ indicates an Rb fragment 

resulting from an unknown cleavage event.  
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Analysis of RbMI/MI cell lysates after high dose or synchronized TNF treatment 

confirmed that death was induced via the mitochondria apoptosis pathway (Figure 

22d): truncated Bid was detected and Smac and cytochrome c appeared in the 

cytosolic fraction. Importantly, after the same treatment, intact Rb-MI protein could 

be detected after immunoprecipitation from whole cell lysate (Figure 22d). The 

observation that apoptosis under this condition proceeded slower in RbMI/MI cells than 

in wild-type cells (Figure 19 and 22) is consistent with the notion that induction of 

apoptosis in RbMI/MI cells after high dose or synchronized TNF treatment was not due 

to degradation of Rb-MI, but proceeded despite an inhibitory effect of Rb-MI.  

Taken together, these results suggested that the mitochondria apoptosis 

pathway, which is induced by hTNF in wild-type fibroblasts, is intact in RbMI/MI cells 

and can induce cell death. However, the threshold for activation of the mitochondria 

pathway in response to TNF was considerably higher in RbMI/MI cells than in wild-type 

cells. Thus, apoptosis of RbMI/MI cells required a stronger death stimulus. In the case of 

TNF signaling, signal strength is apparently determined by the number of TNF 

receptors triggered simultaneously on one cell. The crucial point for activation of the 

mitochondrial apoptosis pathway in RbMI/MI cells seemed to be the induction of 

caspase-8 mediated Bid cleavage.  

To test, if caspase-8 activity was impaired in Rb-MI cells, IETDase activity 

was measured in hTNF-treated RbMI/MI cell extracts using the fluorogenic substrate 

Ac-IETD-AFC (Figure 23). Indeed, human TNF induced IETDase activity in wild-

type, but not in RbMI/MI cells (Figure 23a). In contrast, mouse TNF induced IETDase 

activity in cells of both genotypes. When cells were treated with high doses of TNF 

following a 4°C pre-incubation, hTNF-induced IETDase activity was observed in both 

wild-type and RbMI/MI cells (Figure 23b). Thus, induction of IETDase activity 

correlated with the generation of tBid and induction of caspase-3 activity (Figure 

18b), suggesting that insufficient caspase-8 activation in hTNF treated RbMI/MI cells 

prevents tBid-induced activation of the mitochondria apoptosis pathway. Analysis of 

caspase-8 activation via affinity labeling proved unfeasible, most likely because the 

concentration of active caspase-8 molecules was below the detection limit of the 

assay. 
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Figure 23. IETDase activity in TNF-treated wild-type and RbMI/MI cells  

(a) IETDase activity in TNF-treated wild-type and RbMI/MI cells. Cells were incubated with 10 ng/ml 

hTNF plus CHX. For each time point, equal amounts of protein from whole cell lysates were incubated 

with the fluorogenic caspase-8 substrate Ac-IETD-AFC for 30 min and fluorescence intensity was 

measured. The fold increase in IETDase activity was determined compared to untreated control cells. 

(b) Synchronized TNF receptor triggering induces caspase-8 activation in RbMI/MI cells. Wild-type and 

RbMI/MI cells were first incubated with 33 ng/ml hTNF plus CHX at 4°C for 90 min, then shifted to 37°C 

for the indicated times. For each time point, the fold increase in IETDase activity was determined as in 

(a) 

 

 

2.2.6 Effect of caspase inhibition on TNF response in wild-type 

and RbMI/MI cells 

To complement the results of the in vitro caspase activity assays, the effect of peptide 

caspase inhibitors on TNF-induced cell death in vivo was analyzed. Synthetic peptide 

substrates function as irreversible inhibitors of caspase enzymes if they are modified 

with a fluoromethylketone (fmk) group. The fmk group forms a covalent bond with 

the reactive cysteine in the active site of the caspase, thereby inactivating the enzyme. 

Members of the caspase family differ in their substrate preferences due to their 

different affinity to specific tetra-peptide sequences (Thornberry et al. 2000). 

Therefore, selected tetrapeptide substrates act as more or less specific inhibitors of 

caspase family members (Stennicke and Salvesen 1999) and can be used to assess the 

contribution of different caspases to an apoptotic response. The effect of caspase-8 

inhibitor (z-IETD-fmk), caspase-2 inhibitor (z-VDVAD-fmk) and the broad-spectrum 
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caspase inhibitor z-VAD-fmk (zVAD) on TNF-induced cell death is shown in Figure 

24. All three inhibitors reduced the levels of hTNF-induced death on wild-type cells 

(Figure 24a, +/+). zVAD had the most pronounced effect, which is consistent with its 

ability to inhibit caspase-8, -9 and -3. zVAD is a poor inhibitor of caspase-2 in vivo 

(Troy and Shelanski 2003). The combined application of caspase-2 inhibitor and 

zVAD could reduce cell death levels more than zVAD alone, suggesting a 

contributing role for caspase-2 in TNF-induced cell death in these cells.  

Surprisingly, caspase-8 inhibitor and z-VAD-fmk both sensitized RbMI/MI cells 

to apoptosis induced by human TNF (Figure 24a, MI/MI). Caspase-2 inhibitor had no  

effect alone, but seemed to increase cell death synergistically with zVAD. Taken 

together, these results indicate that both caspase-8 and caspase-2 are involved in the 

apoptosis response to TNF in wild-type cells. Under conditions of caspase-8 

inhibition, cell death in response to hTNF unexpectedly occurs in RbMI/MI cells. 

Treatment of cells with high dose of TNF following 4°C pre-incubation, did not 

change the effect of caspase-8 inhibitor and zVAD in wild-type cells (Figure 24b +/+). 

Since RbMI/MI cells are sensitive to high doses of hTNF, addition of caspase-8 inhibitor 

or zVAD did not significantly increase cell death under these conditions (Figure 24b, 

MI/MI). 

To see, if RbMI/MI cells, sensitized to hTNF/CHX treatment under conditions of 

caspase-8 inhibition, die in the presence of intact Rb-MI protein Rb-protein levels 

after hTNF/CHX and zVAD treatment were analyzed (Figure 24c). Rb-MI was stable 

after hTNF/CHX treatment, irrespective of the addition of zVAD (Figure 24c, 

MI/MI).  Surprisingly, addition of zVAD could not prevent hTNF-induced cleavage of 

wild-type Rb, but rather enhanced its degradation (Figure 24c, +/+). This result is in 

contrast to the ability of zVAD to prevent Rb cleavage in vitro (Tan and Wang 1998), 

and indicates that in addition to effector caspases other proteases are activated by TNF 

in vivo, which, at least under conditions of caspase inhibition, are responsible for the 

elimination of Rb. As a control for the caspase inhibitory effect of zVAD, levels of 

cleaved Parp and Bid were analyzed in parallel. TNF-induced cleavage of Parp and 

Bid in wild-type cells was efficiently inhibited by zVAD (Figure 24c, +/+).  
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Figure 24. Effect of caspase inhibitors on TNF–induced apoptosis 

(a) Caspase inhibition has diverse effect on TNF-induced cell death in wild-type and RbMI/MI cells. Cells 

were incubated with 10 ng/ml hTNF plus CHX and the indicated caspase inhibitors (D, DMSO control; 

8, z-IETD-fmk; 2, z-VDVAD-fmk; Z, z-VAD-fmk) for 16 h and cell death was quantified by flow 

cytometry analysis of propidium iodide (PI) uptake. (b) Synchronization of TNF receptor activation 

does not change the effect of caspase inhibition on TNF-induced cell death. Wild-type and RbMI/MI cells 

were first incubated with 33 ng/ml hTNF plus CHX and the indicated caspase inhibitors at 4°C for 90 

min, then shifted to 37C for 16 h. Cell death was analyzed as in (a). (c) Caspase inhibition prevents 

TNF-induced cleavage of Parp and Bid but not Rb degradation. Wild-type and RbMI/MI cells were 

incubated as indicated with 10 ng/ml hTNF plus CHX with or without z-VAD-fmk for 5 h. Rb was 

immunoprecipitated from whole cell lysates and detected by immunoblotting. Whole cell lysates were 

analyzed for Parp and Bid. (d) Cleavage of Parp and Bid after synchronized TNFR activation are 

inhibited by z-VAD-fmk. Wild-type and RbMI/MI cells were first incubated with 33 ng/ml hTNF plus 

CHX with or without z-VAD-fmk at 4°C for 90 min, and then shifted to 37°C for 5 h. Whole cell 

lysates were analyzed for Parp and Bid. 
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Moreover, the absence of Parp and Bid cleavage in TNF/ZVAD treated RbMI/MI cells 

(Figure 24c, MIMI) suggests that these cells do not die by mitochondria-dependent 

apoptosis. After treatment with apoptosis-inducing doses of TNF following pre-

incubation, zVAD prevented cleavage of Parp and Bid in RbMI/MI cells as well as in 

wild-type cells (Figure 24 d). This inhibitory effect was not as complete as after low 

doses of TNF, most likely because caspase activity reached much higher levels. 

Again, RbMI/MI cells died after the combined treatment with hTNF/CHX and zVAD, 

while Parp and Bid cleavage were inhibited under these conditions (Figure 24d, last 

lane). Taken together, these results confirm the importance of caspase-8 activity for 

TNF induced apoptosis in wild-type and RbMI/MI cells. Under conditions of caspase 

inhibition, an alternative cell death pathway is activated in RbMI/MI cells. 
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3 Discussion 

Cellular proliferation and death are subject to intricate regulation at several levels. The 

commitment of a cell for replication, differentiation or apoptosis is the integrated 

response to multiple signals, which are received from the cells environment or are 

generated within the cell itself. One important mode of regulating the process of 

apoptosis is transcriptional and post-translational control of pro- and anti-apoptotic 

proteins by cell death and survival signaling pathways. In addition, recent evidence 

suggests that the apoptotic core machinery - the proteolytic caspase activation cascade 

- can be inherently controlled by the cleavage of effector caspase substrates (Chau and 

Wang 2003). The expression of caspase-cleavage resistant variants of certain key 

caspase substrates, including RIP, IKK and the Retinoblastoma protein, has been 

shown to protect cells from efficient caspase activation during death receptor-induced 

apoptosis (Lin et al. 1999; Tang et al. 2001; Chau et al. 2002), suggesting that 

cleavage of these substrates regulates an important positive feedback loop in this 

pathway (described in Figure 25). 

