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Preface to the 2006 edition

The idea to prepare a new edition of Adolf Lohmann’s lecture notes came about a long time
ago. Then the motivation mainly was to improve the handling. Due to the lack of an index and
a comprehensive table of content it was quite difficult to find specific topics in those notes.
Nevertheless, due to Adolf Lohmann’s unique style of writing and presentation I could never
do without the booklet with the “color of cognac” (third edition). Especially ever since I
needed to prepare lectures on various fields of optics and information theory I have been using
this booklet very frequently and always wanted to recommend it to the students for further
studies. The more I was reading in the booklet, the more I was amazed about the numerous
innovative ideas and visionary statements on future developments. These lecture notes, even
nowadays, i.e. almost 40 years after the first edition has been published, are a treasure chest
for students, teachers as well as researchers in the field of optics.

Being aware of the amount of work involved in re-editing the booklet, I always hesitated
to accept the challenge. Early last year I realized that Adolf Lohmann’s 80th birthday was
approaching in 2006. Would not this be a good time to honour the great scientist and inspiring
teacher by publishing a new edition with the additional motivation to make these excellent
lecture notes accessible to new generations of optics-students and researchers? First attempts
to scan the pages and use character recognition software to get it into a word processor were
by far not satisfying. I hear Adolf Lohmann saying “why don’t you use an optical pattern
recognition system?”. It became necessary to typeset everything anew. Now the question was
how to typeset the new edition while maintaining the unique style of Adolf Lohmann. The
compromise was to typeset all mathematical formulas, reinforce the format of chapters and
sections while leaving the text body as well as the drawings, even though with some figure
captions added, in their original form.

I would like to acknowledge the help of my secretary Martina Klein, not only for typing all
the text body of the book but also for unconsciously maintaining the psychological pressure
on me to typeset the formulas and finish the layout. Furthermore I am grateful to the Optical
Scociety of America for the permission to reprint some of the papers refered to in the notes
(see Appendix).

“Refraction is pretty much the same as what you experience when your left car wheel
goes on ice.”

This is one of the statements in Adolf Lohmanns lecture notes (see page: 356) which
may help to illustrate his unique style of teaching. Other examples are the sections where he
elaborates on the use of nylon stockings in portrait photography (page 290), the question on
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“how many dB has a lens?” (page 264) or the similarity between mathematical calculations
without visualization and coffee grinding (page 147).

These examples also illustrate that any attempt to edit the book in the sense of changing or
adding sections would have been doomed to failure. Thus we exclusively focussed on refor-
matting and crosslinking the formulas, figures and chapters. As a consequence even sections
which from a technical point of view might seem obsolete by now, like e.g. the section on the
calculation of a Fourier transform by digital computers (Sec. 11.7), have been left unchanged
since they certainly help to maintain the overall picture. I am convinced that precisely these
sections are contributing significantly to the enjoyment of reading these lecture notes.

Obviousely science has made enormous progress since the first edition of theses lecture
notes has been published. A significant portion of this progress is due to Adolf Lohmann
himself. The list of his publications by now extends to more than 350 entries. The invention,
among many others, which maybe is related closest to his name became famous as Computer
Holography. It is, in fact, one of the milestones which mark the beginning of the success story
of diffractive optics. As a matter of fact recent developments which led to the application of
diffractive optical elements in photographic lenses show that this is still a very active area
of research. It is my impression that Adolf Lohmann himself did not really consider Com-
puter Holography his most important invention (which, by the way, might be a necessary but
certainly not a sufficient condition for an invention to become famous with!). Consequently
Computer Holography never made it into his lecture notes. I would therefore like to refer
readers interested in the field of “Computer-Generated Holography” to an overview paper
published by W. J. Dallas and Adolf Lohmann in the “Encyclopedia of Modern Optics”, B.
Guenther, D. Steel (Eds), Elsevier (2005). After having worked through the lecture notes you
will certainly have no problems understanding this article.

Finally let me express my hope that this new edition of the lecture notes provides enjoy-
ment to the huge family of Lohmann students around the world. However I also hope that
it helps to transport some of the fascination of Humboldt’s ideal of the combination of (in-
terdisciplinary) research and academic teaching to todays generation of students as well as
(university) teachers.

Thank you, Adolf Lohmann, and all the best to you and your wife, Carla, for many years
to come.

Stefan Sinzinger Ilmenau, March 2006



Preface to the third edition

The third edition combines the formerly two volumes of the lecture notes on “Optical Infor-
mation Processing”. These notes were written in 1967-71 for a two-semester course 205 A,B
in the Department of Applied Physics and Information Science at the University of California
in La Jolla. Course participants were seniors and first year graduate students in physics, elec-
trical engineering and computer science.

The third edition is merely a polished version of the first edition, which came out 15 years
ago. Why should anyone wish to buy this book? For two reasons: This book is unconventional,
sometimes in the selection of topics, sometimes in the style of presentation, and overall in its
aims, which are: teaching how to do optics and showing that optics is to a large degree an
“information science”.

A second reason might be an interest in optical computing. That is the topic I am persuing
right now, in research and in teaching. I intend to publish lecture notes on optical computing.
In those new lecture notes this book on “Optical Information Processing” will be referenced
frequently.

The first edition contained also reprints of some publications, as listed in the two separate
tables of content for the two volumes. These publications are not reprinted here in order to
keep the book compact. There are three exceptions, however, because those papers are not
easily available in a normal library: “Electron Acceleration by Light Waves”, Vol. I, p. 98;
“A New Fourier Spectrometer”, Vol. I, p. 111; and “The Space Bandwidth Product, Applied
to Spatial Filtering and to Holography”, Vol. II, p. 90.

The cited publications, reprinted here or not, are not necessary for following the text of
this book. It is recommended nevertheless to look at these publications since they contain
pictures of experimental results and references to applications of the more fundamental lines
of thought, as presented herein.

Adolf W. Lohmann

Erlangen, April 1986
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Preface to volume 1

These are course notes, not a book. A book is usually a complilation of facts. But in these
notes I have tried to show “how to do it yourself”. Of course all the tricks in the world would
not be of any use, if you did not have at least some facts in your head. Indeed, some facts are
taught here. But for a more complete set of basic facts you should have, for example, Born
and Wolf’s Principles of Optics or Klein’s Optics on your shelf. As a source of inspiration
you might add Franon’s Atlas of Optical Phenomena.

A “how to do it” course must be supplemented by homework problems. To keep up the
suspense, these problems have not been included in these notes. But some reprints have been
attached. Reading them prepares you for journal reading, and it shows you how some of the
principles can be used for the solution of practical problems.

Curtis Shuman reorganized and polished the manuscript; Mrs. Linda Gail Chen typed it
after eliminating the worst linguistic idiosyncrasies. She also inked the drawings. I am very
grateful to both of them for their help and for having bugged me long enough that I finally
wrote these notes.
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1 Outline

This is a three-quarter course. Thereafter a seminar, APIS 294B, will be devoted to some
special subjects in optical information processing. Instead of trying to cover the whole of
physical optics in this course, we will concentrate on those aspects which are useful for in-
formation processing, such as holography. Another optics course, APIS 203, covers optical
instrumentation and physiological optics, which is currently a very active field. Only recently
did we begin to understand how colors are perceived, and how the brain gets information from
the eyes. The brain constantly manipulates the eyes in order to optimize the acquisition of
information. Optical instrumentation is perhaps not the most glamorous part of optics, but it
is quite useful to know, since optical instruments are used in almost all parts of science. The
laser and other quantum electronic subjects are treated in the course APIS 207. To understand
the laser is worthwhile since lasers are used for so many projects, for example communication
in space, microminiaturization, and making holograms.

APIS 205/114 contains a review of mathematical methods, fundamentals of physical op-
tics, applications of physical optics to holography, and other optical data processing methods.
In the mathematical treatment rigor is sometimes sacrificed for simple approximations. This
approach is preferable to inflexible rigor if one wants to understand optics and to optimize
optical methods.

Specifically, the following subjects will be treated in the three quarter terms :

• Optics I

Fourier series. Moiré effects. Optical analog computer for Fourier transformation. “Delta-
function”. Fourier integral. Schwarz inequality. Fresnel transformation. Stationary phase
method. Uncertainty. Sampling. What is light? Fraunhofer diffraction. Coherent image
formation as a linear filter system. Some spatial filtering experiments.

• Optics II

Waves boundaries. Interference. Coherence theory with applications to interferometry.
Talbot fringes. Polarization and crystal optics. Holograms and Fresnel zones. Twin-
image problem of holography. The pseudoscopic conjugate image. Classification of
holographic setups. Influence of recording material. Space-bandwidth product. Holo-
graphic data storage.

• Optics III

Generalized holograms. Penetration of fog and turbulence. Computer holograms. Spatial
filtering. Other applications of holography. Other data processing methods. Utilization
of a priori information.
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As I said, the main goal of this course is to bring together Physical Optics and Commu-
nications Theory. Benefits will be derived for both fields: Optics had been treated in the past
usually as “Transportation of energy from the object to the image”. This is certainly valid, but
insufficient, because in most cases we are more interested in the transfer of information rather
than energy. Of course, no information can be transferred without any energy going along, but
energy per se is not all we are interested in; its structure, distribution, or arrangement is impor-
tant. In other words, the point of view which had been applied by communication theoreticians
towards electronics shall now be applied to optics. This enables a new understanding of old
optical schemes, and it is very suggestive for inventing some new optical schemes. Some of
these new schemes might be very useful in communications and data processing technology.
In fact, some data processing operations can be performed better by optical means than by
elelctronic means. In that way we optical physicists might pay back for some of the benefits
which we have received from the EE-community.

On page 19 I have outlined what I hope to cover in three terms of this year. As prerequi-
sites we will need mainly wave optics, which in turn asks for familiarity with Fourier trans-
forms as the most important mathematical tool. Since the background of the students is quite
inhomogeneous, I will review these two fields, which might require about half of the first term.

A few words now about what I do not intend to cover: (1) temporal phenomena, like mod-
ulation and demodulation of a laser beam. From a systems point of view temporal modulation
of light is not different from HF modulation, merely an extensions towards higher frequencies.
Hence this aspect would fit most naturally into an EE lecture series, in which HF-modulation
is covered.

Of course, the hardware used for emitting, modulating and detecting light beams is dif-
ferent from the hardware used in HF technology. A thorough understanding of the hardware
used for temporal optics is best taught as part of a course on (2) interaction of light and matter.

A third topic not covered here is (3) noise in optics. Fortunately, spatial noise is gen-
erally not too severe a problem in time-stationary optics, but we will have to mention it
occasionally. A treatment in the realm of classical physical optics is given by E. O’Neill
in Introduction to Statistical Optics (Addison-Wesley 1963). A more complete treatment of
noise in optics, which would probably be a full year’s course, must take into account the quan-
tum structure of matter and radiation. The books by W. Louisell on Quantum Theory of Radia-
tion and Noise and by A. Yariv on Quantum Electronics cover this field, both in the notation of
modern quantum theory. A. E. Siegman’s book on Lasers and Masers, with Applications, uses
a notation more familiar to EE students. Siegman does not indulge in mathematical elegance,
but he covers all three of the “missing topics” quite well.
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2.1 Introduction

The main tools used here are Fourier series and Fourier integrals, which were published by
Jean Baptiste Fourier in 1822, almost 150 years ago. Books on the same subject are still pub-
lished at the rate of one per year. Franklin is cheap (pocket book), Bracewell (hard cover) is ap-
plication oriented and well illustrated. EE-students might like A. Papoulis’ System and Trans-
forms with application in Optics.

A Fourier series is useful for representing a periodic function f(x). Definition of periodic:
f(x) = f(x + md); |m| = 0, 1, 2, . . ., where d: length of the period and ν: fundamental
spatial frequency: d = 1

ν .

We want to put together some simple well know periodic functions, cosine and sine, such
that they add up to the general function f(x), which might be complex. x is real.

Figure 2.1: Example of a periodic function.

f(x)
?
=

N∑
n=0

an cos(2πnνx) + bn sin(2πnνx) = SN (x) (2.1)

What is the best choice of the coefficients an, bn? Call the error EN = f(x)− SN (x).

Tchebycheff approach: Look forEmax (|EN (x| ≤ Emax) within a full period, and choose
an, bn such thatEmax is minimized. While the Tchebycheff approach is intuitively appealing,
it is not very practical for approximating a Fourier series, or any other expansion in terms
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of orthogonal functions. Much handier is the Gauss approach: Compute the average of the
squared error and minimize it. I.e.,

σ2
N =

1

d

d
2∫

− d
2

|EN (x)|2dx→ minimum (2.2)

Since we will use the Fourier series so often, it is worth the trouble to perform this mini-
mization process in detail. To make the problem more manageable we split f(x) into its real
part and its imaginary part:

f(x) = R(x) + iI(x) (2.3)

Next we separate the symmetric and the antisymmetric parts:

R(x) = RS(x) + RA(x) ; RS(x) =
1

2
[R(x) + R(−x)]; (2.4)

RS(x) = +RS(−x); RA(x) = −RA(−x) ; RA(x) =
1

2
[R(x) − R(−x)]

Correspondingly,

I(x) = IS(x) + IA(x); IS(x) = IS(−x); IA(x) = −IA(−x) (2.5)

Another way to split up f(x) is:

f(x) = RS(x) + iIS(x)︸ ︷︷ ︸
fS(x)=fS(−x)

+ RA(x) + i(IA)(x)︸ ︷︷ ︸
fA(x)=−fA(−x)

(2.6)

where now fS(x) and fA(x) are again complex functions.

We can guess already now that fS(x) will be approximated (if at all) by the cosine-part of
SN (x), since both are symmetrical; while FA(x) might be approximated by the sine-portion
of SN (x). Furthermore, when splitting the coefficients into real and imaginary parts, it is
plausible to expect the following pairings:

an = αn + iαn ; bn = βn + iβn. (2.7)

RS ∼ α; IS ∼ α ; RA ∼ β; IA ∼ β

In order to keep the formulas reasonably short we introduce the following abbreviation:
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1

d

d
2∫

− d
2

ϕ(x)ψ(x)dx = ϕ · ψ (2.8)

This is sometimes called the scalar product of the two functions ϕ and ψ. It pays off to
compute some frequently encountered special cases:

cos(2πnνx) · cos(2πmνx) =
(δn,m + δn,m)

2
(2.9)

sin(2πnνx) · sin(2πmνx) =
(δn,m − δn,m)

2
sin(2πnνx) · cos(2πmνx) = 0 “orthogonality“

where we have used the Kronecker symbol :

δn,m =

{
1 : n = m
0 : n �= m

(n,m are always integers) (2.10)

The last case, sin · cos = 0 in Eq. 2.10, is a special case of gS(x) · gA(x) = 0 wherein
gS(x) = gS(−x) and gA(x) = −gA(−x). Obviously the product gS(x) · gA(x) is antisym-
metrical, gS(x) · gA(x) = −gS(−x) · gA(−x). Hence in the integral

d
2∫

− d
2

gS(x) · gA(x)dx (2.11)

contributions from antisymmetrical places, x and −x will cancel each other. In anticipa-
tion of many cancellations occurring in the following calculations, it is wise to split up SN (x)
similarly to the way it was done with f(x):

SN (x) =

αn︷︸︸︷
SRS +i

αn︷︸︸︷
SIS︸ ︷︷ ︸

symmetrical

+

βn︷︸︸︷
SRA +i

βn︷︸︸︷
SIA︸ ︷︷ ︸

antisymmetrical

(2.12)

When we calculate the mean square error σ2
N our “scalar product” abbreviation gives:

σ2
n =

1

d

d
2∫

− d
2

|EN (x)|2dx = EN (x) ·E∗
N (x) (2.13)
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with EN (x) = f(x)− SN (x).

The following terms will drop out because they are special cases of gS(x) · gA(x) = 0.

RS ·RA, SRS · SRA , RA · SRS, RS · SRA (2.14)

IS · IA, SIS · SIA , IA · SIS, IS · SIA

What remains is:

σ2
N = RS ·RS + RA ·RA + IS · IS + IA · IA + (2.15)

SRS · SRS + SRA · SRA + SIS · SIS + SIA · SIA

−2RS · SRS − 2RA · SRA − 2IS · SIS − 2IA · SIA

Since the terms in it do not involve the function SN (x), the first line is constant as far as
α, β, α, β are concerned. The terms in the second line are found, using the series expression
for SN (x), to be:

SRS · SRS = α2
0 +

1

2

N∑
n=1

α2
n ; SRA · SRA =

1

2

N∑
n=1

β2
n (2.16)

SIS · SIS = α2
0 +

1

2

N∑
n=1

α2
n ; SIA · SIA =

1

2

N∑
n=1

β
2

n

In the third line we find:

RS · SRS =

N∑
n=0

αnRS cos(2πnνx) ; RA · SRA =

N∑
n=1

βnRAsin(2πnνx) (2.17)

IS · SIS =

N∑
n=0

αnIS cos(2πnνx) ; IA · SIA =

N∑
n=1

βnIA sin(2πnνx)

Now we are ready to calculate the coefficients α, β, α, β, which minimize the mean square
error σ2

N of our attempt to approximate the general function f(x) by means of a finite trigono-
metrical series SN (x). As is common when looking for a minimum we set the first derivatives
equal to zero:
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0 =
∂σ2

N

∂α0
= 2α0 − 2RS · 1; → α0 =

1

d

d
2∫

−d
2

RS(x)dx = RS · 1 = RS (2.18)

0 =
∂σ2

N

∂α0
; → α0 = IS

0 =
∂σ2

N

∂αm

m �=0
= αm − 2RS · cos(2πmνx); → αm = 2RS · cos(2πmνx)

0 =
∂σ2

N

∂αm
;

m �=0→ αm = 2IS cos(2πmνx)

0 =
∂σ2

N

∂βm

= βm − 2RAsin(2πmνx); → βm = 2RAsin(2πmνx)

0 =
∂σ2

N

∂βm

= βm − 2IA sin(2πmνx); → βm = 2IA sin(2πmνx)

We were very lucky that these 2(2N+1) equations for the 2(2N+1) unknownsα, β, α, β
came out so simple, completely separated. The reason for this is the orthogonality of cosine
and sine, as expressed on top of Eq. 2.10. This feature has another nice consequence which is
called “finality”, because the coefficients determined for SN (x) do not change if we calculate
for SN+1(x), SN+2(x) and so forth.

We have to convince ourselves that our solution represents a minimum, and not a maxi-
mum, of σ2

N . For this it is sufficient to show that all second derivatives are positive:

∂2σ2
N

∂α2
0

= 2 =
∂2σ2

N

∂α2
0

; (2.19)

1 =
∂2σ2

N

∂α2
m

=
∂2σ2

N

∂α2
m

=
∂2σ2

N

∂β2
m

=
∂2σ2

N

∂β
2

m

(m �= 0)

Another remaining question is: how good is our approximation? Or, does the error σ2
N

converge to zero if N → ∞? In mathematical terms this question is equivalent to asking: is
the set of function cos(2πnνx), sin(2πnνx) a complete set within the range − d

2 ≤ x ≤ d
2?

Before looking into that question we will somewhat simplify the results we have now.

α0+iα0 = a0 = RS·1+iIS·1 = fS ·1 = f ·1; (becausefA ·1 = 0, anyway) (2.20)

αm + iαm = am = 2(RS + iIS) · cos(2πmνx) = 2fS · cos(2πmνx) = (2.21)

= 2f cos(2πmνx) ; (becausefA · cos = 0)
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βm + iβm = bm = 2(RA + iIA) · sin(2πmνx) = 2fA · sin = 2f · sin (2.22)

SN = a0 +

N∑
n=1

[an cos+bn sin] = (2.23)

= a0 +
N∑

n=1

[
(an − ibn)

2

]
e2πinνx +

N∑
n=1

[
(an + ibn)

2

]
e−2πinνx

The second term can be converted into a series with negative coefficients by changing
n→ −n:

−1∑
−N

[
(a−n + ib−n)

2

]
e+2πinνx (2.24)

Making further use of symmetry properties we will arrive at the “complex form” of the
Fourier series; noting that

a−n = an; b−n = −bn → (a−n + ib−n)

2
=
an − ibn

2
(2.25)

Call Cn = (an−ibn)
2 ; C0 = a0. Then we arrive at the desired result:

SN =

+N∑
−N

Cne
2πinνx; Cn = f(x) · e−2πinνx (2.26)

Now let us return to the question of “how good is our approximation?” or “does σN → 0
with N →∞”? Using the complex form, Eq. 2.12 becomes:

σ2
N =

(
f −

∑
n

Cne
2πinνx

)
·
(
f∗ −

∑
m

C∗
me

−2πimνx

)
(2.27)

= f · f∗ −
∑
m

C∗
mfe

−m −
∑

n

Cnf
∗ · e+n

+
∑
m

∑
n

CnC
∗
m e2πinx e−2πimνx︸ ︷︷ ︸

δn,m

or:
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σ2
N = f · f∗ −

∑
|n|≤N

|Cn|2 (2.28)

This relationship implies the desirable feature σ2
N+1 − σ2

N = −|CN+1|2 ≤ 0. This
means that the error σn can only decrease if more terms are added to the Fourier series as in
SN → SN+1. If σN → 0, then

∑
|n|≤N

|Cn|2 → f · f∗.

The ultimate result, which holds for all healthy functions (and for some strange ones, too)
is the completeness relationship:

f · f∗ =

+∞∑
−∞
|Cn|2 (2.29)

However, this relationship is not completely satisfactory, because it cannot always easily
be checked, and it still allows f(x) to be quite different from

∑
Cne

2πinνx at a finite number
of points within each interval.

Example:

f(x) =

{
+1 : in 0 ≤ x ≤ d

2

−1 : in 0 > x > − d
2

(2.30)

Figure 2.2: The periodic function f(x) and its approximation through a dis-
crete infinite series (“Dirichlet effect” ).

f(x) can be represented in a series:

∞∑
−∞

Cne
2πiνx; with : Cn =

{
0 : if n even

2
πin : if n odd

(2.31)

i.e. f(x) =
∑

n=1,3,5,...

4
πn sin(2πnνx).
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This series is certainly zero at x = 0, while f(x) = +1 at x = 0.

For functions with a finite number of discontinuities Dirichlet has shown, that, at discontin-
uous points of f(x), the infinite Fourier series assumes the arithmetic mean of the right-hand
limit and the left-hand limit:

+∞∑
−∞

Cne
2πinνx = lim

ε→0

1

2
[f(x+ ε) + f(x− ε)] (2.32)

Fig. 2.2 shows how a square wave is perfectly represented by the infinite series, except at
points of discontinuity, where the series assumes the mean value.

Another effect occurs when a discontinuous function f(x) is approximated by a finite
Fourier series SN(x). Figure 2.3 shows the so-called Gibbs-effect for the same square wave
function f(x) as was used for demonstrating the Dirichlet-effect.

Figure 2.3: The periodic function f(x) approximated through a discrete finite
series.

The Gibbs-effect, which actually happens in some optical systems, does bother us occa-
sionally. But the Dirichlet-effect is of no practical concern, because it cannot be measured.
For example if f(x) and S(x) represent a distribution of energy, we will not be able to observe
any difference between f(x) and S(x) because all detectors have a finite width W . Typically
one measures:

x0+
w
2∫

x0−W
2

f(x)dx =

x0+
w
2∫

x0−W
2

S∞dx ≈
x0+

w
2∫

x0−W
2

SN (x)dx if W >
2d

N
(2.33)

A sufficient condition for good convergence of lim
n→∞

∑ |Cn|2 → f · f∗ is continuity of

f(x) and some of its integration by parts:

Cn =
1

d

∫
f(x)e−2πinνxdx =

[
f(x)e−2πinνx

−2πin

] d
2

−d
2

− 1

d

∫
f ′(x)e−2πinνx

−2πinν
dx (2.34)
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The first term is zero if f
(

d
2

)
= f

(− d
2

)
, which follows from the periodicity and assumed

continuity. This leaves us with:

2πinCn =

∫
f ′(x)e−2πinνxdx (2.35)

If some more derivatives are continuous, including f (k−1)(x), then by repeating the inte-
gration by parts one gets:

(2πinν)kCn = ν

∫
f (k)(x)e−2πinνxdx (2.36)

If f (k−1) is continuous, fk must be finite, say |fk(x)| ≤ ϕk

d(k−1) = ϕk · ν(k−1). Hence

ν

∣∣∣∣∫ fk(x)e−2πinνxdx

∣∣∣∣ ≤ ϕkν
k (2.37)

and also:

∣∣(2πnν)kCn

∣∣ ≤ ϕk (2.38)

This inequality is a very good guarantee that
∑

|n|<N

|Cn|2 converges when N → ∞ be-

cause the |Cn|2 terms decrease in proportion n−2k.

2.2 Some Useful Properties of Fourier Series

So far we have seen why and how it is possible that a series of trigonometric functions can
approximate any periodic function.

f(x) ≈
+N∑

n=−N

Cne
2πinνx; in |x| ≤ d

2
(2.39)

Cn =
1

d

d
2∫

− d
2

f(x)e−2πinνxdx; d =
1

ν

Now we want to list some useful properties, which can be derived very easily. If the
function f(x) has the Fourier coefficients An, and if g(x) has the coefficients Bn, and if f
and g are periodic with period d/2, then the follow properties in both Fourier-domains are
equivalent.
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[f(x) + g(x)] ↔ [An +Bn] (2.40)

f(x) = ag(x) ↔ An = aBn

f(x) = g(Mx) ↔ AnM = Bn (M : fixed integer, > 0)

The following two properties, which are quite important, are called the “shift theorem”:

f(x) = g(x+ c) ↔ An = Bne
2πinνc (2.41)

f(x) = g(x)e2πiMνx (M integer) ↔ An = Bn−M

f(x) = g(−x); An = B−n ↔ f(x) = −g(−x); An = −B−n

The next two properties are sometimes called “reality symmetry” (or the functions are said
to be Hermitian):

f(x) = g∗(x) ↔ An = B∗
−n (2.42)

f(x) = f∗(−x) ↔ An = A∗
n

f(x) = −g∗(x) ↔ An = −B∗
−n

f(x) = g1(x)g2(x) ↔ An =
∑
(m)

B(1)
m B

(2)
n−m

f(x) = g(x)g∗(x) ↔ An =
∑
(m)

BmB
∗
m−n

f(x) =
dg(x)

dx
↔ An = 2πinνBn

f(x) =

+x∫
−x

g′(x)dx′ ↔ An =
(Bn +B−n)

2πinν
; (B0 = 0 assumed)

f(x) =
1

d

d
2∫

− d
2

g1(x
′)g2(x′ − x)dx′

︸ ︷︷ ︸
crosscorrelation

↔ An = B(1)
n B

(2)
−n

f(x) =
1

d

d
2∫

− d
2

g1(x
′)g2(x − x′)dx′

︸ ︷︷ ︸
convolution

↔ An = B(1)
n B(2)

n

f(x) =
1

d

d
2∫

− d
2

g(x′)g∗(x′ − x)dx′

︸ ︷︷ ︸
auto−correlation

↔ An = |Bn|2
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f(x) =
1

d

d
2∫

− d
2

g(x′)g(x− x′)dx′

︸ ︷︷ ︸
auto−convolution

↔ An = B2
n (2.43)

Now some specific examples:

• Periodic array of “rect”-functions:

Figure 2.4: Grating: periodic array of rect functions.

A0 = B +
a

d
(A−B) (2.44)

An =

[
A−B
d

]
e2πinνca sinc(nνa)

where : sinc(z) =
sin(πz)

πz

The sinc-function has the properties sinc(0) = 1, sinc(m) = 0, m : integer.

• Sinusoidal phase function:

f(x) = eiz sin(2πiνx); An = Jn(z) (2.45)

The Jn(z) are the Bessel functions of first kind.

• “Dirac”-comb:

f(x) =

+∞∑
m=−∞

δ(x −md− x0); An =
e−2πinνx0

d
(2.46)

This is the so-called Dirac-comb. It has extremely sharp spikes at x = md+ x0, |m| =
0, 1, 2, . . .. We will treat the “Dirac-delta-function” in more detail later.
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Figure 2.5: The “Dirac-comb”.

Now we will treat another example in which we use several of the properties that had been
derived in previous pages. The philosophy is to reduce the somewhat inconvenient problem
into a simpler standard problem.

• “Sawtooth”-grating:

u(x) =

+∞∑
n=−∞

Cne
2πinνx (2.47)

notice: B is negative here (Fig. 2.6).

Figure 2.6: The “sawtooth”-grating.

Use of the shift theorem:

u(x) = u1(x− P ); hence : C(1)
n = Cne

2πinνP (2.48)

u2(x) = u1(x) − A+B

2
; hence : C(2)

n = C(1)
n −

[
A+B

2

]
δn,0 (2.49)
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The next step is simply scaling:

u3(x) =
d
2

A−Bu2(x); C(3)
n = C(2)

n

d
2

A−B (2.50)

Figure 2.7: u4(x).

u4(x) =
du3(x)

dx
; C(4)

n = 2πinνC(3)
n (2.51)

C
(4)
n =

{
0 if n even

2
πin if n odd

.

Now that C(4)
n is known for the simple case of a square wave we can go backwards from

C
(4)
n to Cn by way of C(3)

n , C(2)
n and C(1)

n :

C(4)
n =

{
0 : if n even

2
πin : if n odd

; (2.52)

C(4)
n = 2πinνC(3)

n ; (ν =
1

d
);

=⇒ C(3)
n =

{
0 : if n even

− d
(πn)2 : if n odd

;

C(3)
n = C(2)

n

d
2

A−B ;

=⇒ C(2)
n =

{
0 : if n even

−2(A−B))
(πn)2 : if n odd

;

C(2)
n = C(1)

n −
[
(A+B)

2

]
δn,0;

=⇒ C(1)
n =


A+B

2 : if n = 0
0 : if n even but n �= 0

−−2(A−B)
(πn)2 : if n odd

;

C(1)
n = Cne

2πinνP ;
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So the final result is:

Cn =


A+B

2 : if n = 0
0 : if n even but n �= 0

−−2(A−B)
(πn)2 e−2πinνP : if n odd

; (2.53)

2.3 Fourier Series for Two-Dimensional Functions

An image is a two-dimensional message as a function of x and y. Hence for applications in
optics it is important to extend our mathematical tools for work in two dimensions.

Definition of periodicity in x and in y:

u(x, y) = u(x+Ndx, y +Mdy) (2.54)

for every point (x, y) and for every pair (N,M) of integers. To reduce the new 2D-case
to the old 1D-case we consider at first only u(x, y) at one horizontal line y = constant. There
u(x, y) has an x-period of dx, no matter which y = constant-line we choose. Hence:

u(x, y) =
∑

Cn(y)e2πiνx (2.55)

Cn(y) =
1

dx

dx
2∫

− dx
2

u(x, y)e−2πinνxdx

The coefficients Cn(y) will be different for different y-levels, but the coefficients must
be periodic in y themselves since u(x, y) is period in y. Hence every Cn(y) is in turn repre-
sentable by a Fourier series in y:

Cn(y) =
∑
m

Cnme
2πimµy ; µ =

1

dy
(2.56)

Cnm =
1

dy

dy
2∫

− dy
2

Cn(y)e−2πimµydy

We insert this result into the previous equations and get:

u(x, y) =
∑∑

Cnme
2πi(nνx+mµy)Cnm

1

dxdy

dx
2∫

− dx
2

dy
2∫

− dy
2

u(x, y)e−2πi(nνx+mµy)dxdy

(2.57)
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Figure 2.8: Periodic two-dimensional function.

Figure 2.9: The Fourier Kernel (trigonometric function)

Interpretation of the 2D-trigonometric function cos[2π(νx+ µy)]:

dx =
1

ν
dy =

1

µ
; d =

1

�
(2.58)

cos(θ) =
d

dx
; tan(θ) =

dx

dy

sin θ =
d

dy
; tan(θ) =

µ

ν

ν2 + µ2 = �2; ν = � cos(θ); µ = � sin(θ)
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From sin2(θ) + cos2(θ) = 1 it follows that 1
d2 = 1

d2
x

+ 1
d2

y
. If the space coordinates are

also expressed in polar fashion the argument of the 2D trigonometric function assumes again
a simple form :

x = r cos(ϕ); y = r sin(ϕ) (2.59)

νx+ µy = r�[cosϕ cos θ + sinϕ sin θ] = r� cos(ϕ− θ)
Sometimes a vectorial abbreviation is handy:

x = (x, y); ν = (ν, µ); xν = xν + yµ (2.60)

This means that results from 1D Fourier theory can simply be generalized into 2D-results
by replacing:

x→ x = (x, y); ν → ν = (ν, µ); xν → xν = xν + yµ (2.61)



3 The Moiré Effect

3.1 Measurement of small shifts

Now we want to use the Fourier series formalism for studying the Moiré effect. Its best known
version consists of the superposition of two gratings. In terms of physics we have to know
nothing for this study but that the total transmittance of two superposed transparencies is the
product of the two individual transmittances.

Two periodic masks may be defined by:

T1(x) =
∑

Ane
2πinν1x and T2(x) =

∑
Ame

2πimν2x; ν1 �= ν2 (3.1)

These formulas say that the two masks have different spatial frequencies, but the same
“groove shape” because their Fourier coefficients are alike. Now we superpose both masks,
but shift one of them by x0. The total transmittance will be:

T (x) = T1(x)T2(x− x0) =
∑∑

AnAme
2πi

(nν1+mν2)x−mν2x0︷ ︸︸ ︷
[(nν1x+mν2(x− x0)] (3.2)

T (x) contains many frequencies nν1 +mν2 in superposition, one for each (n,m) term of
the double series. Let us assume the two fundamental frequencies to be almost alike, but not
quite:

ν1 ≈ ν2; ν1 − ν2 = ∆ν << ν2; ∆ν > 0. (3.3)

Now let us sort the frequency components of T (x) such that we begin with the very lowest
ones: (n = 0, m = 0); (n = ±1, m = ±1))

T (x) = A2
0 +A1A−1 cos[2π(∆νx − ν2x0)]︸ ︷︷ ︸

cos[2π∆ν(x− ν2
∆ν

x0)]

+ . . . (3.4)

This cosine-term is shifted by ν2

∆ν0
x0, although the physical shift of T2 was only x0.

Hence we experience a “magnification” of ν2

∆ν , which easily can be 10 or even 100 times.
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The Moiré period is 1
∆ν .

When looking with our human eye at the joint transparency T (x), we will not observe
spatial frequencies larger than 10 mm−1 (10 full periods per millimetre). Our eye is a low-
pass filter, which is another way of saying that the resolution is limited. The magnification
effect is used for high precesion measurement of small shifts.

3.2 Moiré of two equal, rotating gratings

������� ��

Figure 3.1: Moiré gratings with different orientations.

T (x, y) =
∑

Ane
2πin�y (3.5)

Now rotate this grating around (x0, 0) (Fig. 3.1b):

T+(x, y)
∑

Ane
2πin�[y cos ϕ+(x−x0) sin ϕ] (3.6)

Another grating like it is also rotated around (x0, 0), but in the opposite direction:

T−(x, y)
∑

Ane
2πin�[y cos ϕ−(x−x0) sin ϕ] (3.7)

The total transmittance is:

T (x, y) = T+(x, y)T−(x, y) =
∑∑

AnAme
2πi�[...] (3.8)

[. . .] = (n+m)y cosϕ+ (n−m)(x− x0) sinϕ

Now we introduce separate spatial frequency components for the x and the y periodicity.
Let us call

(n+m)� cosϕ = µnm; �(n−m) sinϕ = νnm (3.9)
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T (x, y) =
∑∑

AnAme
2πi(xνnm+yµnm) (3.10)

The spatial frequencies can be visualized in the (ν, µ) domain with “Miller-indices” (n,m):

Figure 3.2: Miller indices.

For a specific application we want only the ν-frequencies contained in T (x, y). In order
to suppress the µ-frequency components we “smear” in the y-direction, which means mathe-
matically an integration:

1

∆y

∆y∫
0

T (x, y)dy = T (x) (3.11)

The range of integration ∆y should be an integer multiple of the y-period, which is 1
� cos ϕ .

Physically the process of “smearing” can be implemented for example by moving T (x, y)
in the y-direction while taking a photograph with sufficiently long exposure time. There are
other ways, too, which will be mentioned somewhat later. Anyway, we compute now the
result of the smearing operation (∆y = M

� cos ϕ ):

1

∆y

∆y∫
0

T (x, y)dy = T (x)
∑∑

AnA−ne
2πi2n�(x−x0) sin ϕ (3.12)

To get this result we made use of:

1

∆y

∆y∫
0

e2πi�(n+m)y cos ϕdy = δn,−m if ∆y =
M

� cosϕ
(3.13)
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This tells us that we got a periodic target T (x) with the fundamental frequency:

ν = 2� sinϕ (3.14)

The frequency can be varied by rotation of the angels (±ϕ). The fringes are always verti-
cal, since µ = 0.

What can we do with such a variable grating? Many, many things; some of them will be
discussed now, others later. But for many applications it is desirable that this periodic mask
T (x) is close to a pure sine-target. In other words, we want A0A0 and A+1A−1 large, but
all higher coefficients small. Now it is time to specify the “groove shape”. Cheap and simple
gratings are usually transparent or opaque:

T1(y) =

{
+1 : in |y| ≤ a

2
0 : otherwise

(but of course still periodic, i.e. T (y) = T (y+Md))

(3.15)

A0 =
a

d
; An =

a

d
sinc(n

a

d
); call :

a

d
= α (3.16)

Such a “square-wave grating” is called a Ronchi-Ruling if α = 1
2 , which means that the

opaque bars are just as wide as the slits between them. Now let us assume that both gratings
had the same period d, but different slit widths a and b respectively.

a

d
= α; A0 = α; An = α sinc(nα) (3.17)

b

d
= β; B0 = β; Bm = β sinc(mβ)

Figure 3.3: The shape of the sinc-function

With these assumptions we get:
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T (x) = α β
+∞∑
−∞

sinc(nα) sinc(nβ) e2πi(x−x0)2n� sin ϕ (3.18)

The sinc(z) function has the property of being zero wherever z is an integer, except for
z = 0, where sinc(0) = 1. For a sinusoidal pattern T (x) we want the second Fourier coef-
ficient to vanish, which means sinc(nα) sinc(nβ) = 0 for |n| = 2. This is accomplished by
choosing α = 1

2 or a = d
2 . By the way, this choice of α eliminates some of the higher Fourier

coefficients with |n| = 4, 6, . . .. We still have β free, which we chose to eliminate the |n| = 3
term by means of β = 1

3 or b = d
3 . The first time where sinc sinc is not zero is at n = 5, but

that term is fairly small because the sinc-function decreases like n−1. The ratio of the fifth to
the first Fourier coefficient of T (x) is in this case:

sinc(5α) sinc(5β)

sinc(α) sinc(β)
=

1

25

sin(5nα) sin(5nβ)

sin(nα) sin(nβ)
(3.19)

In practice this ratio of 5−th harmonics to fundamental frequency is even smaller, because
usually the edges of the gratings are not ideally sharp, which is equivalent to a reduction in
higher harmonics’ constants.

In order to find other periodic functions with no even harmonics (|n| = 2, 4, . . .) it is use-
ful to know that the set of all these functions is described by f(x) + f(x+ d/2) = constant.

Proof: We represent f(x) + f(x + d/2) by its Fourier series, which by assumption is
constant (= trivial case of a periodic function):

∑
An

[
1 + e2πinν d

2

]
e2πinνx = const (3.20)

The second term in the square bracket, which is actually (−1)n due to νd = 1, is a
consequence of the shift theorem. If this Fourier series actually equals a constant, then all of
its (n �= 0) Fourier coefficients An[1 + (−1)n] must be zero. For odd n this is guaranteed by
the square brackets. Hence An (n odd) may be non-zero. But for even n it is necessary that
A2n = 0 in order to satisfy the assumptions f(x) + f(x + d/2) = constant. The constant
happens to be 2A0.
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3.3 Moiré illustrations

�� ��

�� ��

Figure 3.4: The Moiré effect: a) square wave grating; b) Moiré of a perfect
grating and an imperfect grating; c) a pattern periodic in azimuth angle ϕ; d)
Schuster fringes; Moiré of two FZPs.
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Now we want to show that our Moiré system which consisted of the two rotating gratings can
be used as an analog computer for calculating the coefficients of a Fourier series. Assume a
periodic function (period Q) f(x) has been measured and recorded on paper. Let us cut out
one full period of this function, such that the hole in this “function mask” is described by
0 ≤ y ≤ f(x); 0 ≤ x ≤ Q. Next we superpose our Moiré-mask T (x, y) onto the function
mask. Then we illuminate the masks with uniform brightness. Behind the masks we collect
the light and measure it with some type of photodetector. We do this for various Moiré-angles
ϕ, getting as photoelectric signal:

S(sinϕ) =

Q∫
0

(x)

∫
(y)T (x, y)M(x, y)dxdy (4.1)

Herein M stands for the “function mask”:

M(x, y) =

{
+1 : if 0 ≤ y ≤ f(x) and if 0 ≤ x ≤ Q

0 : elsewhere
(4.2)

By T (x, y) we mean the Moiré superposition of two rotated gratings which we discussed
before:

T (x, y) =
∑∑

AnBme
2πi�[...]; (4.3)

[. . .] = (n+m)y cosϕ+ (n−m)(x − x0) sinϕ

An ∼ first grating at +ϕ orientation;An = α sin(nα)
Bn ∼ second grating at −ϕ orientation;Bn = β sin(mβ)

The function mask M and parts of the two-grating patterns T are shown in the Fig. 4.1.
Notice that the height f(x) of the function mask is fairly large in comparison to the period d
of the two gratings.

The limits of the y-integration in S(. . .) are 0 and f(x), as expressed by M(x, y). Hence
S(sinϕ) can be written also as:
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Figure 4.1: Superposition of the function mask M and the two grating patterns.

S(sinϕ) =

Q∫
0

(x)

f(x)∫
0

(y)T (x, y)dydx (4.4)

The function f(x) of which we wish to get the Fourier transform appears as the integration
limit. In order to get f(x) down into the integrand we re-write S(sinϕ) again:

S(sinϕ) =

Q∫
0

(x)f(x)

 1

f(x)

f(x)∫
0

(y)T (x, y)dy

dx (4.5)

If S(sinϕ) is really a Fourier transform of f(x) then the content of the {. . .} bracket
must be something like e−2πiνx. This will turn out to be true. It is not surprising since

the expression F (x, ϕ) = 1
f

f∫
0

T (x, y)dy is practically what we have called previously the

“vertically smeared Moiré pattern”. Inserting T (x, y) we get:

F (x, ϕ) =
1

f

∑∑
AnBme

2πi�(n−m)(x−x0) sin ϕ

f∫
0

e2πi�(n+m)y cos ϕdy (4.6)

Herein the y-integral is:

1

f

f∫
0

e2πi�(n+m)y cos ϕdy =

{
+1 : if n+m = 0

(e2πiµf − 1) : if n+m �= 0
(4.7)

where : µ = (n+m)� cosϕ
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This expression is almost equal to δn,−m, because the result for n+m �= 0 is very small:

∣∣∣∣e2πiµf − 1

2πiµf

∣∣∣∣ = |sinc(µf)| ≤ |πµf |−1
= π

∣∣∣∣ d

(n+m)f(x) cosϕ

∣∣∣∣ (4.8)

In the worst case |n+m| = 1 ; f(x) = fmin; cosϕ = 0.87; sinϕ = 0.5; ϕ = 30◦:

πd

0.87fmin
= 3.5

d

fmin
≤ 3.5%; if fmin ≥ 100d; d = 0.1mm; fmin ≥ 1cm (4.9)

In might happen that the function f(x) goes down to zero occasionally, or it may even be
negative. In that case we add a constant to f(x) such that f(x)+ constant ≥ 1 cm (in our
example). Since we know beforehand how an additive constant influences a Fourier transfor-
mation we can easily subtract its effect. From now on let us assume that a good approximation
is:

1

f(x)

f(x)∫
0

e2πi(n+m)� cos ϕdy = δn,−m (4.10)

From this it follows that:

F (x, ϕ) =

(
1

f(x)

) f(x)∫
0

T (x, y)dy =
∑

AnB−ne
2πi(x−x0)2n� sin ϕ (4.11)

We will abbreviate AnB−n as Dn. If T1 and T2 are real then An and Bn (and hence
also Dn) satisfy the reality symmetry An = A∗

−n. Inserting this we get for the photoelectric
signal:

S(sinϕ) =

Q∫
0

f(x)
∑

Dne
2πi(x−x0)2n� sin ϕdx (4.12)

=
∑

Dne
−4πinx0� sin ϕ

Q∫
0

f(x)e4πinx� sin ϕdx

The integral is equal to QC−nm if the angle ϕ is set such that 4πnx� sinϕ = 2πnm x
Q

Thus we get:

S

(
m

2�Q

)
= Q

+∞∑
−∞

(n)Dne
−2πinm

x0
Q C−nm (4.13)
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This result would be very nice, if only D0 and D±1 would be non-zero and D+1 =
D−1 = |D1|. We know this can be done in fairly good approximation if An = α sinc(nα)
and Bn = β sinc(nβ) with α = 1

2 and with β = 1
3 . Then we have:

1

Q
S

(
m

2Q�

)
→ SCm = D0C0 + 2D1|Cm| cos(2πm

x0

Q
+ γm) (4.14)

Herein we have set Cm = |Cm|eiγm and Cm = C∗
−m due to f(x) being real. Since the

center of rotation x0 is a parameter, which we are free to select, we might set it once so that
x0

Q is an integer.

S

(
m

2Q�

)
→ SCm = D0C0 + 2D1|Cm|cos γm (4.15)

During a second measurement we shift x0 a little bit such that:

2
mx0

Q
= −π

2
+M2π; M integer (4.16)

In this case we get:

S

(
m

2Q�

)
→ SSm = D0C0 + 2D1|Cm|sin γm (4.17)

Hence we get both the real part and the imaginary part of Cm.

Now let us assume that we cannot neglect the higher harmonics of our Moiré pattern; in
other words,D2, D3 might not be negligibly small. We can cope with this either by computing
the true coefficients Cm from the measured coefficients Sm, or we can employ an electronic
trick.

First we will develop a mathematical recursion approach, which works if all Fourier coef-
ficients Cn of the function f(x) with |n| > N (fixed) vanish. To avoid clumsiness we further
simplify (although this is not necessary) as follows:

γ = 0→ Cnm = C−nm; Dn = D−n;x0 = 0 (4.18)

Sm =
∑

DnCnm; (|nm| ≤ N)

Sm = D0C0 + 2

n≤N/m∑
n=1

DnCnm

First let us take care of C0. In this set of equations the D-coefficients describe the know
Moiré, the S-coefficients are measured, and the C-coefficients are the desired Fourier coeffi-
cients of the function f(x).
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S0 = D0C0 + 2C0

N∑
n=1

Dn → C0 =
S0

D0 + 2
N∑

n=1
Dn

(4.19)

Now we will define two convenient abbreviations:

Dn

D1
= En;

(Sm − 2D0C0)

2D1
= Gm (4.20)

Thereby we simplify the old set of equations into a new form:

Sm = D0C0 + 2
∑
(n)

DnCnm (1 ≤ n ≤ N

m
) (4.21)

Gm =
∑
(n)

EnCnm (1 ≤ n ≤ N

m
; nm ≤ N)

The algorithm which leads to a simple sequential solution of this set of linear equations
becomes apparent if we write this system down in some detail:

G1 = E1C1 + E2C2 + E3C3 + E4C4 + . . .+ ENCN

G2 = E1C2 + E2C4 + . . .+ EN ′C2N ′

G3 = E1C3 + . . .+ EN ′′C3N ′′′

. . .
GN−1 = E1CN−1

GN = E1CN

(4.22)

There are no contributions from below the diagonal. The last two equations and in fact
all equations with m > N

2 have only one single term on the right hand side. Therefore we
can solve these equations immediately, for m > N

2 : Cm = Gm

Ef
. Before going on to solve

the other Cm values we have to state what is meant by N ′ and N ′′, which are integers in the
second and third equations. For example the second equation withm = 2 is G2 =

∑
EnC2n.

Since by assumption the Fourier-coefficients vanish if the coefficient is larger thanN , this can
occur for the second equation at 2n → N + 2 or 2n → N + 1, depending on whether N
happens to be even or odd. Similarly N ′′ in the third equation is defined as:

3N ′′ =


N

N − 1
N − 2

 which ever is divisible by 3. (4.23)

Now we continue to solve our equation system:



48 4 An Optical Analog Computer for Fourier Transformation

Gm =
∑

(n)EnCnm; (1 ≤ n ≤ N

M
) (4.24)

We know already the Cm with m > N
2 . These coefficients were easy to find since the

corresponding equations had only one single term. Almost as simple are the equations with
N
3 < m ≤ N

2 since they can have at most two terms, the last one being known already. For
this range of coefficients we get:

Gm = E1Cm + E2C2m (4.25)

From before we know C2m = G2m

E1
. Hence:

Gm = E1Cm + E2
G2m

E1
; Cm =

Gm

E1
− E2

G2m

E2
1

(4.26)

Next we would attack the range N
4 < m ≤ N

3 and so on. A more elaborate treatment of
this recursive algorithm is described by J. W. Coltman in JOSA 44, 468 (1954) and in even
more generality by R. Röhler, Optik 19, 487 (1962). The electronic trick which we briefly
mentioned as a means of avoiding the necessity to bother with the higher harmonic coefficients
of the Moiré mask will be presented after we have learned enough about the Fourier integral.



5 Some More Moiré Effects

When we look at some of the patterns of Edmund’s Moiré-kit it becomes obvious that these
patterns are not strictly periodic in the sense of our first definition. But one hesitates to call
these patterns “aperiodic”. Actually they fall into the category of “quasi-periodic functions”.
In order to understand the Moiré effect of two quasi-periodic patterns in superposition we have
to develop first some appropriate mathematical tools.

5.1 Fourier series representation of quasi-periodic
functions

It is a wide-spread misconception that the application of a Fourier-series representation to
describe a geometrical pattern f(x) requires this pattern to be periodic like f(x) = f(x +
Md); |M | = 0, 1, 2, . . .. This is a sufficient condition, but not a necessary one. Assume
for example the following pattern, which is “quasi-periodic”: g(x3) = g(x3 + Md). This
function is not periodic in x, but in x3. Hence it is possible to write:

g(x3) =
+∞∑

−infty

Cne
2πin x3

d ; Cn =
1

d

d
2∫

− d
2

g(x3)e−2πin x3

d dx3 (5.1)

An example of this set of quasi-periodic functions is cos(2π x3

d ).

A more general definition of quasi-periodicity is:

f(φ(x, y)) = f(φ(x, y) +M); |M | = 0, 1, 2, . . . (5.2)

f(φ(x, y)) =
∑

Cne
2πinφ(x,y)

A fruitful consequence is presented in Applied Optics 6, 1567 - 1570 (1967): “Variable
Fresnel Zone Pattern”.

5.2 Schuster fringes

Schuster fringes occur when two Fresnel zone plates are superposed. This subject was treated
already in the reprint (Appl. Opt. 6, 1567, 1967). We now want to go deeper into the theory
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of the Schuster fringes. This is justified in my opinion because this project is well suited for
illustrating what spatial frequencies and quasi-periodic functions are. Furthermore I feel that
there might be some applications of Schuster fringes still to be invented.

The Fresnel zone plate (abbreviated FZP) is a fairly simple example of a quasi-periodic
function.

M(r2) = M(r2 +mR2
1); m = 1, 2, . . . (5.3)

M(r2) =

{
+1 : if |r2 − (m+ 1

2 )R2
1| ≤ αR2

1

0 : otherwise; usually α = 1
4 , m = 1, 2, . . .

������ ��

Figure 5.1: The Fresnel Zone Pattern as a quasi periodic function.

It does not do any harm if we formally continue M(r2) to negative r2 if we never draw
any conclusions about that half of the r2-range where r would be imaginary. I mention this
only so that you will not have scruples about representing M(r2) by a Fourier series, which
formally is valid for the whole range (−∞,+∞) of the argument.

M(r2) =
∞∑
−∞

Ane
2πin

“
r

R1

”2

(5.4)

An =

(
1

R1

)2
R2

1∫
0

M(r2)e−2πin( r
R1

)2dr2

The equivalent formulas for more general quasi-periodic functions are:
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F (x, y) = f{φ(x, y)} = f{φ(x, y) +m} (5.5)

f{φ(x, y)} = F (x, y) =

∞∑
−∞

Ane
2πinφ(x,y)

An =

1∫
0

F (x, y)e−2πinφ(x,y)dφ(x, y)

This means a path-integral in the (x, y) domain from a point (x0, y0), where φ(x0, y0) =
0, to another point (x1, y1), where φ(x1, y1) = 1 (Fig. 5.2 a). This looks awfully impractical
in the most general case. Fortunately in those particular cases in which we are interested,
everything will be quite simple.

������ ��

Figure 5.2: a) Path of integration; b) the general quasiperiodic function.

f{φ(x, y)} =

{
+1 : if |φ−m| ≤ α

2 ; m : integer
0 : otherwise;

(5.6)

f{φ} =
∑

Ane
2πinφ; An = α sinc(nα)

In the case of the Fresnel zone plate it was φ(x, y) = (x2+y2)
R2

1
and:

M{φ(x, y)} =

{
+1 : if |φ(x, y) − (m+ 1

2

) | ≤ α
2 ; m : integer

0 : otherwise;
(5.7)

Hence An = (−1)nα sinc(nα); ((−1)2 due to the shift by 1
2 period).

Now we are well prepared to study what happens if two FZP’s are put on top of each other
and shifted sidewise. In other words we study FZP-Moiré, which had been observed first by
Schuster in 1924, treated theoretically in Optik 18, 514 (1961).
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Figure 5.3: Two shifted Fresnel Zone Plates

The joint transmittance of the two symmetrically shifted FZP’s is:

M1(x− x0, y)M2(x+ x0, y) = T (x, y, x0); M1 ∼ An; M2 ∼ Bm (5.8)

T =
∑∑

AnBme
2πi[...] 1

R2
1

where:

[. . .] = n
{
(x− x0)

2 + y2
}

+m
{
(x + x0)

2 + y2
}

= (5.9)

= (n+m){x2 + y2 + x2
0} − 2(n−m)xx0 =

= (n+m)

{(
x− n−m

n+m
x0

)2

+ y2

}
+

4nm

n+m
x2

0

Figure 5.4: The symbolic index domain.

It will be obvious soon that these three different versions of the exponent of T (x, y;x0)
are quite handy, if we want to discuss T . This T consists, mathematically, of a double sum:
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−∞ < n < ∞;−∞ < m < ∞. We can assign points in a symbolic index domain (two-
dimensional discrete space, Fig. 5.4).

The double sum
∑ ∞∑

−∞
(n,m) covers the whole plane. Instead of looking at the whole

double sum it makes sense, physically, to consider partial sums, and ask what they mean.

N �= 0, m = 0 (∼ along the n-axis).

Look at the first version of the square bracket which describes the exponent of the joint
transmittance T (x, y, x0). Only n

{
(x− x0)

2 + y2
}

remains. In other words,

B0

∑
Ane

2πi(n(x−x0)
2+y2)/R2

1 = B0M1(x+ x0, y) (5.10)

When actually looking at the FZP-Moiré one still can concentrate and recognize M1. In
other words we really see this partial sum with m = 0.

n = 0,m �= 0 by similar argument gives A0M2(x+ x0, y).

n+m = 0 This partial sum, which takes into account all points on the−45◦ line through
the center of the index plane, is best understood by looking at the second version of the square
bracket in the T -exponent, which now becomes−4nxx0, due n+m = 0, orm = −n. Hence
this partial sum gives

∑
n+m=0

AnB−ne
−2πi4nxx0/R2

1 (5.11)

Figure 5.5: Schuster fringes.

This pattern, called “Schuster fringes”, which is clearly visible for moderately small x0,
consists of vertical stripes with a spatial frequency:

νSchuster =
4x0

R2
1

(5.12)
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One can see these fringes even more clearly if one wipes out all terms but those with
n+m = 0. This can be done by y-smearing, which corresponds to integration:

1

∆y

∆y
2∫

−∆y
2

T (x, y, x0)dy = (5.13)

=
∑∑

AnBme
−4πi(n−m)xx0/R2

1 · 1

∆y

∆y
2∫

−∆y
2

e2πi(n+m){...}/R2
1dy

Where {. . .} = x2 + y2 + x2
0. The y-integral is in essence:

1

∆y

∆y
2∫

−∆y
2

e2πi(n+m)y2/R2
1dy =

{
+1 if n+m = 0

very small if n+m �= 0 and ∆y >> R1

}
≈ δn,−m

(5.14)

Let us postpone for a moment the proof that “very small≈ 0” for (n+m) �= 0. Then only
the (n+m = 0) terms survive, hence m = −n, which leads us to:

1

∆y

∆y
2∫

−∆y
2

T (x, y, x0)dy ≈
∑

AnB−ne
−2πi4xx0/R2

1 (5.15)

Having considered so far the partial sums m = 0; n = 0 and n+m = 0 , it is obvious

to ask, if n−m = 0 yields anything noticable. We set m = n in the
∑∑

of T (x, y;x0)
and get (see the second version of the square bracket of the T -exponent):

∑
AnBne

4πinx2
0/R2

1e4πin(x2+y2)/R2
1 (5.16)

The term e4πin(x2+y2)/R2
1 indicates a FZP pattern around x = 0, Y = 0, but with reduced

scale (factor 1√
2

):

4π
(x2 + y2)

R2
1

= 2π
(x2 + y2)(

R1√
2

)2 (5.17)

This ring system, or FZP pattern, at the center, between the two genuine FZPs M1(x −
x0, y) and M2(x + x0, y) is easily observable if the two FZPs are separated enough. Upon
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moving the two FZPs laterally in opposite directions (= changing x0), one will observe that
this in-between-FZP constantly changes its polarity, meaning a dark or bright center. This
is due to the factor e4πinx2

0/R2
1 , which is the phase factor of the joint “Fourier”-coefficient

AnBne
4πinx2

0/R2
1 . As we know from the shift theorem, a phase of the Fourier-coefficients

means a shift of the function. The phase shift is proportional to the index n, as it should be
according to the shift theorem. Hence the oscillation polarity is nothing but a shift of M(r2)
along r2-axis.

The third version of the square brackets in the T exponent becomes useful when consid-
ering the partial sums:

Figure 5.6: Schuster fringes part 2.

This is an FZP centered at x = 2x0, y = 0, with reduced scale by 1√
2

, and with oscillating
polarity.

Now we will return to the y-integral and prove that it is practically a Kronecker δn,−m:

1

∆y

∆y
2∫

−∆y
2

e2πi(n+m)y2/R2
1dy (5.18)

Figure 5.7: The function cos(. . . y2)
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For convenience we split the exponential function into cosine and sine. One might be
tempted to discard the integral over the sine-function because sin y is asymmetric. However
both cos(. . . y2) and sin(. . . y2) are even functions (because of the y-square). So one cannot
simply discard the

∫
sin(. . . y2), although the range of integration is symmetrical around y =

0. Let us anyway restrict our considerations to the cosine case. The sine-case is very similar.
First we plot the cosine-integrand:

The alternating patches become smaller and smaller. Hence for C > 0:

R1

(2
√

|n+m|+C)∫
− R1

(2
√

|n+m|+C)

cos

{
2π(n+m)y2

R2
1

}
dy <

R1

(2
√

|n+m|)∫
− R1

(2
√

|n+m|)

cos

{
2π(n+m)y2

R2
1

}
dy (5.19)

Hence the integral from −∆y
2 to ∆y

2 with cos{. . . y2} is biggest if the range ∆y covers
only the central bump of the cos{. . . y2} function. Since furthermore 0 ≤ cos ≤ 1 in that
region we arrive at a conservative estimate by replacing the cosine by +1 and the integration
limits ±∆y

2 by ± R1

2
√

|n+m| . So we see that:

1

∆y

∆y
2∫

−∆y
2

cos

{
2π(n+m)y2

R2
1

}
dy <

R1

∆y
√
|n−m| (5.20)

Since the sine-portion of the exponential function leads to an even smaller boundary we
can safely state:

1

∆y

∆y
2∫

−∆y
2

e2πi(n+m)y2/R2
1dy = δn,−m; if ∆y >> R1, andm �= n (5.21)



6 The Dirac or Delta “Function”

6.1 Introduction

It is not a proper function, just a “distribution” in the sense of Laurent Schwartz, but that shall
not bother us. If you want to know exactly what δ is, and what you are allowed to do with it,
look up for example Lighthill, Fourier Analysis and Generalized Functions (Cambridge Uni-
versity Press, 1960). In many books δ(x− t) is defined as:

δ(x − t) =

{
+∞ : if x = t

0 : if x �= t
such that

∫
δ(x− t)dx = 1 (6.1)

This is rather sloppy, which in itself does not bother me too much, but it is limited in scope,
excluding certain useful approaches to δ. It is better to define δ such that for any function f(x),
which is continuous at x = t, δ has the effect of:

∫
f(x)δ(x − t)dx = f(t) (6.2)

This implicit definition is sometimes called the “sifting theorem”. This indirect way of
defining δ describes what is used, but leaves open what really is. Actually there is more than
one form of δ which satisfies the implicit definition.

6.2 Several forms of δ(x)

δ(x − t) = lim
A→∞

{
A : if |x| ≤ 1

2A
0 : if |x| > 1

2A

It is plausible that this form of delta satisfies the implicit definition if the rectangle gets
narrower and higher, but maintains its area:

∞∫
−∞

f(x)δ(x − t)dx = lim
A→∞

∞∫
−∞

f(x)A rect

(
x− t

1
A

)
dx = f(x) (6.3)

Herein we define:
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rect(x) =

{
1 if |x| ≤ 1

2
0 if |x| > 1

2

hence : rect

(
x− t

1
A

){
1 if |x− t| ≤ 1

2A
0 if |x− t| > 1

2A

(6.4)

We can also use:

δ(x− t) =

(
1√
π

)
lim
ε→0

{
1√
ε
e−(x−t)2/ε

}
(6.5)

The above is a Gauss-function of normalized area, getting very slim.
Another way:

δ(x− t) =
1

π
lim
ε→0

{
ε

ε2 + (x− t)2
}

(6.6)

Here the limit process is applied to a Lorentzian. Other possibilities:

δ(x − t) = lim
A→∞

{A sinc[A(x− t)])} (6.7)

δ(x − t) = lim
A→∞

{
A sinc2[A(x − t)]}

δ(x − t) = lim
A→∞

{A trian[1−A|x− t|]} with trian(x) =

{
1− |x| if |x| ≤ 1

0 otherwise

δ(x − t) =
1

π
lim

A→∞

{
1− cos[A (x− t)]

A (x − t2)
}

δ(x − t) =
1

iπ
lim

A→∞

{
eiA(x−t)

(x− t)
}

δ(x − t) = lim
A→∞

A∫
−A

e2πiν(x−t)dν = lim
A →∞

{2A sinc[(2A(x− t))]}

δ(x − t) = lim
N→∞

N∑
n=0

ϕ∗
n(x)ϕn(t); if ϕn are a compl. set of orthonorm. funct.

δ(x − t) =
1

2

∂

∂x
{sign(x− t)} ; sign(x) =

{
1 if x > 0
−1 if x < 0

δ(x − t) =
1

2

∂2

∂x2
|x− t|

All definitions satisfy the implicit definition, and all forms are normalized
∫
δ(x− t)dx =

1. But not all forms of delta mean that δ(x − t) = 0 whenever x− t �= 0. Take for example:

A sinc{A(x− t)} =
sin{πA(x− t)}

π(x− t) (6.8)
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Figure 6.1: The trian function.

Even far away from x − t = 0 there will points where sin{A(x − t)} = 1, hence it is
possible that A sinc{A(x− t)} = 1

π (x− t) (for any A;x− t). The reason why, in the sifting
integral

∫
f(x)δ(x− t)dx = f(t), this δ operates properly nevertheless, is thatAsincA(x− t)

oscillates very rapidly if A is large. Hence there are no contributions of f(x) from points
x− t �= 0 to the integral

∫
f(x)δ(x − t)dx. In other words:

δ(x − t) = lim
A→∞

A sinc{A(x− t)} (6.9)

is indeed a legitimate representation of the δ-“function”.

Now we want to discuss some properties of the Dirac-function:

δ(x) = δ(−x) = δ∗(x) (6.10)

δ(x) =
1

|A|δ
( x
A

)
δ(x) =

δ(x)

|A|
δ(f(x)) =

∑
(n)

δ(x− xn)∣∣∣df(x)
dx

∣∣∣
x=xn

where f(xn) = 0; but f ′(xn) �= 0. For proving it we represent f(x) in the neighborohood
of the zero point x0 by a Taylor series f(x) ≈ 0 + f ′(x)(x − x0). Now we have reduced the
delta function into a form which allows us to apply δ(Ax) = δ(x)

|A| .

∫
δ(x− t1)δ(x− t1)dx = δ(t1 − t2) (6.11)

Whenever our integrals had no limits specified we meant the range to extend from −∞ to
∞. What happens if the limits of the integral are not ±∞.

t+ε∫
t−ε

f(x)δ(x − t)dx = f(t); if ε �= 0 (6.12)
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Now let the integral end just at the δ-peak itself. For this case two new functions are
defined: δ+ and δ−.

t∫
−∞

f(x)δ(x − t)dx =
1

2
f(t− 0) =

∞∫
−∞

f(x)δ−(x− t)dx (6.13)

f(t− 0) means “limit from the left”, i.e.

f(t− 0) = lim{f(t− α)} for 0 ≤ α→ 0 (6.14)

+∞∫
t

f(x)δ(x − t)dx =
1

2
f(t+ 0) =

+∞∫
−∞

f(x)δ+(x− t)dx (6.15)

Obviously, δ+(x) + δ−(x) = δ(x). This enable us now to generalize our original δ-
definition, by allowing f(x) to be discontinuous at x = t, in other words, it may be f(t−0) �=
f(t+ 0).

∫ +∞

−∞
f(x)δ(x − t)dx =

f(t+ 0) + f(t− 0)

2
(6.16)

A specific consequence of this “Dirichlet-property” of the delta function is related to the
“step function”,H(x):

H(x)

t∫
−∞

δ(x)dx =


1 if t > 0
1
2 if t = 0
0 if t < 0

(6.17)

Figure 6.2: The step function.

Now let us consider the derivatives of delta:
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∞∫
−∞

f(x)δ′(x)dx = [f(x)δ(x)]+∞
−∞ −

∞∫
−∞

(
df(x)

dx

)
δ(x)dx (6.18)

(integration by parts)

Assume f(±∞) is finite, then f(±∞)δ(±∞) = 0, hence:

∞∫
−∞

f(x)δ′(x)dx = −
{

df(x)

dx

}
x=0

(6.19)

Slightly more general,

∫
f(x)

dδ(x − t)
dx

= −
∫

df(x)

dx
δ(x− t)dx = −

{
df(x)

dx

}
d=t

(6.20)∫
f(x)

dnδ(x− t)
dxn

dx = (−1)n

{
dnf(x)

dxn

}
x=t





7 The Fourier Integral Transformation

Two functions are called Fourier transforms of each other if they are connected by:

f(x) =

∞∫
−∞

f̃(x)e2πiνxdν (7.1)

This definition tells us how to get f(x) if we know f̃(ν) already. The next obvious question
is, if we know f(x), how do we find f̃(ν)? In answering this question we use the following
version of the δ-function.

