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Abstract

In this paper we show that well-known high-gain univer-
sal adaptive P-controllers can be implemented digitally,
via adaptive sampling, provided that the length of the
sampling interval increases su�ciently fast, as the propor-
tional gain increases. Both stabilization and �{tracking of
arbitrary bounded and essentially smooth reference sig-
nals are considered.

1 Introduction

In this paper we will show that the ideas and techniques of
high{gain adaptive output feedback control carry over to a
more practically relevant situation where the output of the
system is not available continuously, but is only available
at sampled instants of time. This situation arises naturally
in cases when digital computations of control inputs are
used.
It is well-known (see Willems and Byrnes (1984)) that

u(t) = �k(t)y(t); _k(t) = y2(t)

is a continuous-time, high-gain adaptive controller for a
class of systems known as minimum-phase, positive high-
frequency gain systems. This controller arose from the
work of Nussbaum (1983) and Morse (1983) and has been
developed by, for example, M�artensson (1986) and Ilch-
mann (1993). All of these papers are similar in spirit in
the sense that the adaptation of the controller gain is not
based on any attempt to identify the parameters of the
system. This paper continues in this spirit.
We focus on adaptive control of minimum-phase, multi{

output systems with unknown dimension and matrix en-
tries, with the spectrum of the high{frequency gain un-
mixed. More precisely, let the system to be controlled be
described by

_x(t) = Ax(t) +Bu(t); x(0) = x0

y(t) = Cx(t)
(1.1)
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where A 2 Rn�n ; B; CT 2 Rn�m ; x0 2 Rn and n are
unknown.
We assume that (1.1) satis�es certain qualitative struc-

tural assumptions, namely that (1.1) is minimum phase,
i.e.

det

2
4 sIn �A B

C 0

3
5 6= 0 8 s 2 C+ ; (1.2)

and has \high{frequency gain" CB satisfying either

�(CB) � C+ (1.3)

or, more generally,

�(sCB) � C+ for some s 2 f�1; 1g; (1.4)

i.e. the spectrum of CB is unmixed. These two qualitative
properties of minimum-phase and unmixed high-frequency
gain systems are well-known in the control engineering lit-
erature. Both properties can often be tested without using
detailed knowledge of the system. This makes the design
of controllers based only on this qualitative knowledge im-
portant and well-motivated.
The main control objective is to design a simple scalar

adaptation law

kj+1 = f(kj ; yj); tj+1 = g(tj ; kj); (1.5)

so that the proportional sampled-data output feedback

u(t) = �kjyj ; t 2 [tj ; tj+1); (1.6)

which uses sampled output information yj := y(tj), when
applied to a system (1.1) satisfying (1.2) and (1.3) or (1.4)
yields a closed{loop system (1.1), (1.5), (1.6) with conver-
gent gain adaptation, positive sampling interval length,
and stabilized sampled output.
Further control objectives would be to ensure that

the continuous-time output converges to zero, i.e.
limt!1 y(t) = 0, or to solve the �{tracking problem, i.e.
for a given bounded reference signal yref(t), with bounded
derivative, and a prespeci�ed but arbitrary � > 0, the sys-
tem output y(t) should track asymptotically towards the
�{ball around yref(t) at sampling time instants, i.e.

lim
j!1

dist (jyj � yref(tj)k; [0; �]) = 0:



The main novelty, distinguishing this problem from ei-
ther continuous or discrete-time adaptive control, is the
need to develop suitable mechanisms for adjusting the
variable sampling rate. This issue arose in Owens (1996),
to our knowledge the only existing paper on this topic.
The �{tracking concept is adopted from Ilchmann and
Ryan (1994).

2 Sampling stabilization and

�{stabilization of �rst order systems

In this section we restrict attention to the simplest class
of systems, i.e. scalar systems of the form

_x(t) = ax(t) + bu(t); x(0) = x0

y(t) = cx(t)
(2.1)

with a; b; c; x0 2 R and high frequency gain cb > 0, all
unknown.
The basic ideas underlying the adaptation, especially

the adaptation of the sampling rate, are already apparent
in this simple situation.