A role for RB in the inhibition of apoptosis was first suggested by the 

phenotype of Rb-deficient mice and is now supported by many lines of evidence 

(Harbour 2000; Chau and Wang 2003). Thus, the Rb protein has an intriguing dual 

role in the control of cellular proliferation, as an inhibitor of both cell growth and 

death. While the pathway of RB-mediated cell cycle regulation has been resolved, the 

mechanism of apoptosis suppression by RB is not fully understood. There is ample 

evidence that Rb suppresses apoptosis during embryonic development by controlling 

E2F1-regulated apoptotic gene expression (Tsai et al. 1998; Guo et al. 2001; Moroni 

et al. 2001; Muller et al. 2001; Simpson et al. 2001). In contrast, the role of E2F-

dependent suppression of apoptosis genes by Rb in developmentally mature cells 

remained unclear. Moreover, the fundamental question, whether the apoptosis 

suppressing activity of RB generally depends on the regulation of gene expression or 

if RB can act through a transcription-independent mechanism to inhibit apoptosis, has 

not been resolved. Finally, it remains to be elucidated if and how the growth and 

apoptosis suppressing activities of RB can be separately regulated.  
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Figure 25. Caspase-mediated amplification of a death receptor-generated apoptosis signal 

The activation of RIP and IKK by TNFR1 first activates an NF-κB-dependent survival pathway, which 

promotes the expression of anti-apoptotic proteins like IAPs. RB inhibits mitochondria 

permeabilization by an unknown mechanism. Receptor-activated initiator caspases activate amplifier 

caspases whose function is to inactivate regulatory proteins, such as RIP, IKK and RB. Inactivation of 

these key substrates by caspase cleavage leads to amplification of caspase activity and eventually to 

apoptotic cell death. 
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3.1 Rb-MI-dependent suppression of apoptosis in RbMI/MI 

fibroblasts 

In this study the mechanism of apoptosis suppression by caspase-resistant Rb (Rb-MI) 

was investigated in fibroblasts derived from RbMI/MI “knock-in” mice. In these cells, 

mutation of the conserved C-terminal caspase cleavage site prevented Rb-MI 

degradation in response to TNFR1 activation and specifically protected cells from 

TFNR1-induced apoptosis, indicating that Rb degradation is required for TNFR1 to 

activate apoptosis (Chau et al. 2002) and this work). Interestingly, Rb-MI was not 

protected from degradation after simultaneous activation of TNFR1 and TNFR2 and 

the loss of Rb-MI correlated with normal sensitivity to apoptosis in response to this 

stimulus. This phenotype provided an internal control for the identification of Rb-MI-

dependent changes in the apoptosis response of RbMI/MI cells.  

Significantly, in this model system, the growth suppressing activity of RB 

could be separated from the suppression of apoptosis: while cell cycle progression 

was unaffected in RbMI/MI fibroblasts, the presence of Rb-MI protected these cells 

from TNFR1-induced cell death. Thus, Rb-MI can at the same time be inactive as an 

inhibitor of cell cycle progression and active as an inhibitor of apoptosis, suggesting 

that these are independent activities, which may be regulated by distinct mechanisms. 

Further indication for a separate regulation of RB’s apoptosis suppressing function is 

provided by the spectrum of mutations in the RB pathway that are found in human 

malignancies. Genes involved in the RB-dependent growth suppression pathway, such 

as p16(INK4a) and cyclin D1 are frequently mutated in human cancers, while 

mutations in RB itself are rare (Sherr 1996). Intriguingly, in some tumors RB is 

expressed at a very high level and is at the same time inactivated by constitutive 

hyperphosphorylation. This suggests that the presence of RB confers a selective 

advantage during tumor development, if its growth suppressing function is turned of. 

This advantage may be the suppression of apoptosis, which might be selectively 

retained via site-specific phosphorylation. 

Assuming a separation of apoptosis and cell cycle regulation by RB, two 

possible mechanisms can be distinguished through which RB could carry out its 

opposing functions independently 1) RB might be able to specifically suppress cell 

cycle genes or apoptosis related genes via differential action on specific promoters; or 

alternatively, 2) apoptosis suppression by RB might be independent from 
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transcriptional regulation. To distinguish between these possibilities, a microarray 

analysis of TNF-treated RbMI/MI cells was conducted. Changes in the expression of 

apoptosis-related genes were compared after stimulation of TNFR1 by human TNF 

(associated with intact Rb-MI and cell survival) and stimulation of TNFR1 and 2 by 

murine TNF (leading to degradation of Rb-MI and cell death). This comprehensive 

analysis of TNF-induced changes in gene expression gave no indication for the 

suppression of pro-apoptotic genes by Rb-MI. The same set of apoptosis-related genes 

was induced by TNF in cells that maintained active Rb-MI, and in those in which Rb-

MI was inactivated upon TNF treatment (Figure 17). This result suggests, that Rb-

dependent changes in gene expression cannot account for the protection of RbMI/MI 

cells from TNF-induced apoptosis. 

3.2 Post-transcriptional suppression of mitochondri al 

apoptosis by Rb-MI 

The normal gene expression profile of TNF-resistant RbMI/MI cells indicated that RB 

can function as a post-transcriptional regulator of apoptosis. To identify possible 

execution points for the anti-apoptotic activity of Rb-MI, a stepwise analysis of TNF-

induced activation of the mitochondrial apoptosis pathway was conducted in RbMI/MI 

cells. The analysis of caspase-3 processing and caspase-3 type protease activity 

showed that RbMI/MI cells were deficient in effector caspase activation after TNFR1 

stimulation by human TNF (hTNF). This defect correlated with the absence of 

mitochondria permeabilization, since neither cytochrome c nor Smac could be 

detected in the cytosol of hTNF-treated RbMI/MI cells. Thus, in these cells, TNFR1-

induced activation of effector caspases depended on cytochrome c release from the 

mitochondria and apoptosome-formation. The requirement for mitochondria 

permeabilization in death receptor induced apoptosis has been reported previously for 

a number of cell types classified as “type II cells” based on this phenotype (Scaffidi et 

al. 1998). Mitochondria-mediated caspase activation by death receptors is achieved 

via cleavage of Bid by caspase-8 (Li et al. 1998; Luo et al. 1998). The resulting 

truncated Bid, known as tBid, translocates to the mitochondrial membrane where it 

initiates changes in membrane permeability via interaction with BAX or BAK 

(Desagher et al. 1999; Wei et al. 2001).  

In correlation with the absence of cytochrome c and Smac release from 

mitochondria, no tBid could be detected in hTNF-treated RbMI/MI cells. Consistently, 
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cytosolic extracts from these cells were devoid of cytochrome c releasing activity in 

an in vitro assay. Complementation of non-release-inducing extracts from hTNF-

treated RbMI/MI cells with recombinant cleaved Bid was sufficient to confer normal 

cytochrome c release activity, indicating that the susceptibility to BH3 protein-

induced changes in membrane permeability is not altered in RbMI/MI cells. Thus, the 

expression of Rb-MI does not seem to affect the ratio of BAX/BAK proteins and 

BCL-2 proteins. Moreover, the capability of recombinant cleaved Bid to induce 

cytochrome c release from mitochondria isolated from RbMI/MI mice, confirmed that 

the defect in the TNF response of RbMI/MI cells does not lie within the mitochondria. 

Taken together, these results are consistent with the notion that impaired tBid 

generation was responsible for cytochrome c release deficiency and absence of 

mitochondria-mediated apoptosis in hTNF-treated RbMI/MI cells.  

Impaired tBid generation, in turn, may be the result from insufficient caspase-8 

activation. Indeed, in an enzymatic assay, caspase-8 like protease activity could be 

detected in hTNF-treated wild-type, but not RbMI/MI cells. However, even in wild-type 

cells, levels of active caspase-8 were too low to be detected by in vivo affinity 

labeling, which prevented a direct comparison of caspase-8 activity in wild-type and 

RbMI/MI cells. Thus, the possibility of impaired caspase-8 activation in RbMI/MI cells 

awaits further proof. Interestingly, RbMI/MI cells remain sensitive to DNA damage-

induced apoptosis, although the Rb-MI protein is maintained in this condition (Chau 

et al. 2002). This suggests that Rb-MI does not generally block the mitochondrial 

apoptosis pathway. Rather, the inhibition of mitochondria-dependent apoptosis seems 

to be a signal dependent effect, impeding, for instance, the TNFR1 signaling pathway. 

 Taken together, the results of the present study are consistent with the notion 

that Rb-MI inhibits an early, signal-specific step in mitochondria-mediated caspase 

activation. It had previously been shown that simultaneous stimulation of both TNFR1 

and TNFR2 by murine TNF (mTNF) induced cleavage and degradation of the Rb-MI 

protein and death of RbMI/MI cells (Chau et al. 2002). In this work, previous 

observations could be extended to support the notion that after degradation of Rb or 

Rb-MI, death of both wild-type and RbMI/MI cells is mediated by activation of the 

mitochondria apoptosis pathway. Stimulation of both TNFR1 and TNFR2 by mTNF 

induced cleavage of Bid, the release of cytochrome c and Smac from the 

mitochondria, and caspase activity. Thus, the inhibition of the mitochondria apoptosis 

pathway in RbMI/MI cells is relieved by the loss of Rb-MI (Table 2). This observation  
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 +/+ MI/MI  

 Rb tBid death Rb-MI tBid death 

hTNF low - + + + - - 

hTNF high - + + + + + 

hTNF low + zVAD - - - + - + 

hTNF high + zVAD ND (-) - - ND (+) - + 

mTNF - + + - + + 

 

Table 2. Summary of the effects of different TNF treatment conditions in wild-type and RbMI/MI 

fibroblasts (-, degraded/not observed; +, intact/observed, ND, not determined) 

 

 

confirms that the inhibition depends on the presence of Rb-MI and thus rules out the 

possibility that genetic changes were selected during the establishment of 

immortalized 3T3 RbMI/MI cell lines that prevent activation of mitochondrial apoptosis 

by TNF.  

Which segment of the mitochondria apoptosis pathway is affected by Rb-MI 

could be further defined by the observation that the resistance of RbMI/MI cells to 

TNFR1-induced apoptosis is not absolute, but depends on the strength of the stimulus, 

i.e. the dose and application scheme of TNF. Accumulation and simultaneous 

activation of pre-loaded TNFR1 receptor complexes was shown to activate the 

mitochondria apoptosis pathway in RbMI/MI cells (Table 2, hTNF high). This occurred 

without cleavage or degradation of Rb-MI. Thus, even the signal-dependent inhibition 

of TNFR1-induced apoptosis in RbMI/MI cells can be overcome without eliminating 

Rb-MI. In addition, TNFR1-induced activation of NF-κB and Jun/AP-1 signaling 

pathways was unimpaired in RbMI/MI cells. These results indicate that the initial signal 

transduction by activated TNFR1 is not impaired in RbMI/MI cells. TNFR1 is 

principally capable of inducing mitochondria-mediated apoptosis RbMI/MI cells, but the 

threshold for mitochondria-dependent caspase activation in response to TNF is higher 

than in wild-type cells. 

