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Zusammenfassung

Wir betrachten das globale Optimierungsproblem, d.h. für eine reellwertige
und beschränkte Funktion f suchen wir eine Stelle x des Definitionsbereichs,
deren Funktionswert f(x) nahe dem Infimum inf f liegt. Wir untersuchen
den Fall, daß f eine d-variate, Lipschitz-stetige Funktion ist, die in einem
gewissen Sinne in der Nähe der globalen Minimalstelle(n) nicht zu langsam
wächst. Wir leisten zwei Beiträge:

• Wir zeigen, daß für eine optimale Methode Adaptivität notwendig ist
und daß Randomisierung (Monte Carlo) keine weiteren Vorteile bringt.

• Wir stellen eine Methode vor, die universell ist im folgenden Sinne:
Diese Methode hat die optimale Konvergenzrate auch in dem Fall,
daß weder die Lipschitzkonstante noch die übrigen Klassenparameter
bekannt sind.

Im folgenden werden wir detaillierter. Wir betrachten Funktionen

f : [0, 1]d → R,

die die folgenden zwei Eigenschaften haben:

1. Die Funktion f ist Lipschitz-stetig mit Lipschitzkonstante L > 0:

∀x, y ∈ [0, 1]d |f(x) − f(y)| ≤ L‖x− y‖∞.

Hier bezeichnet ‖ · ‖∞ die Maximumsnorm.

2. Sei λd das Lebesgue-Maß auf [0, 1]d. Für die Niveaumengen

A(f, δ) := {x ∈ [0, 1]d : f(x) ≤ inf f + δ}

existieren Konstanten %,D > 0, sodaß

∀ 0 ≤ δ ≤ % λd(A(f, δ)) ≤ D δd/2.
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iv ZUSAMMENFASSUNG

Wir sagen f ∈ F d
L,D,%. Wir erwähnen einige Merkmale dieser Problem-

klasse: Eine Funktion f ∈ F d
L,D,% kann mehrere Minimalstellen haben. Als

Glattheit wird nur Lipschitz-Stetigkeit gefordert. Weiterhin kann man zu
jeder zweifach stetig differenzierbaren Funktion, die an jeder von endlich vie-
len Minimalstellen eine positiv definite Hesse-Matrix hat, Parameter L,D, %
finden, sodaß f ∈ F d

L,D,%. Wir diskutieren die Problemklasse F d
L,D,% ausführlich

in Chapter 1.

Für F d
L,D,% schlagen wir zwei adaptive Optimierungsalgorithmen vor, die

wir in Chapter 2 vorstellen. Der erste findet Anwendung in der Situation,
daß die Lipschitzkonstante oder eine obere Schranke für sie bekannt ist. Die
beiden anderen Klassenparameter D und % fließen nicht in die Definition des
Algorithmus ein und brauchen nicht bekannt sein. Sie sind allerdings wichtig
für eine Abschätzung der Kosten.

Zusätzlich kann es vorkommen, daß auch für die Lipschitzkonstante keine
Information vorliegt. Dann ist unklar, welche Methode benutzt werden soll.
Von einem praktischen Standpunkt aus gesehen sind deshalb solche Algo-
rithmen von Interesse, die für viele Problemklassen gute Ergebnisse liefern.
Der zweite von uns vorgeschlagene Algorithmus kann auch dann angewendet
werden, falls wir keine Information über L haben. Tatsächlich konvergiert er
für alle stetigen Funktionen.

In Chapter 3 vergleichen wir unsere Algorithmen mit möglicherweise
besseren Algorithmen. Die Methoden, die wir dabei betrachten, haben zwei
wesentliche Merkmale:

1. Ein Algorithmus kann reelle Zahlen exakt verarbeiten und speichern.

2. Ein Algorithmus kann eine endliche Anzahl Funktionswerte benutzen,
d.h. er hat nur partielle Information über die Zielfunktion.

Wir unterscheiden zwischen adaptiven und nichtadaptiven Methoden, je nach-
dem, wie der Algorithmus die Auswertungsstellen bestimmt.

Eine grundlegende Frage in der Numerik ist, ob adaptive Methoden we-
sentlich besser sind als nichtadaptive. Um diese Frage zu beantworten, führen
wir zunächst die Begriffe Kosten und Fehler ein. Für einen Algorithmus A
definieren wir cost(A, F d

L,D,%) als die im worst case benötigte Anzahl Funk-
tionswerte, um für f ∈ F d

L,D,% eine Näherungslösung zu liefern. Gibt A
für f die Näherungslösung x zurück, so ist der funktionsweise Fehler mit
∆(A, f) := f(x) − inf f gegeben. Der Fehler ∆(A, F d

L,D,%) ist der worst case
Fehler für f ∈ F d

L,D,%. Die Fehlerzahlen

eadn (F d
L,D,%) := inf {∆(A, F d

L,D,%) : A ad. Meth., cost(A, F d
L,D,%) ≤ n},
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enon
n (F d

L,D,%) := inf {∆(A, F d
L,D,%) : A nichtad. Meth., cost(A, F d

L,D,%) ≤ n}
sind die Werkzeuge, um die obige Frage zu beantworten. Wir sagen, adaptive
Methoden sind wesentlich besser als nichtadaptive, falls

lim
n→∞

eadn (F d
L,D,%)

enon
n (F d

L,D,%)
= 0.

Wir zitieren einige bekannte Komplexitätsergebnisse in Section 3.2, insbeson-
dere für Klassen, die Ähnlichkeiten zu unserer haben. Für F d

L,D,% zeigen wir

eadn (F d
L,D,%) � n−2/d,

enon
n (F d

L,D,%) � n−1/d.

Insbesondere liefern also adaptive Methoden einen quadratischen speed-up
gegenüber nichtadaptiven.

Eine weitere grundlegende Frage in der Numerik ist, ob Randomisierung
(Monte Carlo) eine zusätzliche Verbesserung der Konvergenzrate ermöglicht.
Wir betrachten randomisierte Methoden und weisen nach, daß sie die Konver-
genzgeschwindigkeit nicht wesentlich erhöhen können.

Ein Hauptbeitrag dieser Arbeit beschäftigt sich mit Universalität. Wir
sagen, eine Methode A ist universell für eine Familie F von Problemklassen,
falls A für jede Klasse aus F die optimale Konvergenzrate hat. Wir zeigen,
daß unser zweiter Algorithmus universell ist für (F d

L,D,%). Weiterhin zeigen
wir, daß unser erster Algorithmus die optimale Konvergenzrate hat, falls die
Lipschitzkonstante bekannt ist.

Es scheint, daß das Thema Universalität in der globalen Optimierung
zuvor nicht betrachtet wurde. Die Artikel, die wir finden konnten und die
sich mit universellen Methoden beschäftigen, betrachten andere numerische
Probleme wie beispielsweise Integration, siehe auch Section 3.2.

Für unseren universellen Algorithmus nehmen wir in Chapter 4 ein heuris-
tisches fine-tuning vor. Dieses hat zwar keine Auswirkungen auf die theo-
retischen Ergebnisse, jedoch erhoffen wir uns Verbesserungen des nichtasymp-
totischen Verhaltens, das für eine Implementierung wichtig ist. Wir testen
verschiedene Versionen unseres universalen Algorithmus an einigen populären
Testfunktionen. Wir verwenden die Ergebnisse, um eine konkrete Version zu
empfehlen. Wir illustrieren die Funktionsweise dieser Version, indem wir die
Punktewahl für eine uni- und zwei bivariate Testfunktionen zu verschiedenen
Stadien der Approximation abbilden.

Wir schließen mit zwei Anwendungen des universellen Algorithmus, die
wir in Chapter 5 vorstellen. Wir überprüfen die Vermutung

diam M3 ≥
9

5
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für das Minkowski-Kompaktum M3. Unsere Ergebnisse bestätigen diese Ver-
mutung.

Weiterhin präsentieren wir ein Schema, wie der universelle Algorithmus
zum Beweis oberer Schranken mittlerer Fehler eingesetzt werden kann. Für
das Wiener-Maß ist das beste bekannte Ergebnis, daß der mittlere Fehler
eine obere Schranke von O(n−1/2) hat, wobei n die Anzahl der benutzten
Funktionwerte bezeichne. Wir benutzen den universellen Algorithmus, um
numerisch eine obere Schranke zu bestimmen. Die Resultate lassen vermuten,
daß der mittlere Fehler eine obere Schranke von O(n−1.93) hat.

Ich möchte allen danken, die mich bei dieser Arbeit unterstützt haben.
Mein besonderer Dank gilt Herrn Prof. Dr. Erich Novak für großzügig gegebe-
nen Rat und Hilfe. Herr Prof. Dr. James M. Calvin gab wertvollen Rat
zum Thema mittlere Fehler in der globalen Optimierung. Herr Dr. habil.
Aicke Hinrichs schlug vor, den universellen Algorithmus auf das Minkowski-
Kompaktum anzuwenden.



Contents

Zusammenfassung iii

Introduction 1

1 The function class F d
L,D,%

5

1.1 Properties of F d
L,D,% . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Admissible parameters . . . . . . . . . . . . . . . . . . . . . . 10

2 Optimization algorithms 15
2.1 The case of a known Lipschitz constant . . . . . . . . . . . . . 16
2.2 The case of an unknown Lipschitz constant . . . . . . . . . . . 20

2.2.1 A remark on computational cost and on storage re-
quirements . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 Optimality results 33
3.1 The concept of Information-Based Complexity . . . . . . . . . 33

3.1.1 The Unlimited Register Machine with an Oracle . . . . 34
3.1.2 Cost and error . . . . . . . . . . . . . . . . . . . . . . . 37
3.1.3 Error numbers . . . . . . . . . . . . . . . . . . . . . . . 38
3.1.4 Universality and tractablilty . . . . . . . . . . . . . . . 40

3.2 Some known complexity results . . . . . . . . . . . . . . . . . 40
3.3 Error bounds for F d

L,D,% . . . . . . . . . . . . . . . . . . . . . . 44
3.3.1 A lower error bound for adaptive methods . . . . . . . 44
3.3.2 Optimality and universality of the algorithms of Chap-

ter 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3.3 A lower error bound for non-adaptive methods . . . . . 46
3.3.4 A lower error bound for randomized methods . . . . . 48
3.3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 49

4 Numerical experiments 51
4.1 Algorithm versions . . . . . . . . . . . . . . . . . . . . . . . . 52

vii



viii CONTENTS

4.2 Test functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5 Applications 61
5.1 Banach-Mazur distance . . . . . . . . . . . . . . . . . . . . . . 61
5.2 Mean errors in global optimization . . . . . . . . . . . . . . . 64

5.2.1 Basic scheme . . . . . . . . . . . . . . . . . . . . . . . 64
5.2.2 The Wiener measure . . . . . . . . . . . . . . . . . . . 66
5.2.3 Numerical simulation . . . . . . . . . . . . . . . . . . . 68

Notations 77

Bibliography 79



Introduction

We study the global optimization problem, i.e., for a real-valued and bounded
function f we are interested in a point x of the domain whose function
value f(x) is close to the infimum inf f . We consider the case that f is
d-variate, Lipschitz, and, in a certain sense, does not increase too slowly in
a neighborhood of the global minimizer(s). We give two contributions:

• We show that for an optimal method adaptiveness is necessary and
that randomization (Monte Carlo) yields no further advantage.

• We present a method that is universal in the following sense: This algo-
rithm has the optimal rate of convergence even if neither the Lipschitz
constant nor any other function parameter is known.

Now we give more details. We consider functions

f : [0, 1]d → R

that fulfill the two following properties:

1. The function f is Lipschitz with constant L > 0:

∀x, y ∈ [0, 1]d |f(x) − f(y)| ≤ L‖x− y‖∞.

Here, ‖ · ‖∞ denotes the maximum norm.

2. Let λd be the Lebesgue measure on [0, 1]d. For the level sets

A(f, δ) := {x ∈ [0, 1]d : f(x) ≤ inf f + δ}

there exist constants %,D > 0 such that

∀ 0 ≤ δ ≤ % λd(A(f, δ)) ≤ D δd/2.

1



2 INTRODUCTION

We say f ∈ F d
L,D,%. We mention some features of this problem class: A func-

tion f ∈ F d
L,D,% can have several local and global minima. For smoothness

we only require Lipschitz continuity. Furthermore, for every twice continu-
ously differentiable function f with positive definite Hessian at each of finitely
many minimizers we can always find parameters L,D, % such that f ∈ F d

L,D,%.
We discuss the problem class F d

L,D,% in detail in Chapter 1.

For F d
L,D,% we propose two adative optimization algorithms, which we

present in Chapter 2. The first one fits to the situation that the Lipschitz
constant L or an upper bound of it is known. The class parameters D and %
are unimportant for the design of the algorithm and need not to be known.
They are important only for the cost estimation.

In practice, there is often no information about the Lipschitz constant,
either. Then, it is not clear which method should be used. Therefore, from
a practical point of view, an algorithm that yields good results for many
problem classes is of special interest. Our second algorithm can be applied
if neither L nor the parameters D and % are known. In fact, it converges for
every continuous function.

We compare our algorithms with possibly better algorithms in Chapter 3.
The algorithms we consider have two main properties:

1. An algrithm can store real numbers exactly and calculate with them
exactly.

2. An algorithm can use a finite number of function values, i.e., it has
only partial information about the objective.

We differ between adaptive and non-adaptive methods, depending on how
the evaluation points are determined.

A basic issue in numerics is to find out whether adaptive methods are es-
sentially better than non-adaptive ones. To answer this question we introduce
the notions of cost and error. For an algorithm A we define cost(A, F d

L,D,%) to
be the number of oracle calls a method A needs for f ∈ F d

L,D,% in the worst
case. Let x be the point that A returns for f . Then, the function-wise error
is given by ∆(A, f) := f(x)− inf f . The error ∆(A, F d

L,D,%) is the worst case
error for f ∈ F d

L,D,%. The error numbers

eadn (F d
L,D,%) := inf {∆(A, F d

L,D,%) : A ad. meth., cost(A, F d
L,D,%) ≤ n},

enon
n (F d

L,D,%) := inf {∆(A, F d
L,D,%) : A non-ad. meth., cost(A, F d

L,D,%) ≤ n}
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are the tools to decide the above question. We say that adaptive methods
are essentially better than non-adaptive ones if

lim
n→∞

eadn (F d
L,D,%)

enon
n (F d

L,D,%)
= 0.

We give some known complexity results in Section 3.2, in particular for classes
related to ours. For F d

L,D,% we show

eadn (F d
L,D,%) � n−2/d,

enon
n (F d

L,D,%) � n−1/d.

Hence we have a quadratic speed-up for adaptive methods.
Another issue of numerics is the question whether randomization (Monte

Carlo) can further improve the rate of convergence. We consider randomized
methods and see that they cannot yield any further essential improvement.

A main result of this work concerns universality. We say a method A is
universal for a family F of problem classes if for every F ∈ F the method
has the optimal rate of convergence. We show that our second method is
universal for (F d

L,D,%). We also show that our first algorithm has the optimal
rate of convergence if the Lipschitz constant is known.

It seems that the issue of universality in global optimization is new. The
only papers about universality we could find consider other numerical prob-
lems such as integration, see Section 3.2.

Once we have established the universality of our second method, we do
some heuristic fine-tuning, see Chapter 4. This tuning cannot improve the
theoretic results. However, we try to get a better non-asymptotic behavior,
which is important for implementation. We test several modifications of the
universal algorithm on some popular test functions. We use the results to
recommend the use of a particular version. To illustrate its performance, we
show how this version behaves for a one- and two bivariate test functions.

We close with two mathematical applications of our universal algorithm,
which we present in Chapter 5. We test the conjecture

diam M3 ≥
9

5

for the Minkowski compactum M3. Our results confirm this conjecture.
Furthermore, we present a scheme of how our algorithm may be applied

to prove upper bounds for mean errors. For the Wiener measure the best
known result is that the mean error has an upper bound of O(n−1/2) where
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n denotes the number of used function calls. We use our universal method
to determine an upper bound numerically. The result suggests that the error
has an upper bound of O(n−1.93).

I want to thank all those who supported me on this work. I especially
thank my supervisor Prof. Dr. Erich Novak for generous advice and support.
Prof. Dr. James M. Calvin gave valuable advice on mean errors in global
optimization. Dr. habil. Aicke Hinrichs suggested the application on the
Minkowski compactum.