δ(x − t) = lim
A→∞

{a sinc[A(x− t)]} = (7.2)

= lim
A→∞

A
2∫

−A
2

e2πiν(x−t)dν

which we write bluntly as
+∞∫
−∞

e2πiν(x−t)dν. Now let us compute

∞∫
−∞

f(x)e−2πiµxdx =

∫
x

∫
ν

f̃(ν)e2πix(ν−µ)dνdx = (7.3)

=

∫
ν

f̃(ν)


∫
x

e2πix(ν−µ)dx

 dν =

∫
ν

f̃(ν)δ(ν − µ)dν = f̃(ν)

f(x) =

∫
f̃(ν)e2πiνxdν; f̃(ν) =

∫
f(x)e−2πiνxdx

The equations in the box indicate that f(x) and f̃(ν) are a “Fourier transform pair”. You
may call this a “proof” if you have no scruples about operating with the δ-function, and chang-
ing the order of integration:

∫
(x)

∫
(ν)

. . . =
∫

(ν)

∫
(x)

. . .

More common is the procedure to present the Fourier integral transformation as the limit-
ing case of the Fourier series representation. Briefly the way to do this is like this:
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f(x) =
∑

An e
2πinx/d; whereby An =

1

d

d
2∫

− d
2

f(x)e−2πinx/ddx (7.4)

This representation of f(x) has been proven to be possible for any reasonable function
f(x) = f(x+ nd); n = 0,±1,±2, . . ..

Now we assume that the period d becomes very large, hence the basic frequency 1
d very

small; we will call it 1
d = ∆ν in order to indicate its smallness. Thereby the Fourier series

representation assumes the form:

An

∆ν
=

d
2∫

−d
2

f(x)e−2πin∆νxdx; f(x) =
∑(

An

∆ν

)
e2πin∆νx∆ν (7.5)

Now we perform the transition d → ∞; n∆ν → ν; An

∆ν → A(ν). The series goes over
into an integral:

f(x) =

∫
A(ν)e2πiνxdν; A(ν) =

∫
f(x)e−2πiνxdx (7.6)

The whole motivation was to represent an aperiodic function by a superposition of many
periodic elements e2πiνx. This extension of the representability of periodic functions towards
aperiodic functions is based upon the plausible argument that an aperiodic function is indeed
periodic, just that its period is unusually long, namely infinity.

Periodic : f(x) = f(x+md); m integer (7.7)

Aperiodic : f(x) = f(x+m∞); m integer

Although it does not make much sense to go from x to x+∞, then to x + 2∞, x+ 3∞,
. . ., x+m∞, it does not create any logical disorder either. As long as something is logically
consistent, we might as well base some arguments upon it.

Another approach to the Fourier-integral is more realistic. Let us assume that the variable
x means something, for example length or time. In real life our knowledge, our access to
things, and our interests cover only a finite range of x, let us say from − d

2 to + d
2 . What is

beyond this region is as good as non-existing in the sense of the positivistic philosophy. Hence
we may assume f(x) = 0 in |x| > d

2 . Furthermore let us assume that the function f(x) does
not show any periodicity within our range |x| ≤ d

2 . For practical purposes, then, this function
is aperiodic. Hence we cannot use Fourier series representation. On the other hand, nothing
can go wrong if we deal from now on with a hypothetical function F (x), which is equal to
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f(x) within |x| ≤ d
2 , and which we define to be f(x+md) outside of |x| ≤ d

2 . The function
F (x) =

∑
(m)

f(x+md) is periodic, hence it can be represented by Fourier series. Within our

range of access f(x) = F (x), hence from now on we just call F (x) = f(x). Nothing can go
wrong.

f(x) =
∑

Ane
2πin�x; An =

1

d

d
2∫

− d
2

f(x)e−2πin�xdx; � =
1

d
(7.8)

What we have done here, namely to add something non-real to something real, in order
to make both together a more tractable entity, is quite common. For example, instead of
describing the oscillation of a voltage by cos(ωt) one adds something non-real, or imaginary,
namely i sin(ωt):

cos(ωt) + i sin(ωt) = eiωt (7.9)

Thereby all mathematical manipulations become simpler. For example, eiω1t · eiω2t =
ei(ω1+ω2)t instead of cos(ω1t) · cos(ω2t) = 1

2{cos[(ω1 + ω2)t] + cos[(ω1 − ω2)t]}.

Actually cos(ωt) itself is already unreal in some sense, because it is defined from time
(−∞) till time (+∞), which certainly is an unrealistically long interval of time.

Now let us make another unrealistic step, which will have as a result that a series (which
is not so handy) will be replaced by an integral (which is easier to handle). In the terminol-
ogy of spatial frequencies a periodic function f(x) =

∑
Ane

2πin�x contains the frequen-
cies 0,±�,±2�, . . .. In other words, the frequency domain is discrete, with �-steps. How-
ever we prefer a continuous domain; let’s call it ν. In it the frequency spectrum of f(x)
is
∑
Anδ(ν − n�). It is very spiky. Let’s smooth it, but such that the smoothed spectrum

A(ν) has the right value at every spike position ν = n� except maybe for a constant factor c
(A(n�) = cAn).

����� ���� � ����

Figure 7.1: a) Discrete frequency spectrum (a) of a periodic object and its
interpolation according to b) Eq. 7.10 (I) and c) Eq. 7.10(II)

This can be achieved in several ways:
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(I) : A(ν) = c
∑

Anrect(
ν − n�
�

) (7.10)

(II) : A(ν) = c
∑

Ansinc(
ν

�
− n)

(III) : A(ν) = c
∑

Ansinc2(
ν

�
− n)

There are even more possibilities. Which one is desirable? Obviously, we want our continu-
ous frequency spectrum to be very suitable for representing the function f(x):

∫
A(ν)e2πiνxdν = f(x) (7.11)

When we insert the various smooth versions of A(ν) into the integral we find that the
sinc-version produces the following result:

f(x)rect
(x
d

)
=

{
f(x) : if |x| ≤ d

2

0 : if |x| > d
2

(7.12)

This result is very nice, because it makes the function zero in the nonsensical range, but
leaves it unchanged within the important range. From now we will use this nomenclature:

f(x) =

∫
f̃(ν)e2πiνxdν; f̃(ν) =

∫
f(x)e−2πiνxdx (7.13)

f(x) = f(x)rect
(x
d

)
; f̃(ν) =

∑
f̃(n�) sinc

(
ν

�
− n

)
; � d = 1 (7.14)

The second line is the well-known sampling theorem. Ordinarily it is derived like this.
The Fourier relationship f(x)↔ f̃(ν) has been established already mathematically. Next the
Fourier relationship is applied to the special function f(x), which is zero outside of |x| ≤ d

2 .
Such a function satisfies the following identity:

f(x) = rect
(x
d

)∑
(m)

f(x+md) This is “periodic continuation′′. (7.15)

Applying a Fourier transformation to both sides of this equation, one gets the sampling
theorem. The result is the same, differences are only of a philosophical nature. We will
now perform the derivation in some detail because it provides a good opportunity for getting
used to delta-functions. Furthermore this derivation is a good example for the significance of
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changing skillfully the sequence of limit processing (= infinite series and integrals).

We apply
∫
. . . e−2πiνxdx to both sides of the identity f(x) = rect

(
x
d

)∑
f(x + m d).

On the left side we get of course f̃(ν). The right side is now:

∫
rect

(x
d

)∑
f(x+m d)e−2πiνxdx (7.16)

Insert:

f(x+m d) =

∫
f̃(ν)e2πimµde2πiµxdµ (7.17)

We do this because we expect f̃ to occur in the result. The summation applies only to one
exponential term. The sum is actually the Fourier series of a delta-comb:

∑
(m)

e2πimµd =
∑
(n)

δ(µd− n) =
1

d

∑
δ
(
µ− n

d

)
(7.18)

Inserting this we arrive soon at the final result:

1

d

∑∫∫
rect

(x
d

)
f̃(µ)e2πix(µ−ν)δ

(
µ− n

d

)
dx dµ = (7.19)

=
1

d

∑∫
rect(

(x
d

)
f̃
(n
d

)
e−2πix(ν−n

d )dx =

=
1

d

∑
f̃
(n
d

) −2i sin
[
πd
(
ν − n

d

)]
−2πi

(
ν − n

d

)
=

∑
f̃
(n
d

)
sinc(νd− n) = f̃(ν)

7.1 Some general properties

Since we generated our Fourier-integral transform as an extension of the Fourier-series trans-
form for periodic functions, we can expect some of the same properties. In particular the
Fourier-integral representation is optimized in the Gaussian sense:

∫ ∣∣∣∣f(x)−
∫
f̃νe2πiνxdν

∣∣∣∣2 dx→ MINIMUM (7.20)

Hence it is plausible that also the Fourier integral exhibits the Dirichlet effect:
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∫
f̃(ν)e2πiνxdν =

f(x+ 0) + f(x− 0)

2
(7.21)

Furthermore, whenever the Fourier-integral covers only a finite frequency range,
ν0∫

−ν0

f̃(ν)

e2πiνxdν, this so-called “truncated Fourier-integral” will exhibit the Gibbs-phenomenon at
discontinuities of the original function f(x).

The convergence properties can be derived similarly as before:

f̃(ν) =

∫
f(x)e2πiνxdx =

[
f(x)

e2πiνx

2πiν

]x=+∞

x=−∞
− (7.22)

− 1

2πiν

∫
f ′(x)e2πiνxdx

We assume that f(±∞) is zero and that df(x)
dx has only a finite number of infinities due to

discontinuities of f(x) itself. Then will be |f̃(ν)| < const.
|ν| . If also f (k−1)(x) has only a finite

number of discontinuities, then the convergence is even better: |f̃(ν)| < const
|ν|k .

7.2 Some specific properties

f(x) + g(x) ↔ f̃(ν) + g̃(ν) (7.23)

f(x) = ag(x) ↔ f̃(ν) = ag̃(ν)

f(x) = g(mx) ↔ f̃(ν) =
g̃
(

ν
m

)
|m|

f(x) = g(x+ c) ↔ f̃(ν) = g̃(ν)e2πiνc shift theorem

f(x) = g(x)e2πiν0x ↔ f̃(ν) = g̃(ν − ν0)
f(x) = g(−x) ↔ f̃(ν) = g̃(−ν)

f(x) = −g(−x) ↔ f̃(ν) = −g̃(ν)
f(x) = f∗(x) ↔ f̃(ν) = f̃∗(−ν) reality symmetry

f(x) = −f∗(x) ↔ f̃(ν) = −̃f∗(−ν)
f(x) = g1(x)g2(x) ↔ f̃(ν) =

∫
g̃1(µ)g̃2(ν − µ)dµ convolution

f(x) = g(x)g∗(x)︸ ︷︷ ︸
real nonnegative

↔ f̃(ν) =

∫
g̃(ν)g̃(µ− ν)dµ auto− correlation

f(x) =
dg(x)

dx
↔ f̃(ν) = 2πiνg̃(ν)
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f(x) =

x∫
−x

g(x′)dx′ ↔ f̃(ν) =
g̃(ν) + g̃(−ν)

2πiν

f(x) =

∫
g1(x

′)g2(x′ − x)dx′ ↔ f̃(ν) = g̃1(ν)g̃2(−ν)

f(x) =

∫
g1(x

′)g2(x− x′)dx′ ↔ f̃(ν) = g̃1(ν)g̃2(ν) (7.24)

f(x) =

∫
g(x′)g∗(x′ − x)dx′ ↔ f̃(ν) = |g̃(ν)|2

f(x) =

∫
g(x′)g(x− x′)dx′ ↔ f̃(ν) = g̃2(ν)

f(x, y) = g(x+ x0, y + y0) ↔ f̃(ν, µ) = g̃(ν, µ)e2πi(x0ν+y0µ)

f(x, y) = g(−x,−y) ↔ f̃(ν, µ) = g̃(−ν,−µ)

f(x, y) = g(−x, y)︸ ︷︷ ︸
inversion around the y−axis

↔ f̃(ν, µ) = g̃(−ν,+µ)

f(x, y) = f∗(x, y) ↔ f̃(ν, µ) = f̃∗(−ν,−µ)

f(x, y) =

∫∫
g1(x

′, y′)g∗2(x′ − x, y′ − y)dx′dy′ ↔ f̃(ν, µ) = g̃1(ν, µ)g̃∗2(ν, µ)

f(x, y) =

∫∫
∇g1(x′, y′)∇g∗2(x′, y′) g∗(x′ − x, y′ − y)dx′dy′ ↔

↔ f̃(ν, µ) = (2π)2(ν2 + µ2)g̃1(ν, µ)g̃∗2(ν, µ)

where∇ = ( ∂
∂x ,

∂
∂y ,

∂
∂z ), so that∇g(x, y) = grad(g(x, y)) is the gradient of g(x, y).

7.3 Polar coordinates

f(r, ϕ) =
∑

fm(r)eimϕ (7.25)

The periodicity in ϕ is a consequence of the uniqueness of f(r, ϕ):

fm(r) =
1

2π

2π∫
0

f(r, ϕ)eimϕdϕ (7.26)

fm(r) =

∞∫
−∞

f̃m(σ)e2πirσdσ

f(r, ϕ) =
∑

eimϕ

∫
f̃m(σ)e2πirσdσ

The real part of ei(mϕ+2πrσ) which is cos(mϕ+ 2πrσ) has maximum lines which form a
set of spirals:
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mϕ+ 2πrσ = N ; N = 0,±1,±2, . . . (7.27)

Hence one may consider the expansion:

f(r, ϕ) =
∑

eimϕ

∫
f̃m(σ)e2πirσdσ (7.28)

as a superposition of spirals. The sign of mσ defines whether it is a left-turn spiral. The
number m defines the multiplicity (in Fig. 7.2: 3). The quantity 2πσ

m determines the scale or
the stretch of the spirals.

Figure 7.2: Spirals

Another approach to two-dimensional Fourier-representation is polar coordinates (com-
pare page 36) takes the ordinary Fourier-elements but expresses them in polar coordinates:

cos[2π(xν + yµ)] = cos[2πr� cos(ϕ− θ)] (7.29)

x = r cos(ϕ) y = r sin(ϕ)

ν = � cos(θ) µ = � sin(θ)

xν = r� cos(ϕ) cos(θ) yµ = r� sin(ϕ) sin(θ)

cos(ϕ) cos(θ) + sin(ϕ) sin(θ) = cos(ϕ− θ)
Now

f(x, y) =

∫ ∞∫
−∞

f̃(ν, µ)e2πi(νx+µy)dνdµ (7.30)

goes over into:
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f(r, ϕ) =

2π∫
θ=0

∞∫
r=0

f̃(�, θ)e2πir� cos(ϕ−θ)�d�dθ (7.31)

Actually I should have chosen new symbols for f and f̃ , when going from cartesian to
polar coordinates, because the functions f and f̃ are now different from before, assuming
they describe still the same pattern. Let me explain this by means of some examples, because
many students make mistakes when changing coordinates:

Figure 7.3: The functions described by Eq. 7.32.

fCartesian(x, y) = e2πi(ν0x+µ0y); fPolar(r, ϕ) = e2πir�0 cos(ϕ−θ); (7.32)

where : ν0 = �0 cos(θ); and : µ0 = �0 sin(θ)

fCartesian(r, ϕ) = e2πi(ν0r+µ0ϕ) (7.33)

Figure 7.4: The function described by Eq. 7.33.
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fPolar(x, y) = e2πix�0 cos(y−θ) (7.34)

Figure 7.5: The function described by Eq. 7.34.

The second form be simplified, making use of the Bessel-function-generating series:

eiA sin(α) =
∞∑
−∞

Jn(A)einα; and cos(ϕ− θ) = sin
(π

2
+ ϕ− θ

)
(7.35)

f(r, ϕ) =
∑ ∞∫

0

Jn(2πr�)

2π∫
0

f̃(�, θ)ein( π
2 +ϕ−θ)�dθdϕ (7.36)

Figure 7.6: The Bessel-function J0(z).

We may also represent f̃ as a Fourier series: f̃(�, θ) =
∑

(m)f̂m(�)eimθ . Upon inserting
it we encounter a Kronecker integral:

f̂m(�)

2π∫
0

ei{mθ+n(π
2 +ϕ−θ)}dθ = δm,n2πf̂(�)ein( π

2 +ϕ) (7.37)
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This leads us to:

f(r, ϕ) =
∑

(n)2π

∞∫
0

Jn(2πr�)f̂n(�)ein(π
2
+ϕ)�d� (7.38)

If f(r, ϕ) does not depend on ϕ, then all f̂n(�), except f̂0(�) are zero. With 2πf̂0(�) =
f̃(�) this results in the Bessel transformation:

f(r) =

∞∫
0

J0(2πr�)f̃ (�)�d� (7.39)

f̃(�) =

∞∫
0

J0(2πr�)f(r)rdr

7.4 More about the Fourier-Integral transformation

Perhaps the most important formula is:

∫∫
f(x, y)g∗(x, y)dxdy =

∫∫
f̃(ν, µ)g∗(ν, µ)dν, dµ (7.40)

or briefly:

f · g∗ = f̃ · g̃∗ PARSEVAL (7.41)

This formula is so important because most other formulas can be derived from it by spe-
cialization. For example:

g(x) = δ(x− x′) g̃(ν) = e−2πiνx′

(7.42)

g∗(x) = δ(x− x′) g∗(ν) = e2πiνx′

When inserting this particular function g into the Parseval formula we get the Fourier
transform:

∫
f(x)δ(x − x′)dx =

∫
f̃(ν)e2πiνx′

dν = f(x′) (7.43)

Now we set f(x) = g(x) and get the PLANCHEREL-theorem:
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∫
|f(x)|2dx =

∫
|f̃(ν)|2dν (7.44)

And the WIENER-KHINTCHINE formula can be obtained in this way:

g(x) = f(x)e2πiνx; g∗(x) = f∗(x)e−2πiν′x (7.45)

g̃(ν) = f̃(ν − ν′); g̃∗(ν) = f̃∗(ν − ν′)∫
|f(x)|2e−2πiν′xdx =

∫
f̃(ν)f∗(ν − ν′)dν

The same formula in two dimensions is:

∫∫
|f(x, y)|2e−2πi(xν′+yµ′)dxdy =

∫∫
f̃(ν, µ)f̃∗(ν − ν′, µ− µ′)dνdµ (7.46)

7.5 Now some examples

• the 1D and 2D rect-Function:

f(x) = rect
(x
a

)
=

{
1 if |x| ≤ a

2
0 otherwise

(7.47)

f̃(ν) = a sinc(aν)

f(x, y) = f1(x)f2(y) f̃(ν, µ) = f̃1(ν)f̃2(µ)

f(x, y) = rect
(x
a

)
· rect

(y
b

)
f̃(ν, µ) = a b sinc(aν) sinc(bµ)

• The trian-function:

f(x) =

{
1− |x|

a if |x| ≤ a
0 if |x| > 0

(7.48)

i.e.

The computation of this Fourier transformation:

f̃(ν) =

∫
f(x)e−2πiνxdx (7.49)
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Figure 7.7: The “trian”-function, final example in Eq. 7.48.

is worth presenting in some detail. We will make use of the Wiener-Khintchine theorem

∫
|f(x)|2e−2πiν′xdx =

∫
f̃(ν)f̃∗(ν − ν′)dν (7.50)

Let us first produce the inverse version of the Wiener-Khintchine theorem again by spe-
cializing the Parseval formula with f(x) and g∗(x) = f∗(x − x′), if g(x) = f(x− x′),
then

g̃(ν) =

∫
f(x− x′)e−2πiνxdx =

∫∫
f̃(ν′)e2πi[x(ν′−ν)−x′ν′]dxdν′ (7.51)

herein:

∫
e2πix(ν′−ν)dx = δ(ν′ − ν) (7.52)

Hence:

g̃(ν) =

∫
f̃(ν′)δ(ν′ − ν)e−2πix′ν′

dν′ = f̃(ν)e−2πix′ν (7.53)

Therefore:

g̃∗(ν) = f̃∗(ν)e2πix′ν (7.54)

Now we insert these particular functions f and g into the Parseval formula
∫
f(x)g∗(x)dx =∫

f̃(ν)g̃∗(ν)dν. Thereby we get the inverse Wiener-Khintchine theorem:

∫
f(x)f∗(x− x′)dx =

∫
|f̃(ν)|2e2πix′νdν (7.55)
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Figure 7.8: The “trian”-function as the autocorrelation of the rect-function.

Now comes the trick which simplifies the Fourier transformation of the triangular func-
tion, which can be constructed as the autocorrelation of two rectangular functions. The
star on the second rect-function is not necessary, because the rect-function is real, but it
does not hurt either. We put the star down only to make it obvious that we have here the
inversion version of the W-K theorem, for the particular function f(x) = 1√

a
rect

(
x
a

)
.

∞∫
−∞

rect

(
x′

a

)
rect

(
x′ − x
a

)
dx′ =

a
2∫

x−a
2

1 dx′ = a− x (if x ≥ 0) (7.56)

For negativex the limits of the integral are−a
2 and

(
a
2 + x

)
= a

2−|x|; hence
∫

rect
(

x′

a

)
rect

(
x′−x

a

)
dx′ = a−|x| for |x| ≤ a. For |x| > a the two rect-functions do not overlap,

hence the integral become zero. We know already that rect
(

x
a

)
has sinc(aν) as Fourier

transform, hence:

f(x) =
1√
a

rect
(x
a

)
∼ f̃(ν) =

√
a sinc(aν) (7.57)

Now we insert all this into the inverse version of the W-K theorem.

F (x) =

∫
f(x′)f∗(x′ − x)dx′ =

∫
|f̃(ν)|2e2πixνdν (7.58)

=

∫ rect
(

x′

a

)
√
a

rect∗
(

x′−x
a

)
√
a

dx′ =

∫
|√a sinc(aν)|2 e2πixνdν

=

{
1− |x|

a if |x| ≤ a
0 if |x| > 0

=

∫
a sinc2(aν) e2πiνxdν

=

∫
F̃ (ν)e2πiνxdν
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Comparing both sides we find:

F (x) =

{
1− |x|

a if |x| ≤ a
0 if |x| > 0

←→ F̃ (ν) = a sinc2(aν) (7.59)

This trick for finding a Fourier transform, if the original function obviously is the auto-
correlation of another function, might seem a little bit complicated, but there are realistic
situations where this trick is almost essential for getting the solution of a specific Fourier
integral.

• Another important pair of Fourier transforms is:

f(x) = e−(x
a )2

; ←→ f̃(ν) =
√
πae−(πνa)2 (7.60)

Proving this gives you a nice opportunity to test your skill in the art of integration by
finding suitable substitutions of variables:

����� ��

Figure 7.9: The 2D circular function and the Bessel function as its Fourier
transform Λ1(x).

f(x) =
e

−|x|
a

2a
; ←→ f̃(ν) =

1

1 + (2πaν)2
(7.61)

f(x, y) =
e−

√
x2+y2

a

2πa2
; ←→ f̃(ν, µ) =

1

(1 + (2πa)2(ν2 + µ2))
3
2

f(x, y) =

{
1 if x2 + y2 ≤ a2

0 otherwise
←→ f̃(ν, µ) = f̃(�)

where �2 = ν2 + µ2
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f̃(�) =
a2

2
Λ1(2πa�); ←→ ΛP (x) = P !

JP (x)(
x
2

)P (7.62)

Λ1(x) =
2J1(x)

x
(7.63)

The ΛP -functions are called “diffraction-function” and the JP are the Bessel functions
(see for example Jahnke-Emde, Table of Functions).

• The following Fourier transform example is important for the theory of image formation:

g(x, y) =

∫∫
f
(
x′ +

x

2
, y′ +

y

2

)
f∗
(
x′ − x

2
, y′ − y

2

)
dx′dy′

whereby : f(x, y) =

{
1 if x2 + y2 ≤ a2

0 otherwise
(7.64)

Figure 7.10: The calculation of the autocorrelation function g(r).

g(r) represents the joint area of two circles of radius a, whose centers are shifted by
a distance T . Sometimes we will write the auto-correlation integral as

∫
f
(
x′ + x

2

)
f∗ (x′ − x

2

)
dx′, instead of

∫
f(x′)f∗(x′ − x)dx′, which is obviously the same, just

substitute x′ → x′ + x
2 , a change of variables. The limits of the integral are still ±∞.

Of course, this does not prevent f(x) from being zero outside of a finite range around
x = 0.

The exact form of g(r), which is like a tent with finite tension on the ropes, can be found
by looking at the geometry of the overlapping circles.
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2β

2π
πa2︸ ︷︷ ︸

circle element

− 2

(
r
2

)
a sinβ

2︸ ︷︷ ︸
two trinangles
which were the
excess

= βa2 − ar

2
sinβ (7.65)

The angle β is defined by cosβ = r
2a .

g(r) = 2βa2 − ar sin(β); g(r) = 0 if r ≥ 2a (7.66)

Figure 7.11: Calculation of the overlap integral.





8 Some Additions About the Analog Computer

Now that the Fourier-integral has been introduced, we can complete the treatment of the ana-
log Computer (Chap. 4), which was based on the Moiré-effect of two gratings, rotating in
opposite directions. Earlier we had assumed that the angleϕ is increased step-wise. But a con-
tinuous motion is more practical, of course. Another drawback was a somewhat complicated
algorithm for eliminating the higher harmonics. Furthermore the treatment was restricted to
periodic functions f(x) = f(x+mQ); m integer. Our goal is now to eliminate these restric-
tions and drawbacks.

Now f(x) may be aperiodic, but zero outside of |x| ≤ Q
2 . Hence inside of this range

nothing is changed. The setup is still as sketched in Fig. 4.1. However, f(x) is centered
around x = 0, extending from −Q

2 to +Q
2 . The photoelectric signal recorded while the two

gratings are in angular positions ϕ is as derived in Eq. 4.13:

S(sinϕ) =

Q∫
0

f(x)
∑

Dne
2πi(x−x0)2n� sin ϕdx (8.1)

=
∑

Dne
−4πinx0� sin ϕ

Q∫
0

f(x)e4πinx� sin ϕdx

where Dn = AnB−n, or Dn = |An|2 if the two gratings are identical. In any case,
Dn = D∗

n. Now we let ϕ change continuously with constant angular velocity; ϕ = ωt. As
long as |ϕ| < 14◦, sinϕ ≈ ϕ (within 1%). Hence:

S(sinϕ) −→ S(ωt) (8.2)

Let us compute the spectrum S̃(ν) of temporal frequencies ν, because this will give us a
clue for the elimination of the higher harmonic terms (|n| > 1):
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S̃(ν) =

∫
S(ωt)e−2πiνtdt = D0

Q
2∫

(x)

∞∫
(t)

f(x)e−2πiνtdxdt+ (8.3)

+
∑
n�=0

Dn

Q
2∫

(x)

∞∫
(t)

f(x)e2πit[−ν+2n�ω(x−x0)]dxdt

The (n = 0)-term gives:

D0f̃(ν)

∫
e−2πiνtdt = D0f̃(0)δ(ν) (8.4)

where:

f̃(0) =

∫
f(x)dx (8.5)

In the
∑

(n �= 0) we have:

∫
e2πit[...]dt = δ([. . .]) = δ(−ν+2n�ω(x−x0)) =

∣∣∣∣ 1

2n�ω

∣∣∣∣ δ([ −ν2n�ω
+ x− x0

])
(8.6)

Hence integration over x changes the variable in the integrand f(x) from x into x0+ ν
2n�ω .

S̃(ν) = D0f̃(0)δ(ν) +
∑
n�=0

Dn

|2n�ω|f(x0 +
ν

2n�ω
) (8.7)

Let us plot S̃(ν), remembering that f(x) was non-zero only in |x| ≤ Q
2 , hence f

(
x0 + ν

2n�ω

)
is non-zero only within

∣∣∣x0 + ν
2n�ω

∣∣∣ ≤ Q
2 , or

|ν + 2n�ωx0| ≤ |n�ωQ| (8.8)

To separate the wanted first order term (|n| = 1) from the (n = 0) term, and also to avoid
overlapping between n = +1 and n = −1, it has to be true that

2�ωx0 − �ωQ ≥ 0 −→ x0 ≥ Q

2
(8.9)
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Figure 8.1: The example function f(x)).

Figure 8.2: The Fourier transform of the photoelectric signal S̃(sin ν).

To avoid a collision between the lower tail of the (n = −2) term and the upper tail of the
(n = −1) term it should be true that:

4�ωx0 − 2�ωQ ≥ 2�ωx0 + �ωQ −→ x0 ≥ 3Q

2
(8.10)

The condition |x0| > Q
2 has a very simple geometrical meaning, namely the center of the

Moiré rotation has to be outside of the function mask, which extended from −Q
2 to +Q

2 . In
practice one would choose the location x0 several times larger than Q

2 , because the adjacent
terms (n = −1), (n = −2) are even easier to separate then. The bandwidth of the (n = 1)
term is ∆ν1 = 2�ωQ, whereas the carrier frequency is ν1 = 2�ωx0. From an electrical point
of view it is desirable to have a small ∆ν1

ν1
= Q

x0
. That makes it easier to realize a bandpass

filter, which is constant within ν1 ± ∆ν
2 , but zero for the higher harmonics.

Let us now assume that an electrical bandpass filter has eliminated everything but the
(n = ±1) terms:

S̃1(ν) =
D1

2�ω
f

(
x0 +

ν

2�ω

)
+
D−1

2�ω
f

(
x0 − ν

2�ω

)
(8.11)

We compute now the signal S1(t), which can be displayed on a CRT.
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S1(t) =

∫
S̃(ν)e2πiµtdµ (8.12)

As part of this computation we need to know
∫
f(x0 ± ν

2�ω )e2πiνtdν.

We insert f(x) =
∫
f̃(µ)e2πiµxdµ:

and get:

∫∫
f̃(µ)e2πi[νt+µ(x0± ν

2�ω )]dνdµ (8.13)

Herein we recognize a delta-function:

∫
e2πiν(t± µ

2�ω )dν = δ

(
t± µ

2�ω

)
= 2�ωδ(2�ωt± µ) (8.14)

This delta-function has the following effect:

2�ω

∫
f̃(µ)e2πiµx0δ(2�ωt± µ)dµ = (8.15)

2�ωf̃(∓2�ωt)e∓2πi2�ωtx0 =

∫
f

(
x0 ± ν

2�ω

)
e2πiνtdν

We could have obtained this more quickly by using the shift theorem. - Now it is seen
that:

S1(t) = D1f̃(−2�ωt)e−4πi�ωtx0 +D−1f̃(+2�ωt)e4πi�ωtx0 (8.16)

Dn = D∗
−n; D1 = Deiϑ; D−1 = De−iϑ;

f̃(µ) = f̃∗(−µ); f̃ = |f̃ |eiϕ; f̃(−µ) = |f̃(+µ)|e−iϑµ

or S1(t) = 2D|f̃(2�ωt)| cos{2π2�ωx0t− ϕ(2�ωt) + ϑ}
This trace can be observed on a CRT. The envelope represents the modulus |f̃ | of the

Fourier transform. If f̃(µ) has a bandwidth ∆ν, which means that f̃(µ) is ≈ 0 for |µ| > ∆ν
2 ,

then S1(t) will go down to zero at t0 = ∆ν
2�ωx0

. Naturally, we want many oscillation periods

τ = 1
2�ω to occur between t = 0 and t0 so that the envelope is easy to abstract from the CRT

trace. Hence we require:

1� t0
τ

=

∆ν
2�ω
1

2�ωx0

= x0∆ν (8.17)

For example ∆ν = 10mm−1 is probably as exact as the original recorder might have
drawn f(x). The inverse of the bandwidth ∆ν is the accuracy or resolution δx = 1

∆ν , here
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Figure 8.3: The signal S1(t).

Figure 8.4: Filtering in the signal plane.

0.1 mm. In order to get 100 oscillations we must achieve 100 = t0
τ = x0∆ν = 10x0[mm].

Hence the pivot point x0 should be at least 10 mm away from the center of f(x).

Finally we have to indicate how the phase ϕ of the Fourier transform f̃ can be measured.
For phase measurements it is necessary to have a phase reference signal; we get it by placing a
pinhole below the center of the f(x)-mask. Behind the pinhole a second photocell picks up a
photoelectrical signal which can be computed like before but with δ(x) for the pinhole instead
of f(x). This is the reference signal SR(t) = 2D cos(2π2�ωx0t+ϑ). The main signal S(t) is
sent through an “amplitude equalizer” which convertsS1(t) into S2(t) = 2D cos{2π2�ωx0t−
ϕ(2�ωt) + ϑ}. Next the signals SR and S2 will be multiplied:
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1

2

(
1

D

)2

S2(t) · SR(t) = cos{4π2�ωx0t− ϕ+ 2ϑ}+ cosϕ(2�ωt) (8.18)

The first term represents a HF-signal, which is blocked out.

The method for phase measurement as described is possible but not always desirable since
in most cases the experimenter wants to see on the CRT ϕ itself, not cosϕ or sinϕ. This can
be done by slightly modifying the method as described so far. The signals S2 and SR are
“hardclipped” before being multiplied. “Hardclipping” is a nonlinear process to be explained
in Chap. 9.



9 Nonlinear Transforms

The Fourier transformation is linear, which means that the processes of addition and transfor-
mation can exchange sequence and we still get the same result. Many other transformations
are linear too. The property of “linearity” is mathematically popular since it makes things
easy. Physically we can use linear transformations where the principle of linear superposition
holds. In its most general form it says:

If cause A leads to effect A’
and if cause B leads to effect B’
then cause (A+B) will lead to effect A’ + effect B’

Hence, if the transition from the “cause-signal” to the “effect-signal” (or “input” to “out-
put”) obeys the law of linear superposition this transition can be described mathematically by
a linear transformation.

As Charlie Brown once said to Snoopy, “Happiness is when all things are linear”. Un-
fortunately the world of the experimentalist is not always linear. For the theoretician things
are even worse, since most linear problems have been solved already because they are easier.
What is left for today’s Ph.D. candidates are mostly nonlinear problems, sometimes real prob-
lems, sometimes not. In any case we cannot pretend the world is all happiness. Therefore we
want to study now some nonlinear transform problems. The only general statement one can
make about nonlinear transform theory is that no statement is true in full generality. Hence
we stick to some specific cases.

9.1 Graphical solution

The input function f(x) is sketched in the lower part. The nonlinear transform assigns to each
amplitude f an output amplitude F , which occurs on the same point x. Hence if we want to
find for a given input amplitude f(x) at x the output amplitude F (x) for the same x, we draw
a vertical line from f −x diagram till it hits the F (f) curve in the F − f diagram. From there
we go horizontally to the left into the F − x diagram. The proper x-coordinate is found by
going from the x−f(x) point horizontally to the vertical x-axis. Then we travel along a circle
to the x-axis of the F − x diagram and continue vertically upwards till we meet the formerly
drawn F -level curve. The crossing points is then F (x).
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Figure 9.1: Graphical illustration of the nonlinear characteristic.

The nomenclature as used here is common. But it would have been better to call the “non-
linear characteristic” not F (f) but for example NL(f) since F (f) and F (x) have different
function structures (except in the trivial case of linearity). In summary we can describe this
nonlinear transformation by:

f(x) −→ f −→ NL(f) −→ NL(f(x)) = F (x) (9.1)

This type of nonlinearity is called “memoryless”, or “amnesiac” or “point-to-point”. A
more general case is a combined convolution and nonlinearity.

F (x) =

∫
NL(f(x − x′))dx′ (9.2)

9.2 Polynomial Nonlinearity

f(x) −→ F (x) =
∑

Cnf(x)n (9.3)

For example:

f(x) = A(x)eiϕ(x) −→ fn = Aneinϕ (9.4)

f(x) =
∑

Bme
2πimνx

f2(x) =
∑∑

BmBje
2πi(m+j)νx =

∑
(n){

∑
(m)BmBn−m}e2πinνx

Notice that the Fourier series with complex exponential is easier to handle than the form
with sine and cosine.
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9.3 FM-Nonlinearity

f(x) −→ F (x) = eif(x) (9.5)

For example:

f(x) = A(x) sin(2πx+ ϕ) F (x) =
∑

Jn(A(x))ein(2πνx+ϕ) (9.6)

9.4 Hardclipping

f(x) −→ F (x) =
1

2
+

1

2
signum{f(x)} (9.7)

Assume f(x) to be bounded: − 1
2 < f(x) < 1

2 .

�� ���� ��

Figure 9.2: Hard clipping(a) and periodic continuation b).

The assumption is not very severe since all practical functions are bounded unless an ex-
plosion occurs. Now we use a trick which brings Fourier series into play. This is sometimes
desirable since the Fourier representation usually reveals the frequency content of a signal.
We replace the hard-clipping nonlinear characteristic by its periodic generalization. This does
not make any difference since f was bounded.

F (f) =
∑

Cne
2πinf (9.8)

C0 =
1

2
; Cn =

1

2
(−i)nsinc

(n
2

)
F (f(x)) =

∑
Cne

2πinf(x)

From here we can proceed easily to “multi-level-clipping”. Now we don’t assume any-
more that f is bounded within |f | < 1

2 , at least within such narrow boundaries. The multi-
level-clipping is (for example) described by the periodic F (f) function which we just used.
In that case we get as before F (f(x)) =

∑
Cne

2πinf(x). In the case of a quadratic input

function f(x) =
(

x
R

)2
this leads to a one-dimensional Fresnel zone plate. In other words our

previous occupation with binary masks can be considered as a case of “multi-level-clipping”.
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9.5 Amplitude height analysis

F (f) = δ(f − f0) (9.9)

Assume both f and f0 to be bounded, i.e., |f |, |f0| < 1
2 . Under these circumstance we

may add more delta-functions to F so that a delta-comb emerges.

F (x) =
∑

(m)δ(f − f0 −m) =
∑

(n)e2πin(f−f0) (9.10)

Figure 9.3: δ-shape nonlinearity.

For example:

F (x) = A sin(x); f0 < A <
1

2
(9.11)

F (f(x)) =
∑

(n)e−2πinf0e2πinA sin(x) (9.12)

=
∑

(m)
{∑

(n)Jm(2πnA)e−2πinf0

}
eimx



10 Schwarz Inequality

The following integral I is certainly real and nonnegative:

I =

∫
|F (x) + zG(x)|2 dx; for every z (which we assume to be real) (10.1)

But F and G might be complex. We introduce the following abbreviations:
F · F ∗ = A; F ·G∗ + F ∗ ·G = B; G ·G∗ = C. A, B, C are real, too.

I = A+Bz + z2C = I(z) (10.2)

Figure 10.1: The parabolic shape of I(z).

The inequality I > 0 means that the function I(z) will never go below the z-axis. Since
I(z) is a parabola, this parabola must be opened upwards, which is due toA > 0. Furthermore
the bottom of the parabola has to be above the z-axis, or on the z-axis, but not below it. The
same property can be expressed in this way: The function I(z) shall not have two zero-
crossings. No zero-crossing or a “zero-touching” is compatible with I ≥ 0. In both cases
I(z) is never negative. If I(z) ever reaches zero then I = 0 = A + Bz + z2C. This is
possible for:

z =
1

2A
[−B ±

√
B2 − 4AC] (10.3)

No zero-crossing occurs if the root is imaginary, that is 4AC > B2. And “zero-touching”
happens if the root is real due to 4AC = B2. Drawing both conclusions together we find that
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I(z) > 0 is equivalent with 4AC ≥ B2. Now we insert our definitions for A,B,C and get
the Schwarz inequality.

4(F · F ∗)(G ·G∗) ≥ (F ·G∗ + F ∗ ·G)2 (10.4)

The equality sign is applicable only if F (x) = c G(x).



11 Sampling Theorem

On pp. 65-67 we had derived the sampling theorem. It turned out to be the perfect method for
converting the discrete function

∑
Anδ(ν − n�) into a continuous function A(ν) such that∫

A(ν)e2πiνxdν = f(x)rect
(

x
d

)
. The An had been the Fourier-coefficients of the periodic

function f(x) =
∑
Ane

2πin�x. Since the sampling theorem is so important for information
processing we want to elaborate on it in several ways.

11.1 Properties of the SINC-Function

If u(x) �= 0 only in |x| ≤ P
2 then ũ(ν) =

∑
ũ
(

n
P

)
sinc(νP − n). This can be interpreted as:

{sinc(νP − n)} is a complete set of basis functions for all functions ũ(ν) which are Fourier
transforms of a function u(x) with the property u(x) �= 0 only in |x| ≤ P

2 . These sinc(νP −
n) functions are almost orthonormal. We use the Parseval theorem for demonstrating the
orthogonality.

∞∫
−∞

sinc(νP − n)sinc(νP −m)dν = (11.1)

=

(
1

P

)2 ∞∫
−∞

rect
( x
P

)
rect

(
− x
P

)
e2πix(n−m) 1

P dx

=

(
1

P

)2
P
2∫

−P
2

e2πix(n−m) 1
P dx =

(
1

P

)
δnm

∞∫
−∞

sinc(νP − n) sinc(νP −m)d(νP ) = δnm (11.2)

But this orthogonality of two sinc-functions holds only if they have the same period P and
if their relative shift is an integer multiple of the period P . Otherwise we find that by applying
the sampling theorem to the sinc itself sinc{P (ν− ν0)} = ũ(ν) =

∑
ũ
(

n
P

)
sinc(νP −n) =∑

we get:
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sinc{P (ν − ν0)} =
∑

sinc(n− Pν0)sinc(νP − n) (11.3)

11.2 Sampling at Shifted Points

Usually one would sample at points νn = n
P . Now suppose we have sampled at shifted

positions νn = ε+ n
P : {ũ ( n

P − ε
)}. Before continuing to read, guess if this set of sampling

values contains also the complete information about ũ(ν) and u(x). We try it out by replacing
n by n+ Pε in the sampling formula.

∑
(n)

ũ
(
ε+

n

P

)
sinc(νP − (n+ Pε))

?
= ũ(ν) (11.4)

As in most situations where we don’t know what to do next we replace some or all func-
tions (here ũ and sinc) by their Fourier-integrals.

∑
(n)

∫∫
u(x)e−2πix(ε+n/P ) 1

P
rect

(
x′

P

)
e−2πix′(ν−n/P−ε)dxdx′ (11.5)

The summation turns out to be the Fourier series of a delta-comb:

∑
(n)

e2πin(x′−x)/P =
∑
(m)

δ

(
x− x′
P

−m
)

= P
∑
(m)

δ(x′ − x−mP ) (11.6)

We insert the delta-comb and then perform the x′-integral, which results in x′ −→ x+mP :

∑
(m)

∫∫
u(x)rect

(
x′

P

)
δ(x′ − xmP )e2πi(−xε−x′νx′ε)dx′dx (11.7)

=
∑∫

u(x)rect
( x
P

+m
)
e2πimP (ε−ν)e−2πiνxdx

Next we make use of the fact that u(x) �= 0 only in |x| ≤ P/2. Hence u(x)rect
(

x+mP
P

) �=
0 for m = 0. Therefore the rect-function results simply in integration limits ±P/2.

P
2∫

−P
2

u(x)e−2πixνdx = ũ(ν) (11.8)

Hence we have proven that the set of shifted samples
{
ũ
(

n
P + ε

)}
provides full informa-

tion about u(x) and ũ(ν). However we assumed that the shift ε was known. Guess whether or
not we are in trouble if ε is not known.
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11.3 Sampling of periodic functions

Definitions: u(x) = u(x+MP ): M : integer;

u(x) =
∑

Cne
2πin x

P ; Cn =
1

P

P
2∫

−P
2

u(x)e−2πin x
P dx (11.9)

The problem of finding a sampling theorem consists now of two problems in the case of
a periodic function because the transform from u(x) to Cn is an integral, but the transform
from Cn to u(x) is a series.

First let us assume a limited range Q in the x-domain, Q < P .

Figure 11.1: Example of a periodic function.

We expect an interpolation formula for theCn. For example ifQ = P
3 we would guess that

only every third coefficient Cn is significantly new. In other words if C−3, C0, C+3, C+6, . . .
are known we would suspect that C1, C2, C4, C5, C7 etc. can be computed by interpolating
the C0, C3, C6 etc. The details can be worked out by the reader.

Now we consider the inverse problem. Assume that only N + 1 of the coefficients Cn

are nonzero for |n| ≤ N
2 . The obvious guess is that u(x) is completely determined by its

values at the N + 1 discrete points xm = mP
N+1 ; m = 0, 1, . . .N . The reason for urging

you to always guess beforehand what the result might be is that it helps you to develop your
intuitive capabilities. Intuition is very important because it helps you to pick out the useful
problems and the tractable solutions. One cannot make progress by trying out everything and
selecting the few useful results. This approach would be much too slow. A case in point is
the chess-playing computer. It has to go quickly through all possible moves in order to find
the best move by exhausting all possibilities. Actually this would be impossible even for the
fastest computer. Hence the program forbids whole classes of move sequences. Even then it
is difficult for the computer to compete with a decent human chess player if more than about
20 moves occur. It is known that the human brain computer is fairly slow because the data
transportation is based on slow electrochemical processes in the neurons, the data cables. But
the brain can rule out whole classes of moves at once. This is done in a vague heuristic way,
which is not quite under conscious control. Some people believe the human brain is so good
simply because the human memory is so large. This is certainly a factor, but not the whole
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explanation, because the search for information in that huge and slow memory would require
much more time than a chess player actually needs. In my opinion it is this vague or heuristic
process of making decisions about large classes of conceivable moves which accounts for the
brain’s skills. I believe that this skill can be developed systematically, for example by guessing
before deriving or proving anything. After a while you will know when you can rely on your
intuition.

Now let’s start with the business of finding a sampling series for the periodic function u(x)
if only the Cn with |n| ≤ N are nonzero. For simplicity we will try to derive this sampling
representation in a similar form as before with the aperiodic function. We need the equivalent
to the rect-function, which is in the discrete case:

R0 =

{
+1 if |n| ≤ N

0 if |n| > N
(11.10)

Now the identity corresponding to the one on p. 66 is:

Cn = RnCn = Rn

∑
(m)

Cn−m(2N + 1) (11.11)

We will not write down Rn explicitly, but rather take it into account by identifying the
summation limits properly when inserting the identity into the Fourier series for u(x):

u(+x) =
N∑
−N

Cne
2πin x

P =
N∑

n=−N

∞∑
m=−∞

Cn−m(2N+1)e
2πin x

P (11.12)

Herein we replace the C by its Fourier integral:

Cn−m(2N+1) =
1

P

P
2∫

−P
2

u(x′)e−2πi{n−m(2N+1)} x′

P dx′; (11.13)

Thus:

u(x) =
1

P

N∑
n=−N

∞∑
m=−∞

P
2∫

−P
2

u(x′)e2πi
[...]
P dx′ (11.14)

where:

[. . .] = nx− x′{n−m(2N + 1)}. (11.15)
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The infinite series with index m is a delta-comb:

∑
(m)e2πimx′ 2N+1

P =
∑

(m′)δ
(
x′

(2N + 1)

P
−m′

)
(11.16)

=
P

2N + 1

∑
δ

(
x′ − mP

2N + 1

)
This we insert and get:

(2N + 1)−1
N∑

n=−N

∞∑
m=−∞

P
2∫

−P
2

u(x′)δ
(
x′ − mP

2N + 1

)
e2πin

(x−x′)
P dx′ (11.17)

Figure 11.2: The periodic interpolation function SN .

Because the integral extends only from x′ = −P
2 to x′ = P

2 only those delta functions
can contribute which have singularity within that range: | mP

2N+1 | ≤ P
2 ; or |m| ≤ 2N+1

2 or

|m| ≤ N since (2N+1)
2 = N + 1

2 is not an integer. Hence both series cover an index range
from −N to +N . The result of the integration is now:

1

2N + 1

N∑
n=−N

N∑
m=−N

u

(
mP

2N + 1

)
e2πin[x− mP

2N+1 ] (11.18)

The summation over n is a two-sided geometrical series of the form:

N∑
−N

e2πinx =
sin[π(2N + 1)z]

sin(πz)
=

sinc[(2N + 1)z]

sinc(z)
(2N + 1); (11.19)

here: z = x
P − m

2N+1 . We incorporate the factor 1
2N+1 into the series and get:
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u(x) =
+N∑

n=−N

u

(
mP

2N + 1

)
SN

(
x

P
− m

2N + 1

)
(11.20)

SN (z) =
sinc[(2N + 1)z]

sinc(z)

This formula is similar to the sampling formula for aperiodic functions except that the

aperiodic sinc-function is now replaced by the periodic SN function (Fig. 11.2).

11.4 Sampling at the wrong interval

Assumption: u(x) = 0 in |x| > P
2 . Hence: u(ν̃) =

∑
sinc(νP − n).

Figure 11.3: Example function.

In other words the continuous function u(ν̃) is completely known already if we know it
only at discrete sampling points νn = n

P . Hence when measuring or computing ũ(ν) we can
save a lot of work if we measure (or compute) only at points νn = n

P . What happens if we
misjudge the object range P ? First assume we assumed a range Q > P . We would sample
ũ(ν) at intervals νm = m

Q , which is more often than at νn = n
P . Hence we may guess that we

probably wasted some effort but we did not lose any information about ũ(ν) and hence u(x).
This is indeed the case since obviously the sampling theorem must hold now too because u(x)
will be zero outside of |x| < Q

2 if Q > P and if u(x) = 0 at |x| ≥ P
2 as assumed. Hence it

must be correct to write ũ(ν) =
∑
ũ
(

m
Q

)
sinc(νQ−m). One way of getting u(x) back from

the sampling values ũ
(

m
Q

)
was by means a Fourier series evaluation with Cm = 1

Q ũ
(

m
Q

)
.
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Figure 11.4: Oversampled function.

1

Q

∑
ũ(ν)e2πim x

Q = (11.21)

1

Q

∑
u(x′)e2πim x−x′

Q dx′ =

1

Q

∑
u(x′)δ

(
n− x− x′

Q

)
dx′ =

∑ ∫
u(x′)δ(x− x′ − nQ)dx′ =

∑
u(x− nQ)

No harm is done to the function u(x), but we wasted some time by computing, in effect,
many zero values between P

2 and Q
2 and between −Q

2 and −P
2 .

Now let us consider the more dangerous case where we have misjudged Q as too small,
Q < P . The sampling steps 1

Q in the ν-domain are now larger than they ought to be, namely
1
P . Hence we might have lost information. This is indeed the case. The Fourier series now
yields overlapping functions u(x− nQ). this effect is called “aliasing”.

1

Q

∑
ũ

(
m

Q

)
e2πim x

Q =
∑

u(x− nQ) (11.22)

Figure 11.5: Undersampling resulting in aliasing.
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This series has the same values in Q
2 < x < P

2 as is −P
2 < x < Q

2 . Hence u(x) cannot
unambiguously be deduced from

∑
u(x− nQ) in Q

2 < |x| < P
2 . This problem is not due to

the particular way we used when computing from the sampling values ũ
(

m
Q

)
to
∑
u(x−nQ)

by means of a Fourier series. One gets into the same kind of trouble when sing the Fourier
integral transform:

∫ ∑
ũ

(
m

Q

)
sinc(νQ−m)e2πiνxdν = u(x)rect

(
x

Q

)
(11.23)

Again the information about u(x) is available only within |x| < Q
2 .

Figure 11.6: The effect of alisasing.

11.5 Sampling in two dimensions

If the function u(x, y) is nonzero only in the rectangle |x| < P
2 ; |y| < Q

2 the Fourier transform
ũ(ν, µ) can be represented by a two-dimensional sampling series:

ũ(ν, µ) =
∑∑

ũ

(
n

P
,
m

Q

)
sinc(νP − n) sinc(µQ−m) (11.24)

A more challenging problem occurs if u(x, y) is nonzero only within a circle x2 + y2 ≤
R2. One approach would make use of a representation in polar coordinates (see Sec. 7.3; r



11.6 Fourier transform by digital computation 101

and ϕ are coordinates in Fig. 7.4). Another approach is to enclose the circle by a square with
sides 2R long. Setting P = Q = 2R reduces the problem to the previous two-dimensional
cartesian sampling theorem. But since the area of square is ( 4

π = 1.27) times the area of the
circle we would sample ũ(ν) more frequently by 27% than absolutely necessary. Somewhat

more efficient is the enclosure of the circle by a regular hexagon. The area ratio is now 2
√

3
π

which results in a 10% sampling waste. The product of the two sinc-functions is now to be
replaced by another sampling function which is suitable for this honeycomb situation.

11.6 Fourier transform by digital computation

A digital computer is not suited for handling continuous functions. Instead it operates with a
set of discrete samples. Hence integrals are to be replaced by series:

u(x) = 0 in |x| > P

2
ũ(ν) =

∑
ũ
( n
P

)
sinc(νP − n) (11.25)

u(x) =
1

P
rect

( x
P

) ∑
ũ
( n
P

)
e2πiν x

P

This set of equations is self-consistent, also the following set:

ũ(ν) = 0 in |ν| > Q

2
u(x) =

∑
u

(
m

Q

)
sinc(xQ−m) (11.26)

ũ(ν) =
1

Q
rect

(
ν

Q

)∑
u

(
m

Q

)
e2πim ν

Q

However both sets together are not consistent anymore since u(x) and ũ(ν) can never both
stay at zero over a finite range of their coordinates x or ν.

The general proof rests on analyticity. One can make it plausible in this way:

u(x)←→ ũ(ν); rect
( x
P

)
←→ P sinc(νP ) (11.27)

if u(x) = u(x)rect
(

x
P

)
then ũ(ν) =

∫
ũ(ν′)P sinc[(ν − ν′)P ]dν′.

We assumed that u(x) was zero at |x| > P/2. But now ũ(ν) can be expressed by a con-
volution of itself with the sinc-function. The sinc-function has infinitely long tails and no
zero-stretches. Hence it is hard to imagine how this convolution could be become zero for
|ν| > Q

2 . Actually not much harm is done if we forget about this mathematical problem as
long as PQ is large, say 20 or more. For PQ = N < 20 one can improve the rigor of the
mathematics by utilizing prolate sheroidal wavefunctions. However N < 20 is a situation
which hardly occurs in physics. For N > 20 the relative error is of the order 1

N logN ≈ 0.
The prolate spheroidal wavefunctions could help in principle. But their computation is a mon-
strous task.
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What one does in practice is like this:

u(x) = 0 in |x| > P

2
−→ ũ(ν) =

∞∑
−∞

ũ
( n
P

)
sinc(νP − n). (11.28)

If ũ(ν) appears to be very small in |ν| > Q
2 one could replace ũ(ν) by ũ(ν)rect

(
ν
Q

)
which corresponds to a ”blurred” u(x):

u(x) −→
∫
u(x′)sinc[(Q(x− x′))]dx′ (11.29)

However, rect ν
Q

∞∑
−∞

ũ
(

n
P

)
sinc(νP−n) is still an infinite series, which leads to excessive

computations. Instead one limits the parameter range of the series such that only those sinc-

function are considered which have their main peak within the range of the rect
(

ν
Q

)
function.

Theses peaks are at νn = n
P . Now we request |νn| ≤ Q

2 or |n| ≤ PQ
2 = N

2 . Computing
backwards to the x-domain yields:

∑
|n|≤P Q

2

ũ(ν)

∫
sinc(νP − n)e2πiνxdν (11.30)

=
1

P
rect

( x
P

) ∑
|n|≤N

2

ũ
( n
P

)
e2πin x

P

The thing to remember is that the product N of the ranges P and Q indicates the number
of terms in the digital Fourier transformation.

u(x) = 0 in |x| > P

2
ũ(ν) ≈ 0 in |ν| > Q

2
N = PQ (11.31)

11.7 Large digital Fourier transform

Optics is often dependent on the digital computer, for example for performing Fourier trans-
forms. Typically a computer can h andle 64x64 input points for a 2D Fourier transformation.
This is often not large enough. The so-called “virtual memory” is supposed to alleviate this
problem. But this virtual memory is quite often not optional. Furthermore it can be expensive
in terms of computer time. The following trick may help then:
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Given : un; −N
2
< n ≤ N

2
; N terms (11.32)

Wanted : ũm;−N
2
< m ≤ N

2

ũm =

N
2∑

n=−N
2 +1

une
2πin m

N N terms

We split this series into two series with N
2 terms each:

ũm =

N
4∑

−N
4 +1

{
u2ne

−2πi2n m
N + u2n−1e

−2πi(2n−1) m
N

}
(11.33)

=

N
4∑

−N
4 +1

n2ne
−2πin m

N/2 + e2πi m
N

N
4∑

−N
4 +1

u2n−1e
−2πin m

N/2

Each series by itself is now periodic in m with a periodic N
2 . Hence we have reduced the

NxN Fourier problem into two N
2 x N

2 problems:

Em =
∑

u2ne
−2πin m

N/2 ; −N
4
< m ≤ N

4
(11.34)

Om =
∑

u2n−1e
−2πin m

N/2 ; −N
4
< m ≤ N

4

ũm = Em + e2πi m
N Om; −N

2
< m ≤ N

2

For a specific m′ in the range N
4 < m′ ≤ N

2 we have:

Em′ = Em′−N
2

− N

4
< m′ − N

2
≤ N

2
(11.35)

Om′ = Om′−N
2

e2πi m′

N = e2πi
(m′−N/2)

N e2πi N/2
N = −e2πi

(m′−N/2)
N

In other words we use the N
2 even terms u2n to compute N

2 terms of Em, and we compute
the N

2 terms of Om from the N
2 odd terms u2n−1. For getting the “inner” ũm terms (−N

4 <

m ≤ N
4 ) we multiply Om by e2πi m

N and add Em. For getting the “outer” um terms (−N
2 <

m ≤ −N
4 ; and N

4 < m ≤ N
2 ) multiply Om by −e2πi m

N and add Em, which gives us ũm±N
2

.

ũm = Em + e2πi m
N Om (11.36)

ũm±N
2

= Em − e−2πi m
N Om

−N
4
< m ≤ N

4
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For the Fourier transform on the digital computer we would use of course the “Fast Fourier
Transform” subroutine, which is called “Cooley-Tukey” or FFT.



12 Fresnel-Transformation

This transform has been invented for diffraction theory by D. Gabor and also L. Mertz, who
describes it in his book Transformations in Optics (J. Wiley, N. Y., 1965). The Fresnel trans-
formation is similar to the Fourier transformation; that is, multiply with exponential and than
integrate. But now the exponent is quadratic.

12.1 Definitions

Up− Transformation : u(x) −→ û(x) =

∞∫
−∞

u(x′)eiπ(x′−x)2dx′ (12.1)

Down− Transformation : u(x) −→ ǔ(x) =

∞∫
−∞

u(x′)e−iπ(x′−x)2dx′

Some properties: applyˇupon û:

ˇ̂u(x) =

∫
û(x′)e−iπ(x′−x)2dx′ mit : û(x′) =

∫
u(x′′)eiπ(x′′−x′)2dx′′

ˇ̂u(x) =

∫∫
u(x′′)eiπ

[...]=(x′′)2−x2−2x′(x′′−x)︷ ︸︸ ︷
[(x′′ − x′)2 − (x′ − x)2]dx′dx′′ = (12.2)

=

∫
x′′

u(x′′)eiπ((x′′)2−x2)

{∫
x′

e−2πix′(x′′−x)dx′
}

dx′′ =

=

∫
x′′

u(x′′)eiπ((x′′)2−x2) {δ(x′′ − x)} dx′′ = u(x)

Hence: ˇ̂u(x) = u(x); or shortly ˇ̂u(x) = u ; similarly: ˆ̌u(x) = u .

{
ǔ∗
} �= ˇ{u}∗ =

{∫
u(x′)e−iπ(x′−x)2dx′

}∗
= (12.3)

=

∫
u∗(x′)eiπ(x′−x)2dx′ = ˆ{u}∗
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Hence:
{
û∗
}

= ˇ{u}∗ and
{
ǔ∗
}

= ˆ{u}∗

If u(x) = v(−x) then û(x) = v̂(−x) and ǔ(x) = v̌(−x).

12.2 Shift-theorem

Assume u(x) = v(x + c); applyˆto both sides of this equation:

∫
u(x′)eiπ(x′−x)2dx′ =

∫
v(x+ c)eiπ(x′−x)2dx′ (12.4)

= û(x) =

∫
v(x′′)eiπ(x′′−c−x)dx′′ = v̂(c+ x)

u(x) = v(x+ c) −→ û(x) = v̂(x+ c) (12.5)

u(x) = v(x+ c) −→ ǔ(x) = v̌(x+ c)

12.3 Tilt-theorem

u(x) = v(x)e2πizx (12.6)

û(x) =

∫
v(x′)e2πizx′

e+iπ(x′−x)2dx′ =

=

∫
v(x′)eiπ

[...]=

(x′−x+z)2︷ ︸︸ ︷
(x′ − (x − z))2 +

−z2+2zx︷ ︸︸ ︷
x2 − (x− z)2︷ ︸︸ ︷

[(x′)2 − 2x(x− z) + x2] dx′

= e−iπ(z2−2zx)

∫
v(x′)eiπ(x′−x+z)2dx′︸ ︷︷ ︸

v̂(x−z)

u(x) = v(x)e2πizx ←→ û(x) = v̂(x− z)e−iπ(z2−2zx) (12.7)

u(x) = v(x)e2πizx ←→ ǔ(x) = v̌(x+ z)e+iπ(z2+2zx)

u(x) = v(x)eiπx2 ←→ ǔ(x) = e−iπx2

ṽ(−x) (12.8)

Proof:
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v̌(x) =

∫
v(x′) eiπ(x′)2e−iπ(x′−x)2︸ ︷︷ ︸

e−iπ(x2−2xx′)

dx′ = (12.9)

= e−iπx2

∫
v(x′)e2πix′xdx′ = e−iπx2

ṽ(−x)

u(x) = v(x)e−iπx2 ←→ û(x) = eiπx2

ṽ(x) (12.10)

These connections between Fresnel transforms and Fourier transforms are quite useful
because they allow us to reduce FRS to FQU for which fast computer algorithms and
also many results in table form exist.

û(x) =

∫
u(x′)eiπ(x−x′)2dx′ = eiπx2

∫
{u(x′)eiπx′2}e−2πixx′

dx′ (12.11)

ǔ(x) =

∫
u(x′)e−iπ(x−x′)2dx′ = e−iπx2

∫ {
u(x′)e−iπ(x′)2

}
e2πixx′

dx′

Another important advantage can be derived from this Fourier-Fresnel relationship:

12.4 Sampling theorem for Fresnel transform pairs

Assume u(x′) �= 0 only within |x| ≤ P
2 then also u(x′)eiπx′2 �= 0. Call it v(x′) for a moment.

The (Fourier-) Sampling theorem says:

ṽ(x) =

∫
v(x′)e−2πixx′

dx′ =
∑
(n)

ṽ
( n
P

)
sinc(Px− n) (12.12)

Hence the formula above is now:

û(x) = eiπx2 ∑
ṽ
( n
P

)
sinc(Px− n) (12.13)

To find ṽ
(

n
P

)
we set x = m

P and remember that sinc(m− n) = δmn.

û
(m
P

)
= eiπ( m

P )2 ∑
ṽ
( n
P

)
sinc(m− n) (12.14)

Hence ṽ
(

m
P

)
= û

(
m
P

)
e−iπ( m

P )
2

. Inserting this we get:

û(x) =
∑

û
( n
P

)
eiπ{x2−( n

P )2}sinc(Px− n) (12.15)
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The Fresnel-type interpolation function e−iπ{( n
P )2−x2}sinc(Px− n) has also the proper-

ties of being “l” if x = n
P , and “0” if x = m

P (m �= n, m is integer). Similarly one gets a
sampling theorem for the other FRS transformation:

ǔ(x) =
∑
(n)

ǔ
( n
P

)
e−iπ{x2−( n

P )2}sinc(xP − n) (12.16)

Another fairly general formula of the Parseval type is:

∫
f1(x)f

∗(x)dx︸ ︷︷ ︸
=

R
f̃1(ν)(f̃2)∗(ν)dν

=

∫
f̂1(x)(f̂2)

∗(x)dx =

∫
f̌1(x)(f̌2)

∗(x)dx (12.17)

From this on can derive many formulas by specializing, for example by f1 = f1 = f one
gets the equivalent to the Plancherel formula:

∫
|f(x)2|dx =

∫
|f̂(x)|2dx =

∫
|f̌(x)|2dx =

∫
|f̃(ν)|2dν (12.18)

The equivalent of the Wiener-Khintchine formula is obtained by substituting f1(x) =
f1(x+ c)

∫
f(x+ c)f∗(x)dx =

∫
f̂(x+ c)(f̂)∗(x)dx =

∫
f̌(x+ c)(f̌)∗(x)dx (12.19)

Another substitution yields

f1(x) = f2(x)e
2πizx (12.20)∫

|f(x)|2e2πizxdx =

∫
f̂(x − z)(f̂(x))∗e−iπ(z2−2zx)dx

=

∫
f̌2(x+ z)(f̌2(x))

∗eiπ(z2−2zx)dx

f1(x) = f2(x)e
iπx2

(12.21)∫
|f(x)|2eiπx2

dx =

∫
f̌(x)(f̌)∗(x)eiπx2

dx

f1(x) = v(x)e2πizx ; f2(x) = v(x)e−2πizx (12.22)∫
|v(x)|2e4πixzdx =

∫
v̂(x − z)(v̂)∗(x+ z)e4πixzdx =

=

∫
v̌(x + z)(v̌)∗(x− z)e4πixzdx
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A special case of the last formula yields:

∫
|v(x)|2dx =

∫
v̂(x− z)(v̂)∗(x+ z)dx =

∫
v̌(x+ z)(v̌)∗(x− z)dx (12.23)

Some more relations:

f(x) = δ(x− c) −→ f̂(x) = eiπ(x−c); f̌(x) = e−iπ(x−c) (12.24)

f(x) = 1 −→ f̂(x) =

∞∫
−∞

eiπ(x′−x)2dx′ =

∞∫
−∞

eiπx2

dx = ei π
4

f̌(x) = [f̂(x)]∗ = e−i π
4 ; Fresnel integral

f(x) = e2πizx −→ f̂(x) =

∫
eiπ[2zx′+(x′−x)2]dx′ (12.25)

=

∫
eiπ[x′2−2x′(x−z)+x2]dx′ =

= eiπ(2xz−x2)

∫
eiπ(x′+z−x)2dx′ = eiπ(2zx−z2+ 1

4 )

Hence:

f(x) = e2πizx ←→ f̂(x)eiπ(2xz−z2+ 1
4 ) (12.26)

f(x) = e2πizx ←→ f̌(x)e−iπ(2xz−z2+ 1
4 )

f(x) =
∑

Ane
2πin x

P ←→ f̂(x) =
∑

Ane
−i

h
( n

P )
2− 1

4

i
e2πin x

P (12.27)

f(x) =
∑

Ane
2πin x

P ←→ f̌(x) =
∑

Ane
−i

h
( n

P )2− 1
4

i
e−2πin x

P

Probably the most important formula for applications in holography is:

[
f̌(x)

]∗
=
[
f̂(x)∗

]
(12.28)

The extension to two dimensions is straightforward:

f̂(x, y) =

∫∫
f(x′, y′)eiπ[(x−x′)2+(y−y′)2]dx′dy′ (12.29)

f̌(x, y) =

∫∫
f(x′, y′)e−iπ[(x−x′)2+(y−y′)2]dx′dy′
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Again:

[f̌ ]∗ = [f̂∗] (12.30)

Now we go over to polar coordinates:

x′ = r cosϕ; x = R cosΦ (12.31)

y′ = r sinϕ; y = R sin Φ

F̂ (R,Φ) =

2π∫
0

∞∫
0

F (r, ϕ)eiπ[r2+R2−2rR cos(Φ−ϕ)]rdrdR

Insert F (r, ϕ) =
∑
Fn(r)einϕ and:

e−2πir cos(ϕ−Φ) = e2πirR sin(Φ−ϕ−π
2 ) =

∑
Jm(2πrR)eim(Φ−ϕ−π

2 ) (12.32)

F̂ (R,Φ) =
∑∑∫∫

Fn(r)Jm(2πrR)eiπ(r2+R2)ei[nϕ+m(Φ−ϕ−π
2 )]rdrdϕ

= 2π
∑∫

eiπ(Φ−π
2 )Fn(r)Jn(2πrR)eiπ(r2+R2)rdr



13 The Stationary Phase Integral

This method of computing an integral easily and in fairly good approximation is very useful
in optics and other branches of physics where wave motions occur. We need two preliminary
results first: the Fourier transform of the step-function, and the Fresnel integral.