Taken together, the results from this study place the Rb-MI sensitive step of 

TNF-induced apoptosis between the formation of a TNF receptor signaling complex 

and caspase-8 mediated cleavage of the BH3-only protein Bid (Figure 26). Rb-MI 

seems to constitute a roadblock in the pathway for TNFR1-induced apoptosis 
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activation that can be removed by either inactivating Rb-MI – as during combined 

TNFR1 and TNFR2 signaling – or bypassing Rb-MI – as during synchronized TNFR1 

triggering - (Table 2).  

 

3.2.1 Role of nucleo-cytoplasmic signaling during T NF-induced 

apoptosis 

While survival gene expression has been shown to have a major impact on death 

receptor induced cells death, the regulation of death receptor induced apoptosis by 

nuclear signaling events that are independent from the regulation of gene expression 

may be unexpected. How Rb-MI in particular can interfere with the initiation of the 

mitochondria apoptosis pathway by the TNF receptor is not obvious. However, recent 

studies of apoptosis induction by TNFR1 revealed a multi-step pathway that can be 

subject to manifold modulation: caspase-8 activation by TNFR1 does not occur at the 

plasma membrane-associated DISC, but in a cytoplasmic complex, termed complex II 

(Micheau and Tschopp 2003). This complex forms only after a TRADD-based 

complex dissociates from the receptor and recruits FADD in the cytoplasm. FADD in 

turn recruits pro-caspase-8 to the complex, thus initiating caspase activation. 

Moreover, TNF-induced apoptosis induction has recently been shown to 

require internalization of ligand-bound TNFR1 (Schneider-Brachert et al. 2004). The 

same study indicated that caspase-8 and FADD associate with the receptor within a 

few minutes (Schneider-Brachert et al. 2004). Since this interaction was not detected 

by two similar studies (Harper et al. 2003; Micheau and Tschopp 2003) it is 

presumably transient or instable and may thus be insufficient for caspase-8 activation. 

The internalized TNF receptor is sorted into vesicles and eventually targeted for 

degradation in lysosomes (Schneider-Brachert et al. 2004). Thus, caspase-8 activation 

in a cytoplasmic complex, separated from the receptor might prevent caspase-

activating complexes from sharing the fate of receptors targeted for degradation.  

In summary, the activation of caspase-8 is uncoupled from receptor activation 

in a both spatial and temporal sense. Caspase activation and apoptosis are optional 

downstream events that seem to require post-translational modifications of death 

domain adaptor proteins (Micheau and Tschopp 2003). Thus, several steps required 

for TNF-induced caspase-8 activation might be subject to regulation by Rb-MI. For 

example, Rb-MI might sequester adaptor proteins like FADD in the nucleus, thereby 
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limiting their availability for complex formation and impeding the recruitment of 

caspase-8 to an activating signaling complex. Interestingly, both FADD and TRADD 

have been shown to shuttle between nucleus and cytosol (Morgan et al. 2002; Gomez-

Angelats and Cidlowski 2003; Screaton et al. 2003). Other steps that may be subject 

to control by Rb-MI are the sorting of internalized TNFR1 complexes into vesicles 

and the dissociation of adaptor proteins from the receptor (Figure 26). Rb-MI may 

inhibit enzymes responsible for post-translational modification of adaptor proteins 

involved in these processes, thereby regulating their localization or modulating their 

activity. Alternatively, Rb-MI might prevent interaction of active caspase-8 with Bid 

by controlling Bid localization or accessibility. Full-length BID has recently been 

reported to be associated with endosomal compartments in non-apoptotic cells, 

suggesting a non-random distribution of the protein (Heinrich et al. 2004). Consistent 

with a transcription-independent function, RB has been shown to interact with a 

plethora of different cellular proteins (Morris and Dyson 2001) and to regulate the 

activity of several kinases that are involved in apoptosis regulation, such as c-Abl 

(Wang 2000; Chau et al. 2004). 

In summary, the detailed analysis of apoptosis suppression in RbMI/MI 

fibroblast revealed a previously unrecognized function of RB as a post-transcriptional 

regulator of caspase activation and apoptosis. The data suggest that in RbMI/MI cells, 

mitochondria permeabilization during TNF-induced apoptosis signaling requires 

accumulation of caspase-8 activity or tBid levels, which is inhibited by Rb-MI. 

Presumably, once the critical level of caspase-8 activity or cleaved Bid is reached, the 

presence of Rb-MI does no longer interfere with the progression of apoptosis. This 

notion is consistent with the observation that RbMI/MI cells do not activate 

mitochondrial apoptosis in response to TNF as readily as wild-type cells, but are 

capable of activating this pathway in response to high levels of TNFR1 activity. The 

precise mechanism by which Rb interferes with caspase-8 function during TNF 

signaling remains to be elucidated. 
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Figure 26. TNFR1 activation of apoptosis is a multi-step process that requires internalization of ligand-

receptor complexes. RB presumably suppresses TNF-induced apoptosis by inhibiting one of several 

steps leading to TNFR1-induced caspase-8 activation and Bid cleavage.  

 

 

3.2.2 Caspase-independent cell death in TNF treated  RbMI/MI 

fibroblasts 

Consistent with the pivotal role of caspase-8 for TNFR1-induced apoptosis, TNF-

induced cell death of wild-type cells was sensitive to inhibition of caspase-8 and broad 

spectrum caspase inhibition by synthetic caspase inhibitors. Unexpectedly, inhibition 

of caspases sensitized RbMI/MI fibroblasts to TNFR1-induced cell death  (Table 2). The  

absence of Bid cleavage during this response suggested that under conditions of 

caspase inhibition an alternative cell death pathway is triggered in TNF-treated 
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RbMI/MI cells. Caspase activity has been shown to counteract the activation of non-

apoptosis cell death pathways (Lemaire et al. 1998; Los et al. 2002). Accordingly, 

inhibition of caspase activity promotes caspase-independent cell death pathways like 

necrosis or apoptosis-like programmed cell death. Surprisingly, the activation of a 

caspase-independent pathway was specific to RbMI/MI cells, since in wild-type cells, 

the inhibition of caspases protected cells from death. Moreover, the activation of a 

caspase-independent death pathway in response to hTNF, apparent by death in the 

absence of Bid cleavage, correlated with the presence of Rb-MI (Table 2).  

In summary, preliminary data suggest that Rb-MI may facilitate the activation of a 

caspase-independent cell death pathway and that this effect might be linked to the 

suppression of caspase-activity by Rb-MI. Further studies will be needed to shed light 

on this aspect of Rb-MI function. 

 

3.3 Constitutively active RB variants have contrast ing 

effects on the apoptotic response to different stim uli 

For the cellular response to TNF, the suppression of apoptosis could be separated 

from the growth suppressing activity of Rb (this work). On the other hand, the 

observation that cells arrested in G1/S are less sensitive to cell death in response to 

several stimuli (Meikrantz and Schlegel 1995) and the regulation of pro-apoptotic 

genes by the E2F family of transcription factors (Muller et al. 2001) suggested that 

Rb-E2F-dependent cell cycle arrest may be associated with a reduced sensitivity to 

apoptosis. Consistently, RB had been reported to promote cell cycle arrest and inhibit 

apoptosis in response to DNA damage (Knudsen et al. 2000). Thus, the question 

remained whether apoptosis and growth suppression by Rb are generally independent 

activities in developmentally mature cells and how both functions affect the apoptotic 

response to different death stimuli. To shed light on this question, Rb variants with 

constitutive growth suppressor function, resistance to caspases cleavage, or both, were 

analyzed in this work for their capacity to protect cells from different apoptotic 

stimuli. 
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3.3.1 Effect of PSM-RB induced growth arrest on apo ptosis 

The induction of cell cycle arrest by growth-suppressing RB variants had contrasting 

effects on cellular apoptosis responses (summarized in Figure 27). Cells arrested in 

G1 by CDK phosphorylation-resistant RB variants (PSM-RB and PSM-RB-MI) did 

not activate effector caspases as efficiently as proliferating cells in response to the 

DNA damaging agent doxorubicin (Figure 27a). PSM-RB expression inhibited the 

activation of caspase-3, but, although E2F binding sites are present in the caspase-3 

promoter (Muller et al. 2001), PSM-RB did not interfere with pro-caspase-3 

production. Thus, PSM-RB-dependent inhibition of caspase activation may be 

achieved either through the repression of other E2F-regulated apoptotic proteins, or 

alternatively, by a transcription-independent mechanism. The expression of WT-RB 

and RB-MI did not cause G1 arrest and did not affect doxorubicin-induced caspase 

activation. However, inhibition of doxorubicin-induced caspase activation was 

observed in serum-starved Rat-16 cells. These results are in agreement with the 

conclusion that G1 arrest, triggered by phosphorylation-resistant RB or growth factor 

deprivation is protective against DNA-damage-induced apoptosis.  

Despite the activation of caspases, doxorubicin-induced DNA damage did not 

induce acute cell death in Rat-16 cells, but caused the loss of clonogenic survival by 

the induction of permanent growth arrest. The reduction of clonogenic survival was 

unaffected by prior induction of PSM-RB variants, showing that RB-dependent 

growth arrest did not prevent the establishment of irreversible growth arrest by DNA 

damage. Similar to DNA damage, broad-spectrum kinase inhibition by staurosporine 

has been shown to induce either growth arrest or apoptosis through the mitochondria-

dependent intrinsic pathway (Li et al. 2000). Staurosporine-induced G1 arrest was 

shown to depend on Rb activity (Schnier et al. 1996; Orr et al. 1998; Chen et al. 

2000), implying that the induction of G1 arrest by PSM-RB variants might render 

cells less susceptible to staurosporine-induced cell death. However, the induction of 
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Figure 25. Constitutively active RB variants have contrasting effects on different cellular stress 

responses.  

(a) Doxorubicin primarily induces growth arrest, but also causes caspase activation in Rat-16 cells. 