Chapter 1

The function class F d
L,D,%

We consider the global optimization problem for objectives f : [0, 1]d → R

that have two properties:

1. The function f is Lipschitz with constant L > 0:

∀x, y ∈ [0, 1]d |f(x) − f(y)| ≤ L‖x− y‖∞. (1.1)

Here, ‖ · ‖∞ denotes the maximum norm.

2. Let λd be the Lebesgue measure on [0, 1]d. For the level sets

A(f, δ) := {x ∈ [0, 1]d : f(x) ≤ inf f + δ} (1.2)

there exist constants %,D > 0 such that

∀ 0 ≤ δ ≤ % λd(A(f, δ)) ≤ D δd/2. (1.3)

We say
f ∈ F d

L,D,%.

1.1 Properties of F d
L,D,%

We want to highlight some properties of F d
L,D,% and give some examples.

• For smoothness only Lipschitz continuity is required.

Example 1.1.1. The function g1 : [0, 1] → R linearly interpolates the
points

[
0,

3

2

]
,

[
1

6
, 0

]
,

[
1

3
, 1

]
,

[
1

2
, 0

]
,

[
5

6
,
2

3

]
,

[
11

12
,−1

3

]
, [1, 1],

5



6 CHAPTER 1. THE FUNCTION CLASS F d
L,D,%

-0.4

0

0.4

0.8

1.2

1.6

0 0.2 0.4 0.6 0.8 1
0

0.2

0.6

0.8

1

1.2

0 0.5 1 1.5 2 2.5

0.4

Figure 1.1: The function g1 and its level set function.

see Figure 1.1. It is Lipschitz with constant

L := 16.

For the parameters D and % there is no straightforward choice. We
choose

D := 1.

Then, any % > 0 is admissible. Since A(g1, 11/6) is already the whole
domain, we set

% := 11/6.

The dashed line in Figure 1.1 (right-hand side) is the square-root func-
tion coresponding to a bound with D = 1.
So, for this choice of parameters we have g1 ∈ F d

L,D,%. We also have
g1 ∈ F d

L′,D′,%′ for any L′ ≥ L, D′ ≥ D, and %′ ≤ %.

• A function f ∈ F d
L,D,% may have many global and local minimizers.

Example 1.1.2. The function g2 : [0, 1] → R,

g2(x) := | cos(3πx)|,

has three global minimizers: 1/6, 1/2, 5/6, see Figure 1.2. It is Lip-
schitz with constant

L := 3π.

Again, there is no straightforward choice for D and %. For D we may
again choose 1 such that any % > 0 is admissible. We can also set

D := 1/2.
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Figure 1.2: The function g2 and its level set function.

Then,
% := 0.4

is an admissible choice, as we see in Figure 1.2. The dashed line on the
right-hand side is the function δ 7→ 0.5 · δ1/2.

• We have an important subclass belonging to F d
L,D,%. Assumption (1.3)

guarantees a minimum increase in a neighborhood of the global min-
imizer or, if there are several global minimizers, in a neighborhood of
each of them. The upper bound D δd/2 for the level sets A(f, δ) allows
that for

f ∈ C2[0, 1]d

with a finite number of global and local minimizers x∗ and a positive
Hessian (∇2f)(x∗) for each of them, we can always find class parameters
L,D, % such that f ∈ F d

L,D,%. This is a consequence of the Taylor
expansion.
Consider at first f ∈ C2[0, 1]d which has a unique minimizer x∗ and for
which

∀x ∈ R
d xT (∇2f(x∗))x ≥ M‖x‖2

2

holds for a positive constant M . Here, ‖ · ‖2 denotes the Euclidian
norm. The case that f has several minimizers is then straightforward.

To guarantee f ∈ F d
L,D,% we choose

L := sup
x∈[0,1]d

‖∇f(x)‖∞.

A choice of D and % needs some more consideration: For x ∈ R
d,

positive r, and the metric ‖ · ‖, we define the balls

B(x, r, ‖ · ‖) := {y ∈ [0, 1]d : ‖x− y‖ < r} (1.4)
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and
B(x, r) := B(x, r, ‖ · ‖∞). (1.5)

Due to the continuity of the second order derivatives of f , there exists
a neighborhood B(x∗, r, ‖ · ‖2) with

∀y ∈ B(x∗, r, ‖ · ‖2) ∀x ∈ R
d xT (∇2f(y))x ≥ 1

2
M ‖x‖2

2.

Using the estimate of the remainder of the Taylor polynomial, we show

∀x ∈ B(x∗, r, ‖ · ‖2) f(x) ≥ g(x) := f(x∗) + 1
4
M ‖x− x∗‖2

2.

Let

v(d) :=





πn

2
2
· 4

2
· · · · · 2n

2

, d = 2n,

πn−1

1
2
· 3

2
· · · · · 2n−1

2

, d = 2n− 1,

denote the volume of the unit ball in R
d endowed with the metric

induced by the Euclidian norm ‖ · ‖2.

For δ ≥ 0 we have

A(g, δ) = B(x∗, 2
√
δM−1, ‖ · ‖2).

So,

λd(A(g, δ)) ≤
(

4δ

M

)d/2

v(d).

If A(f, δ) ⊂ B(x∗, r, ‖ · ‖2) then

λd(A(f, δ)) ≤ v(d)

(
4

M

)d/2

δd/2. (1.6)

We define

D := v(d)

(
4

M

)d/2

and determine % > 0 such that (1.6) is true for all δ ≤ % as follows:

a) We guarantee A(g, %) ⊂ B(x∗, r, ‖ · ‖2):
It holds B(x∗, r, ‖ · ‖2) = A(g, Mr2

4
). We set

% ≤ %1 :=
Mr2

4
. (1.7)
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Figure 1.3: The function g3 and its level set function. The dashed lines are
g and its level set function.

b) We guarantee A(f, %) ⊂ B(x∗, r, ‖ · ‖2): We set

% < %2 := inf{|f(x) − f(x∗)| : x /∈ B(x∗, %1, ‖ · ‖2)}. (1.8)

For every % fulfilling conditions (1.7) and (1.8)

∀ 0 ≤ δ ≤ % λd(A(f, δ)) ≤ D δd/2

holds.

Example 1.1.3. Let g3 be the natural cubic spline interpolating the
points

[0, 2], [0.4, 0], [0.8, 1], [1, 0.6],

see Figure 1.3. The global minimizer

x∗ =
106

175
− 2

√
2846

525
≈ 0.4025

has the function value g3(x
∗) ≈ −0.00011269. For x ∈ [x∗−0.1, x∗+0.1]

we have g′′3(x) ≥ 15. So, for the quadratic function

g(x) :=
15

2
(x− x∗)2 + g3(x

∗)

we have g|[x∗−0.1,x∗+0.1] ≤ g3|[x∗−0.1,x∗+0.1]. For g the level set function is
easy to calculate:

λ1(A(g, δ)) ≤ 2 ·
√

2

15
δ1/2.
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We set

D := 2 ·
√

2

15
.

In order to obtain a suitable % we consider conditions (1.7) and (1.8).
We have %1 = 0.075, and we can choose %2 := 0.5. We set

% := 0.075.

We see in Figure 1.3 that this is a cautious choice.

1.2 Admissible parameters

Not all combinations of class parameters make sense. Indeed, for a bad
combination F d

L,D,% is empty. As a consequence of Lemma 1.2.2 below, we
will always assume

% < min{L, 1
4
L2D2/d}.

We define
F

d := {F d
L,D,% : % < min{L, 1

4
L2D2/d}}. (1.9)

Proposition 1.2.1. Let g : [0, %] → [0,∞) be piecewise linear with n ∈ N

nodes 0 = δ1 < δ2 < · · · < δn = % such that g(δi) ≤ D1/dδ
1/2
i . Suppose for

f : [0, 1]d → R and 0 ≤ δ ≤ % that λd(A(f, δ)) ≤ gd(δ). Then

∀ 0 < δ ≤ % λd(A(f, δ)) ≤ Dδd/2.

Proof. From g(δi) ≤ D1/dδ
1/2
i for i = 1, . . . , n and the fact that the square-

root function is concave we conclude that

∀ 0 ≤ δ ≤ % g(δ) ≤ D1/dδ1/2.

We know λd(A(f, δ)) ≤ gd(δ). Furthermore, x 7→ xd is strictly monotone.
So,

∀ 0 < δ ≤ % λd(A(f, δ)) ≤ Dδd/2.

Lemma 1.2.2. Let % < min{L, 1
4
L2D2/d}. Then

1. F d
L,D,% is nonempty.

2. F d
L,D,% is not symmetric.
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3. F d
L,D,% is not convex.

4. For every x ∈ [0, 1]d the class F d
L,D,% contains several functions f with

f(x) = min f .

Proof. 1. Let
f(x) := L ‖x‖∞.

Then for δ ≤ L
A(f, δ) = [0, δL−1]d,

i.e., λd(A(f, δ)) = (δL−1)d. For δ ≤ L2D2/d it follows λd(A(f, δ)) ≤ D δd/2.

2. We choose γ ∈ (%, L) and define

fγ(x) :=

{
L ‖x‖∞, ‖x‖∞ ≤ γL−1,
γ, ‖x‖∞ > γL−1.

Analogously to 1., we show fγ ∈ F d
L,D,%. Furthermore,

λd({fγ ≥ γ}) = λd({fγ = γ}) ≥ (1 − γL−1)d > 0.

It holds −fγ 6∈ F d
L,D,% since

λd(A(−fγ , 0)) ≥ (1 − γL−1)d > 0.

3. We choose
s ∈ (max{1/2, %/L}, 1).

For

α := D%d/2 −
( %
L

)d

we have α > 0. We set

r := min

{
1 − s

2
, α1/d, %1/2D1/d

}
, δ1 :=

r2

D2/d
.

In particular,
δ1 ≤ %.

For

fr,s(x) :=





δ1‖x‖∞
r

, ‖x‖∞ ≤ r,

δ1 + L(‖x‖∞ − r), r < ‖x‖∞ ≤ s+ 1

2
,

δ1 + L

(
s+ 1

2
− r

)
,
s+ 1

2
< ‖x‖∞ ≤ 1,
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Figure 1.4: The function fr,s and its level set function for d = 1, L = 1,
D = 1, % = 1/9 and s = 3/4

we show fr,s ∈ F d
L,D,%: Due to δ1 ≤ % < 1

4
L2D2/d it holds

δ1
r

=
δ
1/2
1

D1/d
< 1

4
L.

Consequently, the Lipschitz condition is fulfilled. For the level sets we have

λd(A(fr,s, δ)) =





(
δr

δ1

)d

, δ ≤ δ1,
(
δ − δ1
L

+ r

)d

, δ1 < δ < δ1 + L

(
s+ 1

2
− r

)
,

1, δ1 + L

(
s+ 1

2
− r

)
≤ δ.

Consider the piece-wise linear function g with nodes and function values

g(0) = 0, g(δ1) = r, g(%) = (%− δ1)/L + r.

Application of Proposition 1.2.1 yields

∀ 0 < δ ≤ % λd(A(fr,s, δ)) ≤ D δd/2,

i.e., we showed fr,s ∈ F d
L,D,%. In the same way, we prove

x 7→ fr,s(
� − x) ∈ F d

L,D,%,

with
�

:= (1, . . . , 1)T ∈ R
d.
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We consider the convex combination

g(x) := 1
2
(fr,s(x) + fr,s(

� − x)).

a) For x ∈ [0, 1]d let x̂ := ‖x‖∞ · �
. For all x ∈ [0, 1]d the point x̂ lies on the

diagonal {t · �
, t ∈ [0, 1]}. Furthermore, we have ‖x‖∞ = ‖x̂‖∞. So,

g(x) = 1
2
(fr,s(x) + fr,s(

� − x)) = 1
2
(fr,s(x̂) + fr,s(

� − x))

≥ 1
2
(fr,s(x̂) + fr,s(

� − x̂)) = g(x̂).

b) The function g is point symmetric in
�
/2.

c) From x̂ < ŷ ≤ �
/2 we conclude g(x̂) ≤ g(ŷ).

d) We have

g(0) = min
y∈[0,1]d

g(y) = 1
2
[δ1 + L((s + 1)/2 − r)].

e) It holds
[0, r]d ∪ [1 − r, 1]d ⊂ A(g, δ1/2).

In conclusion,

λd(A(g, δ1)) ≥ λd(A(g, δ1/2)) ≥ 2 rd = 2D δ
d/2
1 > D δ

d/2
1 .

Since δ1 ≤ % we have g /∈ F d
L,D,%.

4. We show that for every x ∈ [0, 1]d

fx(z) := L ‖z − x‖∞ ∈ F d
L,D,%.

Obviously, the Lipschitz condition is fulfilled. For δ ≤ 1
4
D2/dL2 we have

λd(A(fx, δ)) ≤ D δd/2.

(We have equality for x = 1
2
· �

and δ = 1
4
D2/dL2.) Let θ > 0 be defined by

% = θ2

4
D2/dL2. It holds θ ∈ (0, 1). We define

f̃x(z) := θL‖z − x‖∞.

We conclude f̃x ∈ F d
θL,D,% ⊂ F d

L,D,%.

Remark 1.2.3. We showed that for % < min{ 1
4
L2D2/d, L} the problem class

F d
L,D,% is neither convex nor symmetric. The problem class being not convex

or not symmetric is a necessary condition for the situation that adaptive
methods are essentially better than non-adaptive ones, see Section 3.2.





Chapter 2

Optimization algorithms

We propose two adaptive algorithms. The first one is applicable in a situation
where the Lipschitz parameter L of the objective is known, or at least an
upper bound of it. The second one is suitable for the case that the Lipschitz
parameter is unknown. For both algorithms, the knowledge of the other
parameters D and % is unimportant for their definition and their success.
Nevertheless, they are important for the cost estimation.

For both algorithms we give cost and error bounds according to the fol-
lowing definitions:

The error of a method A applied to a function f and returning
A(f) = x∗ = x∗(f) is given by

∆(A, f) := f(x∗) − inf f.

The (worst case) error of the method A is

∆(A, F d
L,D,%) := sup {∆(A, f) : f ∈ F d

L,D,%}.

The function-wise cost cost(A, f) of the method A applied to f is the number
of function calls the method A uses for f . The (worst case) cost of A is

cost(A, F d
L,D,%) := sup {cost(A, f) : f ∈ F d

L,D,%}.

We come to some preliminaries for the two algorithms we propose. Let
e(i) be the i-th unit vector in R

d having (e(i))i = 1 and (e(i))j = 0 for j 6= i.
The algorithms use

Y (j) :=

{
d∑

i=1

aj · e(i), aj ∈ {−3−j+1, 0, 3−j+1}
}

\ {0}, j ∈ N.

15
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Each of the sets Y (j) consists of 3d − 1 points. Finally, let

M := (1
2
, . . . , 1

2
)T

denote the midpoint of the unit cube in R
d.

2.1 The case of a known Lipschitz constant

For the case of a known Lipschitz parameter L, we propose the following
optimization algorithm S(L, k) performing step(L, 1), . . . , step(L, k) as
described in Figure 2.1. After these k steps, S(L, k) returns x∗. It is similar
to the one of Perevozchikov (1990).

Lemma 2.1.1. Let f : [0, 1]d → R be Lipschitz with constant L > 0. After
step(L, j) and for each global minimizer x∗ there exists a pair
(xj, f(xj)) ∈ NL,j such that ‖xj − x∗‖∞ ≤ 2−13−j+1.

Proof. By induction.

j = 1: We have (M, f(M)) ∈ NL,1 and ‖x−M‖∞ ≤ 2−1 for all x ∈ [0, 1]d.

j → j + 1: Let (xj, f(xj)) ∈ NL,j such that ‖xj − x∗‖∞ ≤ 2−13−j+1. In
step(L, j + 1), we check whether f(xj) ≤ f∗ + L 2−13−j+1. This is true:

|f(xj) − f∗| ≤ |f(xj) − f(x∗)| ≤ L 2−13−j+1. (2.1)

So we choose the pairs

(xj + y, f(xj + y)), y ∈ Y (j + 1),

to be in NL,j+1. For (at least) one of these y we have

‖xj + y − x∗‖∞ ≤ 2−13−j.