13.1 Fourier transform of the step-function

S(x) =

{
+1 if x ≥ 0

0 if x < 0
=

1

2
+

1

2

{
+1 if x ≥ 0
−1 if x < 0

=
1

2
+

1

2
Signum(x) (13.1)

Figure 13.1: The signum function and its derivative.

where:
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Signum{f(x)} = Sg{f(x)} =

{
+1 : if f(x) ≥ 0

0 : if f(x) < 0
(13.2)

S̃g(ν) =

∫
Sg(x)e−2πiνxdx (13.3)

Sg(x) = lim
ε→0

Sgε(x) (13.4)

S̃g(ν) =

∫
Sgε(x)e

−2πiνxdx =

∫
dSgε(x)

dx
· e

−2πiνx

2πiν
dx (13.5)

where:

S̃gε(ν) =
sinc(νε)

πiν
(13.6)

now ε −→ 0 yields S̃g(ν) = 1
πiν ;

S̃g(ν) =
1

2
δ(ν) +

1

2πiν
(13.7)

13.2 The Fresnel integral

F =

∞∫
−∞

eiax2

dx (13.8)

The quadratic exponent is not convenient. A substitution x2 = z is not a suitable way out
of this problem because the differential becomes involved: dx = 1

2
dz√

z
. But we may compute

the square of F and introduce polar coordinates:

F 2 =

(∫
eiax2

dx

)(∫
eiay2

dy

)
=

∞∫
−∞

∞∫
−∞

eia(x2+y2)dxdy (13.9)

=

2π∫
0

∞∫
0

eiar2

rdrdϕ = 2π

∞∫
0

eiar2

rdr

Now it is useful to substitute such that the exponent becomes linear because now also the
differential becomes simpler in the process:
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ar2 = 2πx; d(r2) = 2rdr =
2π

a
dx (13.10)

F 2 =
2π2

a

∞∫
0

e2πixdx =
2π2

a
S̃(−1) =

iπ

a
=
π

a
ei π

2 (13.11)

F =

√
π

a
ei π

4 =

∞∫
−∞

eiax2

dx =

√
π

2a
(1 + i)

13.3 The method of stationary phase

Goal: find a simple approximate solution for the integral:

I =

B∫
A

g(x)eikf(x)dx (13.12)

Approach: reduce this integral to the Fresnel integral F .

������� ��

Figure 13.2: a) Real and b) imaginary part of the integrand in the Fresnel inte-
gral.

For understanding this approach let us sketch the integrand (real & imaginary) of F =∫
eiax2

dx =
√

π
2a (1 + i) (Fig. 13.2).The main contribution to

∞∫
−∞

cos(ax2)dx = Re{F} =

√
π

2a
(13.13)

comes form −√ π
2a < x <

√
π
2a . The rest cancels due to the oscillation of the cosine.

Looking at sin(ax2) it becomes plausible again that
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∞∫
−∞

sin(ax2)dx (13.14)

must be something like
√

π
2a .

Figure 13.3: Illustration of the real part of the integrand in I (see text for de-
tailed discussion).

Now let us see under what circumstances the integral I will assume the form of a Fresnel
Integral. The exponent kf(x) might vary rapidly at most x-regions, but we assume it to be
“stationary” at x = x0; that means df(x)

dy = 0 at x = x0. Hence around there we can write

f(x) ≈ f(x0) + f ′′(x0)
(x−x0)

2

2 . The result of the integration will depend on g(x) at x = x0,
on cos{kf(x0)} and on the width of the unusually wide maximum of cos{kf(x)} at x = x0

(Fig. 13.3). This width will be narrow, if the bend of f(x) at x = x0 is sharp, which depends

on d2f
dx2 . The function g(x) should change only little during on oscillation, which is achieved
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by having k large. If f(x) is stationary only once within A < x < B, then we will have a
contribution only from there. If so it does not make a fifference if we extend the integration
limitsA→ −∞ andB → +∞, as long as kf(x) does not have other stationary points outside
of A < x < B.

I =

B∫
A

g(x)eikf(x)dx ≈
B∫

A

g(x)e
ik

»
f(x0)+f ′′(x0)

(x−x0)2

2

–
dx (13.15)

f(x0) + f ′′(x0)
(x−x0)

2

2 has no stationary point besides x = x0. Hence we can extend the
limits of integration:

B∫
A

. . . dx −→
∞∫

−∞
. . .dx (13.16)

The additional regions will cancel each other anyway due to oscillation.

I ≈ eikf(x0)

∞∫
−∞

g(x)eik
f′′
0 (x−x0)

2 dx (13.17)

To bring this into the shape of a Fresnel integral, we set g(x) ≈ g(x0) + g′(x0)(x − x0).

I ≈ eikf0

g0 ∞∫
−∞

eik
f′′(x−x0)2

2 dx+ g′0

∞∫
−∞

(x− x0)e
ik

f′′
0 (x−x0)2

2 dx

 (13.18)

The second term is zero because the exponential function is symmetrical around x0, while
the factor (x− x0) is antisymmetrical, hence also the product. The

∫
(antisymmetrical) dx is

zero. Now the integral I assumes the form of the Fresnel integral F .

I ∝ g0eikf0

∞∫
−∞

ei
kf′′

0
2 (x−x0)

2

dx (13.19)

We change x− x0 = x′ and we set a = kf0

2 →
√

π
a =

√
2π

kf ′′
0

. Thereby we get:

I =

B∫
A

g(x)eikf(x)dx ≈
√

2π

kf ′′(x0)
g(x0)e

i[kf(x0)+
π
4 ] (13.20)
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If f ′(x) has more than one zero, say at xn, then I =
∑
(n)

√
2π

kf ′′(xn)g(xn)e[...], where:

[. . .] = kf(xn) + π
4 .

13.4 Saddle-point method

This method is in essence the same as the “method of stationary phase”, only in two dimen-
sions:

I =

Bx∫
Ax

By∫
Ay

g(x, y)eikf(x,y)dxdy (13.21)

The name of this method is “saddle-point” because f(x, y) has a saddle shape at x0, y0,
where ∂f

∂x = 0 and ∂f
∂y = 0. Actually three situations can occur (Fig. 13.4).

Figure 13.4: 2D functions with vanishing partial derivatives ∂f

∂x
= 0 and ∂f

∂y
=

0, resulting in a) a saddle-point for ∂2f

∂x2 > 0 and ∂2f

∂y2 < 0 (or vice versa), b) a

total maximum for ∂2f

∂x2 < 0 and ∂2f

∂y2 < 0, c) a total minimum for ∂2f

∂x2 > 0 and
∂2f

∂y2 > 0.

All three types are called “saddle-points” by the mathematicians (non-riders). First we
have to find (x0, y0) by solving the two equations ∂f

∂x = 0 and ∂f
∂y . In general there might be

more than one saddle-point within Ax < x < Bx; Ay < y < By . Then we might subdivide
the area into subareas, each containing only one saddle-point, which then is treated as follows
now. Later the results from the subareas are to be added. Our approach is to approximate
f(x, y) around (x0, y0) by:

f(x, y) ≈ f(x0, y0) +
∂2f(x0, y0)

∂x2

(x− x0)
2

2
(13.22)

+
∂2f(x0, y0)

∂y2

(y − y0)2
2

+
∂2f(x0, y0)

∂x∂y
(x− x0)(y − y0)

we abbreviate:
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f0 + fxx
(x− x0)

2

2
+ fyy

(y − y0)2
2

+ fxy(x − x0)(y − y0) (13.23)

g(x, y) ≈ g(x0, y0) +
∂g(x0, y0)

∂x
(x− x0) +

∂g(x0, y0)

∂y
(y − y0)

We may neglect the first derivates of g because they result in asymmetric integrands.

I ≈ g0

∫
(y)

e
ik

h
f0+fyy

(y−y0)

2

i
· (13.24)

·


∫
(x)

e
ik

»
fxx

(x−x0)2

2 +fxy(x−x0)(y−y0)

–
dx

 dy

The inner integral is almost a Fresnel integral. Add and subtract the quadratic supplement
(or “complete the square”):

fxx
(x− x0)

2

2
+ fxy(x− x0)(y − y0) = (13.25)

=
fxx

2

[
(x− x0)

2 + 2(x− x0)
fxy

fxx
(y − y0) +

(
fxy

fxx
(y − y0)

)2
]
−

− f2
xy

(y − y0)2
2fxx

Hence the inner integral is now:

e
−ik

»
f2

xy
(y−y0)2

2fxx

– ∫
e

ik fxx
2

h
x−x0+

fxy
fxx

(y−y0)
i2

dx = (13.26)

= e
−ik

»
f2

xy
(y−y0)2

2fxx

–√
2π

kfxx
e

iπ
4

What remains is:

I ≈ g0
√

2π

kfxx
ei(kf0+ π

4 )
∫
(y)

e
ik

(y−y0)2

2


fyy−

f2
xy

fxx

ff
dy (13.27)

Here again we encounter a Fresnel-integral with “a′′ = k
2

{
fyy − f2

xy

fxx

}
=

k(fxxfyy−f2
xy)

2fxx
.

Hence it is
√

π
a e

i π
4 = ei π

4

√
2π fxx

k(fxxfyy−f2
xy)

Inserting we finally get:
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I ≈ 2πg(x0, y0)

k
√
fxxfyy − f2

xy

ei[kf(x0,y0)+
π
2 ] (13.28)

I =

Bx∫
Ax

By∫
Ay

g(x, y)eikf(x,y)dxdy



14 What is Light?

14.1 History

Some of the ancient Greek thought that light emerges from the eye, travels to the target, and
returns to the eye (Fig. 14.1). Today we would call this approach “active LIDAR” (LIDAR
= RADAR with light). In the Middle Ages scientists began to believe that vision is like
“passive LIDAR”, which means that radiation travels only from the target to the eye, not vice
verse. When observing a hypnotist one may not be so sure anymore that the old Greek were
completely wrong.

Figure 14.1: Vision according to the ancient Greek.

Galileo (1564-1642) tried to measure the speed of light, which he believed to be finite,
while others before him thought it to be infinite. Newton (1642-1727) was born when Galileo
died. Newton explained light as a stream of bullets, which explains very nicely the shadow.
Newton also discovered the “Newton-rings”, which Huygens (1629-1695) considered as one
of the best proofs for the wave nature light. Römer (1644-1710) was the first one who suc-
ceeded in measuring the speed of light. Fresnel (1788-1827) formulated the first wave theory
of light, which described also polarization. His equations are identical with those of Maxwell
(1831-1879) except for the term D, which Maxwell added. Both thought of light as hydrody-
namic ether waves. In spite of their wrong ideas their calculated predictions and descriptions
of many effects ware correct. This teaches us that the quantitative truth of a system of equa-
tions is invariant to what the physicist thinks about the nature of the experiment. In a hundred
years hence scientists will probably smile about our nave picture of the world, yet they might
still use Maxwell’s and Dirac’s equations.
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Michelson (1852-1931) found that the velocity of light is the same in every unaccelerated
system. Based on this result Lorentz concluded that Maxwell had accidently found a set of
equations which satisfied Einstein’s (1879-1955) theory of special relativity. In 1900 Planck
(1858-1947) deduced from the spectral distribution of the black-body radiation that light en-
ergy must consist of photons or quanta. He was not pleased with this result because it was
logically unsatisfactory to think of light as waves and also as photons (like bullets). In spite
of Planck’s misgivings the photon theory of light progressed quickly when Einstein explained
the photoelectric effect in 1905, and when Bohr (1885-1962) in 1913 showed how the atom
can be understood at once if we accept the photon hypothesis. The resistance against the
“wave-particle duality” diminished further when de Broglie in 1924 showed that this duality
problem affects also electrons and other particles. But this duality dilemma is by no means
a closed chapter. For example, P. Franken insists that it is not necessary to consider electro-
magnetic radiation to be quantized. Only most emitters produce this radiation in quantized
parcels because that is all they can do. Also some receivers can digest radiation only in well-
defined humps. If so, the radiation itself must not necessarily be quantified due to its own
nature. Another theory is A. Landé’s, who claims he can explain every effect with photons.
Waves are not necessary. At best they are convenient mental crutch to describe the behaviour
of whole bunches of photons. I wish I knew who is right. I fear however the question “what is
light” is ultimately meaningless if one expects a pictorial answer like “light consists of little
bullets”. Einstein one answered the question in this way: Light is as paradoxial as Voltaire
(a French scientist, philosopher, politician, and an international expert in intrigues; 18th cen-
tury). Voltaire was born as a Catholic, he converted early to Protestantism, but returned to
Catholicism shortly before dying. Light is born as a photon, it lives as a wave, but it dies as a
photon again when being absorbed.

14.2 What is Observable?

The energy per volume in an electromagnetic field is proportional to �E �E + �H �H . This energy
density can be observed by many effects, as for example photography, photoelectrons, heat,
chemical reaction, radiation, pressure and torque. These effects are mainly proportional to the
polarization, on the angle of incidence and on the spectral composition of the light. Usually
these dependencies are only weak. Hence we will assume the probability of encountering
a photon in the volume element dxdydz around (x, y, z) during the time interval from t to
t+dt is proportional to the squareE2 of the electrical field. The proportionality factor is very
important for illumination technology. However, in all parts of optics where the information
of the light beam is of interest this proportionality factor will seldom be discussed. We will
refer to this proportionality factor as a “photometric aspect”, which might for example deter-
mine how long a photographic plate hat to be exposed. But the structure of the photographic
image is entirely determined by E2(x, y, z, t). This and similar energy- or power-quantities
with unspecified proportionality factors will be called “intensities” or intensity distributions.
Usually an intensity refers to a time-integratedE2 quantity, because the receivers are too slow
to resolve the time period of light, which is one to two femtoseconds in the visible region. A
femtosecond is a ten to the minus fifteenth part of a second. The shortest optical effects so far
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produced are laser pulses with a duration of about ten to the minus thirteen seconds.

14.3 The wave equation

We start from Maxwell’s equations (1867):

curl �H =
∂ �D

∂t
+ �I curl�E = −∂

�B

∂t
(14.1)

div �B = 0 div �D = �
�I = σ �E �D = ε �E �Bµ �H

If the “material’s constants”�, σ, ε, µ do not depend on E and H (which is not always
true; like at very high E- and H-fields, also in certain crystals which exhibit electro-optical
and magneto-optical effects) then the Maxwell equations are linear. Hence, if �E1, �H1 is one
solution, and �E2, �H2 another one, then also a1

�E1 + a2
�E2, b1 �H1 + b2 �H2 is a solution. This

very fortunate property of electromagnetic waves is called “undisturbed linear superposition”.

Now we specialize � = 0 (no charges around); σ = 0 (no currents); ε = constant; µ = µ0

(constant in x and t). Then we get

curl �H = ε
∂ �E

∂t
curl�E = −µ0

∂ �H

∂t
(14.2)

div �H = 0 div �E = �

We solve this system of differential equations by applying µ0
∂
∂t to the first equation and

curl to the second.

µ0curl
∂ �H

∂t
= εµ0

∂2 �E

∂t2
; curl curl �E = −µ0curl

∂ �H

∂t
(14.3)

Together, curlcurl�E+εµ0 = 0. Herein we use the identity curlcurl�E = grad

=0︷ ︸︸ ︷
div �E−∇∇ �E.

Hence we get the time-dependent wave equation. It is the same also for �H .

∇2 �E − εµ0
∂2 �E

∂t2
= 0 (14.4)

Next we decompose the field into time frequencies.

�E = �E(�x, t); �E(x, t) =

∫
�U(�x, ν)e−2πiνtdν (14.5)
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We insert this into the time-dependent wave equation:

∫ [
∇2�U + (2πν)2εµ0

�U
]
e−2πiνtdν = 0 (14.6)

This is formally a Fourier integral. It is zero at all times. Hence the integrand itself must
be zero [. . .] = 0. With the abbreviation (2πν)εµ0 = k2 this leads to the time-independent, or
stationary wave equation, which is also called “Helmholtz-equation” or simple “wave equa-
tion”.

∇2U + k2U = 0 for all three components Ux, Uy, Uz (14.7)

14.4 Complex representation of the wavefield

You are used to the replacement a cos(2πνt + ϕ) → aei(2πνt+ϕ). This means a “convenient
ballast” ia sin(2πνt + ϕ) has been added. Now we want to make sure that this procedure
is legal and useful. In general we add �E → �E + i �EH = const. �V (i �EH is “convenient
ballast”, �V is the “analytic signal”). Both �E and �EH are real functions. Suppose we add
some ballast to the starting field �E(�x1, t1) → �E1 + i �EH1 = �V1 · const at (�x1, t1). The
“starting field” is the cause. The “effect” is �V2 at (�x2, t2) which contains effects of the ballast:
�V2 = 1

const

[
�E2 + i �E1H

]
. If �V2 is the result of a calculation we can recognize the ballast and

subtractit, since it is imaginary. This is possible because of the linear superposition which
keeps the real part and the imaginary part of �V apart at all times and places. Actually the

ballast removal is even simpler. Remember we measure only
t+T∫
t

E2(t′)dt′; T � τ = 2π
ω .

We choose EH and const such that:

t+T∫
t

E2dt′ =

t+T∫
t

|V |2dt′ (14.8)

Hence our theory consists of the following steps:

E1 → E1+iE1H = const. V1 → V2 → |V2| → 1

T

t+T∫
t

|V2(�x, t
′)|2dt′ = I2(�x, t) (14.9)

But we have to be careful if Maxwell is nonlinear, for example due to a field-dependent
ε = ε(E) = ε(0) + ε(1)E + ε(2)E2 + . . ..

Now we have to find a recipe for getting EH from E. Remember �E(�x, t) = �E∗(�x, t)
because the field is a physical quantity and therefore real. Hence the time-Fourier-transform
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satisifes U(�x, ν) = U∗(�x,−ν). This implies redundancy in ±ν (positive and negative fre-
quencies).

U(�x, ν) =

∫
E(�x, t)e2πiνtdt (14.10)

We callU(�x, r) = A(�x, ν)eiϕ(�x,ν) where: A(�x, ν) = +A(�x,−ν); ϕ(�x,+ν) = −ϕ(�x,−ν).

Now we redundancy leads us to an integral with positive-only frequencies:

E(�x, t) =

∞∫
−∞

U(�x, ν)e−2πiνtdν = 2

∞∫
0

A(�x, ν) cos[2πνt− ϕ(�x, ν)]dν (14.11)

Now it is obvious how we get EH from E, simply by setting ϕ→ ϕ+ π
2 ;

EH = 2
∞∫
0

A(�x, ν) sin[2πνt− ϕ]dν

{E ←→ EH} ⇐⇒
{
ϕ←→ ϕ+

π

2

}
(14.12)

This procedure is called “Hilbert-Transform”:

EH = H{E} ; E = H−1 {EH} (14.13)

The backwards transformation H−1 means ϕ −→ ϕ − π
2 . Now we arrived at the recipe

for getting the complex “analytical signal” from the real field. The constant factor will turn
out to be

√
2.

V =
1√
2
[E + iEH ] =

√
2

∞∫
0

A(�x, ν)ei[2πνt−ϕ(�x,ν)] (14.14)

The analytical signal has been introduced in this form by Gabor in 1948.

Now we have to justify the factor
√

2, which was included to achieve:

∫
|V |2dt =

∫
E2dt (14.15)

Remember now |Ṽ (ν)| = √2A(ν) =

{
+1 if ν ≥ 0

0 if; ν < 0
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|Ẽ(ν)| = |ẼH(ν)| = A(ν) in ∞ < ν <∞; A(ν) = A(−ν) (14.16)

We use the Plancherel theorem:

∞∫
−∞

E2(t)dt =

∞∫
−∞
|Ẽ(ν)|2dν =

∞∫
−∞

A2(ν)dν = 2

∞∫
0

A2(ν)dν (14.17)

∞∫
−∞
|V (t)|2dt =

∞∫
−∞
|Ṽ (ν)|dν = 2

∞∫
0

A2(ν)dν

The infinite limits on the time-integrals are valid if we set E(t) −→ E(t)rect( t
T ) and do

the same for V (t).

Another but equivalent way of describing the Hilbert transform is as the follow:

E(t) =

∞∫
−∞

Ẽ(ν)e−2πiνtdν =

∞∫
−∞

A(ν)ei[−2πiνt+ϕ(ν)]dν (14.18)

V (t) =
√

2

∞∫
0

A(ν)e−2πiνt+ϕ(ν)dν

Hence:

Ṽ (ν) =
√

2Ẽ(ν) =

{
+1 if ν ≥ 0

0 if ν < 0
(14.19)

From V = 1√
2
[E + iEH ] follows:

Ṽ =
1√
2
[Ẽ + iẼH ]; iẼH =

√
2Ṽ − Ẽ = Ẽ =

{
2− 1 if ν ≥ 0

0 if ν < 0

iẼH(ν) = Ẽ(ν)

{
+1 if ν ≥ 0

0 if ν < 0
(14.20)

Yet another representation of the Hilbert transform is obtained when this one is Fourier
transformed whereby the convolution theorem is utilized:

iEH(t) =

∫
E(t′)S̃g(t− t′)dt′ =

E(t′)dt′

πi(t− t′) (14.21)
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14.5 Frequency averages

The analytic signal has some more advantages, for example for computing frequency averages.
Assume a field at point �x with a temporal power spectrum |Ẽν|2 = |Ẽ(−ν)|2. One would
be inclined to talk about an average-frequency or carrier-frequency νc, and about a bandwidth
δνc. How would by compute this?

Figure 14.2: Example of the power spectrum of a typical analytic signal.

∞∫
−∞

ν|Ẽ(ν)|2dν −→ ν = 0? (14.22)

(ν − ν)2 =

∫
(ν − ν)2|Ẽ(ν)|2dν∫ |Ẽ(ν)|2dν =

∫
ν2|Ẽ(ν)|2dν∫ |Ẽ(ν)|2dν (14.23)

≈
∫
ν2 [δ(ν − νc) + δ(ν + νc)] dν∫
[δ(ν − νc) +mδ(ν + νc)] dν

= ν2
c −→ ∆ν = νc

Obviously the ordinary procedures for computing a mean value and a mean-square value
don’t make much sense. It rather should be ν = νc, not ν = 0; and ∆ν = δν; not ∆ν = νc.
This trouble is avoided when computing ν and ∆ν with |ν|2 as weighting function instead of
|Ẽ|2. Remember that |Ṽ (ν)|2 was zero for ν < 0. Hence:

∞∫
−∞

ν|Ṽ (ν)|2dν
∞∫

−∞
|Ṽ |2dν

=

∞∫
0

ν|Ṽ (ν)|2dν∫ |Ṽ (ν)|2dν = ν ≈ νc (14.24)

and

∞∫
−∞

(ν − ν)2|Ṽ (ν)|2dν∫ |Ṽ (ν)|2dν =

∞∫
0

(ν − ν)2|Ṽ (ν)|2dν∫ |Ṽ (ν)|2dν = ∆ν2 ≈ (δν)2 (14.25)

Let us consider a simple example:

Performing the above computations yields ν = νc; (∆ν)2 = (δν)2

12 .
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Figure 14.3: Power spectrum (a) and spatial distribution (b) of an example
function.

14.6 The envelope representation of complex signals

As we have just seen, the complex notation gives us a satisfactory way to define the mean
frequency ν. Using the mean frequency we can introduce the intuitively appealing “Envelope-
Representation”:

V (t) = U(t)e2πiν1t = |U(t)|ei(2πν1+Φ(t)) (14.26)

The choice of the “carrier frequency” ν1 is in a sense arbitrary. With another ν2, it would
have been V (t) = U2(t)e

2πiν2t instead of V (t) = U1(t)e
2πiν1t.

What is the “best carrier frequency” ν1? Writing down the Fourier transform of V (t) =
U1(t)e

2πiν1t gives us a hint. According to the shift-theorem it is: Ṽ (ν) = Ũ(ν − ν1); or just
a well: Ṽ (ν + ν1) = Ũ(ν). Obviously the choice of a carrier frequency is something like the
choice of a new center of a shifted coordinate system. One might suspect that ν1 = ν is the
“best choice” where it was:

ν =

∫
ν|Ṽ (ν)|2dν∫ |Ṽ (ν)|2dν (14.27)

An envelope is something which encloses something else as smoothly as possible. So we

want U(t, ν1) to be a slowly varying function of t. Hence we request
∞∫

−∞

∣∣∣dU(t,ν1)
dt

∣∣∣2 dt −→
minimum with respect to ν1.

U(t) = V (t)e−2πiν1t =

∫
Ṽ (ν)e2πi(ν−ν1)tdν (14.28)

dU

dt
= 2πi

∫
(ν − ν1)Ṽ (ν)e2πi(ν−ν1)tdν∫ ∣∣∣∣dUdt

∣∣∣∣2 dt =

∫∫∫
(2πi)2(ν − ν1)(µ− ν1)Ṽ (ν)Ṽ ∗(µ)e2πit[(ν−ν1)−(µ−ν1)]d(νµt)
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We recognize the hidden delta function:
∫
e2πit(ν−µ)dt = δ(ν − µ);

∫
. . .dµ ∼ µ→ ν.

∫ ∣∣∣∣dUdt
∣∣∣∣2 dt = (2πi)2

∫
(ν − ν1)2|Ṽ (ν)|2dν = (14.29)

=

{
(2πi)2

∫
|Ṽ (ν)|2dν

} ∫
[ν2 − 2νν1 + ν2

1 ]|Ṽ (ν)|2dν∫ |Ṽ (ν)|2dν
= C[ν2 − 2ν1ν + ν2

1 ];
d[. . .]

dν1
= −2ν + 2ν1 = 0→ ν1 = ν

Now we search the best carrier frequency which yields the smoothest envelope. As one
might have guessed the mean frequency is the best carrier frequency ν1 = ν. Hence the
smoothest envelope representation is:

V (t) = U(t)e2πiνt = |U(t)|ei{2πνt+Φ(t)} (14.30)

= e2πiνt

∫
Ũ(ν)e2πiνtdν =

∫
Ũ(ν)e2πi(ν+ν)tdt

=

∫
Ũ(ν − ν)e2πiνtdν =

∫
Ṽ (ν)e2πiνtdν =

=
√

2

∞∫
0

A(ν)ei[2πνt+ϕ(ν)]dν
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15.1 The usual derivation

In the photon theory of light the field has a probabilistic meaning. The probability for a photon
to land in the little square (x, x + dx), (y, y + dx) is proportional to the modulus square of
the complex field:

P (x, y)dxdy =
|V (x, y)|2dxdy∫∫ |V (x, y)|2dxdy (15.1)

The normalization
∫∫
P (x, y)dxdy = 1 is assured by the demoninator. Physically the

normalization means that we don’t know at which of the many little square this photon will
land, but it has to land somewhere.

The most likely place is x: (now in one dimension)

x =

∫
xP (x)dx =

|V (x)|2xdx∫ |V (x)|2dx (15.2)

The spread around this most likely landing place is given by ∆x:

(∆x)2 =

∫
(x − x)2P (x)dx =

∫
x2P (x)dx − 2x

∫
xP (x)dx + x2

∫
P (x)dx

= x2 − 2x · x+ x2 = x2 − x2 (15.3)

The field V (x) at the receiver plane can be decomposed into spatial frequency compo-
nents:

V (x) =

∫
Ṽ (ν)e2πiνxdν. (15.4)

Instead of receiving the field itself we will use apparatus which performs a Fourier trans-
form of the field:

∫
V (x)e−2πiνxdx = Ṽ (ν) (15.5)
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Actually such an “apparatus” is very simple; it consists of nothing but a lens of proper
dimensions as we will learn soon. After having performed the Fourier transform, or in other
words, after having produced a secondary field V1(x) = Ṽ (ax), we will call the spatial coor-
dinate in this secondary plane now ν (although originally ν was a frequency), the probability
for a photon to touch down between ν and ν + dν is:

Q(ν)dν =
|Ṽ (ν)|2dν∫ |Ṽ (ν′)|2dν′ (15.6)

The most likely spot for the photon to reach the secondary ν-plane is ν:

ν =

∫
νQ(ν)dν; (15.7)

and the spread arround ν is ∆ν =
√∫

(ν − ν)2Q(ν)dν.

The uncertainty principle states the ∆x and ∆ν, both belonging to the same V (x), are
coupled, such that if ∆x is small, ∆ν cannot be small also, and vice versa. We intend to show
that there is a lower limit for the product ∆x∆ν. In order to shorten the proof somewhat, we
don’t consider V (x) itself, but V (x + x)e−2πiνx = V0(x). This is justified since VS(x) =
V (x + x) has the same ∆x as V (x), and it has also the same ν and ∆ν as V (x) since
|ṼS(ν)| = |Ṽ (ν)|. The next step of this justification is based on the fact that VS(x) and
VS(x)e−2πiνx = V0(x) have the same ∆x, a different ν, but the same ∆ν. The field V0(x)
has the convenient feature that its linear moments x and ν are zero.

∫
x|V (x+ x)|2e−2πiνxdx =

∞∫
−∞

x|V (x+ x)|2dx = (15.8)

=

∫
(x′ − x)2|V (x′)|2dx′ =

∫
x′|V (x′)|2dx′︸ ︷︷ ︸
x

R |V |2dx′

−x
∫
|V (x′)|2dx′ = 0

For computing ν, we need to know first Ṽ0(ν):

∫
V0(x) = e−2πiνxdx = Ṽ0(ν) =

∫
V (x+ x)e−2πi(ν+ν)xdx (15.9)

=

∫∫
Ṽ (µ)e2πi[µ(x+x′)−x(ν−ν)]dxdµ

mit: ∫
. . .dx = δ(µ− ν − ν);

∫
. . .dµ ∼ µ→ ν + ν; (15.10)
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= Ṽ (ν + ν)e2πix(ν+ν) = Ṽ0(ν); |Ṽ0(ν)|2 = |Ṽ (ν − ν)|2 (15.11)∫
ν|Ṽ0(ν)|2dν =

∫
ν|Ṽ (ν + ν)|2dν =

∫
(ν′ − ν)|Ṽ (ν′)|2dν′ = 0

In other words, by shifting the origins of the x-scale and the ν-scale properly the compu-
tation of the spread reduces to the simple formulas:

(∆x)2 =

∫
x2P (x)dx; (∆ν) =

∫
ν2Q(ν)dν (15.12)

What now comes is a bit of arithmetic gymnastics involving Fourier-transforms, partial
integrations and the Schwarz inequality. We will use V0(x) but drop the index zero. We
want to compute

∫
x2|V (x)|2dx, multiplied by

∫
ν|Ṽ (ν)|2dν. The second expression can be

suitably modified in the following manner.

dV (x)

dx
= 2πi

∫
νṼ (ν)e2πiνxdν (15.13)

dV ∗(x)
dx

= −2πi

∫
µṼ ∗(µ)e−2πiµxdµ

Multiplication and integration of these two terms yields:

∫ ∣∣∣∣dV (x)

dx

∣∣∣∣2 dx =

∫∫∫
(2π)2νµṼ (ν)Ṽ ∗(µ)e2πix(ν−µ)dxdνdµ (15.14)∫

. . .dx = δ(ν − µ); next

∫
. . .dµ ∼ µ→ ν

= (2π)2
∫
|Ṽ (ν)|2ν2dν.

Now we use this in:

(∫
x2|V (x)|2dx

)(∫
|Ṽ (ν)|2ν2dν

)
=

(∫
|xV (x)|2dx

)(∫ ∣∣∣∣dV (x)

2πdx

∣∣∣∣2 dx

)
(15.15)

call xV (x) = F (x) and dV (x)
2πdx = G(x), then the right-hand-side is (F · F ∗)(G · G∗).

According to Schwarz (Chap. 10) this is ≥
[

(F ·G∗)(F∗·G)
2

]2
. This new expression can be

evaluated further:

F ·G∗ + F ∗ ·G =

∫
x

{
V (x)

dV ∗(x)
2πdx

+ V ∗(x)
dV (x)

2πdx

}
dx = (15.16)

=
1

2π

∫
x

d|V (x)|2
dx

dx =
1

2π

[
x|V (x)|2]x=∞

x=−∞ −
1

2π

∫
|V (x)|2dx
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A physicist’s field is always zero at infinity. Hence the first term vanishes. The second
term is just what we need as the denominator for normalization of ∆x and ∆ν:

F ·G∗+F ∗·G =
1

2π

∫
|V (x)|2dx;

[
(F ·G∗ + F ∗ ·G)

2

]2
=

(
1

4π

)2(∫
|V (x)|2dx

)2

(15.17)

Now we have:

∫
x2|V (x)|2dx

∫
ν2|Ṽ (ν)|2dν ≥

(∫
|V (x)|2 dx

4π

)2

(15.18)

Remember now the Plancherel theorem and the probability definitions:

∫
|V (ν)|2dν =

∫
|V (x)|2dx; (15.19)

P (x) =
|V (x)|2∫ |V (x)|2dx ; Q(ν) =

|Ṽ (ν)|2∫ |Ṽ (ν)|2dν
(∆x)2 =

∫
x2P (x)dx; (∆ν)2 =

∫
ν2Q(ν)dν.

We introduce these bother definition into the inequality, then pull the roots, and get

∆x∆ν ≥ 1

4π
(15.20)

It should not bother you to find here 1
4π , whereas sometimes you might have seen 1

2π , 1
2 , 1,

π and so on. The difference lies in the definition of the spread, which could have been defined
instead by:

∆x1 =
√
xx2; ∆ν1 =

√
aν2; ∆x1∆ν1 =

√
x2 · ν2 (15.21)

Calling the constant for example a = 4π one gets the more pleasant form ∆x1∆ν1 ≥ 1.

15.2 The uncertainty of some specific fields

Some examples may demonstrate that the lower boundary 1
4π is usually quite below what one

can achieve:
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Figure 15.1: The rect-function and its Fourier transform.

• SQUARE-BOX:

√
x2 =

B√
12

;
√
ν2 = ∞; ∆x∆ν =∞ (15.22)

∆xQ = B ∆νQ =
2

B
∆xQ∆νQ = 2

The index Q refers to “qualitative”. These are the spreads one would have defined intu-
itively by looking at the figures. This is somewhat arbitrary, but the frequency spread is
now ∆νQ �=∞.

• TRIANGLE:

Figure 15.2: The trian-function and its Fourier transform.

V (x) =

{
+1− |x|

B ; if|x| ≤ B
0; otherwise

; Ṽ (ν) = B sinc2(Bν) (15.23)

√
x2 =

B√
10

;
√
ν2 =

√
3

2πB
;
√
x2 · ν2 =

√
3

2π
√

10
=

√
6
5

4π

∆xQ = B; ∆νQ =
1

B
; ∆xQ∆νQ = 1.
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• GAUSSIAN:

Figure 15.3: The Gaussian function and its Fouriert transform.

V (x) = e−π( x
B )

2

; Ṽ (ν) = Be−π(νB)2 ; (15.24)√
x2 =

B√
2π

;
√
ν2 =

1

B
√

2π
;

√
x2 · ν2 =

1

2π
;

∆xQ = 2B; ∆νQ =
2

B
; ∆xQ∆νQ = 4;

• LORENTZIAN

Figure 15.4: The Lorentzian profile and its Fourier transform.

V (x) = e−πB|x|; Ṽ (ν) =
2

πB[
1 +

(
2ν
B

)2] (15.25)

√
x2 =

1

πB
√

2
;

√
ν2 =

B√
2π

;
√
x2 · ν2 =

1

2π
√
π

∆xQ =
2

πB
; ∆νQ = B; ∆xQ · νQ =

2

π
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These examples indicate how careful one ought to be when drawing conclusions from the

uncertainty principle. It is true that for any reasonably well-behaving function it is
√
x2 · ν2 ≥

1
4π . But none of our examples reaches the general lower bound 1

4π . In the first case the root
product of second moments even becomes infinite. Yet, intuitively, one would have defined the
spreads so that ∆xQ∆νQ is only about 2. So sometimes the qualitative ∆xQ∆νQ is smaller

than the root-product
√
x2 · ν2, but most of the time it is considerably larger, as in the last

three examples.

15.3 Other definitions of x- and ν− spreads

Matters become even more complicated when looking into the literature where the ∆x and ∆ν
are defined sometimes quite differently. For example in coherence theory it makes sense to
form moments with the fourth power of |V | and |Ṽ | employed as weighting functions, instead
of the second power. One starts by defining the normalized autocorrelation function γ(x) as:

γ(x) =

∫
V (x′)V ∗(x′ − x)dx′∫ |V (x′)|2dx′ (15.26)

Its Fourier transform, which is called Φ(ν), is:

Φ(ν) =

∫
γ(x)e−2πiνxdx =

∫∫
V (x′)V ∗(x′ − x)dx′e−2πiνxdx∫ |V (x′)|2dx′ (15.27)

=

∫∫∫∫
Ṽ (µ)Ṽ (µ′)e2πi[µx′−µ′(x′−x)−νx]d(xx′µµ′)∫ |Ṽ (ν′)|2dν′

with:∫
. . . dx′ = δ(µ− µ′);

∫
. . .dµ′ ∼ µ′ −→ µ (15.28)∫

. . . dx = δ(µ− ν);
∫
. . .dµ ∼ µ −→ ν

Φ(ν) =
|Ṽ (ν)|2∫ |Ṽ (ν′)|2dν′ (15.29)

The definitions of ∆xC and ∆νC are:

(∆xC)2 =

∫
x2|γ(x)|2dx∫ |γ(x)|2dx ; (∆ν)2 =

∫
ν2Φ2(ν)dν∫
Φ2(ν)dν

(15.30)

Since γ(x) and Φ(ν) are a pair of Fourier transforms, we can use exactly the same math-
ematical treatment in showing the uncertainty relationship for this pair of spreads:
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∆xC∆νC ≥ 1

4π
(15.31)

Although this law looks exactly like the first uncertainty law as derived earlier with |V |2
and |Ṽ |2 as weighting functions, it should be remembered that ∆xC means something quite
different from ∆x, and correspondingly ∆ν and ∆νC are to be kept apart.

Yet another definition was found to be meaningful in Quantum Electrodynamics and in
Radar Theory:

∆xR =

∫
|γ(x)|2dx; ∆νR =

1∫
Φ2(ν)dν

(15.32)

Since γ(x) and Φ(ν) are a pair of Fourier transforms, the Plancherel theorem says:∫
|γ(x)|2dx =

∫
|Φ2(ν)|2dν (Φ(ν)is real) (15.33)

Hence this version of the uncertainty relationship becomes an exact equality due to the
definition of ∆xR and ∆νR.

∆xR∆νR = 1 (15.34)

So far we have considered only one-dimensional functions. In the two-dimensional case
the obvious definitions are:

x2 + y2 = ∆2(x, y) =

∫∫
(x2 + y2)|V (x, y)|2dxdy∫∫ |V (x, y)|2dxdy (15.35)

ν2
x + ν2

y = ∆2(νx, νy) =

∫∫
(ν2

x + ν2
y)|Ṽ (νx, νy)|2dνxdνy∫∫ |Ṽ (νx, νy)|2dνxdνy

Here we assumed x, y, νx, νy already to be zero, using the function V0(x, y) instead of
V (x, y) as outlined at the beginning of Chap. 15.

V (x+ x, y + y)e−2πi(xνx+yνy) = V0(x, y) (15.36)

When computing ∆(x, y)∆(νx, νy) we use again partial integration, and we assume |V |
and its derivatives to go to zero sufficiently rapidly when (x, y) −→ ∞. The result is:
∆(x, y)∆(νx, νy) ≥ 1

2π . Or for n-dimensional fields:

∆(x1, x2, . . . , xn)∆(ν1, ν2, . . . , νn) ≥ n

4π
(15.37)



15.4 Gabor’s information cells 137

So far we have considered only the spatial dependence of |V (x, y)|2, meaning that this
quantity represents the probability of a photon to be absorbed in the little square (x, x +
dx), (y, y + dy). The time during which we wait for photons to arrive was infinite, or at
least very large compared to the temporal period of the light wave. Now let us consider a
photocathode of finite size, and ask for the probability of a photon to arrive between t and
t+ dt.

P (t) ∝
∫∫
|V (x, y, t)|2dxdy = |V (t)|2 (15.38)

Now we can go through the same uncertainty exercise with V (t). We start by representing
V (t) as a temporal Fourier integral: V (t) =

∫
Ṽ (ν)e2πiνttdνt.

The final result, based on the same mathematical manipulation as before, is of course

∆t∆νt ≥ 1
4π , where ∆t =

√
t2; ∆νt =

√
ν2

t . Connecting this result with Einstein’s photon

formula E = hνt, one gets with ∆E = h∆ν: ∆E · ∆T ≥ h
4π = �

2 . h is called Planck’s
constant, h = 6.62 · e−34 watt-sec. H-bar, � = h

2π is sometimes also named after Planck, but
sometimes it is referred to as Dirac’s constant.

Similarly, when combining de Broglie’s law, which connects momentum and wavelength
|�p| = h

λ (or only one component of it: px = hνx) with the spatial uncertainty relationship,
derived earlier, one gets with ∆px = h∆νx:

∆px∆x ≥ h

4π
=

�

2
(15.39)

These two uncertainty relationships are connected with the name Heisenberg, who derived
them in connection with the wave mechanics wherein Ψ(x) is the wave function of an electron,
with the understanding that (according to Born) the probability for the electron to be at (x, x+

dx) is proportional to |Ψ(x)|2. x =
∫
x|Ψ(x)|2dx is the most likely place, and

√
(x− x)2

is the spread. Developing Ψ(x) into a Fourier integral Ψ(x) =
∫
ϕ(ν)e2πiνxdν and realizing

the connection between ν and the momentum px = hν, gives ∆x∆px ≥ h
4π , based on the

same mathematics. But the physics in his case is the wave equation for electronics, in our
case the Maxwell equation. The mathematics is the same. Similar uncertainty relationships
for electronic signals have been derived by Nyquist and Küpfmüller shortly before the advent
of quantum mechanics. The corresponding uncertainty relationship for optical images were
known to Abbe and Lord Rayleigh almost one hundred years ago.

15.4 Gabor’s information cells

Gabor (1946) presents a nice way for visualizing the contents of the uncertainty principle
and of the sampling theorem. He does it in a pseudo-space, also called a “phase-domain”,
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which has an x-coordinate (length) and a spatial frequency coordinate ν (Actually for two-
dimensional functions the phase-domain would be four-dimensional). The ν- and the x-
coverage of a signal V (x) are of course connected by a Fourier transform:

Ṽ (ν) =

∫
V (x)e−2πiνxdx (15.40)

For example rect( x
P ) convers −P

2 ≤ x ≤ P
2 in the x-domain; and its Fourier transform

P sinc(νP ) convers essentially the ν-range: −P
2 < ν < P

2 . Hence the area covered in the
(x, ν) domain P · 1

P = 1, of course only in approximation, since the sinc(Pν) does not have
a sharp end (Fig. 15.5 a).

Figure 15.5: The (x, ν) space of some example functions.

Two more examples:

Ṽ (ν) = rect
( ν

∆ν

)
(15.41)

V (x) = ∆ν0 = sinc(x∆ν0)

e
−

h
(x−x0)

a

i2

· eiπ
h

(x−x1)

b

i2

= V (x)

It is essentially �= 0 in |x− x0| ≤ a (Fig. 15.5 b); and the “local frequency” ν(x) is:

ν(x) =
{d π[ (x−x1)

b ]2}/dx
2π

(15.42)

This means the following: around x = x it is true that:

π

(
(x− x1)

b

)2

≈ π
(

(x− x1)

b

)2

+


d π

[
(x−x1)

b

]2
dx


x=x

(x−x)+ small (15.43)
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The first term is a constant. Writing the second term as 2π(x − x) · ν(x) justifies the
definition of the “local spatial frequency”. It becomes more obvious when inserting the Taylor
expansion into the exponential function:

eiπ( x−x1
b )

2

≈ eiπ( x−x1
b )

2

e2πiνx(x−x)2 for |x− x| reasonably small (15.44)

Figure 15.6: a) Local frequency in the phase domain; b) sampling in the (x, ν)
domain.

Hence ν(x) = x−x1

b2 . Now let us visualize the “local frequency” in the “phase-domain”,
or (x, ν) domain (Fig. 15.6 a)).

V (x) = e
−

“
(x−x0)

a

”2

eiπ(x−x1
b )

2

(15.45)

The choice of 1
a becomes apparent when computing:

Ṽ (ν) =

∫
V (x)e−2πiνxdx (15.46)

The (x, ν) domain visualization is also very useful for functions to which a sampling
theorem can be applied (Fig. 15.6 b). It turns out that each “sample” covers a unit area in the
(x, ν) domain, since rect x

P has the width P and sinc(νP ) has the height 1
P .

V (x) �= 0 only in |x| ≤ P
2 :

Ṽ (ν) =
∑

Ṽ
( n
P

)
sinc(νP − n)(Fourier sampling) (15.47)

Now Fresnel-sampling for the same function V (x):



140 15 The Uncertainty Principle

V̂ (x) =
∑

V̂
( n
P

)
e

iπ
h
x2−( n

P )2
i
sinc(xP − n) (15.48)

Figure 15.7: Illustration of Fresnel sampling in the phase domain.

The cross-hatched area in Fig. 15.7 c) is covered by the elementary Fresnel-sampling func-
tion eiπx2

sinc(xP − n), which has a Fourier spectrum, which is essentially non-zero only in
|ν − nP |2 < P

2 (i.e.
∫
V̂ (x)e−2πiνxdx)

A periodic function V (x) =∼ Ane
2πin x

P is by definition completely known from only
|x| ≤ P

2 , and its frequencies are apart by 1
P . Hence again a unit area in (ν, x) is covered by

each coefficient (Fig. 15.7 b). The general conclusion is: the amount of (x, ν) area which is
covered by a family of functions V (x) is equal to the number of degree of freedom, which is
the same as the number of sample values, which can be significantly different from zero.



16 Fundamentals of Diffraction Theory

16.1 Terminology: diffraction and interference

In examination, and on other occasions when people want to communicate about science, it
may be crucial (but not sufficient) to know the right terminology. For example the question
“what is diffraction, and what is interference?” could be answered in this way:

Figure 16.1: Definition of the terminology: diffraction and interference.

The term “diffraction” is sometimes used for the experiment as a whole, sometimes only
for the modification of the light wave due to the diffraction-object. The later diffraction pro-
cess might sometimes also be called “transmittance”, or scattering, or reflection, or refraction,
or partial absorption, particularly if the effect is easiest described in ray language. But since
ray-optics is only a coarse approximation of wave optics, and hence a part of wave optics,
these latter effects can be called also “diffraction” (which not every examiner might like). The
term “interference” can be best illustrated by the following Gedanken-experiment (Fig. 16.1).
At first only slit #1 is open, hence only the wave u1 travels to the plane of observation, where
the intensity |u1|2 will cause an effect, as for example exposing a photographic plate. Next
we open only slit #2, yielding intensity |u2|2. Now we open both slits, from which u1 + u2

will emerge and propagate to the observation plane, where an effect is caused by:
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|u1 + u2|2 = |u1|2 + |u2|2 + u1u
∗
2 + u∗1u2 = I1 + I2 + 2Real(u1u

∗
2)︸ ︷︷ ︸

interference term

(16.1)

This term “interferes” with the simple-mined prediction based on the two single-slit expe-
riments. Occasionally this term is called “mutual intensity”, while the nomenclature is slightly
modified:

u1 = |u1|eiα1 =
√
I1e

iα1 ; u2 =
√
I2e

iα2 (16.2)

u1u
∗
2 =

√
I1I2e

i(α1−α2); 2Real(u1u
∗
2) =

√
I1I2 cos(α1 − α2)

This terminology is favoured in the theory of partial coherence.

16.2 History and classification of diffraction theories

Huygens’ well-known principle states that every point which is reached by a wave will act a
point source for a secondary spherical wave. In other words, every wavefield can be subdi-
vided into or composed by spherical waves. Huygens himself used his principle for explaining
diffraction effects by means of a graphic construction. Fresnel and later Kirchhoff put Huy-
gens’ principle on a sound basis by showing that spherical waves are indeed solutions of the
wave equation. Furthermore a spherical wave is the “Green’s function” of the wave equation,
which means that it is the consequence of a point source. Finally the set of spherical waves
forms a complete set of elementary functions which may serve as a basis for constructing all
other functions which satisfy the wave equation.

A British physician, Thomas Young, disagreed with Huygens and his disciples. Young
claimed that diffracted waves originate from the edges of slits and other diffraction objects,
not from immaterial points within the slit as Huygens claimed. Young’s way of explaining
was quite convenient in many instances, but it did not become too popular since he could not
back up this hypothesis by integrals as could the Huygens school. Long after Young’s death,
Maggi, Rabinowicz, and Sommerfeld proved that Young’s hypothesis is actually equivalent
and not contradictory to Huygens’ principle. In more mathematical terms their proof stated
that cylindrical waves (which are often created on edges) are also a complete set of elementary
waves.

A third set of complete waves are the plane waves, which were probably recognized as
very useful elementary waves at first by Lord Rayleigh, later also by Sommerfeld, Debye and
Picht.

If these three sets of elementary waves are all complete then it must be possible to de-
compose for example a spherical wave into plane waves, or a cylindrical wave into spherical
waves, and so on. We will later demonstrate some of the six equivalences. In symbolic form
the three diffraction theories are indicated in Fig. 16.2:
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Figure 16.2: The three approaches to diffraction theory.

Another approach to the classification of diffraction phenomena has to do with the dis-
tance from the diffraction object to the observer, which might be a photographic plate or a
photomultiplier. An infinite distance relates to the so-called Fraunhofer diffraction. If the
distance is only a few wavelength we will talk about “near-field diffraction”. Everything in
between is called Fresnel diffraction. Obviously, Fresnel diffraction theory is the most general
branch, since it contains the two other branches as extreme cases. Therefore we will start with
Fresnel diffraction. The distinction of these three branches is meaningful since the effects are
quite different, and the useful mathematical approximations are also quite different. Hence
all three branches deserve our attention. Also the three diffraction theories based on different
elementary waves (HFK: spherical, YMR: cylindrical; RSD: planar) are worth considering,
since no single one among them is always good for visualizing or computing what happens
with light.

One more comment on nomenclature is desirable to avoid confusion later. Kirchhoff made
two independent contributions which are often not seen clearly apart. He justified the useful-
ness of spherical waves. Furthermore he developed a simple recipe for getting boundary values
of the wavefield if the structure of the object (such as a double slit) is known. This second
contribution will be referred to as “Kirchhoff-approximation”. It is used equally often for
spherical, for cylindrical, and for planar waves.

16.3 Kirchhoff-approximation

Our problem is: given the boundary value (x, y, 0) of the complex amplitude u in plane z = 0,
what is the complex amplitude in the half space z ≥ 0 to the right of the boundary plane
z = 0? If the half-space z ≥ 0 is homogeneous the wave equation ∇2u + k2u = 0 applies.
We assume monochromatic light at the boundary and k = 2πνtn

c . Before we solve the wave
equation we have to know what the field u(x, y, 0) at the boundary is. Assume we illuminate
from the left (z < 0) with a plane wave of normal incidence. uLEFT(x, y, z) = eikz . At
z = −0, it becomes uLEFT(x, y,−0) = 1. Herein z = −0 means immediately to the left
from the plane z = 0, which is the boundary plane itself, containing the double lit or any other
“diffraction-object” (Fig. 16.3). Later, z = +0 will refer to the plane immediately to the right
from the boundary plane z = 0. Now let us assume that the diffraction object is opaque in
some parts and has holes in other parts. This can be described as an amplitude transmittance:
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Figure 16.3: The problem in diffraction theory.

u0(x, y)

{
+1 if hole

0 otherwise;
(16.3)

or in more general form:

u0(x, y) =
u(x, y,+0)

u(x, y,−0)
(16.4)

Figure 16.4: A general diffraction element.

In general the diffraction object might contain not only transparent and opaque parts.
It might be partially transparent: 0 < |u0| < 1 ; Or some parts might shift the phase:
arg(u0) �= 0, which physically might happen due a thin transparent film, the phase veloc-
ity was v = c

n , which means that any film with n > 1 will delay the wave front, for example
as in Fig. 16.4.

Now let us compute the phase shift. The time needed to go through the thin film is tF = D
c
n

.

The time it takes to travel over the same distance D in air beside the film tA = D
c . The time
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difference is ∆t = tF − tA = (n − 1)D
c , and the phase difference ∆ϕ = 2πνt∆t =

2π(n− 1)D νt

c , which becomes with λνt = c:

∆ϕ =
2π

λ
(n− 1)D phase shift (16.5)

This ∆ϕ is the argument of the complex amplitude transmittance u0(x).

����� ��

Figure 16.5: a) a phase shifting diffractive object; b) transmittance vs. size of
the opening of a pinhole.

Several things were presented rather crudely when introducing the concept of the “ampli-
tude transmittance”. For example we talked about z = −0 as the planes where the “diffraction-
object” begins, and where it ends. This implies an infinitely thin object, which certainly is
nonsense, even more so since we talked about a film of finite thickness D, which might be a
part of the object (Fig. 16.5 a). We mean by z = −0 the most-left plane containing physical
parts of the object, while z = +0 refers to the most-right part of the object. If the lateral
dimensions of the object are large compared to the wavelength (say > 5λ) this approximation
is not very harmful, as experience has shown. - The following experiment illustrates the risk.
We shine light through a hole of size A and measure how much intensity arrives on the other
side. One would expect a total intensity transmittance which is proportional to the area A
as T (A) = (const.)A or T (A)

A =const. Instead this is not true if the dimension of the hole
become comparable with the wavelength. Hence the simple multiplication rule: — outgoing
amplitude = incoming amplitude times amplitude transmittance — does not hold in regions of
a size comparable with the wavelength (Fig. 16.5 b). Nevertheless, this wrong multiplication
rule, which is called the “Kirchhoff-Approximation” is used widely. Usually it is justified,
because the typical dimensions of most man-made objects are larger than the wavelength.
Counter-examples are very fine diffraction gratings, narrow slits, and holes. Problems of this
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sort are often called “rigorous diffraction theory”. However, in practical optical applications
we can use the Kirchhoff approximation almost always.

In most cases we will assume u(x, y, z) for z < 0, which is the illuminating wave, coming
from the left, to be eikz , hence u(x, y,−0) = 1, and consequently the Kirchhoff approxi-
mation reduces to u(x, y,+0) = u0(x, y). So far we have classified different approaches to
diffraction theory in which the diffraction object was composed of points (Huygens-Fresnel-
Kirchhoff), or out of edges (Young-Maggi-Sommerfeld-Rubiniwicz). Now let us proceed to
the Rayleigh-Sommerfeld approach. Now a prism is a very useful elementary object. It may
have an index n and wedge angle α. The thickness of this prism is D(x) = x tanα (Fig.
16.6), hence the phase:

arg {u0(x, y)} = ϕ0(x, y) =
2π

λ
(n− 1)D(x) = 2π

[
(n− 1)

α

λ

]
x (16.6)

|u0| = 1 (no absorption assumed);

u0 = eiϕ0 = e2πi(n−1) αx
λ (16.7)

Figure 16.6: The prism as a phase element.

This looks like a Fourier element e2πi(νx+µy). With ν = (n − 1)α
λ and µ = 0. This

particular prism had its wedge oriented parallel to the y-axis. A slightly more general object
would be a prism with its wedge still in the (x, y) plane, but not necessarily parallel to the
y-axis. Furthermore the prism might be coated with an amplitude-reducing thin film. Such an
object would be described by the complex amplitude transmittance

u0(x, y) = a e2πi (n−1)α
λ (x cos θ+y sin θ) = |u0|eiϕ0 (16.8)

Sometimes it is convenient to use polar coordinates.

ϕ0 = 2π(xν + yµ) = 2πr� cos(ϕ− θ) (16.9)
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ν =

[
(n− 1)

tan(α)

λ

]
cos θ | µ =

[
(n− 1)

tan(α)

λ

]
sin θ (16.10)

�2 = ν2 + µ2; tan θ =
µ

ν
| ν = � cos θ; µ = � sin θ

r2 = x2 + y2; tanϕ =
y

x
| x = �r cosϕ; y = �r sin θ

Hence xν + yµ = �r�[cosϕ cos θ + sinϕ sin θ] = �r� cosϕ− θ; � = (n− 1)α
λ .

The most general object u0(x, y) can be thought of as consisting of many such prisms,
with different orientations θ and different prism angles α, each prism having its own specific
amplitude a, and also a “typical phase” for (x = 0, y = 0), which be called γ (gamma).

u0(x, y) = a eiγe2πi(xν+yµ) (16.11)

If you now believe in the mathematical statement that a Fourier integral of the type∫∫
ũ0(ν, µ)e2πi(xν+yµ)dν dµ is suitable as a representation for every healthy functionu0(x, y),

provided ũ(ν, µ) is chosen properly, then you also must believe that the most general diffrac-
tion object u0(x, y) can be thought of as a superposition of many prisms. Now, you might
think, this is nonsense, because these many prisms would penetrate each other since they oc-
cupy the same (x, y) region. Certainly this involved penetration is somewhat hard to visualize,
but I hope you will get used to it, and learn to visualize it some day.

It ought to be clear what we think when writing down a Fourier integral for the object
transmittance u0:

u0(x, y) =

∫∫
ũ(ν, µ)e2πi(νx+µy)dνdµ (16.12)

If you don’t like to consider this as a physical superposition of prisms, you might restrict
yourselves to thinking of this as a mathematical superposition of Fourier elements. Even so,
you will arrive at the same end result, because you can do theory like grinding coffee beans,
which are the input (= boundary conditions) into your black box (differential equations). You
just do the mathematics without thinking, and collect the coffee powder in the output box. To
compute without visualizing for example little prisms is usually quicker and cleaner. But in
the end it is better to be able to visualize what you compute. Otherwise you will rarely invent
something.

16.4 The RSD theory of Fresnel diffraction

Personally I like the plane wave approach best, because it is mathematically the most simple
one. Our problem is now: Given u(x, y, z0), wanted u(x, y, z) for z ≥ z0. u(x, y, z) has to
satisfy
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A : the wave equation: ∇2u+ k2u = 0;

B : the boundary condition: lim
z→0
{u(x, y, z)} =⇒ u(x, y, z0)

C1 : the irradiation condition

C2 : the damping condition

C1 and C2 will be explained shortly.

It is not forbidden (and it will turn out to be very convenient) to represent the complex
amplitude u(x, y, z) in the arbitrary plane z by a Fourier integral in two dimensions (x, y) and
(ν, µ):

u(x, y, z) =

∫∫
ũ(ν, µ; z)e2πi(νx+µy)dνdµ (16.13)

ũ(ν, µ, z) =

∫∫
u(x, y, z)e−2πi(νx+µy)dxdy

Let’s go with this Fourier representation into the wave equation:{
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
+ k2

}
u(x, y, z) = 0 = (16.14)

=

∫∫ {
(2πiν)2ũ+ (2πiµ)2ũ+

∂2ũ

∂z2
+ k2ũ

}
e2πi(νx+µy)dxdy

If this integral (which is nothing but the wave equation) is to be zero for every x, y, then
the Fourier kernel {. . .} must be zero itself for every Fourier coordinate ν, µ:

{. . .} = ũ(ν, µ, z) =
[
k2 − (2π)2(ν2 + µ2)

]
+
∂2ũ(ν, µ, z)

∂z2
= 0 (16.15)

Hence we have reduced the 3D differential equation ∇2u + k2u = 0 into a one- dimen-
sional differential equation with z as variable (and ν, µ as parameters).

∂2ũ

∂z2
+ k2ũ

[
1− λ2(ν2 + µ2)

]
= 0 (16.16)

The solution is ũ(ν, µ, z) = A(ν, µ)eikz
√

[...] + B(ν, µ)e−ikz
√

[...]. A and B have to be
found from the boundary value condition

lim
z→z0

{u(x, y, z)} =⇒ u(x, y, z0) = (16.17)

=

∫∫
ũ(ν, µ, z0)e

2πi(νx+µy)dνdµ =

=

∫∫ [
Aeikz0

√
[...] +Be−ikz0

√
[...]
]
e2πi(νx+µy)dνdµ



16.4 The RSD theory of Fresnel diffraction 149

By comparison we conclude:

ũ(ν, µ, z0) = Aeikz0
√

... +Be−ikz0
√

... (16.18)

This is only one equation for two unknowns, A and B. Ordinarily in mathematics one
would require

{
∂u
∂z

}
z=z0

as additional boundary condition value to be known. We will do
something equivalent, but indirectly. This way of finding the second boundary condition de-
pends on considerations of physics.

What does a typical term in our unfinished solution mean?

u(x, y, z) =

∫∫ [
A(ν, µ)e+ikz

√
1−λ2(ν2+µ2) +Be−ikz

√
1−λ2(ν2+µ2)

]
e2πi(νx+µy)dνdµ

(16.19)

The typical term is the static part of a plane wave

eik
√

...e2πi(xν+yµ) = (16.20)

= e
i 2π

λ

h
xλν+yλµ+z

√
1−(λν)2−(λµ)2

i
= ei�k�x

The exponent is a vector product of �x = (x, y, z) and of �k=̂ 2π
λ (λν, λµ,

√
. . .); |�k| = 2π

λ .

Together with the temporal factor e−iωt in V (�x, t) = u(�x)e−iωt, we get ei(�k�x−ωt), which is a
plane wave. A hypothetical observer, moving in k direction with velocity ω

k , will always stay
on the same wave crest at any time:

( �x1, t) −→
(
�x1 +

�k

k

ω

k
(t2 − t1), t1 + (t2 − t1)

)
= ( �x2, t2) (16.21)

Proof:

�k �x2 − ωt2 = �k �x1 +
�k�k

k2
ω(t2 − t1)− ω2t2 = �k �x1 − ωt1 (16.22)

In other words,
�k
k2 is the velocity vector of the ”wave rider”.

So far we have considered only the first term Aeikz
√

...e2πi(νx+µy). Now we discuss the
second term with the minus sign in the exponent:

Be−ikz
√

...e2πi(νx+µy) (16.23)
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The two �k-vectors belonging to the A term and to the B term, respectively, have identical
x- and y-components (kλν, kλµ), but opposite z-components ±k

√
1− λ2(ν2 + µ2) (Fig.

16.7). Only �kA makes sense for the physicist, since we assumed that the object was illuminated
from the left, that is, from negative z-direction. Hence for physical reasons we set B(ν, µ). In
doing so we satisfy the so-called Irradiation Condition (C1).

Figure 16.7: Physical interpretation of the solutions of the wave equation (irra-
diation condition).

Without saying it we had assumed
√

1− λ2(ν2 + µ2) to be real; that means ν2+µ2 ≤ 1
λ2 .

However the Fourier integral
∫∫
. . .dνdµ covers the whole (ν, µ) domain (−∞,∞). Hence

we have to consider now those ν, µ which are outside of the circle ν2 + µ2 = 1
λ2 . In that case

the root becomes imaginary,
√

1− λ2(ν2 + µ2) = i
√
λ2(ν2 + µ2)− 1. Again let us discuss

the physical meaning of:

Aeikz
√

1−λ2(ν2+µ2)e2πi(νx+µy) = Ae−kz
√

λ2(ν2+µ2)−1e2πi(νx+µy) (16.24)

Be−ikz
√

1−λ2(ν2+µ2)e2πi(νx+µy) = Be+kz
√

λ2(ν2+µ2)−1e2πi(νx+µy)

Both theA-wave and theB-wave propagate now in a direction which has no z-component,
as can be seen from e2πi(νx+µy). The amplitude of the A-wave decreases exponentially as a
function of the distance z. Therefore this wave is called “evanescent” or surface wave or sub
wave. The B-wave has a very large amplitude at large z-value. That does not make sense.
Hence we set B = 0 (C2). This result is very important. Hence we will write it down again,
together with the Fourier relation for the boundary:

ũ(ν, µ, z0)=̂

∫∫
u(x′, y′, z0)e−2πi(νx′+µy′)dx′dy′ (16.25)

We will call this result the RSD formula for Rayleigh-Sommerfeld-Debye. Four equivalent
versions will turn out to be convenient at various instances:
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u(x, y, z) =

∫∫
ũ(ν, µ, z)e2πi[νx+µy+

√
1−λ2(ν2+µ2)

z−z0
λ ]dνdµ

=

∫∫∫∫
u(x′, y′, z0)e2πi[ν(x−x′)+µ(y−y′)+

√
1−λ2(ν2+µ2)

z−z0
λ ]dνdµdx′dy′

ũ(ν, µ, z) = ũ(ν, µ, z0)e
2πi
√

1−λ2(ν2+µ2)
z−z0

λ

=

∫∫
u(x′, y′, z0)e2πi[−νx′−µy′+

√
1−λ2(ν2+µ2)

z−z0
λ ]dx′dy′

(16.26)

The range of ν, µ covers both the plane waves ν2 + µ2 ≤ 1
λ2 and the evanescent waves

ν2 + µ2 > 1
λ2 . The most important feature of the evanescent waves is their absence at a

distance z−z0 � λ due to the damping factor e−2π
√

λ2(ν2+µ2)−1
z−z0

λ . Hence the spatial fre-
quency spectrum ũ(ν, µ, z) of u(x, y, z) does not know anything about the superhigh spatial
frequencies ν2 + µ2 > 1

λ2 of the object spectrum ũ(ν, µ, z0). In other words, optical waves
cannot reveal object details smaller than a fraction of λ, if the observer is many wavelength
away from the object. This is true no matter what lens, mirror or other long distance gadget
you use. To break this barrier of the “fundamental resolution limit” is one of the most pres-
tigious problems of today. To solve it one has to learn to handle evanescent waves. Another
interesting aspect of evanescent waves is that they have a phase velocity smaller than c, and
they can have a vector-component of the electric field parallel to the direction of wave propa-
gation. Using these two properties it should be possible to use evanescent waves for a particle
accelerator. To get a feel for the damping of evanescent waves we assume

√
ν2 + µ2 =

√
2

λ .
Then:

e−2π
√

λ2(ν2+µ2)−1 z
λ = e−2π z

λ (16.27)

Already at a distance of λ
2π the amplitude is reduced by a factor 1

e = 0.37.

Or we may look at the damping problem in another way. How much percentage-wise can
we increase the range of observable frequencies if we are able to measure amplitudes 1

e at a

distance of one wavelength? The intensity at that distance would be down to
(

1
e

)2
= 0.14.

√
ν2 + µ2 =

1 + p

λ
; 2π

√
λ(ν2 + µ2)− 1

z

λ
= 2π

√
(1 + p)2 − 1

z

λ
≈ 2π

√
2
z

λ
(16.28)

For z = λ the damping factor is now e−2π
√

2p. The specific percentage p which leads
to a damping factor 1

e is given by 2π
√

2p = 1 = 4π22p; p = 1
8π2 ≈ 1

80 = 1.25
100 . In other

words, to improve the resolution or spatial bandwidth by 1.25% we need to go as close as
one wavelength to the object, and measure there intensities which are reduced to 14% of their
original values. Bleak prospects!
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16.5 Derivation of the HFK-integral from the RSD-intgral

The configuration of our diffraction problem is shown in Fig. 16.8.