PSM-RB and PSM-RB-MI inhibit doxorubicin-induced caspase activation. (b) Staurosporine induces 

rapid apoptosis in Rat-16 cells, irrespective of PSM-RB induced growth arrest. PSM-RB and PSM-RB-

MI are efficiently degraded during staurosporine-induced apoptosis. (c) Overproduction of PSM-RB 

and PSM-MI-RB augments TNF-induced apoptosis in Rat-16 cells, possibly by causing a replication 

stress response. 
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PSM-RB-induced growth arrest did not protect Rat-16 cells from staurosporine-

induced apoptosis (Figure 27b). In contrast to its effect on the DNA damage response, 

growth arrest induced by PSM-RB variants did not prevent caspase activation in 

response to staurosporine. These observations suggest that the cellular susceptibility to 

apoptosis does not generally depend on the cells capacity to establish growth arrest. 

 

3.3.2 Cell-cycle independent effects on apoptosis b y 

overexpression of RB variants 

TNF can induce TNFR1-dependent apoptosis (Micheau and Tschopp 2003; 

Schneider-Brachert et al. 2004) and caspase-independent necrotic death, mediated by 

oxidative stress (Los et al. 2002; Cauwels et al. 2003). In Rat-16 cells, TNF/CHX 

treatment resulted in necrotic cell death, which was not prevented by PSM-RB 

induced growth arrest. Surprisingly, induced expression of PSM-RB variants 

sensitized Rat-16 cells to TNF-induced caspase activation and apoptosis (Figure 27c). 

Unlike the inhibition of DNA-damage induced caspase activation, the sensitizing 

effect of PSM-RB expression occurred prior to the induction of G1/S arrest. 

Consistently, the PSM mutation was not required for sensitization. Interestingly, 

synchronization of Rat-16 cells in quiescence by serum starvation also enhanced TNF-

induced apoptosis, which was probably an effect of survival factor limitation. 

Induction of PSM-RB variants had no additive effect on the apoptosis 

sensitivity of serum-starved cells, indicating, that RB-dependent suppression of 

survival gene expression might be responsible for the sensitization to TNF-induced 

apoptosis. Alternatively, interference with replication fork movement, a function 

previously described for PSM-RB (Sever-Chroneos et al. 2001), might cause a 

replication stress response that enhanced the susceptibility to a second stress signal 

(Figure 27c). This notion was supported by the observation that aphidicolin-induced 

S-phase arrest augmented TNF-induced apoptotic DNA fragmentation in Rat-16 cells, 

which is consistent with a previous report that aphidicolin sensitized L929 

fibrosarcoma cells to TNF-induced apoptosis (Gera et al. 1993). In either case, 

sensitization to TNF-induced apoptosis by RB may be an effect that is unique to the 

non-physiological conditions of induced RB expression and may thus not reflect an in 

vivo function of RB. 
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 In contrast to observations in many other cell types, neither doxorubicin nor 

TNF caused significant RB degradation in Rat-16 cells. A minor fraction of wild-type 

and PSM-RB proteins was cleaved at the C-terminal caspase site during doxorubicin 

treatment, but overall levels of all RB variants were nearly unaffected, which is 

consistent with the induction of growth arrest and the absence of apoptosis under these 

conditions. Accordingly, mutation of the caspase cleavage site did not alter the effect 

of RB variants on the cells response to doxorubicin. Likewise, caspase-resistant RB 

variants had no specific effect on the TNF response in Rat-16 cells: the extent of 

sensitization to TNF induced apoptosis was comparable between PSM-RB and PSM-

RB-MI variants.  

The absence of RB degradation during DNA damage and TNF stimulation did 

not reflect a general incapacity of Rat-16 cells to degrade RB. This was evident by the 

rapid caspase cleavage and degradation of PSM-RB variants in response to 

staurosporine, which correlated with high levels of caspase activity and apoptosis. 

Mutation of the C-terminal cleavage site did not protect from staurosporine-induced 

apoptosis and was not sufficient to prevent PSM-RB degradation under these 

conditions. Cleavage of RB at additional sites has been previously observed during 

etoposide and TNF-induced apoptosis (Fattman et al. 2001; Chau et al. 2002). These 

signal-specific differences in RB degradation may be due to a context-dependent 

activation of a different spectrum of apoptotic proteases. The MI mutation has 

previously been shown to preserve Rb, but offer no protection during DNA damage-

induced apoptosis (Chau et al. 2002). Thus, C-terminal caspase cleavage is not 

required during staurosporine-induced apoptosis, either, because of equivalent 

cleavage at other sites, or because RB cleavage is a bystander effect in staurosporine 

and DNA damage-induced apoptosis pathways. Taken together, these results show 

that RB-dependent cell cycle arrest is not generally associated with resistance against 

apoptosis. In Rat-16 cell, PSM-RB induced G1/S arrest could inhibit DNA damage-

induced caspase activation, but did not affect caspase activation in response to 

staurosporine. RB expression sensitized Rat-16 cells to TNF-induced apoptosis 

independent from the induction of cell cycle arrest, this was possibly an effect of 

unphysiologically high RB expression levels after RB induction in these cells. 
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4 Summary 

The retinoblastoma tumor suppressor protein (RB) is a critical regulator of cell 

proliferation capable of inhibiting both cell cycle progression and apoptosis. While the 

pathway of RB-mediated cell cycle regulation has been resolved, the mechanism of 

apoptosis suppression by Rb remained largely elusive. RB is inactivated by CDK-

dependent phosphorylation in response to mitogenic signals and by caspase-dependent 

degradation during apoptotic cell death. Phosphorylation-resistant PSM-RB 

(phosphorylation site-mutated RB) is a strong inhibitor of proliferation, while caspase-

resistant RB-MI (RB mutated at ICE site) can protect cells from apoptosis.  

In the present work, the regulation apoptosis by RB was analyzed in two 

experimental systems: (I.) in Rat fibroblast cell lines harboring inducible expression 

of inactivation-resistant RB variants (phosphorylation resistant PSM-RB, caspase-

resistant RB-MI and PSM-RB-MI, in which both mutations were combined); (II.) in 

fibroblasts derived from transgenic RbMI/MI mice expressing caspase-resistant Rb-MI.  

Inducible expression of RB and inactivation-resistant RB variants in Rat fibroblasts 

had diverse effects on the cellular response to different cell death stimuli. RB-induced 

cell cycle arrest had an anti-apoptotic effect on DNA damage response, but did not 

affect staurosporine-induced apoptosis, indicating that RB-induced G1 arrest is not 

generally associated with apoptosis-resistance. RB expression sensitized Rat-16 cells 

to TNF-induced apoptosis independent from the induction of cell cycle arrest, 

possibly as an effect of unphysiologically high RB expression levels after RB 

induction in these cells. These results indicate signal-specific differences in apoptosis 

regulation by RB. For TNF-induced apoptosis of mouse fibroblasts the apoptosis 

suppressing activity of Rb-MI could be separated from its growth suppressing activity, 

which implies an independent regulation of RB’s two major functions. DNA 

Microarray analysis of TNF-induced gene expression in RbMI/MI cells gave no 

indication for the suppression of pro-apoptotic gene expression by Rb-MI. This 

observation implies that RB can function as a post-transcriptional regulator of 

apoptosis. The detailed analysis of the TNF-induced mitochondrial apoptosis pathway 

in RbMI/MI cells suggested that Rb-MI inhibits cleavage of the BH3-only protein Bid 

by inhibiting either caspase-8 activation or interaction of caspase-8 and Bid. These 

results revealed a previously unrecognized role of RB as a post-transcriptional 

regulator of caspase activation and apoptosis.  
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Zusammenfassung 

Dem Retinoblastoma Tumor Suppressor Protein (RB) kommt eine zentrale Rolle bei 

der Regulation zellulärer Proliferation zu, da es sowohl Zellteilung als auch Zelltod 

durch Apoptose inhibieren kann. Während der Signalweg der RB-vermittelten 

Zellzyklus-Regulation erforscht ist, blieb der Mechanismus zur Unterdrückung von 

Apoptose durch RB weitgehend ungeklärt. RB wird unter Einfluss von 

Wachstumsfaktoren durch CDK-abhängige Phosphorylierung inaktiviert und im 

Verlauf von Apoptose von Caspasen proteolytisch gespalten. Phosphorylierungs-

resistentes PSM-RB (phosphorylation site-mutated RB) hemmt die Zellteilung; 

Caspase-resistentes RB-MI (RB mutated at ICE site) kann Zellen vor TNF-induzierter 

Apoptose schützen.  

In dieser Arbeit wurde die Regulation von Apoptose durch RB in zwei 

experimentellen Systemen analysiert:  

I. in Ratten-Fibroblasten-Zellen mit induzierbarer Expression 

inaktivierungsresistenter  RB-Varianten ( PSM-RB, RB-MI und PSM-RB-MI, in 

dem beide Mutationen kombiniert wurden); 

II.  in Fibroblasten-Zellen, die aus transgenen RbMI/MI-Mäusen isoliert wurden, 

welche Caspase-resistentes Rb-MI exprimieren. 

Die induzierte Expression von RB und inaktivierungsresistenten RB-Varianten in 

Ratten-Fibroblasten-Zellen hatte einen unterschiedlichen Einfluss auf die zellulären 

Reaktionen auf verschiedene Apoptose-Stimuli. RB-induzierter Zellzyklus-Arrest 

hatte einen anti-apoptotischen Effekt auf die zelluläre Antwort auf DNA-Schäden, 

aber keinen Einfluss auf Staurosporin-induzierte Apoptose, was darauf schließen lässt, 

dass RB-induzierter G1-Arrest nicht grundsätzlich mit einer erhöhten Apoptose-

Resistenz verbunden ist. Die induzierte Expression von RB und RB-Varianten erhöhte 

die Sensitivität der Ratten-Fibroblasten-Zellen für TNF-índuzierte Apoptose, dieser 

Effekt ist möglicherweise auf die nach RB-Índuktion unphysiologisch hohe RB-

Konzentration in den Zellen zurückzuführen. Diese Ergebnisse weisen auf signal-

spezifische Unterschiede in der RB-abhängigen Apoptose-Regulation hin. 