Choose xj+1 := xj + y for such a y.

The sets NL,j are subsets of the equidistant meshes

mesh(j) :=

{
d∑

i=1

αi · e(i), αi ∈ {2−13−j+1 + l · 3−j+1, l = 0, . . . , 3j−1 − 1}
}
.

Furthermore, S(L, k) guarantees the same level of approximation as mesh(k)
in the following sense: For every global minimizer x∗ we have

min
x∈mesh(k)

‖x− x∗‖∞ ≤ 2−13−k+1, min
x∈NL,k

‖x− x∗‖∞ ≤ 2−13−k+1.
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step(L, 1):

get f(M) (oracle call);

set NL,1 := {(M, f(M))};
set x∗ := M; f∗ := f(M).

step(L, j ), 2 ≤ j ≤ k:

set NL,j := ∅;
for (x, f(x)) ∈ NL,j−1 do

if (f(x) ≤ f∗ + L 2−13−j+2 ) then (∗)
set NL,j := NL,j ∪ {(x, f(x))};
for y ∈ Y (j) do

get f(x + y) (oracle call);

set NL,j := NL,j ∪ {(x + y, f(x+ y))};
if (f(x+ y) < f∗) then

set x∗ := x+ y; f∗ := f(x+ y);

end if;

next y;

end if;

next x;

Figure 2.1: S(L, k) performs step(L, 1), . . . , step(L, k) and then returns x∗

We are now ready to prove cost and error bounds of S(L, k). We need
the following constants:

εL,k := L2−13−k+1, (2.2)

j(L, %) := dlog3(L/(2%))e + 3, (2.3)

j(L,D, %, d) := dlog3(L/(2%
2D2/d))e + 6, (2.4)

c(d) :=
3d/2

3d/2 − 1
. (2.5)
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For d ≥ 1, we have c(d) ∈ (1, 2.37]. We use an idea of Perevozchikov
(1990) to prove the following result.

Theorem 2.1.2. 1. Error estimation: For k ∈ N, we have

∆(S(L, k), F d
L,D,%) ≤ εL,k.

2. Cost estimation: We have

(a) for k ∈ N

cost(S(L, k), F d
L,D,%) ≤ 3d(k−1),

(b) for k ≥ j(L, %)

cost(S(L, k), F d
L,D,%)

≤
(

27
2
L/%

)d
+ c(d) (3d − 1)DLd/22−d/2

(
3(k−1)d/2 −

(
3
2
L/%

)d/2
)
,

(c) for k ≥ max{j(L, %), j(L,D, %, d)}

cost(S(L, k), F d
L,D,%) ≤ DLd/22−d/23(k+1)d/2+1 = DLd2−d3d+1ε

−d/2
L,k .

Proof. 1. Let f ∈ F d
L,D,%. From Lemma 2.1.1 we know that there exists a

pair (xk, f(xk)) ∈ NL,k such that ‖xk − x∗‖∞ ≤ 2−13−k+1. Then

|f(x∗) − f(x∗)| ≤ |f(xk) − f(x∗)| ≤ L 2−13−k+1.

2. For (a), we have that S(L, k) chooses only points in mesh(k), which
consists of 3d(k−1) points.

(b). Let
N∗

L,j−1 (2.6)

be the set of pairs (x, f(x)) ∈ NL,j−1 that in step(L, j) pass the test
f(x) ≤ f∗ + L2−13−j+2. Then, in step(L, j), the number of new function
evaluations is bounded by

|NL,j \NL,j−1| ≤ (3d − 1)N∗
j−1.

We can use this estimation for every step(L, j) with N ∗
L,j−1 ⊂ A(f, %). As

in 1., we can show

min {f(y) : y ∈ N ∗
L,j−1} ≤ min f + L 2−13−j+2.

Furthermore,

∀x ∈ N∗
L,j−1 f(x) ≤ f∗+L 2−13−j+2 ≤ min {f(y) : y ∈ N ∗

L,j−1}+L 2−13−j+2.
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So we get
∀x ∈ N∗

L,j−1 x ∈ A(L 3−j+2).

For x, y ∈ N∗
L,j−1 and x 6= y we have

B(x, 2−13−j+2) ⊂ A(L 2−13−j+3), B(x, 2−13−j+2) ∩ B(y, 2−13−j+2) = ∅.

For L 2−13−j+3 ≤ %, i.e.,

j − 1 ≥ dlog3(L/(2%))e + 2 = j(L, %) − 1,

we can estimate

|N∗
L,j−1 | ≤ λd(A(L 2−13−j+3))

λd(B(x, 1
2
3−j+2))

≤ D (L 2−13−j+3)d/2

(3−j+2)d

= DLd/22−d/23(j−1)d/2 . (2.7)

So the number of new points in level j is bounded by

(3d − 1)DLd/22−d/23(j−1)d/2.

It follows immediately that

cost(S(L, k), F d
L,D,%)

≤ |mesh(j(L, %) − 1)| +
k∑

j=j(L,%)

(3d − 1)DLd/22−d/23(j−1)d/2

≤
(

27
2
L/%

)d
+ c(d) (3d − 1)DLd/22−d/2(3(k−1)d/2 − 3(k(L,%)−2)d/2)

≤
(

27
2
L/%

)d
+ c(d) (3d − 1)DLd/22−d/2

(
3(k−1)d/2 −

(
3
2
L/%

)d/2
)
.

So we proved (b).

Under the assumptions of (c) we have for d = 1

27
2
L/% ≤ c(d)DL1/22−1/23(k−1)/2

and for d ≥ 2 (
27
2
L/%

)d ≤ 3
2
· 3dDLd/22−d/23(k−1)d/2.

In both cases we conclude from (b) that

cost(S(L, k), F d
L,D,%) ≤ DLd/22−d/23(k+1)d/2+1 = DLd2−d3d+1ε

−d/2
L,k .
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2.2 The case of an unknown Lipschitz con-

stant

We now turn to the case of an unknown Lipschitz parameter L. For this
situation, we propose the algorithm Z as described in Figure 2.2. It uses the
steps of S(L, · ) for a sequence (L(i))i∈N of increasing Lipschitz constants.
An additional step(L, 1’) is also used:

step(L, 1’):

oracle call: get f(M);

set NL,1 := {(M, f(M))}.

The constants L(i) and two controlling functions

lastconst : N → N, l 7→ lastconst(l)

laststep : N × N → N, (l, i) 7→ laststep(l, i)

determine the behavior of the algorithm. In a first definition, we only require
the following properties:

• L(i+ 1) > L(i) for all i ∈ N,

• lastconst increasing,

• laststep(l, i) increasing in l, and decreasing in i.

Z(k) is a diagonal scheme. The parameter k in Z(k) is the number of per-
formed diagonals. In diagonal l, the algorithm examines the objective assum-
ing the Lipschitz constants L(1), . . . , L(lastconst(l)), i.e., for constant L(i),
the algorithms performs

step(L(i), laststep(l − 1, i) + 1), . . . , step(L(i), laststep(l, i)).

While the algorithm has only one instance of f∗ and x∗, it uses separate sets
NL(i),j for each constant L(i).
Note that the objective f will be evaluated at certain points for several
constants L(i), i.e., several times, the midpoint M for example lastconst(k)
times. We will discuss in Section 2.2.1 why this is reasonable.
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return x∗;

next l;

next i;

next j;

end if;

apply step(L(i), j );

else

apply step(L(i), 1’);

if (i 6= 1, j = 1) then

for j from 1 to laststep(l, i) do # step j

for i from 1 to lastconst(l) # constant L(i)

for l from 1 to k do # diagonal l

Figure 2.2: The algorithm Z(k). It uses the steps defined in Figure 2.1.

Let m, k ∈ N such that lastconst(k) ≥ m. The method Z(k) performs
step(L(m), 1’) (or 1) to step(L(m), laststep(k,m)). This way, Z(k) deter-
mines the sets

NL(m),1, . . . , NL(m),laststep(k,m).

We have the following analogue to Lemma 2.1.1:

Lemma 2.2.1. Let f ∈ F d
L,D,% with L ≤ L(m) for some m ∈ N, and

k ∈ N such that lastconst(k) ≥ m. Let x∗ be a global minimizer. For
1 ≤ j ≤ laststep(k,m) there exists a pair (xj, f(xj)) ∈ NL(m),j such that
‖xj − x∗‖∞ ≤ 2−13−j+1.

Proof. The proof is similar to that of Lemma 2.1.1. The only difference
in the situation is that now, the least value found so far f∗ is shared and
altered by function evaluations applying different constants L(i). However,
f∗ enters the proof only in (2.1). Here, f(x∗) ≤ f∗ ≤ f(xj) is needed. This
is also true for the new situation. 2
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Figure 2.3: Scheme of Z(h, k) for h = 3 and k = 10

We want to examine Z(k) for the choice

L(i) := 3i−1, i ∈ N, (2.8)

lastconst(l) :=

⌈
l

h

⌉
, laststep(l, i) :=

{
l − h(i− 1), if i ≤ lastconst(l),
0, else,

with parameter h ∈ {3, 4, . . . } and the ceiling function

d · e : R → Z, dre := inf{z ∈ Z : z ≥ r}. (2.9)

We will discuss the choice of h in Remark 2.2.3 and in Chapter 4. Let

Z(h, k)
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be the algorithm defined in this manner. We use the constants

εL,h,k := Lh+12−13−k+1, (2.10)

c(d, h) :=
1

1 − 3−hd/2
, c′(d, h) :=

1

1 − 3(1−h/2)d
, (2.11)

C(L, d, h) := c(d)
[
c(d, h)3−d/2 + c′(d, h)L−hd/2

]
, (2.12)

with c(d) defined as in (2.5). For h ≥ 3, d ≥ 1, and L ≥ 1 we have

c(d, h) ∈ (1, 1.25], c′(d, h) ∈ (1, 2.37], C(L, d, h) ∈ (0, 7.37].

Theorem 2.2.2. Let m ∈ N and k ≥ h(m− 1) + 1.

1. Error estimation:

∆(Z(h, k), F d
L(m),D,%) ≤ εL(m),h,k.

2. Cost estimation:

cost(Z(h, k), F d
L(m),D,%)

≤
(
3Lh+1(m)/%

)d
c(2d, h) + c(2d) 3d(dk/he−m)

(
27
2
L(m)/%

)d
+

C(L(m), d, h)L(m)(h+1)d/2D 2−d/23(k−1)d/2

=
(
3Lh+1(m)/%

)d
c(2d, h) +

(
27
2
L(m)/%

)d
c(2d) 2−d/hL(m)d/h ε

−d/h
L(m),h,k +

C(L(m), d, h)DL(m)(h+1)d2−d ε
−d/2
L(m),h,k.

Proof. 1. Let us assume that we apply Z(h, k) to a function f ∈ F d
L(m),D,%.

For the constant L(m) our method performs step(L(m), 1) or step(L(m), 1’)
up to step(L(m), k − h(m− 1)). From Lemma 2.2.1 we know that for every
global minimizer x∗ there exists xk−h(m−1) ∈ NL(m),k−h(m−1) such that

‖xk−h(m−1) − x∗‖∞ ≤ 2−13−k+h(m−1)+1.

It follows immediately that

|f(x∗)− f(x∗)| ≤ |f(xk−h(m−1))− f(x∗)| ≤ L(m) 2−13−k+h(m−1)+1 = εL(m),h,k.

2. The cost estimation is similar to the one in the proof of Theorem 2.1.2.
Recall N∗

L,j−1 to be defined as in (2.6). We consider the steps for constants
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L ≥ L(m) and those for constants L < L(m) separately.

Let m ≤ i ≤ lastconst(k). For the new points in step(L(i), j ), we have

|NL(i),j \NL(i),j−1| ≤ (3d − 1)|N∗
L(i),j−1|.

We can use this estimation for all j with N ∗
L(i),j−1 ⊂ A(f, %). As in 1., we

can show

min {f(y) : y ∈ NL(i),j−1} ≤ min f + L(m) 2−13−j+2.

Furthermore,

∀ x ∈ N∗
L(i),j−1 f(x) < min {f(y) : y ∈ NL(i),j−1} + L(i) 2−13−j+2,

so we get

∀ x ∈ N∗
L(i),j−1 x ∈ A(f, (L(m) + L(i))2−13−j+2).

For x, y ∈ N∗
L(i),j−1 with x 6= y we have

B(x, 2−13−j+2) ⊂ A(f, (2L(m) + L(i)) 2−13−j+2),

B(x, 2−13−j+2) ∩ B(y, 2−13−j+2) = ∅.

For (2L(m) + L(i))2−13−j+2 ≤ %, i.e.,

j − 1 ≥ dlog3((2L(m) + L(i))/(2%))e + 1 =: j(m, i, %) − 1, (2.13)

we get

|N∗
L(i),j−1| ≤ λd(A(f, (2L(m) + L(i))2−13−j+2))

λd(B(x, 2−13−j+2))
(2.14)

≤ D(L(m) + 2−1L(i))d/2 3(j−2)d/2.

It follows immediately that

|NL(i),j \NL(i),j−1| ≤ (3d − 1)D(L(m) + 2−1L(i))d/2 3(j−2)d/2.
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For k − h(i− 1) ≥ j(m, i, %) we get the cost estimation

|NL(i),1| +
k−h(i−1)∑

j=2

|NL(i),j \NL(i),j−1|

≤ |mesh(j(m, i, %) − 1) | +
k−h(i−1)∑

j=j(m,i,%)

(3d − 1)D(L(m) + 2−1L(i))d/2 3(j−2)d/2

≤
(

9(2L(m) + L(i))

2%

)d

+

(3d − 1)D(L(m) + 2−1L(i))d/23(j(m,i,%)−2)d/2 3(k−h(i−1)−j(m,i,%)+1)d/2 − 1

3d/2 − 1

≤
(

27L(i)

2%

)d

+ (3d − 1)DL(i)d/2c(d) 2−d/23(k−h(i−1)−1)d/2.

Now let 1 ≤ i ≤ m − 1. Again, we want to estimate |N ∗
L(i),j−1|. Be-

fore the algorithm applies step(L(i), j), the last step concerning L(m) was
step(L(m), j−1−h(m−i)). So we know that at the beginning of step(L(i), j)

f∗ ≤ min f + L(m)2−13−j+h(m−i)+2.

Consequently,

∀x ∈ N∗
L(i),j−1 f(x) ≤ min f + 2−13−j+2[L(i) + L(m) 3h(m−i)].

Define

j ′(m, i, h, %) := dlog3((L(i) + L(m)(1 + Lh(m)/Lh(i)))/(2%))e + 2. (2.15)

We have j ′(m, i, h, %) ≤ h(m − i) + m + 1 − blog3(%)c. If k ≥ hm + 1 then
k − h(i − 1) ≥ j ′(m, i, h, %). In the same manner as above we can show for
j ≥ j ′(m, i, h, %) that

|N∗
L(i),j−1| ≤ λd(A(f, 3−j+2L(m)3h(m−i)))

λd(B(x, 2−13−j+2))

≤ DL(m)d/23(j+h(m−i)−2)d/2.
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We conclude that

|NL(i),1| +
k−h(i−1)∑

j=2

|NL(i),j \NL(i),j−1|

≤ |mesh(j ′(m, i, h, %) − 1)| +
k−h(i−1)∑

j=j′(m,i,h,%)

(3d − 1)DL(m)d/23(j+h(m−i)−2)d/2

≤
(

3Lh+1(m)

Lh(i)%

)d

+ (3d − 1)DL(m)d/2c(d)3(k+h(m−2i+1)−2)d/2.