Proposition 2.1 The output feedback adaptive control
law

u(t) = �kjyj ; t 2 [tj ; tj+1) (2.2)

where yj := y(tj), and fkjgj2N0 and ftjgj2N0 are gener-
ated by the sampling{time and gain adaptation mechanism

hj =
1

kj log kj
j 2 N0

tj+1 = tj + hj j 2 N0

kj+1 = kj + kjhjy
2
j j 2 N0

9>>>=
>>>; (2.3)

with t0 = 0, k0 > 1, applied to any system given by (2.1)
with cb > 0, yields a closed{loop system which admits a
unique solution x(�) de�ned on the whole half{axis [0;1)
and satis�es

(i) limj!1kj = k1 2 R

(ii) limj!1hj = h1 > 0

(iii) fyjgj2N0 2 l2

(iv) limt!1 x(t) = 0.

Remark 2.2 (i) It is well known, see e.g. Willems and
Byrnes (1984), that the continuous-time adaptive control
law

u(t) = �k(t)y(t); _k(t) = y2(t) (2.4)

will stabilize any system given by (2.1) with cb > 0. An
Euler discretization of the k{dynamics in (2.4), with a
step length �j , is given by

kj+1 � kj

�j
= y2j : (2.5)

On the other hand, sampling the x{dynamics on a sam-
pling interval of length hj gives x(tj) determined approx-
imately by an Euler discretization with step length hj .
Since the sti�ness increases a�nely with k(t) one would
to need to sample at a rate faster than 1=k(t). It is also
natural to sample the x-dynamics (which are responding
to changes in k) more rapidly than the numerical integra-
tion of the k-dynamics. Natural choices are �j = 1

log kj

and hj = tj+1 � tj = [kj log kj ]
�1 = o(�j).

(ii) Note that our gain/sampling rate adaptation does not
satisfy requirement (12) in Owens (1996) since

lim
h!0

hk(h) = lim
k!1

1

k log k
k = 0:

More importantly, in the context of adaptive control with-
out identi�cation, we do not require the extra assumptions
(12) and (22) which are imposed in Owens (1996).
(iii) We observe that (2.2) and (2.3) give a \high{gain,
fast{sampling" adaptive controller.

Proof of Proposition 2.1: Applying Variation{of{
Constants yields

x(t) = ea(t�tj)xj � cb

Z t

tj

ea(t��)kjxjd� (2.6)

for t 2 [tj ; tj+1), where xj := x(tj). From (2.6), existence
and uniqueness of the solution are immediate. To prove
(i) { (iv) we proceed in a series of steps.
Step 1: To study the evolution of x(�) at sampling in-
stances tj , we observe that (2.6) gives

xj+1 = �hj ;kjxj ; j 2 N0 ; (2.7)

where

�h;k :=

8<
:

eah � cb
a
[eah � 1]k; if a 6= 0

1� cbkh; if a = 0:

Expanding the exponential in �h;k into a power series
gives

�h;k = 1�
cb

log k
+O(h): (2.8)

Step 2: We will prove that fkjgj2N0 2 l1. On the
contrary, suppose limj!1 kj = 1. We consider the
Lyapunov{function candidate V (yj) := y2j . Then

�V (yj) := V (yj+1)� V (yj) =
�
(�hjkj )

2 � 1
�
y2j

=
h
�2 cb

log kj
+ 2O(hj) +

(cb)2

(log kj)2
� cb

log kj
O(hj)

+O(hj)
2
�
y2j :

Hence, using the form of hj in terms of kj and by esti-
mating all terms above except �2cb=(logkj), there exists



j0 su�ciently large (i.e. with hj0 = 1
kj0 log kj0

su�ciently

small) so that

�V (yj) � �
cb

log kj
y2j for all j � j0:

This is the crucial step. Hence, for all N > j0,

y2N � y2j0 =
N�1P
j=j0

�V (yj)

� �
N�1P
j=j0

cb
log kj

y2j :

(2.9)

Using the formula for the adaptation of kj in (2.9) gives

y2N � y2j0 � �cb[kN � kj0 ] (2.10)

for all N > j0. Therefore

kN �
1

cb

�
�y2N + y2j0 + cbkj0

�
�

y2j0
cb

+ kj0 ;

which clearly contradicts unboundedness of fkjgj2N0 .
Hence fkjgj2N0 2 l1.
Step 3: Boundedness of fkjgj2N0 yields (i) and (ii). (iii)
is a consequence of (2.3). It remains to prove (iv). Using
the boundedness and monotonicity of kj and hj in (2.6)
with t 2 [tj ; tj+1) gives

jx(t)j �
h
ejajh0 + cb ejajh0k1h0

i
jxj j: (2.11)

Since fyjgj2N0 2 l2 and c 6= 0 it follows that xj tends to
zero. Therefore (2.11) yields (iv).
This completes the proof. 2