We know that according to H., F & K. a spherical wave starts from each luminous point
(x′, y′) in z0 and reaches the various points (x, y) in the observation plane. Let us call this
spherical wave S(x, y;x′, y′) for the moment. Hence the HFK theory must yield a result in
the form of:

u(x, y, z) =

∫∫
u(x′, y′, z0)S(x, y, x′, y′)f(x, y, x′, y′)dx′dy′ (16.29)

The function f will turn out to be almost constant for small angles, like the cosine. I wrote
this down in order to see which of the four forms of the RSD formulas is most appropriate.
The third one is surely the simplest (only multiplication), but it is the second one which we
can bring into the desired form:

u(x, y, z) =

∫
x′

∫
y′

u(x′, y′, z0)


∫
ν

∫
µ

e...e
2πi

h
ν(x−x′)+µ(y−y′)+

√
1−λ2(ν2+µ2)

z−z0
λ

i
dνdµ

 dx′dy′

(16.30)

If we really can derive HFK from RSD, then this {. . .} must represent a spherical wave,
possibly modified by a smooth function f .

Figure 16.8: The diffraction problem.

Let’s see what {. . .} really is by solving the
∫

ν

∫
µ
. . . with the saddle-point method:

∫∫
eikf(ν,µ)dνdµ ≈ 2πeikf(ν0,µ0)+

π
2

k
√
fννfµµ − f2

νµ

(16.31)
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Here:

kf(ν, µ) =
2π

λ

[
λν(x − x′) + λµ(y − y′) +

√
1− λ2(ν2 + µ2)(z − z0)

]
(16.32)

∂f

∂ν
= 0 = λ(x−x′)− λ2ν0(z − z0)√

1− λ2(ν2 + µ2)
;
∂f

∂µ
= 0 = λ(y−y′)− λµ0(z − z0)√

1− λ2(ν2 + µ2)

(16.33)

We want to solve this for ν0 and µ0, for different values of (x, y) and (x′, y′). From
∂f
∂ν = 0 we get:

λν0√
1− λ2(ν2

0 + µ2
0)

=
x− x′
z − z0 ;

λµ0√
1− λ2(ν2

0 + µ2
0)

=
y − y′
z − z0 from :

∂f

∂µ
= 0

(16.34)

Hence:

f(ν0, µ0) =
√

1− λ2(ν2
0 + µ2

0)

[
(x− x′)2
z − z0 +

(y − y′)2
z − z0 + z − z0

]
(16.35)

The square bracket can be simplified:

(x− x′)2 + (y − y′)2 + (z − z0)2
z − z0 =

r2

z − z0 (16.36)

We get the
√

1− λ2(ν2
0 + µ2

0) as a function of (x′, y′, z0) and (x, y, z) by computing the
follow expression in two ways:

(
λν0√
. . .

)2

+

(
λµ0√
. . .

)2

+ 1 =
λ2(ν2

0 + µ2
0)

1− λ2(ν2
0 + µ2

0)
+

1− λ2(ν2
0 + µ2

0)

1− λ2(ν2
0 + µ2

0)
=

(
1

(
√
. . .)2

)
(
λν0√
. . .

)2

+

(
λµ0√
. . .

)2

+ 1 =
(x− x′)2
(z − z0)2 +

(y − y′)2
(z − z0)2 +

(z − z0)2
(z − z0)2 =

(
r

z − z0

)2

(16.37)

Hence by comparison we find r
z−z0

= 1√
1−λ2(ν2

0+µ2
0)

. This inserted into f(ν0, µ0) gives

simply f(ν0, µ0) = r =
√

(x− x′)2 + (y − y′)2 + (z − z0)2. This looks already fine since
the saddle-point integral gives now so far:
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2πe[ikr+ π
2 ]

k
√
fννfµµ − f2

νµ

(16.38)

Now we have to compute the denominator of the saddle-point integral:

∂2f

∂ν2
= −λ2(z − z0)

∂
[
ν
{
1− λ2(ν2 + µ2)

} 1
2

]
∂ν

= (16.39)

= −λ2(z − z0)1− λ2µ2

(
√
. . .)3

;
∂2f

∂µ2
= −λ2(z − z0)1− λ2ν2

(
√
. . .)3

;

∂2f

∂ν2

∂2f

∂µ2
=

λ4(z − z0)2
(
√
. . .)6

(1− λ2ν2)(1 − λ2µ2);
∂f2

∂ν∂µ
=
λ4(z − z0)νµ

(
√
. . .)3

∂2f

∂ν2

∂2f

∂µ2
−
(
∂f2

∂ν∂µ

)2

=
λ4(z − z0)2

(
√
. . .)6

[
(1 − λ2ν2)(1− λ2µ2)− λ4ν2µ2

]
The square bracket is simply (

√
. . .)2. Hence the content of the denominator root reduces

to λ4(z−z0)2

(
√

...)4 . This can be further simplified to λ4r4

(z−z0)2
by using 1√

... = r
(z−z0)

. Now let us

interpret the denominator geometrically:

1√
fννfµµ − f2

νµ

=
z − z0
λ2r2

=
1

λ2

z − z0
r

1

r
(16.40)

From the Fig. 16.9 we conclude z−z0

r = cos ε =
√
. . .. Now all parts of the saddle-point

integral are ready:

2πeikf(ν0,µ0)+
π
2

k
√
fννfµµ − f2

νµ

= cos ε
ei(kr+ π

2 )

λr
≈
∫
ν

∫
µ

e2πi[ν(x−x′)+µ(y−y′)+
√

1+λ2(ν2+µ2)
(z−z0)

λ ]dνdµ

(16.41)

This inserted into the RSD formula (Eq. 16.26) gives:

u(x, y, z) ≈ 1

λ

∫∫
u(x′, y′, z0)

cos ε

r
ei(kr+ π

2 )dx′dy′︸ ︷︷ ︸
Kirchhoff−Integral

(16.42)

This took us about two pages. With a little bit less rigor it would have been much faster.

Assume
√

1− λ2(ν2 + µ2) ≈ 1− λ2(ν2+µ2)
2 This means that we concentrate on not-too-large
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Figure 16.9: Graphical interpretation of Eq. 16.40

spatial frequencies. A more geometrical interpretation of this approximation means that we
assume:

cos ε =
√

1− sin2 ε ≈ 1− 1

2
sin2 ε; cos ε =

√
1− λ2(ν2 + µ2) (16.43)

We apply again the saddle point method for

{∫∫
e

h
2πi[ν(x−x′)+µ(y−y′)+

(z−z0)
λ −λ

2 (ν2+µ2)]
i
dνdµ

}
.

Now we have:

f(ν, µ) = λν(x − x′) + λµ(y − y′) + (z − z0)− λ2(ν2 + µ2)
(z − z0)

2
∂f

∂ν
= 0 = λ(x− x′)− λ(z − z0)ν → ν0 =

(x− x′)
λ(z − z0) ; µ0 =

y − y′
λ(z − z0)

∂2f

∂ν2
= −λ2(z − z0) =

∂2f

∂µ2
;

∂2f

∂ν∂µ
= 0;

√
fννfµµ − f2

νµ = λ2(z − z0)

f(ν0, µ0) =
(x− x′)2
z − z0 +

(y − y′)2
z − z0 + (z − z0)− 1

2

(x− x′)2 + (y − y′)2
z − z0

= (z − z0) +
(x− x′)2 + (y − y′)2

2(z − z0) (16.44)

Hence:

{∫∫
e
2πi

h
ν(x−x′)+µ(y−y′)+

h
1−λ2

2 (ν2+µ2)
i

z−z0
λ

i
dνdµ

}
≈ (16.45)

=
ei[k(z−z0)+ π

2 ]

λ(z − z0) e
iπ

[(x−x′)2+(y−y′)2]
λ(z−z0)

Inserted into the second form of RSD we get:
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u(x, y, z) ≈ ei[k(z−z0)+ π
2 ]

(z − z0)
∫∫

u(x′, y′, z0)e
iπ

[(x−x′)2+(y−y′)2]
λ(z−z0) dx′dy′ (16.46)

This is called the quadratic or parabolic approximation of HFK. In essence the process of
Fresnel diffraction is described in this approximation by a Fresnel transformation. That is why
Mertz gave this name to this transform. Hence we can use the FRS-TRAFO tools as developed
earlier. However there are some minor differences: a constant factor; two-dimensional; scale
change (λ(z − z0)).

16.6 The sampling theorem for FRS-diffraction

The “parabolic HFK” can be written briefly as:

u(x, y, z) = c

∫∫
u(x′, y′, z0)e

iπ
[(x−x′)2+(y−y′)2]

λ(z−z0) dx′dy′ = (16.47)

= c e
iπ

(x2+y2)
λ(z−z0)

∫∫ {
u(x′, y′, z0)e

iπ
(x′2+y′2)
λ(z−z0)

}
e
−2π

(x′xy′y)
λ(z−z0) dx′dy′

Let us call the {. . .} temporarily v(x′, y′). Now assume that u(x′, y′, z0) is only �= 0 in
|x′| ≤ P

2 and |y′| ≤ Q
2 . Hence the same is true for v(x′, y′). The integral is a Fourier integral:

∫∫
v(x′, y′)e−2πi

h
x′x

λ(z−z0)+
yy′

λ(z−z0)

i
dx′dy′ = ṽ

(
x

λ(z − z0) ,
y

λ(z − z0)
)

(16.48)

Due to the sampling theorem we can write:

ṽ(ν, µ) =
∑

n

∑
m

ṽ

(
n

P
,
m

Q

)
sinc(νP − n) sinc(µQ−m) (16.49)

Now we insert λν = x
z−z0

and λµ = y
z−z0

:

ṽ

(
x

λ(z − z0) ,
y

λ(z − z0)
)

=
∑

n

∑
m

ṽ

(
n

P
,
m

Q

)
sinc

(
xP

λ(z − z0) − n
)
· (16.50)

·sinc

(
yQ

λ(z − z0) −m
)

This inserted into u(x, y, z) = c e
iπ x2+y2

λ(z−z0) ṽ
(

x
λ(z−z0)

, y
λ(z−z0)

)
give a sampling repre-

sentation for u(x, y, z), and we know already the sampling step width: δx = λ(z−z0)
P ; δy =

λ(z−z0)
Q . But it is not quite satisfactory still to have ṽ appear in our formula. What is
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ṽ
(

n
P ,

m
Q

)
? To find out we take the special coordinate values x = Nλ(z−z0)

P and y =

Mλ(z−z0)
Q ; (n,M integers). Then, in the sampling series only the term (n = N,m = M)

will survive, since all other sinc-terms are zero. This leaves us with:

u

(
Nλ(z − z0)

P
,
Mλ(z − z0)

Q
, z

)
= c e

iπ
h
(N

P )
2
+(M

Q )
2

i
λ(z−z0)ṽ

(
N

P
,
M

Q

)
(16.51)

We use this for replacing ṽ
(

n
P ,

m
Q

)
in the sampling:

u(x, y, z) =
∑
n

∑
m
u
(

nλ(z−z0)
P , mλ(z−z0)

Q , z
)
eiπ[...]

sinc
(

xP
λ(z−z0) − n

)
sinc

(
yQ

λ(z−z0)
−m

)
[. . .] = x2+y2

λ(z−z0) − λ(z − z0)
{(

n
P

)2
+
(

m
Q

)2
}

(16.52)

16.7 Justification of Young’s Diffraction Theory (YMR)

As stated on page 142 Thomas Young said that diffraction takes place at the edge of a slit (for
example), and not within the slit as Huygens had claimed. We want now to show that both
points of view are right. More specifically we want to show that not only the HFK spherical
wave theory can be derived from the RSD plane wave theory but also the YMR edge wave
theory. By “edge wave” we mean a cylinder wave, but multiplied by an angle-dependent
amplitude factor. We consider now diffraction on a slit of width B.

z < 0 : u(x, z) = eikz (16.53)

z = −0 : u(x,−0) = 1

z = +0 : u(x,+0) = rect
( x
B

)
For computing u(x, z) for z > 0 we use the second form of the RSD integral (Eq. 16.26),

here for two dimensions only:

u(x, y) =

∫∫
u(x′,+0)e2πi[ν(x−x′)+

√
1−λ2ν2 z

λ ]dx′dν (16.54)

Now we insert u(x′,+0) = rect
(

x′

B

)
and get
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u(x, z) =

∫
e−iπνB − e+iπνB

−2πiν
e2πi(νx+

√
... z

λ )dν (16.55)

= Y

(
x− B

2
, z

)
− Y

(
x+

B

2
, z

)
;

Y (x, z) =
i

2π

∫
1

ν
e2πi(νx+

√
... z

λ )dν

We will now show that Y (x, z) is something like a cylinder wave emerging from x = 0
and z = 0. If that is so then Y (x−B/2, z)− Y (x+ B/2, z) consists of two cylinder waves
emerging from the edges of the slit at z = 0 at x = +B

2 and x = −B
2 , just as stipulated by

Young.

The disagreeable feature about the Y (x, z) integral is the singularity at ν = 0. Therefore
we attack the problem at a slow pace, first looking at some general features like symme-
tries. One is Y (0, z) = 0 since for x = 0 the integrand is antisymmetric. Another feature
is Y (+x, z) = +Y (−x, z) = 0 or Y (−x, z) = −Y (+x, z). This becomes obvious if we
write Y (+)+Y (−) as a single integral, which has an antisymmetric integrand. Therefore the
integral vanishes.

Now we do something which is shaky. We apply the method of stationary phase to the
Y -integral. This would be all right if ν = 0 would not be within the range of integration. So
let’s exclude the singularity for a moment. The phase is:

ϕ = 2π(νx+
√

1− λ2ν2
z

λ
);

1

2π

dϕ

dν
. . . = x− z λν√

. . .
; (16.56)

dϕ

dν
= 0→ λν0√

. . .
=
x

z
= tan ε;

λν0 = sin ε;
√

1− λ2ν2
0 = cos ε; x = r sin ε; z = r cos ε

Hence the phase becomes 2πr
λ = kr for the stationary point ν0. Let us not worry about the

root-denominator since we don’t intend to be quantitative in all details anyway. But we can
see already the most important features of the edge wave Y (x, z) which are expressed in this
Fig. 16.10.

To prove that the singularity 1
ν is harmless it is convenient to introduce new variables

λν = sin ε; √. . . = cos ε; x = r sin ε; z = r cos ε; λdν = cos ε dε. Now the exponential of
the Y -integral can be written as:

eikr cos(ε−ϕ) =
+∞∑
−∞

Jn(kr)ein(ε−ϕ+ π
2 ) (16.57)
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Figure 16.10: The most important features of the edge waves.

Furthermore we combine the (+n) and (−n) terms, considering that J−n = (−1)nJ+n.
Thereby many terms drop out because that particular integrand is antisymmetric. The terms
with symmetric integrands do not blow up since the zero-values of the denominator are fully
compensated as in this expressions:

sin(nε)

sin ε
; which has | . . . | ≤ |n| (16.58)

Most of the terms are small for other reasons since Jn(kr) is significant only if |kr| equals
roughly the index |n| of the Bessel function.

All these considerations together don’t clearly define the edge wave Y (x, z). But it is
obvious that Y has the main features of a cylinder wave emerging from a slit edge. This
is enough to know since we don’t intend to apply the YMR theory for any specific purpose.
However, we want to show that this edge wave Y (x, z) is relevant (not only) for all piece-wise
constant objects (Fig. 16.11).

u(x, 0) =
∑

unrect

[
x− (xn+xn+1)

2

xn+1 − xn

]
(16.59)

This representation of the piece-wise constant object can be interpreted as many slits of
width nn+1 − xn side-by-side, closely packed, with amplitudes un. Hence we can generalize
the earlier result from the single-slit case to this many-slit case:

u(x, z) =
∑

un [Y (x− xn+1, z)− Y (x− xn, z)] (16.60)

In this expression a specific edge xm will occur twice, once as −umY (x − xm, z) and
once more as um−1Y (x− xm, z). We rearrange the two sums accordingly, which implies the
arithmetic step n+ 1 = m in the first sum, and get
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Figure 16.11: The piecewise constant function u(x, 0).

u(x, z) =
∑

(um−1 − um)Y (x− xm, z) =
∑

∆umY (x− xm, z) (16.61)

This means that edge waves emerge from every step of the object at xm. The amplitudes
of these edge waves are determined by the step height ∆um.

A slightly different approach would have yielded the same result. Instead of subdividing
the objects into edges like shown in Fig. 16.11 we may subdivide it into Heavyside stepfunc-
tions (Fig. 16.13).

Figure 16.12: Subdivision of u(x, 0).

In formulas this means:

u(x, 0) =
∑

unrect

[
x− xn+xn+1

2

(xn+1 − xn)

]
(16.62)

=
∑

∆unH(x− xn)

H(x− xn) =

{
+1: if x− xn ≥ 0; or x ≥ xn

0: if x− xn < 0; or x < xn
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Figure 16.13: Subdivision of u(x,0) into Heavyside stepfunctions.

With the latter form of our object inserted into the RSD formula we find that the edge wave
Y (x− xn, z) is obviously the “response” to the “Heavyside-object”H(x− xn).

We can generalize our YMR theory one step further by allowing now continuous ob-
jects. As always in calculus we think of the truly continuous function as a multi-step function
with infinitesimally fine steps. As the Fig. 16.14 below indicate this may lead to a “Dirac-
decomposition” or to a “Heavyside decomposition” of the object u(x, 0).

�� ��

Figure 16.14: Decomposition of a continuous function into a) dirac-
distributions; b) Heavyside-functions.

u(x, 0) =

∫
u(x′, 0)δ(x− x′)dx′; u(x, 0) =

∫
u′(x′, 0)H(x− x′)dx′ (16.63)

The last form or “Heavyside form” needs some more support:

∞∫
−∞

u′(x′, 0)H(x− x′)dx′ =

∞∫
−∞

[
du(x′, 0)

dx′

]
H(x− x′)dx′ (16.64)

H(x− x′) =

{
+1: if x− x′ ≥ 0; or x′ ≥ x

0: if x− x′ < 0; or x′ < x
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Hence we can express the effect of H(x− x′) by the limits of integration:

∞∫
−∞

[
du(x′, 0)

dx′

]
dx′ = u(x, 0)− u(−∞, 0) = u(x, 0) (16.65)

Before closing these YMR considerations be reminded again how important it was that the
wave equation is a linear differential equation. That is why it is allowed to split up an arbitrary
object into many little slits or into many Heavyside steps, whichever we may find convenient.
Knowing then the wavefield behind a slit or behind an edge or behind any other conceivable
“elementary object” allows us to put together the wavefield behind an arbitrary object, if
we know how this arbitrary object is built together from many elementary objects. How
convenient! But how tempting to believe the world is always governed by linear laws. The
consequences are very far-reaching. For example, as long as we describe quantum theory by
the linear Schrödinger equation we will have to live with the Uncertainty Principle, which was
the outcome of linear Fourier mathematics. The Uncertainty Principle would not necessarily
occur in a nonlinear theory and hence one might overcome the ugly wave-particle duality. This
is indeed the goal of some elementary-particle theoreticians like Heisenberg and de Broglie.
But the math becomes a real mess. It seems as if the limitations of the human brain prevent us
from understanding nature better than we do now. Can digital computers help? I doubt it. As
I see it a scientist can let a computer solve only those problems that he has understood already
in principle.
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On p. 151 we discussed the significance of the evanescent waves for the fundamental limit
of resolution. In that case the evanescent waves played a negative role, in that their absence
meant something. However, evanescent waves are also useful directly. For example a light
wave travelling in a thin light fiber or a thin film (thickness of the order of one or a few wave-
lights), parts of the light will travel outside of the thin film in the form of evanescent waves.
Even if the film itself is “lossy” (absorption, scattering) this does not reduce the amplitude
propagation of the evanescent wave. Hence light fibers have much losses than one would ex-
pect when considering only the absorption coefficient of glass bulk material. Investigations of
this type belong into the field of “Integrated Optics”, which tries to solve data communications
and processing problems, for example for light wave telephones in urban centers. Integrated
Optics is booming now like the laser field did in the early sixties, and holography in the late
sixties. Ultimately contributions to the solution of important problems might arise which uti-
lize all three fields in combination.

Another speculated application of evanescent waves was mentioned briefly already on
p. 151: Particle Acceleration by Light Waves. At the time the attached IBM Note TN-5
was written, only very unstable Ruby lasers were available. Now powerful CO2 lasers are
relatively cheap. Their long wavelength (10.6µm) makes all tolerances much easier to satisfy.
So if anyone still wants to accelerate particles he probably could do it quite well with lasers.
For understanding the proposed system one has to know how light waves behave at boundaries.
Since this behaviour is important in many other instances as well we, will study it now.

17.1 Boundary conditions for �E and �H; Fresnel coefficients

Integration of the first Maxwell equation, and use of Stoke’s lemma yields:

curl �E = − �̇B (17.1)∫
(O)

curl �E d�o = −
∫

(O)

�̇B d�o︸︷︷︸
surface
differential
on the
surface (O)

=

∮
︸︷︷︸

integration
path
around
(O)

�E d�s︸︷︷︸
path element
at periphery
of (O)
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This integral-version of the first Maxwell equation will now be applied to the scene shown
in Fig. 17.1:

Figure 17.1: The situation at the boundary between media with different re-
fractive indices.

∮
�E d�s ≈ L E2tangential + δzEnormal − LE1tangential − δzEnormal (17.2)

L is assumed to be small, and δz very small. Even if the Enormal at the two boundary
crossings are not exactly alike, yet these terms are� LEtangential because δz � L. Hence:

∮
�E d�s ≈ L(E2tangential − E1tangential) (17.3)

The other part of the first Maxwell equation is:

−
∮

�̇B d�o ≈ L δzḂaverage � L Etangential (17.4)

because δz is so small.

Hence
∮
�E d�s = − ∫ �̇Bd�o yields:

E2 tangential = E1 tangential (17.5)

Similarly curl �H = �̇D + �I yields:

H2 tangential = H1 tangential (17.6)

Personally, I would not trust this derivation of continuity of the tangential components
of �E and �H , if the consequences of these boundary conditions were not so well confirmed
experimentally, as they actually are. A sizable industry, “Thin Films”, is based on the correct-
ness of these consequences, called “Fresnel’s Reflection and Transmittance Coefficients”.
They are the amplitude ratios and phase shifts of the following three electromagnetic plane
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waves: incident wave with �k1 = n1k0[x̂ sinα1 + ẑ cosα1]; reflected wave with �kR =

n1k0[x̂ sinα1 − ẑ cosα1] and transmitted wave with �k2 = n2k0[x̂ sinα2 + ẑ cosα2] (Fig.
17.2). These three wave vectors are all in the same plane. Hence we could choose a coordi-
nate system so that all y-components are zero. However the E-fields themselves might very
well have a y-component, which is usually called the σ-component (σ ≈ S = “senkrecht” =
perpendicular to the plane of incidence, containing �k1 and the surface normal). The σ-wave
has its own story, independent of the π-wave (π = parallel to plane of incidence), which has
�E-fields with x- and z-components. An Hπ is tied to Eσ , and an Hσ to Eπ.

Figure 17.2: Reflection at a boundary: notation of the �k-vectors.

What Fresnel derived from the boundary conditions were the following ratios of complex
amplitudes:

ARπ

A1π
;

A2π

A1π
;

ARσ

A1σ
;

A2σ

A1σ
(17.7)

These terms are defined in the following way:

incident wave : [ŷA1σ + (x̂ cosα1 − ẑ sinα1)A1π ]ei �k1�x = E1 (17.8)

reflected wave : [ŷARσ + (x̂ cosα1 + ẑ sinα1)ARπ ]ei �kR�x = ER

transmitted wave : [ŷA2σ + (x̂ cosα2 − ẑ sinα2)A2π ]ei �k2�x = E2

The cos and sin are such that �E1
�k1 = 0 etc., as you know from E&M theory; similarly

for �H. Now form the tangential components (omit z-components) and fix �x to the boundary
plane z = 0. In medium (n1) we have �E1 + �ER, in (n2), �E2.

ŷ[A1σe
in1k0x sin α1 +ARσe

in1k0x sin α1 ] + x̂ cosα1(A1 π +ARπ)ein1k0x sin α1

= ŷA2σe
ik0n2x sin α2 + x̂ cosα2A2πe

ik0n2x sin α2 (17.9)
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Equality of these Etangential vectors in z = 0 reduces to two separate equation for the ŷ-
and the x̂-components:

(A1σ +ARσ)eik0xn1 sin α1 = A2σe
ik0xn2 sin α2 (17.10)

If there is any σ-wave in the (n2)-medium, thenA2σ must be �= 0. If A2 �= 0, then we can
remodel that equation into:

A1σ +ARσ

A2σ
= eik0x(n2 sin α2−n1 sin α1) (17.11)

The left-hand term is a constant as far as x is concerned. Hence the other side of the equa-
tion must be constant too. That requires n2 sinα2−n1 sinα1 = 0, which is Snell’s law. Then
A1σ +ARσ = A2σ; similarly (A1π +ARπ) cosα1 = A2π cosα2. Similar results follow from

the continuity of theH-waves �H = Cei�k�x for the coefficientsC1π, CRπ , C2π , C1σ, CRσ , C2σ .
Finally, Maxwell is used once more for connecting the A . . . and the C . . ., so that we have
enough equations for solving them all, with A1σ and A1π being the supposedly known coef-
ficients of the wave coming from the source.

Anyway, what matters here for our study of evanescent waves is k1x = k2x (or k0n1 sinα1 =
k0n2 sinα2). k1x and k2x on the other hand are tied with k1z and k2z , respectively, due to the
wave equations in those two media:

{∇2 + (n1k0)
2)
}
u = 0

{∇2 + (n2k0)
2
}
u = 0 (17.12)

k2
1x + k2

1z = k2
1 = n2

1k
2
0 k2

2x + k2
2z = k2

2 = n2
2k

2
0 (kiy was zero)

Now we can deduce that k2z may get imaginary, which is what causes �E to be an evanes-
cent wave:

k2
2z = k2

2 − k2
2x = k2

0n
2
2 − k2

2x = k2
0n

2
2 − k2

1x = k2
0n

2
2 − k2

0n
2
1 sin2 α1 (17.13)

due to k1x = k2x from boundary condition:

k2
2z = k2

0(n
2
2 − n2

1 sin2 α1)→ k2
2z negative and k2z imaginary (17.14)

if n2
1 sinα1 > n2

2, or | sinα1| > n2

n1
. In that case we will call k2x = k′ and k2z = ik′′, in

order to get the old form:

�E2 ∝ eik′xe−k′′z (17.15)
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17.2 A more abstract look at evanescent waves

Put v(�x, t) = ei(�k�x−ωt) into∇2v − v̈
c2 = 0:

{
−�k�k +

ω2

c2

}
v(�x, t) = 0 (17.16)

�k�k = ω2

c2 ; ω and c are real, also �k�k has to be real, but this does not force �k to be real. �k

can be �k = �k′ + i �k′′ (�k′ is the real part, i �k′′ is the imaginary part).

(�k′ + i �k′′) · (�k′ + i �k′′) = k′2 + 2i�k′ �k′′︸ ︷︷ ︸
this must be
zero

+k′′2 = k2 (17.17)

hence �k′⊥ �k′′ (orthogonal); k′2 = k2 + k′′2 → k′2 ≥ k2.

v(�x, t) = ei(�k′�x−ωt)︸ ︷︷ ︸
propagation

e−
�k′′�x︸ ︷︷ ︸

damping

; v′ =
ω

k′
<
ω

k
= c︸ ︷︷ ︸

phase velocity

(17.18)

The phase velocity of the evanescent wave is < c. Since ω′ = ω and λ′ = 2π
k′ , λ′ = λ.

From k′ = k2 + k′′2 follows:

(
1

λ′

)2

=

(
1

λ

)2

+

(
1

λ′′

)2

;
λ′

λ′′
=

√
1−

(
λ′

λ

)2

=
1√

1 +
(

λ′′

λ

)2 (17.19)

Interesting also are the vectorial properties of evanescent waves. Set �V (�x, t) = {x̂a+ ŷb+ ẑc} v(�x, t),
where x̂, ŷ and ẑ are unit vectors and a, b, and c are constants.

v(�x, t) = ei(�k′�x−ωt)e− �k′′�x (17.20)

Since �k′ and �k′′ are known to be orthogonal we might choose the coordinate system such
that �k′‖x̂ and �k′′‖ŷ.

=⇒ v(�x, t) = e2πi[ x
λ′ −νt]e−2π y

λ′′ (17.21)(
ω = 2πν; k′ = 2π

λ ; k′′ = 2π
λ′′

)
. Since v(�x, t) satisfies the wave equation, also �V (�x, t)

will. More knowledge about the vector character of �V can be derived from the third Maxwell
equation div�V = 0 (�V ∼ �E; ε = const. assumed).
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div�V = a
∂v

∂x
+ b

∂v

y
+ c

∂v

∂z
= 0 (17.22)

Since ∂v
∂z = 0, c may be anything. That c is one of the two polarization components.

div�V = 2πv
[
i a

λ′ − b
λ′′

]
= 0→ b = iaλ′′

λ′ ; λ′′

λ′ = 1q
1−(λ′

λ )
2
≥ 1.

Vz︸︷︷︸
transverse

= c v(�x, t); �Vxy = a v(x, t){
long.︷︸︸︷
x̂ + i

λ′′

λ′
ŷ︸ ︷︷ ︸

trans.

}; i = ei π
2 (17.23)

Real{�Vxy} = a

{
x̂ cos

[
2π
( x
λ′
− νt

)]
− λ′′

λ′
ŷ sin

[
2π
( x
λ′
− νt

)]}
e−2π y

λ′′ (17.24)

(Later we will see that these evanescent waves are good for an accelerator).
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18 Fresnel Diffraction on Periodic Objects — The Talbot-
Effect (1836)

In 1836 Fox Talbot discovered that the wavefield behind a grating is periodic along the axis
of propagation. In other words the grating is “imaged” without any lens or mirror at distances
2d2

λ , 4d2

λ , etc. By “d” we mean the grating constant or period. It is assumed that the grating is
illuminated by a monochromatic plane wave.

This effect is sometimes called “Fourier-imaging”, or “Fresnel-imaging”, or “self-imaging”.
The observation of this effect is puzzling and even beautiful, particularly in white light. But
this effect is also useful, for example for a spectroscopic instrument, which will be described
later in this paragraph. An article in the Proc. ICO Conference on Optical Instruments, Lon-
don 1961, concerns the effect. It describes that spectroscopic instrument, but in a much more
condensed form. This gives you a taste of the usually rather concentrated style of scientific
publications. Also another reprint about the “Talbot Interferometer” from “Optics Communi-
cations”, Vol. 2, 1971, is quite short. The Talbot effect is probably used also in the Schwarz-
Hora experiment where a laser beam modulates an electron wave at light frequencies (Applied
Physics Letters, 15, 349, 1969, and Physics Today, June 1971).

Figure 18.1: Setup for the experimental demonstration of the Talbot effect.

We will present the theory of the Talbot effect in three ways, each of them being best in
its own right. The third method is particularly tuned to the spectrometer. At the end of this
section we will show how the Talbot effect could have been invented by a theoretician.
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18.1 HFK-theory of the Talbot effect

We use the quadratic approximation of the HFK theory, and we omit constant factors.

In : z < 0 : u(x, z) = eikz ; in z = 0 : u(x,−0) = 1 (18.1)

in : z = 0 : u(x,+0) =
∑

Ane
2πinνx; ν =

1

d
;

in : z ≥ 0 : u(x, z) ≈
∫
u(x′, 0)ei π

λz (x−x′)2dx′

=
∑

An

∫
e

iπ

»
(x−x′)2

λz +2nνx′

–
dx′

=
∑

An

∫
ei π

λz [(x−x′)2+2x′nλνz]dx′;

[. . .] = x2 + x′2 − 2x′(x− nλνz) + (. . .)2 − (. . .)2;

u(x, z) =
∑

Ane
i π

λz [x2−(x−nλνz)2]
∫
ei π

λz (x′−x+nλνz)2dx′

The integral with its limits at ±∞ is the “Fresnel integral”, which yields an uninteresting
constant factor, which we neglect from now on. What remains is:

u(x, z) =
∑

Ane
−iπ(nν)2λze2πinνx (18.2)

This wavefield in the plane z is the same as u(x,+0) immediately behind the object if
π(nν)2λz = 2π, or ν2λz = 2, or z = 2

ν2λ , or z = 2 d2

λ . We will call 2 d2

λ the “Talbot length”.
Obviously the wavefield u(x, z) equals the object field u(x,+0) not only at a single Talbot
length ∆z away from the object, but also at integer multiples of the Talbot length. A typical
example: d = 0.1 mm; λ = 2

3 · 10−3 mm; ∆z = 30 mm.

18.2 RSD-Theory of the Talbot effect

We start from the RSD formulas Eq. 16.26. In principle we can use any one of the four forms.
However, the third form will turn out to lead very quickly to our goal. In two dimensions
(x, z) this second form gives:

ũ(ν, z) = ũ(ν, 0)e2πi
√

1−(λν)2 z

λ
(18.3)

Now we specialize on periodic objects in plane z = 0:

u(x, 0) =
∑

Ane
2πinν0x (18.4)

ũ(ν, 0) =

∫
u(x, 0)e−2πiνx =

∑
Anδ(ν − nν)
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This inserted into the third RSD formula yields:

ũ(ν, z) =
∑

Anδ(ν − nν0)e2πi
√

1−(λν)2 z
λ (18.5)

Due to the delta function ũ(ν, z) will be non-zero only at ν = nν0. Hence we insert this
into the root at the exponent:

ũ(ν, z) =
∑

Anδ(ν − nν0)e2πi
√

1−(nλν0)2 z
λ (18.6)

Now we assume that our grating object is not extremely fine. In other words the grating
constant d is d � λ. Even d � nλ shall hold for all indices n for which An is substantially
non-zero. In that case we may develop the root of the exponent:

√
1− (nλν0)2 ≈ 1− (nλν0)

2

2
(18.7)

Actually, since this root occurs in the argument of a trigonometric function we have to
be a little careful with our approximations. It is not enough to say

√
1− ε2 ≈ 1 − ε2

2 if
ε4

8 � 1 (− ε4

8 is the next term of the Taylor series for the root.) Instead we must require

2π ε4

8
z
λ = π

4 z(nν0)
4λ3 ≤ π

4 � 2π. Since the distance z is now involved, our approximation
will deteriorate as we go farther away from the object.

Now we have:

ũ(ν, z) ≈ e2πi z
λ

∑
Anδ(ν − nν0)e−iπ(nν0)2zλ (18.8)

We may interpret this result in the following way: The Fourier series coefficients are dif-
ferent for different planes z = constant likeAn(z) = Ane

−iπ(nν0)2λz . However, this variation
is periodical with a period ∆z = 2d2

λ . Now, if the Fourier series coefficients An(M∆z) are
alike for all planes z = M∆z (M integer) then also the wavefields in those planes must be
alike, since they can be computed as a Fourier series with those identical Fourier coefficients.

18.3 Plane wave theory of the Talbot effect

This form of the Talbot theory is again of the RSD variety. But it is particularly modified in
view of the Fourier spectrometer, which we want to explain immediately after this section.

The plane wave interpretation of the Talbot effect is based upon the setup shown in Fig.
18.2. The so-called collimating lens in Fig. 18.2 makes a plane wave. “Talbot-images” of the
grating are formed without a lens.
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Figure 18.2: The configuration which forms the basis for the plane wave inter-
pretation of the Talbot effect.

Theory:

In z < 0 : (in front of the grating) u(x, z) = eikz ; (plane wave �k‖z − axis)

in z = −0 : u(x,−0) = 1 (18.9)

in z = +0 : u(x,+0) =
[1 + cos(2πν0x)]

2

Figure 18.3: The amplitude distribution of the cosine grating.

u(x,+0) is a cosine-grating, which is a pure-amplitude grating (Fig. 18.3). This restriction
is not necessary but it makes the theory easier. In z > 0: u(x, z) will be periodic also as a
function of x in every z-plane, because u(x, z) is the “effect” of the periodic “cause” u(x,+0).
Hence we try to solve the wave equation for u(x, z) = A0(z) +A1(z) cos(2πν0x). We must
find suitable functions A0 and A1 such that

{∇2 + k2
}
u = 0, and such that the boundary

condition for z → 0 is satisfied:

∇2u+ k2u =

∂2u
∂u2︷ ︸︸ ︷

−A1(z)(2πν0)
2 cos(2πν0x)+

∂2u
∂z2︷ ︸︸ ︷

A′′
0 +A′′

1 cos(2πν0x)+ (18.10)

+k2(A0 +A1 cos(2πν0x)) =

= k2A0(z) +A′′
0 (z) +

{
(−2πν0)

2A1(z) + k2A1(z) +A′′
1(z)

}
cos(2πν0x) = 0 =

= C0 + C1 cos(2πν0x)

We may interpret this expression as a Fourier series which happens to be zero for every x.
Then it follows A0 = 0 and A1 = 0. Hence we get separate differential equations for A0 and
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A1.

A′′
0 (z) + k2A0(z) = 0→ A0(z) = a0e

±ikz (18.11)

Only the plus sign is meaningful, since it refers to a forward wave.

A′′
1 (z) + k2

{
1− λ2ν2

0

}
A1(z) = 0→ A1(z) = a1e

±ikz
√

1−λ2ν2
0z (18.12)

Again, only the plus sign makes sense. Now let us find the constants a0, a1 from the
boundary condition.

u(x, z) = a0e
ikz + a1 cos(2πν0x)e

ik
√

1−λ2ν2
0z (18.13)

Letting z → 0 and comparing it with u(x, 0) = [1 + cos(2πν0x)] we conclude:

a0 =
1

2
: u(x, z) =

1

2

[
eikz + cos(2πν0x)e

ik
√

1−λ2ν2
0z
]

(18.14)

part of Eq. 18.14 eikz cos(2πν0x)e
ik
√

1−λ2ν2
0z

wave type ordinary plane wave modulated plane wave
amplitude 1 cos(2πν0x)

propagation direction z-axis also z-axis since only a z in the exponent
wavelength 2π

k = λ 2π
k
√

... = λ√
1−λ2ν2

0

> λ !

phase velocity V= λ c
λ = c V = λ√

...
c
λ = c√

1−λ2ν2
0

> c !

Table 18.1: Interpretation of the different terms in Eq. 18.14.

A “wavelength” is defined as that z-step which increases the argument by 2π, because that
is obviously the z-period. The phase velocity is wavelength times temporal frequency c

λ .

Notice: a phase velocity > c is not in contradiction with relativity theory, because signals
do not travel with the phase velocity, which refers to an absolutely periodic wave, which
cannot transmit a single bit/sec. Instead signals travel with the “signal velocity”, which can be
(but does not have to be) equal to the “group velocity”, describing the speed of a finite wave
train.

18.4 What are these modulated plane waves, really?

One might answer: they are composed of two ordinary plane waves:
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cos(2πν0x)e
ik
√

1−λ2ν2
0z = (18.15)

=
1

2
eik(λν0x+

√
...z) +

1

2
eik(−λν0x+

√
...z) =

=
ei�k+�x + ei�k−�x

2
; �k± = k

{
±λν0,

√
1− λ2ν2

0

}

Figure 18.4: Interpretation of the plane waves.

Hence these new strange waves look rather artificial, because they consist of two simple
plane waves, which are “elementary waves”. However, these modulated plane waves are
as much “elementary” as the ordinary plane waves, since in turn each ordinary plane wave
consists of two modulated plane waves:

eik(λν0+
√

...z) = e2πiν0xeik
√

...z = cos(2πν0x)e
ik

√
...z + i sin(2πν0x)e

ik
√

...z (18.16)

The second modulated plane wave is π
2 -phase shifted (i), and it is also laterally shifted in

x by d
4 , since the cos is replaced sin.

These modulated plane waves are quite useful for explaining the Talbot-effect. Let us
write down the wavefield both in terms of modulated plane waves and in terms of ordinary
plane waves:

2u(x, z) = eikz +cos(2πν0x)e
ik

√
...z = eikz +

1

2
eik(+λν0x+

√
...z) +

1

2
eik(−λν0x+

√
...z)

(18.17)

Although both pictures are valid, it is easier to consider only two plane waves, which
have the same propagation direction, rather than three plane waves of different propagation
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directions. We can understand the Talbot-images simply as an interference effect between
one ordinary and one modulated plane wave. Since the phase velocities are different, it will
require some travel distance ∆z, till both waves are again in phase (exept for a full 2π, which
does not have any effect). This comes out best by re-writing u(x, z) slightly differently:

2u(x, z) = eikz + cos(2πν0x)e
ik

√
...z = eikz

[
1 + cos(2πν0x)e

ikz(
√

...−1)
]

(18.18)

The factor eikz is an “overall phase factor”, which is not observable as intensity: |2u(x, z)|2 =
|[. . .]|2. Hence, Talbot-images will occur whenever kz(

√
. . .− 1) = 0, 2π, 4π . . .. The lon-

gitudinal period ∆z, or the distance between Talbot images, follows from |k∆z(√. . .−1)| =
2π.

∆z =
λ

1−
√

1− λ2ν2
0

(18.19)

If λ2ν2
0 << 1 we get in approximation:

∆z ≈ 2

λν2
0

=
2d2

λ
(18.20)

Notice that this distance is λ-dependent, which is a good reason for trying to invent some
kind of spectrometer. — “Negative Talbot-images” occur at z = ∆z

2 ,
3∆z
2 , . . ., where kz(1−√

. . .) = π, 3π, . . ..

2u

(
x,

∆z

2

)
= eik ∆z

2

[
1 + cos(2πν0x)e

−iπ
]

= eik ∆z
2 [1− cos(2πν0x)] (18.21)

Figure 18.5: Positive and negative Talbot images.
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18.5 A Fourier spectrometer based on the Talbot effect

First some terminology. A spectrograph records light on a photographic plate, while in a
spectrometer the light is detected by a photon detector such as a photomultiplier, which usually
travels together with a slit across the exit plane of the spectrometer. The attribute “Fourier”
means that the measured data have to be Fourier-transformed mathematically before being
ready for interpretation.

Now we have all the facts together for our spectrometer. Remember, the essential feature
was that the Talbot-images did appear at intervals ∆z = 2d2

λ , which depend on the wave-
length λ. So we can expect that the elementary (= single-λ) Talbot-images will build up to
λ-integrated Talbot-images best if the range ∆λ of existing wavelengths is only small. On the
other hand, if for example the source sends out a “doublet” λ1 and λ2, then it might happen
that in a particular plane z0, λ1 has a Talbot-image (z0 = N∆z(λ1) = 2N d2

λ1
), while λ2 has

there a negative of a Talbot-image (z0 = (N + 1
2 )∆z(λ2) = 2(N + 1

2 ) d2

λ2
). This will occur at

the N -th Talbot image if:

2Nd2

λ1
= z0 =

2(N + 1
2 )d2

λ2
→ N

λ1
=
N + 1

2

λ2
=

N + 1
2

λ1 + δλ
=
N

λ1
· 1 + 1

2N

1 + δλ
λ1

=⇒ 1

2N
=
δλ

λ1
or

λ1

δλ
= 2N (18.22)

For example, the yellow solium line is actually a doublet with data about like λ1 ∼ 6000 Å
and δλ = 10 Å. Hence 600 = 2N ;N = 300→ z0 = 2Nd2

λ1
= 600 d2

6·10−4mm = 106 ·d2[mm].
For d = 10−2 mm→ z0 = 100 mm; for d = 10−1 mm→ z0 = 104 mm = 10 m.

We hope, of course, that our instrument will be able to handle more general spectra, not
only doublets. For doing this we need first of all a setup by which we can measure con-
veniently and automatically the presence or absence of Talbot-images. Since we know the
grating constant d of the object grating, we know also the period d of the suspected Talbot
images. Hence, a simple way to measure the Talbot image is to take a second identical grat-
ing, putting it into plane z, where we want to measure, orient its grating bars parallel to those
of the object grating, and move the second grating laterally. If there was a Talbot-image in
plane z, then the light flux through the second grating will vary while we move it. If there is
no Talbot-image, only a uniform light distribution, then this flux will remain constant. Hence
let us take a photo-receiver, which collects all the light behind the second grating. Of the
resulting photocurrent, only the a.c. portion will be of interest.

The actual receiver might be much smaller than indicated here. In that case a collecting
lens is placed between the second grating and the receiver.
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Figure 18.6: The configuration of a Fourier spectrometer based on the Talbot
effect.

Theory: for a single wavelength λ, the intensity at plane z will be

|u(x, z)|2 = |eikz + cos(2πν0x)e
ikz
√

1−λ2ν2
0 |2 (18.23)

= 1 + cos2(2πν0x) + 2 cos(2πν0x) cos

{
kz(1−

√
1− λ2ν2

0 )

}
=

3

2
+

1

2
cos(4πν0x) + 2 cos(2πν0x) cos(πzλν2

0 ) (if
√
. . . ≈ 1− λ2ν2

0

2
)

The amplitude transmittance of the second grating (which is moving, velocity v) will be
at the moment t:

1 + cos {2πν0(x+ vt)} (18.24)

and the intensity transmittance:

(1+cos{. . .})2 = 1+cos2 +2 cos =
3

2
+

1

2
cos {4πν0(x− vt)}+2 cos{2πν0(x− vt)}

(18.25)

The intensity behind the second grating is the product of incoming intensity times intensity
transmittance:

B(x, z, t, λ) =

[
3

2
+

1

2
cos(4πν0x) + 2 cos(2πν0x)

]
· (18.26)

·
[
3

2
+

1

2
cos {4πν0(x− vt)} + 2 cos{2πν0(x− vt)}

]
This expression has to be x-integrated since we use a large area receiver:

∫
B(x, z, t, λ)dx.

The math would become now very clumsy if we would treat all terms. Fortunately only one
term is relevant for the operation of the Fourier spectrometer. This term is part of the a.c.
component. Actually B contains two a.c.-components with time-frequencies 2ν0v and ν0v.
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Which one do we want? When integrating over many x-periods, only those terms of [. . .] [. . .]
will survive which are constant in x. Of those, the term with cos(πzλν2

0), which is germane
to the Talbot-effect, is of course the one we want to keep:

2 cos(2πν2
0x) cos(πzλν2

0 )2 cos {2πν0(x − vt)} = (18.27)

= 2 cos(πzλν2
0 ) [cos {2πν0(2x− vt)} + cos(2πν0vt)]

Of these two terms 2 cos(πzλν2
0 ) cos(2πν0vt) will survive the x-integration. There are

of course other terms of
∫
Bdx, which survive the x-integration as well; they will be

(
3
2

)2
and 1

2

(
1
2

)2
cos(4πν0V t) with a time-frequency zero or 2ν0v. But the ν0v-time-frequency

is what we want. We get it by means of an electronic narrow-band filter behind the photo-
multiplier. The selection of the ν0ν-frequency can be mathematically represented by a Fourier-
time-integral:

∫∫
B(x, z, t, λ)e−2πiν0V tdtdx = (18.28)

= 2 cos(πzλν2
0 )

∫
cos(2πν0vt)e

−2πiν0vtdt = cos(πzλν2
0 )

So this expression is the “monochromatic response” of our apparatus. Now comes the
total response, that is the joint contribution of all wavelengths of the source, which had the
distribution S(λ).

∫
S(λ) cos(πzλν2

0 )dλ (18.29)

In a more general situation there might be spectral filters in the apparatus. Or the spectral
response of the receiver might be wavelength- dependent. Let us assume that these effects are
included in the spectral distribution S(λ). Now we compute the output signal as a function of
z, which was the longitudinal position of the second grating.

∫
S(λ) cos(πλzν2

0 )dλ =
1

2

∫
S(λ)e2πiλ�dλ+

1

2

∫
S(λ)e−2πiλ�dλ

=
1

2

∫
[S(λ) + S(−λ)] e−2πiλ�dλ =

1

2

∫
[S(λ) + S∗(λ)] e−2πiλ�dλ =

=
1

2

∫ [
S̃(�) + S̃∗(�)

]
= Real

{
S̃(�)

}
; (� =

zν2
0

2
) (18.30)

So we measure in essence the Fourier transform S̃ of what we actually want to measure,
S. If we know S̃, we can compute S by means of a Fourier transform-computer, either digital
or analog (Moiré, see Chap. 3): S(λ) =

∫
S̃(�)e2πi�λd�. But do we really know S̃(�)? Only

Real{S̃(�)} comes out of the measurements. As we see from the above formulas, if we apply
a Fourier transform to Real{S̃(�)} instead of S̃(�) itself, we get 1

2 (S(λ) + S(−λ)) instead of
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Figure 18.7: Example of the spectral source distribution.

S(λ). But that is good enough since S(λ) is non-zero only for positive wavelengths. Hence,
the computer output S(λ) + S(−λ) is unambiguous.

One may look at the same problem also from another point of view. We need for S(�)
the modulus |S̃(�)| and arg{S̃(�)} = σ(�). But measured, it is only |S̃(�)| cosσ(�) =
Real{S̃(�)}. Considering that S(λ) is non-zero only for λ > 0, we can write S(λ) = S0(λ−
λ0) (Fig. 18.7), where λ0 could be (but does not have to be) the mean-wavelength:

λ0

∫
λS(λ)dλ∫
S(λ)dλ

(18.31)

From the shift-theorem follows: S(λ) = S0(λ−λ0)⇔ S̃(�) = S̃0(�)e
−2πi�λ0 . The right

hand side can be also expressed in terms of modulus and phase:

|S̃(�)| = |S̃0(�)|; σ(�) = σ0(�)− 2π�λ0 (18.32)

Hence we get:

Real
{
S̃(�)

}
=

like
amplitude
modulation︷ ︸︸ ︷
|S̃0(�)| cos(2π�λ0︸ ︷︷ ︸

like
carrier
frequency

−

like
phase
modulation︷ ︸︸ ︷
σ0(�) ) (18.33)

The example of the doublet might help to clarify the situation:

S(λ) = δ(λ− λ0 − δλ

2
) + δ(λ− λ0 +

δλ

2
) (18.34)

S̃(�) = 2e−2πi�λ0 cos(π�δλ)

Real
{
S̃(�)

}
= 2 cos(2π�λ0) cos(π�δλ)
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Figure 18.8: Interference pattern of a source with a spectral distribution de-
scribed by Eq. 18.34.

“Resolution” means that we can decide reliably if the source S(λ) was a doublet (δλ) or
a singlet (δλ = 0). If we go along the doublet curve, where it drops down to cos

(
π
4

) ≈ 0.7
of its maximum, we can clearly identify the doublet (Fig. 18.8). So for detecting the doublet
line separation δλ a �max is needed, for which:

cos(π�maxδλ) = cos
(π

4

)
−→ �max =

1

4
δλ. �max =

ν2

2
zmax (18.35)

For practical reasons zmax is of course dictated by the length of the room. As we will see
next the achieveable zmax is also dependent on the finite width of the 1-st grating, or in similar
terms: by the number M of periods of the grating. This number M is roughly in proportion
to the price of the grating.

18.6 The walk-off effect

The following arguments are hoped to be plausible. They will be legalized later when we
will have studied “parageometrical optics”. At first the plane wave hits the grating 1 +
cos(2πν0x) = 1 + [e2πiν0x + e−2πiν0x]. Behind it there will be three plane waves, which
hit then the “slit”, which in this case is simply the frame of the grating with a width Md. Par-
ageometrical optics tells us that in essence these three plane waves will continue to propagate,
but with finite lateral width, due to the slit. The lateral edges of these finite plane waves get
fuzzier with increasing distance z. This is a diffraction effect due to the slit with width Md.
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Figure 18.9: Explanation of the walk-off effect.

As we will see later in the section on “parageometrical optics” the fuzzy edges are harmless
if z < M2d2

λ . After a distance zmax these three limited plane waves will not overlap anymore.
Hence there will be no interference fringes (and no Talbot-images) at z > zmax, which is
determined by:

tanα =
Md

zmax
≈ sinα

λ

d
= λν0 diffraction grating (18.36)

zmax ≈ Md2

λ
→ �max = zmax

ν2
0

2
=
M

2λ

On the other hand, for resolving δλ we need �max = 1
4δλ. Both together tell us that the

spectral resolution depends on the numberM of grating periods.

λ

∆λ
= 2M (18.37)

Notice that zmax = Md2

λ � M2d2

λ if M � 1. In other words we are well within the
boundaries of parageometrical optics. Hence we don’t have to worry about the fuzzy edges of
the finite plane waves.

Earlier we encountered a formula 2N = λ1

δλ , whereN meant the number of Talbot-images
one has to go through from z = 0 till zmax, if zmax is just large enough to resolve the δλ of a
doublet. This last figure tells us now that the number N of Talbot-images one can observe is
limited due to walk-off. Hence in purely monochromatic light the number of observable Talbot
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images equals the number of periods M within the grating of finite width Md. - If you were
somehow disturbed during these resolution considerations, and you felt that a factor 2 or 1

2
was not proper, don’t worry, because the definition of resolution is a little bit arbitrary, by a
factor of the order 1

2 . . . 2 anyway.

18.7 Yet another look at Talbot images

Whenever you come up with a new result, it is worthwhile (although sometimes strenuous)
to find out whether the assumptions from which you started were necessary or sufficient for
getting that result. Maybe you will find that your assumptions were more restrictive than
needed. This may give you a hint for further discoveries or inventions. Here is such an
example (due to W. D. Montgomery, JOSA 58, 1112, 1968). So far we have seen that lateral
periodicity of the object is sufficient for getting Talbot-images. But this lateral periodicity is
not necessary. The lateral periodicity of the object is more restrictive than it could be. The
total set of objects which will produce Talbot images contains the periodic objects as a subset
(and even that is true only in approximation).

The whole history of Talbot-images consists roughly of three steps: (1) accidental obser-
vation by an alert experimentalist (1836); (2) theoretical explanations (various forms since 100
years ago, the latest with “modulated plane waves”); (3) establishment of all Talbot-images,
not just for periodic objects. This third step is due to Montgomery. He asked himself the
question: If a wavefield has a longitudinal period ∆z, what are its properties? The first step is
(as always) to formulate the question in quantitative terms. If u(x, y, z) is z-periodic, then it
must be representable by a Fourier series with z as variable.

u(x, y, z) =
∑
(m)

vm(x, y)e2πim z
∆z (18.38)

This wavefield is subject to two minor constraints. The index m should not be negative
since m < 0 would refer to a backwards wave, if the time dependence is written as e−iωt.
The boundary condition at z = 0 requires u(x, y, 0) =

∑
vm(x, y). The crucial question is

whether this hypothetical wavefield fits into the wave equation. Let’s try it.

∇2u+ k2u =
∑

e2πim z
∆z

[
∂2vm

∂x2
+
∂2vm

∂y2
−
(

2πm

∆z

)2

vm + k2vm

]
= 0 (18.39)

We may consider this as a Fourier series for a function of z, which happens to be zero for
all z. We must have [. . .] = 0 for every m, since [(m)] is the m-th Fourier-coefficient of this
Fourier series. [. . .] = 0 is a 2D-differential equation:

∂2vm

∂x2
+
∂2vm

∂y2
+ k2

{
1−

(
mλ

∆z

)2
}

= 0 (18.40)
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It has essentially three types of solutions, depending on {. . .} ≤
> 0.

{. . .} < 0→ vm = e±axe±by with a2 + b2 + k2

{
1−

(
mλ

∆z

)2
}

= 0 (18.41)

This damped or exploding wave-type is physically meaningless here, since we assumed
no lateral restrictions of u(x, y, z), hence e±ax would blow up at x, y = ±∞. In other words,
we should exclude all those vm from our hypothesis u =

∑
vme

2πim z
∆z which would make{

1− (mλ
∆z

)2}
negative. This is the same as requesting |m| ≤ mmax <

∆z
λ . Since m and

mmax are integers, it follows also that ∆z has to be ≥ λ. Otherwise only m = 0 would
be allowed to be part of the series over m. The case m = 0 means: u(x, y, z) ⇒ v0(x, y),
which will propagate perpendicular to the z-axis. This special case is as trivial as saying that
a constant number is periodic in z. So, really, we should restrict the series to 1 ≤ m ≤ ∆z

λ .
The case where {. . .} = 0, or ∆z = mλ, is trivial too:

∂2vm

∂x2
+
∂2vm

∂y2
= 0 (18.42)

This leads to:

vm = a+ bx+ cy (18.43)

and

vme
2πim z

∆z = vme
2πi z

λ = (a+ bx+ cy)eikz (18.44)

Again, b �= 0 and c �= 0 would blow up. What is left is the ordinary plane wave, travelling
in z-direction.

Now comes the important case: {. . .} > 0, or ∆z
λ . What is the set of function Vm which

fits into:

∂2vm

∂x2
+
∂2vm

∂y2
+ k2

{
1−

(
mλ

∆z

)2
}
vm(x, y) = 0 with 0 <

mλ

∆z
< 1? (18.45)

As so often happens, the question becomes clearer when translated into the other Fourier
domain. So let us write:

vm(x, y) =

∫∫
ṽ(ν, µ)e2πi(νx+µy)dνdµ (18.46)
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and go with this into the differential equation for vm(x, y):

∫∫
ṽm(ν, µ)e2πi(νx+µy)

[
−(2π)2(ν2 + µ2) + k2

{
1−

(
mλ

∆z

)2
}]

dµdν = 0 (18.47)

This “Fourier-integral” will be zero for every x, y, if ṽm = 0, or if [. . .] = 0, or both.
[. . .] = 0 occurs when ν2 + µ2 = 1

λ2 − m2

∆z2 = �2
m. This equation refers to rings of radii �m

in the frequency domain (ν, µ). Hence ṽm(ν, µ) has to be zero, except on these rings:

Figure 18.10: Graphical illustrations of the solutions of Eq. 18.47.

Each ṽm has its own ring.

ṽm(ν, µ) = δ(�− �m)Φm(θ)Cm (18.48)

ν2 + µ2 = �2; ν = � cos θ; µ = � sin θ

With also x, y in polar form x = �r cosϕ; y = r sinϕ, we get:

u(x, y, z) =

mmax∑
m=0

Cm

π∫
−π

∞∫
0

Φm(θ)δ(� − �m)e2πi[r� cos(ϕ−θ)+m z
∆z ]�d�dθ (18.49)

where (r� cos(ϕ− θ) = νx+ µy)

u(x, y, z) =
∑

Cm�m

∫
Φm(θ)e2πi[r� cos(ϕ−θ)+ mz

∆z ]dθ (Montgomery) (18.50)

�2
m =

(
1

λ

)2

−
( m

∆z

)2

; (18.51)

mmax ≤ ∆z

λ
; u(x, y, z) = u(x, y, z +N∆z), (N integer)
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So this result contains all u(x, y, z) wavefields which are periodic in z. At a first glance,
it really does not look as if it contains the historical Talbot-case, which said: if u(x, 0) =
u(x + Nd, 0) is a laterally periodic object (N integer, d = 1

ν0
the grating constant), then the

wavefield u(x, z) behind it will be longitudinally periodic with ∆z ≈ 2d2

λ :

u(x, z) =
∑

Ane
2πi[ nx

d +
q

1−( nλ
d )2 z

λ ] ≈ eikz
∑

An . . . e
2πin x

d e−iπλz( n
d )

2

(18.52)

Let us extract this special case from Montgomery’s formula, above. First we see that our
special case does not depend on y. This is equivalent to saying: Φ(θ) = δ(θ), because for
a function f(x, y) =

∫∫
f̃(ν, µ)e2πi(νx+µy)dνdµ, which in reality is simply f(x), f̃(ν, µ)

reduces to f̃(ν.µ)δ(µ). Since δ(µ) means µ = 0, and since µ = � sin θ, we conclude θ = 0
or π, hence cos θ → 1 and � = ν

cos θ → ν. The last step can be done somewhat more slowly;
with Φ(θ) = δ(θ) we get:

u(x, z) =
∑

Cm

∫
δ(�− �m)e2πi[r� cos ϕ+m z

∆z ]�d� = (18.53)

=
∑

Cmδme
2πi[r�m cos ϕ+m z

∆z ]; remember : r cosϕ = x

In order to get a form which looks more like what we hope to find we call Cm�m = Bm.

u(x, z) =
∑

Bme
2πi(x�m+m z

∆z ); 1 ≤ m ≤M ≤ ∆z

λ
(18.54)

Herein �2
m =

(
1
λ

)2
+
(

m
∆z

)2
, as we found earlier. Now let us make a simplification which

turns out not to be absolutely necessary but very helpful. We assume that the longitudinal
period is an integer multiple of the wavelength ∆z = Mλ. This integer M may be a fairly
large number. Inserting this into the equation for the allowed rings in the frequency domain
we get:

�2
m =

(
1

λ

)2 [
1−

(m
M

)2
]

=
M2 −m2

M2λ2
=

(M −m)(M +m)

M2λ2
(18.55)

As with most Fourier series we expect the coefficients Bm with the lowest indices to be
most significant ones. That makes sense usually since it means that the fundamental period
is very clearly apparent while the higher harmonics only modify the shape of the period, for
example from a sine-wave into a square wave. Hence we will try naturally at first how the
wavefield u(x, y) will look like if onlyB+1 andB−1 are non-zero. Next we will addB+2 and
B−2 contributions. This approach leads to undesirable results, which don’t satisfy our hopes
for finding the old Talbot case as a special case of the Montgomery theory. This becomes
apparent in Fig. 18.11 where some of the Montgomery circles are plotted in the frequency
domain. The trouble is that the (ν, µ) circles, which represent the spatial frequencies for
lateral periodicities are very large when the longitudinal frequencies m

∆z are very small and
vice versa.
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Figure 18.11: Montgomery circles in the frequency plane.

This situation is incompatible with our belief that the big Fourier coefficients always go
with the low-frequency components. We have to make a choice: either the big coefficients are
attached to the low longitudinal frequencies, but also with high lateral frequencies. Or should
the big coefficients be attached to the low lateral and high longitudinal frequencies?

The second choice makes more sense since the lateral frequencies are due to the lateral
structures of a man-made object while the longitudinal frequencies are immaterial wave struc-
tures, made by Mother Nature. Mother Nature is certainly better in making fine details than we
are. Hence we may guess that of all frequencies with indexm in the range 1 ≤ m ≤M = ∆z

λ
those frequencies will be strongest (biggestBm) which lead to coarse lateral structures. Look-
ing at the formula for the Montgomery circles we conclude that the large values of m and
hence the small values of M −m should be predominant. We will call now M −m = n:

�2
m =

(M −m)(M +m)

M2λ2
=
n(2M − n)

M2λ2
≈ 2n

Mλ2
; (18.56)

�m = �M−n ≈
√

2n

Mλ2
=
√
n�M−1

This approximation is now inserted into the general formula for logitudinally periodic
wavefields:

u(x, z) =
∑

BM−ne
2πi[x�M−1

√
n+z M−n

∆z ] = e2πi z
λ

∑
BM−ne

2πi[x�M−1
√

n− nz
∆z ];

mit : n = 0, 1, 2, . . . ,M (18.57)

Let us check if the result encompasses the ordinary grating as possible objects. For this
purpose we go to the object plane z = 0.
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u(x, 0) =
∑

BM−ne
2πix�M−n

√
n (18.58)

This “Montgomery-object set” contains gratings as a special case if only BM , BM−1,
BM−4, BM−9, etc. are non-zero. Hence Montgomery really discovered something new on the
basis of an abstract theoretical approach. So far no one has found any use for Montgomery’s
discovery. Not even the structure of non-trivial Montgomery objects has been explored. By
“trivial” I mean gratings in this case. My guess is that Montgomery’s theory might become
useful for optical waveguides in connection with data transmission.
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19 Fresnel Diffraction on Zone Plates and Lenses

19.1 About inventing

The content of this chapter is somewhat unconventional. You might not like it unless you are
told beforehand why these items are treated in this particular way. Briefly we will study Fres-
nel diffraction with a Fresnel zone plate as diffraction object. As is customary in all textbooks
we will find that the light behind a FZP will be concentrated into a few focal points.

Next we conclude the FZP is not really ideal as a focal glass, for example to light a match.
We will systematically improve the FZP and thereby invent the lens. Why such an anachro-
nistic approach to introduce the lens as an extreme special case of the FZP? In the first place,
in presenting it this way you will see how the lens could have been invented. I believe that
“inventing” can be taught. Here I want to show you how it could have happened. The fact that
historically the lens was invented independently of the FZP does not diminish the usefulness
of our approach, which in its style is representative for inventing in general. True, some in-
ventions come like a flash from heaven, others by trial and error. But many inventions are the
straightforward result of hard work and logical analysis.

Another reason for our approach is symbolically expressed in these two equations:

Grating =
∑

CmPrisms(m) (19.1)

Zone Plate =
∑

CmLenses(m)

(in contrast to the Fourier transformation). Based on theses three facts:

lens transmittance : eiπ (x2+y2)
λf ; (f positive or negative) (19.2)

FZP transmittance :
∑

Cme
2πim

(x2+y2)
R ;

general transmittance : u0(x, y) =

∫∫
ǔ(x′, y′)eiπ ((x−x′)2+(y−y′)2)

λz dx′dy′

we will arrive at the following conclusions:

A FZP can be thought of as a superposition of concentric lenses with focal powers 1
fm

=
−2mλ

R2 ; m = 0, ±1, ±2, . . .. The term “concentric” means that all lens centers coincide.
Furthermore, since the Fresnel transformation is a complete representation we can think of
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the general object u(x, y), as being built together by many lenses with equal focal powers
1
f = − 1

z (z arbitrary but fixed) and with shifted center locations (x′, y′) and corresponding
“strengths” ǔ(x′y′).

Finally we will derive the so-called lens equation based on waveoptical considerations.
This might be clumsier than the usual geometrical optics derivation, which however is not
quite so true since waves are truer than rays.

19.2 Diffraction on the Fresnel Zone Plate

The transmittance of the Fresnel zone plate is:

FZP(x) =
∑

Ame
2πim( x

R )
2

(19.3)

Let us assume the FZP to be in z = 0, and illuminated with a plane wave u(x, y, z) = eikz

in z < 0. Hence u(x, y,+0) = u0(x, y) = FZP(x). We use now the parabolic HFK formula
(Eq. 16.46), and we omit constant factors.

u(x, z) =

∫ ∑
Ame

i[2πm
“

x′

R

”2
+ π(x−x′)2

λz ]
dx′ (19.4)

The exponent has the form:

x′2π(
2m

R2
+

1

λz
) +

πx2

λz
− 2πxx′

λz
(19.5)

There are some very interesting solutions to this integral, i.e. if the factor attached to x′2

becomes zero:

2m

R2
+

1

λz
= 0 zm = − R2

2mλ
(19.6)

In these particular planes the m-th term of
∑

(m) becomes a δ-function:

Am

∫
eiπ (x2−2xx′)

λzm dx′ = Amδ

(
x

λzm

)
eiπ x2

λzm (19.7)

If the FZP has only a finite width, the object function has to be modified by a rect-function:

u0(x
′) = FZP(x′)rect

(
x′

∆x

)
(19.8)

Am

∆x
2∫

−∆x
2

eiπ (x2−xx′)
λzm dx′ = ∆xAme

iπ
“

x2

λzm

”
sinc

(
x∆x

λzm

)
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This light spot has a width of about λzm

∆x , and it is situated at a distance zm = −R2

2mλ away
from the FZP. The width can be expressed also in some other ways, whereby ∆x refers to the
diameter of the FZP, and N to the number of rings, which is given by ∆x

2 =
√
NR.

δxm =
|λzm|
∆x

=
R2

2∆x|m| =
R

4
√
N |m| =

∆x

8N |m| (19.9)

Figure 19.1: Focus spots generated by a Fresnel Zone Plate.

Hence the FZP can be used as a focal glass, or rather as a superposition of many focal
glasses, with focal lengths fm = R2

2λ|m| .