In order to get an estimation for cost(Z(h, k), F d
L(m),D,%), we sum up these

numbers for the constants L(1), . . . , L(dk/he):

cost(Z(h, k), F d
L(m),D,%) ≤

dk/he∑

i=1


|NL(i),1| +

k−h(i−1)∑

j=2

|NL(i),j \NL(i),j−1|




≤
m−1∑

i=1

(
3Lh+1(m)

Lh(i)%

)d

+

dk/he∑

i=m

(
9(3L(i))

2%

)d

+

m−1∑

i=1

(3d − 1)DL(m)d/2c(d)3(k+h(m−2i+1)−2)d/2 +

dk/he∑

i=m

(3d − 1)DL(i)d/2c(d)2−d/23(k−h(i−1)−1)d/2

≤
(
3Lh+1(m)/%

)d m−2∑

i=0

3−hdi +

(
27

2

L(m)

%

)d dk/he−m∑

i=0

3di +

(3d − 1)DL(m)d/2c(d)3(k+h(m−1)−2)d/2

m−2∑

i=0

3−dhi +

(3d − 1)DL(m)d/2c(d)2−d/23(k−h(m−1)−1)d/2

dk/he−m∑

i=0

3(1−h/2)di (2.16)

≤
(
3Lh+1(m)/%

)d
c(2d, h) + c(2d) 3d(dk/he−m)

(
27
2
L(m)/%

)d
+

(3d − 1)DL(m)d/2c(d) c(2d, h) 3(k+h(m−1)−2)d/2 +

(3d − 1)DL(m)d/2c(d)2−d/23(k−h(m−1)−1)d/2c′(d, h)

≤
(
3Lh+1(m)/%

)d
c(2d, h) + c(2d) 3d(dk/he−m)

(
27
2
L(m)/%

)d
+

(3d − 1)DL(m)d/2c(d)3(k−1+h(m−1))d/2
[
c(2d, h)3−d/2 + c′(d, h)2−d/23−(m−1)hd

]
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≤
(
3Lh+1(m)/%

)d
c(2d, h) + c(2d) 3d(dk/he−m)

(
27
2
L(m)/%

)d
+

C(L(m), d, h)L(m)(h+1)d/2D 2−d/23(k−1)d/2.

With

ε
−d/2
L(m),h,k = L(m)−(h+1)d/22d/23(k−1)d/2, ε

−d/h
L(m),h,k = L(m)−d−d/h2d/h3d(k−1)/h,

we get

cost(Z(h, k), F d
L(m),D,%)

≤
(
3Lh+1(m)/%

)d
c(2d, h) +

(
27
2
L(m)/%

)d
c(2d) 2−d/hL(m)d/h ε

−d/h
L(m),h,k +

C(L(m), d, h)DL(m)(h+1)d2−d ε
−d/2
L(m),h,k.

Remark 2.2.3. We can now explain the restriction on the parameter h: In
order for the sum in (2.16) to be bounded for all k ∈ N, we need h ≥ 3.
The parameter h allows us to decide whether to focus on local or on global
search in the following sense: The cost used by performing the steps for L(i)
with i ≥ m are approximately

(3d − 1)DL(i)d/2c(d) 2−d/23(k−h(i−1)−1)d/2.

For constant L(i + 1) we spend 3−(h−1)d/2 times as much as we spend for
L(i). Choosing a high value for h leads to focus on a precise approximation
of found (local) minima. This is done in steps for small constants L(i). On
the other hand, a low value of h, of say, 3 or 4, will focus more on global
search, performed by steps for big constants L(i).

We will give an heuristic advice on how to choose h in Chapter 4.

We close the examinations in this section by showing that (Z(k)(f))k∈N

converges for every continuous f .

Lemma 2.2.4. Let f ∈ C[0, 1]d. Then

lim
k→∞

f((Z(k)(f))) = inf f.

Proof. Since f is continuous, it is sufficient to show that

∀j ∈ N ∀x ∈ mesh(j) ∃ k ∈ N Z(k) evaluates at x.

Let M := sup |f | and L̃ := 4M3j−2. For L ≥ L̃ we show by induction

∀ 1 ≤ l ≤ j ∀x ∈ mesh(l) (x, f(x)) ∈ NL,l.
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l = 1 is obvious.
l − 1 → l for 2 ≤ l ≤ j: Let x ∈ mesh(l − 1). Under the assumption of the
induction, we have (x, f(x)) ∈ NL,l−1. Furthermore,

|f(x) − f∗| ≤ 2M = L̃2−13−j+2 ≤ L2−13−l+2.

So for all y ∈ Y (l) ∪ {0} we have

(x+ y, f(x+ y)) ∈ NL,l.

Now let i ∈ N such that L(i) ≥ L̃, and k ∈ N such that lastconst(k) ≥ i and
laststep(k, i) ≥ j. Then Z(k) evaluates f at every x ∈ mesh(j).

2.2.1 A remark on computational cost and on storage

requirements

The cost definition we use is limited to the information cost, i.e., the number
of function calls the method uses. However, the development of arithmetic
cost and storage requirements are important for implementation, too. We
will sketch that for the first and the second algorithm our cost definition is
a good measure also for these quantities. This is not obvious. In fact, the
policy of the second algorithm not to store every function value is necessary
to obtain this result.

We examine the arithmetic cost and storage requirements for the algo-
rithm Z(h, k), then ask how much the (information) cost bound could be
improved if we stored all function values, and then reconsider the arithmetic
cost for this case. A similar argumentation applies for the simpler situation
of the first algorithm.

Arithmetic cost and storage requirements for Z(h, k)

We start with the arithmetic cost. We reconsider Figure 2.2. We neglect
the arithmetic cost necessary for the three “for”-loops and the “if”-loop.
So we must still consider the steps(L, j) as in Figure 2.1, and step(L, 1′) as
on page 20. For step(L, 1) and step(L, 1′) we have one oracle call, i.e., the
information cost is 1. On the other hand, the arithmetic cost is bounded by
a constant. In step(L, j) with j ≥ 2, we have to run an outer “for”- and an
“if”-loop for every point (x, f(x)) ∈ NL,j−1 . The effort to run these loops is
bounded by a fixed constant times the information cost of step(L, j−1). The
cost of the inner “for”-loop is bounded by a constant times the information
cost of step(L, j). Altogether, the arithmetic cost behaves linearly to the
information cost.
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We turn to the storage requirements. We neglect the storage of x∗, f∗, and
the variables needed to run the “for”-loops and the “if”-loop. The storage re-
quirements for the sets NL,j remain to be considered. The information cost is
an upper bound for their storage requirements since for every (x, f(x)) ∈ NL,j

there has been an oracle call at x, and if (x, f(x)) is stored several times,
l times say, then x has also been evaluated (at least) l times.

Possible information cost reduction

We want to find out how much (information) cost we may save if we store
all function evaluations and evaluate at the same point only once.

Proposition 2.2.5. Let f : [0, 1]d → R be Lipschitz with constant L > 0.

For L̃ ≥ 3L we have

∀ j ∈ N NL,j ⊂ NeL,j .

Proof. We show

∃j ∈ N NL,j 6⊂ NeL,j ⇒ ∃ x1, x2 ∈ [0, 1]d |f(x1) − f(x2)| > L‖x1 − x2‖∞.

Let x ∈ NL,j but x 6∈ NeL,j. From x ∈ NL,j we conclude that there exists a
y ∈ NL,j−1 with

f(y) ≤ min{f(z) : z ∈ NL,j−1} + L 2−13−j+2, ‖ y − x ‖∞ ≤ 3−j+1.

Since x 6∈ NeL,j we conclude for this y that

f(y) > min{f(z) : z ∈ NeL,j−1} + L̃ 2−13−j+2.

Consequently,

min{f(z) : z ∈ NeL,j−1} < min{f(z) : z ∈ NL,j−1} − (L̃− L)2−13−j+2

︸ ︷︷ ︸
=L 3−j+2

.

So,

inf f < min{f(z) : z ∈ NL,j−1} − L 3−j+2,

which is a contradiction to Lemma 2.1.1.

It is easy to see that a similar result for a Lipschitz constant L̃ < L cannot
hold. However, we can use Proposition 2.2.5 to improve the cost bound of
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Theorem 2.2.2. Again, we assume f ∈ F d
L(m),D,%. For Lipschitz constants

L(i) with m ≤ i ≤ lastconst(k) we only have to consider the cost

k−h(i−1)∑

j=k−hi+1

|NL(i),j \NL(i),j−1|

≤ (3d − 1)DL(i)d/2c(d)2−d/23(k−h(i−1)−2)d/2

if k− hi+ 1 ≥ j(m, i, %). We compare this with the corresponding cost as in
the proof of Theorem 2.2.2:

|NL(i),1| +
k−h(i−1)∑

j=2

|NL(i),j \NL(i),j−1|

≤
(

27L(i)

2%

)d

+ (3d − 1)DL(i)d/2c(d) 2−d/23(k−h(i−1)−1)d/2.

We save the cost of
(

27L(i)
2%

)d

, which belongs to the less important part of

the cost estimation. For the important one, we reduce the cost by the fac-
tor 3−d/2. This is a good improvement, especially for higher dimensions.
However, we cannot improve the rate of convergence. Furthermore, this im-
provement is restricted to only a part of the cost estimation. The cost bound
for constants L(i) < L(m) and L(i) = L(lastconst(k)) stays the same.

Arithmetic cost revisited

We still assume that we store all function evaluations. Evaluating only once
at the same point means that for every function value that we need during
a step(L(i), j) with i ≥ 2, we first check whether it was already determined
and then, in case it was not, perform an oracle call.

Let us assume that we already evaluated at n points and that we must
now ask whether a certain point has already been evaluated. If we do not
sort the evaluation points then we need to assume a worst-case cost of O(n).
We conclude for the whole checking procedure that after n function calls we
have a total arithmetic cost of order O(n2).

We are in a better situation if we sort. It is well-known that the best
sorting routines can reduce the arithmetic cost for the complete sorting pro-
cedure to O(n · logn). In this case, an additonal logarithmic factor must still
be considered, i.e., even when sorting, the information cost is no longer a
good measure for the arithmetic cost.

For the above reason, we decided not to store all function evaluations.
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Remark 2.2.6. We have only been vague about the definition of the arith-
metic cost. It will be treated in detail in Section 3.1. However, the above
argumentation, which uses an intuitive understanding, is consistent with the
definition that follows.





Chapter 3

Optimality results

We prove lower error bounds for adaptive deterministic, non-adaptive deter-
ministic and adaptive randomized methods showing that

• the algorithms S(L, ·) and Z(h, ·) have the optimal rate of convergence,

• adaptiveness is essential for optimality and yields a quadratic speed-up,

• up to constants, randomization (Monte Carlo) gives no further advan-
tage.

We also show that our second algorithm is universal for F
d as defined in

(1.9). Our first method has the optimal rate of convergence if the Lipschitz
constant is known.

We start with some important concepts.

3.1 The concept of Information-Based Com-

plexity

Let F be a problem class of real valued and bounded functions with a common
domain D ⊂ R

d. For some classes F every function f ∈ F can be described
with a finite number of parameters. This is the case, e.g., for classes of
polynomials x 7→ anx

n + · · · + a0. However, for many interesting classes,
and also for F d

L,D,%, this is not the case. In consequence, we cannot assume
to have a closed formula for every f ∈ F . This means in particular that f
cannot be involved completely into the computation.

Instead, we assume that we have access to a finite number of function
values provided by a subroutine, the oracle. The computation itself is done
with the Unlimited Register Machine with an Oracle, a model of an idealized

33
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computer. In particular, we assume that we can calculate with real numbers
and that we can store them.

3.1.1 The Unlimited Register Machine with an Oracle

Our model of computation is the Unlimited Register Machine (URM) with
an Oracle. We follow the approach of Novak (1995), but add the ceiling
function to the allowed artihmetic instructions. We do not mention what
happens if an error occurs, e.g., if we divide by zero or if the program does
not terminate. For those cases and to learn more about the URM we refer
to Novak (1995).

For every k ∈ Z we have a register Rk with an entry rk which is a real
number. At the beginning of the computation we have rk = 0 for all k ∈ Z.
The contents of the registers may be altered by the machine in response
to certain instructions. An algorithm is a finite list of instructions. After
the machine has worked off this list and if d := r0 ∈ N then the output
is the vector (r1, . . . , rd). For the global optimization problem, the output
is interpreted as the coordinates of the approximation x∗. The following
instructions can be used:

Arithmetic instructions

• Addition of a constant. For i ∈ Z and s ∈ R there is an instruction
Add(i, s). The response of the machine is ri := ri + s.

• Addition of two numbers. For i, j, k ∈ Z there is an instruction
Add(i, j, k). The response of the machine is ri := rj + rk.

• Multiplication with a constant. For i ∈ Z and s ∈ R there is an
instruction Mul(i, s). The response of the machine is ri := ri · s.

• Multiplication of two numbers. For i, j, k ∈ Z there is an instruction
Mul(i, j, k). The response of the machine is ri := rj · rk.

• Division of two numbers. For i, j, k ∈ Z there is an instruction
Div(i, j, k). The response of the machine is ri := rj/rk.

• Ceiling operation. For i ∈ Z there is an operation Ceil(i). The response
of the machine is ri := drie, where d · e is defined as in (2.9).



3.1. THE CONCEPT OF INFORMATION-BASED COMPLEXITY 35

Jump instruction

• For i, j ∈ Z and l ∈ N there is an instruction Jump(i, j, l). If
ri ≥ rj then the machine proceeds with the next instruction of the
list, otherwise it proceeds with the l-th instruction of the list.

Copy instructions

• Assignment of a constant. For i ∈ Z and s ∈ R there is an instruction
Assign(i, s). The response of the machine is ri := s.

• Direct and indirect copy assignments. For i, l ∈ Z there are four differ-
ent kinds of direct and indirect copy instructions Copy(i, l), Copy(ri, l),
Copy(i, rl), Copy(ri, rl). The response of the machine to Copy(ri, rl) is
rri

:= rrl
if ri, rl ∈ Z. The response of the other instructions is defined

analogously.

Oracle call

• For i ∈ Z there is an instruction Oracle(i). The response of the machine
is as follows. Let d := r−1 and f ∈ F be the problem element. If d ∈ N

and f(r−2, . . . , r−d−1) is defined, then the response of the machine is
ri := f(r−2, . . . , r−d−1).

This list of available instructions could be completed by other computations
one may wish to perform. For example, one may wish to have instructions
that calculate the functions sin, cos, exp eliminating the need to worry about
approximation errors. In Section 5.2 we present a variant of our universal
algorithm, which also uses the function x 7→ xα for some α ∈ (0, 1/2). Here,
we wish to add an instruction to our list delivering this calculation.

Definition 3.1.1. A finite list of instructions for the URM with an Oracle
is called an algorithm if for all f ∈ F no error occurs, i.e., if all instructions
are used only with admissible parameters, if the calculation terminates, and
if in the final configuration r0 is equal to the dimension d of the domain D
and (r1, . . . , rd)

T ∈ D.

Synonymously, we also call an algorithm a method.

Example 3.1.2. We present a simple optimization algorithm for univaritate
functions defined on [0, 1]. The program uses the oracle to get the function
values for 1/6, 1/2, 5/6 and then returns the (smallest) point with the least
function value.
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1. Assign(−1, 1) 8. Assign(1, 5/6)
2. Assign(−2, 1/6) 9. Jump(4, 3, 12)
3. Oracle(2) 10. Assign(1, 1/2)
4. Assign(−2, 1/2) 11. Copy(4, 3)
5. Oracle(3) 12. Jump(4, 2, 14)
6. Assign(−2, 5/6) 13. Assign(1, 1/6)
7. Oracle(4) 14. Assign(0, 1)

We see that even for this straightforward example, an algorithm written
in the language of the URM is rather hard to read. We introduced the
URM to define the class of algorithms we want to consider. It is also a
necessary requirement to define the notion of cost, especially computational
cost. However, we will also use other ways to describe algorithms – as we
already did for the algorithms of Chapter 2. The algorithm of Example 3.1.2
can also be described by

f 7→ min{argmin{f(1/6), f(1/2), f(5/6)}}.

More generally, we can say that each algorithm A, as defined for the URM,
induces a mapping on F , the one that maps f to the output A(f) of A
applied to f . We call this mapping A, too.

Definition 3.1.1 allows an algorithm to use function values at adaptively
chosen points x(1), . . . , x(n). However, the first point x(1) is independent of
the objective f and fixed for a particular algorithm. The points x(j) with
j ≥ 2 may depend on those previously chosen and their function values.
Also, the number of oracle calls may depend on the observed data. Every
such method A can be expressed by

A(f) = φ ◦N(f).

The information operator

N : F →
∞⋃

n=1

R
n (3.1)

gives the function values at the adaptively chosen points. They are obtained
by applying functions ψj : R

j−1 → D such that

x(j) = ψj(f(x(1)), . . . , f(x(j−1))).