 Für TNF-stimulierte Apoptose in Maus-Fibroblasten konnte eine Trennung der 

anti-apoptotischen Aktivität des Rb-MI-Proteins von seiner wachstumshemmenden 

Aktivität nachgewiesen werden, was auf unabhängige Regulation der beiden 

Hauptfunktionen von RB schließen lässt. Eine DNA-Mikroarray-Analyse TNF-
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induzierter Genexpression in RbMI/MI-Zellen ergab keinen Hinweis auf eine negative 

Regulation pro-apoptotischer Gene durch Rb-MI. Diese Beobachtung lies vermuten, 

dass RB Apoptose auf post-transkriptionaler Ebene regulieren kann. Die detaillierte 

Analyse des TNF-induzierten mitochondrialen Apoptose-Signalwegs in RbMI/MI-Zellen 

deutete darauf hin, dass Rb-MI die proteolytische Spaltung des BH3-Proteins Bid 

verhindert, entweder durch Inhibierung der Aktivierung von Caspase-8 oder durch 

Verhinderung der Interaktion von Caspase-8 und Bid. Diese Ergebnisse identifizierten 

einen zuvor unbekannten, post-transkriptionalen Mechanismus für die negative 

Regulation von Caspase-Aktivierung und Apoptose durch RB. 
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5 Materials and Methods 

5.1 Abbreviations and Symbols 

5.1.1 Abbreviations 

APS   ammonium persulfate 
aa   amino acid 
ATP   adenosine 5’-triphosphate 
bp   base pairs 

β-ME   β-mercaptoethanol 
BrdU   bromodeoxyuridine 
BSA   bovine serum albumin 
dH2O/ddH2O  distilled/double distilled water 
cDNA   complementary DNA  

CHAPS  3-[(3-cholamidopropyl)-dimethylammonio]-1-propanesulfonate 
DEPC   diethylpyrocarbonate 
DOX   doxorubicine 
DNA   deoxyribonucleic acid 
DNase   deoxyribonuclease 
dATP   deoxyadenosine 5’-triphosphate 
dGTP   deoxyguanosine 5’-triphosphate 
dNTP   deoxynuclueotide 5’-triphosphate 
DMEM  Dulbecco’s modified Eagle’s medium 
DMSO   dimethylsulfoxide 
DTT   1,4-dithiothreitol 
ECL   enhanced chemoluminiscence 
E. coli   Escherichia coli 
EDTA   ethylenediaminetetraacetate 

EGTA   ethyleneglycol-bis-(β-aminomethylether)-tetraacetate 
FACS   fluorescence-activated cell sorting 
FITC   fluorescein 
FBS   fetal bovine serum 
f.c.   final concentration 
fmk   fluoromethylketone 
HEPES  N-2-hydroxyethylpiperazine-N’-2-ethanesulfonic acid 
Hyg   hygromycin 
HRP   horseradish peroxidase 
IB   immunoblotting 
IP   immunoprecipitation 
IGF-1   insulin-like growth factor 1 
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IVT   in vitro transcription 
kDa   kilodalton 
LB   Luria Bertani 
M   molar 
MCS   multiple cloning site 
MES   morpholineethanesulfonic acid 
MWCO  molecular weight cut off 
OD   optical density 
PA   polyacrylamide 
PAGE   polyacrylamide-gel electrophoresis 
PBS   phosphate-buffered saline 
PCR   polymerase chain reaction 
pH   negative decadic logarithm of H+ ion concentration  
PIPES   piperazine-1,4-bis-(2-ethanesulfonic acid) 
PFA   paraformaldehyde 
PMSF   phenylmethylsulfonylfluorid 
PVDF   polyvinylidenfluorid 
RIPA   radio-immuno-precipitation assay 
RNA   ribonucleic acid 
RNase   ribonuclease 
rRNA   ribosomal RNA 
RT   room temperature 
SAPE   Streptavidin phycoerythrin  
S   Svedberg 
SDS   sodium dodecyl sulfate 
STS   staurosporine 
TE   Tris-EDTA 
TBE   Tris-borate-EDTA 
TBS   Tris-buffered saline 
TEMED  N,N,N‘,N‘-tetramethylethylendiamine 
TET   tetracycline 

TNF   tumor necrosis factor α 
Tris   tris-(hydroxymethyl)-aminomethane 
rpm   revolutions per minute 
U   enzyme activity unit 
UV   ultraviolett 
vol   volume 
v/v   volume per volume 
w/v   weight per volume 
z-   benzyloxycarbonyl- 
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5.1.2 Amino acid symbols  

 

A Ala  Alanine 

C Cys  Cysteine 

D Asp  Aspartic acid 

E Glu  Glutamic acid 

F Phe  Phenylalanine 

G Gly  Glycine 

H His  Histidine 

I Ile  Isoleucine 

K Lys  Lysine 

L Leu  Leucine 

M Met  Methionine 

N Asn  Asparagine 

P Pro  Proline 

Q Gln  Glutamine 

R Arg  Arginine 

S Ser  Serine 

T Thr  Threonine 

V Val  Valine 

W Trp  Tryptophan 

Y Tyr  Tyrosine 

 

5.1.3 Prefixes for measurement units 

 

k kilo-  103 

m milli-  10-3 

µ micro-  10-6 

n nano-  10-9 

p pico-  10-12 
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5.2 Materials 

5.2.1 Bacteria strains 

E. coli XL-1 Blue (Stratagene) 

5.2.2 Bacterial culture media and solutions 

Ampicillin stock solution: 50 mg/ml ampicillin in dH2O  

sterile filtered, stored at -20°C 

 

LB medium:   1%   w/v  Bacto tryptone 

    0.5%  w/v  Bacto yeast extract 

    170 mM NaCl 

 

LB plates:   LB medium + 1.5% agarose  

5.2.3 Plasmids and Plasmid constructs 

pTK-Hyg (BD Bioscience) 

pTRE (BD Bioscience) 

pTRE-based expression plasmids, obtained by subcloning of the following sequences  

into the pTRE vector via the BamH1 restriction site:  

pTRE-WT-RB: human RB cDNA  

pTRE-RB-MI:  RB-MI, described in (Chau et al. 2002)  

pTRE-PSM-RB:  PSM-RB, described in (Knudsen and Wang 1997) 

pTRE-PSM-RB-MI:  PSM-RB-MI, which was generated by subcloning a 

sequence containing the RB-MI mutation into pTRE-

PSM-RB. 

5.2.4 Cell culture media and solutions 

DMEM, high glucose, formulated with sodium pyruvate and L-glutamine (HyCult) 

FBS, heat inactivated (HyCult) 

G418, Hygromycin, Penicillin/streptomycin (Gibco) 

IGF-1 (Sigma) 

TET-free FBS, heat inactivated (HyCult) 

Trypsin-EDTA solution (Gibco) 
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5.2.5 Buffers and solutions 

5.2.5.1 Cell lysis and fractionation buffers 

 

HEPES buffer:    10 mM HEPES-KOH, pH 7.5 

  10 mM KCl 

 1.5 mM MgCl2 

    1 mM EDTA 

    1 mM EGTA 

 

HEPES saline:     10 mM HEPES-KOH, pH 7.5 

150 mM NaCl 

 

Hypotonic lysis buffer:   20 mM HEPES-KOH, pH 7.2 

  10 mM KCl 

 1.5 mM MgCl2 

    1 mM EDTA 

    1 mM EGTA 

 

Mannitol/sucrose buffer I: 210 mM mannitol 

  70 mM sucrose 

   10 mM HEPES, pH 7.5 

     1 mM EDTA 

   0.45 % BSA 

 

Mannitol/sucrose buffer II: 210 mM mannitol 

   70 mM sucrose 

   10 mM HEPES, pH 7.5 

  0.5 mM EDTA 

+ protease inhibitors 

 

Mannitol/sucrose buffer III: 210 mM mannitol 

  70 mM sucrose 

      10 mM HEPES-KOH, pH 7.4 

    5 mM Na2HPO4 

    4 mM MgCl2 

 0.5 mM EGTA 

    1 mM DTT 

+ protease inhibitors 
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Nuclear extract buffer:   20 mM HEPES-KOH, pH 7.2 

420 mM NaCl 

     25 % glycerol 

 1.5 mM MgCl2 

 0.2 mM EDTA 

 

PIPES/CHAPS buffer    20 mM PIPES, pH 7.2,  

    0.1 % CHAPS 

100 mM NaCl 

    10 % sucrose 

    2 mM EDTA 

    5 mM DTT 

 

RIPA buffer:     50 mM Tris-HCl, pH 7.4 

150 mM NaCl 

       1 % NP-40 (Igepal) 

  0.25 % sodium deoxycholate 

    0.1 % SDS 

 0.5 mM  EDTA 

    1 mM EGTA 

    1 mM DTT 

+ protease inhibitors 

 

5.2.5.2 Plasmid DNA isolation buffers 

 

Solution A (re-suspension):   50 mM Tris-HCl, pH 7.5 

      10 mM EDTA 

    100 µg/ml RNase A 

 

Solution B (lysis):  0.2 M  NaOH 

       1 %  SDS 

 

Solution C (neutralization): 1.32 M  potassium acetate, pH 4.8 

 

Column wash solution:  80 mM potassium acetate 

    8.3 mM Tris-HCl, pH 7.5 

      40 µM EDTA 

       55 %  ethanol 
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5.2.5.3 Miscellaneous buffers and solutions 

 

Acrylamide/bisacrylamide 30:1 

Chloroform/isoamylalcohol 24:1 

Ethidiumbromide 10 mg/ml 

Phenol/chloroform/isoamylalcohol 25:24:1 

 

DNA loading dye:    10 mM Tris-HCL, pH 8.0 

    100 mM EDTA 

    60 %  sucrose 

    0.05 %  bromphenol blue 

 

IFA buffer (FACS)     1 x  HEPES-KOH 

   4 %  FBS 

0.1 %  NaN3 

 

KCL buffer:   125 mM KCl, pH 7.4 

      10 mM HEPES-KOH 

        5 mM Na2HPO4 

        4 mM MgCl2 

     0.5 mM EGTA 

 

PBS:    137 mM NaCl 

     2.7 mM KCl 

      43 mM Na2HPO4 x 7 H2O, pH 7.4 

     1.4 mM KH2PO4 

 

4 % PFA/PBS   stored at -20 

 

 

TE buffer:   10 mM  Tris-HCl, pH 7.5 

      1 mM  EDTA, pH 8 

 

TAE buffer:   40 mM  Tris-acetate, pH 8 

      1 mM  EDTA 
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5.2.5.4 SDS-PAGE and Immunoblotting solutions 

 

Immunoblot transfer buffer:      48 mM Tris-HCl, pH 8.4 

         39 mM glycine 

    10-20 %  v/v methanol 

      0.04 %  w/v SDS 

 

Resolving gel buffer (4x): 1.5 M  Tris-HCl, pH 8.8 

    0.4 %  w/v SDS 

 

Stacking gel buffer (4x): 0.5 M  Tris-HCl, pH 6.8 

    0.4 %  w/v SDS 

 

Running buffer:    25 mM Tris-HCl, pH 8.3 

    190 mM glycine 

      0.1 %  w/v SDS 

 