These Fresnel Zone Plates are not very useful as focal-glasses or lenses because the multi-
plicity of focal lengths confuses. But an understanding of this diffraction effect is worthwhile
in view of holography. Furthermore, if nobody had invented a lens yet, our new knowledge
about the FZP would strongly suggest how to invent a lens. So far we used the FZP only as a
“focal glass”, which is what one does (but should not) when holding a lens in bright sunlight
a few centimetres above some dry paper or grass. The distance is chosen such that the focal

spot is as sharp and bright as possible. Anyway, a term of the form e2πim( x
R)2

as part of

our object function u0(x) =
∑
Ame

2πim( x
R )

2

created a focal spot at zm = − R2

2mλ . Calling
|zm| the focal length, one obviously would prefer an object function like this: (the complex
transmittance of a one-dimensional lens, a so-called cylinder lens)

u0(x) = eiπ x2

λf (19.10)

This “lens” is a better focal glass since it concentrates all the light into one single focal
spot. The same in two dimensions is (spherical lens, Fig. 19.2):
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Figure 19.2: The physical shape of a lens.

u0(x, y) = e−iπ (x2+y2)
λf (19.11)

t(x) = t0 − t2x2 = t0 − x2

2R′ (Radius of curvature)

ϕ(x) =
2π

λ
(n− 1)t(x) =

2π

λ
(n− 1)t0︸ ︷︷ ︸

just a constant

−π(n− 1)

λR2
x2

By comparison we see:

f =
R′

n− 1
(19.12)

So far we have considered only the focal-glass action of a lens. More important are two
other functions: image formation and Fraunhofer diffraction. We want now to show that our
lens, which so far we had conceived on the basis of a somewhat shaky analogy, really is a lens
in the sense of being able to perform two actions.

19.3 Image formation in terms of Fresnel diffraction

We will use the parabolic HFK (Eq. 16.46) twice for computing wave propagations. The lens
will be taken into account by a multiplication.

We start with u0(x
′) in z = 0 (Fig. 19.3):

u0(x
′) −→ u(x′′, z) = u1(x

′′) =

∫
u0(x

′)eiπ[ (x
′−x′′)2

λz1
]dx′ (19.13)

u1(x
′′) −→ v1(x

′′) = u1(x
′′)e−iπ x′′2

λf

v1(x
′′) −→ v(x) =

∫
v1(x

′′)eiπ (x−x′′)2

λz1 dx′′
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Figure 19.3: Image formation in the Fresnel approximation.

These were the steps, now let us compute v(x), where we will look for values of z2 which
will lead to the formation of an image.

v(x) =

∫
v1(x

′′)e
iπ
λ

(x−x′′)2

z2 dx′′ =

∫
u1(x

′′)e
iπ
λ

»
(x−x′′)2

z2
− x′′2

f

–
dx′′ = (19.14)

=

∫∫
u0(x

′)e
iπ
λ

»
(x−x′′)2

z2
− x′′2

f + (x′−x′′)2

z1

–
dx′dx′′

Since we hope that v(x) is an image of u(x′), we are eagerly looking for something like a
delta-function, which changes the x′ of u(x′) into the x of v(x). To this end we sort the [. . .]
of the exponent.

[
(x− x′′)2

z2
− x′′2

f
+

(x′ − x′′)2
z1

]
= x′′2

{
1

z2
− 1

f
+

1

z1

}
−2x′′

(
x

z2
+
x′

z1

)
+
x2

z2
+
x′2

z1
(19.15)

If in Eq. 19.14 any one of the two integrations over (x′) and (x′′) yields a delta function
then it must be the (x′′) integral because (x′′) does not occur in the lower part of the integrand.
The (x′′) integral has the form:

∫
e

iπ
λ

h
x′′2

“
1

z2
− 1

f + 1
z1

”
−2x′′

“
x

z1
+ x′

z1

”i
dx′′ (19.16)

For our purposes the x′′2 term is a nuisance. Hence we chose a plane z2, such that the x′′2

coefficient vanishes.

1

f
=

1

z1
+

1

z2
(19.17)
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This is actually the lens formula, connecting focal length f , object distance z1, and image
distance z2. Now the x′′ integral is only:

∫
e
− 2iπx′′

λ

“
x

z1
+ x′

z1

”
dx′′ = δ

(
x

z
+
x′

z

)
= λz1δ

(
x′ + x

z1
z2

)
(19.18)

We neglect the factor λz1, and we insert the delta-function

v(x) = e
iπ x2

λz2

∫
u0(x

′)eiπ x′2

λz1 δ

(
x
z1
z2

+ x′
)

dx′ (19.19)

= u0

(
x
z1
z2

)
e

i πx2

λ

„
1

z2
+

z1
z2
2

«

The corresponding intensities are:

|v(x)|2 =

∣∣∣∣u0

(
−xz1

z2

)∣∣∣∣2 ; |v(x, y)|2 =
∣∣∣u0

(
− x

M
,− y

M

)∣∣∣2 (19.20)

The factor z2

z1
signifies the magnification M . The minus sign means an inversion. The

phase factor of v(x) is normally not observable.

This theory can be easily expanded so as to predict also the limit of resolution. For this
purpose we carry out the (x′′) integration only over the finite diameter of the lens. This yields
a sinc-function. Hence the image amplitude v(x) is a convolution of the object amplitude
u0(x) and a sinc-function. The blurring due to the sinc-convolution limits the resolution of
the image. More later.
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20.1 Motivation of our approach

Geometrical optics or ray optics is only a coarse approximation of the more rigorous wave
optics. Why then is anyone interested in ray optics? Because it is usually much simpler,
wherever it is applicable. The big question is: When is ray optics applicable and when not? A
good understanding of this question is very important. It may help you considerably to shorten
the theory of a new optical experiment if you know when a ray-optical shortcut is permissible.
Often in the theory of a single experiment some aspects will be treated wave-optically, others
ray-optically. No doubt, this saves time in comparison to an all-wave-optical theory. Maybe
you don’t like such a hybrid or schizophrenic approach. Personally, I like it very much, since
this mixed treatment is as challenging as dancing on a rope. And aren’t all interesting persons
a bit schizophrenic anyway?

There are at least four different approaches to ray-optics to choose from. They are:

1. Axiomatic (starting from Snellius and reflection laws);

2. Limit (λ→ 0) of wave optics is “ray optics”;

3. Energy conservation a axiom (see H. G. Zimmer’s book Geometrical Optics, Springer,
1970);

4. Approximation of wave optics by the method of stationary phase.

I prefer the fourth approach, which was well presented by A. Walther in the American
Journal of Physics 35, 808 (1967). It is almost the same as “Parageometrical Optics”, devel-
oped by G. Toraldo di Francia.

Briefly, the result of our treatment will be: A “ray” is the wave vector of that particular
plane wave component which is singled out by the method of stationary phase. That partic-
ular wave is found by minimizing the optical path

∫
nds = OPD. Remember the phase is

2π
λ · OPD = k·OPD. The minimum value of this phase represent the stationary phase. The

minimization of the OPD is what Fermat used as the single axiom for deriving all laws of
geometrical optics. All the statements of this short paragraph will be explained later in this
Chapter 20.
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We already got a taste of ray optics on pp. 152-156, where we derived the HFK inte-
gral from the RSD integral. We made use of the method of stationary phase, which in two
dimensions is often called “saddle-point method”. The derivation was briefly like this:

R.S.D. u(x, y, z) =

∫∫
u(x′, y′, z′)

{∫∫
ei�k(ν,µ)·(�x−�x′)dνdµ

}
dx′dy′

where : �k(ν, µ) =
2π

λ

{
λν, λµ,

√
1− λ2(ν2 − µ2)

}
; �x = (x, y) (20.1)

H.F.K. u(x, y, z) =

∫∫
u(x′, y′, z′) cos ε

ei�k(ν0,µ0)·(�x−�x′)

λ|�x− �x′|
dx′dy′

where : cos ε =
z0(�x− �x′)

|�x− �x′|
; r = |�x− �x′|; �x = {x, y, z} ;

ν0 and µ0 from :
∂[�k(ν, µ) · (�x− �x′)]

∂ν
= 0 and

∂[. . .]

∂µ
= 0

There is one particular plane wave with�k = �k(ν0, µ0), which dominates the
{∫∫

. . .dν, dµ
}

in the RSD-integral, because the rest cancel each other. This particular plane wave has just
the direction from �x to �x′. Hence �k(ν0, µ0) ‖ (�x − �x′) (parallel)→ �k(ν0, µ0) · (�x − �x′) =

k(|�x− �x′|) = kr. This parallelism of �k(ν0, µ0) and �x− �x′ suggests, or is at least compatible
with the statement, that the contribution from the object amplitude u(x′, y′, z′) at �x′ to the
diffraction amplitude u(x, y, z) at �x goes along a straight line from �x to �x′. This “straight
path of contribution” may be called a “ray”.

20.2 The Fermat Principle as a consequence of wave optics

We want to understand in more detail how the “rays” emerge as approximations, so that we
know when we can without danger consider light simply as rays, and when we have to take
the wave character into account.

Figure 20.1: Fermat’s principle and the law of reflection.
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Reflection:
Since we know of course the law of reflection, we may as well position our coordinate

system so that the analysis comes out easily. This is always wise to do, and never excludes
the truth, even if the choice of the coordinate system was done based on a wrong anticipation.
From source S a spherical wave emerges. S(−x, 0.z); P (+x, 0, z). In plane z it is uS =
δ(x′ +x)δ(y′). From there in the negative z-direction towards the mirror in z = 0 we get with
HFK:

u(x′′, y′′, 0) =

∫∫
δ(x′ + x)δ(y′) cos ε

eikr

λr
dx′dy′; (20.2)

r =
√
z2 + (x′′ + x′)2 + (y′′ − y′)2; cos ε =

z

r

(x′′, y′′, 0) ∼arbitrary point on M ; (x′, y′, z) ∼ arbitrary point in S-plane z. Executing
this integral gives u(x′′, y′′, 0) = cos ε eikr

λr , where now rmeans r =
√
z2 + (x′′ + x)2 + y′′2;

cos ε = z
r . Now we assume u(x′′, y′′, 0) our “secondary object”, from which light will prop-

agate in the positive-z direction. Again HFK; particularly for point P (+x, 0, z):

u(x, 0, z) =

∫∫
u(x′′, y′′, 0) cos ε′

eikr′

λr′
dx′′dy′′ (20.3)

=

∫∫
cos ε cos ε′

eik(r+r′)

λ2rr′
dx′′dy′′

r′ =
√

(x− x′′)2 + y′′2 + z2, cos ε′ =
z

r′

This integral just begs be handles by the saddle-point method, whereby g(x′′, y′′) =
cos ε cos ε′

rr′ and f(x′′, y′′) = r + r′. Let’s find the saddle-point:

∂f

∂x′′
=

x′′ + x

r
+
x′′ − x
r

;
∂f

∂y′′
=
y′′

r
+
y′′

r′
;

∂f

∂y′′
= 0 for y′′ = 0;

∂f

∂x′′
= 0; if

x− x′′
r′

=
x+ x′′

r
(20.4)

Since ∂f
∂y′′ = 0 gave y′′0 = 0, the ∂f

∂x′′ = 0 condition is easy to draw in the (x − z)-plane.
x−x′′

r′ = cos ε′′; x+x′′

r = cos ε; hence ε = ε′. So we have got both features of the reflection
law (Fig. 20.2):

1. ε = ε′;

2. reflection point with P and S in a plane perpendicular to mirror.

However, without really performing the saddle-point method, we can interpret it in a nice
and general way. It was f = r + r′. Now ∂f

∂x′′ = 0 and f
y′′ = 0 mean, that the smallest

r+ r′ (or the longest) of all paths from S to any mirror point to P will be the one which really
counts. All other paths are not blocked, but they account for the oscillating contributions of
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Figure 20.2: The law of reflection: definition of the parameters used in the
derivation.

the HFK integral. The integrand (essentially) is cos[k(r+ r′)]. In this sense we can say that in
the process of reflection the essential amount of uP comes from US along the shortest r − r′.
This is one part of the so-called Fermat-principle, which Fermat (1601—1665) deduced as the
one principle underlying all known ray-optical effects.

Figure 20.3: The cosine factor illustrating the principle of the saddle-point
method.

To get an idea of how well this works, let us compute δx′ (see Fig. 20.3) cos kf ≈
cos

{
k(f0 + f ′′

0
(x′−x′

0)
2

2 + . . .)
}

, kf ′′
0

(δx′)2

2 = 2πδx′ =
√

λr
cos ε . Except for the factor 1

cos ε

this is the same “beam unsharpness”, as we will encounter later in parageometrical optics.
Even the cosine-factor is justified, considering that the mirror plane is tilted by π

2 − ε with re-
spect to the “ray”. The important consequence is that the mirror does not have to be infinitely
large; if it is only 2δx′ wide, that is enough. The rest of the mirror transmits anyway only
oscillating contributions.

Now let us derive similarly the law of refraction, which could be done more simply and
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more rigorously by using the RSD-plane wave presentation. But HFK is nicer for getting the
ray-picture out of it. We have to remember here that the wave equations for a medium with
(homogeneous) refractive index n �= 1 the k2 goes into k2n2. Hence also in the HFK integral:
k → nk. Object in (−z): δx′δy′; from there to z = 0 in medium n1

Figure 20.4: The law of refraction: definition of the parameters used in the
derivation.

u(x′′, y′′, 0) =

∫∫
δx′δy′ cos ε′′

ein1kr′′

λr′′

n1

dx′dy′ = cos ε′1
ein1kr′

1

λr′

n1

r1 =
√
z2 + x′′2 + y′′2; cos ε1 =

z

r1
(20.5)

Now from z = 0 to +z in medium n2, particularly y = 0 and x = x:

u(x, 0, z) =

∫∫
cos ε1 cos ε2

eik(n1r1+n2r2)

λ1r1λ2r2
dx′′dy′′; λ1 =

λ

n1
; λ2 =

λ

n2

r2 =
√
z2 + (x− x′′)2 + y′′2; cos ε2 =

z

r2
(20.6)

Again we use the saddle point method: g=(cos ε1,cos ε2)
r1r2

; f = n1r1 + n2r2; ∂f
∂x′′ = 0 and

∂f
∂y′′ = 0. Select the saddle point (x0, y0) such that the optical path n1r1 + n2r2 will be a
minimum (Fermat).

∂f

∂y′′
= 0 = y′′

(
n1

r1
+
n2

r2

)
→ y′′0 = 0 (20.7)

∂f

∂x′′
= 0 =

n1x
′′
0√

z2 + x′′0
+

n2(x
′′
0 − x)√

z2 + (x− x′′0 )2

This equivalent with n1 sin ε1 = n2 sin ε2 . It is due to Snell (1581 - 1626). A δx-
consideration would come out just as it did for reflection.
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20.3 What are Shadows or “Non-Rays”?

The way we have so far introduced “rays” is not yet quite satisfactory, because we would like
to be sure, that what is called a “ray” during this lecture is the same as the “ray” we know
from daily life. What do we know about daily-life rays? If your eye perceives a candle light,
and you move a finger along a straight line from your eye to the candle light, your finger will
move right into the source which causes the light sensation in your eye. You will feel it, to be
convinced. If you move your finger in another direction, where your finger will not feel that
hot sensation, then you may conclude that there is no candle-light; or if your finger hits a cold
obstacle, you may conclude that some cold obstacles will stop the rays. Based on these simple
experiences you will conclude that rays go straight, and can be blocked. (Let us assume that
the medium is air, so that you are not fooled by such light-ray deviating effects as reflection
and refraction).

All this suggests that we should investigate an experiment as show in Fig. refshadow. We
want to find out if a wave-optical investigation gives (at least in approximation) the same result
as we expect from our “daily-life rays”.

Figure 20.5: Experimental investigation of shadow effects based on ray-optics.

First step from z = 0 to z = z′:

u(x′, y′, z′) =

∫∫
u(xs, ys, 0) cos ε′

eikr′

λr′
dxsdys (20.8)

where : r′ =
√

(x′ − xs)2 + (y′ − ys)2 + z′2; cos ε′ =
z′

r′

Point source:

u(xs, ys, 0) = δ(xs, ys)→ u(x′, y′, z′) = cos ε′
eikr′

λr′
(20.9)

now : r′ =
√
x′2 + y′2 + z′2
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Second step from z = z′ − 0 to z = z′ + 0

u(x′, y′, z′ − 0)→ u(x′, y′, z′ + 0) = S(x′, y′)︸ ︷︷ ︸
screen,
either 1 or 0

·u(x′, y′, z′ − 0) (20.10)

The second step is what we called “Kirchhoff-approximation”.
Third step from z′ + 0 to z:

u(x, y, z) =

∫∫
u(x′, y′, z′ + 0) cos ε

exp ikr

λr
dx′dy′ (20.11)

r =
√

(x− x′)2 + (y − y′)2 + (z − z′)2; cos ε =
z − z′
r

Inserting u(x′, y′, z′ + 0) as we know it already yields:

u(x, y, z) =

∫∫
cos ε cos ε′

eik(r′+r)

λrr′
dx′dy′ (20.12)

This integral would be interpreted by Huygens like this: first the point sources created a
spherical wave, from which the screen cuts out a portion. Each point x′ in the screen (with
proper phase kr′ and amplitude) creates another spherical wave, with an additional phase kr,
where r is the distance from this secondary point source at x′ to the point of observation at x.

In order to understand this integral better we use again the method of stationary phase.
The integral has the form

∫∫
g(x′, y′)eikf(x′,y′)dx′dy′ ≈ g(x0, y0)A(x0, y0)e

ikf(x0,y0) (20.13)

whereby x0 and y0 are to be determined according to the stationary phase recipe:

∂f

∂x′
= 0 =

∂r′ + r

∂x′
=
x′ − x
r′

+
x′ − x
r
→ x′0

r′
=
x− x′0
r

(20.14)

∂f

∂y′
= 0→ y′0

r′
=
y − y′0
r

(with r′ =
√
x′2 + y′2 + z′2 and r =

√
(x− x′)2 + (y − y′)2 + (z − z′)2)

This result from ∂f
∂x′ can be interpreted very easily in terms of “rays”:

x′

r′
= sin ε′;

x− x′
r

= sin ε (20.15)
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Figure 20.6: Illustration of the ray-optical shadow obtained form the solution
of Eq. ??.

hence x′
0

r′
0

=
x−x′

0

r0
means ε′0 = ε0 or a straight line. We don’t need to calculate explicitly

the g(x0, y0) and A(x0, y0), we know already enough for our present purpose.

What we found is: the point �x in the observation plane gets essentially all its light from
that particular point �x′0 which lies in planes z′ (screen plane) on a straight line between the
source point and the observation point. Of course, the stationary phase method does not say
that there is no other wave contribution besides the straight-line contribution. All the many
other contributions, however, cancel each other, because the phases k(r′ + r) vary rapidly,
depending on the point x′, y′, in the z′ plane where these other wave contributions intercept
the z′-plane.

What happens if the “straight-line-point” (x′0, y
′
0, z

′) falls onto the screen whereS(x′0, y
′
0) =

0? In that case only oscillating contributions reach �x. Hence u(x, y, z) will be approximately
zero for those points in the observation plane from where one cannot see the source. In other
words our diffraction theory confirms that there will be shadows.

20.4 Two examples of parageometrical optics

The term “parageometrical optics”, coined by Toraldo di Francia, means that it is an approx-
imation of wave-optics, which has some typical features of geometrical optics or ray optics.
In terms of accuracy it stands in the middle. We will see that it is often useful, because it is
much simpler than the more rigorous wave optics, yet it does not neglect completely the wave
nature of light, as geometrical optics does. We will study two particular cases, and later an
application relating to Talbot images.
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20.4.1 Tilted plane wave falling onto wide screen

We will use the parabolic approximation of the HFK theory (Fig. 20.7):

in z < 0 : u(x, z) = e2πi[ν0x+
√

1−λ2ν2
0

z
λ ] (20.16)

λν0 = sinα0;
√

1− λ2ν2
0 = cosα0

in z = −0 : u(x,−0) = e2πiν0x

in z = +0 : u(x,+0) = e2πiν0xrect
( x

∆x

)
in z ≥ 0 : u(x, z) ≈ u(x′, 0)eiπ (x−x′)2

λz dx′

=

∆x
2∫

−∆x
2

e2πiν0x′

eiπ (x−x′)2

λz dx′ =

∆x
2∫

−∆x
2

e
iπ

»
(x−x′)2

λz +2πν0x′

–
dx′

Figure 20.7: Propagation of a tilted plane wave through an aperture.

[. . .] =
x′2 − 2x′(x − λν0z) + (x − λν0z)2

λz
+
x2 − (x− λν0z)

λz
= (20.17)

=
(x′ − x+ λν0z)

2

λz
+ 2ν0x− λzν2

0

u(x, z) = eiπ(2ν0x−λzν2
0)

∆x
2∫

−∆x
2

eiπ
(x′−x+λν0z)2

λz dx′ (20.18)
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Figure 20.8: Real part of the integrand in Eq. 20.18.

To evaluate the integral, let’s plot the real part of the integrand (Fig. 20.8). There will
be three significantly different cases, depending on whether the stationary phase point x′0 =
x − λν0z is either well inside of the slit range −∆x

2 ≤ x′ ≤ ∆x
2 (case 1), or close to the slit

edges x′ = ±∆x
2 (case 2), or far outside: |x′| > ∆x

2 (case 3). More specifically the three
cases are defined as follows:

∆x
2∫

−∆x
2

eiπ
(x′−x+λν0z)2

λz dx′ =


case 1 if |x− λν0z|+ δx < ∆x

2

case 2 if |x− λν0z| − ∆x
2 < δx

case 3 if |x− λν0z| − δx > ∆x
2 ;

(20.19)

In case (1) we add only negligible oscillating contributions, if we extend the range of
integration from [−∆x

2 ,+
∆x
2 ] to [−∞,∞]:

case 1 : =

∞∫
−∞

eiπ
(x′−x+λν0z)2

λz dx′ =

∞∫
−∞

eiπ x′2

λz dx′ =
√
iλz (20.20)

The case (2) is somewhere between (1) and (3). It is the philosophy of parageometrical
optics to forget about this (2)-part, and pretend as if only (1) and (3) existed. In a minute we
will see if and how this makes sense in the experimental situation we are considering now.
In case (3) the integral is practically zero because only the oscillating parts of cos(. . . x′2)
contribute.

The width δx of the stationary phase center region is defined by an increase of the cos-
argument by π from x′0 to x′0 + δx. At x′0 itself the cos-argument is zero. We conclude:

π
(δx)2

λz
= π or δx =

√
λz (20.21)
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Figure 20.9: Illustration of the parageometrical region on the example of a
plane wave.

In Fig. 20.9 the various case (1), (2), and (3) are indicated in the (x, z) space. Obvi-
ously the region (2) is negligible as long as δx � ∆x. In other words the parageomet-
rical approximation makes sense if δx � ∆x. Together with δx =

√
λz this leads to

condition for the validity of parageometrical optics:

z � (∆x)2

λ
(20.22)

The actual solution for the region (1) is:

u(x, z) ≈ C′eiπ(2ν0x−λzν2
0 )

√
iλz (20.23)

The factor C′, which is usually dismissed as uninteresting, contains a factor eikz . When
not neglecting this factor eikz we get:

u(x, z) = ei(kz+2πν0x−πλzν2
0) = e

2πi

»
ν0x+z

(1−0.5λ2ν2
0)

λ

–
≈ e2πi

h
ν0x+
√

1−λ2ν2
0

z
λ

i
(20.24)

which is the same plane wave which illuminated the slit. In summary we have:

u(x, z) ≈
{
e
2πi

h
ν0x+
√

1−λ2ν2
0

z
λ

i
: in region (1);

0 : in region (3).
(z > 0) (20.25)

Terminology
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Before we continue let’s comment briefly on terminology. The rigorous RSD-formula
holds for every distance z ≥ 0 behind the diffraction object in z = 0. Evanescent waves
are significant mainly in 0 ≤ z ≤ 4λ, wherby 4λ is of course not a sharp limit. The

parageometrical-optics approximation is reasonably good in 4λ < z ≤ (∆x)2

λ . In the z-region
of Fresnel-diffraction it is meaningful to approximate like: exp ikr = exp ik

√
z2 + x2. That

will be the case, if the next higher term in the exponent’s expansion is < π
4 ; in other words

kz
(

x
z

)4
< π

4 →
∣∣x

z

∣∣2 < λ
z or |x| < (zλ)

1
2

(
z
λ

) 1
4 . Finally, Fraunhofer diffraction will occur

in z > (∆x)2

λ . These statements will be verified in detail.

20.4.2 A spherical wave falling onto a wide slit

Now the second example of parageometrical optics: A (convergent) spherical wave falls upon
a slit of width ∆x. At z < 0: u = e−ikr

r , r =
√

(z − z1)2 + (x− x1)2 + (y − y1)2. The
minus sign indicates convergence rather than divergence. At plane z = −0:

Figure 20.10: Illustration of the parageometrical region on the example of a
spherical wave.

u(x,−0) =
e−ikr0

r0
≈ 1

z1
e
−ikz1

»
1+

(x−x1)2

2z2
1

–
(20.26)

At plane z = +0 : u(x,+0) = u(x,−0)rect
(

x
∆x

)
.

At plane z > 0:
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u(x, z) ≈
∫
u(x′,+0)eiπ (x′−x)2

λz dx′ =

∆x
2∫

−∆x
2

e
iπ
λ

»
− (x′−x1)2

z1
+ (x′−x)2

z

–
dx′ (20.27)

We investigate now the square bracket:

[. . .] = x′2
(

1

z
− 1

z1

)
+ 2x′

(
x1

z1
− x

z

)
+
x2

z
+
x2

1

z1
= (20.28)

=
z1 − z
zz1

{
x′2 + 2x′

(
x1

z1
− x

z

)
zz1
z1 − z +

(
x1

z1
− x

z

)2(
zz1
z1 − z

)2
}

+
x2

z
+
x1

z1
−
(
x1

z1
− x

z

)2
zz1
z1 − z

where: {. . .} =

[
x′ +

(
x1

z1
− x

z
zz1

z1−z

)2
]

.

The position of the stationary phase point is x′0 = −
(

x1

z1
− x

z

)
zz1

z1−z . We distinguish three
cases:

1. if x′0 is well inside of the integration range−∆x
2 ≤ x′ ≤ ∆x

2 ;

2. if x′0 is close to +∆x
2 or−∆x

2 ;

3. if x′0 is well outside of the integration region.

The width δx of the stationary phase region around x′0 is given by π
λ

z1−z
z1z (δx)2 = π →

δx =
√
| λzz1

(z1−z) |; or δx√
λ

1√
| 1z − 1

z1
| .

We notice that z = z1 is a special case which we will have to treat separately. If we are

still relatively close to the object, say z < z1

2 , then δx =
√

λzz1

z1−z =
√
λz
√

z1

z1−z ≈
√
λz.

So the case (2) zones are again fairly small, if
√
λz
√

z1

z1−z is small compared to the cone-

width ∆xz1−z
z1

at plane z (compare Fig. 20.10). From ∆x (z1−z)
z1

� δx it follows that

z � (∆x)2

λ

(
z1−z

z1

)3

. The centers of the (2)-zones occur when one of the integration lim-

its ∆x
2 coincides with the stationary phase point at x′0(z). This happens right on the edge of

the ray-optical cone, which converges at (x1, z1) and which touches the edges of the slit.

Now let us see if the case (1) solution inside of the cone is really a spherical wave. Hence
we compute u(x, z) for case (1). Since x′0 is supposed to be well inside of −∆x

2 � x′ �
+∆x

2 , we can expand the integration limits:
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+∆x
2∫

−∆x
2

. . .dx′ =

+∞∫
−∞

. . .dx′ (20.29)

because only oscillating parts are added that way. After shifting coordinates (x′ − x′0 =
x′′) we get:

+∞∫
−∞

e
iπ

h
(z1−z)

λzz1

i
x′′2

dx′′ =

√
iλzz1

(z1 − z) = e±i π
4

√
λzz1
|z1 − z| (20.30)

The sign-ambiguity of the phase factor e±
iπ
4 =

√
i

±1 refers to the two depth ranges

z1 − z > 0 or ¡ 0. The case z = z1 will be treated separately. Hence there is a phase jump
of the wavefield along the z-direction at z = z1 This phase jump ( π

2 in the x, z case and π in
x, y, z) has been known for about 100 years, due to Gouy. The other phase factors outside of
the
∫
. . . dx′ were (see Eq. 20.28 on page 225):

e
iπ
λ

»
x2

z −x2
1

z1
−

“
x1
z1

− x
z

”2 zz1
z1−z

–
= e

iπ
x2−x2

1−2xx1
λ(z1−z) (20.31)

The waves crest are where the exponent is 2πN (N is integer). From this it follows

z − z1 =
(x−x1)

2−2x2
1

2Nλ . This is the parabolic approximation of a set of concentric circles
around (x1, z1). Adjacent circles are separated by one wavelength λ. Hence these circles are
the spherical wavefronts we hoped to find.

We have seen at least twice in this parageometrical analysis that z = z1 would be a bad
case, where some formulas blew up. For example on page 225 we had the formula (Eq. 20.28):

u(x, z) = e
iπ
λ

»
x′2( 1

z − 1
z′ )+2x′

“
x1
z1

− x
z

”
+ x2

z +
x2
1

z1

–
dx′ (20.32)

Now let us specialize and set z = z1. If we would expand the integration limits to ±∞ we
would get a delta function:

u(x, z1) =

∆x
2∫

∆x
2

e2πix′ x1−x
λz1 dx′eiπ

(x2−x2
1)

λz1 ≈
∞∫

−∞
e2πix′ x1−x

λz1 dx′eiπ
(x2−x2

1)

λz1 (20.33)

and
∞∫

−∞
e
2πix′ x1−x

λz1 dx′ = δ

(
x1 − x
λz1

)
= λz1δ(x − x1) (20.34)
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This result describes a sharp point in plane z = z1, at x = x1. However, it is more realistic
to maintain the finite integration limits. Thereby we arrive for the focal plane z = z1 at the
following solution:

u(x, z1) = C′eiπ
(x2−x2

1)

λz1 ∆x sinc

{
∆x

λz1
(x1 − x)

}
(20.35)

Figure 20.11: The shape of the sinc-function.

|u(x, z1)|2 ∼ sinc2 {. . .} is a “diffraction point” of width λz1

∆x . The finite width of this
point is the cause of the limit of resolution.

Summary of parageometrical optics:
Waves impinging on a relatively wide opening ∆x, continue to propagate undisturbed

within a cone, which is determined by the opening and the convergence point. Outside of
that cone the amplitude is zero (shadow). Hence in a situation like this one, waves propagate
almost like rays. But the phase is remembered in the theory of parageometric optics.

20.4.3 An application of parageometric optics:

The walk-off effect in Talbot imaging
On page 195 we had studied the walk-off effect which limits the spectral resolution of

the Talbot-Fourier spectrometer. We concluded from the geometry of the setup as shown in
the Fig. 18.9 on page 195 that the various diffraction orders will be completely separated at a
distance zmax = Md2

λ , whereM is the number of periods within the finite width of the grating.
We assumed tacitly that the various grating diffraction orders can be described as plane waves
of finite width. With the help of parageometrical optics we will show that this description is
indeed justified for z ≤ zmax

The trick which we use is the following concept:
FINITE GRATING = INFINITE GRATING, FOLLOWED BY FINITE SLIT.

In other words we assume that the following two objects will create identical diffraction
effects:
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Object (1): a grating of finite width B = Md, surrounded by an opaque frame.
Object (2): an infinitely large grating, with an opaque frame of inner width B = Md
immediately behind that grating.

The second object is infinitely expensive, but it allows us to split the interaction between
light and object into two steps, at least in concept. We assume that an infinitely extended
monochromatic plane wave hits the infinite grating. In this pure case many infinitely extended
plane waves will be created immediately behind the grating. Each plane wave is a diffraction
order with its specific direction of propagation. Now each of these tilted plane waves with
infinite width hits the frame of finite width. The resulting effect was treated in detail as the first
example of parageometrical optics. We have now many tilted plane waves of finite widths. The
edges of these finite plane waves are blurred over a lateral region δx =

√
λz! It is meaningful

to talk about finite plane waves as long as the blur width δx is small compared to the wave
width B = Md:

δx�Md;
√
λz �Md; z � (Md)2

λ
(20.36)

This distance z however is much larger than zmax = Md2

λ (if M � 1). The zmax distance
is the longest length over which it makes sense to operate the Talbot-Fourier spectrometer.
Beyond zmax no Talbot images appear anymore due to the walk-off effect. In other words long
before the edges of the finite plane waves are significantly blurred will the grating diffraction
orders be completely separated.
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In this chapter we want to demonstrate again that Fresnel diffraction experiments can be use-
ful, contrary to some widespread opinions. In particular we want to present a method of “key
word detection” which might be useful in a library or in any large filing system as is used in
government agencies and big companies. Suppose you are interested in optics, and you got a
big book with many miscellaneous topics in it, most of them not “optics”. If neither the table
of contents nor the subject index is useful you would have to take a glance at every page and
see if the word “optics” is present. If so a more detailed study would follow.

There are several methods which could do such a job. These methods have all their specific
advantages and disadvantages, which are related to speed of operation, speed of preparation,
price, reliability and so on. The “speed of preparation” is an important feature, which some-
times is not sufficiently appreciated. For example in our case the “input” has to exist in the
form of a transparency. In other words we have to assume that the library or file is pho-
tographed on microfilm. This requirement is somewhat limiting, but probably not much of
handicap in the future. Books and files at normal size (ready or reading and copying with-
out magnification) are just too bulky. Another requirement is that the “target” or “keyword”
(in our example, “optics”) exists also in the form of a transparency. This latter requirement is
comparatively easy to satisfy. In other methods one has to make a hologram of the “keyword”,
which is more difficult.

The theory and the experiments are described in a paper on “Signal Detection by Corre-
lation of Fresnel Diffraction Patterns”. It appeared in Applied Optics, vol. 6, pages 2171 -
2175, in 1967. The standard abbreviation of such a reference is: Appl. Opt. 6, 2171 (1967).
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Fraunhofer-Diffraction is usually defined as “observer very far away from diffraction object”.
But we will see that this definition is too narrow when we study several configurations which
give the “Fraunhofer diffraction pattern”.

22.1 Observer at distance R—no lens is involved

Figure 22.1: Schematic of the configuration for Fraunhofer diffraction.

Observer P is at distance R from the object center (0, 0, 0).

P (R sinα︸ ︷︷ ︸
xP

, R sinβ︸ ︷︷ ︸
yP

, R cos ε︸ ︷︷ ︸
zP

) cos ε =

√
1− sin2 α+ sin2 β (22.1)

Start from z = 0, where u(x, y, 0) = u0(x, y), and ũ0(ν, µ) =
∫∫
u0(x, y)e

−2πi( nux+µy)

dxdy. Now use RSD for propagation from z = 0 to observer in P .

uP = u(xP , yP , zP ) = u(R sinα,R sinβ,R cos ε) = (22.2)

=

∫∫
ũ0(ν, µ)e2πiR(ν sin α+µ sin β+

√
1−λ2(ν2+µ2) cos ε

λ )dνdµ

This integral is built up of many plane waves (and also evanescent waves, which however
are negligible at R � λ ), but only one of them really contributes significantly in point P .
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It is the one with a �k-vector going from (0, 0, 0) to P , as we will see by making use of the
saddle-point method for solving the uP -integral.

uP =

∫∫
ũ(ν, µ)e2πiRf(ν,µ)dνdµ; (22.3)

f(ν, µ) = ν sinα+ µ sinβ + cos ε

√
1− λ2(ν2 + µ2)

λ

2πR stands for the “large constant” in the exponent, which in most earlier cases was k.
The saddle-point follows from:

∂f

∂ν
= 0;

∂f

∂µ
= 0; sinβ − cos ε

λ

λ2µ√
. . .

= 0 (22.4)

0 = sinα− cos ε

λ

λ2ν√
. . .

;
λν0√
. . .

=
sinα

cos ε
,

λµ0√
. . .

=
sinβ

cos ε

Now we try to compute cos ε. Since cos2 ε = 1 − sin2 α − sin2 β, it is given by sin2 α
cos2 ε +

sin2 β
cos2 ε + 1 = 1

cos ε ; we insert earlier results:

(λν0)
2 + (λµ0)

2 + (
√
. . .)2

√
. . .

=
λ2ν2

0 + λ2µ2
0 + 1− λ2(ν2

0 + µ2
0)

1− λ2(ν2
0 + µ2

0)
=

1

1− λ2(ν2
0 + µ2

0)

(22.5)

hence:

cos ε =
√

1− λ2(ν2
0 + µ2

0)→ λν0 = sin ε; λµ0 = sinβ (22.6)

We need also:

∂2f

∂ν2
= −λ cos ε

∂ ν√
...

∂ν
= −λ cos ε

1− λ2µ2
0

(
√
. . .)2

= −λ1− λ2µ2
0

cos2 ε
(22.7)

∂2f

∂µ2
= −λ(1− λ2ν2

0)

cos2 ε

∂2f

∂ν∂µ
= − cos ε λν0

∂ 1√
...

∂µ
= −λν0 cos ε

λ2µ0

(
√
. . .)2

= −λ
3ν0µ0

cos2 ε

∂2f

∂ν2
· ∂

2f

∂µ2
− ∂2f

∂ν∂µ
=

λ2

cos4 ε

{
(1 − λ2µ2

0)(1− λ2ν2
0)− λ4ν2

0µ
2
0

}
=

λ2

cos2 ε

since : {. . .} = 1− λ2(ν2
0 + µ2

0) = cos2 ε
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Now we have everything together for the saddle-point integral (see page 116):

uP (R sinα,R sinβ,R cos ε) ≈ cos ε

λR
ei[2π R

λ + π
2 ]ũ0

(
sinα

λ
,
sinβ

λ

)
(22.8)

The configuration (Fig. 22.1) which gives this nice result is particularly well justified in
X-ray diffraction, where R

λ is very, very large, say 109 for R = 1m and λ = 10−9 m = 10 Å.

22.2 Plane wave illumination—single lens

“Infinity” is something defined as the place where parallel rays meet. This is what actually
happens in the rear focal plane of a lens. Hence, to observe the Fraunhofer diffraction at
infinity, we might introduce a lens, which permits a reasonably short setup compared to the
previous one.

Figure 22.2: Fraunhofer diffraction setup with a single lens.

z < 0 : u = eikz monochromatic plane wave; z = z0 − 0 : eikz0

z = z0 + 0 : eikz0u0(x, y) = eikz0

∫∫
ũ(ν, µ)e2πi[νx+µν]dµdν (22.9)

From now on we will use the approximated HFK-formula, whereby factors such as eikz0

are omitted. From z = z0 + 0 to z = f − 0:

u(x′′, y′′, f − 0) =

∫∫
u(x′, y′, z0 + 0)e

iπ
[(x′′−x′)2+(y′′−y′)2]

λ(f−z0) dx′dy′ (22.10)

Now through the lens, from z = f − 0 to z = f + 0:

u(x′′, y′′, f + 0) = u(x′′, y′′, f − 0) e−iπ x′′2+y′′2

λf︸ ︷︷ ︸
phase factor
describing the
lens action

(22.11)
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Finally propagation from z = f + 0 to z = 2f , which is the rear focal plane of the lens:

u(x, y, 2f) =

∫∫
u(x′′, y′′, f + 0)eiπ [(x−x′′)2+(y−y′′)2]

λf dx′′dy′′ (22.12)

Now we put all these steps together into one final formula:

u(x, y, 2f) =

∫∫∫∫
u(x′, y′, z0 + 0)ei π

λ [...] dx′dy′dx′′dy′′ (22.13)

[. . .] =
(x′′ − x)2 + (y′′ − y)2

f − z0 +
(x− x′′)2 + (y − y′′)2

f
− x′′2 + y′′2

f

For u(x′, y′, z0 + 0) we set the object u0(x
′, y′) =

∫∫
ũ0(ν, µ)e2πi(νx+µy) dν, dµ:

u(x, y, 2f) =

∫∫∫∫∫∫
ũ0(ν, µ)ei π

λ{...} d(ν µ x′ y′ x′′ y′′); (22.14)

{. . .} = [. . .] + 2λ(νx′ + µy′) =

{
x′′2

(
√
f − z0)2

+ 2x′′
(

x′

f − z0 +
x

f

)}
+

x′2

f − z0 +
x2

f
+ 2λνx′ + (etc in y′′, y′, y, µ)

(i.e., for convenience we write only the x-terms, the y-terms being similar).

{. . .} =

{
x′′√
f − z0

−
√
f − z0

(
x′

f − z0 +
x

f

)}2

− (f − z0)
(

x′

f − z0 +
x

f

)2

(22.15)

the x′′integral is:

∫
ei π

λ{...}dx′′ =︸︷︷︸
variable
shifted

∫
ei π

λ x′′2

dx′′ = const.; similarly :

∫
. . .dy′′ (22.16)

Now u(x, y, 2f) is a four-fold integral:

u(x, y, 2f) =

∫∫∫∫
ũ(ν, µ)ei π

λ [...]d(x′ y′ ν µ) (22.17)

with : [. . .] = −(f − z0)
(

x′

f − z0 +
x

f

)2

+
x′2

f − z0 +
x2

f
+ 2λνx′ + etc. (in µ y y′)

=
zx2

f2
+ 2x′

[
λν − x

f

]
+ etc.
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u(x, y, 2f) = eiπz0
(x2+y2)

λf

∫∫∫∫
ũ(ν, µ)e2πi[x′(ν− x

λf )+y′(µ− y
λf )]d(x′ y′ ν µ) (22.18)

Herin
∫
e2πix′(ν− x

λf )dx′ = δ
(
ν − x

λf

)
; hence

∫
. . .dν means ν → x

λf . Similarly∫∫
. . .dy′dµ ∼ µ→ y

λf

u(x, y, 2f) = eiπ x2+y2

λf ũ

(
x

λf
,
y

λf

)
(22.19)

Again, the Fraunhofer diffraction experiment accomplishes a two-dimensional Fourier
transformation of the complex light amplitude. If the quadratic phase factor disturbs, one
may set z0 = 0, meaning that the object is in the front focal plane of the lens. Most of
the time, however, this factor does not matter, since what we see is only |u(x, y, 2f)|2 =

|ũ
(

x
λf ,

y
λf

)
|2. If, however, the light continues to travel beyond the rear focal plane 2f , then

this quadratic phase is important, for it is the only thing which “remembers” where (at z0) the
object u0(x, y) was.

22.3 About the lens used for creating “infinity”

A lens may have defects, called “aberrations”, which create wrong phases (details later); the
lens may also have amplitude defects (dust, dirty fingerprints), and a lens is imperfect because
its diameter is finite. The influence of the lens diameter in connection with Fraunhofer diffrac-
tion is usually neglected in the literature. We will see that the allowable object diameter a, the
lens diameter h, and the frequency range ∆ν of the object are interrelated. For simplicity we
assume a one-dimensional object u0(x) = u00(x)rect

(
x
a

)
;

rect
(x
a

)
=

{
+1 in − a

2 ≤ xa
2

0 elsewhere
(22.20)

u00(x) is the “object per se”, and “rect” describes the “field limits”. u00(x) may have
a Fourier spectrum or spatial frequency spectrum ũ00(ν) which is non-zero only in −∆ν

2 ≤
ν ≤ ∆ν

2 . When the illuminating plane wave hits the object per se u00(x) at z = 0 a particular
frequency component e2πixν0 of u00(x) (hence |ν0| ≤ ∆ν

2 ) will produce a tilted plane wave:

e
2πi

“
ν0x+
√

1−λ2ν2
0

z
λ

”
, which then hits immediately the field limitaction rect

(
x
a

)
. According

to parageometrical optics, what this rect
(

x
a

)
does is essentially only to limit the plane wave

laterally. While being confined to within −a
2 ≤ x ≤ +a

2 at z = 0, it will be shifted upwards
by an amount f tanϕ when reaching the lens, where ϕ is the diffraction angle, given by
λν0 = sinϕ, which is the same as λ/d = sinϕ. Hence the upper end of the limited plane
wave is at a

2 + f tanϕ ≈ a
2 + f sinϕ = a

2 + fλν0. For the largest possible frequency
νmax = ∆ν

2 , this is at x = a+λ∆νf
2 . This “ray” should still be caught by the lens. Otherwise
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Figure 22.3: Fourier transforming properties of a single lens (“creating infin-
ity”).

the finite diameter h of the lens would degrade the Fourier-transform action of the lens. Hence
we require a+λf∆ν

2 ≤ h
2 , or

a+ λf∆ν ≤ h (22.21)

Looking at Fig. 22.3, it becomes obvious that λf∆ν is also the area of the rear focal
plane, which really contains ũ0(ν). Calling the useful diameter of the rear focal plane b, we
can write:

a+ b ≤ h (22.22)

Figure 22.4: Loss of high frequencies due to the limited aperture of a single
lens.

As a counter-example let us see what happens if the object u00(x) has a coarse grating on-
axis, and a fine grating (higher frequency) off-axis. The high frequencies are not caught by the
lens. Hence, the observation at 2f is misleading. The above condition can also be interpreted
in this way: given a lens of diameter h, and an object of diameter a. We can be sure to analyze
all frequencies |ν| ≤ h−a

λf . But our analysis at higher frequencies will be inaccurate.



22.4 The “light tube” 237

22.4 The “light tube”

This is yet another way to accomplish Fraunhofer diffraction. It is not too well known, al-
though it is simple and practical. It consists of two equal lenses separated by one focal length
f . Assume u(x, y,−0) is known, possibly because a plane wave eikz fell onto an object
u(x, y) in that plane. The first lens with focal length f acts like this:

u(x, y,−0)︸ ︷︷ ︸
z=−0

→ u(x, y,+0)︸ ︷︷ ︸
z=+0

= u(x, y,−0)eiπ x2+y2

λf (22.23)

Figure 22.5: The configuration of the “light tube” for generating Fraunhofer
diffraction.

Next we have a propagation process over the distance f :

u(x, y, f − 0) =

∫
u(x′, y′,+0)eiπ (x−x′)2+(y−y′)2

λf dx′ dy′ (22.24)

Thereafter comes the second lens:

u(x, y, f − 0)→ u(x, y, f + 0) = u(x, y, f − 0)eiπ (x2+y2)
λf (22.25)

Altogether we get:

u(x, y, f + 0) = e−iπ x2+y2

λf

∫∫
u(x′, y′,−0)e−iπ x′2+y′2

λf eiπ (x−x′)2+(y−y′)2

λf dx′ dy′

(22.26)

All square-terms in the exponents cancel. A Fourier transform remains:

u(x, y, f + 0) =

∫∫
u(x′, y′,−0)e−2πi xx′+yy′

λf dx′dy′ = ũ

(
x

λf
,
y

λf
,−0

)
(22.27)

An attractive feature of this type of “Fourier transformer” is the simple fashion in which
the lens diameters influence the operation.



238 22 Fraunhofer Diffraction

22.5 Convergent illumination

The most obvious approach would be to start from the source, propagate to the lens, traverse
through the lens etc.; in other words, compute always in the same direction as the light actually
propagates. However it is much simpler to compute the way I have sketched as “symbolic
path” in Fig. 22.6. This includes computation-wise also a backwards-propagation, or “virtual
propagation”. Physically, a virtual propagation means this: assume we know u(x, z2), and
we know the light propagates in the positive z-direction. If we now compute u(x, z1) with
z1 < z2 it means: what must u have been like in plane z1, in order to come up with u(x, z2)
in plane z2 after propagation over z2 − z1? Nothing forbids us to compute u(x, z1) from
u(x, z2) even if there were maybe some obstacles (“objects”) between z1 and z2. In that case
we cannot know that the simple u(x, z1) did not exist in z1 which was computed by virtual
propagation through free space. Nevertheless, it is sometimes quite useful to compute the
virtual wave amplitude u(x, z1), both to make the computations simple, and also because to
any observer at z ≥ z1 the field looks exactly as if it had been u(x, z1) in z1. The term “as if”
means the same a “virtually”.

Figure 22.6: Fraunhofer diffraction in convergent illumination and symbolic
path of computation.

Now let’s compute along the symbolic path. If we have set up the point source and the
lens (as in Fig. 22.6), we will move the screen along the axis, till the image point is sharp. We
will call that plane z = 0. Since the light is concentrated there into a point, it must have been
a spherical wave previously. For example in z = −z0 − 0, it must have been:

u(x, y,−z0 + 0) ≈ e−iπ x2+y2

λz0 (22.28)
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This was the first step of our symbolic path. Only now do we take the object into account.
From −z0 − 0 to −z0 + 0:

u(x, y,−z0 + 0) = u(x, y,−z0 − 0) u0(x, y)︸ ︷︷ ︸
complex
object
transmittance

(22.29)

Now a “real” propagation from z = −z0 + 0 to z = 0: (The word “real” is used here in
contrast to “virtual”, which is a somewhat unfortunate but common convention).

u(x, y, 0) =

∫∫
u(x′, y′,−z0 + 0)e

iπ (x−x′)2+(y−y′)2

λz0 dx′ dy′ = (22.30)

=

∫∫
e−iπ x′2+y′2

λz0 u0(x
′, y′)eiπ (x−x′)2+(y−y′)2

λz0 dx′ dy′

= eiπ x2+y2

λz0

∫∫
u0(x

′, y′)e−2πi xx′+yy′

λz0 dx′ dy′

= eiπ x2+y2

λz0 ũ

(
x

λz0
,
y

λz0

)

u(x, y, 0) = eiπ x2+y2

λz0 ũ

(
x

λz0
,
y

λz0

)
(22.31)

A practical convenience: by shifting the object along the axis, one can vary z0, and hence
the scale of ũ0.

22.6 Divergent illumination

z = 0 : δ(x)δ(y) (22.32)

z = z0 − 0 : eiπ x2+y2

λz0

z = z0 + 0 : u(x, y, z + 0) = eiπ x2+y2

λz0 u0(x, y)

Actually the light will continue to travel forward, but let us assume that the observer does
not focus onto the object (e.g. umbrella) but on the source (far away street light). To him it
will seem as if u(x, y, 0) had been there.

u(x, y, 0) =

∫∫
u(x′, y′, z0 + 0)e−iπ (x−x′)2+(y−y′)2

λz0 dx′ dy′ (22.33)

=

∫∫
eiπ x′2+y′2

λz0 u0(x
′y′)e−iπ

(x−x′)2+(y−y′)2

λz0 dx′ dy′

= e
−iπ x2+y2

λz0

∫∫
u0(x

′, y′)e2πi xx′+yy′

λz0 dx′ dy′
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Figure 22.7: Fraunhofer diffraction in divergent illumination.

u(x, y, 0) = e
−iπ x2+y2

λz0 ũ0

(
− x

λz0
,− y

λz0

)
(22.34)

Hence to the observer there seems to be the intensity |ũ0

(
− x

λz0
,− y

λz0

)
|2 located in plane

z = 0.

Here, as well as in the previous section on convergent illumination, we saw that “observa-
tion at infinity” is really not the necessary and sufficient feature for getting a Fourier transform
from the object. Instead it is the plane where the illuminating point source would have been
observable as a sharp point if the object were out of the beam. Hence, if Fraunhofer diffraction
shall imply a Fourier transform (as it does in fact to most people) than the term “Fraunhofer
diffraction” ought to be re-defined as being observed in the image plane of a point source.

22.7 Fraunhofer diffraction by an array of equal objects

We assume that the object consists of many equal objects which might be arranged irregularly
as in this figure or periodically as in a grating.

u(x, y) =
∑
(m)

u0(x−m, y − ym); (22.35)

ũ(ν, µ) = ũ0(ν, µ)
∑

e−2πi(νxm,µym);

|ũ(ν, µ)|2 = |ũ0(ν, µ)|2|
∑

e−2πi(νxm+µym)|2 = F (ν, µ)A(ν, µ) (22.36)
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Figure 22.8: An array of diffracting objects.

The first term |ũ0(ν, µ)|2 is often called the “form factor” F (ν, µ) because it is entirely
determined by the shape of the individual object u0. The second term |∑ . . . |2 is often called
the “array factor” A(ν, µ) because it depends only on the arrangement of the objects, not on
their form.

If the positions (xm, ym) are distributed at random the problem of computing the array
factor is the “random walk problem”. Its main features are as follows:

For ν = 0, µ = 0 : A(0, 0) = |
M∑

m=1

1|2 = M2 (22.37)

for ν �= 0, µ �= 0 : A(ν, µ) = |
∑

. . . |2 =
∑∑

e−2πi[ν(xm−xn)+µ(ym−yn)]

=
∑∑

n=m

. . .+
∑∑

n�=m

. . .

where :
∑∑

. . . = M

Now let us discuss the summation of the cross terms
∑ ∑

n�=m

. We assume that the object

locations are uniformly (but nevertheless randomly) distributed within a circle of radius R
in the (x, y) object domain: x2

m + y2
m = R2. If now ν2 + µ2 = �2 is ≥ 1

R2 then the phase
2π(νxm+µym) = 2π�rm cos(Θ−ϕm) of the series

∑
(m)

will occupy with uniform probability

the range (−2π, 2π). Hence this series will have a very small result. The expectation value of
this series is zero. This is still true if we leave out one specific term, the n-th (assuming that

M � 1). This particular series
∑

m = 1, 2, . . . M ;
but n �= m

=
(n)∑
(m)

= Cn is a part of the double series of

cross terms
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∑∑
n�=m

e−2πi[ν(xm−xn)+µ(ym−yn)] =

M∑
n=1

e2πi(νxn+µyn)Cn; (22.38)

Cn(ν, µ) =

(n)∑
(m)

e−2πi(νxm+µym); 〈Cn(ν, µ)〉 = 0 if ν2 + µ2 ≥ 1

R2

If 〈Cn(ν, µ)〉 = 0 then also 〈e2πi(νxn+µyn)Cn(ν, µ)〉 and also 〈∑
(n)

e...Cn〉. In summary

we found these feature of the array factor for a random distribution within an (x, y) circle of
radiusR:

A(0, 0) = M2; A(ν, µ) ≈M if ν2 +µ2 ≥ 1

R2
; M = number of elements

(22.39)

Now let us consider the case of a periodic one dimensional array, which is a grating:
xm = md; |m| ≤ M

2 (M even):

A(ν) = |
M
2∑

−M
2

e−2πiνmd|2 =

[
sin(πνd(M + 1)]

sin(πνd)

]2

= (M + 1)2
sinc2[νd(M + 1)]

sinc(νd)

(22.40)

Figure 22.9: The array factor for a periodic array (grating) with an increasing
number M of periods.

This function does not blow up when the denominator becomes zero because the numer-
ator will be zero too at those coordinates. But the function will have a maximum of height
(M + 1)2 whenever πνd = nπ. At a distance δν with πδνd(M + 1) = π or δν = 1

(M+1)d

on both sides of the maximum will A(ν, µ) be zero. A(ν, µ) is periodic with ∆ν = 1
d if M is
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even. M odd does not make sense since the limits of summation±M
2 ought to be integers.

Since the individual object element u0(x) is always smaller or at least not bigger than the
period d, the form factor F (ν, µ) = |ũ0(ν, µ)|2 will be wider than one period ∆ν = 1

d of the

array factor A(ν, µ). For example in the case of a Ronchi ruling it is u0(x) = rect
(

x
d
2

)
and

ũ0(ν) = d
2 sinc

(
νd
2

)
, and F (ν) =

(
d
2

)2
sinc2

(
νd
2

)
. As a general statement we can say that

the Fraunhofer diffraction pattern |ũ(ν)|2 = F (ν)A(ν) of a grating consists of spikes (due to
the array factor) which are separated by ∆ν = 1

d . The strength of these spikes is determined
by the form factor F (ν) which lies like an envelope over the grating diffraction pattern.

Figure 22.10: Diffraction amplitude of a finite diffraction grating.

Another distribution of elements occurs when the grating lines have a periodic position
error Em = B sin

(
2πmd

D

)
; xm = md + Em. The theory for this type of array factor makes

use of the Jacobi-Bessel series eiB sin(z) =
∑
Jn(B)einz . The significant feature of this

array factor are the “ghosts”. These are some extra peaks in unexpected places. Their name
expresses the despair of early spectroscopists who sometimes thought they had discovered a
new chemical element. But in reality the “ghosts” had fooled them.

22.8 Babinet’s principle

Suppose you have two complimentary diffraction objects uO(x) and uC(x) such that uO +
uC = 1. The uC object is the “negative” of the uO-object. The common but sloppy way of
stating Babinet’s principle is to say that uO and uC create the same diffraction patterns. Let’s
see in what sense this is true. We use RSD theory (which is exact). The object in z = 0 is
illuminated by a monochromatic plane wave eikz . The RSD says:
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u(x, z) =

∫
ũ(ν, 0)e2πi[νx+

√
1−λ2ν2 z

λ ]dν (22.41)

ũ(ν, 0) =

∫
u(x,+0)e−2πiνxdx

In our case it is due to uC = 1− uO(x):

ũ(ν, 0) = ũO(ν) or ũC(ν) = δ(ν) + ũO(ν) (22.42)

u(x, z) =

∫
ũO(ν)e2πi(νx+

√λ
z )dν = uO(ν, z) or uC(x, z) = eikz − uO(x, z)

|u(x, z)|2 = |uO(x, z)|2 or |uC(x, z)|2 = |uO(x, z)|2 + 1− 2Real[uO(x, z)e−ikz ]

This result is not quite expected. We get closer to what we want when specializing on
Fraunhofer diffraction because then the ‘1’ term of uC = 1 − uO is concentrated into one
point at ν = 0. Everywhere else we have ũC = −ũO and |ũC |2 = |ũO|2. Actually the pure
concept of two complimentary objects is not realistic since at least one of the two would stretch
out to x = ±∞. Instead we may compare vO(x) = u0rect

(
x
B

)
and vC(x) = uC(x)rect

(
x
B

)
with uO(x) + uC(x) = 1. |ṽC(ν)|2 = |ṽO(ν)|2 + sinc(νB)[sinc(νB)− 2Real{ṽO(ν)}].

Figure 22.11: Diffraction at complementary screens (Babinet’s principle).



23 Application of Fraunhofer Diffraction to Optical Charac-
ter Recognition

By “character” we mean in this context letters, numbers, and other information-carrying sym-
bols. It is desirable to read letters automatically at a high speed for example at the input-end of
a computer, which shall translate Chinese text into English text. Also the U.S. Post Office em-
ploys “automatic readers” for identifying ZIP codes. All existing optical character readers use
optical components such as lenses merely for “transporting” signals. The intelligent opera-
tions are all done by electric components. This must not necessarily be so as the experiment in
Appl. Opt. 4, 461 (1965) indicates. In that project the special feature is the “shift-invariance”
of the object. That means the lateral position of the input letter is uncritical. Hence one saves
the time and complexity needed for careful adjustments at high speeds like 10,000 characters
per minute.





24 Coherent Image Formation

Coherent image formation has been treated already as an application of Fresnel diffraction.
“Coherent” means that the illuminating light wave comes from a monochromatic point source.
The other types of image formation, “partially coherent” and “incoherent”, will be treated in
later chapters. Here we want to discuss typical setups for coherent image formation. Next
the theory will be presented in the form of a convolution integral. When deriving the inte-
gral which described the process of coherent image formation, we encounter the important
attributes “linear” and “space-invariant”. Their significance will be illustrated by citing also
some counterexamples. Finally, the image formation integral will be re-formulated, which
leads us to “spatial filtering”. Some spatial filtering systems will be discussed in Chap. 25,
others in a summarizing paper by A. Vander Lugt, “Summary of Optical Data Processing”,
Optica Acta 15, 1 - 33 (1968), and in a paper on “Theta Modulation”, Appl. Opt. 4, 399
(1965).

24.1 Two setups

Figure 24.1: The telecentric setup for coherent imaging.

In textbooks and publications one finds most often a drawing of the “telecentric setup”.
It is pedagogically appealing since one recognizes immediately the various Fourier transform
steps. The aperture diameter b has to be b ≤ h− a, where h refers to the lens diameter and a
to the object diameter. This was necessary (see Chap. 22) in order to assure cleancut Fourier
transforms. The name “telecentric” implies that the two lenses between object and image are
apart from each by the sum of their focal lengths (which happen to be equal in our figure
24.1). A telecentric system has the appealing feature that a plane wave in the object domain
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creates another plane wave in the image domain. All other image forming setups convert plane
waves into spherical waves and vice versa. That does not cause any serious harm, but it makes
the theory a bit clumsier. You will notice two types of rays in the figure. The full-line rays
are confined to points in the source plane and in the aperture or Fourier plane, while these
same rays are parallel in the object and image domain. The dotted rays have just the reverse
properties. We will call the dotted rays the “imaging rays” since they connect object points
with image points. The full-line rays are the “illuminating rays”.

Maybe not quite so esthetically pleasing but more useful and common in practice is the
“single-lens system” (Fig. 24.2). The image-forming lens acts also as the aperture, where the
Fourier transform of the object is displayed. The main virtue of this setup is the lower number
of glass-air boundaries. That means less reflected light and less dust from which scattered
light will emerge and soften up the image.

Figure 24.2: The single lens setup for image formation.

24.2 Convolution theory of image formation

The idea is to start with a single object point which results in a point-image or point-spread
function or impulse response called F (x). This F (x) will not be quite as sharp as the delta-
object for a number of reasons. For the moment let us look at the process of image formation
in a somewhat formalistic way as illustrated in the following figures.

Some people also include the feature “space-invariance” in “linearity”, which I consider
to be a bad practice, because it blurs the issues. A system may very well be:

• linear and space-invariant

• linear and space variant

• nonlinear and space-invariant

• nonlinear and space variant
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Figure 24.3: Image formation as convolution with a point spread function.

The first variety is most desirable, but never quite realizable. For example receivers (eye,
photo-plate, photo-detector) are never quite linear. Even such a harmless dielectric transparent
medium as glass is not entirely linear, since, at very high light power, it might create second-
harmonic light, or it will be damaged; or even heating is a non-linear effect in the sense that at
low light level the transmission properties of glass are different from those at higher intensi-
ties. Also ideal space-invariance is only a fiction. The eye, the camera, the telescope. they all
produce different image quality off-axis. However, when restricting our attention only to the
center part of the image plane, sometimes called the “isoplanatic patch”, then space-invariance
is fairly well fulfilled in most practical situations.

Why are space-invariance and linearity so desirable? These two properties make it con-
siderably simpler to interpret an image. As a counter-example, consider a sketch of a space-
variant system, where three quite different object details lead to three identical image details
(Fig. 24.4). Here, one cannot conclude from the equality of the three images that the three
objects were alike. Since image evaluation means usually to conclude from observed image
details what the original object details were by comparing known and unknown image details,
space-invariance obviously clouds the task.

Now a few comments about non-linearity, which you probably have encountered in elec-
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Figure 24.4: A space-variant imaging system.

Figure 24.5: An example of a nonlinear imaging system.

tronics. To the left in Fig. 24.5 is the object structure, in the middle the “nonlinear charac-
teristic curve”, and to the right the image structure. A nonlinearity can also create difficulties
when concluding from the observed image back to the object. As can be seen in Fig. 24.5, the
object details around x1 and x3 did suffer quite a bit from the “threshold” and “saturation”
effects of this particular nonlinearity, which is about typical for photography (except for the
sharp edges). By the way, this non-linear effect belongs to the simplest class of nonlinearities,
the so-called “point-to-point nonlinearities”, because each image point depends only on one
object point. For time-signals the corresponding class of nonlinearities is called “memoryless”
or “amnesiac”.

To make the picture complete, we must also mention why it is sometimes very desirable to
have a nonlinear and/or space-variant system. In general such systems will be advantageous if
the set of objects is somehow restricted in its generality. For example, if we know beforehand
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Figure 24.6: A specific type of nonlinearity.

that all possible objects obj(x) (see Fig. 24.6) occupy only amplitude levels between 2 and 6,
and amplitude levels≥ 6 or≤ 2 mean “noise”, then the specific nonlinear characteristic curve
would cut out all the noise, but leave the object signal untouched.

Figure 24.7: Different areas of the object field.

Or considers this example: the class of objects might have high-resolution details (spatial
frequencies up to 100 lines per mm) only in the inner portion of the object field, while the
object details in the outer portions are always coarser (spatial frequencies up to 25 mm−1).
In that case one can afford to use a lens which is considerably worse of the outer parts of the
object field as compared to the field center. If a lens-designer knows this feature of the object
set for which the lens is going to be used, he can make a lens cheaper than another one, which
would be about equally good over the whole field. This approach is actually used more or less
in designing cheaper camera lenses. Many customers will never be aware of this compromise
of highly space-variant image quality, because they tend to arrange the most important object
details close to the field center. Hence, while focusing and while later admiring the print or
the projected slide, these customers don’t notice the poor image quality at the field corners.
They don’t miss anything, because these outer image details will be unsharp anyway, because
they might be at different depths, hence defocused anyway.

These two examples, where nonlinearity or space-variance were desirable features, have
in common that the set of expected objects was restricted. In other words, we had some a
priori information about the objects. As we will see later when discussing superresolution,
such situations occur quite often, where the set of objects is somehow restricted. For the in-
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Figure 24.8: Michelsons stardiameter interferometer.

ventor this means two things: (1) recognize that the set of objects is restricted: (2) devise a
special-purpose system which covers all the free parameters of the specific object set, but not
more. There exist already many cases where such an approach has simplified the instrumen-
tation considerably in comparison to the general-purpose system. Often, it is even impossible
to advance the general-purpose instrument so far that it will handle the task. An important
classical case of this variety is Michelon’s Star-Diameter interferometer (Fig. 26.20). Set of
objects: single stars of circular shape, but unknown (angular) diameter. A general-purpose
telescope would need a diameter of 20 meters, which is impossible, so far. But for this highly
restricted object set it is not necessary to have a full lens aperture of 20 m diameter. Two
aperture pieces, 20 m apart, are enough. This special purpose instrument would be confused
if confronted with an object which does not belong to the set for which it is designed.

24.3 Spatial Filter theory of coherent image formation

We saw earlier in this chapter that the complex image amplitude v(x) is the result of convolv-
ing the object amplitude u(x) with the point-spread function F (x).

v(x) =

∫
u(x′)F (x − x′)dx′ (24.1)

If we replace u(x) and F (x) by their Fourier transforms we arrive at the filter theory of
coherent image formation, which was formulated about 100 years ago by Ernst Abbe:

u(x) =

∫
ũ(ν)e2πiνxdν; F (x) =

∫
F̃ (ν)e2πiνxdν (24.2)

v(x) =

∫
ũ(ν)F̃ (ν)e2πiνxdν; ṽ(ν) = ũ(ν) F̃ (ν)

The function F̃ is called the spatial filter function or sometimes the “pupil function”. We
can interpret it best by referring to the first figure of this chapter 24, where the image was
formed by a telecentric system. Since v(x) arrives in the image plane, and since a Fourier
transform takes place when the light travels from the aperture plane to the image plane, there
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must have been the Fourier transform ṽ(ν) at the front side of the last Fourier transform lens.
What arrives in the aperture plane from the object u(x) is its Fourier transform ũ(ν). In other
words it is:

in z = zaper−0 : ũ

(
x

λf

)
in z = zaper+0 : ṽ

(
x

λf

)
= ũ

(
x

λf

)
F̃

(
x

λf

)
(24.3)

Figure 24.9: Pupil function as low pass filter in an imaging system.