It stops after n oracle calls according to a stopping rule s :
⋃∞

j=1 R
j → {0, 1}

iff

∀j < n s(f(x(1)), . . . , f(x(j))) = 1, s(f(x(1)), . . . , f(x(n))) = 0.
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The mapping

φ :

∞⋃

i=1

R
n → D

constructs the output x∗ = x∗(f) = A(f) using the information vector N(f).
This alternative notion of an algorithm is much more convenient for our

purposes to prove cost and error bounds, as we will see in the next section.

3.1.2 Cost and error

We distinguish between computational cost and information cost. For the
computational cost we consider all instructions in the list of Section 3.1.1,
except for the oracle call. It is generally assumed that the URM always
performs a certain instruction at the same cost, i.e., that the cost of an
instruction does not depend on the arguments it is called with or the time
when it is performed. In principle, it is possible to assign a different cost to
every type of instruction. Novak (1995) suggests assigning each arithmetic
operation and each jump unitary cost while a copy instruction is free. For
the information cost, he prices every oracle call with c > 0. This constant is
to be chosen in such a way that the cost of an arithmetic operation and that
of an oracle call are in an appropriate ratio. This ratio may depend on the
particular situation.

The cost approach we use is much simpler. We say that an oracle call has
unitary cost while all other instructions are free, i.e., we concentrate on the
information cost. So,

cost(A, F )

is the number of oracle calls A needs to return an approximation A(f) for
f ∈ F in the worst case. In Section 2.2.1 we showed that for our two
algorithms this cost definition is also a good measure for arithmetic cost and
storage requirements, i.e., this simplification of the cost definition means only
a minor loss of information of how expensive an implementation is.

We come to the notion of the error. Let A be an optimization algorithm.
For an element f of the problem class F we define the function-wise error

∆(A, f) := f(A(f)) − inf f.

The worst-case error of A is given by

∆(A, F ) := sup
f∈F

∆(A, f).

In Section 3.2 we will also give the notion of mean errors and errors of ran-
domized methods.
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Example 3.1.3. We consider the problem class

FL := {f : [0, 1] → R, |f(x) − f(y)| ≤ L|x− y| for all x, y ∈ [0, 1]}

and the optimization algorithm An that evaluates f at the points

x(i) :=
1

2n
+
i− 1

n
, 1 ≤ i ≤ n,

and then returns A(f) which is the (smallest) point x(i) with the least ob-
served function value.

Let f ∈ FL and x∗ ∈ [0, 1] be a global minimizer. Since the points x(i)

are chosen equidistantly, we can say

∃ j ∈ {1, . . . , n} | x∗ − x(j) | ≤ 1

2n
.

Using the Lipschitz property we get

f(A(f)) − f(x∗) ≤ f(x(j)) − f(x∗) ≤ L | x(j) − x∗ | ≤ L

2n
.

So, ∆(An, f) ≤ L/(2n) and, since f ∈ F was arbitrary,

∆(An, F ) ≤ L/(2n).

3.1.3 Error numbers

We define error numbers for two classes of algorithms depending on the
structure of the information vector N as defined in (3.1). We say that an
algorithm is adaptive if it fulfills Definition 3.1.1. It is non-adaptive if it
additionally fulfills

∃n ∈ N ∃ x1, . . . , xn ∈ [0, 1]d ∀f ∈ F d
L,D,% N(f) = (f(x1), . . . , f(xn)).

Note that non-adaptive algorithms are a sub-class of adaptive algorithms.
From a practical point of view, non-adaptive methods are advantageous

in that the function values f(x(i)) can be determined parallelly. On the other
hand, adaptive methods often need far less function calls.

We say
A ∈ Aad

n (F )

if A is adaptive and has cost(A, F ) ≤ n, and

A ∈ Anon
n (F )
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if A is non-adaptive with cost(A, F ) ≤ n. We have Anon
n (F ) ⊂ Aad

n (F ). We
define the error numbers

eadn (F ) := inf {∆(A, F ) : A ∈ Aad
n (F )}, (3.2)

enon
n (F ) := inf {∆(A, F ) : A ∈ Anon

n (F )}. (3.3)

The error numbers eadn (F ) give information about the intrinsic difficulty of
the optimization problem. Any method yielding an error of at most eadn (F )
for all f ∈ F uses at least n function calls for at least one function f ∈ F .
These error numbers are the benchmark for our algorithms. Furthermore, we
say that adaptive algorithms are essentially better than non-adaptive ones if

lim
n→∞

eadn (F )

enon
n (F )

= 0.

Example 3.1.4. We reconsider the class FL of Example 3.1.3. Since for the
particular non-adaptive algorithm An we could prove ∆(An, FL) ≤ L/(2n),
we conclude that

eadn (FL) ≤ enon
n (FL) ≤ L

2n
.

For a lower bound we consider an arbitrary (adaptive) algorithm A that uses
at most n function values. We can assume that A uses exactly n function
values. Let x(1), . . . , x(n) be the points chosen by the algorithm for the func-
tion h(x) ≡ 0 and x(n+1) := A(h). Without loss of generality, we assume
x(1) ≤ · · · ≤ x(n+1). There exists at least one point z ∈ [0, 1] such that

min
1≤i≤n+1

|z − x(i)| ≥ 1

2(n+ 1)
.

We define the function

gz(x) :=

{ − L
2(n+1)

+ L|z − x|, x ∈ [z − 1/(2(n+ 1)), z + 1/(2(n+ 1))],

0, else.

We easily check gz ∈ FL and A(gz) = A(h) = x(n+1). So,

gz(A(gz)) = 0, min gz = − L

2(n+ 1)
.

We have ∆(A, gz) = L/(2(n + 1)). Consequently, ∆(A, FL) ≥ L/(2(n + 1)),
such that

L

2(n+ 1)
≤ eadn (FL) ≤ enon

n (FL) ≤ L

2n
.

With some more effort, one can show that L/(2n) ≤ eadn (FL), see Novak
(1988), Proposition 1.3.6, for details. This means that for FL non-adaptive
methods are optimal. We will see in the next section that this is no coinci-
dence.
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We will also introduce error numbers for mean errors and for randomized
methods in Section 3.2.

3.1.4 Universality and tractablilty

We introduce two important notions.

Definition 3.1.5. Let F be a family of problem classes and (An)n∈N be a
sequence of optimization algorithms with cost(An, F ) ≤ n for every F ∈ F .
The methods An are called universal for F if

∀F ∈ F ∃CF <∞ ∀n ∈ N ∆(An, F ) ≤ CF · eadn (F ).

We also call a subsequence (An(i))i∈N universal for F if n(i) ↑ ∞.

Definition 3.1.6. Let (Fd)d∈N be a sequence of function classes. The global
optimization problem is tractable for (Fd)d∈N if there exists an estimate of
the sort

∀d, n ∈ N eadn (Fd) ≤ C · dp · n−q

with a constant C > 0 and p ≥ 0, q > 0, all independent of d and n. It is
strongly tractable if we can choose p = 0.

The general case is that one considers tractabilty concerning the dimen-
sion of the domain.

3.2 Some known complexity results

A well examined optimization problem is convex programming. Here, we
have a unique global minimizer. Local and global search coincide. For this
situation methods are known whose costs behave polynomially in dimension
d and error level ε. This means in particular that convex programming is
tractable. The ellipsoid method assumes the existence of an oracle that
delivers for a problem element f and a point x of the domain both the
function value f(x) and the derivative (∇f)(x). It yields an approximation
to the error level ε > 0 using O(d2 ln(1/ε)) oracle calls. For details and
further complexity results for convex functions we refer to the mini-course of
Nemirovski (1995).

The problem class F d
L,D,% contains functions with many global minimizers.

In this property, it is closely related to Lipschitz classes. For

F d
L := {f : [0, 1]d → R, |f(x) − f(y)| ≤ L ‖x− y‖∞ for all x, y ∈ [0, 1]d},



3.2. SOME KNOWN COMPLEXITY RESULTS 41

we have that a non-adaptive method using equidistant points delivers the
optimal result. The class F d

L is a special case of a convex and symmetric
(i.e., f ∈ F ⇒ −f ∈ F ) class. In this situation, adaptiveness can yield
only a minor improvement, if at all, compared to the best non-adaptive
algorithms. See Novak (1988), Proposition 1.3.2, for details. On the other
hand, there are examples that adaptiveness helps essentially if the problem
class is convex but not symmetric or vice versa.

Let (an)n∈N and (bn)n∈N be non-negative sequences and 0 < c ≤ C < ∞
such that

∃N ∈ N ∀n ≥ N c · an ≤ bn ≤ C · an.

Then we write
an � bn.

For F d
L, we have e

ad/non
n (F d

L) � Ln−1/d. In contrast, we will see for F d
L,D,%

that adaption is essential for optimality and that it leads to a quadratic
speed-up: eadn (F d

L,D,%) � L2D2/dn−2/d. In both cases, however, the error
numbers depend exponentially on d, which means that for F d

L and F d
L,D,% the

optimization problem is not tractable.

One may say that in many situations the worst case definition of error or
cost is too pessimistic and that the average case may give a more realistic
picture. Let F be a problem class endowed with a probability measure P
defined on a suitable σ-algebra. The mean error of a method A is defined by

∆(A, P ) :=

∫

F

∆(A, f)P (df),

if the function-wise error ∆(A, f) is a measurable function. (If not, one may
apply the upper integral instead.) The mean error numbers for adaptive and
non-adaptive methods are given by

eadn (P ) := inf{∆(A, P ) : A ∈ Aad
n (F )}, (3.4)

enon
n (P ) := inf{∆(A, P ) : A ∈ Anon

n (F )}.
A prominent model for d = 1 is to assume the Wiener measure P ∗ on C[0, 1].
It is easy to see that for F = C[0, 1] the worst-case error of any method
A is unlimited. We have only little knowledge concerning the mean error
numbers. Ritter (1990), Theorem 4, proves the upper bound

∃C > 0 enon
n (P ∗) ≤ C · n−1/2.

For a lower bound, Calvin (2004) uses sophisticated methods to show that
the error cannot decrease exponentially:

∀C1, C2 > 0 ∃n ∈ N eadn (P ∗) > C1 · exp(−C2 · n).
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We will reconsider the Wiener measure in Section 5.2.

Instead of the mean error one may also consider the mean cost, which is
defined analogously. The simplex algorithm is a prominent example where
the average case cost is much better than that of the worst case. The sim-
plex algorithm applies to the following situation: We want to maximize vTx
under the constraints aT

1 x ≤ b1, . . . , aT
mx ≤ bm, with v, x, . . . , am ∈ R

d and
b ∈ R

m. If the problem has a solution, the simplex algorithm needs a finite
amount of time to deliver a point x∗ with vTx∗ = minx∈X v

Tx that fulfills
the constraints, i.e., it delivers an exact solution. A worst-case analysis of
many variants of the simplex algorithm shows that it has a cost that grows
exponentially in m and d.

Borgwardt (1987) shows that the mean cost grows only polynomi-
ally in m and d. He uses a particular version of the simplex algorithm
and a stochastic model where the vectors a1, . . . , am and v are independent,
equally distributed, and symmetrically distributed under rotation. This re-
sult for the mean cost is confirmed by the favorable outcomes in practice, see
Borgwardt (1987), pp. 15 and pp. 31, for details.

Randomized algorithms, also called Monte Carlo methods, are used in
situations where the worst-case error numbers eadn (F ) only decrease slowly
with increasing n. This is the case for many high-dimensional non-tractable
problems. For a definition of randomized algorithms for the Unlimited Reg-
ister Machine we refer to Novak (1995). For our purposes it is sufficient
that any such method can be described as follows:

An adaptive Monte Carlo method (MCM) Q for the problem class F
that uses at most n function calls can formally be described as a random
variable on a suitable probability space with values in the set Aad

n (F ). If one
only wants to consider non-adaptive MCM then the values are in Anon

n (F ).
Let MC(Aad

n (F )) and MC(Anon
n (F )) be the sets of all such methods. Let

(Ω, C, P ) be the probability space concerning Q. The function-wise error of
Q is defined by

∆(Q, f) :=

∫

Ω

∆(Q(ω), f)P (dω)

if the function ω 7→ ∆(Q(ω), f) is measurable. (If not, one may again use
the upper integral.) The error of Q is defined by

∆(Q,F ) := sup
f∈F

∆(Q, f). (3.5)

Analogously to the error numbers eadn (F ) and enon
n (F ), we define

σad
n (F ) := inf

Q∈MC (Aad
n (F ))

∆(Q,F ), (3.6)
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σnon
n (F ) := inf

Q∈MC (Anon
n (F ))

∆(Q,F ). (3.7)

For the Lipschitz classes F d
L as above we have the result that Monte Carlo

methods yield no essential advantage towards deterministic algorithms. More
exactly, we have the asymptotic result

∀δ > 0 (1/2 − δ) 2−1/d enon
n (F d

L) ≤ σad
n (F d

L),

see Novak (1988), Prop. 1 in 2.2.6. There are further results for Monte
Carlo methods in Nemirovski, Yudin (1983), in particular Chapter 1.6,
and in Wasilkowski (1989).

Remark 3.2.1. It seems that the issue of universality in global optimiza-
tion has not yet been considered. Still, there are classes where universal
algorithms are known. The algorithms (An)n∈N of Example 3.1.3 are uni-
versal for the classes (FL)L>0 since the non-adaptively chosen points x(i) are
independent of the Lipschitz parameter L of the problem class FL. Similar
results hold for other Lipschitz classes.

The issue of universality was addressed for other numerical problems.
For multivariate integration and approximation, a recent paper of Griebel,
Woźnakowski (2005) delivers positive and negative results for the ques-
tion of whether universal algorithms exist. Further papers concerning uni-
versal algorithms for integration are Babuska (1968), Motornyj (1974),
Brass (1988), Petras (1996), Novak, Ritter (1996), and Novak, Rit-
ter (1998). The definition of universality in these papers may slightly vary
from ours.

Remark 3.2.2. We compare our results with those of two recent papers.
Perevozchikov (1990) defines a class similar to F d

L,D,%. For

F̃ d
L,r,% := {f : [0, 1]d → R, |f(x)− f(y)| ≤ L‖x− y‖, λd(A(δ)) ≤ δr for δ ≤ %}

with a norm ‖ · ‖ which is not necessarily ‖ · ‖∞ he develops an algorithm
that yields the upper bound

en(F̃ d
L,r,%) ≤

{
O(n−1/d(1−r)), r < 1,
O(e−n), r = 1.

This algorithm is similar to our universal algorithm. Lower bounds for
en(F̃ d

L,r,%) are not considered. Furthermore, the method of Perevozchikov
assumes a fixed, i.e., known Lipschitz constant.

Like our universal algorithm, the method described in Jones et al.
(1993) applies for Lipschitz optimization when the Lipschitz constant is not
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known. They also have in common some constructional elements. In contrast
to most other algorithms, they mix global and local search and do not apply
a two step scheme, first to search globally and then to search locally. The
algorithm of Jones et al. yields good results on some popular test functions.
Error bounds are not proven.

3.3 Error bounds for F d
L,D,%

3.3.1 A lower error bound for adaptive methods

We establish a lower bound for eadn (F d
L,D,%). The basic idea of the proof is to

construct a set of fooling functions. This refers back to Bakhvalov (1959).
We will later use this principle for non-adaptive and Monte Carlo methods,
too.

Theorem 3.3.1. Let m ∈ N with

m ≥ max

{
1

2
L2D2/d,

D2/dL2

4%
,
D1/dL

%1/2

}

and n = md − 2. Then

eadn (F d
L,D,%) ≥

L2D2/d

4(n+ 2)2/d
.

Proof. Let

I := {i : i = (i1, . . . , id), ik ∈ {1, . . . , m}, k = 1, . . . , d}, (3.8)

l :=
D2/dL

2m
, (3.9)

yi :=
l

m
· (i1 − 1/2, . . . , id − 1/2)T .

The condition m ≥ 1
2
L2D2/d guarantees that l ≤ 1 and yi ∈ [0, 1]d. For i ∈ I

we define

fi(x) :=





L‖x− yi‖∞, ‖x− yi‖∞ ≤ l/(2m),

Ll

2m
, x ∈ [0, l]d \B(yi , l/(2m)),

Ll

2m
+ L(‖x‖∞ − l), ‖x‖∞ > l.

(3.10)
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Figure 3.1: fi for d = 1, L = 2, D = 1, m = 5, i = 4.

