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Abstract: In this note we present a high-gain observer for nonlinear uniformly 
observable SISO systems for which the high-gain parameter is determined adaptively 
on-line. The adaptation scheme is simple and universal in the sense that it is 
independent of the system the observer is designed for. Unlike in an earlier approach, 
the gain is adapted continuously in the present paper. This further simplifies the 
adaptation law and also leads to lower values of the high-gain parameter. We prove 
that the observer output error becomes smaller than a User specified bound for large 
times and that the adaptation converges. Copyright O 1998 ZFAC 
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1. INTRODUCTION 

For nonlinear systems that are uniformly ob- 
servable for any U( . )  (i.e. the states of the 
system can be determined from the output of the 
system and its derivatives, independently of the 
input)(Gauthier and Bornard, 1981), a high-gain 
observer has been suggested in (Tornarnbk, 1992). 
One of the advantages of this observer are its 
excellent robustness properties (Tornambk, 1992). 
By choosing the observer gain k large enough 
(therefore the name "high-gain") the observer 
error can be made arbitrarily small. The diffi- 
culty in practical applications is, however, the 
determination of an appropriate value for the 
observer gain. For values too low, the desired 
bounds on the observer error cannot be achieved. 
For values unnecessarily high, the sensitivity to 
noise increases, thus limiting the practical use. 

In this paper we propose an adaptation scheme 
for the observer gain of the high-gain observer 
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in (Tornambk, 1992) such that its advantages are 
retained and the observer gain is adjusted auto- 
matically until the observer output error becomes 
smaller than a desired target value. 

The note is organized as follows: In Section 2 we 
recall the main result on the non-adaptive high- 
gain observer in (Tornambk, 1992). In Section 3 
we present the adaptation scheme and prove (i) 
convergence of the observer output error towards 
an arbitrary small but prespecified X-ball around 
Zero, (ii) the boundedness of the observer error, 
and (iii) convergence of the adaptation scheme. 
Finally in Section 4 the usefulness of the proposed 
adaptive observer is illustrated by applying it to  
a simple example of a bioreactor in simulation. 

2. HIGH-GAIN OBSERVER 

The theory of non-adaptive high-gain observers as 
in (Tornarnbk, 1992) assumes that the system is 
given in observability normal form (Zeitz, 1989), 
also called the generalized controller canonical 



form (Fliess, 1990). In principle, every uniformly 
observable, suffienciently smooth SISO-system 
with input u and output y can be transformed 
into this normal form: 

x1 = X2 

Zn-1 = X, (1) 
n = 4 (X, U) 

Y = X i ,  

T T 
with X = [xl . . - X,] , u = [U iL u ( ~ )  . . . u ( ~ ) ]  
and q5 : W X Rn -+ R denotes some continuous 
function. 

If the coeficients pl ,  . . . , p, E R are such that 
sn + CLl pjsn-j is a Hurwitz polynomial with 
distinct roots, then for every d > 0 and every time 
> 0 there exists a finite observer gain k = k(d, t) 

such that for all constant k 2 k the observer error 
satisfies: 

Ile(t)ll L d for all t 2 E. 

This means that the observer error e can be made 
arbitrarily small in an arbitrarily short time by 
an appropriate choice (i.e. large enough) of the 
observer gain k. 

A possibility to estimate the states of such systems In the Laplace domain, the relationship between 

(1) is the high-gain observer (Tornambk, 1992). w(s) = L{xn(t)), an additive output noise u(s) 

The structure of the high-gain observer is a sim- (see Fig. I ) ,  and the observer output error el (s) = 

ple chain of integrators, each "corrected" by the y(s) - y(s) is given by: 

injection of the output error (y - jj) multiplied by 
a factor depending on the constant observer gain 

T 
where X = [Z1 . . . Zn] denotes the estimate of 
the state X and 6 the estimate of the system's 
output (cf. Figure 1). 

where, for simplicity, pi = (7 )  for Ic = 1, .  . . , n. 
From (3) it is obvious that the larger the ob- 
Server gain Ic is chosen, the smaller the influence 
W and thus of the nonlinearity q5 (and there- 
fore of U) on the observer output error. For a 
large observer gain, the observer is thus very ro- 
bust, provided the dimension of the state-space is 
known (Tornambk, 1992). However, for large val- 
ues of k the additive output noise is damped in the 
observer output error, and therefore undamped 
in the observer output and thus the observer is 
potemtially sensitive to noise. 