We end this section by considering �{stabilization of
scalar systems described by (2.1). This will provide the
intuition for the general case which we consider in Section
5.
In the context of continuous adaptive feedback control

and with the weakened control objective of ensuring that
y(t) should tend to [��; �] (a �{strip), for some � > 0
prespeci�ed, the gain adaptation in (2.4) is modi�ed by
incorporating a \dead{zone":

_k(t) =

8<
:

jy(t)j(jy(t)j � �); jy(t)j � �

0; jy(t)j < �:

This dead-zone idea has been used, in conjuction with
suitable output feedback control laws, to extend applica-
bility of the high-gain adaptive controllers to rejection of
measurement noise and tracking of large classes of refer-
ence signals with guaranteed robustness in the presence
of nonlinear disturbances, see Ilchmann and Ryan (1994),
and for nonlinear systems in Allg�ower et al. (1995). The
analogue for sampling stabilization of scalar systems is
given as follows.

Proposition 2.3 Let � > 0. If instead of (2.3), kj is
adapted according to

kj+1 =

8<
:

kj + kjhj y
2
j ; jyj j � �

kj ; jyj j < �;
(2.12)

then the conclusions of Proposition 2.1 hold true but with
(iii) and (iv) replaced by

(iii 0) yj converges to the closed interval [��; �] as j !1.

(iv 0) x(�) is bounded.

3 Sampling stabilization of multivariable

systems

In Section 2 we considered the adaptive-sampling sta-
bilization of scalar systems, where we could show that
the continuous-time output y(t) and state x(t) both con-
verged. In the multivariable case, we would not expect to
obtain such strong results for the continuous-time output.
In particular, whilst the sequence y(tj) converges to zero,
the continuous-time output y(t) need not converge to zero.
The following example, due to Owens (1996), illustrates
this for a controllable and observable, two dimensional,
single{input single{output, minimum phase system.

Example 3.1 The system

_x(t) = Ax(t) +Bu(t)
y(t) = Cx(t)

with

A =

�
0 1

�4�2 0

�
; B =

�
1
1

�
; C = (1; 0) (3.1)

is a controllable, observable and minimum phase system
with high{frequency gain CB = 1. Since

eA� =

�
cos 2�� 1

2�
sin 2��

�2� sin 2�� cos 2��

�
;

it is clear that the sampled pair (eA� ; C), corresponding
to a sampling of (3.1) with sampling time �, is observable
((3.1) is �-sampled observable) if and only if sin 2�� 6=
0, i.e. � 62 �Z. In particular, (3.1) is not 1{sampled
observable. It is not surprising therefore to �nd that, with
initial data

x(0) =

�
0
2�

�
; t0 = 0; k0 > 1

h0 = 1
k0 log k0

= 1, the adaptive feedback law (2.2), (2.3)

(where y2j is replaced by kyjk
2) applied to (3.1) yields yj =

0; hj = 1; kj = k0 for all j 2 N0 and u(�) � 0, but
x(t) = (sin 2�t; 2� cos 2�t). Hence (iv) of Proposition 2.1
is not satis�ed.

Thus, the best we can expect is the following result.



Theorem 3.2 Suppose (1.1) satis�es (1.2) and (1.3),
i.e. it is minimum phase and �(CB) � C+ . Then the
adaptive-sampling output feedback law

u(t) = �kiyi; t 2 [ti; ti+1); (3.2)

where yi := y(ti) and fkjgj2N0 and ftjgj2N0 are generated
by the gain and sampling{time adaptation mechanism

hi = 1
ki log ki

; i 2 N0

ti+1 = ti + hi; i 2 N0

ki+1 = ki + kihikyik
2; i 2 N0

9>>>=
>>>; (3.3)

with t0 = 0 and k0 > 1, applied to (1.1) yields a closed{
loop system which admits a unique solution x(�) de�ned
on the whole half{axis [0;1). Here xi = x(ti). Moreover

(i) limi!1ki = k1 2 R

(ii) limi!1hi = h1 > 0

(iii) fyigi2N0 2 l2.

The main point to emphasize is the relationship between
gain k and sampling rate h. Choosing hk = (log k)�1 has
useful consequences summarised as follows.