We show fi ∈ F d
L,D,%. Obviously, fi is Lipschitz with constant L. For the

level sets we have

λd(A(fi , 0)) = 0, λd(A(fi , Ll/(2m))) = ld = D(Ll/(2m))d/2.

Since m ≥ D2/dL2/(4%) we know that % ≥ Ll/(2m) and consequently, that
λd(A(fi , %)) ≤ (l + %/L− l/(2m))d. So,

if l + %/L− l/(2m) ≤ D1/d%1/2 then λd(A(fi , %)) ≤ D%d/2.

Since %1/2 < 1
2
D1/dL and since l − l/(2m) ≤ 1

2
D1/d%1/2 is guaranteed by

m ≥ D1/dL/%1/2 we conclude λd(A(fi , %)) ≤ D%d/2. Application of Lemma
1.2.1 delivers fi ∈ F d

L,D,%.

Let An = φ ◦N be an algorithm that uses at most n function calls. Then
there exist (at least) two different i , j ∈ I such that

N(fi ) = N(fj ).

No matter where the algorithm chooses x∗ = φ ◦ N(fi) = φ ◦ N(fj ), we
will have fi(x∗) ≥ Ll/(2m) or f j (x∗) ≥ Ll/(2m), but min fi = min fj = 0.
Consequently,

∆(An, F
d
L,D,%) ≥

l L

2m
=

L2D2/d

4(n+ 2)2/d
.

Since An was arbitrary we have the same bound for eadn (F d
L,D,%).

3.3.2 Optimality and universality of the algorithms of
Chapter 2

Corollary 3.3.2. The algorithms (S(L, k))k∈N and (Z(h, k))k∈N have the
optimal rate of convergence. In particular, (Z(h, k))k∈N is universal for F

d.
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Proof. We define m0 := dL2D2/d(LD2/d − %)−1e and n(m) := md − 2. Let

n ≥ max{n(m0), 3, ((9/8)d/2 − 1)−1}.

We choose m such that n(m− 1) + 1 ≤ n ≤ n(m). Then

en(F d
L,D,%) ≥ en(m)(F

d
L,D,%) ≥

D2/dL2

4m2
≥ D2/dL2

9n2/d
.

For k ∈ N, let
nk := bDLd/22−d/23(k+1)d/2+1c.

From Theorem 2.1.2 we know that S(L, k) uses at most nk oracle calls and
delivers an error level

∆(S(L, k), F d
L,D,%) ≤ εL,k ≤ D2/dL22−232+2/dn

−2/d
k .

This means that the algorithms (S(L, k))k∈N have the optimal rate of con-
vergence.

Let m ∈ N. For k ≥ h(m−1)+1 we have ∆(Z(h, k), F d
L(m),D,%) ≤ εL(m),h,k

and

cost(Z(h, k), F d
L(m),D,%)

≤ α(L(m), d, h, %) + β(L(m), d, h) ε
−d/h
L(m),h,k + γ(L(m), D, h, d) ε

−2/d
L(m),h,k,

with constants α, β, γ that can be determined with Theorem 2.2.2. Recall
h ≥ 3. For εL(m),h,k ≤ 1 we have

cost(Z(h, k), F d
L(m),D,%) ≤ (α+ β + γ) ε

−2/d
L(m),h,k.

Proceeding as for S(L, k)k∈N we see that (Z(h, k))k∈N have the optimal rate
of convergence. This means in particular that (Z(h, k))k∈N are universal
for F

d.

3.3.3 A lower error bound for non-adaptive methods

We turn to non-adaptive methods.

Lemma 3.3.3. Let m ≥ max{( 1
4
D2/dL)−1, (2D1/d%1/2 − 4%/L)−1, L/(4%)}.

For n = md − 1 we have

enon
n (F d

L,D,%) ≥
L

4(n+ 1)1/d
.
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Figure 3.2: fi ,1 and fi ,2 for d = 1, L = 2, m = 5, i = 4

Proof. Let I as in (3.8). For i ∈ I define

xi := 1
m

(i1 − 1
2
, . . . , id − 1

2
)T ,

xi ,1 := 1
m

(i1 − 3
4
, i2 − 1

2
, . . . , id − 1

2
)T , (3.11)

xi ,2 := 1
2
(i1 − 1

4
, i2 − 1

2
, . . . , id − 1

2
)T ,

fi ,1(x) :=





L ‖x− xi ,1‖∞, x ∈ B(xi ,1, 1/(4m)),

L

4m
, x ∈ B(xi , 1/(2m)) \B(xi ,1, 1/(4m)),

L ‖x− xi‖∞ − L

4m
, x ∈ [0, 1]d \B(xi , 1/(2m)),

fi ,2(x) :=





L ‖x− xi ,2‖∞, x ∈ B(xi ,2, 1/(4m)),

L

4m
, x ∈ B(xi , 1/(2m)) \B(xi ,2, 1/(4m)),

L ‖x− xi‖∞ − L

4m
, x ∈ [0, 1]d \B(xi , 1/(2m)).

We show
∀i ∈ I fi ,1, fi ,2 ∈ F d

L,D,%.

With the above assumption we have L/(4m) ≤ %. Since m ≥ ( 1
4
D2/dL)−1 it

follows that
λd(A(fi ,1, L/(4m))) ≤ D(L/(4m))d/2,

and since m ≥ (2D1/d%1/2 − 4%/L)−1 we have

λd(A(fi ,1, %)) ≤ D%d/2.
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Application of Proposition 1.2.1 on the piece-wise linear function g with
nodes δ = 0, L/(4m), % and values g(δ) = (δd(A(fi ,1, δ))

1/d yields

∀ 0 ≤ δ ≤ % λd(A(fi ,1, δ)) ≤ D δd/2.

Consequently,
fi ,1 ∈ F d

L,D,%.

Analogously, we show
fi ,2 ∈ F d

L,D,%.

For an arbitrary method An using n oracle calls, we have that in (at least)
one cube

Qi := {x ∈ D : (i − (1/m, . . . , 1/m) < x < i/m}, i ∈ I,

there is no evaluation. For such an index i , we have

N(fi ,1) = N(fi ,2).

Consequently,

∆(An, F
d
L,D,%) ≥

L

4m
=

L

4(n + 1)1/d
.

Since An was arbitrary we have the same bound for enon
n (F d

L,D,%).

3.3.4 A lower error bound for randomized methods

Finally, we turn to Monte Carlo methods (MCM). See Section 3.2 for the
definition of a MCM, its error, and the error numbers σad

n (F ).
We obtain a lower bound for σad

n (F d
L,D,%) with a method similar to that

in Novak (1988), Section 2.1.9. The following lemma uses the mean error
numbers eadn (P ) for a suitable probability measure P to prove a lower bound
for σad

n (F ):

Lemma 3.3.4. Let P be a Borel measure on F of the sort P =
∑m

i=1 ciδfi

with ci ≥ 0 and
∑m

i=1 ci = 1. Furthermore, let fi ∈ F for i = 1, . . . , m. Then
we have

eadn (P ) ≤ σad
n (F ).

Proof. See Novak (1988), Proposition 2.1.9.

Lemma 3.3.5. Let m be as in Theorem 3.3.1, even, and n = md/2. Then

σad
n (F d

L,D,%) ≥
n− 1

n

L2D2/d

8(2n)2/d
.
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Proof. Let l as in (3.9), and I and fi as in (3.8) and (3.10). Define

g(x) :=





Ll

2m
, ‖x‖∞ ≤ l,

Ll

2m
+ L max

1≤j≤d
(xj − l), ‖x‖∞ > l.

Let FI := {fi , i ∈ I}. We know from Theorem 3.3.1 that FI ⊂ F d
L,D,%. Let

A = φ ◦N be an (adaptive) deterministic algorithm using at most n oracle
calls. For at least n different i ∈ I we have N(fi ) = N(g). Consequently,

∑

f∈FI

(inf f − f(A(f))) ≥ (n− 1)Ll

2m
=

(n− 1)L2D2/d

4m2
.

The proof is complete with Lemma 3.3.4 using the uniform distribution on
FI .

3.3.5 Conclusion

We obtained several results in this chapter:

• Adaptive algorithms: We know from Theorem 3.3.1 that for n large
enough, n ≥ n(L,D, %, d),

eadn (F d
L,D,%) ≥

L2D2/d

4(n+ 2)2/d
.

Furthermore, we conclude from Theorem 2.1.2 (c) that

eadnk
(F d

L,D,%) ≤ 2−232+2/dL2D2/dn−2/d,

for k ≥ max{j(L, %), j(L,D, %, d) and nk := bDLd/22−d/23(k+1)d/2+1c.
So,

eadn (F d
L,D,%) �

L2D2/d

n2/d
. (3.12)

• Non-adaptive algorithms: From Lemma 3.3.3 we know that for n large
enough, n ≥ n(L,D, %, d),

enon
n (F d

L,D,%) ≥ L (4n+ 1)−1/d.
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On the other hand, F d
L,D,% ⊂ F d

L with F d
L as defined in Section 3.2.

With Novak (1988), Proposition 1.3.6, we have

enon
n (F d

L,D,%) ≤ enon
n (F d

L) = O(Ln−1/d)

and conclude that

enon
n (F d

L,D,%) �
L

n1/d
. (3.13)

• Randomized algorithms: From Lemma 3.3.5 we know that for n large
enough, n ≥ n(L,D, %, d),

σad(F d
L,D,%) ≥

n− 1

n

L2D/d

8(2n)2/d
.

On the other hand, we have

σad
n (F d

L,D,%) ≤ eadn (F d
L,D,%)

since any deterministic algorithm can be seen as a MCM with Dirac
measure. So,

σad
n (F d

L,D,%) �
L2D2/d

n2/d
. (3.14)

Since non-adaptive MCM can never be better than adaptive ones we
neglected to estimate the error numbers σnon

n (F d
L,D,%).

So, for our problem class F d
L,D,% adaptiveness is essential for optimal algo-

rithms and yields a quadratic speed-up while randomization cannot yield
any further essential advantage.

Our second method is universal for F
d. Our first method has the optimal

rate of convergence in case that the Lipschitz constant is known.



Chapter 4

Numerical experiments

We will now dicuss some questions that have no theoretical consequence but
that are of practical interest.

• We give advice for a good choice of h. This parameter of the universal
algorithm defines the steepness of the diagonal scheme and influences
the ratio between global and local search.

• The definitions of the algorithms S(L, · ) and Z( · ) are not precise in
one aspect. Consider once more step(L, j) for j ≥ 2, as defined in
Figure 2.1. Here, the question is left open in which order the algorithm
considers the elements of NL,j−1, and those of Y (j). This question was
unimportant for proving error bounds. However, a deliberately chosen
order may yield better results in the nonasymptotic behavior.

• We again refer to the design of step(L, j), j ≥ 2. The question whether
an element of NL,j−1 and its neighboring mesh points (x+ y, f(x+ y)),
y ∈ Y (j), will also belong to NL,j depends on the particular order in
which the points in NL,j−1 are considered. This is a consequence of
the fact that f∗ may vary during step(L, j). We introduce a version of
Z(h, k) such that the cost and error bounds of Chapter 2 still hold, but
the set NL,j is independent of the order in which the points of NL,j−1

are considered.

These considerations led us to develop different versions of the algorithm
Z(h, k). We will introduce them in the next section. We then apply them
to a set of test functions presented in Section 4.2. The results are given in
Section 4.3. We use them to recommend a particular version. For illustration,
we plot the points chosen by this version for three of the test functions.
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4.1 Algorithm versions

We want to apply different values of h. We test

h = 2, 3, 4, 5, 8, 12. (4.1)

Note that h = 2 is not covered by the results of Theorem 2.2.2. Furthermore,
we introduce three different design features the algorithm may or may not
have and that all concern only the design of step(L, j):

• We say that the algorithm has the feature F1 if it performs step(L, j)
in two sub-steps as follows: Divide the set Y (j) into the 2 disjoint
subsets

Y (j, 1) :=

d⋃

i=1

{e(i),−e(i)}, Y (j, 2) := Y (j) \ Y (j, 1).

Replace step(L, j) by step(L, j1) and step(L, j2). Step(L,j1) is the
same as step(L, j) with the difference that it uses Y (j, 1) instead of
Y (j). Analogously, we define step(L, j2).
This way, the new points evaluated in step(L, j) are scattered well not
only after the end of step(L, j), i.e., after approximately |NL,j−1| · 3d

points, but also after approximately |NL,j−1| · 2d points.

• We say the algorithm has the feature F2 if it sorts the elements of
NL,j−1 as follows: Let q ∈ N be a fixed number. Without loss of
generality assume q ≤ |NL,j−1| =: p. We write the elements of NL,j−1

in a list
ÑL,j−1 := [ (x̃1, f(x̃1)), . . . , (x̃p, f(x̃p)) ]

such that

f(x̃i) ≤ f(x̃i+1), 1 ≤ i ≤ q − 1, f(x̃q) ≤ f(x̃j), q < j ≤ p.

The algorithm shall examine the elements of NL,j−1 in such an order.
This way, we examine first those q points that, because of their function
value, seem to be most promising. We only sort the first q best points
instead of sorting them all, in order not to get an additional logarithmic
factor for the computational cost. We choose q := 2 · d.

• Recall the test (∗) of step(L, j), j ≥ 2. We say the algorithm has the

feature F3 if it uses an additional variable f̃∗. This variable assumes
the value of f∗ at the very beginning of step(L, j) and will not be
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changed during the whole step. The algorithm performs the test (∗)
with f̃∗ instead of f∗.
This way, a point NL,j−1 passes the test (∗) independently of the order
in which the points in NL,j−1 are considered.

Note that two or all three of the features F1, F2 and F3 can be combined.
If F1 and F3 are combined, we want to assume that f̃∗ is not updated
before step(L, j2). If F2 and F3 are combined we will sort the elements of
NL,j−1 only before step(L, j1). It is easily checked that all features and their
combinations have no effect on neither the error nor the cost bound proved
in Chapter 2.

We will test all 8 resulting versions, each of them with the 6 different
values of h as stated in (4.1). Altogether, we test 48 versions.

4.2 Test functions

We want to test these 48 versions each on the following test functions, which
can all be found in Törn, Žilinskas (1989).

d=1

Shekel g
6
: [0, 10] → R,

x 7→ −
6∑

i=1

1

(ki(x− ai))2 + ci
,

with coefficients ai, ki, ci uniformly distributed: ai ∼ U(0, 10), ki ∼ U(1, 3),
ci ∼ U(0.1, 0.3). We choose the values given in Törn, Žilinskas (1989),
Table 8.2.

d=2

C: [−5, 5]2 → R,

x 7→ 4x2
1 − 2.1x4

1 +
1

3
x6

1 + x1x2 − 4x2
2 + 4x4

2.

BR: [−5, 10] × [0, 15] → R,

x 7→
[
x2 −

5.1

4π2
x2

1 +
5

π
x1 − 6

]2

+ 10

[
1 − 1

8π

]
cos x1 + 10.



54 CHAPTER 4. NUMERICAL EXPERIMENTS

GP: [−2, 2]2 → R,

x 7→
[
1 + (x1 + x2 + 1)2(19 − 14x1 + 3x2

1 − 14x2 + 6x1x2 + 3x2
2)
]
·[

30 + (2x1 − 3x2)
2(18 − 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2)
]
.

G2: [−100, 100/
√

2]2 → R,

x 7→ 1

200
(x2

1 + x2
2) − cos(x1) · cos(x27

√
2) + 1.

The domain given for G2 in Törn, Žilinskas (1989) is [−100, 100]2. We
changed it because otherwise, the first point evaluated by our algorithm
would already be the global minimizer.

R: [−1, 1/
√

2]2 → R,

x 7→ x2
1 + x2

2 − cos(18x1) − cos(18x2).