SDS sample buffer (6x):  0.35 M  Tris-HCl, pH 6.8 

        30 %  v/v glycerol  

   10 %  w/v SDS  

  0.6 M  DTT 

0.012 % w/v bromphenol blue  

stored at -20 

 

TBS:      20 mM Tris-HCl, pH 7.5 

    150 mM NaCl 

 

TBST:    TBS + 0,1 % Tween20 

 

5.2.5.5 Buffers and solutions for microarray gene e xpression analysis  

DEPC-dH2O treatment with 0.1 mg/ml DEPC overnight, inactivation of 

DEPC by autoclaving (20 min) 

 

Hybridization buffer:  100 mM MES, pH 6.5 

          1 M [Na+] 
      20 mM EDTA 

    0.01 %  Tween 20 

sterile filtered, stored in the dark at 4°C  
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20 x SSPE:   3 M   NaCl 

    0.2 M  NaH2PO4 

    0.02 M  EDTA 

 

SAPE stain solution:   1 x  MES buffer 

    2 mg/ml Acetylated BSA  

10 µg/ml SAPE    

    stored in the dark at 4°C 

 

Stain buffer:   100 mM MES 

    0.1 M Na+ 

    0.05 %  Tween20 

filtered to 0.2 µm filter, stored in the dark at 4°C  

 

Non-stringent wash buffer:      6 x  SSPE 

 0.01 %  Tween2 

filtered to 0.2 µm filter 

 

Stringent wash buffer:  100 mM MES 

    0.1 M  Na+ 

    0.01 %  Tween20 

filtered to 0.2 µm filter, stored in the dark at 4°C  

 

5.2.5.6 Restriction digest buffers: 

NEB1: 10 mM bis-Tris-propane-HCl, 10 mM MgCl2, 1 mM DTT, pH 7.0 

NEB2: 10 mM Tris-HCl, 10 mM MgCl2, 50 mM NaCl, 1 mM DTT, pH 7.9 

NEB3: 50 mM Tris-HCl, 10 mM MgCl2, 100 mM NaCl, 1 mM DTT, pH 7.9 

NEB4: 20 mM Tris-acetate, 10 mM Mg acetate, 50 mM K acetate, 1 mM DTT,  

pH 7.9 

 

5.2.5.7 Other enzymatic reaction buffers 

DNA ligase buffer (NEB): 50 mM Tris-HCl, 10 mM MgCl2, 10 mM DTT, 1 mM 

ATP, 25 µg/ml BSA, pH 7.5 

PCR buffer for KOD hot start DNA polymerase (Novagen) 
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5.2.6 Antibodies 

5.2.6.1 Primary antibodies (given are standard dilu tions for IB) 

anti-Bid goat polyclonal (Biovision), 1:1000 

anti-BrdU mouse monoclonal, FITC-conjugated (BD Biosciences) 

anti-caspase-3 rabbit polyclonal  

(kind gift from Yuri Lazebnik, Cold Spring Harbour Laboratories), 1:500 

anti-caspase-8 AR-17 rabbit polyclonal  

(kind gift from Guy Salvesen, Burnham Institute, La Jolla), 1:10 000 

anti-cleaved caspase-3 rabbit polyclonal (Cell Signaling), 1:1000 

anti-cytochrome c mouse monoclonal (Pharmingen), 1:1000 

anti-Mcl-1 rabbit polyclonal (Santa Cruz), 1:1000 

anti-Parp rabbit polyclonal (Cell Signaling), 1:1000 

anti-phospho-c-jun rabbit polyclonal (Cell Signaling), 1:500 

anti-Rb rabbit polyclonal,  

raised against the C terminus (residues 768 – 928) of RB, 1:2000 

anti-SMAC/DIABLO (Chemicon), 1:500 

anti-TNFR1 (Santa Cruz), 1:250 

anti-TNFR1 agonistic (HyCult), 0.625 µg/ µl for receptor activation in vivo 

anti-TNFR2 agonistic (HyCult), 2.5 µg/ µl for receptor activation in vivo 

anti-tubulin goat polyclonal (Santa Cruz), 1:250 

 

5.2.6.2 Secondary antibodies 

AlexaRed-anti-rabbit (Molecular Probes), 1:500 

HRP-donkey anti-rabbit (Pierce),1:5000 

HRP-goat anti-mouse (Pierce), 1:5000 

HRP-rabbit anti-goat (Pierce),1:5000 

 

5.2.7 Caspase substrates and inhibitors  

Ac-IETD-AFC (Calbiochem) 

Ac-DEVD-AMC (Molecular Probes) 

z-VAD(OMe)-fmk, z-IE(OMe)TD(OMe)-fmk, z-VD(OMe)VAD(OMe)-fmk  

(R&D systems) 

 



Materials and Methods 

  85 

5.2.8 Enzymes 

E. coli DNA Ligase (Invitrogen) 

E. coli DNA polymerase I (Invitrogen) 

E. coli RNase H (Invitrogen) 

KOD hot start DNA polymerase (Novagen) 

RNase A (Invitrogen) 

SuperScript II reverse transcriptase (Invitrogen) 

T4 DNA polymerase (Invitrogen) 

 

Restriction enzymes were obtained from NEB. 

 

5.2.9 Miscellaneous reagents and materials 

Acetylated BSA solution, 50 mg/ml (Invitrogen) 

Bradford Protein assay (BioRad) 

DC-Protein assay (BioRad) 

DNA molecular weight standards: 1 kB ladder (NEB), 100 bp ladder (NEB) 

Doxorubicine (Sigma) 

dNTP stock solution, 10 mM (Invitrogen) 

ECL reagents (Pierce) 

Enzo BioArray™ RNA transcript labeling kit (Affymetrix) 

GeneChip eukaryotic hybridization control kit, containing control cRNA and  

control oligo B2 (Affymetrix) 

GeneChip T7-oligo(dT) promoter primer, HPLC purified (Affymetrix),  

(5’-GGCCAGTGAATTGTAATACGACTCACTATAGGGAGGCGG-(dT)24-3’) 

Herring sperm DNA (Promega) 

Protease inhibitor cocktail (Roche) 

Protein molecular weight standard: Precision plus pre-stained protein molecular 

weight standard (BioRad) 

PVDF membranes (Millipore) 

QIAquick PCR purification kit (QIAGEN) 

Recombinant human and mouse TNF-α (Peprotech) 

RNeasy Mini RNA purification kit (QIAGEN) 

R-phycoerythrin streptavidin (Molecular Probes) 
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Staurosporine (Calbiochem) 

SuperScript II system for cDNA synthesis (Invitrogen) 

Tetracycline (Sigma) 

Tris-Glycine pre-cast gels (Invitrogen) 

TRIzol reagent (Invitrogen) 

 

All other chemicals were obtained p.a. from Sigma or Fluka. 

 

5.3 Methods 

5.3.1 Transformation of E. coli 

Frozen stocks of E. coli cells were thawed on ice and incubated for 20 min with 

purified plasmid DNA. Cells were transfected by heat shock at 42°C for 45 sec. Cells 

were cooled on ice and directly plated onto LB agar plates containing 20 mg/ml 

ampicillin. 

5.3.2 Preparation of plasmid DNA from E. coli 

5.3.2.1 Miniprep 

1-3 ml aliquots of LB containing 50 µg/ml ampicillin (Amp-LB) were inoculated with 

individual E. coli colonies and grown at 37°C overnight with constant agitation. Cells 

were harvested by centrifugation for 1-2 min at 10 000 x g and resuspended in 200 µl 

solution A. Cells were lyzed by addition of 200 µl solution B and inverting the tube 4-

5 times. 200 µl of solution C were added and mixed by inverting the tube 4-5 times to 

neutralize the pH. Lysates were cleared by centrifugation at 10 000 x g for 5 – 15 min 

and processed using Wizard Miniprep columns (Promega) and a vacuum manifold. 1 

ml Wizard miniprep resin (Promega) was pipetted into each minicolumn. Cleared 

bacterial lysates were passed through the minicolumns by applying a vacuum to the 

manifold. Columns were washed with 2 ml of column wash solution and dried by 

drawing a vacuum for 30 s after the solution had passed the column. Minicolumns 

were then transferred to a microcentrifuge tube and centrifuged at 10 000 x g for 2 

min to remove residual wash solution. Columns were transferred to clean 

microcentrifuge tubes and DNA was eluted by incubation with 50 µl dH2O or TE 

buffer for 1 min and centrifugation at 10 000 x g for 20 sec. 
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5.3.2.2 Midiprep 

Starter cultures of 3-5 ml Amp-LB were inoculated with individual E. coli colonies 

and grown at 37°C for 7-9 h with constant agitation. 100 ml Amp-LB containing were 

inoculated from the starter culture (1:500) and incubated at 37°C for 12-16h with 

constant agitation. Cells were harvested by centrifugation at 6000 x g, 4°C for 15 min. 

The pellet was resuspended in 4-5 ml solution A and lysed by addition of 4-5 ml 

solution B. After addition of 4-5 ml solution C, the lysate was incubated for 10 min at 

RT and passed through a QIAGEN Midi column that had been equilibrated with 

buffer QBT (QIAGEN). Columns were washed with 10 ml buffer QC (QIAGEN) and 

eluted with 5 ml buffer QF (QIAGEN). DNA was purified by ethanol precipitation. 

5.3.3 Spectrophotometric quantification of nucleic acids 

The DNA or RNA concentration of a solution was determined by measuring the 

solution’s absorbance at 260 nm and calculating the concentration using the 

convention that one absorbance unit (OD260) equals a concentration of 50 µg/ml 

double-stranded DNA and 40 µg/ml single stranded RNA. 

5.3.4 Enzymatic manipulation of DNA 

5.3.4.1 Restriction digest of DNA 

Restriction digest of DNA was performed in a volume of 30-50 µl. A standard 

reaction contained: 

DNA (0.1-1µg/µl) 

1 x restriction buffer 1-4 (NEB) 

1-10 U restriction enzyme per µg DNA 

Reactions were incubated 1-3 h at 37°C for most enzymes. 

5.3.4.2 Dephosphorylation of DNA ends 

The 5’ phosphate group of DNA ends were removed to prevent re-ligation of 

linearized vectors. A standard reaction (30-50 µl) contained: 

50-100 ng/µl DNA  

1 x AP buffer (NEB) 

1 U bovine intestinal alkaline phosphatase (CIP) per pmol DNA  

Alternatively, CIP was added directly to the restriction digest reaction. Reactions were 

incubated for 1 h at 37°C. 
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5.3.4.3 Ligation of DNA ends 

A standard reaction (10 µl) contained: 

Vector and insert DNA in a molar ratio of 1:3 (together ca. 1µM DNA) 

1 x Ligase buffer (NEB) 

10 U T4 Ligase (NEB) 

Reactions were incubated 5 h to overnight at RT. 