Lemma 3.3 Consider a system (1.1) satisfying (1.2) and
(1.3) and let

h =
1

k log k
:

Then there exists k > 0 su�ciently large such that for all
k � k, the feedback

u(t) = �kyi; t 2 [ti; ti+1);
ti+1 = ti + h; t0 = 0;

(3.4)

applied to (1.1) yields a closed{loop system

_x(t) = Ax(t) � kBCxi; t 2 [ti; ti+1) (3.5)

with a unique and exponentially decaying solution. Here
xi = x(ti). Moreover, the associated discrete time system

xi+1 = [In + h(A� kBC) + h2Uh;k]xi (3.6)

where

Uh;k =

�
1

2!
A+

1

3!
hA2 + : : :

�
[A� kBC]

is power stable. More precisely, there exists some M > 0
independent of k, so that, for all i0 � 0,

kxi+1k �M�i+1�i0
h kxi0k 8 i � i0 (3.7)

where, for some R 2 Rn�n independent of k,

�h :=

�
1�

h

4kRk

� 1

2

:

If the sign of the high frequency gain CB is unknown
then the adaptation feedback law has to learn the sign of
the feedback. For continuous{time feedback one possibil-
ity is to set u(t) = �k(t) sin

p
k(t)y(t), where the basic

idea is to keep the sign positive or negative for longer and
longer periods until �nally, if the sign is correct, the sys-
tem is stabilized and sin

p
k(t) does not switch again. For

adaptive-sampling feedback control, this idea is realized
as follows:
For a monotone non{decreasing sequence 1 < k0 � k1 �

: : : de�ne a switching sequence fSigi2N0 � f�1; 1g by

�i :=

8>><
>>:

1; if k0 = : : : = ki

1
ki�k0

i�1P
j=0

(kj+1 � kj)Sj ; otherwise
(3.8)

and the algorithm:

setL = 1;
(�) while � 1 + 1

2L
� �i setSi = 1;

L = L+ 1;
(��) while�i � 1� 1

2L
setSi = 1;

L = L+ 1; i = i+ 1;
go to (*).

(3.9)

If fkigi2N0 diverges to in�nity, then the switching algo-
rithm (3.8) ensures that �i has the two accumulation
points + 1 and -1. Thus Si will stay at +1, respectively
-1, for longer and longer intervals and it is then natural
to choose the feedback

u(t) = �kiSiyi; t 2 [ti; ti+1):

Theorem 3.4 Suppose the system (1.1) satis�es (1.2)
and (1.4). Let S0 = 1 and k0 > 1. Then the adaptive-
sampling output feedback law

u(t) = �kiSiyi; t 2 [ti; ti+1);

where

yi := y(ti)

and the gain and sampling{time are adapted according to
(3.3) in Theorem 3.2, with switching sequence fSigi2N0
de�ned by (3.8) and (3.9), applied to (1.1) yields a closed{
loop system which admits a unique solution x(�) de�ned on
the whole half{axis [0;1). Moreover

(i) lim
i!1

ki = k1 2 R

(ii) lim
i!1

hi = h1 > 0

(iii) lim
i!1

�i = �1 2 (�1; 1)

(iv) there exists some i0 such that Si = Si0 for all i � i0

(v) fyigi2N0 2 l2.

Remark 3.5 The switching procedure of (3.8), (3.9) is
similar to the one used in Owens (1996).



4 Stabilization of the state by sampling

output feedback

We have seen in Example 3.1 that the adaptive algo-
rithm (3.2), (3.3) does not, in general, guarantee that
the continuous-time state x(t), or even the output y(t),
converges to zero but only the sampled output y(ti) at
sampling times ti. However, Example 3.1 is \patholog-
ical" since the sampling times occur exactly where the
output vanish. Since the continuous-time system (1.1) is
detectable (this is a consequence of the minimum phase
assumption, see Ilchmann (1993)), the aim is to choose the
sampling periods in such a way that sampling preserves
detectability.
It is well known that the sampled system (with constant

sampling period h > 0) is detectable if, and only if,

���

2�i
h 62 Z for any� 6= �;

�; � 2 �(A) [ f0g:
(4.1)

We shall modify the adaptive sampling time algorithm
(3.3) under the additional assumption that (4.1) holds for
some known h. If (4.1) holds for h then it holds for h

q
for

any q 2 N. This is the key observation in the following
result.