We changed the domain [−1, 1]2 given in Törn, Žilinskas (1989) for the
same reason.

d=3

H3: [0, 1]3 → R,

x 7→ −
4∑

i=1

ci exp

[
−

3∑

j=1

αi,j(xj − pi,j)
2

]
,

with coefficients αi,j and pi,j that can be found in Törn, Žilinskas (1989),
p. 185.

d=4

S5, S7, S10: [0, 10]4 → R,

x 7→ −
m∑

i=1

1

(x− A(i))(x− A(i))T + ci
.

with vectors A(i) and coefficients ci that can again be found in Törn,
Žilinskas (1989), p. 184.
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St: [−1, 1]4 → R,

x 7→



[

7∑

i=1

7∑

j=1

Ai,jai,j(x) +Bi,jbi,j(x)

]2

+

[
7∑

i=1

7∑

j=1

Ci,jci,j(x) +Di,jdi,j(x)

]2



1/2

,

where

ai,j(x) := sin(iπx1) sin(jπx2), bi,j(x) := cos(iπx3) cos(jπx4),

ci,j(x) := sin(iπx3) sin(jπx4), di,j(x) := cos(iπx1) cos(jπx2),

and matrices A, B, C, D, whose entries are independently U(−1, 1) sampled.
Since this is only of minor importance, we do not state these 196 random
numbers. This function was originally defined for d = 2.

d=6

H6: [0, 1]6 → R,

x 7→ −
4∑

i=1

ci exp

[
−

6∑

j=1

αi,j(xj − pi,j)
2

]
,

where the coefficients αi,j and pi,j are as in Törn, Žilinskas (1989), p. 185.

d=10

G10: [−600, 600/
√

2]10 → R,

x 7→
10∑

i=1

1

4000
x2

i −
10∏

i=1

cos(xi/
√
i) + 1.

For the same reason as above, we changed the domain [−600, 600]10 given in
Törn, Žilinskas (1989).

If necessary, we scale the functions such that the domain is [0, 1]d.
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h 2 3 4 5 8 12

Feature

no feature 670 666 697 684 749 841

F1 701 640 784 767 849 977

F2 423 266 283 293 313 394

F3 663 742 744 667 740 784

F1, F2 609 572 568 620 698 807

F1, F3 658 553 631 743 674 748

F2, F3 495 407 442 475 483 470

F1, F2, F3 512 513 452 516 508 552

Table 4.1: Results for the summed up rank numbers

4.3 Results

For each function, we compare the values of f∗ after 250, 1,500 and 10,000
oracle calls and rank the 48 versions. This results in 39 different rankings.
For each algorithm version we sum up all its rank numbers. We state the
results in Table 4.1.

The results make it easy to give advice: The version with h = 3 and F2
has the least value. Furthermore, the result for F2 is best for any value of
h. Also, the column for h = 3 has 5 times the best and 2 times the second
best value.

We suggest to use Z(3, · ) with Feature F2.

We give the results for this version in Table 4.2 and plots of the points it
chooses for the functions Shekel g6, C, and BR.
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d fct. n = 250 n = 1, 500 n = 10, 000 glob. min.

1 g6 -10.05863092 -10.05869313 -10.05869313

2 C -0.990514469 -1.031480295 -1.031625022 -1.0316285

BR 0.397935486 0.397887448 0.397887387 ≈ 0.398

GP 3.064984070 3.000811378 3.000010033 3

G2 0.0088591487 0.0006864435 0.0000009992 0

R -1.031206852 -1.871066950 -1.999970549 -2

3 H3 -3.862583278 -3.862698023 -3.862724551 -3.86

4 S5 -1.631190022 -10.15319696 -10.15319696 ≈ -10

S7 -1.945297979 -10.40282047 -10.40293718 ≈ -10

S10 -7.216953325 -10.53629007 -10.53640678 ≈ -10

6 H6 -2.035737075 -3.168159945 -3.203076797 -3.32

10 G10 20.30238203 20.30238203 20.30238203 0

Table 4.2: The results for the version with h = 3 and feature F2. The right
hand side column gives the minimum value according to Törn, Žilinskas
(1989). The minimum of g6 given there is -13.9223449 and seems to be wrong.
It should be attained at x0 := 4.8555654, but g6(x0) = −8.937. For St, the
minimum depends on the random numbers. In consequence, we have no value
which we could compare to ours. ForG10 the approximation of our algorithm
is not too good even after 10,000 points. This is not surprising since here,
d = 10. The first improvement is after n = 59114 points: f∗ = 9.730. After
n = 67789 points we have f∗ = 2.662.
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Plots for Shekel g
6
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Figure 4.1: The points chosen by Z(3, 8), Z(3, 12), Z(3, 14), Z(3, 16) for g6.

function algorithm # points f∗
Shekel g6 Z(3, 8) 27 -8.383952678

Z(3, 12) 60 -9.575211370
Z(3, 14) 115 -9.871841283
Z(3, 16) 162 -10.05469879
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Plots for C
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Figure 4.2: The points chosen by Z(3, 6), Z(3, 14) Z(3, 15) for the function
C and a contour plot of C with altitudes −0.8, 0, 1, 4, 7, 14, 20, 50, 100.

function algorithm # points f∗

C Z(3, 6) 58 -.8341946919

Z(3, 14) 5277 -1.031615969

Z(3, 15) 15741 -1.031625022
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Plots for BR
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Figure 4.3: The points chosen by Z(3, 5), Z(3, 10), Z(3, 11) for BR, and a
contour plot of BR with altitudes 1, 4, 7, 11, 19, 27, 50, 100.

function algorithm # points f∗

BR Z(3, 5) 42 0.434202095

Z(3, 10) 3988 0.397887448

Z(3, 11) 11788 0.3978878368



Chapter 5

Applications

We present two applications of the fine-tuned version of our universal algo-
rithm.

5.1 Banach-Mazur distance

Let E, F,G be n-dimensional normed vector spaces. The Banach-Mazur
distance of E and F is defined by

d(E, F ) := inf{‖T‖ · ‖T−1‖, T : E → F linear isomorphism}. (5.1)

It measures how far the unit ball of E is from an affine image of the unit ball
of F . It also shows how much numerical parameters of E can differ from the
corresponding ones of F . We have

d(E,G) ≤ d(E, F ) · d(F,G).

Furthermore, log d(·, ·) is a semi-metric on the set of all n-dimensional normed
vector spaces with log d(E, F ) = 0 if E and F are isometric. We say F
belongs to the class [E] if log d(E, F ) = 0.

Let Mn be the set of all classes of n-dimensional normed vector spaces.
Mn is compact for all n ∈ N and is called the Minkowski compactum, see
Tomczak-Jaegermann (1989), Chapter 9, for this and also to learn more
about the Banach-Mazur distance. For

diam Mn := sup
[E],[F ]∈Mn

d(E, F )

we know that for an unknown constant c independent of the dimension n

c · n ≤ diam Mn ≤ n.
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The first inequality is due to John (1948), the second one is a corollary of
Gluskin (1981). For dimensions n > 2 the exact value of diam Mn is not
known.

In our application we consider the case n = 3 and the particular spaces
l31 and l3∞ being R

3 endowed with the norms

‖ x | l31 ‖ :=

3∑

i=1

|xi| and ‖ x | l3∞ ‖ := max
1≤i≤3

|xi|,

respectively. For the linear isomorphism

T : l31 → l3∞, x 7→




1 −1/3 1
1 1 −1/3

−1/3 1 1


 x,

we know ‖T‖ · ‖T−1‖ = 9
5
. The conjecture is that this value is already best

possible, i.e., that d(l31, l
3
∞) = 9

5
. This would imply

diam M3 ≥
9

5
.

We want to test this hypothesis by applying our universal algorithm. As
a first step, we reformulate the problem:

“Minimize ‖T‖ · ‖T−1‖ for T : l31 → l3∞ linear isomorphism” (5.2)

to an optimization problem with a 6-variate objective defined on the domain
[−1, 1]6.

For the rest of this section, T will denote a linear isomorphism from l31
to l3∞. Without loss of generality, we assume

‖T‖ = 1.

Let (ti,j)
3
i,j=1 be the matrix associated to T in the usual way. In our special

situation T : l31 → l3∞, we know ‖T ‖ = maxi,j=1,...,3 |ti,j|. A simple argument
shows that we can restrict our search to isomorphisms that can be identified
with a matrix as follows:

T ∼




1 t1,2 t1,3

t2,1 1 t2,3

t3,1 t3,2 1


 , ti,j ∈ [−1, 1]. (5.3)

Let e(1), e(2), e(3) be the unit vectors in R
3. Then

T ∼
(
Te(1)

∣∣Te(2)
∣∣Te(3)

)
=:
(
y(1)
∣∣y(2)

∣∣y(3)
)
.
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For x ∈ R
3 we define λT

1 (x), λT
2 (x), λT

3 (x) to be the (unique) solutions of

3∑

i=1

λT
i (x)y(i) = x ⇔

3∑

i=1

λT
i (x)e(i) = T−1x.

We conclude that

‖T−1x | l31 ‖ =
3∑

i=1

|λT
i (x)|.

One verifies easily that

‖T−1‖ = sup
x6=0

‖T−1x | l31 ‖
‖ x | l3∞‖ = max

1≤j≤4

3∑

i=1

|λT
i (v(j))|,

with

v(1) :=




1
1
1


 , v(2) :=




1
1
−1


 , v(3) :=




1
−1
1


 , v(4) :=




−1
1
1


 . (5.4)

Then,

d(l31, l
3
∞) = inf

‖T ‖=1
max
1≤j≤4

3∑

i=1

|λT
i (v(j))|.

The coefficients λT
i (x) can be calculated by

λT
1 (x) =

det
(
x | y(2) | y(3)

)

det (y(1) | y(2) | y(3))
, λT

2 (x) =
det
(
y(1) | x | y(3)

)

det (y(1) | y(2) | y(3))
,

λT
3 (x) =

det
(
y(1) | y(2) | x

)

det (y(1) | y(2) | y(3))
.

Since every T we want to consider can be identified with one point in [−1, 1]6,
as done in (5.3), we reformulate (5.2) to:

“Minimize the objective

x 7→ max
1≤j≤4

detT1(x, v
(j)) + detT2(x, v

(j)) + detT3(x, v
(j))

detT (x)
, x ∈ [−1, 1]6 \Ω0,

with

T1(x, v
(j)) :=




v
(j)
1 x3 x5

v
(j)
2 1 x6

v
(j)
3 x4 1


 , T2(x, v

(j)) :=




1 v
(j)
1 x5

x1 v
(j)
2 x6

x2 v
(j)
3 1


 ,

T3(x, v
(j)) :=




1 x3 v
(j)
1

x1 1 v
(j)
2

x2 x4 v
(j)
3


 , T (x) :=




1 x3 x5

x1 1 x6

x2 x4 1


 ,
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# points f∗ x∗

250 2.3846154
(
0, 0, 0, 2

3
, 0, −2

3

)

1500 2.1172414
(
0, 0, 0, 8

9
, 0, −9

9

)

10,000 1.8077816
(

242
243
, −82

242
, −82

243
, 242

243
, 242

243
, −80

243

)

100,000 1.8025930
(

728
729
, 242

729
, −244

729
, −728

729
, −728

729
, 244

729

)

1,000,000 1.8008642
(

2186
2187

, 728
2187

, −730
2187

, −2186
2187

, −2186
2187

, 730
2187

)

2,000,000 1.8000960
(

19682
19683

, 6560
19683

, −6562
19683

, −19682
19683

, −19682
19683

, 6562
19693

)

Table 5.1: Results

v(j) as in (5.4), and Ω0 := {x ∈ [−1, 1]6 : detT (x) = 0}.”
Applying our algorithm, we ignored the existence of Ω0. This is possible
because all singularities are on the border of the domain while all evaluation
points are in its interior. The results are stated in Table 5.1.

Our results confirm the conjecture diam M3 ≥ 9
5
.

5.2 Mean errors in global optimization

We consider a function space F endowed with a probability measure P de-
fined on a suitable σ-algebra. We present a scheme of how the universal
algorithm, or a suitable modification, can be used to prove an upper bound
for the mean error numbers eadn (P ) as defined in (3.4). We try to apply this
scheme to the particular case F = C[0, 1] and P the Wiener measure P ∗.

5.2.1 Basic scheme

Let (Ωi) be a sequence of subsets of F such that

Ω0 := ∅,

Ωi ⊂ Ωi+1,

P (
⋃

i∈N

Ωi) = 1.
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Furthermore, for a sequence pi ↓ 0 with p0 := 1

P (Ωi) ≥ 1 − pi

shall be fulfilled. Let (Yn)n∈N be a sequence of optimization algorithms with
Yn using at most n function values. Concerning the sets Ωi, their worst-case
error shall be estimated by a sequence (εn,i)n,i∈N:

∆(Yn,Ωi) ≤ εn,i. (5.5)

Without loss of generality, we assume the sequence (εn,i)n∈N to be monotone
decreasing for fixed i. We need the following technical result.

Proposition 5.2.1. Let I ∈ N. Then

I∑

i=1

εn,iP (Ωi \ Ωi−1) ≤
I∑

i=1

εn,i(pi−1 − pi) + εn,I[P (ΩI) − (1 − pI)].

Proof. Recall Ω0 = ∅ and p0 = 1. For I = 1 we have

εn,1P (Ω1 \ Ω0) = εn,1(1 − p1) + εn,1(p1 − 1 + P (Ω1 \ Ω0))

= εn,1(p0 − p1) + εn,1[P (Ω1) − (1 − p1)].

For I + 1 we have by induction

I+1∑

i=1

εn,iP (Ωi \ Ωi−1) ≤
I∑

i=1

εn,i(pi−1 − pi) + εn,I[P (ΩI) − (1 − pI)] +

εn,I+1P (ΩI+1 \ ΩI)

=

I+1∑

i=1

εn,i(pi−1 − pi) + εn,I+1[P (ΩI+1) − (1 − pI+1)]

+ (εI+1 − εI︸ ︷︷ ︸
≥0

)[(1 − pI) − P (ΩI)︸ ︷︷ ︸
≤0

]

≤
I+1∑

i=1

εn,i(pi−1 − pi) + εn,I+1[P (ΩI+1) − (1 − pI+1)].

Lemma 5.2.2. Assume that the error ∆(Y1, P ) is finite and that

lim
I→∞

ε1,I [P (ΩI) − (1 − pI)] = 0. (5.6)

Then the average error is bounded by

∆(Yn, P ) ≤
∞∑

i=1

εn,i (pi−1 − pi). (5.7)



66 CHAPTER 5. APPLICATIONS

Proof. For I ∈ N we have

∆(Yn, P ) =

∫

C[0,1]

|f(Yn(f)) − inf f | dP (f)

≤
I∑

i=1

εn,iP (Ωi \ Ωi−1) +

∫

C[0,1]\ΩI

|f(Yn(f)) − inf f | dP (f).

Application of Proposition 5.2.1 yields

∆(Yn, P ) ≤
I∑

i=1

εn,i(pi−1 − pi) + εn,I[P (ΩI) − (1 − pI)] +

∫

C[0,1]\ΩI

|f(Yn(f)) − inf f | dP (f).

Taking the limit I → ∞ we get

∆(Yn, P ) ≤
∞∑

i=1

εn,i(pi−1 − pi).

Remark 5.2.3. For the Wiener measure P ∗ on C[0, 1] it is known that
E(inf f) = −

√
2/π, so ∆(Yn, P

∗) is finite for any method Y1 that returns a
point x∗ ∈ {0, x(1)}.

5.2.2 The Wiener measure

For a definition of the Wiener measure P ∗ we refer to Partzsch (1984) or
Revuz, Yor (1990).

For the mean error in global optimization the following results are known.
Ritter (1990) shows that a best non-adaptive method has an error of
O(n−1/2) where n is the number of used function calls. As a consequence,
there exists a constant C1 such that

eadn (P ∗) ≤ C1 · n−1/2.

Calvin (2004) shows that the mean error cannot decrease exponentially:

∀C2, C3 > 0 ∃n ∈ N eadn (P ∗) > C2 · exp(−C3 · n).

There is a huge gap between the lower and the upper bound. We try to apply
the concept of the previous section to improve the upper bound. Let

α ∈ (0, 1/2) (5.8)
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and L(i) as in (2.8). For the sets

Ω′
i := {f ∈ C[0, 1] : ∀x, y ∈ [0, 1] |f(x) − f(y)| ≤ L(i) |x− y|α}

Novak et al. (1995), Lemma 3.1, show as a corollary to Ledoux, Tala-
grand (1991), Lemma 3.1, that

∀i ∈ N P ∗(Ω′
i) ≥ 1 − c1 exp(−c2L(i)2)

for some constants c1, c2 > 0. Note that we have Hölder- instead of Lip-
schitz continuity. We will adopt Z(h, k) to this new situation. Reconsider
Figure 2.1. By changing the test (∗) to

f(x) ≤ f∗ + L
[
2−13−j+2

]α

we obtain a version of Z(h, k) that we call

Z(h, α, k).