5.3.4.4 Standard PCR amplification of DNA fragments  

A standard reaction contained: 

1 x PCR buffer (Novagen) 

0.2 mM dNTPs 

1 mM  MgSO4 

5 – 50 ng template DNA 

0.3 µM  5’ primer 

0.3 µM  3’ primer 

1 U  KOD hot start DNA polymerase (Novagen) 

KOD DNA polymerase was activated by heating for 2 min at 94°C and reactions 

incubated for 30 cycles of  

1 min at 94°C 

1 min at 52°C 

1.5 min at 72°C 

5.3.5 Isolation, purification and characterization of nucleic acids 

5.3.5.1 Agarose gel electrophoresis 

Depending on size, DNA or RNA was separated by electrophoresis on 0.8 -1 % 

agarose/TAE gels containing 2 µl ethidium bromide stock solution. Samples were 

diluted in DNA loading dye and gels were run in 1 x TAE buffer. Nucleic acids were 

detected under UV light. 

5.3.5.2 Ethanol precipitation 

For precipitation of DNA, 2 vol ethanol and 0.1 vol 3 M sodium acetate (pH 5.2) were 

added to the DNA solution and the mixture was incubated at -20 for 1 h to overnight. 

The precipitate was pelleted by centrifugation for 15 min at 10 000 x g. The DNA 

pellet was washed twice with 70 % ethanol, dried and resuspended in TE or dH2O. 
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5.3.5.3 Phenol/chloroform extraction 

To remove protein contamination from DNA solutions, an equal volume of 

phenol/chloroform/isoamylalcohol was added and dispersed by shaking the tube. 

Phases were separated by centrifugation for 10 min at 10 000 x g and the upper phase 

was transferred to a clean tube. An equal volume of chloroform/isoamylalcohol was 

added, the solution mixed and phases again separated by centrifugation. From the 

upper phase DNA was isolated via ethanol precipitation. 

5.3.5.4 Isolation of DNA fragments from agarose gel s 

DNA fragments were excised from agarose gels under UV light with a clean scalpel. 

Agarose slices were weight and 3 vol of buffer QG (QIAGEN)/1 vol gel were added.  

After 10 min incubation at 50°C, 1 gel vol isopropanol was added and the mixture 

applied to a QIAquick column and centrifuged for 1 min. DNA was washed with 

buffer PE (QIAGEN) and eluted with ddH2O or TE buffer. 

 

5.3.6 Construction of Rat-16 cell lines 

The pTRE-based WT-RB, PSM-RB, MI-RB and PSM-MI-RB expression plasmids 

were co-transfected with a pTK-Hyg plasmid in a molar ratio of 20:1 into Rat 16 cells, 

which were engineered to express the TET-VP16 fusion protein and provide tight 

regulation of TET-regulated gene expression. These cells were kindly provided by E. 

S. Knudsen (University of Cincinnati). Transfection was carried out when cells had 

reached 40-60 % confluence using Fugene transfection agent, according to the 

manufacturers protocol. Selection was started 48 h post transfection by the addition of 

hygromycin (200 µg/ml) to the culture media. After 10 days in selection media, 48 

single colonies from each transfection were picked using 4-5 µl trypsin-EDTA and a 

micropipette. Colonies were transferred to individual wells of 24 well plates and 

grown in selection media. After 16 days, cells were transferred to 6 well plates and 

grown to confluence. Clones were finally split and analyzed for RB expression by 

immunoblotting after 24 h culture in TET-free media. For each plasmid, several 

clones expressing wild-type or mutant RB were isolated and clones with comparable 

expression levels were selected for the present study.  
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5.3.7 Cell culture 

Rat-16 cell lines harboring inducible expression of WT or mutant RB were cultured in 

DMEM containing 10 % FBS, G418 (400 µg/ml), tetracycline (1 µg/ml), glutamine, 

penicillin and streptomycin. To induce RB expression, cells were washed three times 

in PBS and once in TET-free media and were then switched to TET-free media. 

Murine wild-type and RbMI/MI fibroblasts were cultured in DMEM containing 10 % 

FBS, glutamine, penicillin/streptomycin and 5 x 10-4 % β-ME. All cells were 

maintained at 37°C in 5 % CO2 in a standard cell culture incubator. 

5.3.7.1 Synchronization of cells in early S phase: 

For synchronization in early S phase cells were incubated in DMEM containing the 

following supplements: 

0.1 % FBS  for 72 h 

10 %  FBS  for 16 h 

APH 2 µg/ml for 10 h 

 

5.3.8 Clonogenic survival assay 

Cells were cultured for 24 h in the presence (uninduced) or absence (induced) of TET 

and subsequently treated with 2 µM doxorubicin for 24 h in the presence or absence 

of TET. Cells were washed and equal numbers of cells were seeded in 96 well plates 

in TET-containing media. After 7 days cells were stained with 0.1 % crystal violet in 

methanol and washed with PBS. From each well the dye was extracted with acetic 

acid and absorbance read at 500 nm. Untreated cells (100 % survival) were used to 

calculate the percentage of surviving docorubicin treated cells. 

 

5.3.9 Flow cytometry 

Flow cytometry analysis was performed using a BD FACS apparatus (BD 

Biosciences) and CellQuest acquisition and analysis software (BD Biosciences). Data 

was alternatively analyzed using FlowJow FACS analysis software. 

5.3.9.1 PI uptake assay for loss of membrane integr ity 

For labeling of dead or necrotic cells, cells were trypsinized, collected in PBS and 

sedimented by centrifugation at 1 000 rpm for 5 min. Cells were re-suspended in 500 

ml PBS containing 1 µg/ml propidium iodide (PI) per sample. Samples were filtered 
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and incubated 10 min at RT before analysis by flow cytometry. FSC (forward scatter) 

and FL2-H (PI peak height) channels were recorded counting 10 000 events. For each 

treatment condition, triplicate samples were analyzed from which the average 

percentage of PI positive cells was calculated.  

5.3.9.2 Cell cycle distribution and subG1 DNA conte nt analysis 

For cell cycle profile and subG1 DNA content analysis, cells were trypsinized, fixed 

in 70% ethanol overnight and stained with propidium iodide (20 µg/ml) in PBS plus 

RNase (40 µg/ml) for 30 min at RT in the dark. Samples were filtered and analyzed 

by flow cytometry recording FL2-A (PI peak area) and FL2-W (PI peak width) 

channels. Debris and cell clusters were excluded through a gate based on the FL2-A 

vs. FL2-W plot and 10 000 gated events were counted. 

5.3.9.3 BrdU incorporation analysis 

Cells were pulse labeled with BrdU (30 µg/ml), trypsinized and fixed in 70% ethanol 

overnight. Fixed cells were pelleted, resuspended in 2N HCL containing 0.2 mg/ml 

freshly dissolved pepsin and incubated 30 min at room temperature. Samples were 

neutralized with 3 ml 0.1 M sodium tetraborate, pH 8.5 and cells were washed once 

with IFA buffer, once with IFA, 0.5% Tween 20 and stained with a FITC-conjugated 

anti-BrdU antibody (diluted 1:5 in IFA) for 30 min at RT in the dark. Cells were 

washed once with 3 ml IFA, 0.5% Tween 20 and incubated with RNase and 

propidium iodide for 10 min at RT in the dark. Samples were filtered and analyzed by 

flow cytometry recording FL1-H (FITC peak height), FL2-A (PI peak area) and FL2-

W (PI peak width) channels. Life cells were gated based on the FL2-A vs. FL2-W plot 

and 10 000 gated events were counted. 

 

5.3.10 Immunofluorescence microscopy 

Cells were fixed with 4 % PFA/PBS and permeabilized with 0.1 % Triton X-100. 

Unspecific binding sites were blocked with 0.1 % normal goat serum (NGS)/PBS. RB 

was detected using a polyclonal antibody raised against the C-terminus (residues 768 

– 928) of RB, 1: 500 and AlexaRed goat anti-rabbit 1:500, both diluted in0.1 % 

normal goat serum (NGS)/PBS.  
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5.3.11 DNA microarray analysis of gene expression 

The entire procedure was performed following the manufacturers suggestions 

(GeneChip Expression Analysis Technical Manual, Affymetrix). All glassware was 

baked and dH2O was treated with DEPC to inactivate RNases. 

 

5.3.11.1 Isolation of total cellular RNA 

Cells were washed in PBS, scraped of the culture dish and sedimented by 

centrifugation. The pellet was resuspended in at least 0.5 ml TRIzol reagent 

(Invitrogen) per confluent culture dish and incubated 5 min at RT. 0.2 vol chloroform 

were added, the tube was shaken for 15 seconds and incubated for 2-3 min at RT. The 

phases were separated by centrifugation (12 000 rpm in a conventional 

microcentrifuge, 15 min) at 4°C. To the upper phase, 0.5 vol isopropanol were added, 

the mix incubated for 10 min at RT and centrifuged (12 000 rpm, 10 min, at 4°C) to 

precipitated RNA. The pellet was resuspended and washed once with 75 % ethanol 

and pelleted again by centrifugation (7 500 rpm, 5 min, 4°C). Dried pellets were 

resuspended in DEPC-treated dH20 or formamide. RNA was purified using the 

RNeasy Mini Kit spin columns (QIAGEN) according to the manufacturers 

instructions. RNA yield was quantified by spectrophotometric analysis. Between 5 

and 10 µg high-quality total RNA was used as a template for cDNA synthesis. 

5.3.11.2 Synthesis of double-stranded cDNA 

cDNA synthesis was carried out using the GeneChip T7 oligo(dT) promoter primer kit 

(Affymetrix) and SuperScript II reverse transcriptase (Invitrogen). The reaction 

contained for the first strand synthesis: 

T7-oligo(dT) primer  100   pmol 

RNA    5 -10 µg 

1x cDNA buffer 

dNTPs    500 µM each 

SuperScript II   200 U (added only before the last step) 

For primer hybridization, reactions were incubated at 70°C for 10 min, allowed to 

cool on ice and incubated at 42°C for 2 min for temperature adjustment. At this point, 

reverse transcriptase was added and the first strand synthesis reaction incubated at 

42°C for 1 h. 