Hence we conclude that in this case the filter function F̃ (ν) is materialized by the aperture
frame. This particular filter function is a so-called “low-pass filter”. Notice: it has sharp edges,
a feature which is impossible to achieve with time-frequencies, because that would contradict
the causality axiom. This low-pass filter is responsible for the limit of resolution. One may
even say the high-frequency cutoff is the limit of resolution. However, this wordage is not
accepted everywhere, since in the past resolution meant the ability to distinguish two close
image points. But the question of how to define resolution is more a problem of semantics.
What is important here is the fact that coherent image formation can be described as a lin-
ear filter with spatial frequency transmittance properties which are characterized by the filter
function F̃ (ν). The low-pass filter is only the most simple example of a large variety of more
interesting filter functions, which will be discussed in the following chapter.
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25.1 Historical remarks about Ernst Abbe (1840 - 1905)

Ernst Abbe, the inventor of spatial filtering, was the son of a foreman in a weaving factory. His
father had to work 90 hours per week, which was typical at that time. Typical also was that a
man was a wreck at about age 40. Abbe’s father lasted till he was 48. When in 1848/49 the
students in Germany, France and Russia staged a bloody but unsuccessful revolution against
the feudalistic and capitalistic exploitation and for a socialized united country (Germany was
then split into more then 300 independent small states), Father Abbe sympathized. He helped
some persecuted students to escape from the police. Young Ernst, being a small unsuspicious
boy, was actively involved. Later Abbe read and discussed the writings of Marx, Engels,
Feuerbach and other theoreticians of social reform. One must know this background to appre-
ciate fully Abbe’s actions in his later life.

A fair report about Abbe must mention also that the owner of the factory where Father
Abbe worked paid for Ernst’s secondary education, assuming that Ernst might become an
accountant in his service. When Ernst graduated he had an argument with the factory owner
about basic human rights. He must have been very good at it, since the employer not only
released him but also paid a small stipend for two years while Abbe studied physics and
mathematics at the University of Göttingen. He got his Ph.D. after two years. His examiners
were Gauss, Riemann and Weber.

The job market for Ph.D.’s was not very good then. After two hungry years as a private
tutor Abbe became Assistant Professor of Theoretical Physics at the University of Jena. Only
full professors received a regular salary, assistant professors got parts of the fees paid by the
students in their class. In average he had seven students. Therefore he worked also part time
in industry from 6 am till noon, when the (mostly rich) students were still asleep or had a
hangover from their beer drinking contests. Abbe worked for Carl Zeiss, a craftsman who
fabricated microscopes together with his five apprentices. This was done by arranging a few
lenses behind each and trying to get a reasonably good image to emerge. Zeiss asked Abbe
to develop a quantitative systematic approach for the design of microscope objectives. Abbe
devised a ray-optical theory, but the resulting lenses were still poor because the image quality
was good only in the center of the field. This problem was overcome when Abbe discovered
the “sine-condition”. Now the image quality was uniformly mediocre across the field.
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Figure 25.1: Abbe’s ray optical theory of imaging.

The problem was that Abbe had designed the diameter h of the objective lens just as
wide as the object diameter a. As we understand now very well this prevents the diffracted
(dotted) rays from contributing to the image. Since the bandwidth for spatial frequencies is
∆ν ≤ (h−a)

λf (as we have learned in Chap. 22 in the context of Fraunhofer diffraction) Abbe’s
lenses would transmit only very low frequencies. His reason for making the lens diameter so
small was that in terms of ray optics a lens is the better the smaller it is, because it is much
easier to correct the ray paths for the on-axis region. About 100 years ago Abbe recognized
the significance of diffraction for the process of coherent image formation. At first he was
ridiculed by the scientific establishment. The diffraction (dotted) rays were called “Abbe’s
black rays”. To prove his point he devised a set of experiments, which he published in 1873.
The introductory page 413 and one of the later pages (447) are reproduced on page 257 of
these notes. He used for example as an object what we would call now a Ronchi-ruling. As
you know in the aperture plane there will be a zeroth diffraction order light spot, and more
spots from the plus- and minus-first order, from the plus- and minus-third order and so on.
The even orders happen to be dark for a Ronchi grating. First Abbe let pass only one order
through a small hole in the aperture plane. This resulted of course in uniform brightness. If
only the zeroth, plus-first and minus-first order were to pass together through the aperture the
grating image had a soft sinusoidal intensity profile. Blocking out the zeroth order decreased
the image periodicity by a factor 1

2 . With only zeroth, plus-third and minus-third order passing
through the aperture the image period became three times finer.

With these and similar experiments Ernst Abbe proved his theory to be correct. Based
on his superior fundamental understanding he was now able to make significant progress in
practical optics as well. The Zeiss microscopes were soon leading all over the world. This
was attested for example by an American customer who insisted on playing more for the
microscope after he received it and appreciated it. But the Zeiss company refused to accept
the voluntary overpayment. Another proof of the high quality of Zeiss microscopes was the
discovery of bacteria by the country doctor Robert Koch. Until then it was generally believed
that illnesses such as TB and cholera are caused by something like a philosophical affliction.
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Figure 25.2: Two pages from the original publication by E. Abbe
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Success meant growth of the Zeiss company and also personal wealth for Ernst Abbe, who
had become a co-owner with Carl Zeiss. Besides inventing, managing, taking care without
secretary or typewriter of the English correspondence, Abbe devoted more and more time to
the social aspects of a large company. A conflict on such issues arose between Abbe and Zeiss
Jr., who had taken over his father’s position. Abbe took all his money, and borrowed some
more in order to buy out Zeiss Jr. Being then the sole owner he gave almost all his property to
a foundation named after his old companion Carl Zeiss. This foundation has since then been
the owner of the Zeiss Company and of the Schott glass works. Abbe himself devised the
statutes, which said that hiring, firing and promoting should be done without regard to race,
creed or political party. These were not empty statements since Jews, atheists and socialists or
Marxists were often discriminated against. Abbe also introduced job security, the right to paid
vacation and 75% retirement income, 8-hour days (6 per week), and worker representation
on some corporation committees. The highest salary (his own) was not so exceed tenfold the
amount of a 24-year old skilled laborer. So Abbe divested himself of several million dollars
and allowed his salary to be about US$ 10,000/year. He also decided that no patents should
be applied for when an invention could lead to medical instruments. A patent is a monopoly.
It is immoral to exploit a monopoly at the expense of ill people. To my knowledge this is
the rule which Abbe’s successors abolished under competitive pressure. Otherwise the Zeiss
Foundation is still active. It was in danger of being lost when the Russians occupied Jena as
part of East Germany and declared all property to be owned by the people. However, many
Zeiss employees fled to West Germany, where they set up a new company, which installed the
Foundation rules after a few years.

When reading any book on the theory of optical instruments the name Abbe appears quite
often. But Abbe himself was prouder of his social achievements. He held that social progress
by evolution, not by revolution, is the way to go for a rational people. His example inspired
other employers and even the parliament of Prussia, which conceived about 90 years ago the
first social laws anywhere installed, to my knowledge.

25.2 Phase contrast microscopy

Another optical physicist who contributed greatly to medical instrumentation was the Dutch-
man Fritz Zernicke, who invented around 1930 the phase contrast microscope. Its virtue is to
make small phase objects visible. Before that phase objects (like bacteria) had to be stained
as introduced by Robert Koch. Some bacteria rejected every stain, and most of them died in
the process, which is undesirable from the scientific research point of view.

We can treat phase contrast as a special case of spatial filtering. For convenience we
assume the object to be periodic (Fig. 25.3).
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Figure 25.3: The phase object an the phase contrast filter.

u(x) = eiϕ(x) =
∑

Cne
2πin n

d (25.1)

C0 =
(
1− a

d

)
+
a

d
eiϕ(x)

Cn =
a

d
sinc

(na
d

) (
eiϕ0 − 1

)
The zeroth order coefficient C0 hits the center part of the phase contrast filter where the light
is reduced in amplitude by a factor A and phase-shifted by α. All other diffraction orders
(n �= 0) pass through the filter without modification (except for high frequency cutoff). Hence
we get as the image amplitude:

v(x) = C0Ae
iα +

∑
n�=0

Cne
2πin n

d (25.2)

= C0

(
Aeiα − 1

)
+

+∞∑
−∞

Cne
2πin x

d = C0

(
Aeiα − 1

)
+ u(x)

The object u(x) was either eiϕ0 around x = 0 or u
(

d
2

)
= 1.

v(0) = C0(Ae
iϕ0 − 1) + eiϕ0 ; v

(
d

2

)
= C0

(
Aeiα − 1

)
+ 1 (25.3)

The case of a small and weak biological object is best described by a
d � 1 and ϕ0 � π.

Under these conditions a phase shift α = π
2 of the filter turns out to be desirable. We neglect

all second order terms like ϕ2
0,
(

a
d

)2
and ϕ0

(
a
d

)
. Hence it is C0 ≈ 0.
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v(0) ≈ ±iA− 1 + 1 + iϕ0 = i(ϕ0 ±A); v

(
d

2

)
≈ ±iA− 1 + 1 = ±iA

|v(0)|2 = (ϕ0 ±A)
2
;

∣∣∣∣v(d2
)∣∣∣∣2 = A2 (25.4)

contrast:

|v(0)|2 − |v (d
2

) |2
|v(0)|2 + |v (d

2

) |2 =
ϕ2

0 ± 2ϕ0A

ϕ2
0 ± 2ϕ0A+ 2A2

≈ ±ϕ0

A
; if A2 � ϕ2

0 (25.5)

25.3 Differential interference contrast

This method has recently replaced phase contrast in many situations. It is sometimes called
the “Nomarski method”. The image is the first partial derivative of the object. Writing down
both the object u(x, y) and the image as Fourier integrals tells us immediately which filter
function F̃ is required.

u(x, y) =

∫∫
ũ(ν, µ)e2πi(xν+yµ)dνdµ (25.6)

v(x, y) =
∂u(x, y)

∂x
=

∫∫
2πiνũ(ν, µ)e2πi(xν+yµ)dνdµ

F̃ (ν, µ) = 2πiν; |F̃ | = 2π|ν|; arg{F̃} = ±π
2

If u = eiϕ then |v(x, y)|2 =

(
∂ϕ(x, y)

∂x

)2

25.4 Several image enhancement methods

Summarizing articles on this subject have been written by J. Tsujiuchi, Prog. Opt. 2, 133
(1963), and by A. Vander Lugt, Optica Acta 15, 1 (1968). This field is still in flux.

About 20 years ago Maréchal used amplitude filters to sharpen a washed-out image. In
that case the filter function (F̃M ) was real and positive (Fig. 25.4). It was produced by photo-
graphic means. Tsujiuchi extended the art to filters with real values, which could be positive
or negative. He wanted to compensate the blurring encountered by defocusing, and described
by a filter function F̃B . That is not quite possible where the blur filter becomes zero. His filter
F̃T consisted of two layers. The amplitude layer was a photographic emulsion. On top of it
were pieces of thin transparent film (F̃P ) which shifted the phase by π where F̃T had to be
negative. A quick but approximated theory assumes that each object point δ(x − x′, y − y′)
is converted into rect

[√
(x−x′)2+(y−y′)2

2R

]
. In other words according to geometrical optics the
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Figure 25.4: Spatial filter for image deblurring introduced by Maréchal.

point spread function of a defocussed system is a disc of radius R (Fig. 25.5).

Figure 25.5: The effect of defocussing based on geometrical optics.

The Fourier transform of the disc is the filter function F̃B of the blur process, in this case
the first Bessel function divided by the argument of that function. As stated before where F̃B

is very small or even zero a perfect compensation is not possible. But a final image which has
been subjected to F̃BF̃T is certainly better than the blurred image (Fig. 25.6). One of the lim-
itations of this method is the spatial noise due to the grains and dust in the blurred photograph.
By enhancing the higher frequencies one also enhances the noise, which usually has a fairly
flat spatial power spectrum.

If the object is known to occupy only a small frequency band while the noise is “broad-
band” it is possible to improve the signal-to-noise by filtering out all those frequencies which
contain only noise. O’Neill performed such an experiment, which is reported in Vander Lugt’s
paper. Sometimes the object covers the frequency spectrum continuously while the noise oc-
cupies only a few small spatial frequency sections. This is the case with “half-tone” prints
which contain a fine cross-grating superposed on the object. Sayanagi demonstrated that the
image can be improved if those grating frequencies are removed by appropriate black dots
in the filter function. If the structure of the cross-grating is much finer than the finest object
details the spatial frequency spectrum of this half-tone print will consist of several frequency
islands. Madame Marquet and J. Tsujiuchi performed spatial filtering experiments wherby
only one such frequency island at a time could pass through the filter. The images should have
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Figure 25.6: Image deblurring by a filter consisting of an amplitude filter |F̃T |

and a phase shifting filter F̃P .

contrast reversal and sometimes non-monotonic grey-tone modifications as shown in Optica
Acta 8, 267 (1961).

These examples represent only a small portion of the field of spatial filtering. We will
return to this area after we are familiar with holography. We will then be in a position of
producing arbitrary complex spatial filters.
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26.1 Definition of “coherent” and “incoherent” light

Coherent light is orderly in its phase distributions, while incoherent light is completely disor-
derly. Laser light is almost completely coherent, while light from thermal sources (the sun,
bulbs, etc.) is almost completely incoherent. Also in-between situations exist if laser light or
thermal light is properly manipulated by moving diffusers, pinholes, spectral filters and the
like. However this in-between situation, which is called “partial coherence”, occurs mainly in
connection with interference (Chap. 30). It does not have much signification for image forma-
tion, except in some microscopes. Hence we concentrate now on incoherent image formation.

Figure 26.1: Coherent and incoherent light sources.

The empirical test of coherence is to see if interference fringes occur. More specifically, if
we want to know whether light at (x1, z0) is coherent in relation to light at (x2, z0) we place
an opaque screen in plane z0, but with two pinholes at x1 and x2. Next we see if interference
fringes occur far away where the two spherical waves overlap. If the phase difference be-
tween the two point sources jumps in time also the interference fringes will jump around. All
receivers are time-integrators, for example the photographic plate integrates over the exposure
time, and the eye has a response time of about 1/30 sec. Hence the fringes will be wiped out
in time average if the integration time is longer than the typical interval between phase jumps.
Why such phase jumps might occur is a problem of atomic physics which will be discussed
in Chap. 30. For now it may suffice to say that self-luminous sources such as hot filaments
are incoherent. Later in this chapter we consider also other situations of incoherence. For the
time being we may think of incoherent objects as hot filaments, or the stars, or the phosphor
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grains on a CRT surface.

The theory of incoherent image formation is of course old, since the problem has existed
for a long time. But the topic became hot only around 1955. At that time I worked on
interference experiments at a university. One day some TV development engineers visited
us and asked “how many dB has a lens”? After a while we concluded they wanted to know
something about the quality of the lens used in the TV camera. We told them that lens quality
is determined by aberrations and diffraction. They did not know what aberrations are, and
we had never heard anything about dB. Since they came to us for advice we suggest that
they should learn what aberrations are. But after a while we recognized that we ought to
learn about the dB’s of the transfer function of a lens, as it was called later. At that time we
re-discovered what Duffieux in France, Schade in the U.S.A. and Hopkins in England had
done already, the linear filter theory of incoherent image formation. I like to tell this story
because it indicates that progress often arises when concepts of communications technology
and optics merge. This happened again around 1960 when the Laser emerged from the Maser
and Fabry-Pérot interferometry. Also holography can be considered as a union of heterodyne
receiver philosophy and interferometry. And the latest fad, “Integrated Optics”, is again based
on mixed concepts such as integrated electronic circuit technology, thin film optics and fiber
optics. Since fads in optics come in fairly regular 5-year intervals we may expect another one
in 1975. The big question is “what will it be”? Since all fads had their early forerunners it is
very likely that some papers exist already which are neglected by most, but will be cited often
and celebrated in 1975.

26.2 Convolution theory of incoherent image formation

Figure 26.2: Incoherent image formation.

The object may be self-luminous, emitting an amplitude A(x) with a time-varying phase
ϕ(x, t).

u0(x, t) = A(x)eiϕ(x,t); 〈u0〉 = 0; 〈|u0|2〉 = A2 = I0(x) (26.1)

The symbol 〈. . .〉 means time-averaging, or better, “time-integrating”. Now we start on
the basis of what we know from the theory of coherent image formation. An object point at
x′ with amplitude δ(x − x′) produces F (x − x′) in the image plane. F (x) is Fourier-related
to the filter function F̃ (ν) in the plane FILT. Symbolically:
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δ(x − x′) −→ F (x− x′) (26.2)

u0(x
′, t)δ(x − x′) −→ u(x

′, t)F (x− x′)∫
u0(x

′, t)δ(x− x′)dx′ = u0 −→
∫
u0(x

′, t)F (x− x′)dx′ = v(x, t)

The complex image amplitude v(x, t) has a zero-time-average if the phase ϕ(x, t) varies
wildly during the exposure time T .

〈v(x, t)〉 =

∫
〈eiϕ(x′,t)〉A(x′)F (x − x′)dx′ = 0 (26.3)

due to

〈eiϕ(x′,t)〉 = 0 (26.4)

That is not tragic since receivers do not respond to v but to |v|2.

〈|v|2〉 =

∫∫
〈ei[ϕ(x′,t)−ϕ(x′′,t)]〉A(x′)A(x′′)F (x− x′)F ∗(x− x′′)dx′ dx′′ (26.5)

We assume that the space-and-time fluctuations of the phase factor follow a delta law:

〈ei[ϕ′−ϕ′′]〉 = δ(x′ − x′′);

〈. . .〉 = lim
T→big

T
2∫

−T
2

. . .dt

 (26.6)

I hope this is intuitively appealing, since I don’t have completely convincing arguments
in support of this delta law. My guess is that the mathematical tools used by O’Neill in
“Statistical Optics” when discussing the random walk problem of complex numbers would be
adequate to develop support for the delta-law. By the way it has been used without derivation
in several journal articles by respectable authors. Using the delta law we get now

〈|v|2〉 =

∫
A2(x′)|F (x − x′)|2dx′; 〈|v|2〉 = IB ; A2 = I0; |F |2 = D

IB(x) =

∫
I0(x

′)D(x − x′)dx′ (26.7)

The recorded image intensity IB is the convolution of object intensity I0 and (incoherent)
point spread function D(x). The name “psf” indicates that D is the image of a point object.
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26.3 Linear filter theory of incoherent image formation

If all intensities in the previous convolution formula are expressed as Fourier integrals we find:

ĨB(ν) = Ĩ0(ν)D̃(ν) =

∫
IB(x)e−2πiνxdx (26.8)

The term D̃ is mostly called “optical transfer function OTF”, and its modulus |D̃| the
“modulation transfer function MTF”. Since D(x) and D(x, y) (in two dimensions) are real
the OTF obeys the reality symmetry:

D̃(ν) = D̃∗(−ν); |D̃(ν)| = +|D̃(−ν)|; θ(ν) = −θ(−ν) (26.9)

Often D(x) is symmetrical, D(x) = D(−x) or nearly so. Then it follows also that
D̃(ν) = D̃(−ν). In that case the transfer phase can be only 0 or π.

The meaning oft the OTF is best understood if we consider a special object:

I0(x) = 1 +A0 cos(2πν0x) (26.10)

Figure 26.3: Example of an object for incoherent imaging.

IB(x) = 1 +AB cos(2πν0x+ θ) (26.11)

δx = −θ(ν0)
2πν0

AB = A0|D̃(ν0)|
The formulas (Eqs 26.10 and 26.11) can easily be verified by computing the Fourier spec-

tra such as:
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Figure 26.4: The intensity distribution of the incoherent image of I0.

Ĩ0(ν) = δ(ν) +
A0

2
[δ(ν − ν0) + δ(ν + ν0)] (26.12)

It is customary to normalize the OTF at zero frequency:

D̃(ν) = 1; hence

∫
I0(x)dx = Ĩ0(0) = ĨB(0) =

∫
IB(x)dx (26.13)

This implies something about energy conservation. Actually not all of the object energy
per time

∫
I0(x)dx will arrive at the image plane since the object radiates into a much wider

angle than any lens can accept. Hence the normalization convention D̃(0) = 1 implies that
we forget for the moment any questions of absolute brightness. Only the geometrical struc-
ture of relative brightness is of interest now. The unanswered questions belong to the area of
photometry.

Sometimes the OTF is also called “contrast transfer function” (CTF or KTF). this is related
to contrast as it perceived by the almost-logarithmic eye:

C =
Imax − Imin

Imax + Imin
(26.14)

In relation to the figure on the previous page we find

Cobj = A0; Cim = AB = A0|D̃|; Cim

Cobj
= |D̃| (26.15)

In other words the MTF describes the contrast reduction.
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26.4 The Duffieux formula

We found that the incoherent psf D(x) is the modulus square of the coherent psf F (x), and
the OTF is the (normalized) Fourier transform of the incoherent psf D(x). The coherent psf
is the Fourier transform of the coherent filter fct. or “pupil fct. F̃ (ν)”.

D(x) = |F (x)|2 (26.16)

D̃(ν) =

∫
D(x)e−2πiνxdx∫

D(x)dx

F (x) =

∫
F̃ (ν)e2πiνxdν∫

D(x)e−2πiνxdx =

∫
|F (x)|2e−2πiνxdx

=

∫∫∫
F̃ (ν′)F̃ ∗(ν′′)e2πix(−ν+ν′−ν′′)dx dν′ dν′′

=

∫
F̃ (ν′)F ∗(ν′ − ν)dν′ =

∫
F̃
(
ν′ +

ν

2

)
dν′

Duffieux:

D̃(ν) =

∫
F̃
(
ν′ + ν

2

)
F̃ ∗ (ν′ − ν

2

)
dν′∫ |F̃ (ν′)|2dν′ (26.17)

or in two dimensions:

D̃(ν) =

∫∫
F̃
(
ν′ + ν

2 , µ
′ + µ

2

)
F̃ ∗ (ν′ − ν

2 , µ
′ − µ

2

)
dν′dµ′∫∫ |F̃ (ν′, µ′)|2dν′dµ′ (26.18)

Often the Duffieux-formula is written in terms of the genuine coordinates (x, y) in the
pupil domain with F̃ (x, y) and:

D(x, y) =

∣∣∣∣∫∫ F̃ (x′, y′)e−2πi xx′+yy′

λf dx′dy′
∣∣∣∣2 (26.19)

D̃(ν, µ) =

∫∫
F̃
(
x+ λfν

2 , y + λfµ
2

)
F̃ ∗
(
x− λfν

2 , y − λfµ
2

)
dν′dµ′∫∫ |F̃ (x, y)|2dxdy (26.20)

Before going deeper into the theory of the OTF we will discuss now ways to measure the
transfer function.
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26.5 Measurement of the OTF

Figs 26.3 and 26.4 indicate the most obvious way to measure the OTF. We need an ob-
ject I0(x, y) = 1 + A0 cos{2π(ν0x + µ0y)}, which will cause an image IB(x, y) = 1 +
A0|D̃(ν0, µ0)| cos{2π(ν0x + µ0y) + θ(ν0, µ0)}. Comparing the contrasts A0 and A0|D̃|
yields the MTF, while the fringe shift δx = − θ

2π�0
reveals the transfer phase (�2

0 = ν2
0 + µ2

0).
We want to know the OTF for all frequencies (ν0, µ0). Hence a test object with variable spa-
tial frequency is desirable. The Moiré grating is ideal for this purpose.

Figure 26.5: Measurement setup for OTF measurements.

object : 1 +A0 cos{2πν(t)(x− x0)} (26.21)

Assuming constant angular velocity of the two Moiré gratings ϕ = ωt we get:

ν(t) = 2 sin
ϕ(t)

d
≈ 2ωt

d
= at (|ϕ| < 15◦) (26.22)

image : 1 +A0|D̃(a, t)| cos{2πat(x− x0) + θ(a, t)}
PMT-signal, recorded at slit position x = 0:

S(t) = 1 +A0|D̃(a, t)| cos{2πax0t− θ(a, t)} (26.23)

The MFT appears as amplitude modulation, θ as phase modulation, while ax0 = 2ωx0

d
is the temporal carrier frequency. Another popular test object is a rotating drum with a bar
pattern of increasing spatial frequency on it.

The first method has the advantage that higher spatial harmonies (if the moiré patterns
are not truly sinusoidal) can be eliminated electronically. Hence the CRT displays only the
response to a true sine wave. Such an operation is not possible in the second setup where
the spatial frequencies on the drum are converted directly into temporal frequencies, which
vary also. This could be alleviated by spinning the drum faster while the low frequencies are
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Figure 26.6: OTF measurement setup 2.

imaged onto the slit.

Both methods can be inverted, which means that a slit source is imaged onto variable
sine-wave targets:

δ(x) −→ D(x) −→ D(x)[1 +A0 cos{2πat(x− x0)}] −→ (26.24)

−→
∫
D(x)[1 +A0 cos . . .]dx = same as before

Which way to go depends largely on whether a magnifying or a minifying lens is tested.

There exist also a few indirect methods. For example a moving slit δ(x − vt) may be
imaged onto a receiver slit at x = 0, which allows the display of the line spread function
D(−vt). An electronic or digital Fourier transform of the line spread function yields the OTF.
Yet another indirect method employs an edge object H(x− vt), imaged onto a receiver slit.

H(x)

{
+1 if x ≥ 0

0 if x < 0
(26.25)

H(x− vt) −→
∫
H(x′ − vt)D(x− x′)dx′ −→

∫
H(x′ − vt)D(−x′)dx′ = S(vt)

S(vt) =

+∞∫
vt

D(−x′)dx′ = (26.26)

=

v(t+dt)∫
vt

D(−x′)dx′ +

+∞∫
v(t+dt)

D(−x′)dx′ ≈ D(−vt)vdt+ S(v(t+ dt))

Hence: dS(vt)
d(vt) = −D(−vt).
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In other words, the derivative of the edge image is the line image. Electronic differenti-
ation is a simple process for getting D from S. For sake of brevity we have utilized often a
one-dimensional form. However we should clearly understand how the point-spread function
D(x, y), the line spread function and the OTF D̃(ν, µ) or D̃(ν, 0) are related to each other.

The Fourier transform of the line image L(x) is the OTF along a perpendicular line in the
Fourier domain.

D̃(ν, 0) =

∫∫
D(x, y)e2πi[νx+0]dxdy =

∫
(x)

∫
(y)

D(x, y)dy


︸ ︷︷ ︸

L(x)

e−2πiνxdx (26.27)

Figure 26.7: The relation between edge object and the resulting OTF.

26.6 Incoherent image formation with transparent objects

A slide protector is an example of an incoherent image forming system which does not employ
self-luminous objects but transparent objects. We will call the image forming system incoher-
ent if the object intensity I0(x), the image intensity IB(x) and the incoherent psf D(x) (i.e.,
the intensity distribution in the image of a point object) are related by a convolution:

IB(x) =

∫
I0(x

′)D(x − x′)dx′ (26.28)

We will show that this formula applies if the image of the extended source fills the whole
aperture.

For mathematical convenience we replace the actual projection system by a telecentric
system with 1 : 1 magnification. At first we pick only one source point xS , which allows us
to use the theory of coherent image formation. Later on we integrate . . .dxS over the source.



272 26 Incoherent Image Formation

Figure 26.8: A slide projector as an incoherent imaging system.

δ(x− xS)︸ ︷︷ ︸
in zsou

−→ e2πi
x0xS

λf −→ e2πi
x0xS

λf u0(x0)︸ ︷︷ ︸
in zobj

−→ (26.29)

−→
∫
u0(x0)e

2πi
x0xS

λf F (x− x0)dx0 = v(x;xS)︸ ︷︷ ︸
in zim

where:

in zap : F (x) =

∫
F̃

(
xF

λf

)
e2πi

x xF
λf dxF (26.30)

The complex amplitude in zsou has a fluctuating phase ϕ(xS , t) but a time-independent
modulus

√
IS(xS).

δ(x−xS) −→
√
IS(xS)eiϕ(xS,t)δ(x−xS) ∼ v(x, xS) −→ v(x, xS)

√
IS(xS)eiϕ(xS ,t)

(26.31)

Instantaneous complex amplitude in the image from all source points is:
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∫
v(x, xS)

√
IS(xS)eiϕ(xS,t)dxS (26.32)

Instantaneous intensity:

|
∫
v
√
ISe

iϕdxS |2 (26.33)

The observed time-integrated intensity IB(x) is:

IB(x) =

T∫
0

|
∫
v
√
ISe

iϕdxS |2dt = (26.34)

=

∫∫ ∫
v(x, xS)v∗(x, x′S)

√
IS(xS)

√
IS(x′S)ei[ϕ(xS,t)−ϕ(x′

S,t)]dxS dx′S dt

where :

T∫
0

ei[ϕ(xS,t)−ϕ(x′
S,t)]dt ≈ δ(xS − x′S)

This implies that the phase fluctuations at source point xS have nothing to do with the
fluctuations in x′S (unless xS = x′S). Hence

∫
. . .dx′S ∼ x′S −→ xS .

IB(x) =

∫
|v(x, xS)|2IS(xS)dxS (26.35)

Now we insert v(x, xS) =
∫
u0(x

′)e2πi
x′xS

λf F (x− x′)dx′

IB(x) =

∫∫ ∫
u0(x

′)u∗0(x
′′)e2πi

xS(x′−x′′)

λf F (x− x′)F ∗(x− x′′)IS(xS)dx′ dx′′ dxS

(26.36)

If the source is uniformly bright within |xS | ≤ ∆xS

2 we describe it by IS(xS) = rect
(

xS

∆xS

)
.

Now the xS integral can be executed.

∫
IS(xS)e2πixS

(x′−x′′)
λf dxS = ∆xSsinc

(
∆xS(x′ − x′′)

λf

)
(26.37)

This sinc-function has a peak width of δxS = λf
∆xS

. Can we treat this sinc-function like
a delta function? This depends on whether δxS is smaller than the fine image details. The
coherent image amplitude would have been:
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∫
u0(x

′)F (x − x′)dx′ = ∆xF

∫
u0(x

′)sinc

(
∆xF (x− x′)

λf

)
dx′ (26.38)

if the aperture is described by F̃ (xF ) = rect
(

xF

∆xF

)
. Since IB(x) actually consists

of integrals of this type we conclude the image resolution is determined by the peak width

δxF = λf
∆xF

of F (x) = ∆xF sinc
(

∆xF x
λf

)
. Hence we require for ∆xS sinc

(
x′−x′′

δxS

)
that

δxS ≤ 1
2δxF . Using δxS = λf

∆xS
and δxF = λf

∆xF
we get:

∆xS ≥ 2∆xF (26.39)

This means that the image of the source should be twice as big as the aperture diameter
∆xF . Several authors are satisfied with ∆xS ≥ ∆xF as a condition for achieving incoherent
illumination.

Under those circumstances it is justified to set

∫
IS(xS)e2πixS

x′−x′′

λf dxS ≈ δ(x′ − x′′) (26.40)

Hence
∫
. . . dx′′ in IB(x) has x′′ −→ x′ as consequence:

IB(x) =

∫
|u0(x

′)|2|F (x − x′)|2dx′ (26.41)

or with |u0(x)|2 = I0(x) and |F (x)|2 = D(x)

IB(x) =

∫
I0(x

′)D(x − x′)dx′ (26.42)

26.7 Lens aberrations

Soon we want to compute the OTF of a lens if the aberrations of that lens are known from
the design or from aberration measurements. But first we must clarify what aberrations really
are. There are (at least) four ways to describe the aberrations (Fig.26.9), called “longitudi-
nal”, “lateral”, “angular”, or “wave aberrations”. For the time being we will think mainly of
photographic lenses. For them the object is usually at infinity, while the image is in the rear
focal plane. Hence a perfect lens will combine a bunch of incoming parallel rays into a point
in the real focal plane. ∆s(h) is called the “longitudinal aberration” and ξ(h) the “lateral
aberration”. ξ(h) = −s(h)h

f .
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Figure 26.9: Representation of aberrations, as longitudinal, transversal, angular
deviation of the rays from their ideal path and as wavefront deviations.

The deviation between the ideal wavefront Σ0 ant the actual wavefront Σ is called the
wave aberration W (x, y). (The notations on this page are perhaps not consistent, but are ac-
cording to common practice.) Hence the complex amplitude on Σ is eikW with k = 2π

λ .
Since rays are perpendicular to wavefronts the “angular aberration α” of the actual ver-
sus ideal ray is α = ∂W

∂x . The angular aberration α is tied to the lateral aberration ξ by

ξ = − f
α = −f ∂W (x,y)

∂dx . All theses equations are correct only for reasonably small angles
since we assumed angles to be approximately equal to the tangents of those angles. For F/2
lens these approximations are considered to be good enough by most lens designers, though
not for F/1.4.

An alternative way of presenting lens aberrations is the “spot diagram” (Herzberg, Lin-
foot).

One divides the lens aperture or “pupil” into small areas of equal size. The lateral aberra-
tions ξ(xn, yn) and η(xn, yn) for the ray from the center (xn, yn) of the n-th small area are
computed for n = 1, 2 . . .N and plotted in the image plane. A high concentration of spots
indicates a bright portion of the point image. The number N of rays is typically 30 to a few
hundreds.

The relationship between lateral aberrations ξ, η and the derivatives ∂W
∂x and ∂W

∂y of the

wave aberrations can be obtained also by a wave-optical computation. One sets eikW (x,y) on
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Figure 26.10: The spot diagram for description of the lens quality.

the reference sphere and computes u(ξ, η) in the rear focal plane by means of a somewhat
modified HFK approach.

26.8 The OTF of a perfect lens

The filter function of a perfect lens is:

F̃ (x, y) =

{
+1 if x2 + y2 ≤ B

2
0 otherwise;

(26.43)

In other words the lens has no aberrations W . The amplitude transmittance is 1 within a
circle of diameter B (Fig. 26.11).

Figure 26.11: The filter function of a perfect lens.
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Duffieux:

D̃(ν, µ) =

∫∫
F̃
(
x+ λfν

2 , y + λfµ
2

)
F̃ ∗
(
x− λfν

2 , y − λfµ
2

)
dν′dµ′∫∫ |F̃ (x, y)|2dxdy (26.44)

The denominator yields simply π
(

B
2

)2
. The numerator is given by the overlap area of two

shifted circles with diameters B and center positions
(

λfν
2 , λfµ

2

)
and

(
−λfν

2 ,−λfµ
2

)
. The

resulting OTF is a conical pyramid, which is slightly sagging (Fig. 26.12).

Figure 26.12: Derivation of the OTF of the ideal lens.

χ = f
B is the stop number or F -number.

The computation of D̃(ν, µ) of the perfect lens is an exercise in trigonometry, not very
interesting. More interesting is the following intuitive derivation. We assume an object with
amplitude transmittance u0(x, y) = cos(πνx); I0(x, y) = |u0(x, y)|2 = 1

2 + 1
2 cos(2πνx).

At first we consider only a single source point on axis. The spatial frequency of cos(πνx) is
ν
2 or the grating constant d0 = 2

ν . Hence the first diffraction orders are deviated by angles
sinα = ± λ

d0
. Two bright points will appear in the aperture plane at xF = ± fλν

2 , separated
by λfν. If the aperture diameter B is wider than B the object will be resolved. But if λfν,
all the light is stopped in the aperture plane.

Now let us consider a source point off-axis. The cosine grating object will cause two bright
spots in the aperture plane. Three cases might occur:

1. both outside the aperture:
∣∣∣|xS | − λf |ν|

2

∣∣∣ > B
2

2. both inside the aperture: |xS |+ λf |ν|
2 < B

2

3. one inside one outside of aperture:
∣∣∣|xS | − λf |ν|

2

∣∣∣ < B
2 and |xS |+ λf |ν|

2 > B
2

(1) means darkness in the image plane; (2) the cosine fringes are produced; but in the case
of (3) a constant “d.c.” illumination appears in the image plane, since the single plane wave
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Figure 26.13: Incoherent image formation.

has nothing to interfere with. At least two plane waves are needed for producing interference
fringes. The total intensity distribution in the image plane consists of intensity contributions
of types (2) and (3). The contrast is high if there are many type (2) contributions, but only few
type (3) contributions.

Now let us be somewhat more quantitative (Fig. 26.14):
region 2:

|xS |+ λf

2
|ν| ≤ B

2
(26.45)

|yS | ≤ 1

2

√
B2 − (λfν)2

region (3) plus region (2) consists of two circles,
(
xS ± λfν

2

)2

+ y2
S ≤

(
B
2

)
A point (xS , yS) in the source plane produces two point sources (xS + λfν

2 , yS) and
(xS − λfν

2 , yS) within the aperture plane if (xS , yS) was in region (2):

δ

(
xF − xS − λfν

2
, yF − yS

)
+ δ

(
xF − xS +

λfν

2
, yF − yS

)
(26.46)

As a result two plane waves will appear in the image plane:
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Figure 26.14: Illustrating the incoherent OTF of a perfect lens.

e2πi
x(xS+

λfν
2 )+yyS

λf + e2πi
x(xS−

λfν
2 )+yyS

λf (26.47)

which result in an intensity distribution:

∣∣∣∣∣e2πi
x(xS+

λfν
2 )+yyS

λf + e2πi
x(xS−

λfν
2 )+yyS

λf

∣∣∣∣∣
2

= (2 cosπνx)2 = 2+2 cos(2πνx) (26.48)

All intensity contributions from areaS2 of the source added together yield S2[2+2 cos(2πνx)].
We have assumed uniform brightness of the source. If (xS , yS) belongs to (3), then we get:

δ

(
xF − xS ∓ λfν

2
, yF − yS

)
in the aperture (26.49)

e2πi
x(xS± λfν

2 )+yyS

λf −→
∣∣∣∣∣e2πi

x(xS± λfν
2 )+yyS

λf

∣∣∣∣∣
2

= 1 in the image plane (26.50)

The (3) region (see Fig. 26.14) consists of a right-hand and a left-hand part, each of them
being A− S2 large, where A = πB

2 is the area of the circular pupil. Hence S3 = 2(A− S2).
The total image intensity is:

IB(x) ∝ 1S3 + [2 + 2 cos(2πνx)]S2 = 2A− 2S2 + 2S2 + 2S2 cos(2πνx) =

= 2[A+ S2 cos 2πνx] (26.51)
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or

IB(x) = 2A[1 +
S2

A
cos(2πνx)] (26.52)

Hence S2

A is the image contrast, while the object contrast was 1. Therefore S2

A is the OTF,
just as we had derived a few pages earlier in a more formal way.

26.9 Some specific OTF’s

26.9.1 Defocussing

Defocussing can be described as a particular wave aberration:

W (x, y) =
∆z

2

(x2 + y2)

f2
(26.53)

Figure 26.15: Defocussing as a wavefront aberration.

Here the wave aberration is the distance between the two spheres Σ and Σ0. A useful
approximation for the derivation of W is:

R− r =
R2 − r2
r +R

≈ R2 − r2
2R

(26.54)

If

F̃ (x, y) = eikW (x,y) ·
{

+1 if (x, y) in x2 + y2 ≤ (B
2

)2
0 if (x, y) not in x2 + y2 ≤ (B

2

)2 (26.55)
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then the Duffieux formula reduces to:

D̃(ν, µ) =

(
1

A

)∫∫
S2

eik[W(x+λf ν
2 ,y+λf µ

2 )−W(x−λf ν
2 ,y−λf µ

2 )]dxdy (26.56)

With the specific aberration for defocussing the exponent is ik2λf
(

∆z
2f2

)
(xν + yµ) =

2πi
(

∆z
f (xν + yµ)

)
. Notice that the λ dropped out; however, the wavelength influences the

region S2 of integration. This suggest as an approximate formula:

D̃ ≈ S2

A

∫∫
(A)

e2πi∆z(xν+yµ)
f dxdy (26.57)

The exact integral looks simpler than it really is, because the integration limits (region
S2) depend on the spatial frequency too. But it is possible to solve this integral analytically
with the help of Bessel functions (Hopkins 1955). Today one would probably use a digital
computer.

Figure 26.16: The effect of defocussing on the OTF.

Actually, when computing digitally the OTF D̃ from given aberrationsW one does not use
the Duffieux formula anymore because the Fast-Fourier-Transform algorithm (Cooley-Tukey)
is so very efficient. One computes in these steps:

W (x) −→ F̃ (x) = eikW (x)rect

(
x

∆xF

)
FOU−→ F (x) −→ |F (x)|2 = D(x)

FOU−→ D̃(ν)

(26.58)
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26.9.2 Other lens aberrations

Spherical aberration:

WS = W40(x
2 + y2)2 +W60(x

2 + y2)3 (26.59)

Astigmatism:

WA =
1

2
(W20 −W02)(x

2 − y2) +
1

2
(W40 −W04)(x

2 − y2)(x2 + y2) (26.60)

Coma:

WC = W30x(x
2 + y2) +W50x(x

2 + y2)2 (26.61)

In the case of coma the D(x, y) is not centersymmetric anymore, and hence D̃ will be
complex. Astigmatism and coma vary slowly as a function of the lateral coordinate in the
image plane. On-axis WA and WC are zero for axial-symmetric lenses.

26.9.3 Rough lens surface

W = Waberr +Wrough (26.62)

Figure 26.17: The effect of a rough lens surface.

We call the exponent of the Duffieux formula briefly:

k[W (+)−W (−)] = Φ = Φab + Φro (26.63)

We assumeWro = 0, butW 2
ro = σ2. The bars indicate a spatial average. For the following

derivation it is important thatWro(x) varies much faster thanWab(x). We assume |Wro(x)| <
λ
4 . Otherwise the lens grinder forgot to polish the lens.

eiΦro ≈ 1 + iΦro − Φ2
ro

2
, eiΦro ≈ 1− 1

2
Φ2

ro (26.64)
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Φro = k[WR(+)−WR(−)]; Φ2
ro = k2[W 2

R(+)+W 2
R(−)−2WR(+)WR(−)] (26.65)

WR

(
x+

f

2

)
WR

(
x− f

2

)
=

{
1 if ν very small
0 if |λfν| is bigger than grain size.

(26.66)

In the latter case:

Φ2
ro = 2k2W 2

R = 2k2σ2; eiΦro =

{
+1 if ν very small

1− k2σ2 if λf |ν| > grain size
(26.67)

we call: eiΦro = D̃R(ν).

Now we claim:

D̃(ν) ≈ D̃A(ν)D̃R(ν) (26.68)

Figure 26.18: The effect of surface roughness on the OTF.

A loss k2σ2 of about 0.05 occurs even for good lenses. For the derivation we assume that
Wro is stationary. We subdivide S into areas, in which WA ≈ const., but these areas are large
enough so that the part-area integrals are proportional to eiWAeiWR . Then we sum up the
small-area-integrals. Essentially the same approach can be used when computing the OTF of
a dusty lens. The assumed value of k2σ2 = 0.05 corresponds to a roughness of σ = 0.03λ.

26.9.4 Double-slit aperture

F̃ (x, y) = rect
( y
A

){
rect

[
x− B

2 + C
2

C

]
+ rect

[
x+ B

2 − C
2

C

]}
(26.69)

This case occurs in the Michelson Star-Diameter Interferometer. A ring aperture is com-
mon in reflecting astronomical telescopes. The computation of the associated OTF is an exer-
cise in the manipulation of Bessel functions.
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Figure 26.19: The shape of a double slit aperture.

Figure 26.20: The Michelson Star-Diameter Interferometer.

26.9.5 Object Motion

First we consider the fate of a single object point at x′.
Instantaneous: δ(x− x′) −→ DL(x− x′ − ξ(t)).
The function ξ(t) describes the time dependent shift. DL(x) is the p.s.f. of the static

process of image formation.

I0(x) −→
∫
I0(x

′)DL(x− x′ − ξ(t))dx′ = IB(x, t) (26.70)

The photographic plate will record during the exposure time T :

IB(x) =

+ T
2∫

−T
2

IB(x, t)dt =

∫
(x′)

I0(x
′)

∫
(t)

DL(x− x′ − ξ(t))dt

 dx′ (26.71)

The square bracket describes the overall p.s.f. Dtotal(x− x′) = DT(x− x′).
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Figure 26.21: The OTF of a double slit aperture.

D̃T(ν) =

∫
DT(x)e−2πiνxdx =

∫∫
DL(x− ξ(t))e−2πiνxdt dx (26.72)

=

∫∫∫
DL(ν′)e2πi[−νx+ν′{x−ξ(t)}]d(x, ν′, t)

D̃T = D̃L(ν)D̃motion(ν) D̃M(ν) =
1

T

T
2∫

−T
2

e−2πiνξ(t)dt (26.73)

Here we encounter again the nice feature that OTF’s tend to combine as products. In other
words we can understand the impact of motion blur without having to specify any particu-
lar lens system with its OTF D̃L. Obvious special cases to be considered are linear motion
ξ(t) = vt and oscillations ξ(t) = a sin(ωt). A fairly obvious generalization takes into ac-
count a time-varying illumination L(t) of the object.

D̃LM(ν) =

∫
L(t)e−2πiνξ(t)dt∫

L(t)dt
(26.74)

The special case L(t) = 1
T rect

(
t
T

)
leads back to D̃M.

26.9.6 Photography

Let us assume that the lens converts the object intensity I0(x) into the “aerial image” IA(x) =∫
I0(x

′)DL(x − x′)dx′. This energy distribution then strikes the photographic plate where
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it will be somewhat blurred by scattering on the grains of the emulsion. After scattering
the light settles down and activates silver halide grains according to the distribution IE =∫
IA(x′)DP(x − x′)dx′. We call IE the “effective intensity”. The process of imaging and

scattering is described by:

D̃(ν) = DL(ν)D̃P(ν) (26.75)

More details about the photographic process will follow in Chapter 34. Usually the pho-

tographic OTF can be described by D̃(ν, µ) =
[
1 + ν2+µ2

ν2
P

]−1

with D̃(νP, 0) = 1
2 . The

characteristic frequency νP is anywhere between 50 mm−1 and 2000 mm−1 depending on the
resolution of the film or plate.

26.9.7 The OTF-chain of TV

Fig. 26.22 illustrates the long OTF chain of a total TV system. If 500 lines per format are
on a cathode of 20 mm diameter the TV cutoff frequency is 25 lines per millimeter, which is
certainly small compared to the cutoff frequency of any decent lens.

D̃TV = D̃LD̃scanD̃tapeD̃transm.D̃displayD̃eye (26.76)

Figure 26.22: The OTF-chain of TV.

26.10 Quality criteria based on the OTF

Aberrations are always bad, as can be seen from |D̃(ν)| ≤ D̃0(ν). We call the OTF of an
aberration-free lens D̃0(ν).

|D̃(ν)| = 1

A

∫
(S)

eik[W (+)−W (−)]dx ≤ 1

A

∫
(S)

|eik[...]| dx =
S

A
= D̃0(ν) (26.77)

Hence aberration-free lenses are desirable, but they are not obtainable in most cases. In
case of photographic lenses one can say as a rule of thumb that the aberrations are negligible,
if the aperture is closed by two or three stops. For example an F/2 lens is pretty good at F/4
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Figure 26.23: Typical aberrations W (x) of a lens or lens system.

or F/5.6. (Each stop reduces the diameter by 1√
2

and hence the area by 1
2 .) The reason is that

the aberrations are worst close to the outer margin of the lens (Fig. 26.23). When reducing the
aperture from F/2 to F/4 one pays two prices: the light thru-put is reduced by 1

4 ; the cutoff
frequency only by 1

2 . The cutoff frequency νA = 1
λX is for green light (λ = 0.5 · 10−3) and

F/2: νA =1000 mm−1.

Figure 26.24: The shape of the OTF for aberrations shown in Fig. 26.23 and
different aperture stops.

There exist quite a few different quality criteria for D̃lens (Fig. 26.24). This is not only due
to the tastes of the inventors of those criteria, but largely due to the different receivers (photo-
graphic emulsion, eye, TV, etc.) which follow after the lens. D̃total(ν) = D̃lens(ν)D̃rcv(ν).
If the bandwidth of the receiver is only 25 mm−1 (typical for TV system) only the first twenty
five spatial frequencies of D̃lens(ν) matter. Obviously the OTF (1) is better for this purpose
than OTF (2) (Fig. 26.25). But for a 35 mm camera with medium-fast black-and-white film,
the OTF (2) is better matched to the capabilities of the receiver.

If only the low frequencies are important one may use the following criterion, based on
the Taylor expansion of the OTF:

D̃(ν) ≈ D̃(0) + D̃′(0)|ν|+ D̃′′(0)
ν2

2
(26.78)
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Figure 26.25: Detail of the shapes of the OTF for the cases shown in Fig. 26.24.

The absolute-bars around the |ν| in the linear term are necessary in order to satisfy the
reality symmetry D̃(ν) = D̃∗(−ν). Or in other words, D̃(ν) is not continuous at ν = 0. But:

lim
ε→0

{
D̃(+ε)− D̃(0)

ε

}
= − lim

ε→0

{
D̃(0)− D̃(−ε)

|ε|

}
(26.79)

For the circular pupil with aberrations we have:

D̃(0) = 1; D̃′(0) = −4λX
π

(26.80)

D̃′′(0) = −8π2X 2

[
∂W

∂x
− ∂W

∂x

]2
= −8

( π
B

)2

(ξ − ξ)2

Here B = pupil diameter; X = f
B ; ξ =lateral aberration. The top-bar means averag-

ing over the aperture. The linear term is due to diffraction on the aperture, since it contains
the wavelength and the aperture diameter. The quadratic term considers ray deviations as the
Gaussian mean square. That term is of purely geometrical nature since it does not contain the
wavelength. Only the second derivative is under the control of the lens designer. Nowadays
they let vary all relevant parameters like lens curvatures, lens element distances, refractive
indices and perhaps pupil diameter till a minimum of the gaussian spread of the spot diagram
is found.

Some lens designer utilize another criterion based on the following approximation:
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D̃(ν, 0) =
1

A

∫∫
(S)

eik[W(x+ λfν
2 ,y)−W(x−λfν

2 ,y)]dx dy (26.81)

≈ 1

A

∫∫
(A)

eik[W (+)−W (−)]dx dy

≈ 1

A

∫∫
(A)

{
1 + ik[. . .]− k2

2
[. . .]

}
dx dy

D̃(ν, 0) ≈ 1− k2

2A

∫∫
(A)

[. . .]2dx dy

The linear term often drops out due to symmetry, or is very small anyway. Hence the goal
is to minimize [. . .]2. If

W

(
x+

λfν

2
, y

)
≈W (x, y) +

λfν

2

∂W (x, y)

∂x
+

(λfν)2

8

∂2W

∂x2
(26.82)

is justified this criterion is identical to the previous one. This criterion is good only for
lenses to be used only at low frequencies |ν| � νA = 1

λX .

If the small-frequency assumption is not justified one may consider the correlation of
object and image, of course normalized.

∫
I0(x)IB(x)dx∫
I2
0 (x)dx

=

∫ |Ĩ0(ν)|2D̃(ν)dν∫ |Ĩ0(ν)|2dν (26.83)

A high degree of correlation means the image is very similar to the object. For an object
with a “white” spatial power spectrum (which rarely exists, except for the snow on the TV-
screen; but it yields a nice criterion) we get

∫
D̃(ν)dν as a measure of quality.

This quality
∫
D̃(ν)dν = D(0) is also the peak intensity of the point spread function.

Case (1) is considered to be better then case (2). D(0)R
D(x)dx

is called the “Strehl definition” or
“Strehl intensity”. But if the gaussian mean square measure:

(ξ − ξ)2 =

∫
x2D(x)dx∫
D(x)dx

(26.84)

were relevant case (2) would be preferable.
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Figure 26.26: The point spread functions for two different OTFs.

I purposely stressed that “lens quality” is a somewhat ambiguous matter. However the
ambiguity is removed in most situations if it is specified which receiver will be used in con-
nection with the lens. Sometimes also a specification of the class of relevant or interesting
objects influences the selection of a suitable quality criterion. For example the esthetic fea-
tures of a portrait are usually confined to rather low frequencies. Therefore some professional
photographers put a nylon stocking over the lens since their aging customers will never return
if too many high frequency details are reproduced. The nylon stocking is not used while tak-
ing picture. That would be too obvious. Instead it is done in secrecy of the darkroom when
the prints are copied.

Another criterion considers the mean square deviation of object and image.

∫
(I0 − IB)2dx =

∫
I2
0dx+

∫
I2
Bdx− 2

∫
I0IBdx (26.85)

=

∫
|Ĩ0(ν)|2[1 + |D̃(ν)|2 − 2D̃(ν)]dν

This criterion is popular in electrical engineering (EE) circles, where mean squares have
almost a religious status. However I doubt that the eye makes judgment based on mean square
deviations. Instead it picks out details of subjective significance when saying a picture is good
or bad.

The term
R

I2
BdxR

I2
0dx

=
| R

Ĩ0D̃|2dνR |Ĩ0|2dν
is called the “structure content”. It reduces to |D̃|2 for

objects with “white” spatial power spectrum. I am skeptical about this term too since it ignores
the phase of the OTF. Such phase defects don’t diminish the information in the Shannon
sense, but they encode the information. In principle this coding process is reversible. But this
statement is useless for the eye, which does not know how to decode.

26.11 OTF synthesis

What we have done so far with the OTF can be called “analysis”. Now we want to synthesize
OTF’s. In other words so far the situation was like this: given the aberrations, aperture size,
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image motion, etc. what is the OTF like under these circumstances? Now we assume the
opposite attitude: we want an OTF with a specific shape in order to do a certain job. How must
the lens be made such that its OTF is as wanted? We talk about ”analysis” and ”synthesis”
in the same sense as in circuit theory. There ”analysis” means: given a network with known
RCL-components, wanted the resulting transfer function for temporal frequencies. The more
challenging problem is the ”synthesis” of circuits. The customer prescribes a filter function
and leaves it to the designer to find a circuit with that filter function. As you may know there
exist elegant methods for solving the synthesis problem of circuit theory.

The synthesis problem for coherent spatial filtering is very simple, at least for the theo-
retician. The spatial frequencies are nicely displayed in the Fourier domain. If you want to
block out certain frequency bands you simply insert a piece of cardboard. The transmittance
distribution of that piece of cardboard represents directly the coherent filter function. For the
experimentalist the problem becomes somewhat more complicated if phase shifting is required
in order to get a complex filter function.

The synthesis problem of incoherent spatial filtering is more involved even for the theoreti-
cian, because there is no nice display of spatial frequencies, where the incoherent filter func-
tion or OTF could be implemented directly. Therefore you will find statements in some books
saying that OTF synthesis is impossible. Such a statement provokes inventors, of course; usu-
ally “impossible” stands for “not always possible under the most general conditions”. The
obvious but rare reaction should be to look for those special conditions under which things
are possible indeed. Sometimes the special conditions are incompatible with practical appli-
cations, but often they are not. We will present now three special cases where it is possible
indeed to synthesize a useful OTF.

26.11.1 Apodisation

The word “apodisation” is an artifical Greek word which means literally “cutting off the feet”.
Not so literally it means a point-spread function (or line spread function) without secondary
diffraction maxima as shown in Fig. 26.27 on the left. Apodisation is useful for grating or
prism spectrographs where every sharp spectral line appears as a line spread function on the
photographic plate. Sometimes a weak isotope line is to be detected very close to a strong
isotope line. Without apodisation it would be difficult to distinguish between the weak isotope
line and the secondary diffraction maximum of the strong isotope line. A line spread function
L(x) without secondary maxima (Fig. 26.27 a)) is obtained if the pupil function has soft
transmittance edges (Fig. 26.27 b)). This is plausible since the diameter of the usual pupil
function F̃ (x) = rect

(
x

∆x

)
determines the location λf

∆x of the diffraction minima. A soft
edge is not well defined. Hence no well-defined diffraction maxima will arise. One pays
two prices for the advantages of apodisation: less light efficiency

∫ |F̃ (x)|2dx and somewhat
less resolution as indicated by the increased width of the central maximum of L(x) and by
the decreased OTF at high frequencies (Fig. 26.27c)). What has been said so far for the line
images holds as well for point images. A situation where diffraction rings around point images
are undesirable arises in astronomy, where objects are points. The detection of a weak satellite
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close to a bright star is facilitated by introducing an apodisation mask with circular symmetry
into the pupil plane of the telescope.

����� ����� ��

Figure 26.27: Apodisierung: a) point-spread-function; b) filter function; c)
OTF.

26.11.2 Pseude-coherent image formation

As you know in coherent image formation the pupil transmittance function F̃ (ν) acts directly
as the filter function. But in incoherent image formation it is the autocorrelation function of
the pupil function which is the filter function or OTF. Nevertheless we can “linearize” the
autocorrelation integral in a way which is formally similar to holography. We modify the
original pupil function F̃0(x) by superposing a mask with an amplitude transmittance which
is almost everywhereA(A2 � 1), but unity within a pinhole at the center or at the edge (Fig.
26.28b). In abbreviated mathematics we use a delta function for describing the pinhole.

F̃ (x) = AF̃0(x)rect
( x

∆x

)
+ δ

(
x− ∆x

2

)
(26.86)

D̃(ν) ∝
∫
F̃

(
x+

λfν

2

)
F̃

(
x− λfν

2

)
dx

∝ δ(ν) +AF̃0

(
λfν +

∆x

2

)
+ AF̃ ∗

0

(
−λfν +

∆x

2

)

���� ���� ����� ����� ��

Figure 26.28: OTF synthesis for pseudo-coherent imaging.
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Now the OTF is essentially proportional to the original pupil function F̃0 (Fig. 26.28d).
However one pays two prices for this achievement. The light transmittance of the pupil has
been reduced by the factor A, and the delta term of the OTF results in a constant background
term of the point spread function and also of the image intensity. This background light can
be suppressed photographically by using a film with a high threshold or with TV technology.

26.11.3 Synthesis of incoherent matched filters

In the coherent case the filter function which helps us to detect an object u(x−x0) by produc-
ing an intensity peak at x0 in the image plane is F̃ (ν) = ũ∗(ν). The theoretical background
and the experimental verification of coherent matched filtering has been presented by A. Van-
der Lugt. That method is one of the most brilliant achievements in coherent optics. However
that method has two drawbacks: the object must exist as a transparency in order to make it pos-
sible to create a coherent input signal by means of coherent illumination of that transparency.
This requirement excludes texts printed on paper, signals on a CRT and natural scenes from
coherent matched filtering. Furthermore the positioning of the matched filter is quite critical.
We will now explain why the positioning is so critical. Thereafter we will show how an inco-
herent matched filter can be synthesized. It does not suffer from the two disadvantages. More
details are presented in Appl. Opt. 10, 670 (1971).

Suppose the coherent object is u(x − x0). From it a complex amplitude ũ(ν)e−2πiνx0

results in the Fourier plane. Multiplication with the filter function F̃ which might be somewhat
shifted accidentally yields ũ(ν)e−2πiνx0 F̃ (ν−ν0) = ũ(ν)ũ∗(ν−ν0)e−2πiνx0 . The final lens
of the telecentric image forming system produces another Fourier transform and hence the
image amplitude v(x).

v(x) =

∫
ũ(ν)ũ∗(ν − ν0)e2πiν(x−x0)dν (26.87)

=

∫
u(x′)u∗(x′ + x0 − x)e−2πiν(x′−x0−x)dx′

The detection peak is expected at x = x0. Hence we compute the image amplitude for
that point:

v(x0) =

∫
ũ(ν)ũ∗(ν − ν0)dν =

∫
|u(x′)|2e−2πiν0x′

dx′ (26.88)

The second integrand consists of a real-nonnegative and of a phase factor. The integral
will be biggest if the phase factor is always +1 due to ν0 = 0 (perfect adjustment of the
spatial filter). But with ν0 �= 0 the phase factor might be negative for some x′-values. Hence
the peak v(x0) will diminish. How much maladjustment can we tolerate? If the phase 2πν0x

′

never exceeds ±π
4 the damage will be tolerable. Assuming that the object u(x′) has a finite

width ∆x it follows |x′| ≤ ∆x
2 and |2πν0x′| ≤ πν0∆x. The π

4 tolerance is satisfied if the
shift ν0 and the object size ∆x are related like ν0 ≤ 1

4∆x . A shift ν0 in frequency coordinates
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is equivalent to a shift λfν0 = δxF in spatial coordinates. Hence we obtain δxF ≤ λf
4∆x .

With λ 1
2000 mm−1, f = 80 mm, ∆x = 10 mm we get δxF = 1

1000 mm = 1µm, which is
indeed a difficult tolerance.

Now we are sufficiently motivated to develop or synthesize an incoherent matched filter
system. We want this system to respond to the target or object intensity I0(x − x0) with
an intensity peak at x0 in the output or image plane. Since the mathematical formalism of
incoherent image formation is the same as for coherent image formation we can immediately
specify which incoherent filter function or OTF is needed for the job.

Coherent:

u(x− x0) −→ v(x) =

∫
u(x′ − x0)F (x− x′)dx′ (26.89)

=

∫
ũ(ν)F̃ (ν)e2πiν(x−x0)dν (26.90)

F̃ (ν) = ũ∗(ν) (26.91)

Incoherent:

I0(x− x0) −→ IB(x) =

∫
I0(x

′ − x0)D(x − x′)dx′ (26.92)

=

∫
Ĩ0(ν)D̃(ν)e2πiν(x−x0)dν

D̃(ν) = Ĩ∗0 (ν) (26.93)

So far the theory of incoherent matched filtering was simple. But now comes the problem,
that is, how to implement the wanted OTF D̃? What we physically implement is the pupil
function F̃ which is related to the OTF by Duffieux’ autocorrelation formula.

D̃(ν) =

∫
F̃
(
ν′ +

ν

2

)
F̃ ∗
(
ν′ − ν

2

)
dν′

synthesis
−→
←−

analysis

F̃ (ν) (26.94)

= Fourier

>Fourier

D(x) −→
√
D(x)eiϕ(x) = F (x)

The path from F̃ to D̃ (called OTF analysis) is unique and straightforward. But the path
from D̃ to F̃ is ambiguous. More than one pupil function F̃ leads to the same OTF D̃. Some
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people are shocked when the advice from the theoreticians becomes ambiguous. Actually they
should be happy, since ambiguity means a certain amount of freedom for the experimentalist,
who now is free to look for the most convenient form of F̃ which leads to the specified D̃.
But this still leaves the question open as to how to find F̃ . Since D̃ → F̃ in the frequency do-
main is ambiguous we translate the problem into the other Fourier domain, the space domain.
There it becomes evident where the ambiguity enters into the problem, namely when going
from D(x) to F (x) =

√
D((x)eiϕ(x). We are free to choose any phase we like because it is

always |√Deiϕ|2 = |F |2 = D. We soon will explore the options.

When going from D to F we pulled a root
√
D which could be imaginary in principle.

This would not prevent us from constructing F and F̃ . However D(x) is the incoherent
point spread function, which is inherently nonnegative because intensity is an energy quantity.
Hence we conclude that only those OTF’s, D̃, can by synthesized which correspond to a real-
nonnegative point spread functionD.

Now let us discuss the implications of choosing various phases ϕ(x). We may of course
simply set ϕ = 0. The next most imaginative thing to do is to take a linear phase ϕ(x) =
2πν0x. When changing F (x) to F (x)e2πiν0x the corresponding pupil function changes from
F̃ (ν) into F̃ (ν − ν0), which is nothing but a lateral shift. Since no phase ϕ(x) can deteriorate
the incoherent filter operation, and since this is true for the particular phase ϕ(x) = 2πν0x we
may conclude that the corresponding shift F̃ (ν) → F̃ (ν − ν0) of the pupil function is com-
pletely harmless too. In other words the lateral position of the pupil function is completely
uncritical now, while the lateral adjustment of the pupil was extremely delicate in the case of
coherent spatial filtering.

Next we consider a quadratic phase ϕ(x) = πz0
x2

λf2 . As we know from the considera-
tions of wave aberrations a quadratic phase in one domain corresponds to a longitudinal shift
(“defocussing”) in the other Fourier domain. This implies that the longitudinal position of the
pupil function is uncritical, which makes life easier for the experimentalist. When looking
somewhat closer into the theory of a longitudinal shift of a pupil function we find that the
statement just made is strictly true only in a telecentric image forming system. In other sys-
tems such as one with a single lens between object and image a longitudinal shift of the pupil
function creates a magnification or reduction of the point spread function. This is sometimes a
desirable feature in matched filtering if the magnification of the target is unknown. Longitudi-
nal shifting of the pupil function then provides the opportunity to perform “scale searching”.
Finally we should mention briefly that ϕ(x) might also be a random phase as it occurs exper-
imentally behind a ground glass. This is important if F̃ (ν) is produced as a Fourier hologram
from the object F (x). The advantages and disadvantages of a ground glass in holography will
be explained in Chapter 32.





27 Theory of Image Formation in Partially-Coherent Light

The motivation for studying this subject is mainly due to the microscope, where partial coher-
ence occurs rather frequently. In other situations like photography, spectroscopy, and spatial
filtering in laser light, we usually approach one of the two extreme cases, complete incoher-
ence or complete coherence. One would like to do that in microscopy too, since image evalu-
ation in the case or partially-coherent illumination is messy, as we will see shortly. However
the case of complete incoherence is not easy to implement if lenses with very large numer-
ical apertures (NA> 0.8) are used, as is common in microscopy. Complete coherence was
not easy to implement before the laser was available. But even now many experimentalists
shy away from completely coherent illumination, since the image suffers from speckling or
from so-called out-of-focus noise. The latter means that object details somewhat above and
below the focused object plane show up in a fuzzy form, thereby making the observation of
the in-focus object details difficult. This out-of-focus noise disappears gradually as the spatial
coherence decreases. But spatial coherence is necessary if phase contrast, or knife edge- or
darkfield- or any other spatial filtering method is necessary for detecting certain object details
such as phase structures.

Figure 27.1: Schematic setup for analysis of partially coherent image forma-
tion.

We will develop the theory around Fig. 27.1, although a more realistic setup is as shown in
Fig. 27.2. The differences are mainly of a practical nature, like the minification of the original
source into the effective source. But both setups (Figs 27.1 and 27.2) have in common that
the source is imaged into the pupil plane (solid rays in Fig. 27.1) and the object into the image
plane (dotted rays). In Fig. 27.2 both steps occur twice in a row. If we would actually com-
pute the process of image formation for the realistic setup (Fig. 27.2), we would encounter
the magnification explicitly and also some quadratic phase factors (which however drop out
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anyway when the modulus square step is applied in the final image plane, the retina).

Figure 27.2: The realistic setup for partial coherent image formation.

The principle of our theory is as follows. We start with a source point and compute the
resulting image amplitude.

δ(ν − ν′) in source converted into uB(x, ν′) in image (27.1)

This is done in the standard fashion of coherent optics where the light propagation from
source to object (see Fig. 27.1), from object to pupil, and from pupil to image is mathemati-
cally described by a Fourier transform. The impact of the object is described by a multiplica-
tion.

u(x′, 2f − 0) before object converted into (27.2)

u(x′, 2f + 0) = u(x′, 2f − 0)u0(x
′) behind object

The pupil function or filter function p̃(ν) also is taken into account as a multiplication.

u(ν, 4f − 0) before pupil converted into

u(ν, 4f + 0) = u(ν, 4f − 0)p̃(ν) behind pupil (27.3)

Knowing the image amplitude uB(x, ν) as produced by the source point ν′ we get the
corresponding image intensity by a modulus square operation.

uB(x, ν) complex amplitude converted into (27.4)

|uB(x, ν)|2 elementary intensity in image

Next we add (or integrate) all the intensity contributions from different source points ν′

with the source intensity S(ν′) as weighting factor.

|uB(x′, ν′)|2 elementary intensity in image summed up to∫
S(ν′)|uB(x, ν′)|2dν′ = IB(x) total intensity in image (27.5)
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To add the contributions from various points as intensities is justified since there is no
mutual coherence between different source points, which get their light from different atoms
that oscillate independently from each other.