This one can be applied to the new situation. It is easy to check that

∆(Z(h, α, k),Ω′
i) ≤ L(i)

[
2−13−k+h(m−1)+1

]α
.

From Novak (1988) we know that eadn (Ω′
i) = enon

n (Ω′
i) = L(i)(2n)−α. As a

consequence, for εn,i as in (5.5) we have

εn,i = O(n−α).

Since α < 1/2 it is impossible to obtain an estimate as in (5.7) that is better
than the result obtained by Ritter.

It would be helpful in this situation to have an additional estimate of
the following kind: Let g : [0,∞) → [0, 1] with g(0) = 0 be increasing and
h : [0,∞) → [0, 1] be decreasing such that

P ∗

(
⋂

δ>0

{f ; λ(A(f, δ)) ≤ Dg(δ)}
)

≥ 1 − h(D). (5.9)

Then, with a suitable sequence (D(i))i∈N another sequence of sets (Ω′′
i )i∈N

could be constructed:

Ω′′
i := {f ∈ C[0, 1] : ∀δ > 0 λ(A(f, δ)) ≤ D(i) g(δ)}.

We define
Ωi := Ω′

i ∩ Ω′′
i
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and obtain

P ∗(Ωi) ≥ 1 − c1 exp(−c2L(i)2) − h(D(i)).

If Condition (5.6) is fulfilled we can apply our basic scheme. Then, a cost
estimation as that of Theorem 2.2.2 could be established. However, it seems
that a result as in (5.9) is not known.

We refrain from theoretical speculations. Instead, we are interested in
how the algorithms Z(h, α, · ) behave in a numerical experiment.

5.2.3 Numerical simulation

We use the algorithms Z(h, α, · ) to determine numerically an upper bound
for the error numbers eadn (P ∗). We found the diploma thesis of Nestel (1988)
very useful for this purpose. In Chapter 4, he treats problems occurring when
the rate of convergence of mean errors is to be determined if the Wiener
measure is assumed. We only sketch how we proceed and refer to Nestel
(1988) for details.

As a first step, we introduce the algorithms

Yn, n ∈ N,

which are basically the same methods as (Z(h, α, k))k∈N with h = 3, Feature
F2 and α = 0.49. The difference is that Z(h, α, k) stops after k diagonals
while Yn is defined to stop after n function calls. Furthermore, Yn uses the
information P ∗({f(0) = 0}) = 1.

We want to determine numerically the behavior of

∆(Yn, P
∗) =

∫

C[0,1]

[f(Yn(f)) − inf f ]P ∗(df)

for n→ ∞.

Simulation of f(Yn(f))

For simulating f(Yn(f)) we can use the fact that for applying Yn to a path
f we do not need to simulate the whole path but only its function values
at the points x(1), . . . , x(n) that are used by Yn. The following method is an
application of the Lévy-Cielsielski representation of Brownian motion, see
Partzsch (1984), pp. 26, for details. Let

X1, . . . , Xn
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be realizations of independent standard normal distributed random variables.
The first point x(1) evaluated by Yn is 0.5. We set

f(x(1)) =
√

1/2 ·X1.

Now let 2 ≤ i ≤ n. Without loss of generality we assume x(1) ≤ · · · ≤ x(i−1).
We define x(0) := 0 and set f(x(0)) := 0. For x(i) we have to consider three
cases:

1. x(i) ∈ (x(j−1), x(j)) for some 1 ≤ j ≤ i− 1. We set

f(x(i)) :=
f(x(j−1)) · (x(j) − x(i)) + f(x(j)) · (x(i) − x(j−1))

x(j) − x(j−1)
+

Xi ·
√

(x(i) − x(j−1)) · (x(j) − x(i))

x(j) − x(j−1)
.

2. x(i) = x(j) for some 1 ≤ j ≤ i− 1. We set

f(x(i)) := f(x(j)).

3. x(i) > x(i−1). We set

f(x(i)) := f(x(i−1)) +Xi ·
√
x(i) − x(i−1).

Finally, we set

f(Yn(f)) := min
1≤i≤n

f(x(i)).

Now we know how to simulate f(Yn(f)) for a path of the Brownian motion.
We present two different methods of how to determine ∆(Yn, P

∗) numerically.

Direct simulation

Let Y
(1)
n , . . . , Y

(l)
n be the realizations of l independent copies of the random

variable f(Yn(f)). The direct simulation uses the discretization

∆(Yn, P
∗) ≈ 1

l

l∑

i=1

Y (i)
n +

√
2

π
=: ∆̃(l)(Yn, P

∗). (5.10)
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Simulation using local errors

Again, let x(1), . . . , x(n) be the points chosen by Yn. The information vector
used by Yn is given by

Nn : C[0, 1] → R
n, f 7→ (f(x(1)), . . . , f(x(n))).

Nn is a random variable. Let P ∗
Nn

denote its distribution. We use the desin-
tegration

∆(Yn, P
∗) =

∫

Rn

∫

C[0,1]

(f(Yn(f)) − inf f)P ∗(df |Nn = y)P ∗
Nn

(dy)

=

∫

Rn

[
min{0, y1, . . . , yn} −

∫

C[0,1]

inf fP ∗(df |Nn = y)
]

︸ ︷︷ ︸
local error ∆(Yn,P ∗,y)

dP ∗
Nn

(y).

Let Y
(1)
n , . . . , Y

(l)
n be the realizations of l independent copies of f(Yn(f)) and

N
(1)
n , . . . , N

(l)
n be the according information vectors. The simulation with

local errors uses the discretization

∆(Yn, P
∗) ≈ 1

l

l∑

i=1

[
Y (i)

n −
∫

C[0,1]

inf fP ∗(df |Nn = N (i)
n )

]
=: ∆(l)(Yn, P

∗).

(5.11)

The simulation ∆(l)(Yn, P
∗) is by far more complicated than ∆̃(l)(Yn, P

∗)

since we have to compute the local errors ∆(Yn, P
∗, N

(i)
n ) numerically. On

the other hand, ∆(l)(Yn, P
∗) has a decisive advantage, as we will see in the

next section.

Asymptotic cost

Both ∆(l)(Yn, P
∗) and ∆̃(l)(Yn, P

∗) are realizations of random variables, say

∆
(l)
n and ∆̃

(l)
n . Let us consider ∆̃

(l)
n first. In order to obtain a meaningful

result, we require for the standard deviation, its mean value, and a constant
0 < c < 1 that

σ(∆̃(l)
n ) ≤ c · E(∆̃(l)

n ). (5.12)

This has consequences for the choice of l = l(n). Empirical results lead us to
assume that

∀n ∈ N σ(f(Yn(f))) ≈ σ(inf f).

Consequently,
σ(∆̃(l)

n ) ≈ n−1/2σ(inf f).
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If we want to test the conjecture ∆(Yn, P
∗) = O(n−p) for some p > 0 then

we need
l(n) = O(n2p)

runs, i.e. O(n2p+1) function calls / random numbers.

Example 5.2.4. Consider the algorithm An that chooses the points equidis-
tantly: Nn := (f(1/n), f(2/n), . . . , f(1)). We know from Ritter (1990)
that it has a convergence rate of n−1/2. For n = 21 knots we need l = 100
runs in order to get

σ(∆̃(l)(An, P
∗)) ≤ 0.5 · E(∆̃(l)(An, P

∗)).

For n = 18.000, we need l = 90.000 runs, see Nestel (1988) for details.
Now let us assume a rate of convergence of 1 instead of 0.5. Then, these
90.000 runs are already necessary for n = 134 ≈

√
18000. We see that the

direct simulation is problematic in examining asymptotic behavior for “high”
convergence rates.

The situation is better for ∆(l)(Yn, P
∗) because the standard deviation of

the local error is decreasing with l. Nestel (1988) gives the upper bound

σ2(f(Yn(f))) ≤ L

2
,

where L is the length of the longest subinterval that is induced by the points
x(1), . . . , x(n). The empirical standard deviations decreases much quicker. Let
us assume that σ(f(Yn(f))) = O(n−q). To fulfill condition (5.12) we need

l(n) = O(n2(p−q))

runs, i.e., O(n2(p−q)+1) function calls / random numbers. We want to use
this advantage towards direct simulation.

Calculating the local error

We sketch how we calculate the local error numerically, i.e., for y ∈ R
n we

want to approximate

Ey(inf f) :=

∫

C[0,1]

inf f P ∗(df |Nn = y).

We implement the calculation in Maple, using the standard accuracy of ten
digits. We proceed in 4 steps.
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1. Let P ∗
y := P ∗( · |Nk = y). For y = (y1, . . . , yk) let y0 := min{0, y1, . . . , yk}.

With partial integration we get

Ey(inf f) =

∫ y0

−∞

uP ∗
y (inf f = u) du = y0 −

∫ y0

−∞

P ∗
y (inf f ≤ u) du

= y0 −
∫ y0

−∞

[1 − P ∗
y (inf f > u)] du.

Assume 0 = x(0) < · · · < x(n) < 1. Then we know (see, e.g., Partzsch
(1984), Behauptung 4.3)

P ∗( inf
x(j−1)≤x≤x(j)

f(x) > u | f(x(j−1)) = yj−1, f(x(j)) = yj)

=

{
1 − exp(−2

(yj−1−u)(yj−u)

x(j)−x(j−1) ), u < min{yj−1, yj},
0, else.

For x(n) ≤ x ≤ 1 we have

P ∗( inf
x(n)≤x≤1

f(x) > u | f(x(n)) = yn) =





2Φ

(
yn−u√
1−x(n)

)
− 1, u < yn,

0, else,

with Φ the distribution function of the standard normal distribution. For
k independent random variables Zj we know

P ( min
1≤j≤k

Zj > u) =

k∏

j=1

P (Zj > u).

So,

Ey(inf f) =

∫ y0

−∞

[1 − P ∗
y (inf f > u)] du (5.13)

= y0 −
∫ y0

−∞

[
1 −

[
2Φ

(
yn−u√
1−x(n)

)
− 1

] k∏

j=1

(1 − exp(−2
(yj−1−u)(yj−u)

x(j)−x(j−1) ))

︸ ︷︷ ︸
h(u)

]
du.

2. To approximate (5.13), we cannot integrate over (−∞, y0] but only over a
finite interval. Let ε be the accuracy we want to determine the integral with.
Let L be the length of the longest subinterval induced by the evaluation
points, let

z0 := y0 −
√
−L

4
ln(0.5πLε2), zi+1 := (zi + y0)/2.



5.2. MEAN ERRORS IN GLOBAL OPTIMIZATION 73

For j such that h(zj+1) > ε and h(zj) ≤ ε, choose [zj, y0] as the integration
interval. Then, the maximal error is less than ε. We choose ε := 10−1.5·log(n).

3. To approximate h(u) we use logarithmic calculation. Define

qj := exp(−2
(yj−1 − u)(yj − u)

x(j) − x(j−1)
), pj := 1 − qj.

We use
k∏

j=1

pj = exp(
∑k

j=1 ln pj).

Because very often qj � 1 we can calculate ln pj with the Taylor expansion

ln(1 − q) = −∑∞
j=1

qj

j
. A faster converging method is ln( 1−u

1+u
) = ln(1 − q)

with u = q
2−q

. We get the Taylor expansion

ln(
1 − u

1 + u
) = −2

∞∑

j=0

u2j+1

2j + 1
. (5.14)

We take the first 10 summands of (5.14). For the calculation of Φ we use the
subroutine of Maple.

4. To calculate
∫ y0

zj
h(u) du numerically, we take into consideration that h(u)

decreases quickly for u decreasing. We can exploit that h is smooth. We
use Romberg integration, see, e.g., Kincaid, Cheney (2002) for details. To
approximate

I(f) =

∫ b

a

f(x) dx

we introduce

R(0, 0) :=
1

2
(b− a)[f(a) + f(b)],

R(j, 0) :=
1

2
R(j − 1, 0) + hj

2j−1∑

i=1

f(a+ (2i− 1)hj

R(j,m) := R(j,m− 1) +
1

4m − 1
[R(j,m− 1) −R(j − 1, m− 1)], m ≤ j,

with h0 := b−a and hj = hj−1/2 for j ≥ 1. The Romberg integration R(j, j)
is an O(h2j

j ) approximation of I(f) if f ∈ C2j [a, b]. We use R(6, 6).
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n ∆(l)(Yn, P
∗) σ̃(f(Yn(f))) σ̃(∆(l)(Yn, P

∗))

12 0.07438209115 0.02342877456 0.01171438728

25 0.02201084315 0.02010604556 0.006358089871

50 0.008856878920 0.01525149098 0.003410337058

100 0.003076658378 0.006514667583 0.001030059388

200 0.001130572636 0.004480232594 0.0005009052314

400 0.00003234345839 0.0001537732155 0.00001215684010

800 0.00003342611825 0.0004077644289 0.00002279472453

1600 0.000009293359809 0.0001084567565 0.000004287129726

Table 5.2: Results for the simulated mean error

10−5

10−4

10−3

10−2

10−1

10 100 1000

Figure 5.1: The simulated mean error on a logarithmic scale.

Results

We determined numerically the values of ∆(l)(Yn, P
∗) for

n = 12, 25, 50, 100, 200, 400, 800, 1600.

We assumed a rate of convergence of the error of at least n−1 and a rate of
n−1/2 for the standard deviation of the local error. In order to fulfill (5.12)
we set l(n) := dc ·ne with c := 0.4. In addition to the result for ∆(l)(Yn, P

∗),
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we also recorded the empirical standard deviation of the local error, and the
empirical standard deviation of ∆(l)(Yn, P

∗), see Table 5.2 for the results.
They show that the number l(n) of iterations was chosen reasonably.

A least-square fit of the logarithmized data suggests to assume a depen-
dence of

∆(Yn, P
∗) ≈ 13.12 · n−1.93,

which is represented by the dotted line in Figure 5.1.





Notations

A(f, δ) 5 level set
A, A(f) 15 optimization algorithm
Aad

n (F ) 38 class of adaptive methods
Anon

n (F ) 38 class of non-adaptive methods
� 41
B(x, r, ‖ · ‖) 7 ball
B(x, r) 8 ball
cost(A, f) 15 function-wise error
cost(A, F ) 15 worst-case cost
c(d, h) 23 constant
C(L, d, h) 23 constant
d · e 22 ceiling function
D 5 class parameter
D 33 domain
∆(A, f) 37 function-wise error
∆(A, F ) 37 worst-case error
∆(A, P ) 41 mean error
∆(Q, f) 42 error
∆(Q,F ) 42 error
ei 15 unit vector in R

d

eadn (F ) 39 error number
enon

n (F ) 39 error number
eadn (P ) 41 mean error numbers
enon

n (P ) 41 mean error numbers
εL,k 17 error level
εL,h,k 23 error level
F d

L,D,% 5 function class
f∗ 17 approximation
F 33 problem class
F

d 10 class of problem classes F d
L,D,%
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j(L, %) 17 constant
j(L,D, %, d) 17 constant
j(m, i, %) 24 constant
j ′(m, i, h, %) 25 constant
L 5 Lipschitz parameter
L(i) 22 Lipschitz parameter
lastconst 20 control function
laststep 20 control function
M 16 midpoint (1/2, . . . , 1/2)
mesh(j) 16 equidistant mesh
MC(Aad

n (F )) 42 set of adaptive MCMs
MC(Anon

n (F )) 42 set of non-adaptive MCMs
NL,j 17
N∗

L,j 18
N 36 information vector

�
12

�
:= (1, . . . , 1)T

P 41 probability measure
P ∗ 41 Wiener measure
φ 37 mapping
Q 42 Monte Carlo method
Rk 34 register
rk 34 real number in register
% 5 class parameter
S(L, k) 17 non-universal algorithm
step(L, j) 17
step(L, 1′) 20
σad

n (F ) 42 error number
σnon

n (F ) 43 error number
x∗ 7 global minimizer
x∗ 15 approximation
Y (j) 15 set of scaled vectors
Z(k) 21 universal algorithm
Z(h, k) 23 universal algorithm
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