Theorem 4.1 Suppose the system (1.1) satis�es (1.2)
and (1.3). Let h be such that (4.1) holds. Then the adap-
tive sampling output feedback law

u(t) = �kiyi; t 2 [ti; ti+1);

where yi := y(ti), and fkigi2N0 and ftigi2N0 are generated
by the gain and sampling{time adaptation mechanism

bhi = h
j
; where j is such that

hi = 1
ki log ki

2

h
1

j+1
; 1
j

�
ti+1 = ti + bhi
ki+1 = ki + kibhikyik2

9>>>>>>>=
>>>>>>>;

(4.2)

with t0 = 0, k0 > 1, applied to (1.1) yields a closed{loop
system which admits a unique solution x(�) de�ned on the
whole axis [0;1). Moreover,

(i) limi!1ki = k1 2 R

(ii) there exist i0; j1 2 N such that bhi = 1
j1

h for all

i � i0

(iii) fyigi2N0 2 l2

(iv) limt!1 x(t) = 0.

Remark 4.2 (i) The detectability of the sampled system
at some known sampling time h is used in Ortega and
Kreisselmeier (1990).
(ii) If M > 0 is known so that kAk � M , then we can
choose h 2

�
0; 3

M

�
, since

0 <

����h�� �

2�i

���� � 3

M

2M

2�
< 1:

(iii) If A is rational, then det(�In �A) 2 Q[�] and there-
fore real and imaginary parts of the eigenvalues of A are
algebraic. Since the di�erence of any two algebraic num-
bers is algebraic, it follows that for any h 2 Q we have
that h(� � �) =2 2�iZ and therefore (4.1) holds for any
h 2 Q.

5 Sampling �{tracking

In Proposition 2.3 we have demonstrated how a dead{
zone is incorporated into the gain adaptation for adaptive
sampling �{stabilization of the class of scalar systems. We
will now extend Proposition 2.3 to the adaptive sampling
�{tracking control of multivariable systems.
We suppose that the output of the system y(�) is to track

a signal yref(�) and that the output measurements are cor-
rupted additively via a noise term n(�). Both the output
corrupting noise n(�) and the reference signal yref(�) are
assumed to belong to W 1;1. Here W 1;1 is the Sobolev
space of bounded functions which are absolutely contin-
uous on compact intervals and have essentially bounded
derivatives. The control objective is now to track the ref-
erence signal at the variable sampling instants, within an
arbitrary prespeci�ed �-neighbourhood for the reference
signal, so that asymptotically we require

lim
i!1

dist (ky(ti)� yref(ti)k; [0; �]) = 0:

This will be achieved, analogously to the �{stabilization
in Proposition 2.3, by incorporating a dead{zone into the
gain adaptation.

Theorem 5.1 Let �;  > 0, yref(�) 2 W 1;1, u 2 Rm .
Suppose the system (1.1) is minimum phase, so that (1.2)
holds, and the \sign" of the high{frequency gain is known,
so that (1.3) holds. Let ei = yi � yref(ti). Then the adap-
tive sampling output feedback law

u(t) = �kiei + u; t 2 [ti; ti+1) (5.1)

where fkigi2N0 and ftigi2N0 are generated by the gain and
sampling{time adaptation mechanism

hi = 1
ki log ki

; i 2 N0

ti+1 = ti + hi; i 2 N0

ki+1 = ki + �(ei)kihikeik
2

�(ei) :=

8<
:

1; if keik � �

0; if keik < �

9>>>>>>>>>>>=
>>>>>>>>>>>;

(5.2)

with t0 = 0, k0 > 1, applied to (1.1), results in a closed{
loop system which admits a unique solution x(�) on [0;1).
Moreover,



(i) lim
i!1

ki = k1 2 R,

(ii) lim
i!1

hi = h1 > 0,

(iii) limi!1 dist (keik; [0; �]) = 0:

Remark 5.2 u 2 Rm and  > 0 in (5.1) and (5.2) are
design parameters which might be used to improve the
performance considerably if more information is known
about the real process. We could have included  in (3.3)
as well. If the output is corrupted by noise n(�), then

e(t) = y(t) + n(t)� yref(t):

In this case yref(t) � n(t) can be viewed as a di�erent
reference signal. If n(�) is large, the �{tracking controller
forces the output to track the noise. In this case, � should
not be chosen too small.

6 Numerical examples

We apply the controllers (3.2,3.3) (see Figure 1), and
(5.1,5.2) (see Figure 2) to (1.1) with

A =

2
6664

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

�16 16 0 0 1

3
7775 ; B =

2
6664

0
0
0
0
1

3
7775 ;

C = [2 4 7 4 1]; x0 = 0:1(1; 1; 1; 1; 1)T , and in the latter
yref(t) = j sin(0:5t)j (and  = 1 and u = 0).
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