3. ADAPTIVE HIGH-GAIN OBSERVER 

To overcome the difficulty of having to choose the 
observer gain k, we propose the following simple 
adaptation law for k, where el (t) = y(t) - y(t): 

d 
Fig. 1. High-gain observer for a system in observ- -k(t) dt = 7 d l i  (el( t )) ,  k(O) = ko (4) 

ability normal form. with 

In contrast to the classical Luenberger observer 
(Luenberger, 1966), the high-gain observer does 
not consist of a replica of the system (1) plus 
correction terms as the nonlinearity +(X, U) is not 
modelled. The observer error will be denoted by 

T 
e(t) = [el (t), . . . , en(t)] 

= [XI (t) - 21 ( t ) ,  . . . , xn(t) - ?,(t)] . 
The following theorem is proven in (Tornambk, 
1992). 

Theorem 1.  (High-Gain Observer). Assume that 
A l )  the system (1) exhibits no finite escape time 

und 
A2) the nonlinearity + in (1) is unafomly boun- 

ded, i.e. there exists some p > 0 such that 
II4(x, u)lI 5 p for all X, U E P. 

X for (eil 2 
- X for X 5 lel 1 5 1 ( 5 )  

for (eil L X, 

where X > X > 0, y > 0, are preassigned design 
parameters. 

The idea behind this adaptation law is that the 
observer gain k(t) is monotonically increasing 
(with a bounded derivative) as long as ly(t) - 
y(t)l lies outside the X-strip [0, X] and k(t) stops 
increasing as soon as J y (t) -y (t) ( enters the X-strip. 
The concept of introducing a dead-zone in the gain 
adaptation as in (4) and (5) is due to (Ilchmann 
and Ryan, 1994) where it was used for tracking. 

In (Bullinger and Allgöwer, 1997), an adaptation 
law with amplitude discrete observer parameter 



was used instead of a continuous one. The advan- 
tage of the present continuous case is that there 
is no step size which has to increase quite rapidly 
(see also the comments in Section 4) and that  the 
adaptation law is simpler. 

We now prove that the high-gain observer (2)  
with a time-varying observer gain k determined by 
adaptation law (4), (5)  guarantees convergence of 
the adaptation and boundedness of the observer 
error. 

Theorem 2. Suppose that for any suficiently 
smooth U ( . )  the function $ ( x , u )  in ( 1 )  is es- 
sentially bounded. Then the high-gain observer 
( 2 )  with the adaptation law (4), (5)  achieves, for 
any initial condition x(0)  E Rn, any coeficients 
pl , . . . , pn E R such that sn + C;=, pjsn-j is 
a Hurwitz polynomial, and with arbitrary design 
parameters > X > 0 ,  y > 0,  k(0)  > 0,  I ( 0 )  E Rn 
a nonlinear system ( I ) ,  ( 2 ) ,  (4), (5)  where every 
solution exists on the whole of [O,  CO) and 

U )  limt„ k ( t )  = k,  E R, 
b) 4.1 E L,(O, m), 
C) limt+oo dist (el ( t ) ,  [ - X ,  X ] )  = 0. 

Theorem 2 states that the observer Parameter 
k ( t )  converges to  a finite value while the observer 

Since sn + CLl p j ~ n - j  is a Hurwitz polynomial, 
A is a Hurwitz matrix, and hence there exists 
a symmetric, positive definite matrix P E RnXn 
such that 

ATP + P A  = - I .  ( 7 )  

Set 

~ ( t )  = ~ ( t ) - l  P ~ ( t ) - l  

which is symmetric and non-singular for every 
k ( t ) ,  and hence: 

A ~ P  +  PA^ = ( k .  K - ~ A ~ K )  ( K - ~ P K - l )  
+ ( K - ' P K - I )  ( k  . KAK- ' )  

= k .  K-' ( Ä T p  + P A )  K-' 

= -k . K - 2 ,  

where, as in the following, the argument t is 
omitted. 

Differentiating the Lyapunov function candidate 

V ( t ,  e )  = D2(t ,  e ) ,  

where 

Output errOr e l ( t )  approaches the X-strip ' 1  along the trajectory of (3) yields, for all t E [0, U ) ,  
asymptotically. 

d d i & ( e T p e )  
-V = 2D(e) . -D(e)  = 2D(e)-  

Proof of a) The error differential equations are dt d t  2 l b l l ~ ( t )  

- - el = ez - pllc el 

kn-1 - en-1 = en - ~ n - 1  e i - (eT ( A J P  +  PA^) e 
en = b ( x ,  U )  - pnkn el .  

l lel l~(t)  

+ 2eTKV1 P K - I  B ~ ( x ,  U )  
respectively 

e ( t )  = Ak(t)e(t) + B$(x( t ) ,  ~ ( t ) ) ,  + 2eT ( 2  K - l )  .K1e) 
e(0)  = x(0)  - #(0)  (6)  

where 5 " ( - * V + 2 1 1F11 1 1 ~ 1 1 ~  
I lell~(t) 