Materials and Methods 

  93 

For second strand synthesis, the following was added to the first strand synthesis tube 

(given are resulting final concentrations): 

dNTPs    200 µM 

E. coli DNA Ligase  10 U 

E. coli DNA Polymerase I 40 U  

E. coli RNase H  2 U 

The second strand synthesis reaction was incubated at 16°C for 2 h. After addition of 

10 U T4 DNA polymerase the reaction was returned to 16 °C for 5 min before the 

reaction was stopped with 0.5 M EDTA. Cleanup of double stranded cDNA was 

performed via a standard phenol/chloroform extraction followed by ethanol 

precipitation using 0.5 vol of 7.5 M NH4OAc, 2.5 vol absolute ethanol (-20°C) and 1 

µl glycogen as a carrier. Precipitated cDNA was washed 2x with 80 % ethanol (-

20°C). The air-dried pellet was resuspended in 12 µl RNase-free dH2O. 

5.3.11.3 Synthesis of biotin-labeled cRNA  

Biotin-cRNA synthesis was performed through in vitro transcription using the Enzo 

BioArray RNA transcript labeling Kit (Affymetrix). 

The reaction contained: 

double stranded cDNA template 

1 x Biotin-labeled ribonucleotide mix 

1 x HY reaction buffer 

1 x DTT stock 

1 x RNase inhibitor mix 

1 x Enzo T7 polymerase 

and was incubated at 37°C for 6 h. The obtained cRNA was purified using the RNeasy 

Mini Kit spin columns (QIAGEN) according to the manufacturers instructions. 

Cleanup of biotin-labeled cRNA was performed using specific spin columns for 

GeneChip sample cleanup (Affymetrix) according to the manufacturers instructions 

and fragmented by incubation with fragmentation buffer (Affymetrix) at 94°C for 35 

min. Undiluted, fragmented biotin-cRNA was stored at -20°C until hybridization. 
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5.3.11.4 Target hybridization 

A hybridization cocktail for a single microarray contained: 

Fragmented biotin-c RNA  5 µg (0.05 µg/µl f. c.) 

control oligonucleotide B2  50 pM 

eukaryotic hybridization controls 

(bioB, bioC, bioD, cre)  1.5, 5, 25 and 100 pm, respectively 

herring sperm DNA   0.1 mg/ml 

acetylated BSA   0.5 mg/ml 

1 x hybridization buffer   

The hybridization cocktail was heated to 99°C for 5 min and equilibrated to 45°C for 

5 min and the probe array was pre-incubated with 1 x hybridization buffer at 45°C for 

10 min, before the hybridization cocktail was incubated with a MGU74A murine 

genome probe array at 45°C in a rotisserie oven for 16 h. 

5.3.11.5 Probe array wash and stain 

MGU74A probe arrays were washed and stained using a microarray fluidics wash and 

stain station following the following protocol: 

10 cycles of 2 mixes/cycle with non-stringent wash buffer at 25°C 

4 cycles of 15 mixes/cycle with stringent wash buffer at 50 °C 

Staining for 30 min in SAPE solution at 25°C 

10 cycles of 4 mixes/cycle with non-stringent wash buffer at 25°C 

5.3.11.6 Probe array scan 

Probe arrays were scanned with a microarray scanner controlled by Affymetrix 

Microarray Suite software. Each complete probe array image was stored in a separate 

data file. The image was analyzed for probe intensities by the Affymetrix Microarray 

Suite software. Results were reported in tabular and graphical formats; the array 

images allowed a quality analysis of hybridization and scan, e.g. the absence of blank 

spots or scratches, the labeling of all control oligos and a homogeneous distribution of 

signal intensities. 

5.3.11.7 Statistical analysis of gene expression da ta 

Normalization of gene expression values was performed using dChip software (Li and 

Hung Wong 2001; Li and Wong 2001). Intensity values were normalized against a 

probe array with medium average intensity. Significant changes in gene expression 

were identified using Significance analysis of Microarrays (SAM) software (Tusher et 
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al. 2001). Details of the SAM procedure are given in “SAM - User guide and 

technical document”, available at http://www-stat.stanford.edu/˜tibs/SAM. Data was 

analyzed using the SAM algorithm for a two-class, unpaired response. 

 

5.3.12 Preparation of cell lysates 

Whole cell lysates were generally prepared on ice using RIPA buffer and sonication. 

Lysates were clarified by centrifugation (13 000 rpm, 15 min) at 4°C and protein 

concentration was determined using the DC-Protein assay (BioRad). 

 

5.3.13 Isolation of fractionated cell extracts 

Cells were resuspended in hypotonic lysis buffer and incubated 15 in on ice. To break 

up the cells they were passed 5 times through 22.5 gauge needle or sheared with 5 – 

10 strokes with a loose (type B) pestle. Trypan blue staining was performed to check 

for outer membrane disruption. Nuclei and heavy membranes were pelleted by 

centrifugation (13 000 rpm, 15 min, 4°C). The supernatant was collected as cytosolic 

fraction. The pellet (nuclear and heavy membrane fraction) was washed 1x with 

hypotonic lysis buffer, resuspended in nuclear extract buffer and lysed by sonication. 

Extracts were cleared by centrifugation (13 000 rpm, 15 min, 4°C). 

 

5.3.14 Isolation of mitochondria/heavy membrane fra ction from 

mouse liver  

The entire procedure (modified from Eskes et al., 1998, Cowling et al. 2002) was 

carried out on ice and in refrigerated centrifuges. 

One third to one half of a freshly isolated mouse liver was rinsed in PBS and 

homogenized with 15 strokes of a loose fitting (B type) pestle in 30 ml 

mannitol/sucrose buffer I. The homogenate was centrifuged for 6 min at 13 000 g. The 

pellet was dissolved in 20-30 ml mannitol/sucrose buffer I and centrifuged for 3 min 

at1 400 g. The supernatant was centrifuged for 3 min at 13 000 g to pellet the heavy 

membrane fraction containing mitochondria. This fraction was resuspended in 

mannitol/sucrose buffer II and centrifuged for 3 min at 13 000 g. The pellet was 

resuspended in mannitol/sucrose buffer II and used within 1 h of preparation. An 
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aliquot of the preparation was lysed in RIPA and protein concentration was 

determined using the DC-Protein Assay (BioRad). 

 

5.3.15 Determination of protein concentration 

Detergent compatible (DC)-Protein Assays (modified Lowry assay) or Protein Assays 

(modified Bradford assay) (BioRad) were performed in microtiter plates according to 

the manufacturers instructions. Samples were diluted 1:10 and reactions were set up in 

triplicate. For each reaction, absorbance at 595 nm (Protein Assay) or 750 nm (DC-

Protein Assay) was determined and the O.D. curve for serial dilutions (0.125 mg – 1 

mg) of a BSA standard solution was used to calculate protein concentrations.  

 

5.3.16 Caspase activity assay 

Cells were lysed in PIPES/CHAPS buffer and clarified by centrifugation. Protein 

concentration was determined using the Protein Assay (BioRad) and 50 µg of total 

protein was incubated with 50 µM Acetyl-DEVD-7-amino-4-methylcoumarin (Ac-

DEVD-AMC) or Acetyl-IETD-7-amino-4-trifluoromethylcoumarin (Ac-IETD-AFC) 

for 15-30 min at 37° C. Fluorometric detection of AMC and AFC was performed in 

triplicates by excitation at 360 nm/emission at 460 nm (AMC) and excitation at 405 

nm/emission at 500 nm (AFC). 

 

5.3.17 Immunoblotting 

Usually, 50-100 µg of total protein were resolved by SDS-PAGE and transferred onto 

PVDF membranes. Membranes were blocked for at least 30 min in 5 % nonfat dry 

milk/TBST and incubated with primary antibodies diluted in 5 % nonfat dry 

milk/TBST (see paragraph 5.2.6 for dilution ratios) for 1 h (at RT) to overnight (at 

4°C). Membranes were washed 3-4 times for 10 min with TBST and incubated with 

HRP-conjugated secondary antibodies diluted in 5 % nonfat dry milk/TBST for 1-3 h 

at RT. After washing (3 x 10 min TBST), membranes were incubated with enhanced 

chemoluminiscence (ECL) reagent for 1-5 min and incubated with an 

autoradiographic film. Films were automatically developed.  



Materials and Methods 

  97 

5.3.18 Immunoprecipitation 

For immunoprecipitation of Rb, whole cell lysates were prepared by sonication in 

RIPA buffer. Lysates were cleared by centrifugation for 20 min at 10 000 x g. 1-2 mg 

of total lysate were used per sample. Sample volume was adjusted to 900 ml with 

RIPA buffer. 100 ml RIPA buffer containing 2-3 ml antibody and 40 ml protein A/G 

sepharose beads (50 % slurry in PBS) were added per sample and samples were 

incubated overnight at 4°C with constant rotation. Sepharose beads were pelleted by 

centrifugation and washed 1 x with RIPA + 0.5 M NaCl, 1 x with RIPA + 0.25 M 

NaCl, 2 x with RIPA and 1 x with PBS. Washed beads were boiled in SDS sample 

buffer for 15 min and pelleted by centrifugation. Supernatants were resolved on a 6-8 

% SDS-PA gel. 

 

5.3.19 Analysis of in vivo cytochrome c release by cell 

fractionation 

Cells were trypsinized, washed in PSB, resuspended in mannitol/sucrose buffer on ice 

and broken up by passage through a 22.5 gauge needle (ca. 15 times). Efficient 

rupture of plasma membranes was confirmed by trypan blue staining. Heavy 

membrane fractions (containing mitochondria) were pelleted by centrifugation (10 

min, 13 000 rpm) at 4°C. 100 µg of the supernatants was resolved on a 14% SDS-PA 

gel. Proteins were transferred on PVDF membranes in SDS free transfer buffer (20% 

methanol) for 1-1.5 h at 80-100 V and cytochrome c was detected by immunoblotting. 

 

5.3.20 In vitro cytochrome c release assay 

Freshly isolated liver mitochondria (ca. 1 µg/µl) were combined with cytosolic 

extracts from untreated or TNF-treated wild-type or RbMI/MI cells diluted in KCL 

buffer. Reactions were incubated for 45 min at 37°C under gentle agitation. 

Mitochondria were pelleted by centrifugation for 15 min at 10 000 x g at 4°C. One 

quart to one third of supernatants and pellets were separately analyzed for cytochrome 

c release by immunoblotting as described above. Supernatants were diluted with 

sample buffer directly, pellets were first resuspended in RIPA buffer, lysed by 

sonication and cleared by centrifugation for 10 min at 10 000 x g at 4°C. 
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