So far we have assumed that the source is monochromatic. This is not realistic unless a
laser is employed. Hence we must integrate once more over all wavelengths, again adding up
intensities, since light of different wavelengths does not interfere.

|uB(x, ν′, λ)|2 monochromatic elementary intensity in image,

summed up to (27.6)∫∫
S(ν′, λ)|uB(x, ν′, λ)|2dν′dλ = IB(x) polychromatic total intensity in image

This last step is rarely performed in the literature, not because it would not correspond to
reality but because it would not change the result very much in most cases because |uB(x, ν′, λ)|2
tends to be almost independent of the wavelength. However there are exceptions. For exam-
ple G. Hansen observed that black-and-white objects when illuminated in white light appear

sometimes in colour in the image plane. What happens is that the object spectrum u0

(
x

λf

)
in the pupil plane is larger for the long wavelengths. Hence a certain high frequency details of
the object might be resolved in blue (short λ) but not in red (long λ).

Before actually starting we will introduce a somewhat modified terminology which is
commonly used in the theory of partial coherence.

• Normalized monochromatic source intensity γ(ν′); (
∫
γ(ν′)dν′ = 1)

• Degree of coherence Γ12 = Γ(x′1 − x′2) =
∫
γ(ν′)e2πiν′(x′

1−x′
2)dν′.

• Complex amplitude transmittance of object: u0(x
′)

• Complex amplitude transmittance of pupil: p̃(ν)

• Coherent point spread function (psf) p(x) =
∫
p̃(ν)e2πiνxdν.

• Incoherent point spread function F (x) = |p(x)|2.

• Wave from source point ν′, in z = 2f−0, illuminating the object is u(x′, ν′) = e2πix′ν′

.
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The normalized cross-illumination in the object plan z = 2f − 0 is:

∫
u(x′1, ν

′)u∗(x′2, ν
′)γ(ν′)dν′∫ |u(x′1, ν

′)|2︸ ︷︷ ︸
=1

γ(ν′)dν′

 1
2

∫ |u(x′2, ν
′)|2γ(ν′)dν′︸ ︷︷ ︸
=1


1
2

=

∫
γ(ν′)e2πiν′(x′

1−x′
2)dν′ = Γ(x′1 − x′2) (27.7)

Now we compute the process of image formation. A point ν′ in the source plane produces
a titled plane wave u(x′, ν′) = e2πix′ν′

in z = 2f − 0. Behind the object in z = 2f + 0 the
field is u0(x

′)u(x′, ν′). The propagation from there to the image plane is expressed by means
of a convolution:

∫
u0(x

′)u(x′, ν′)p(x− x′)dx′ (27.8)

the corresponding elementary intensity, I(x; ν′), is:

I(x, ν′) = |
∫
. . .dx′|2 =

∫∫
u0(x

′)u∗(x′′)u(x′, ν′)u∗(x′′, ν′)p(x−x′)p∗(x−x′′)dx′dx′′

(27.9)

Finally the total intensity with contributions from all source points is I(x) =
∫
γ(ν′)

I(x, ν′)dν′. Inserting u(x′, ν′) = e2πiν′(x′−x′′) for the illuminating plane waves enables us
to perform the ν− integration

∫
γ(ν′)e2πiν′(x′−x′′)dν′ = Γ(x′ − x′′). This leads to a simple

formula for the total image intensity, expressed in quantities from the object and image planes.
This is the fundamental formula for the theory of image formation in partially coherent light.

I(x) =

∫∫
Γ(x′ − x′′)u0(x

′)u∗0(x
′′)p(x− x′)p∗(x− x′′)dx′dx′′ (27.10)

Two important extreme cases are:

1. γ(ν′) = δ(ν′) −→ Γ(x′ − x′′) = 1 (point source; the coherent case)

Icoherent(x) = |
∫
u0(x

′)p(x− x′)dx′|2 (27.11)

note we first integrate, then apply the modulus square!
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2. γ(ν′) = 1 −→ Γ(x′ − x′′) = δ(x′ − x′′); large source; the incoherent case.

Iincoherent(x) =

∫
|u0(x

′)|2|p(x− x′)|2dx′ =

∫
I0(x

′)F (x − x′)dx′ (27.12)

Now we consider some specific objects, at first a double slit:

u0(x
′) = eiϕδ(x′ − x0) + e−iϕδ(x′ + x0) (27.13)

u0(x
′)u∗0(x

′′) = δ(x′ − x0)δ(x
′′ − x0) + δ(x′ + x0)δ(x

′′ + x0) +

+e2iϕδ(x′ − x0)δ(x
′′ + x0) + e−2iϕδ(x′ + x0)δ(x

′′ − x0)

We insert into the general formula for the image intensity related to a partially coherent-
illuminated object.

I(x) = |p(x− x0)|2 + |p(x+ x0)|2 + e2iϕΓ(2x0)p(x− x0)p
∗(x+ x0) +

+ e−2iϕΓ(−2x0)p(x+ x0)p
∗(x− x0) (27.14)

We remember that the source intensity γ(ν′) = γ∗(ν′) is real; hence the degree of coher-
ence obeys reality symmetry Γ(−2x0) = Γ∗(+2x0) = |Γ|e−iσ . This property allows us to
simplify the expression for the image intensity.

I(x) = F (x− x0) + F (x+ x0) + 2|Γ(2x0)| [F (x− x0)F (x + x0)]
1
2 · (27.15)

· cos(2ϕ+ σ(2x0) + �(x− x0)− �(x+ x0))

where:

p(x− x0) = |p(x− x0)|ei�(x−x0) =
√
F (x− x0)e

i�(x−x0) (27.16)

Assume now that the point spread function is symmetrical, F (x) = F (−x), then we get
at the center of the image plane:

I(0) = 2F (x0)+2|Γ(2x0)|F (x0) cos(2ϕ+σ+�(−x0)−�(x0)) = 2F (x0)[1+|Γ| cos(. . .)]

(27.17)

Assuming F (x0) �= 0, then I(0) can be zero only if |Γ| = 1 (perfect coherence) and
if {. . .} = ±π (commonly but not necessarily σ = 0 and �(x0) = �(−x0)). In that case
complete darkness midway between the two image points occurs if the phase difference 2ϕ
between the two object points is 180◦.

Now we consider a periodic object with amplitude u0(x
′) = cos(2πν0x

′) and with object
intensity
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Figure 27.3: Intensity distribution behind a double slit.

I0(x
′) = |u0(x

′)|2 = cos2(πν0x
′) =

1

2
[1 + cos(2πν0x

′)] (27.18)

Basically we insert this u0(x
′) value into the fundamental I(x) equation. But that does not

seem to be very sensible after thinking a moment about the situation. The object is a “spatial
monofrequency object”. Hence the result will probably look simpler in the frequency domain,
where we may expect delta functions. Hence let us compute first Ĩ(µ) =

∫
I(x)e−2πiµxdx,

and I(x) maybe later. Basically we now could insert the I(x) =
∫∫

Γ(x′ − x′′) . . .dx′dx′′
into the Ĩ(µ) =

∫
I(x)e−2πiµxdx integral. But this would not be quite consistent with our

intention to compute something which relates in the most sensible way to our experiment.
For every source point ν′, only two spots will appear in the pupil plane, at ν = ν′ + ν0

2 and
at ν = ν′ − ν0

2 . Hence let us try to formulate Ĩ(µ) = functional[γ(ν′), ũ0(ν), p(ν)]. In
other words we now want to express Ĩ in terms of the properties in the Fourier domain, which
physically appears in the source plane and in the pupil plane. We could do this by replacing Γ,
u0 and p in the fundamental formula by their Fourier integrals and then trying to find hidden
delta functions in:

Figure 27.4: Imaging of a periodic object under partially coherent illumination.
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I(µ̃) =

∫∫∫∫∫∫∫∫
γ ũ0 ũ

∗
0 p̃ p̃

∗e2πi[...]d(x′ x′′ x ν′ ν ν ′ ν ν′) (27.19)

But instead we will start from the beginning and get the result more directly, because
that approach provides more physical insights. The fields are, in z = 0: δ(ν − ν′) and in
z = 2f − 0 : e2πix′ν .

In z = 2f + 0 :

u0(x
′)e2πix′ν′

=

∫
ũ0(ν)e

2πix′(ν+ν′)dν (27.20)

=

∫
ũ0(ν − ν′)e2πix′νdν

In z = 4f − 0: ũ0(ν − ν′),
in z = 4f + 0 : ũ0(ν − ν′)p(ν);
in z = 6f :

∫
ũ(ν − ν′)p̃(ν)e2πiνxdν.

The corresponding elementary intensity distribution in the image plane is:

I(x, ν′) = |
∫
. . .dν|2 =

∫∫
ũ0(ν − ν′)ũ∗0(ν − ν′)p̃(ν)p̃∗(ν)e2πix(ν−ν′)dν dν (27.21)

Total intensity:

I(x) =

∫
γ(ν′)I(x, ν′)dν′ (27.22)

We get the spatial spectrum of I(x) by means of a Fourier transform:

Ĩ(ν) =

∫
e−2πixµ

∫
�(ν′)I(x, ν′)dν′dx = (27.23)

=

∫∫∫∫
γ(ν′)ũ0(ν − ν′)ũ∗0(ν − ν′)p̃(ν)p̃∗(ν)e2πix(ν−ν−µ)d(ν ν ν′ x)

We recognize a hidden delta function and its impact.

∫
. . .dx = δ(ν − ν − ν′);

∫
. . .dν ∼ ν −→ ν − µ (27.24)

Ĩ(µ) =

∫∫
γ(ν′)ũ0(ν − ν′)ũ∗0(ν − µ− ν′)p̃(ν)p̃∗(ν − µ)dν′dν

It is common and convenient to shift the integration variable ν = ν + µ
2 .
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Ĩ(µ) =
∫∫
γ(ν′)ũ0

(
ν + µ

2 − ν′
)
ũ∗0
(
ν − µ

2 − ν′
)

p̃
(
ν + µ

2

)
p̃∗
(
ν − µ

2

)
dν′dν

(27.25)

This formula describes the spatial frequency spectrum of the image intensity in case of
partial coherence. So far the object was general. Now insert the special object u0(x

′) =
cos(πν0x

′), which is a grating with only plus-first and minus-first diffraction orders.

ũ0(ν) =
1

2
δ
(
ν +

ν0
2

)
+

1

2
δ
(
ν − ν0

2

)
; (27.26)

ũ0

(
ν +

1

2
µ− ν′

)
ũ∗0

(
ν − 1

2
µ− ν′

)
=

=
1

4
δ

(
ν +

1

2
µ− ν′ +

1

2
ν0

)
δ

(
ν − 1

2
µ− ν′ +

1

2
ν0

)
+

+
1

4
δ

(
ν +

1

2
µ− ν′ +

1

2
ν0

)
δ

(
ν − 1

2
µ− ν′ − 1

2
ν0

)
+

+
1

4
δ

(
ν +

1

2
µ− ν′ − 1

2
ν0

)
δ

(
ν − 1

2
µ− ν′ − 1

2
ν0

)
+

+
1

4
δ

(
ν +

1

2
µ− ν′ − 1

2
ν0

)
δ

(
ν − 1

2
µ− ν′ +

1

2
ν0

)
Before continuing we remember what happens if two delta functions occur in an integral,∫∫
f(α, β)δ(α−β)δ(α+β)dαdβ = f(0,0)

2 . This result can be obtained simply by considering
at first f(α, β)δ(α+β) as a function g(α, β) while executing the inner integral

∫
g(α, β)δ(α−

β)dα = g(β, β) = f(β, β)δ(2β) = f(β, β) δ(β)
2 . After integrating also over β we conclude

that we might have gotten the same result more simply by setting δ(α − β)δ(α + β) =

δ(α) δ(β)
2 . Using this rule we may reformulate the square bracket as:

2[. . .]δ

(
ν − ν′ +

1

2
ν0

)
δ(µ)+δ(ν−ν′)δ(µ−ν0)+δ

(
ν − ν′ − 1

2
ν0

)
δ(µ)+δ(ν−ν′)δ(µ−ν0)

(27.27)

Now we can compute the image spectrum.

8Ĩ(µ) = δ(µ)

∫
γ(ν′)

[∣∣∣∣p̃(ν′ − 1

2
ν0

)∣∣∣∣2 +

∣∣∣∣p̃(ν′ +
1

2
ν0

)∣∣∣∣2
]

dν′ + (27.28)

+ δ(µ+ ν0)

∫
γ(ν′)p̃

(
ν′ − 1

2
ν0

)
p̃∗
(
ν′ +

1

2
ν0

)
dν′

+ δ(µ− ν0)
∫
γ(ν′)p̃

(
ν′ +

1

2
ν0

)
p̃

(
ν′ − 1

2
ν0

)
dν′

= δ(µ)A0 + δ(µ− ν0)A1 + δ(µ− ν0)A∗
1



305

I(x) =

∫
Ĩ(µ)e2πiµxdµ = (27.29)

=
1

8

∫
[A0δ(µ) +A1δ(µ− ν0) +A∗

1δ(µ− ν0)] e2πiµxdµ

=
A0

8

[
1 +

2|A1|
A0

cos(2πν0x− α1)

]
; A1 = |A1|eiα1

The coefficientsA0 and A1 have a simple interpretation. For example the integral
∫
γ(ν′)∣∣p̃ (ν′ + 1

2ν0
)∣∣2 dν′ counts how much of the source light fits as plus-first diffraction order

through the pupil. Hence the meaning of A0 is that either the plus-first order
(
ν′ + 1

2ν0
)

or
the minus-first order

(
ν′ − 1

2ν0
)

or both fit through the pupil function p̃(ν), which is usually
p̃(ν) = rect

(
ν

∆ν

)
. On the other hand A1 counts how often both

(
ν′ + 1

2ν0
)

and
(
ν′ − 1

2ν0
)

fit through p̃(ν). If both diffraction spots fit through the pupil then these two mutually coherent
light sources at ν = ν′ + 1

2ν0 and at ν = ν′ − 1
2ν0 will produce two titled plane waves in

the image plane e2πix(ν′+ 1
2 ν0) + e2πix(ν′− 1

2ν0) = e2πixν′′

2 cos(πxν0) with the corresponding
intensity cos2(πν0x) = 1

2 [1 + cos(2πν0x)]. The A0 cases which do not also belong to the
A1-cases mean that only one diffraction spot fits through the pupil. In that case only a uniform
brightness is contributed to the total image intensity. If those latter contributions dominate,
the contrast of the image deteriorates. The geometric meanings of A0 and A1 can be inferred
by comparing the

∫
. . .dν′ with Fig. 27.5. These shifted circles (= pupils) and the centered

square (= source) indicate where the various factors in the A0 and A1 integrals are non-zero.
This result can be compared with another treatment on p. 298

Figure 27.5: Geometrical interpretation of the various parts of the intensity
distribution of the partially coherent image.





Preface to volume 2

Theses course notes are the continuation of Volume I of “Optical Information Processing”.
The main goal is to provide a good basis in physical optics, which then can be used for holog-
raphy. To achieve this goal it is not necessary to present the fundamentals of physical optics in
its entirety. But it is advisable for students to have a more complete survey of physical optics
handy.

Holography is not treated completely either, since that is well done for example by Collier,
Burckhardt and Lin in “Optical Holography”. Furthermore, a third volume of these notes will
follow which will cover those parts of holography which are particularly relevant to “optical
information processing”. Other non-holographic contributions to the main theme of these lec-
ture notes will be discussed also.

I have to thank Mrs. Linda Gail Chen and Curtis Shuman for their friendly cooperation.

OPTICS II: IMAGE INFORMATION

These course notes for 205B are the continuation of the 205A notes on “Optical Infor-
mation Processing”, Volume I. The majority of 205B will be devoted to Holography, but first
we have to add a few more fundamentals of wave optics. We will go quickly through these
fundamentals, since they are well covered in standard books such as Born & Wolf or Klein.





28 Boundary Conditions

28.1 Discontinuities of the Medium

So far we have considered solutions of the wave equation in a medium in which ε = const.,
µ = const., σ = 0 (no conductivity) and � = 0 (no charges). Now we assume still σ = 0 = �,
but ε and µ are different in z > 0 and z < 0. Then we only know how to find two solutions, one
for z > 0, another one for z < 0. At the boundary (z = 0) will be some interaction between
the two solutions. In other words, the field from z > 0 will partially penetrate into z < 0 and
vice versa. To my taste it would be most desirable if one could derive the well-established
boundary conditions based on conservation of energy, momentum and angular momentum. In
other words, all the energy leaving the upper half space (z > 0) has to show up in the lower
half space (z < 0) and so on. To my knowledge no one has derived the boundary conditions in
this way. Occasionally someone has done, at least partially, the opposite, namely: suppose the
boundary conditions are true, does energy conservation follow from it? That is much simpler,
because the boundary conditions are linear in E and H , whereas energy, momentum, and
angular momentum consist of second order terms like ExEx, EyHz, . . .. Naturally it is more
difficult to extract linear conditions out of some quadratic laws. If one would attempt to do it,
one probably should use the so-called four-dimensional formulation of Maxwell’s equations,
built around the vector potential A and the scalar potential Φ. The four-dimensional formula-
tion is mathematically simpler, although perhaps not so easy to visualize.

The more traditional way for deriving the boundary conditions is based on the postulate
that the field remains finite in the boundary plane. This postulate is verified indirectly, since
all the consequences of this postulate agree with experimental experience.

Assume ε, µ to be ε1, µ1 in z > 0, and ε2, µ2 in z < 0. Now some more assumptions,
which are typical for many theoretical “proofs”. I don’t like it this way, but I can’t present it
any better. Fortunately the consequences support this shaky approach. Although ε, µ are sup-
posed to be discontinuous, they should not be completely discontinuous, otherwise Maxwell’s
equations, which are differential equations, could not hold at the places of the discontinuities.

Consider a closed path of height h and length L. h should be small enough so that within
h the normal field components don’t change very much; so h probably should be less than
λ. The length L might be thought of as being a few λ long, yet short enough that the field
E(x, y, z) does not change very much in |x| ≤ L

2 . According to Maxwell:
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Figure 28.1: Orientations of the electrical field vectors relative to the boundary.

curl�E = − �̇B (28.1)

This can be changed into an integral law by using the (mathematical) formula of Stokes:

∮
�V · d�s︸ ︷︷ ︸

along a closed
path around an
area

=

∫∫
curl�V · d�a︸ ︷︷ ︸

over the same
area; d�a perpen-
dicular to surface

(28.2)

For the electric field vector �E this gives:

∮
�E · d�s =︸︷︷︸

Stokes

∫∫
curl�E · d�s =︸︷︷︸

Maxwell

−
∫∫

�̇B · d�s (28.3)

Now we perform the integrations for the specific case sketched in Fig. 28.1, going clock-
wise.

∮
�E · d�s ≈ E1L− Erh− E2L+ E�h; (28.4)

−
∫∫

�̇B · d�a ≈ −Ḃy

∫∫
d�a = −ByhL
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y is the normal direction of the closed path area.

Now the integral form
∮
�E · d�s = − ∫∫ �̇B · d�a of Maxwell’s equation leads to

E1 − E2 ≈ h
{
Er − E�

L
− Ḃy

}
(28.5)

Er − E1 can be replaced by Er − E� ≈ ∂Ez

∂x · L. Hence we get

Er − E� ≈ h
{
∂Ez

∂x
− ∂By

∂t

}
(28.6)

Now we assume ∂Ez

∂x and ∂By

∂t to be finite; next we let h go to zero, so that E1 = E2

remains. This means continuity of the tangential component of E.

Etang : continuous (28.7)

If there are no currents (�I = 0) in the plane of discontinuity, then Maxwell’s second

equation has the same form curl �H = �̇D as the first equation curl �E = − �̇B. We can go through
the same motions and get:

Btang : continuous (28.8)

Another boundary condition can be found on the basis of the 3rd Maxwell equation,
div �B = 0 which can be written also in integral form, and then modified on the basis of
the Gauss formula:

0 =

∫∫∫
︸︷︷︸

(volume)

div �Bdv =

∮∮
�B · d�a︸ ︷︷ ︸

surface of volume
d�a in normal di-
rection

(28.9)

Now let us take a very specific volume which encloses a small portion L2 of the boundary
plane z = 0. The height of the volume h, is very small, the length and width L is fairly small,
in the same sense as in the previous consideration.

∮∮
�B · d�a ≈ B1zL

2 −B2zL
2 + hL{Bx −B−x︸ ︷︷ ︸

≈ ∂Bx
∂x L

By −B−y︸ ︷︷ ︸
≈∂By

∂y L

} ≈ (28.10)

≈ L2

[
B1z −B2z + h

{
∂Bx

∂x
+
∂By

∂y

}]
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Figure 28.2: Definition of the geometrical parameters for the volume and path
integrals in Eqs. 28.9 and 28.10.

From Maxwell’s 3rd equation div �B = 0 follows
∮∮
�B · d�a = 0, hence [. . .] = 0. Now we

assume ∂Bx

∂x and ∂By

∂y to be finite, and then we let h go to zero. What remains isB1z−B2z = 0,
which means

Bnormal : continuous (28.11)

If there are no charges at the surface, Maxwell states div �D = 0, from which follows
similarly

Dnormal : continuous (28.12)

(Born and Wolf treat also the more general case, where there is some charge at the surface.)

28.2 Consequences of the boundary conditions

Now we want to list some consequences of the boundary conditions, but without proof, since
this topic is presented fairly well almost everywhere, and, furthermore, it is not of central im-
portance for our purpose.

A plane wave, falling onto a plane boundary is partially reflected, and partially refracted.
The laws of reflection and refraction (Snellius) say that �KT and �KR are in the same plane as
�K1 and �S, which is the surface normal. Furthermore,K1 tan = KR tan = KT tan.
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�K1 · �K1 = �KR · �KR;
K1

n1
=
KT

nT
=

2π

λvacuum
(28.13)

K1 tan = KR tan −→ α1 = −αR;

K1 tan = KT tan −→ n1 sinα1 = nT sinαT

��������

Figure 28.3: The k-vectors at a boundary between two media.

These laws are several centuries old∗. Snell’s law and the reflection law are supplemented
by Fresnel’s formulas (1823), which state how much light is directed into the reflected and
into the transmitted beam.

Figure 28.4: Reflection coefficient at the boundary between two media; ‖

means �E is in the plane of �K1 and �S0. ⊥ means �E is perpendicular to the
plane of �K1 and �S0.

∗ A modern derivation is contained in H. G. Zimmer’s Geometrical Optics (published by
Springer, N. Y. 1969). Snell’s law follows from energy conservation.

Another application of the Fresnel formulas occurs in connection with thin films.
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Figure 28.5: Multiple beam interference in a thin film.

In this approach (Airy, about 100 years ago) one computes first the split at the (1, 2) surface
into reflected and transmitted light. Next the transmitted light travels to the (2, T) boundary,
while its phase advances according to the path. Then again the light is split up, and so on.
Finally one sums up all the reflected portions, with proper phase factors, and also all the trans-
mitted portions. This turns out to be fairly simple. Mathematically speaking it is a “geometric
series”.

A more modern approach, which leads to the same result, consists of a simultaneous
satisfaction of the boundary conditions on both surfaces (1, 2) and (2, T). One makes the
“ANSATZ”∗∗ �E1 (known), �E1R (yet unknown in amplitude and phase, but with a �K1R vector
according to the law of reflection).
(∗∗ “Ansatz” (German) means an intelligent guess of the solution, usually with a few open
parameters. For example u = A cos(ωt+ ϕ) is a good “Ansatz” for u+Bü = 0).

�K1R = �K1 − 2 �S0 · (�S · �K1) (28.14)

Furthermore, one assumes a forward wave within the film, and another forward wave be-
yond the film, both forward waves having �K vectors in accordance with the refraction law.
Finally there has to be a backward wave with �K2R = �K2− 2 �S0( �S0 · �K2) within the film. The
waves with �K1R and �K , �K2R and �KT respectively consist of many waves sketched in Fig.
28.5 on the zig-zag approach. Anyway, it turns out that one has just enough equations from the
boundary conditions to find all components of the vector fields �E1R, �E2, �E2R and �ET , when
�E1, D, n1, n2, nT are known∗. (∗ Sommerfeld comments extensively on this equivalence of

the zig-zag and boundary condition approaches)

H. Wolter (in Progress in Optics, Volume 1, E. Wolf editor, North Holland Publishing Co.,
1966) has developed a network theory for treating a stack of multilayers. Experimentally
more than 120 layers can be put on top of each other. This is done for creating well defined
reflection or transmittance curves over wide ranges of λ. Wolter developed a matrix treatment
just as in the electrical 4-pole network theory. As you know, a 2 x 2 matrix connects the two
output functions (voltage and current) with the two input functions. In the case of thin films
one needs two independent matrices, one for the so-called TE case (E-vector perpendicular
to the plane of incidence), and another matrix for the TH case (H-vector perpendicular to
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the plane of incidence). The voltage corresponds formally to a magnetic field component, and
the current is replaced in this analogy by an electric field component. All the techniques for
getting broadband, or narrow band filters can be translated into optics immediately.

A particularly interesting case of a thin film arises if the angle of incidence is beyond the
“critical angle”, that is, in the angular region of total reflection (Fig. 28.6). Moving the upper
prism piece electrically, in proportion to an audio signal picked up by a microphone, this
device served 25 years ago as the emitter of a “light telephone”. A similar scheme is used also
as a variable “output coupler” of laser resonators. By the way, this effect is for electromagnetic
waves, what for Ψ waves (Schrödinger) is generally called the “tunnel effect”.

Figure 28.6: Optical tunneling.

Most recently Tien (Bell Telephone Laboratories) and others have used a similar effect for
mode launching in thin films. This is used for “planar optics”, a very new field, which might
possibly lead to a technology which would replace electronic integrated circuits by optical
integrated circuits. For getting an idea about “planar optics” read the Bell Telephone ads in
Applied Optics, Physics Today, etc. These ads are usually quite clear and informative.





29 Interference

29.1 Division of Wavefront and Division of Amplitude

In optics the word “interference” means that the joint intensity I of two complex amplitudes
u1 and u2 is in general different from the sum of the two single intensities:

Figure 29.1: Various setups for interferometers based on amplitude division
(left) or wavefront division (right).

I1 = |u1|2 and I2 = |u2|2 (29.1)

I = |u1 + u2|2 = |u1|2 + |u2|2 + u1u
∗
2 + u∗1u2︸ ︷︷ ︸

interference term
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In most textbooks the different interference effects are classified into these two groups:
“division of amplitude” and “division of wavefront”.

In the Fig. 29.1 lenses are omitted (except for one example), which is very unrealistic. We
will come back to this point later.

Another classification takes into account the relative position of the “object” (under inves-
tigation) and the plane of observation. This relationship might be (1) imaging, (2) Fraunhofer
diffraction, or (3) Fresnel diffraction. From now on (as before, too) I will give only some repre-
sentative examples. Details can be found for example in M. Francon’s Optical Interferometry.

1. Imaging interferometer, say for the study of phase objects u(x, y) = eiϕ(x,y).

Figure 29.2: Imaging interferometer based on the Mach-Zehnder configuration.

In the image plane the object amplitude u(x, y) is reproduced due to the action of the
lens. Furthermore a plane wave arrives via the other arm of the interferometer.

Special cases:

(a)

I(x, y) = |1 + u|2︸ ︷︷ ︸
plane wave
in phase, not
tilted

= 1 + u+ u∗ + |u|2 = 1 + 2Re{u}+ |u|2 (29.2)

if u = eiϕ(x,y) (phase object):

I = 2[1 + cosϕ] (29.3)

(b)

I(x, y) = |i+ u|2 = 1 + |u|2 − iu+ iu∗ = 1 + |u|2 + 2Im{u} (29.4)

=⇒ 2[1 + sinϕ]
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(c)

I(x, y) = |e2πiν0x + u(x, y)|2 = 1 + |u|2 + ue−2πiν0x + u∗e2πiν0x (29.5)

=⇒ 2[1 + cos[2πν0x− ϕ(x, y)]]

For a piece of glass with a triangular groove of depth Lmax(x, y) = 3
2

λ
n−1 (Fig. 29.3) the

resulting phase profile would be (n: index of refraction):

Figure 29.3: The shape of a glass substrate with triangular grooves.

ϕ(x, y) =
2π

λ
(n− 1)L(x, y) (29.6)

Thus the maximum phase variation spans over 3π.

The corresponding interference pattern would look like shown in Fig. 29.4.

Figure 29.4: Interference fringes of the structured glass substrate.

The interference fringes indicate height profiles, untilted or tilted.
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So far in the image plane, the object wave has been superposed by a plane wave, tilted
or not. A slight modification would be to take as the so-called “reference wave” now a
spherical wave instead of a plane wave. This makes sense if one wants to test how much
the object deviates from a perfect sphere.

A more drastic departure from classical interferometry is the so-called “shearing” inter-
ferometry, whereby the object wave interferes with a duplicate of the object wave, which
however is somehow displaced:

(a) Lateral shearing:

I = |u(x, y) + u(x±∆x, y)|2 (29.7)

(b) Radial shearing with differential magnification:

I =
∣∣∣u(r, ϕ)± u

( r

M
,ϕ
)∣∣∣2 (29.8)

(c) Radial shearing with constant shift:

I = |u(r + ∆r, ϕ)± u(r, ϕ)|2 (29.9)

(d) Radial-inverted shearing:

I = |u(r, ϕ)± u(r − r0, ϕ)|2 (29.10)

(e) Longitudinal shearing:

I = |u(x, y, z)± u(x, y, z + ∆z)|2 (29.11)

(f) Lateral inversion shearing

I = |u(x, y) + u(−x,+y)|2 (29.12)

(g) Angular shearing

I = |u(r, ϕ) + u(r, ϕ+ ∆ϕ)|2 (29.13)
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Figure 29.5: Lateral shearing interferometer based on the Mach-Zehnder con-
figuration.

The most developed type is “lateral shearing”, which can be achieved for example by
putting the object not into but in front of the interferometer (for example Mach-Zehnder)
(Fig. 29.5).

The two mirrors and the two beam-splitters provide more than enough degrees of free-
dom to shift and tilt the two images. Two special cases are of particular importance,
because they lead to easy-to-interpret results.

Total shear

Figure 29.6: The result of a total shearing interferometer.

object : u(x) = eiϕ(x) (29.14)

image intensity : I(x) = |u(x)− u(x−∆x)|2 = 2[1− cos(ϕ(x) − ϕ(x −∆x))]

∆x is so large that the essential part of the object, which has only a moderate extension,
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will fall upon another part of the “object” (Fig. 29.6), which is constant, hence acts like a
simple plane reference wave as in classical interferometry. In other words the supporting
glass plate is only half covered by the object.

Differential shear

Now the shift ∆x is small compared with the typical object dimensions. Furthermore
it is assumed now that the two images have a “total phase shift”, which introduces a
minus-sign.

I = |u(x, y)− u(x−∆x, y)|2 ≈
∣∣∣∣∂u(x, y)

∂x
∆x

∣∣∣∣2 = (29.15)

=

∣∣∣∣∂u∂x
∣∣∣∣2 (δx)2; with : u(x, y) = eiϕ(x,y)

I(x, y) =

(
∂ϕ

∂x

)2

(∆x)2
∂u

∂x
= ieiϕ ∂ϕ

∂x

Later, in connection with polarization, we will describe other ways for producing differ-
ential shear.

2. Fraunhofer diffraction interferometer

Figure 29.7: Two examples for configurations for Fraunhofer diffraction inter-
ferometers.

As almost always in interferometry the goal is to record the phase of a wave front in the
form of more or less deformed interference fringes. Zernike and his co-workers did this
first in 1948 in connection with Fraunhofer diffraction (Fig. 29.7).

In both cases one observes:
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I =

∣∣∣∣∣∣∣∣∣∣∣∣∣
ũ

(
x

λf
,
y

λf

)
︸ ︷︷ ︸
Fourier spectrum
of object

+ e−2πmiν0x︸ ︷︷ ︸
plane waves

∣∣∣∣∣∣∣∣∣∣∣∣∣

2

(29.16)

Some of you might have seen for example in Goodman’s book similar setups for record-
ing holograms. This is no accidental coincidence since holograms are interferograms.
They are called differently because they are used differently. An interferogram is the end
product of an experiment, while a hologram is used for the reconstruction of a wavefront
as we will see later in detail.

3. Fresnel diffraction interferometer

Let us take the lens between OBJ and OBS out of the “division of amplitude” setup (Fig.
29.7); then the complex amplitude in the observation plane is the Fresnel transform u of
the object u, hence I = |û+ e−2πiν0x|2.

If we take a lens between OBJ and OBS out of the “division of wavefront” scheme,
then the lens-action is removed both for the wave coming from the object, and for the
reference wave. Hence this time the lens removal means something different.

Figure 29.8: Fresnel diffraction interferometry.

We call the object u(x, y); each object point (x′, y′) produces a spherical wave, which
can be described far away, and at not too large an angle as:

≈ eiπ
[(x−x′)2+(y−y′)2]

λz (29.17)

All the spherical waves together, plus the spherical wave from the pinhole, produce in
the plane of observation:

∫∫
u(x′, y′)ei π

λz [(x−x′)2+(y−y′)2]dx′dy′ + ei π
λz [(x−x0)

2+(y−y0)
2] (29.18)
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The corresponding intensity is:

I = 1 +

∣∣∣∣∫∫ . . .

∣∣∣∣2 +

∫∫
u(x′, y′)ei π

λz [−2x(x′−x0)−2y(y′−y0)+x′2−x2
0+y′2−y2

0 ]dx′dy′ +

+ c. c. (29.19)

Let us now assume | ∫∫ . . . |2 � 1 to be small. Another specification, which leads to an
important special case is:

u(x′, y′) �= 0 only in |x′| ≤ ∆x

2
, |y′| ≤ ∆y

2
(29.20)

and the distance z may be fairly large:λz > (∆x)2 + (∆y)2. Then the part of the phase
term ei π

λz (x′2+y′2) is not too much different from 1 for all:

x′2 + y′2 ≤ (∆x)2 + (∆y)2

4
(29.21)

Figure 29.9: Setup for Fourier holography, i.e. modified setup for Fresnel in-
terferometry.

Hence we drop this term, and also the x2
0 +y2

0 term for similar reasons. Now the intensity
is:

I(x, y) ≈ 1 +

∫∫
u(x′, y′)e2πi

x(x′−x0)+y(y′−y0)
λz dx′dy′ + c. c. (29.22)

= 1 + e2πi
xx0+yy0

λz ũ
( x
λz
,
y

λz

)
+ c. c.

= 1 + 2
∣∣∣ũ( u

λz
,
y

λz

)∣∣∣ cos
[
2π(

x0

λz
x+

y0
λz
y)
]

+ ϕ
( x
λz
,
y

λz

)
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where ϕ(ν, µ) = arg(ũ(ν, µ)).

This is a fringe system with a carrier frequency νc = x0

λz , µc = y0

λz which is amplitude
modulated by the modulus of the spatial frequency spectrum, and phase modulated by
the phase of ũ(ν, µ). In other words, the intensity distribution I(x, y) displays essentially
the Fourier transform ũ(ν, µ) of the complex amplitude u(x′, y′) of our “object”. This
experiment is also called “lens-less Fourier holography”.

You might wonder why it was justified to neglect the quadratic term | ∫∫ . . . |2, which
implies that more light comes out of the pinhole than altogether from the object. This is
quite reasonable when the setup in Fig. 29.8 is modified as shown in Fig. 29.9. Now a
very large portion of the collimated beam is forced to go through the pinhole.





30 Coherence

30.1 Fundamentals of coherence theory

When talking about interference we assumed tacitly that the two light waves, which over-
lapped in the plane of observation, were mutually coherent. Not always are two light waves
coherent; sometimes they are incoherent, which means no interference fringes occur. Some-
times the interference fringes might be barely visible, having only low contrast. This situation
is called “partial coherence”. The subject of coherence theory is considered by most students
the most difficult subject in optics. I think this is partially due to the fact that many text-
books try to present the topics in an elegant and abstract manner, rather than intuitively, as
I will attempt to do now. First we have to talk about atomic emission processes, later about
macroscopic effects as the result of the orderliness of many emission acts. Let us start with a
very simple case, and then gradually increase the complexity, such making it more and more
realistic.

A single atom, which might have been excited (that means brought into a state of elevated
energy) may start to irradiate at any moment. The starting moment, which determines the
phase of the emitted wave, is unpredictable in the case of the so-called “spontaneous” emis-
sion, which is typical for thermal light sources, where the excitation is provided by collision,
by photon absorption, or by a chemical process like ionization.

Besides spontaneous emission there is so-called stimulated emission, an effect which had
been predicted 50 years ago by Einstein. It means that an atom, which is ready to emit any
moment, is exposed to a by-passing wave of the proper frequency. This by-passing wave, if
it is strong enough, has a fair chance of initiating the emission of the waiting atom in such
a way that both waves will be in-phase. It is the essence of a laser that almost all atoms
will be stimulated in phase. Hence the name “Light Amplification by Stimulated Emission
of Radiation”. But presently we are not so much interested in a laser, which is easier to
understand in connection with coherence than an ordinary thermal light source.

The wave train leaving a radiating atom might last for 10−8 seconds, which corresponds to
a train length of 300 cm. If many atomic collisions occur the interval of undisturbed emission
might be only 10−11 seconds (∼ 0.3 cm) or even shorter. Such intervals are typical for a gas
discharge lamp, filled for example with mercury. The longest wave trains occur only in very
low pressure lamps, which contain only relatively few atoms. Hence the process of emission
is not so likely to be interrupted by a collision process as in high pressure lamps, which there-
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fore emit (on the average) much shorter wave trains, but also many more of them.

Figure 30.1: A wave train emitted by a thermal light source and the correspond-
ing spectral distribution.

Ṽ (ν) = e2πiνt0 Ṽ (ν − ν) Ṽ (ν) =

∫
V (t)e−2πiνtdt (30.1)

Now let us set up an interference experiment.

Figure 30.2: A basic interference experiment.

A′M = AM (equal length) AP = R; A′P = R′ (30.2)

At point P the total field VT will be VT = V (t) + V
[
t− R′−R

c

]
; where R′−R

c is the

time delay between the direct wave and the reflected wave. The “instantaneous intensity” is
B = |VT |2 and the resulting intensity is:

I(t0) =
1

T

t0+ T
2∫

t0−T
2

B(t)dt (30.3)

Herein T has to be large enough to enclose the whole wave train V (t) and V
[
t− R′−R

c

]
.

Call R′−R
c from now on the “delay” time τ , and omit the factor 1

T .
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I(t) =

∫
|V (t)|2dt =

∫
|V (t− τ)|2dt+ 2Re

{∫
V (t)V ∗(t− τ)dt

}
(30.4)

With Ṽ (ν) =
∫
V (t)e−2πiνtdt = e2πiνt0 Ṽ0(ν − ν) this will be, setting ν − ν −→ ν′ −→

ν,

I(t) = 2

∫
|Ṽ0(ν)|2dν + 2Re

{
e2πiντ

∫
|Ṽ0(ν)|2e2πiντdτ

}
(30.5)

Herein ν is the mean-frequency. Looking at the sketch of V (t) in Fig. 30.1, it is clear that
the interference term

∫ |Ṽ0(ν)|2e2πiντdν will be essentially �= 0 only in |τ | ≤ ∆t.

What does that mean? Only for time delays τ = R′−R
c , which do not exceed the time

duration ∆t of the wave train, one might expect to have a non-vanishing interference term∫
V (t)V ∗(t− τ)dt.

So we get as an necessary (not sufficient!) condition for the interference interaction be-
tween two wave trains, which stem from the same atom, and not only that, but also from the
same emission act, that these two wave trains overlap in time (which is another way of stating
the condition |τ | ≤ ∆t).

What we have said so far is not really wrong but highly unrealistic. What could we expect
to see, if only one atom emits only once a wave train? The probability that a photon is observed
at the point P is very, very low. So let the atom emit some more wave trains. Even the most
diligent atoms will emit during less than a millionth of the time. Hence it might happen only
once in a year or so that two wave trains, coming from the same atom but from different
emission acts, will meet somewhere, say at point P . It is not impossible, though, that this
occurs, assuming that the late wavetrain from an earlier emission (going A - M - P) meets
the early wave train (going directly A - P) from the next emission process. Even so, we can
forget about these events for yet another reason. Since we assumed that the emission processes
are all spontaneous, the time difference between starting moments of subsequent emission acts
varies at random. Hence the type of interaction between parts from different emission acts will
ultimately cancel out if it happens often enough, because the time difference might sometimes
produce a constructive interaction, but equally likely a destructive interaction. You might
imagine as time-integration interval a fraction of a second (say 1/10), which might be needed
for the exposure of a photographic plate, or for the perception of an image by the eye. All this
means is that the repetition of the emission act does not change our coherence considerations.

But to be more correct, we should modify the condition τ (delay) < ∆t (wave train du-
ration). What is observable is not V (t) but only I(t0); in other words, Ṽ (ν) is not really
important here, only |Ṽ0(ν)|2.

For
∫ |Ṽ0(ν)|2e2πiντdν to be �= 0 (which means interference will be observed) it is suf-

ficient that the spectral width ∆ν of the temporal power spectrum |Ṽ0(ν)|2 is small enough
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∆ν < 1
τ . This can certainly be satisfied by a wave train of duration ∆τ ≈ 1

∆ν , as pointed
out, but completely different waves V (t), which are �= 0 over much longer intervals, can have
the same power spectrum |Ṽ (ν)|2. Of course, these other wave trains would have a different
arg{Ṽ (ν)}, but that is of no consequence for our experiment. Hence we had better generalize
the older condition τ < ∆t into ∆ν < 1

τ .

It is more traditional to formulate this condition slightly differently. For one thing we re-
place the delay time τ by the path differenceR′ −R = cτ , and call R′ −R = ∆L. Also it is
more common to use the wavelength λ rather than the temporal frequency ν for the specifica-
tion of the “spectrum” |Ṽ (ν)|2. Because of λν = c it is |∆ν| = |∆λ

λ2 |, where λ stands briefly
for λ = c

λ
. Then ∆ν < 1

τ goes over into ∆L
λ < λ

∆λ .

In other words, it is necessary for the observation of interference that the path difference
∆L, measured in mean-wavelengths λ, is less than the “spectral purity” λ

∆λ of the source.

Now let us state three more conditions, which are essential for interference to occur. Then
we have learned enough for our purpose about the physics underlying the coherence theory.

Two waves which are polarized perpendicularly cannot interfere:

�V = �xVx + �yVy ; I = �V · �V ∗ (30.6)

I = |Vx|2 + |Vy|2 (no VxVy)

The reason is that it is the electric field, which exerts a force upon electrons in the receiver,
which creates an observable effect. Destructive interference occurs if at a certain point two
fields are oriented just in opposite directions. However, if the fields are perpendicular, as as-
sumed above, nothing like that could occur.

Two waves coming from different atoms which emit spontaneously cannot interfere (time-
integrated over many emission processes) because the phase differences are uncorrelated, and
furthermore, the chance for overlapping in time is not very high. (Note: such a rule does not
apply for stimulated emission from a laser.)

Two waves, emitted from the same atom, but with different temporal frequencies ν, ν+δν,
cannot interfere, if the duration of observation (time integral) T is T � 1

δν . The reason?
These two waves produce a beat frequency cos(2πtδν), which however is too fast to be ob-
served with an integrating time T � 1

δν . Notice: it is quite simple (but of no interest in this
context) to create conditions T < 1

δν such that the beat frequency is observable (see T. Suzuki
et al. JOSA 51, 253, 1961).

In order to get a feel for the macroscopic consequences of our so far microscopic consid-
erations we will now discuss some simple but representative interference experiments.
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30.2 Coherence and interference by division of amplitude

The simplest setup is a source in front of a mirror (Fig. 30.3). The source may be extended in
space (x′, y′, z′) as well as in temporal frequencies νt.

Figure 30.3: Interference by division of amplitude.

The functions S represents the energy emission at point (x′, y′, z′) and at frequency νt.
Let us assume that the spectral sensitivity of the receiver is R(νt). Then the intensity at P is:

I(x, y, z) =

∫∫∫∫
S(x′, y′, z′, νt)R(νt)

∣∣∣∣eikr+

r+
+
eikr−

r−

∣∣∣∣2 d(x′ y′ z′ νt) (30.7)

This means that always a pair of spherical waves, coming from the point pair (x′, y′,+z′)
and (x′, y′,−z′) will interact, of course assuming the same frequency νt, which is contained
in:

K =
2π

λ
=

2πνt

c
; r± =

√
(x− x′)2 + (y − y′)2 + (z ± z′)2 (30.8)∣∣∣∣eikr+

r+
+
eikr−

r−

∣∣∣∣2 =
1

r2+
+

1

r2−
+

cos{k(r+ − r−)}
r+r−

This general formula is not easy to grasp, so let us study some instructive special cases.

30.2.1 Monochromatic point source

S(x′, y′, z′, νt)R(νt) = δ(x′, y′, z′ − z, νt − ν0) (30.9)

I =
1

r2+
+

1

r2−
+

cos{k(r+ − r−)}
r+r−

k0 = 2π
ν0
c

r± =
√
x2 + y2 + (z ± z0)2
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The maxima of the interference fringes occur where the cosine is +1. That is at k0|r+ −
r−| = 0, 2π, 4π . . . or |r+ − r−| = 0, λ0, 2λ0, 3λ0, . . ..

These are rotational hyperboloids around the z-axis (Fig. 30.4).

Figure 30.4: Interference finges according to Eq. 30.9 in different approxima-
tions.

If y is very large, then I ≈ 2
r2

[
1 + cos

(
4πzz0

λy

)]
, (r ≈ y)

If z is very large, then I ≈ 2
z2

[
1 + cos

(
2π z0(x

2+y2)
λz2

)]
.

30.2.2 Polychromatic point source

S(x′, y′, z′, νt)R(νt) = δ(x′, y′, z′ − z0)S2(νt) (30.10)

remember: νt = c
λ ; Compare Eq. 30.10 with the main formula Eq. 30.7 for the intensity

at P.

If y is very large then :

I ≈ 2

r2

∫
S2(νt)

[
1 + cos

(
2π

2zz0
cy

)]
dνt (30.11)

=
2

r2

[
S̃2(0) + |S̃2

(
2zz0
cy

)
| cos

[
σ2

(
2zz0
cy

)]]
whereby S̃2(�) = |S̃2(�)|eiσ2(�) =

∫
S2(νt)e

−2πi�νtdνt

Herein we made use of the reality of S2 = S∗
2 . Furthermore we might assume that S2(νt)

has a mean frequency νt.
Call S2(νt) = S20(ν − νt)⇒ |S̃20(�)| = |S̃2(�)|:

σ20(�) = σ2(�) + 2πνt� (30.12)
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Figure 30.5: The source spectrum.

I(z) =
2

r2
S̃2(0)

1 +
|S̃2

(
2zz0

cy

)
|

S̃2(0)
cos

{
2πνt

2zz0
cy
− σ20

(
2zz0
cy

)} (30.13)

The contrast goes down with z; there might be a fringe shift σ20

2πνt
.

Figure 30.6: The interference pattern for the case of a polychromatic source.

Similarly at a plane z = constant (very large):

I(x, y) ≈ 2S̃2(0)

z2

1 +
|S̃20

(
z0(x

2+y2)
cz2

)
|

S̃2(0)︸ ︷︷ ︸
contrast

cos

{
2π
νtz0(x

2 + y2)

cz2
+ σ20(. . .)

}
(30.14)

(σ20 ∼ shift of fringes.)
S̃(τ)

S̃(0)
is what is called the “temporal degree of partial coherence”. A fringe shift due to

σ20 will occur if S20(νt) is not symmetrical, i.e. S20(νt) �= S20(−νt). Basically this whole
treatment (2) of interference from a polychromatic source consists of two parts: microscopic
assumptions, as in the first part of this chapter on coherence; and macroscopic overlapping.
The microscopic rules say that there are coherent point pairs (x′, y′,+z′) and (x′, y′,−z′)
due to the mirror at z′ = 0. No other point pairs can produce waves which mutually interfere.
Now comes the macroscopic part of the coherence problem. The interference fringes from
theses various point pairs are very similar, except that different frequencies νt cause a mis-
match in scale, and (as we will elaborate next), different point pairs produce fringe systems
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Figure 30.7: The interference pattern for the case of a polychromatic point
source at z = const.

which coincide only imperfectly, such reducing the contrast of the total fringe system.

30.2.3 Monochromatic extended source extended perpendicular to the
mirror

S(x′, y′, z′, νt) = δ(x′, y′, νt − ν0)rect
(
z′ − z0

∆z

)
(30.15)

or somewhat more general: S3(z
′ − z0)

Figure 30.8: Source distribution of a monochromatic extended source including
the mirror image of the source.

I(x, y, z) =

∫
S3(z

′ − z0)
∣∣∣∣eik0r+

r+
+
eik0r−

r−

∣∣∣∣2 dz′ (30.16)

k0 = 2π
ν0
c

r±
√
x2 + y2 + (z ± z′)2

If y is very large, then:
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I(x, y, z) ≈ 2

y

∫
S3(z

′ − z0)
[
1 + cos

(
2πz′

zν0
cy

)]
dz′ (30.17)

=
2S̃3(0)

y

1 +

∣∣∣S̃3

(
zν0

cy

)∣∣∣
S̃3(0)

cos

{
2πz

z0ν0
cy
− σ3

(
zν0
cy

)}
30.2.4 Monochromatic extended source extended parallel to mirror,

observed at large z

S(x′, y′, z′, νt) = δ(νt − ν0, z′ − z0)S4(x
′, y′) (30.18)

(Do it yourself as a homework problem)

30.3 Tolerances

We found that all the various deviations from the ideal case, where the light comes from a
monochromatic point source, manifest themselves in a reduced contrast of the fringes, as well
as in a fringe shift:

Ideal: I = I0 [1 + cos(2πνcx)]
Imperfect: I = I [1 + V21 cos(2πνcx+ σ21)]
0 ≤ V12 ≤ 1; V12 and σ12 may be functions of x. V21 is sometimes called “contrast”=

Imax−Imin

Imax+Imin
; Imax ∼ cos = +1, Imin ∼ cos = −1.

It is standard practice to say that V21 ≥ 0.8 is a tolerance, which assures pretty well fringe
visibility. Actually, one can see fringes at much lower contrast (or modulation) quite well, and
one can pick them up by photoelectric detection too. But 0.8 tolerance criteria are in fashion,
I guess, because they lead to simple formulas.

For example consider the case of the polychromatic point source (example # 2 on page
332). Let us specialize:

S20(νt) = rect
( νt

∆ν

)
(30.19)

S̃20(�) = ∆ν sinc (�∆ν) ; |S̃2(�)| = |S̃20(�)|

contrast =
|S̃2(�)|
|S̃2(0)| = sinc(�∆ν) ≈ 1− π�∆ν

3
!

It will be > 0.8, if π�∆ν < 1. Here we have to insert � −→ 2 zz0

cy . Let us replace ∆ν by

a corresponding measure expressed in wavelengths. Due to νtλ = c it is ∆ν = c∆λ
λ ; hence:

π

∣∣∣∣2zz0cy

∣∣∣∣ · c∆λλ ≤ 1; or
∆λ

λ
≥
∣∣∣∣2πzz0λy

∣∣∣∣ (30.20)
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Figure 30.9: Geometry of the fringes formed by a polychromatic point source
and its mirror image.

This is a tolerance for the “spectral purity ∆λ
λ ”, which is needed for having a fringe con-

trast≥ 0.8 at a distance y away from a polychromatic point source, which is doubled into two
sources at z = +z0 and z = −z0, both at x = 0, y = 0. A somewhat different form of the
same tolerance can be obtained from observing that the fringe period is zP = cy

2 z0νt = λy
2z0

.
Hence we get:

λ

∆λ
≥ π

∣∣∣∣ zzp

∣∣∣∣ (30.21)

That means that within −zmax and +zmax there will be fringes with contrast better than
0.8. zmax is given by λ

∆λ = π zmax

zP
; 2 zmax

zP
is the number of high contrast fringes. This

number will be 2 zmax

zP
= 2

π
λ

∆λ . Hence you may remember as a rule of thumb that the number
of high-contrast fringes equals about the spectral purity of the source.

30.4 Solution of the example # 4, suggested for self-study:

Remember some facts about the Fresnel transform:

ǔ(x, y, η) =
1

λη

∫∫
u(x′, y′)e−

iπ
λη {(x−x′)2+(y−y′)2}dx′dy′ (30.22)

û(x, y, η) =
1

λη

∫∫
. . . e+... . . .dx′dy′

{ǔ∗} = {û}∗ and ˆ{u∗} = {ǔ}∗

If u = u∗ (real), then ǔ = û∗ and û = ǔ∗.

In the problem the source was described as:

S(x′, y′, z′, νt) = δ(νt − ν0, z′ − z0)S4(x
′, y′) (30.23)
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z very large:

1

r±
≈ 1

z
; r± =

√
(z ± z0)2 + (x− x′)2 + (y − y′)2 (30.24)

r± ≈ z ± z0 +
(x− x′)2 + (y − y′)2

2(z ± z0)
r+ − r− ≈ 2z0 − (x− x′)2 + (y − y′)2

z2

z0

abbreviate: z2

z0
= η.

I(x, y) ≈ 2

z2

∫∫
S4(x

′, y′)

[
1 + cos

{
2πν0
c

(
2z0 − (x− x′)2 + (y − y′)2

z2

z0

)}]
dx′dy′

= 2
S̃4(0, 0)

z2
+

1

z2

∫∫
S4(x

′, y′)e+i{...}dx′dy′ + (30.25)

+
1

z2

∫∫
S4e

−i{...}dx′dy′ =

=
2S̃4(0, 0)

z2
+
e2πiν02

z0
c

z2
ληŠ4(x, y) +

e−2πiν02
z0
c

z2
ληŜ(x, y)

Š4 = |Š4|eiσ4 ; due to S4 = S∗
4 it is Ŝ4 = Š∗

4 = |Š4|e−iσ4 , hence:

I(x, y) =
2S̃4(0, 0)

z2
+

2λ

z0

∣∣∣∣Š4(x, y;
z2

z0
)

∣∣∣∣ cos

{
2πν0

2z0
c

+ σ4(. . .)

}
(30.26)

(herein we replace η = z2

z0
, hence λη

z2 = λ
z0

).

In this problem the method of stationary phase yields a very poor result, since with z � z0
(observation far away) the exponential function does not oscillate wildly, only mildly. The
method of stationary phase requires that the exponent varies over many 2πs within the region
of integration.

30.5 Coherence — Division of the Wavefront

For example, double-slit diffraction.
Coordinate system:
Start with a monochromatic component νt of a single source point (x, y).

∫∫∫
S(x, y, νt)δ(x − x, y − y, νt − νt) dx dy dνt (30.27)
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Figure 30.10: The optical setup of the double slit experiment.

Figure 30.11: The parameters in the double slit experiment.

Monochromatic tilted plane wave falling onto the object:

δ (in source) −→ e−2πi( νt
ct )(xx′+yy′) (before object) (30.28)

Let us assume an object which has the same amplitude transmittance u(x′, y′) for every
νt. Behind the object we have:

u(x′, y′)e−2πi( νt
cf (xx′+yy′)) (30.29)

The lens L2 performs another Fourier transformation:

∫∫
u(x′, y′)e−2πi( νt

cf (xx′+yy′+x′x+y′y)) dx′ dy′ = (30.30)

=

∫∫∫∫
ũ(ν, µ)e−2πi( νt

cf (...)e+2πi(νx′+µy′)d(x′ y′ ν µ);

Herein:
∫
. . .dx′ = δ

(
ν −

(
νt

cf

)
(x+ x)

)
;
∫
. . .dν ∼ ν → νt

cf (x + x).
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Similarly,
∫∫
. . . dy′dµ ∼ µ→ νt

cf (y + y); hence as complex amplitude in plane DIF,

ũ

(
νt

cf
(x+ x,

νt

cf
(y − y))

)
(30.31)

This is the Fourier transform of u as expected but with theses two features:

1. shifted sidewise according to the source point position x, y;

2. a wavelength-proportional magnification. ( νt

c = 1
λ ; magnification appears as a denomi-

nator of the coordinate.)

Now let us take into account not only the one source point x, y and not only one spectral
component νt, but all radiation emitted by the source. As we have discussed before, different
frequencies νt do not interfere. Also light from different atoms does not interfere. Since the
source-slit (or any other shape of source mask) is illuminated by an image of the original
source (see Fig. 30.10), different points (x, y) correspond to different atoms of the original
source. Hence we must add up intensities (rather than complex amplitudes) from different
sources:

I(x, y) =

∫∫∫ ∣∣∣∣ũ( νt

cf
(x+ x),

νt

cf
(y + y)

)∣∣∣∣2 S(x, y, νt) dx dy dνt (30.32)

In this context the following nomenclature is commonly used:

coherent integration:
∣∣∫ udx

∣∣2; incoherent integration:
∫ |u|2dx,

whereby u = u(x) is a complex amplitude. The difference is in the sequence of addition
(= integration) and modulus-squaring.

To appreciate this general formula better, we will discuss some special cases.

30.5.1 Polychromatic point source

S(x, y, νt) = δ(x, y)S2(νt) (30.33)

−→ I(x, y) =

∫ ∣∣∣∣ũ(νtx

cf
,
νty

cf

)∣∣∣∣S2(νt) dνt

In general this will not be a clean picture I(x, y) of the spatial power spectrum |ũ(ν, µ)|
because during the integration several such spatial power spectra will overlap, with magnifi-
cation mismatch, which will cause a blur. The magnification is M = cf

νt
. The damage caused

by this magnification mismatch will become clearer, if we specialize even further by assuming
as object a double slit (Fig. 30.12).

u(x′, y′) =

[
rect

(
x− b/2

a

)
+ rect

(
x+ b/2

a

)]
rect

( y
h

)
(30.34)

ũ(ν, µ) = 2a h sinc(νa) sinc(µh) cos(πνb)

|ũ(ν, µ)|2 = 2(a h)2 sinc2(ν a) sinc2(µh)[1 + cos(2πνb)]
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Figure 30.12: The parameters for the doubleslit experiment with a polychro-
matic point source.

Now set sinc2
(

νtx
cf a

)
≈ sinc2

(
ν0x
cf a

)
and sinc2

(
νty
cf h

)
≈ sinc2

(
ν0y
cf h

)
. Then we can

pull these factors in front of the integral, to make it more tractable. This is justified since sinc
is a smooth function, almost constant, if νt does not vary much in the region of interest.

I(x, y) ≈ sinc2 . . . sinc2 . . . 2(ah)2
∫ [

1 + cos

(
2π
νtx

cf
b

)]
S2(νt)dνt (30.35)

I(x, y) = I0(x, y)︸ ︷︷ ︸
smooth enve-
lope

1 + V2

(
x

xpνo

)
︸ ︷︷ ︸

contrast

cos


2π

x

xP
− σ2

(
x

xP ν0

)
︸ ︷︷ ︸
causes fringe
shift




Herein we assumed again S2(νt) = S20(νt − ν0) −→ S̃2(�) = S̃2(�) = S̃20(�)e

−2πiν0�;

ν0 =
R

νtS2(νt)dνtR
S2(νt)dνt

; S̃20 = |S̃20|eiσ2 .

We used the following abbreviations:

2(ah)2sinc2 . . . sinc2 . . . S̃2(0) = I0(x, y) (30.36)

cf

ν0b
= xp (period);

|S̃20(�)|
S̃20(0)

= V2(�)

In other words, the “contrast” of these fringes yields the modulus |S2(�)| of the Fourier
transform of the source spectrum S2(νt) and the fringe shifts σ2

2πxP
indicate the argument of
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Figure 30.13: Interference pattern generated by a double slit illuminated by a
polychromatic point source.

that Fourier transform. From measuring both quantities one can deduce S̃2, and the source
spectrum S(νt) itself by means of a Fourier transformation. This is another example of
Fourier spectrometry.

30.5.2 Extended monochromatic source

S(x, y, νt) = S(x, y)δ(νt − ν0) (30.37)

We insert this into the general formula on Eq. 30.32, which becomes now

I(x, y) =

∫∫∫ ∣∣∣∣ũ( ν0cf (x+ x),
ν0
cf

(y + y)

)∣∣∣∣2 S3(x, y)dxdy (30.38)

let us take again the double slit as object and set ν0

cf = 1
λf .

I0(x, y) = I0(x, y)

∫∫ [
1 + cos

{
2π
b(x+ x)

λf

}
S3(x, y)

]
dxdy (30.39)

within the small region where S3(x, y) may be �= 0. The smooth function I0(x, y) was
obtained again by pulling two sinc-functions in front of the integral, which is justified. Now
we define:

S̃3(ν, µ) =

∫∫
S3(x, y)e

−2πi(xν+yµ) dx dy = |S̃3|eiσ3 (30.40)

(and) I0(x, y) = S̃3(0, 0) sinc2(
ax

λf
) sinc2(

hy

λf
)2(ah)2



342 30 Coherence

Then we obtain after using the ordinary Fourier-δ tricks:

I(x, y) ≈ I0(x, y)
[
1 +
|S̃3

(
b
λ , 0

) |
S̃3(0, 0)

cos

{
2π

bx

λf
− σ3

(
b

λf
, 0

)}]
(30.41)

By measuring the contrast and fringe shift of I(x, y) one can determine the spatial spec-
trum S̃3 of the source. Michelson did this in his famous Stellar Interferometer experiments
(∼ 1900 in Cleveland, ∼ 1920 in Pasadena). His source was a star whose diameter was too
small to be measured in an ordinary telescope. He started from the assumption that his source
is rotationally symmetric:

S(x, y) =

{
+1, if x2 + y2 ≤ r20

0, otherwise;
(30.42)

Hence it is enough to know S3(ν, 0) only along the ν-axis since S̃3 also is rotationally
symmetric. For objects without rotational symmetry one has to perform a whole series of
experiments with different orientations of the double slit (Fig. 30.14).

Figure 30.14: Double slit at different angular orientations.

A simple Fourier calculation of a type we have done before shows that a disk object
S3(x, y) has as its transform ν2 + µ2 = �2; µ

ν = tan(θ).

S̃3(ν, 0) = S̃3(�, θ) = S̃3(�, 0) (30.43)

S̃3(�) = S̃3(0)
J1(2πr0�)

πr1�
;

in our case: �→ b
λf .

Michelson varied the distance b of the two slits and looked for the contrast to go down
to the first zero of the 2J1(z)

z function. He also had to use spectral filters to monochromatize
the light. The observations required quite a bit of diligence, because the fringes were dancing
due to turbulence. Only a few people dared to take up Michelson’s difficult technique. A
modern continuation, which uses rooms full of electrics, is the Hanbury Brown-Twiss stellar
diameter method, where intensity fluctuations as measured at two points (maybe 100 m apart)
are correlated. HB still believes it is a good method since he works on it in the middle of the
lonely bush country in Australia. T thinks it is hopeless, as he expressed in Optica Acta, 1968.
T lives in London.
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Figure 30.15: The shape of the first order Bessel function J1.

30.6 Coherence — division by grating diffraction

This type of beam-splitting is omitted in most treatments of interference, but as Leith & Up-
atnieks have shown in JOSA 57, 975 (1967) it is in a way the best way for holography with
thermal light sources. We will come back to this subject. At the present time let us discuss the
coherence properties of this type of interference setup, which are responsible for its usefulness
(Optica Acta 9, 1, 1962).

30.7 Coherence—Division by a scatter plate
(Jim Burch ∼1950)

The scatter plate interferometer is nice and cheep but rarely used or mentioned in the literature.
My guess is that most scientists mistrust instruments with statistical components, and dislike
statistics even in those rare occasions where it is constructively useful, not merely stating how
bad things are in average.

30.8 Partial Coherence in Case of Wavefront Division

This is a repetition, but in a slightly different form, more similar to the Born & Wolf style.
The (normalized) complex degree of coherence is defined as the “complex contrast” of a fringe
system in the observation plane, produced by the source S, which illuminates two pinholes at
(x1, y1) and (x2, y2) in the object plane. “Complex contrast” means contrast in the ordinary
sense, multiplied by a phase factor, which accounts for a fringe shift.

ideal : 1 + cos(2πνxx) actual : 1 + Re
{
γe2πiνxx

}
= (30.44)

= 1 + Re
{
V12e

iβ21e2πiνxx
}

= 1 + V21 cos(2πνx + β21)

γ21 = V21e
iβ21 is a “complex contrast′′

For determining γ we compute the output intensity I(x, y) for a particular “object” out of
two pinholes.
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Figure 30.16: Schematic of the experimental setup for analyzing partial coher-
ence.

u(x′, y′) = δ(x′ − x1, y
′ − y1) + δ(x′ − x2, y

′ − y2) (30.45)

=⇒ ũ(ν, µ) = e−2πi(νx+µy) + e2πi(νx+µy)

=⇒ |ũ(ν, µ)|2 = 2 [1 + cos{2π[ν(x1 − x2) + µ(y1 − y2)]}]
The spatial frequency ν is displayed at x = λfν. For λ we write now better λ = c

νt
,

because λ would occur in the denominator of the exponent. When inserting this specific
|ũ|2 into the main formula Eq. 30.32, we have to replace ν and µ according to ν → νt

x+x
cf ;

µ→ νt
y+y
cf .

I(x, y) = 2

∫∫∫
[1 + cos {. . .}]S(x, y, νt) dx dy dνt (30.46)

= 2

∫∫∫
S(x, y, νt) dx dy dνt

[
1 + Re

{
γ12e

2πi
ν0
cf [x(x1−x2)+y(y1−y2)]

}]
with ν0 =

RRR
νt S dx dy dνtRRR
S dx dy dνt

.

In the two special cases:

S = δ(x, y)S2(νt) polychromatic point source (30.47)

S = S3(x, y)δ(νt − ν0) (extended monochromatic source)

one gets a Fourier relationship between γ21 and S, which is in the case of the extended
monochromatic source referred to as Zernike-Van Cittert theorem. Actually both Fourier re-
lationships were known already to Michelson, who made practical use of them in his stellar
diameter interferometer and in his experiments on Fourier spectrometry.

γ and Γ are (in most books) connected like γ(x1 − x2) = Γ(x1−x2)
Γ(0) . Yet another way to

arrive at the same goal is by replacing in the main formula (Eq. 30.32):
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|u(ν, µ)|2 =

∫∫∫∫
u(x′, y′) u∗(x′′, y′′)e−2πi[ν(x′−x′′)+µ(y′−y′′)] d(x′ y′ x′′ y′′)

with : γ −→ νt

cf
(x+ x) and µ −→ νt

cf
(y + y) (30.48)

I(x, y) =

∫∫∫∫
u(x′, y′) u∗(x′′, y′′)Γ(x′ − x′′, y′ − y′′) · (30.49)

· e2πi
ν0
cf [x(x′−x′′)+y(y′−y′′)] d(x′ y′ x′′ y′′)

Γ =

∫∫∫
S(x, y, νt)e

2πi
cf [...] d(x y νt) (30.50)

[. . .] = (x′ − x′′)(xνt + xνt − xν0) + (y′ − y′′)(yνt + yνt + yν0)

Notice: sometimes the “carrier frequency factor” e2πi
ν0
cf [x(x′−x′′...)] is also included into

the definition of Γ, which is then called “mutual intensity”.

30.9 A Final Look at Coherence Theory

Before closing the chapter on coherence theory let us once more treat the general case of
two-beam interferences as produced by an extended polychromatic source. At proper points
of this theory we will utilize the atomistic properties of thermal light. The setup consists of
a source, an interferometer, and a plane of observation (Fig. 30.17). Due to the two-beam
interferometer light from the source point x′ can reach the observation point x along two
different paths. The two optical path lengths are called L1(x, x

′) and L2(x, x
′). “Optical

path” means “geometrical path” times “index of refraction”. This definition of optical path
length is meaningful since it is proportional to the travel time of a wave crest.