A ~ ( ~ )  = k ( t )  . K ( ~ ) A K ( ~ ) - l  
\ 

It follows from the theory of ordinary differential 
equations, that the initial value problem (4 ) ,  (5 ) ,  
(6)  possesses an absolutely continuous solution 
(e( . ) ,  k ( . ) )  : [0, W )  -+ Rn+' , maximally extended 
over [0, W )  for some W E (0, CO].  Seeking a contra- 
diction to a) ,  we suppose 

where q := K-'e and 

By assumption there exists some p > 0 such that 
I I$(x( t ) ,u( t ) ) l l~ ,  L P for almest all t E [ % W ) ,  

then substituting 1 1 ~ 1 1  I: nk into (8) yields, 

lim k ( t )  = CO. 
l+w 



By (4) and (5) k: is bounded. Choosing t l  E [O,w) particular Ak =   KAK-' for k = km is Hurwitz. 
such that With 

A(t) := Ak(t) - Akm 

we might rewrite (6) as 

yields by monotonicity of t rt k(t), for almost all d 
-e(t) = (Ak, + N t ) )  e(t) + B4(x( t ) ,  u( t)) .  

t E [ t l , ~ ) ,  dt 
Since Akoo is Hurwitz and limt„ A(t) = 0, it 

d 
-V 5- 2 P 

- 21177112 + F11711 llPll 
D(e) ( follows that ?j = [Ak, + A(t)] 77 is exponentially 

dt Ilell~(t) stable (see e.g. Theorem 8.6. in (Rugh, 1993)) 
and hence uniform boundedness of B ~ ( x ,  U) yields 

+ ( I I V  - fi)' P I I ) .  boundedness of e (see e.g. Corollary 6.1 in (Khalil, 
1996)). 

Choosing tz E [tl , W) such that As k(.) and e(.) are both bounded, there does not 

k(t2) 
exist a finite escape time, i.e. W = co, and hence 

l l~ ( t2 ) l l~  IIPII = 411~(t~)112 b) is established. 

yields for almost all t E [t2, W), 

As lell&,) = ( ~ - ' e ) ~  PK- 'e ,  

IIP-lll-l 1177112 I lle112p(t) 5 llPll 11V1I2~ 

Substituting (11) into (10) yields 

Choosirig t3 E [tz, W) such that 

yields for almost all t E [t3, W) 

P roof  of C )  We first prove that t H &d,,i(e(t)) 
is absolutely continuous on any compact interval. 

(1°) Since t rt e(t)  as the solution of (6) und e r> 

d,,j(e) are trivially absolutely continuous, the 
composition t rt dA,j(e(t)) is absolutely contin- 
uous if it is of bounded variation (see e.g. (Hewitt 

(I1) and Stromberg, 1965) p. 297). The latter is easy 
to see and a proof is omitted. Therefore, d , , ~  (e(.)) 
is differentiable almost everywhere and we obtain, 
for almost all t 2 0, 

Since the right hand side of (6) is bounded, we 

(12) may conclude that %dA,j(e) E Lm (0, CO) and since 
k E L,(O, CO) is equivalent to dA,j(e) E Lz(0, W) 

it follows from Lemma 2.1.7 in (Ilchmann, 1993) 
that limt„ dx,j(t) = 0 and hence 

lim dist ((y(t) - y(t) 1, [0, X]) = 0. 
t+m 

Therefore, for all t E [t3, W), This completes the proof. 

- L u ( t - t 3 )  
V(t,e(t)) 5 e l l P l ~  V(t3, e(t3)) In Theorem 2 we were mainly interested in the 

411P112~2 (13) observer output error approaching the X-strip. + 
k(t3)k(t2)2n-2 ' This is the essential property needed for many 

observer-based control schemes, as for example 
If W < 001 then (13) ~ i e l d s  e(.) E Lm(O,w) arid the one in (Groebel et al., 1995). We now derive 
hence by (4) arid (51, k(.) E Lm(O1w). I f u  = 0 3 1  an additional bound on the observer (state) error 
then by (13), 4.1. 

1 i s t  (V  , (a X)' 11~-111-1 ] )  = 0. Theorem 3. Under the Same assumptions as in 
t+m Theorem 2 und p > 0 so that Il4(x(t), u(t))(l 5 p 

for all t 2 0, the observer errors satisfy, for 
V < (:X)' [IP-' 11-1 implies by (11) that l l ~ l l  < = 1 , .  . . , n, 
$X. Whence since lel(t)l < (Ir](t)ll the dead- 
Zone in t h e  gain adaptation yields that k(.) E 2PIIPII 

l i m s u ~  lei(t)l < kn+l-i 
t+m (0) ' (14) 

L,(O, CO). This contradicts by (4) and (5) 
unboundedness of k(.), thus proving a). with IlPll as in (7). 

Proof  of  b) We show that e(.) E L,. Recall Sketch of the proof for T h e o r e m  3: We use 
that Ä was chosen to be Hurwitz and hence in the same notation as in the proof of Theorem 2. 



Since k(.) is monotone and converges, for arbi- 
trary small but fixed 6 E (0 , l )  there exists some 
t > 0 such that 

2n(lp((k(t) < C ,  for a l l t  25.  
For arbitrary p > 0 (9) yields, for all t 2 F, 

and therefore $ ~ ( t ,  e(t)) < 0 for t 2 f, if 

The latter is satisfied for t 2 E, if 

~m 
llV(tlllP 2 l , V ~ " l ,  "r'>-- { k(t) - +J , P )  . 
Thus. 

Using that p > 0 is arbitrary, (14) follows. U 

Remark 4. The idea of the proof of Theorem 2 
Part a ) '  can be used to generalize the results 
in (Tornambk, 1992) to the case of non distinct 
roots. Furthermore, the Same arguments as above 
can be used to show that no finite escape time can 
occur in the non-adaptive high-gain case either, 
and thus Assumption (Al)  in Thm. 1 (Tornambk, 
1992) can be removed. 

The proposed adaptive high-gain observer is easy 
to implement (as only the state-space dimension 
of the system has to be known) and retains the ad- 
vantages of the non-adaptive high-gain observer. 
Robustness is improved by the adaptation law as 
it enables the user to start with a small observer 
gain that is increased only as needed. In a non- 
adaptive scheme the observer gain is usually cho- 
Sen in a conservative way, which causes the high- 
gain observer to be less performant in the presence 
of output measurement noise than the adaptive 
high-gain observer. 

4. EXAMPLE 

To demonstrate the adaptive high-gain observer, 
the proposed method is applied to the follow- 
ing generic bioreactor as given in (Bastin and 
Dochain, 1990) with parameters as in (Gauthier 
et al., 1992): 

where m and s denote the concentrations of the 
microorganism and the substrate respectively, U 

is the substrate inflow rate which is considered as 
input. All state variables are strictly positive and 
the parameters are a l  = az = as = 1, a4 = 0.1, 
m(0) = 0.075, s(0) = 0.03. 

The system (15) can easily be transformed into 
the observability normal form by defining the new 
state variables X I ,  2 2  as: 

In (Gauthier et al., 1992) it has been shown 
that assumptions Al)  and A2) are satisfied for 
U E (0, a i ) .  For the observer, the following values 
are used: X = 0.02, X = 0.5, y = 100, pl = 1, 
pa = 0.2, ko = 0.1. The following substrate input 
flow profile is used for the simulations: 

y is the plant output without, yn with noise, yo  is 
the observer output, so is the estimated value for 
S, calculated via @-'(xOl, X„,  U ,  U), where X„,  X„ 

are the states of the observer. 

For the simulation (Figure 2) band-limited gaus- 
sian white noise with a rather high power spectral 
density of 0 .25 .10-~  and a sampling time of 0.01 
h is used. In Figure 2.a the bioreactor output y 
(the concentration of the microorganism) and its 
estimate yo can be Seen. After the transient phase 
due to different initial conditions in system and 
observer, the observer output follows very well 
the plant output, even though the noise level is 
quite high and the fact that there are changes in 
U. Exept in the first few hours, the output error 
y - yo stays within the X-strip. In Figure 2.b the 
concentration of the substrate s and its observer 
estimate so are shown. Also here the observer 
error is rather small while the discontinuities in 
so are due to the fact that so is a function of the 
substrate input flow U .  Figure 2.c shows that Ic 
increases rapidly (because of the large value y) 
and then stays constant at  a value that is not 
"high" as the name of the observer implies. 

Note that the observer gain with the amplitude 
continuous adaptation is about a factor two lower 
than with the amplitude discrete adaptation as 
in (Bullinger and Allgöwer, 1997), where the final 
value for the observer gain was about 0.55 with 
the Same setup, only the adaptation law being 
different. 

CONCLUSIONS 

In this paper we introduce an adaptive exten- 
sion to the high-gain observer originally proposed 
in (Nicosia and Tornambk, 1989). The adaptation 
of the observer gain is done via a very simple 



adaptation converges. The assumptions needed 
o 12 are the Same as required for the non-adaptive 

high-gain observer. 
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