Figure 30.17: Schematic of a two beam interferometer.

dL = nds;
dL

c
=

ds
c
n

=
ds

v
= dt (30.51)
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The amplitude may be attenuated by factors A1(x, x
′′) and A2(x, x

′) in these two paths.
If the complex amplitude of the source is VS(x′, t), then the complex amplitude at the obser-
vation point x is:

V (x, t) = V1(x, t) + V2(x, t); (30.52)

V1(x, t) =

∫
A1(x, x

′)VS(x′, t− L1(x, x
′)

x
)dx′

V2 correspondingly; L
c = travel time from x′ to x.

The recorded intensity (for example on a photograph) is:

I(x) =

T∫
0

|V (x, t)|2dt =

∫
|V1|2dt+

∫
|V2|2dt+

∫
V1V

∗
2 dt+

∫
V ∗

1 V2dt

= I1(x)I2(x) + 2I12(x) (30.53)

Actually |V |2 should be called “intensity” and
∫ |V |2dt the “exposure”. But it is quite

common to call almost every modulus-square term an “intensity”. The interference term I12
is called “mutual intensity”. Its normalized version is the “degree of partial coherence” I12√

I1I2
,

which is usually indicated as “gamma” (upper case or lower case).

Now let us discuss I(x) in more detail. We will compute
∫
V1V

∗
2 dt. This is enough

calculation labor since the other three terms of I(x) can be deduced formally by changing
the indices “1” and “2” accordingly. As a first step we represent the source amplitude by its
temporal frequency composition:

VS(x′, t) =

∫
ṼS(x′, ν′)e2πiν′tdν′ (30.54)

Inserting now VS into
∫
V1V

∗
2 dt we get:

∫
V1V

∗
2 dt = (30.55)

=

∫∫∫
A1(x, x

′)A2(x, x
′)VS

(
x′, t− L1(x, x

′)
c

)
V ∗

S (x′′, t− L2(x, x
′′)

c
) d(x′ x′′ t)

=

∫∫∫∫∫
A1A2ṼS(x′, ν′)ṼS(x′′, ν′′)e2πi[...] d(x′ x′′ ν′ ν′′ t) (30.56)

where: [. . .] = ν′
{
t− L1(x,x′)

c

}
− ν′′

{
t− L1(x,x′′)

c

}
The exposure time T must always be very large compared to the light period 1

ν′ . Otherwise
we would not collect enough photons for the plate. Hence the t-integral is essentially a δ-
function.
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∫
e2πit(ν′−ν′′)dt = δ(ν′ − ν′′);

∫
. . .dν′′ ∼ ν′′ −→ ν′ (30.57)

Now we get:

∫
V1V

∗
2 dt =

∫∫∫
A1A2ṼS(x′, ν)Ṽ ∗

S (x′′, ν)e−2πiν
L1−L2

c d(x′ x′′ ν) (30.58)

To get ahead we must now make some specific assumptions about the source. The follow-
ing model is general enough but still manageable. Two types of wave trains VA(t) and VB(t)
can be produced at any point x′ of the source. But the beginnings of the spontaneous emission
acts are assumed to be at random. Hence we write:

VS(x′, t) =

N(x′)∑
n=0

VA(t− τn(x′)) +

M(x′)∑
m=0

VB(t− τm(x′)) (30.59)

In other words at point x′ there will be N(x′) emissions of wave train type A during the
exposure time and M(x′) wave trains of type B. The starting times are indicated by τn(x′)
and τm(x′). (Actually τn should have an index A, and τm an index B. That would look
clumsy in writing, but it should be understood.) For

∫
V1V

∗
2 we need the temporal spectrum

ṼS(x′, ν).

ṼS(x′, ν) = ṼA(ν)
∑
(m)

e−2πiντn(x′) + ṼB(ν)
∑
(m)

e−2πiντm(x′); (30.60)

ṼS(x′, ν)Ṽ ∗
S (x′′, ν) = |ṼA(ν)|2

∑
(n)

∑
(n)

e−2πiν[τn(x′)−τn(x′′)] +

+ |ṼB(ν)|2
∑
(m)

∑
(m)

e−2πiν[τm(x′)−τm(x′′)] +

+ ṼA(ν)Ṽ ∗
B(ν)

∑
(n)

∑
(m)

e−2πiν[τn(x′)−τm(x′′)] + c. c.

This expression will now be inserted into:

∫
V1V

∗
2 dt =

∫∫∫
A1A2ṼS(x′, ν)Ṽ ∗

S (x′′, ν)e−2πiν
L1−L2

c d(x′ x′′ ν) (30.61)

Now we utilize the random properties of τn and τm. The exponent of the first term contains
τn(x′) − τn(x′′) which is a random variable if x′ �= x′′ because atoms at x′ are unrelated to
atoms at x′′. Hence that double sum must be proportional to δ(x′ − x′′). Now the exponent
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contains τn(x′)−τn(x′), which is the time delay between the n-th and the n-th emission (type
A) from the atom at x′. Since the emissions occur spontaneously in a thermal source this time
delay is a random quantity except for the n = n cases of the

∑
(n)

∑
(n)

. The (n = n) case occurs

N(x′) times. Hence:

N(x′)∑
n=1

N(x′′)∑
n

e−2πiν[τn(x′)−τn(x′′)] = N(x′)δ(x′ − x′′) (30.62)

In general the case (ν = 0) would deserve a special treatment. But for optical wave trains
it is Ṽ (x, 0) = 0 for ν = 0 (zero time frequency). This number N(x′) indicates how many
wave trains type A leave point x′ during T . The second term of ṼSṼ

∗
S yields in the same

manner

∑
(m)

∑
(m)

= M(x′)δ(x′ − x′′) (30.63)

Next we discuss the interaction of the two types (A and B) of wave trains. In the double
sum we consider the time difference between the n-th A-emission at x′ and the m-th B-
emission at x′′. Since these two emissions are completely unrelated we get

∑
(n)

∑
(m)

e−2πiν[τn(x′)−τm(x′′)] = 0 (30.64)

What remains is:

ṼS(x′, ν)Ṽ ∗
S (x′′, ν) = [|ṼA(ν)|2N(x′) + |ṼB(ν)|2M(x′)]δ(x′ − x′′) (30.65)

Inserting this into
∫
V1V

∗
2 dt we get:

∫∫
A1(x, x

′)A2(x, x
′)[|ṼA(ν)|2N(x′) + |ṼB(ν)|2M(x′)]e−2πi[...] dx′ dy′ (30.66)

[. . .] = ν L1(x,x′)−L2(x,x′)
c = ν∆t(x, x′)

∆t is the difference of travel times from source point x′ to observation point x along the
two paths. Now let us discuss [|ṼA|2N + |ṼB |2M ] with the goal in mind to generalize our
result beyond the specific source model which we have used so far.

VS(x′, t) =
∑
(n)

VA(t− τn(x′)) +
∑
(m)

VB(t− τm(x′)) (30.67)
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The term |ṼA(ν)|2 describes the energy between ν and ν + dν from a single emission
act of type A. This becomes plausible when the total energy within one wave train type A is
computed:

∫
|VA(t)|2dt =

∫
|ṼA(ν)|2 dν (30.68)

The term |ṼA(ν)|2N(x′) describes all the energy in the frequency band (ν, ν+ dν) which
comes from type A emissions at the source region (x′, x′ + dx′) during the whole integration
time T . Remember that N(x′) was the number of emission acts type A in (x′, x′ + dx′)
during T . Combining |ṼA(ν)|2N(x′) with |ṼB(ν)|2M(x′) we get all the source energy in
(x′, x′ + dx′) and in (ν, ν + dν) during T , no matter what type of emission generated that
energy. In earlier sections we called this quantity S(x′, ν). Hence we write now for the general
source which emits S(x′, ν) from (x′, x′ + dx′) into the temporal frequency band (ν, ν+ dν)
during the total exposure time T :

T∫
0

V1(x, x
′, t)V ∗

2 (x, x′, t)dt =

∫∫
A1(x, x

′)A2(x, x
′)S(x′, ν)e−2πiν∆t(x,x′) dx′ dν

∆t =
L1(x, x

′)− L2(x, x
′)

c
(30.69)

When adding the conjugate complex
∫
V ∗

1 V2dt we get the mutual intensity I12(x), while
I1(x) is simply:

I1(x) =

∫∫
A2

1(x, x
′)S(x′, ν) dx′ dν; I2(x) =

∫∫
A2

2 S dx′ dν

I(x) = I1(x) + I2(x) + I12(x) (30.70)

Our result justifies the following general approach to any image formation or diffraction
problem where the source is not a point-source and is not monochromatic. First we consider
only a single point x′ of the source and assume that the light emitted from there is purely
monochromatic e2πiνt. This emerging monochromatic spherical wave propagates through
lenses, mirrors, prisms, gratings, diffusers, etc. to the observation point x. In case of two-
beam interferences there are two distinct paths from x′ to x, which is accomplished by some
kind of beam-splitter. The amplitude attenuations along those paths are called A1(x, x

′) and
A2(x, x

′), and the optical path lengths L1(x, x
′). The arriving complex amplitude is therefore

A1(x, x
′)e2πiν(t−L1

c ) +A2e
2πiν(t−L2

c ) = u(x, x′, ν) (30.71)

The path length L introduces a time delay L
c between source and observation point. In the

most general case A and L will depend also on the time frequency ν. For example colored
glass requires A = A(x, x′, ν), and a dispersive material with refractive index n = n(ν) will
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result in L = L(x, x′, ν). The case we have treated was not so general. It can be called a
system with “non-dispersive and achromatic transmission properties”.

Now comes the important step. We conclude that different frequencies ν, ν′ are unrelated,
and also different source points are unrelated. Hence we add intensities |u(x, x′, ν)|2 which
arrive from various source points x′ with monochromatic oscillators. The weighting func-
tion S(x′, ν) describes how much intensity the source at x′ emits at frequency ν. The total
observed intensity is now

I(x) =

∫∫
S(x′, ν)|u(x, x′, ν)|2 dx′ dν (30.72)

This formula is the same as the previous one, only

I(x) = I1(x) + I2(x) + 2I12(x) (30.73)

is arranged somewhat differently in order to show how the source intensity S and the
“impulse response” |u(x, x′, ν)|2 of the propagation system between source and observation
point contribute together to the observed intensity. Two more generalizations are conceivable.
The sensitivity of the receiver might vary for different frequencies ν and as a function of the
observation point. This can be described by a functionR(x, ν):

I(x) =

∫∫
S(x′, ν)|u(x, x′, ν)|2R(x, ν) dx′ dν (30.74)

Finally S, u, and/or R may vary as a function of time, and hence also I(x, t). This time-
variation generalization is straight forward if all time constants are large to the period of the
light frequency. The very last generalization would consider also polarization, which requires
a vectorial treatment. One chapter of O’Neill’s book is devoted to this subject.

30.10 Group velocity

In a non-dispersive medium (defined as n(νt) = constant) a wave train maintains its shape
while propagating. Assume for simplicity only z-dependence, so that the wave equation is
simply

∂2V (z, t)

∂z2
−
(n
c

)2 ∂2V

∂t2
(30.75)

Any V (z, t) = V
(
z ± ct

n

)
solves this equation. This means that a given wave train (at

t = 0) is shifted without losing shape while time progresses (Fig. 30.18).
But if there is dispersion, n(νt) �= constant, then the wave train changes its shape. To

show this we insert V (z, t) =
∫
Ṽ (z, νt)e

−2πiνttdνt into the wave equation:
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Figure 30.18: A light pulse travelling through a non-dispersive medium.

∂2Ṽ

∂z2
+
(
2πn

νt

c

)2

Ṽ = 0 −→ Ṽ (z, νt) = Ṽ (0, νt)e
±2πin(νt)νt

z
c

=⇒ |Ṽ (z, νt)|2 = |Ṽ (0, νt)|2 (30.76)

but:

V (z, t) =

∫
Ṽ (0, νt)e

2πi
nh

νt
n(νt)

c

i“
z− ct

n(νt)

”o
dνt. (30.77)

The phase velocity c
n(νt)

differs for different Fourier components. If for example many
Fourier components were in phase at t = 0, they would build up a strong pulse at z = 0, where
the maxima of all cosine components coincide. But this coincidence of maxima falls apart as t
increases. Hence the pulse will “disperse”. What happens in detail to the pulse cannot be said
without knowing more about the specific dispersion n(νt). But two things of some generality
can be said anyway. The one thing is that the signal velocity cannot exceed c in any case. This
means that no portion of the light energy can travel faster than c. So, Maxwell’s equations are
compatible with Einstein’s first postulate of his special relativity theory. The proof, which is
presented nicely in Sommerfeld’s Optics (Theor. Physics, Vol. IV), is based on integration
along a path in the complex νt domain. Those familiar with Laplace transforms will appreciate
the proof easily. The other comment is related to the group velocity G. Again look at

V (z, t) =

∫
Ṽ (0, νt)e

2πi(νtn(νt)
z
c −νtt)dνt (30.78)

Assume Ṽ (0, νt) broad enough so that this integrand has enough oscillations to justify the
method of stationary phase.

d
{
νtn(νt)

z
c − νtt

}
dνt

= 0 −→ z

t
=

c
d{νtn(νt)}

dνt

= G = group velocity (30.79)

More often it is derived in the form:
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V =

∫
Ṽ ei{K(ω)z−ωt} dω

2π
; G =

dω

dK
; ω = 2πνt (30.80)

For better visualization assume a fairly sharp pulse shape while V (z, t) is at z = 0:

V (0, t) =

∫
Ṽ (ω)e−iωt dω

2π
(30.81)

For a pulse, Ṽ (ω) ≈ constant, at least around a fairly wide region around the mean fre-
quencyω0. Now we observe V (z, t) at z > 0. We approximateK(ω) ≈ K(ω0)+K

′(ω0)(ω−
ω0). The exponent now becomes K0z −K ′ω0z + ω(K ′z − t). In so far as the linear K(ω)
approximation is good V (z, t) will be the same except for an unimportant factor in all space-
time points with the same value of K ′z − t. These space-time points evolve sequentially at
different places according to d(K ′z− t) = 0 = K ′dz−dt, or dz

dt = K ′. An observer moving
with velocity K ′ would see only a static EM field.
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31.1 Polarization and Crystal Optics

You certainly know about the vectorial character of electromagnetic waves and you also have
heard about “polarization”, for example when the Brewster effect was mentioned in connec-
tion with the reflection on a boundary between two dielectric media. From the information
point of view polarization means that there can be carried twice as many parameters on a vec-
torial wavefield with two components as compared to a scalar field. In other words a radio
wave can carry two messages on its two polarization components. But more important is that
some polarization tricks are very useful means for manipulation of a light wave.

Figure 31.1: Schematic of a crystal lattice.

First let me try to explain qualitatively how double-refraction, the main effect of crystal
optics, occurs. Before that we must understand how it comes about that in an isotropic material
the phase velocity is reduced from c to c

n . The dielectric medium contains many electrons,
which are tied to the atoms. These electrons can oscillate if pushed. Their resonance fre-
quency is usually higher than the frequency of visible light. When light passes through such
a dielectric material the electrons are forced to join the oscillations of the travelling electric
wavefield. Since the forcing frequency does not match the resonance frequency, the electron
oscillations will be somewhat out of step. You might have learned this already in connection
with forced oscillations in mechanics. Anyway, the forced oscillator will radiate like a dipole,
such getting rid again of the energy, which it temporarily extracted from the travelling electric
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wave. The remainder of the travelling wave plus the re-radiated wave make up a joint wave,
which contains again all the energy, but which is a little bit delayed each time that interaction
with so-called “dispersion-electrons” takes place. That is why the phase velocity is reduced
from c to c

n . A travel time is proportional to the inverse velocity. Hence the time delay due to
the dielectric medium is proportional to n−1. The more atoms there are the greater the delay.
Hence it is plausible that n− 1 is proportional to the number of electrons per unit volume.

Now imagine a crystal lattice, seen in the direction of light propagation in Fig. 31.1. A
typical electron, or maybe a Ψ-wave cloud, around a certain nucleus of the lattice, might have
an elliptical area to swing in if dy > dx (non-cubic crystal). Since the x-neighbours are closer,
the Coulomb repulsion in the x-direction will be stronger than in the y-direction. Since the
“elastic constant” influences the resonance frequency, and since the difference between reso-
nance frequency and forcing frequency determines the phase delay of the forced oscillation, it
should be plausible that the propagation for light with an E-vector in the x-direction will be
different from a light-wave with y-polarization. This can be expressed as nx �= ny; c

nx
�= c

ny
,

which is called “double refraction” or “birefringence”. The geometrical dominant directions
of the lattice are called “crystal-axis”.

31.2 Some crystal-optical elements

31.2.1 Quater-wave plate

Assume ∆n ·D = λ
4 , where ∆n = nx − ny . ∆ϕ = 2π

λ ∆n ·D = π
2 :

Figure 31.2: The effect of a quater- wave plate.

Before the quater-wave plate assume a linear polarization, 45◦ azimuth.

�E0 = �x0 cos(ωt) + �y cos(ωt) (31.1)

After propagation through the quater-wave plate (Fig. 31.2):
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�E = �x0 cos(ωt) + �y0 cos
(
ωt− π

2

)
(31.2)

= �x0 cos(ωt) + �y0 sin(ωt)

This corresponds to a circular polarization.
A quarter-wave plate can also convert circular-polarized light into linear-polarized light.

31.2.2 Half-wave plate

δn ·D = λ
2 ; ∆ϕ = π

Before : �E0 = {�x0 cos θ + �y0 sin θ} cos(ωt) (31.3)

After : �E = �x0 cos θ cos(ωt) + �y0 sin θ cos(ωt− π) =

= {�x0 cos θ − �y0 sin θ} cos(ωt)

Figure 31.3: Pointer diagram of the polarization directions in front of and be-
hind the half-wave plate.

In other words a half-wave plate performs a flip of the polarization direction.

∆n can be controlled by static electric or magnetic fields. “Static” means that it changes
slowly compared to the period of the light itself. Polarization flipping in microseconds and
even faster is quite feasible. It is used in “digital light deflectors” which consist of an alternat-
ing sequence of pol-flippers and Wollaston prisms. The deflection angle of the n-th Wollaston
prism is αn = α12

n. Hence N sequential Wollaston prism with N pol-flippers can “address”
2N different angles.

The index “n” does not influence only the phase velocity, but it can also cause a deviation
of a light beam, called refraction. Already Huygens knew how refraction can be explained
in terms of the phase velocity c

n . Refraction is pretty much the same as what you experience
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when your left car wheel gets onto ice. In generalization of isotropic refraction, the two po-
larization components of a light wave might experience different amounts of refraction and
hence go off into different directions.

�� ����� ���

Figure 31.4: Two important polarization optical elements: a) Wollaston prism
consisting of two prisms with orthogonal oriented axis; b) Savart plate consist-
ing of a single quartz plate. The entrance and exit surfaces are parallel but the
crystal axis is off-orthogonal.

The split angle α of the Wollaston prism (Fig. 31.4 a) is α ≈ 2β∆n where β is the
wedge angle. The highest ∆n (CaCO3: Calcite) is about ∆n = 1

7 . More typical is quartz,
∆n ≈ 0.04.

31.2.3 Refraction in the Wollaston prism

For the x-component the first wedge may have the refractive index n0 + ∆n
2 , and the second

wedge n0 − ∆n
2 , while the y-component of the E-field encounters first n0 − ∆n

2 , and later
n0 + ∆n

2 . The first surface may be in normal incidence, hence both “rays” continue straight.
The next surface is approached then under an angle β (Fig. 31.5 b):

����� ���� ��

Figure 31.5: Refraction at the Wollaston prism: a) total view; b) refraction at
the prism boundary; c) refraction at the exit surface.
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x-polarization:

(
n0 +

∆n

2

)
sinβ =

(
n0 − ∆n

2

)
sin γ− (31.4)(

n0 +
∆n

2

)
β ≈

(
n0 − ∆n

2

)
γ−

γ− ≈ β
n0 + ∆n

2

n0 − ∆n
2

;

γ− − β ≈ β

(
n0 + ∆n

2

n0 − ∆n
2

− 1

)
=

β∆n

n0 − ∆n
2

Similarly the y-polarization:

(
n0 − ∆n

2

)
sinβ =

(
n0 − ∆n

2

)
sin γ+ (31.5)

γ+ − β ≈ −β∆n

n0 + ∆n
2

Next comes the surface towards the air (Fig. 31.5 c):
x-polarization:

(
n0 − ∆n

2

)
sin(γ− − β) = sinα−

(
n0 − ∆n

2

)
(γ− − β) ≈ α− ≈ β∆n (31.6)

y-polarization:

(
n0 +

∆n

2

)
sin(γ+ − β) = sinα+

(
n0 +

∆n

2

)
(γ+ − β) ≈ α+ ≈ −β∆n (31.7)

Total angle:

α = α− − α+ ≈ 2β∆n (31.8)

31.2.4 Circular birefringence

It is most common to decompose the polarization vector or electrical field vector into orthog-
onal linear components.

�E(t) = �xEx cos(ωt− ϕx) + �y0Ey cos(ωt− ϕy) (31.9)
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Instead of using linear unit polarization vectors one may equally well use circular unit
polarization vectors.

�CR(t) = �x0 cos(ωt) + �y0 sin(ωt) (31.10)
�CL(t) = �x0 cos(ωt)− �y0 sin(ωt)

�E(t) = ER
�CR(t− tR) + EL

�CL(t− tL)

These circular unit polarization vectors spin around the z-axis in opposite directions. Or-
thogonality and normality are defined in the time-average sense.

1

τ

τ∫
0

�CR · �CLdt =
1

τ

∫
cos(2ωt)dt = 0; τ =

2π

ω
(31.11)

1

τ

τ∫
0

�CR · �CRdt = 1 =
1

τ

τ∫
0

�CL · �CLdt

The linear unit polarization vectors can be composed out of the circular unit polarization
vectors and vice versa.

�CR(t) + �CL(t)√
2

=
√

2�x0 cos(ωt);
�CR(t)− �CL(t)√

2
=
√

2�y0 sin(ωt) (31.12)

�x0 cos(ωt) + �y0 sin(ωt) = �CR(t); �x0 cos(ωt)− �y0 sinωt = �CL(t)

Sometimes an abbreviated complex notation is used, where the complex unit “i” means a
time lag of a quarter period. The

√
2-factors are now somewhat different due to a different

rule of multiplication.

�CR =
�x0 + i�y0√

2
; �CL =

�x0 − i�y0√
2

(31.13)

�CR · �C∗
R = 1 = �CL · �C∗

L; �CR · �C∗
L = �C∗

R · �CL = 0

One can go one step further and chose a pair of elliptical unit polarization vectors as basis
for composing the electrical field vector.

√
2�ε1(t) = cosα�x0 cos(ωt) + sinα�y0 sin(ωt); (31.14)√
2�ε2(t) = sinα�x0 cos(ωt)− cosα�y0 sin(ωt)

Again these unit vectors are orthonormal in the time-average sense. The vector �ε1(t) rep-
resents an elliptical path in the (x, y) domain. The �ε2(t) vector represents another ellipse with
the same shape but rotated by 90◦ and with the opposite sense of rotation.
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These unusual ways of representing the electrical field �E(t) are justified whenever a cer-
tain physical effect can be described most easily with their help. A case in point is the circular
birefringence, which means that the index of refraction differs for the two polarization com-
ponents. Hence the right-hand circular light will travel more slowly than the left-hand circular
component or vice versa.

∆nC = nR − nL ∆ϕC =
2π

λ
D∆nC (31.15)

�E0 = �CRE0R + �CLE0L
�E = �CRE0Re

i∆ϕC + �CLE0L

Circular birefringence occurs in sugar-water solutions. Dextrose-sugar has ∆nC > 0. For
some reason ∆nC < 0-sugar is unhealthy. Fortunately, sugarcane plants and bees specialize
in ∆nC > 0.

31.3 Compensators

In polarization optics one calls a method for varying the phase difference between the two
polarization components a ‘compensator”.

�Ein = �x0A+ �y0B; �Eout = eiϕabs
[
�x0A+ �y0Be

iϕrel
]

(31.16)

The “absolute phase” is seldom of interest, only the so-called “relative phase”, which is
variable in a compensator. The two most common compensators are due to Babinet and due to
Babinet & Soleil (Fig. 31.6 a). The latter consists of two crystal plates with orthogonal crystal
axis (indicated by a double arrow). The one plate consists of two wedges in order to vary the
plate thickness by lateral shifts of the two wedges. Simpler is the Berek compensator which
consists of a crystal plate with variable tilt (Fig. 31.6 b). The effective thickness of this plate
varies like cosϕ for the y-component of the polarization vector.

������� ��

Figure 31.6: The most common compensator principles: a) Babinet-Solei com-
pesator; b) Berek compensator.



360 31 Polarization

We want to study now a particular compensator for two reasons: it is a useful component
of a device to be described later; it gives us an opportunity to get familiar with calculations in
polarization optics.

Figure 31.7: The geometry of a particular compensator.

�Ein = A�x0 +B�y0 (31.17)

where A, B might be complex values.

For calculating the influence of the fixed λ
4 with 45◦ azimuth, we rewrite �Ein such that the

basic vector components are now parallel or perpendicular to the crystal axis of the λ
4 plate.

Figure 31.8: Vector decomposition of the incident polarization directions.

�x0 =
�x0 + �y0

2
+
�x0 − �y0

2
; �y0 =

�x0 + �y0
2

− �x0 − �y0
2

(31.18)

�Ein =
�x0 + �y0

2
(A+B) +

�x0 − �y0
2

(A−B)

The quarter-wave plate shifts the phase of the component along its axis (45◦) by 90◦,
which can be described by a multiplication of that component by e

iπ
2 = i

�E1 = i
�x0 + �y0

2
(A+B) +

�x0 − �y0
2

(A−B) (31.19)
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Next we reconvert this expression for �E1 into a form with �x0 and �y0 as unit vector com-
ponents:

�E1 =
�x0

2
{A(i+ 1) +B(i− 1)}+

�y0
2
{A(i− 1) +B(i+ 1)} (31.20)

It simplifies things to draw (i+ 1) out of the whole expression:

�E1 =
i+ 1

2
[�x0(A+ iB) + �y(iA+B)] ;

i− 1

i+ 1
= i (31.21)

Now we have to transform �E1 into a form which is adapted to the crystal-axis of the
rotatable λ

2 -plate.

�x0 = �a0 cosϑ−�b0 sinϑ (31.22)

�y0 = �a0 cosϑ+�b0 sinϑ

E =
i+ 1

2
[�a0 {(A+ iB) cosϑ+ (iA+B) sinϑ}+ (31.23)

+ �b0 {−(A+ iB) sinϑ+ (iA+B) cosϑ}
]

=

=
i+ 1

2

[
�a0

{
Aeiϑ + iBe−iϑ

}
+�b0

{
iAeiϑ +Be−iϑ

}]
(By the way, here is again an example where complex notation pays off. Imagine the mess

in real trigonometry). Now we can consider the influence of the λ
2 -plate which shifts the phase

of the �a0-component by π. Since eiπ = −1, all we have to do is �a0 −→ −�a0.

�E2 =
i+ 1

2

[
−�a0

{
Aeiϑ + iBe−iϑ

}
+�b0

{
iAeiϑ +Be−iϑ

}]
(31.24)

Now the �a0,�b0 coordinate system is not useful anymore, so we go back to �x0, �y0:

�a0 = �x0 cosϑ+ �y0 sinϑ; �b0 = −�x0 sinϑ+ �y0 cosϑ (31.25)

�E2 =
1 + i

2

[
�x0

(− cosϑAe+iϑ − i cosϑBe−iϑ − i sinϑAe+iϑ − sinϑ Be−iϑ
)
+

+�y0
(− sinϑ Ae+iϑ − i sinϑ Be−iϑ + i cosϑAe+iϑ + cosϑ Be−iϑ

)]
=

=
1 + i

2

[−�x0

(
Ae2iϑ + iBe−2iϑ

)
+ �y0

(
iAe2iϑ +Be−2iϑ

)]
Next we transform into the (�x0 + �y0, �x0 − �y0) system, which fits the orientation of the

final λ
4 -plate
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�x0 =
�x0 + �y0

2
+
�x0 − �y0

2
; �y0 =

�x0 + �y0
2

− �x0 − �y0
2

(31.26)

�E2 =
1 + i

2

[
�x0 + �y0

2
(−Aeiϑ − iBe−iϑ + iAeiϑ +Be−iϑ)

+
�x0 − �y0

2
(−Aeiϑ − iBe−iϑ − iAeiϑ +Be−iϑ)

]
=

1 + i

4

[
(�x0 + �y0)

{
Aeiϑ(−1 + i) +Be−iϑ(1− i)}+

+
[
(�x0 − �y0)

{
Aeiϑ(−1− i) +Be−iϑ(−1− i)}]

Now we consider the final λ
4 -plate by changing (�x0 + �y0) −→ i(�x0 − �y0) [i(−1 + i) =

−1− i; i(1− i) = i+ 1 = −(−1− i)].

�Eout =
1 + i

4
(−1− i) [(�x0 + �y0)

(
Ae2iϑ −Be−2iϑ

)
+ (31.27)

+(�x0 − �y0)
(
Ae2iϑ +Be−2iϑ

)]
= −i [�x0Ae

2iϑ − �y0Be−2iϑ
]

�Eout = −ie2iϑ
[
�x0A− �y0Be−4iϑ

]
= ei(2ϑ−π

2 )
[
�x0A+ �y0Be

−i(4ϑ+π)
]

(31.28)

Comparing �Eout with �Ein we get as “absolute phase” 2ϑ − π
2 , and as a relative phase

−4ϑ− π.
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Other names for this illustratious field are “two-step imaging”, “lens-less photography”, and
“wavefront reconstruction”. It started in 1948 when D. Gabor wanted to improve the electron
microscope. While in light microscopy the resolution is about one light wavelength, with elec-
tron lenses one achieves only resolutions of hundreds to thousands of electron wavelengths.
Both electrical and magnetic lenses are very poor comparatively, about as good as a milk bot-
tle filled with water. You should not blame the designers of lenses or electron microscopes for
this relatively poor state of the art, because Maxwell does not allow them to do it better. Due
to div �E = 0 and �E = −gradΦ, is div grad Φ = 0. An electrostatic lens has a potential Φ
which is symmetrical around the optical axis Φ = Φ(r, z). Hence, if Φ(r, z) is given along the
axis, then Φ(r, z) is determined everywhere. To comprehend how little freedom that means
imagine that in analogy a whole lens system would be completely specified in any point (r, z)
by fixing it only on axis (r = 0). Gabor knew that electron lenses are poor for fundamental
reasons, but optical lenses are fairly good. Furthermore optical lenses can be made with any
amount and shape of aberrations. Hence he decided to use somehow optical lenses for the
process of image formation in the electron microscope. An encouraging fact is that in the
time-stationary case the differential equation for electrons (Schrödinger) is the same as for
electromagnetic waves: ∇2u + k2u = 0. Hence, if one could somehow intercept uelectron,
store it, and then reproduce an optical wave uopt just like uel, maybe different only by a scale-
factor, one could then introduce an optical lens, which has aberrations just compensating the
electron aberrations.

Figure 32.1: Typical realizations for lenses in electron microscopy: a) magnetic
lens = Coil; b) Electrostatic lens = charged rings.
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Or perhaps there would be no electron lens LE at all. Then the optical lens alone car-
ries the burden of producing an image. In 1920 the Polish physicist M. Wolfke was already
thinking of doing something very similar, namely with X-rays as primary radiation, and light
as secondary radiation. He already realized then that such a two-step imaging system would
have an inbuilt magnification equation to the ratio of the wavelength: M =

λlight

λx−ray
(typically

104). But Wolfke also realized why it would not work. The trouble is that all our receivers, be
they for X-rays, visible light, or for electron waves, do not record the phase arg{u}, but only
the amplitude square |u|2 of the wavefield. Without knowing the phase one is lost, at least
in general. Gabor, however, found a trick to avoid the loss of the phase. For understanding
this trick we will simplify the situation and assume that both the primary and the secondary
waves consist of visible light, which furthermore is supposed to be perfectly coherent, both
spatially and temporally. We will explain Gabor’s trick more than once, in that way bringing
out several facets of this idea, which is really brilliant, because the idea was possible already
at the beginning of the century if not earlier. Although Wolfke (1920) and since then several
others had clearly said how desirable it would be if anybody would have an idea with those
features of Gabor’s trick, no one before Gabor knew how to save the phase through the tem-
porary recording step.

Figure 32.2: Holography for enhancement of electron microscopic images: a)
recording step; b) reconstruction.

Before explaining the idea, let us shortly mention that “hologram” means “total recording”
(replacing an artificial Latin word with an artificial Greek word). Implicitly a photograph is a
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non-total recording, becauses it catches the amplitude only, not the phase, as a hologram does.

32.1 Rogers’ Explanation

Suppose the object consists of a glass plate, which is perfectly flat and clean, except for one
little dot, where the transmittance for the complex light amplitude is Aeiα (maybe zero or
not).

Figure 32.3: Rogers’ explanation of holography.

The illumination in z = −0 is uL = 1; hence immediately behind the object we have

u(x′, y′,+0) = u0(x
′, y′) =

{
Aeiα (at the dot) at (x0, y0)

1 (beside the dot);
(32.1)

u0(x
′, y′) = 1 +

{
Aeiα − 1 dot

0 not dot;

The “1” is called the “background wave” or coherent background, the rest is called the
“diffracted or scattered light”. Since the wave equation is linear, we may for a moment con-
sider both parts of u(x′, y′,+0) independently. The background term “1” will cause simply a
plane wave which will be e2πi

zH
λ when reaching the hologram. If we consider the dot to be a

point, then a spherical wave will emerge from it, which will be

uS(x, zH) ≈ Aeiα − 1

zH
e2πi r

λ ; r2 = z2
H + (x− x0)

2 + (y − y0)2 (32.2)

The total amplitude falling onto the hologram is:

u(x, y, zH) = eikzH + aeikr ; a =
Aeiα − 1

zH
; k

2π

λ
(32.3)

As always, it is the intensity IH = |uH |2 which triggers the receiver:

IH = |u(x, y, zH)|2 = 1 + aeik(r−zH) + a∗e−ik(r−zH) + |a|2 (32.4)
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For Gabor’s version of holography (not so for newer versions) it is essential that we may
drop |a|2 � 1:

IH ≈ 1 + 2|a| cos{k(r − zH) + β}; β = arg(a) (32.5)

Herein we may approximate:

r − zH =
√
z2

H + (x − x0)2 + (y − y0)2 − zH ≈ (x− x0)
2 + (y − y0)2
2zH

(32.6)

if:

k(x− x0)
2 + (y − y0)2
8z3

H

� 2π (32.7)

IH(x, y) ≈ 1 + 2|a| cos

{
π

λzH
[(x− x0)

2 + (y − y0)2 + β]

}
(32.8)

This is what we called earlier a “Fresnel zone pattern”, which is not surprising at all, since
what we considered, so far was nothing but Fresnel diffraction. So we conclude that in Gabor’s
recording process the object dot gives rise to a zone plate pattern with a focal length f = zH ,
and centered around x0, y0, which is the forward-projected place of the dot.

The phase information of the scattered wave aeikr has been preserved indirectly, since the
phase difference between the scattered wave and the background wave k(r−zH) is responsible
for the position of the interference fringes. Since the phase kzH of the background wave is
known due to the geometry, and since we can measure that phase difference k(r − zH) + β
from the position of the maxima of the interference fringes, we obviously can deduce the
phase kr + β itself.

This leaves at the moment two questions unanswered: Could we deduce similarly also
the phase from a more complicated diffracted wave, coming from an object which consists of
more than a single dot? And even if we know the phase of the wave while it hits the hologram
during the recording process, are we able to recreate the same phase in the reconstruction
process? Furthermore, since the intensity contains the cosine of the phase k(r − zH) we
are left with a (±)-ambiguity. As we will see shortly we will suffer somewhat from this ±-
ambiguity.

Let us answer the second question first, but for the time being only for our very simply
object with a single dot. The setup used for reconstruction is very practically the same as the
one used for recording. We show it in two views.

The photographic plate, which we called a hologram, has been developed, and we as-
sume it has an amplitude transmittance which is proportional to the intensity which has been
recorded on it. (Later on we will discuss how true this assumption is, and what happens if this
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Figure 32.4: Hologram reconstruction setup according to Rogers.

assumption is fulfilled only crudely).

uH(x, y) = IH(x, y) (proportionality factor omitted) (32.9)

The hologram is illuminated by a plane wave, which is at z = zH − 0 : uL = eikzH .
Right behind the hologram we have:

u(x, y, zH + 0) = uH(x, y)uL(x, y, zH − 0) ≈ [1 + aik(r−zH ) + a∗e−ik(r−zH )]eikzH

= eikzH + aeikr + a∗eik(2(zH−r)) (32.10)

Without making explicit use of the last formula we can predict what will happen already
based on our knowledge of the Fresnel zone plate (Chapter 19). We remember that a FZP acts

simultaneously as a plane glass plate, as a positive lens with f = +2
r2
1

λ , and as a negative

lens with f = −2
r2
1

λ . Herein r21 was the pseudo-period of the FZP, expressed as a function of
(x2 + y2). These three contributions can be understood also in terms of grating diffraction,
when considering the FZP as a grating with slowly varying magnitude and orientation of
the grating period. The “plane glass plate” contribution corresponds to the zeroth grating
diffraction order, while the two other terms can be interpreted as “inward” and “outward”
diffraction, as indicated in the figure of the reconstruction process. The inward diffraction
creates a focal point at z = +2zH , which is called the “conjugate image” or the “real image”
of the original dot, while the outward diffraction seems (for anyone at z > zH ) to stem from
a point at z = 0, x = x0, y = y0, which is the place of the original dot. In fact the first two
terms eikzH + aeikr are a true replica of the original wavefield. We can do with it whatever
we might have intended to do with the original wavefield. For example we might insert a lens
anywhere at z > zH with proper focal length and observe what is called the “true image” or
the “virtual image”, located at z = 0.

The fact that we got two images (also called “twin images”) is a direct consequence of the
±-ambiguity of the cosine. The cosine contains:

2 cos{k(r − zH)} = eik(r−zH) + e−ik(r−zH) (32.11)
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both unambiguous functions in linear superposition. Consequently a hologram with cosine-
transmittance produces the linear superposition of a divergent and a convergent spherical
wave.

32.2 Discussion of the phase loss

Let us consider once more why the loss of the phase during photographic recording did not
prevent the formation of an image in the reconstruction process. The complex amplitude
u(x, y, zH) falls onto the photographic plate, which later serves as the hologram in the re-
construction process. The photographic plate is “phase-blind”; it can record only IH(x, y) =
|u(x, y, zH)|2. After development (say on positive film, ideally linear) the amplitude trans-
mittance is uH(x, y) = IH(x, y) = |u(x, y, zH)|2. However in the ideal (and impossible)
case of a phase-sensitive recording medium the amplitude transmittance would have to be:

uH(x, y) = u(x, y, zH) (ideal, impossible) (32.12)

uH(x, y) = |u(x, y, zH)|2 (reality, somewhat simplified)

It is always allowed to split up “reality” into the “ideal world” and “the rest”. (Idealism
means ignoring “the rest”.) In our case,

uH(x, y)︸ ︷︷ ︸
real, since it is a
photographic film
transmittance;
also non-negative

= |u(x, y, zH)|2 = u(x, y, zH)︸ ︷︷ ︸
ideal; in gen-
eral complex

+ “the rest′′︸ ︷︷ ︸
must be the complex conjugate
of u(x, y, zH) to make sum real;
in addition to a real-positive part
might be needed to make the sum
non-negative

(32.13)

The term uH is “real” both in the mathematical as well as in the philosophical sense. It is
always allowed to split the real world into an ideal world and “the rest”, but this conceptual
split is of practical use only if “the rest” can be neglected somehow. This is indeed the case in
the example we have studied (see figure 32.4) and it is Gabor’s achievement to have recognized
it. Ideally the reconstructed wavefield should be uid(x, y, zH) = eikzH + aeikr (see Eq. 32.3
and Fig. 32.4), but in actuality the wavefield behind the hologram is:

ureconstr(x, y, zH + 0) = eikzH + aeikr︸ ︷︷ ︸
“ideal” plane wave + spherical
wave, seemingly coming from the
object (which actually is not there
anymore during the reconstruction)

+ a∗eik(2zH−r)︸ ︷︷ ︸
“the rest” another
spherical wave
converging at
z = 2zH

(32.14)

Let us repeat the drawing in Fig. 32.4, but now supplement it with a “telecentric lens
system” for imaging purposes. (A telecentric system keeps plane waves as plane waves.) The
drawing tells us that the diverging spherical wave, after leaving the hologram and passing
through the telecentric system, will converge in the image plane (z = 4f ) at x0 exactly as if
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Figure 32.5: Reconstruction of object and twin image.

the hologram were not there, but the object still in place, with its dot at x0 in z = 0. Also
the plane wave which emerged from the original object is “reconstructed” in the image. “The
rest” is another spherical wave, which however is hardly noticable in the image plane z = 4f ,
because it is spread out and hence diluted. However in another plane behind, at z = 4f+2zH ,
“the rest” will converge, also at x0. The plane wave will arrive in that plane too, assuming that
we did not intercept anything. On the other hand the original spherical wave, which formed
an image of the dot at x0 in z = 4f , will be widely spread out and diluted. Hence we see
in z = 4f + 2zH another “image”. In other words, “the rest” is not complete nonsense in
terms of image formation. This is not surprising, since “the rest” was something which had
supplemented the “ideal part” eikzH + aeikr of the wavefront such that it was real directly
behind the hologram: “the rest” = a∗eik(2zH−r). In other words “the rest” is the complex
conjugate; after all, two functions which are a pair of complex conjugate functions are very,
very similar. Hence the two physical effects described by two complex conjugate functions
can be expected to be similar also. Only one thing was omitted so far, the quadratic term |a|2;
the justification for this omission is plausible, if |a|2 comes from a little dot in a wide bright
object field. We will discuss this omission again later on a more general level.

32.3 Generalized Rogers’ Explanation

see: Proc. Roy. Soc. Edinburgh, A63, 193, 1952.
So far we have assumed a very special object: a small dot, surrounded by a clear back-

ground. Now let us take a more general object, one with a strong background, but other-
wise arbitrary. “Background” means average, which we set = 1, for the sake of simplic-
ity: u0(x, y) = 1 + ∆u0(x, y);

∫∫
u0(x, y) dx dy =

∫ ∫
obj.

dx dy (the
∫∫

over the object

area). “Strong” background means |∆u0|2 � 1, at least at most position (x, y). Actually∫ ∫
obj.

|∆u0|2 dx dy � ∫ ∫
obj.

dx dy is a more suitable condition.
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What result can we expect? In a linear and space-invariant system (whatever it may be) we
know everything about the system already, if we know only what the system does to a single
point input:

input output condition used

single point at x′ : δ(x − x′) A(x − x′) space invariance

stronger single point: u(x′)δ(x − x′) u(x’)A(x-x’) homogeneity

many single points building up many point responses building up

the general object: u(x) =
RR

u(x′)δ(x − x′) dx′ the image uB =
R

u(x′) A(x − x′) dx′
additivity

Table 32.1: Generalizing the Rogers explanation of holography.

Additivity + Homogeneity = Linearity

So far we studied only the formation of a holographic image for a single point object.
We would like to generalize this result in the spirit of linear filter theory. However the total
holographic system is not linear. (Total system: from object, via hologram, to reconstructed
image.) The reason is the non-linear recording process of the photographic emulsion, whereby
the phase is lost, as part of the modulus-square operation.

But a system which is not linear for the most general set of inputs might neverless be linear
for a restricted set of objects. This is in fact the case in holography, at least in approximation.

If this is true, then we can understand holography in this way: each object point emits a
spherical wave. When this spherical wave arrives at the hologram plate it interferes with a
plane wave which comes from the strong background of the object. (Remember, the set of
permissible objects has a strong background.) Interferences between a spherical wave and a
plane wave gives a Fresnel zone pattern. In reconstruction each Fresnel zone patterns acts
like a lens (deflection of light by diffraction instead of refraction), focussing a portion of the
incoming light into a point, which then is the image point of that object point which was
responsible for that particular Fresnel zone pattern.

Another way to say all this is that the recording process is a particular encoding process,
whereby each object point is converted into a FZ pattern, which can be described (as we will
see shortly) as a convolution of object and FZP. Reconstruction then is a decoding process,
whereby each FZP is reconverted into a point. These convolution operations are performed
physically by propagation of light from one plane to another plane, called Fresnel diffraction.

Now we will treat all this quantitatively, mentioning the instance where we approximate.
But before that a quick reminder about Fresnel transformation and Fresnel diffraction. The
two transformations are defined as:
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û(x, y, z + η) =
1

|λη|
∫∫

u(x′, y′, z)ei π
λη {(x′−x)2+(y−y′)2} dx′ dy′

ǔ(x, y, z + η) =
1

|λη|
∫∫

u(x′, y′, z)e−i π
λη {(x′−x)2+(y−y′)2} dx′ dy′

ˇ{u∗} = {û}∗; ˆ{u∗} = {ǔ}∗; (32.15)

û(x, y, z − η) = ǔ(x, y, z + η); û(x, y, z + η) = ǔ(x, y, z − η)
The wave propagation FORWARD from plane z to z + η can be described by:

u(x, y, z) −→ u(x, y, z + η) = eikηû(x, y, z + η) (32.16)

Similarly we can describe the BACKWARD propagation (“virtual”) from z to z − η as:

u(x, y, z) −→ u(x, y, z − η) = e−ikηǔ(x, y, z + η) = e−ikηû(x, y, z − η){
eikηû(x, y, z + η)

}∗
= e−ikη {u∗(x, y, z + η)}ˇ (32.17)

Now we are well prepared for the theory of Fresnel-Holography.

Illumination of the object by a plane wave:

uL(x, y, z) = eikz in z < 0; uL(x, y,−0) = 1 directly before object

u(x, y,+0) = uL(x, y,−0) u0(x, y)︸ ︷︷ ︸
obj.−ampl.−transm.

= u0(x, y) (32.18)

The object is supposed to have a strong background:

u0(x, y) = 1 + ∆u0(x, y) (32.19)

Propagation from z = +0 to z = zH :

u0(x, y) −→ u(x, y, zH) = eikzH + eikzH ∆û(x, y, zH) = eikzH [1 + ∆û0] (32.20)

The intensity which triggers the photographic plate is:

IH(x, y) = |u(x, y, zH)|2 = |1 + ∆û0|2 = 1 + ∆û0 + ∆û∗0 + |∆û0|2 (32.21)

Now we assume that the background is so strong that |∆û0|2 can be neglected. This
avoids any nonlinearity. Next we have to consider the conversion of the incident recorded
intensity into the resulting amplitude transmission of the hologram. From now on we will
indicate the complex amplitudes occurring in the reconstruction process by V (with index if
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applicable); in particular the amplitude transmittance of the hologram is called VH(x, y). We
assume a linear relationship between received intensity and resulting amplitude transmittance:

VH(x, y) = IH(x, y). (A more accurate formula, VH =
3∑

m=1
cnI

n
H , will be discussed later.)

Now we put the hologram in its old place z = zH and illuminate it with the same illumi-
nation wave as in the recording step. But the object is removed.

VH(x, y, z) = uL(x, y, z) = eikz in z ≤ zH (32.22)

(In z ≤ zH there is no obstruction which could do something to this plane wave.) Imme-
diately before the hologram in z = zH − 0 it is VL(x, y, zH − 0) = eikzH and immediately
after:

V(x, y, zH + 0) = V(x, y, zH − 0)VH(x, y) = (32.23)

= eikzHVH(x, y) = eikzH IH(x, y) =

= eikzH [1 + ∆û0 + {∆û0}∗] = eikzH + eikzH ∆û0 + eikzH{∆û0}∗
= u(x, y, zH) + “the rest′′; “the rest′′ = eikzH ∆û∗0

Neglecting for a moment “the rest”, this equation says that behind the hologram we have
the same wave as there was originally, while the object was still in place. Having the same
wave again allows us to do everything with it which we might have wanted to do with the
original wave u. The most obvious thing one might want to do is to form an image. This
can be done (for example) by a telecentric system of 1:1 magnification, the two lenses being
positioned at z = f and z = 3f . This system would have formed from the object u(x, y)
in z = 0 an image in z = 4f . Since the telecentric system cannot perceive any difference
(neglecting “the rest”) between the original wave and the reconstructed wave, it will do to the
reconstructed wave exactly what it would have done to the original wave, that is to form an
image at z = 4f . This image will be called “the image of the virtual image”, the “virtual
image” being exactly where the object had been originally.

The use of the telecentric system makes all the image formation equations simpler (we
did not even write down in detail what happens to V at z = zH , since we did this type of
calculation in connection with the theory of coherent image formation in Chapter 24). Any
other lens system would have been useful as well, for example the eye. Also the eye lens
(at z > zH ) could not decide if it looks at the original object (without hologram) or at the
hologram (without the object actually there).

The last statement is true, if the previous assumptions are valid, and if “the rest” does not
cause any confusion. What is this “the rest”?

the rest = {∆û0(x, y, zH)}∗ eikzH

make use of Eq. 32.16︷︸︸︷
= (32.24)

= eikzH{∆u∗0(x, y,−zH)}ˆ= e2ikzH [e−ikzH{∆u∗0(x, y,−zH)}ˇ]
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This is what one would see “virtually”, or as backward-propagation at a plane which is at
a distance zH in front of the plane, from where the complex amplitude ∆u∗0(x, y) would start
its backward propagation. In other words, the “the rest” term behaves in reconstruction as if
in recording there would have been a “rest” object ∆u∗(x, y) in plane z = 2zH behind the
hologram at zH . This “rest” object seemingly had been illuminated by what uL would have
been in that plane 2zH that is, uL(x, y, 2zH) = e2ikzH .

The eikzH -term or background term in V(x, y, zH + 0) (see Eq. 32.24), which so far had
been as part of the “reconstructed wave” u(x, y, zH), can also, if we wish to consider it this
way, be counted together with “the rest”.

V(x, y, zH + 0) = eikzH ∆û0 + eikzH +

“the rest′′︷ ︸︸ ︷
eikzH{∆û0}∗︸ ︷︷ ︸

“the rest′′ with background

(32.25)

The combination of “the rest” and background wave behaves as if 1+∆u∗0(x, y) had been
put as “object” into plane z = +2zH during recording. This 1 + ∆u∗0(x, y) is the complex
conjugate of the actual original object. Again, we can do anything we want to do with “the
rest” with background, for example use the telecentric lens system and form an “image” of
u∗0(x, y) at 2zH + 4f . Without the telecentric system it is even easier to get u∗0(x, y), simply
by holding some cardboard at z = +2zH , where |u∗0(x, y)|2 will be the visible intensity. Of
course now the other term eikzH ∆û0 might be bothersome, when observing this so-called
“real image”. This is “real” in the sense of ray-optics, not as a complex classification.

In the older literature the u∗0-term is called the “real-image wave” and the u0-term the
“virtual-image wave”. Now many authors call u∗0 the “conjugate wave” and u0 the “true
wave”. Similarly one refers to the true and conjugate images. This pair of images is also
called the “twin images”. Coming back now to the observation of the “conjugate image” at
z = zH , the contribution from eikzH û0 will be out of focus by a distance of 2zH . Hence
one hopes that the unsharp “twin image” is so much blurred that it does not bother too much.
Actually it does bother in most cases, enough that this twin image problem was the second
most important hindrance of progress. The most severe handicap for Gabor and his early
successors was the lack of a good coherent light source such as the laser.

One additional comment on the theory of Fresnel-Holography: On page 372 it was said,
based on qualitative arguments, that the recording process can be considered as an encoding
process, more specifically as a conversion of each object point into its own FZP of appropriate
“strength” and position. Mathematically this is meant to be a convolution, which we now want
to write down explicitly.

On page 372 we had found that the complex object amplitude u0(x, y) = 1 + ∆u0(x, y)
causes the intensity falling onto the photographic plate (which later is the hologram) to be:
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IH(x, y) = 1 + ∆û0 + {∆û0}∗ +

negligible︷ ︸︸ ︷
|∆û0|2 (32.26)

≈ 1 +
1

λzH

∫∫
∆u0(x

′, y′)e
iπ

λzH
{(x−x′)2+(y−y′)2} dx′ dy′ + c. c.

No we rewrite ∆u0 = |∆u0|eiϕ, and then combine the
∫∫
. . . term and its complex conju-

gate:

IH(x, y) ≈ 1 +
2

λzH

∫∫
|∆u0(x

′, y′)| (32.27)

cos

[
π

λzH

{
(x− x′)2 + (y − y′)2}+ ϕ(x′, y′)

]
dx′ dy′

We recognize that each “object dot” at (x′, y′) with its complex amplitude |∆u0|eiϕ forms
its own FZP in the hologram plane centered appropriatly at (x′, y′).

32.4 Some attempts to remove the twin-image

It is a very interesting question, at least for me, why Gabor’s original papers on holography
(1948 - 51) had so relatively little impact. Before 1962 only three other groups (Edinburgh,
Stanford, Braunschweig) published anything about holography. Of course, the availability
of the laser helped later a great deal in promoting holography. But one can make excellent
holograms without a laser. I consider two other points to be equally important for the long
delay of holography’s popularity: the trouble with the twin-image, and Gabor’s superiority
above the average optical scientist’s level of competence. Gabor had so many little additional
ideas, which he also wanted to put into his papers, that he had to condense quite a bit. Hence
his papers are not easy to read. Many of his little side remarks have been re-discovered and
published as elaborate papers by others, who then cited Gabor as the inventor-at-large, but
did not mention that Gabor had also invented that particular bit of progress. These people
were sincere, they just could not appreciate all the little facets. It did happen to me, and
also to Leith & Upatnieks in their paper on off-axis holography, which is the most important
innovation since Gabor’s original paper. Actually, Gabor was fully aware of it, which one
finds out whenreading his papers carefully. He did not pursue off-axis holography, because
at that time there were no beam-splitters for electron-waves available. On the other hand E.
Leith (U. of Michigan, Ann Arbor) showed to me recently a report he wrote in 1952, which
had been de-classified only recently, in which he described clearly off-axis holography, but
in completely non-optical terms, as a method for data processing in connection with side-
looking radar. Only much later did he become aware of Gabor’s paper, when he realized that
side-looking radar with optical data processing can be considered as holography, whereby the
hologram is recorded with radar waves, and reconstructed with light waves.
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The first three out of four attempts to remove the twin image have basically only historical
significance, but they help to provide more insight, and they demonstrate experimental trick-
ology and valuable theoretical tools. The first attempt to be explained is mentioned by Gabor
in a footnote of 1 1/2 lines!

(Note added in 1986): Recently I re-read the earliest papers of Gabor and of Leith and
Upatnieks. In order to clarify for myself the matter of priorities, I also looked at the early
patents. It is my conviction now, that Gabor is the prime inventor, of course. Leith and
Upatnieks contributed off-axis holography and diffuse illumination, Denisyuk invented the
BRAGG-holograms.

Gabor’s first attempt to remove the twin-images (published in Proc. NBS Symp. Electron
Microscopy, Washington, D.C., Nov. 1951) can be called “optical interpolation”. It is more
involved than his second attempt, which I will present first. The second attempt was published
in the same place, and again a few year ago in JOSA 56, 849 (1966). Basically the idea is
to record two holograms from one object, one hologram for the real part, and another one for
the imaginary part of the wavefront. This pair of holograms contains everything about the
wavefield, without ambiguity. Hence it must be possible to reconstruct the original wavefield
perfectly. At this moment we do not have to assume that the object has a strong background
of its own, because a background wave is provided externally.

Figure 32.6: Recording and reconstruction schemes of two holograms of the
same object in order to avoid the twin image.

For the sake of simplicity let us assume (which is not essential) that the optical path length
from the object to hologram A is the same as from the object to hologram B. Hence in both
hologram planes the same complex amplitude uH arrives from the object. But the plane
reference waves, coming along mirror MA and beamsplitter BS, may arrive at holo A and
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holo B at different times, delayed by a quarter-wavelength, which corresponds to a phase
factor ei π

2 = i. At holo A the intensity IA will be.

IA = |1 + uH |2 ≈ 1 + 2Re{uH} (32.28)

and at holo B:

IB = |i+ uH |2 ≈ 1 + 2Im{uH}; where :uH = Re{uH}+ iIm{uH} (32.29)

Next the two holograms are developed, again linear in terms of amplitude transmittance
versus exposure. Now both holograms with their amplitude transmittances VA ≈ IA and
VB = IB are illuminated by plane waves, which however are again 90◦ out of phase. After
combining both waves in BS4 the joint wave is VA + iVB.

VA + iVB = IA + iIB ≈ 1 + Re{uH}+ i[1 + 2Im{uH}] = 1 + i︸ ︷︷ ︸
surplus plane
wave

+ 2uH︸︷︷︸
reconstructed
image

(32.30)

This experiment is very delicate, since it is difficult to produce the two wavefronts VA and
VB without any relative tilt, and with exactly the same scale.

Figure 32.7: Specific objects for holographic recording.

It is not clear to me whether Gabor’s first attempt will work the way it has been pub-
lished. But I can show that it will work if the class of admissable objects is further restricted.
Gabor assumed only a strong background-type object u0(x, y) = 1 + ∆u0(x, y); now we
assume in addition the following symmetry property: ∆u0(x, y) = ∆u∗0(−x,−y). This can
be achieved very simply, if ∆u0 happens to be real. Assume as object (originally) for ex-
ample the letter ’F’, opaque on a transparent background. Now we shift the ’F’ and add an
additional ’F’, but 180 inverted (Fig. 32.7). The new ∆u0, which describes the ’double-F’,
is actually symmetrical ∆u0(x, y) = ∆u0(−x,−y). If in addition ∆u0 = ∆u∗0 we get
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∆u0(x, y) = ∆u∗0(−x,−y) which is equivalent to ∆ũ0(ν, µ) = ∆ũ∗0(ν, µ).

The combined assumptions: strong background, real, center-symmetrical, might reduce
the set of admissable objects so severely that the method is of little practical value, but it is
nevertheless instructive for the following reason. Many inventions (like this one) were made
when everybody knew that some desirable effect is impossible in general. The inventor then
realized that this effect is not impossible in special circumstances. The inventor’s problem is
to find such special circumstances and then check if the invention is still useful under these
special circumstances.

Figure 32.8: Illustration of the hologram recording and reconstruction.

We will use the Rayleigh-Sommerfeld-Debye approach to diffraction theory (Chapter
18.2), which means superposition of plane waves (Fig. 32.8).

Illumination in recording: uL(x, y, z) = eikz in z < 0;

Immediately before the object: uL(x, y,−0) = 1;

Behind the object: u(x, y,+0) = uL(x, y,−0)uO(x, y) = uO(x, y);

Assumption (strong background):

uO(x, y) = 1 + ∆uO(x, y) =

∫∫
[δ(ν, µ) + ∆ũ(ν, µ)]︸ ︷︷ ︸

ũO(ν,µ)

e2πi(νx,µy) dν dµ (32.31)

Propagation from z = 0 to z = zH :

u(x, y,+0) = uO(x, y) −→ u(x, y, zH) (32.32)

This is equivalent to:
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ũ(ν, µ) −→ ũ(ν, µ)eik
√

1−λ2(ν2+µ2)zH (32.33)

A simplifying assumption: Fresnel diffraction in the nearfield, which means that zH is
small enough to justify:

eik
√

1−λ2(ν2+µ2)zH ≈ eikzH e−iπλzH(ν2+µ2) (32.34)

Hence propagation is described by:

ũ(ν, µ) −→ ũ0(ν, µ)eikzH eiπλzH (ν2 + µ2) = (32.35)

= eikzH

[
δ(ν, µ) + ∆ũO(ν, µ)e−iπλzH (ν2+µ2)

]
Inserting this we get:

u(x, y, zH) = eikzH

[
1 +

∫∫
∆ũOe

−iπλzH(ν2+µ2)e2πi(xν+yµ) dν dµ

]
(32.36)

and:

IH(x, y) = |u(x, y, zH)|2 ≈ 1 + . . .

∫∫
. . .+

{∫∫
. . .

}∗
+ negligible (32.37)

Herein one can reformulate:

{∫∫
. . .

}∗
=

∫∫
∆ũO(ν, µ)e+i...e−i... dν dµ (32.38)

Now with the coordinate transforms: ν −→ −ν′ −→ −ν and µ −→ −µ′ −→ −µ

{∫∫
. . .

}∗
=

∫∫
∆u∗O(−ν,−µ)e+iπ...e+2πi(...) dν dµ (32.39)

and: ∆ũ∗O(−ν,−µ) = ∆ũ0(+ν,+µ) due to the assumption u0 = u∗0.
Hence one can combine the two

∫∫
and

∫∫ ∗
with e+iπ... + e−iπ... = 2 cos(π . . .):

IH(x, y) ≈ 1 + 2

∫∫
∆ũO(ν, µ) cos

[
πλzH(ν2 + µ2)

]
e2πi(xν+yµ) dν dµ (32.40)

After the photographic development process the recorded hologram intensity IH(x, y)
appears as the hologram-amplitude transmittance, if the photographic process was linear,
V = IH(x, y). We insert the hologram at z = 0 in the reconstruction setup (Fig. 32.8).
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Figure 32.9: Filtering in order to remove the twin image.

V(x, y) is different from the wanted uo(x, y) because the frequency spectrum ∆ũ(ν, µ) has
been multiplied by 2 cos[πλzH(ν2 + µ2)]. We will repair this by means of a compensating
filter F̃ (ν, µ), inserted into the Fourier plane of the reconstruction setup.

The ideal compensation filter would be F̃ = 1
2 cos[πλzH(ν2+µ2)] . But that is not realizable

because F̃ is infinite where the cos[. . .] goes to zero. To avoid this problem Gabor suggested
(in the previously mentioned 1 1

2 lines of footnote) to take instead a filter F̃G = sign(cos),
which could be made by rings of thin transparent film (Fig. 32.9). At least that is the way I
interpret Gabor’s footnote which reads, “Note added in proof (Feb. 2, 1952). In the meantime I
have found it is, in fact, possible to construct zone filters that reduce the disturbing effect of the
conjugate image to a small fraction.” The sign-function can be realized as a filter consisting
of rings of transparent film of a thickness D = λ

2(n−1) leading to a 180◦ phase shift. The
mathematics now to be used is the same as needed for the process of rectification:
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cosx =
1

2
eix +

1

2
e−ix (32.41)

| cosx| =
2

π
+

2

3π
e2ix +

2

3π
e−2ix − 2

15π
e4ix − 2

15π
e−4ixetc.

We get the same type of Fourier series if x is replaced by πλ(ν2 + µ2). (Remember, this
treatment is like the pseudo-periodic functions which we represented in Chap. 2 as Fourier
series).

Hence the action of the filter F̃G(ν, µ) = sign{cos[πλzH(ν2 + µ2)]} changes the factor
cos[. . .] of the IH spectrum into:

cos[. . .]F̃G = | cos[. . .]| = (32.42)

=
2

π

[
1 +

1

3
eiπλ2zH(ν2+µ2) +

1

3
e−iπλ2zH(ν2+µ2) + . . .

]
=

2

π
[. . .]

V(x, y) = IH(x, y) = 1 +
4

π

∫∫
∆ũ(ν, µ)[. . .]e2πmi(xν+yµ) dν dµ (32.43)

The strongest term in [. . .] (Eq. 32.43) is the “1”, which yields a regular image of the orig-
inal object 1 +

∫∫
∆ũoe

2πi(xν+yµ) dν dµ, except for the contrast-enhancing factor 4
π . The

other terms will produce defocused spurious images, for example 1
3e

iπλ2zH (ν2+µ2) at a plane
4f − 2zH , but with a three-times weaker amplitude, and nine-times weaker intensity. Other
spurious images will be at 4f + 2zH , 4f ± 4zH , 4f ± 6zH , etc., but these higher spurious
images will be very soft. The intensity fraction of the main image is 8

π2 = 0.81.

The third attempt to remove the twin image was conceived in 1955. It is called “Single-
Sideband-Holography”. Originally it was restricted to real (= phase-free) objects with a strong
background. Recently Olof Bryngdahl and I found extensions which can handle any object,
but not as well as Leith’s & Upatniek’s off-line approach, which will be discussed soon as the
fourth and best attempt to remove the twin image. (Recommended reading: “Single-Sideband
Holography”, J. Opt. Soc. Am. 58, 620 (1968).)

32.5 Wave Propagation and Fresnel Transformation

This subject is important for several topics to be considered soon, among others for Leith &
Upatnieks’ off-axis holography. Although treated before I will present it again, but somewhat
differently, in two ways: firstly I will give a somewhat cleaner definition of the Fresnel trans-
formation; secondly, the method of stationary phase is not really needed, at least not explicitly.

Definition: when the complex amplitude u(x, y, z) in plane z propagates into the plane
z+η, where it will be u(x, y, z+η), then the Fresnel-transform is defined as u(x, y, z+η) =
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eikηP [u(x, y, z); η]. P is meant to be an operator. From the Rayleigh-Sommerfield-Debye
diffraction theory (Chapter 18.2) we know:

u(x, y, z + η) =

∫∫∫∫
u(x′, y′, z)e2πi[ν(x−x′)+µ(y−y′)+

√
1−λ2(ν2+µ2) η

λ ]d(x′ y′νµ)

(32.44)

Proof : since the exponential function by itself satisfies the wave equation, and since the
wave equation ∆u + k2u = 0 is linear, also the superposition of all exponential functions in
the fourfold integral satisfies the wave equation. It is not just any old solution, but the one
we are interested in, namely the one which is launched by the boundary value u(x′, y′, z′) in
plane z. This can be verified by letting η −→ 0, whereby the fourfold integral collapses into a
trivial identity. Having now proven the fourfold integral formula, we find by comparision that
the P operator performs a convolution.

P (u(x, y, z), η) =

∫∫
u(x′, y′, z′) · (32.45)

·
{∫∫

e2πi[ν(x−x′)+µ(y−y′)+ η
λ (
√

1−λ2(ν2+µ2)−1)]dν dµ

}
dx dy

Figure 32.10: Geometrie for the Fresnel propagation.

The “-1” in the exponent is due to the fact that we pulled eikη out of the integral when
defining P . So far this is still rigorous, but now let us approximate, whereby we will come
back to our more familiar formulation of the Fresnel transformation. In {∫∫ . . .dν dµ} we set√

1− λ2(ν2 + µ2)−1 ≈ λ2

2 (ν2 +µ2). This can be justified in the spirit of the method of the
stationary phase, which said that an integral of the type

∫
eikf(ν)dν will be≈ eikf(ν0)· const.,

where ν0 follows from df
dν = 0, and f(ν) has been replaced by f(ν0)+ f ′′(ν0)

2 (ν − ν0)2. This
means that the integrand eikf(ν) oscillates rapidly, except around ν0, where f(ν) changes only
slowly. Looking at the specific exponent above, it is seen that
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∂f(ν, µ)

∂ν
= λ(x − x′)− λ2ην√

1− λ2(ν2 + µ2)
; or (32.46)

λν0√
1− λ2(ν2 + µ2)

=
x− x′
η

(similar ∂f
∂µ )

Remembering the significance of x, x′, η: (x−x′)
η can be identified as a tangent. If now

the lateral extension ∆x′ of the input and the lateral extension ∆x of the output are both
smaller than η (and only then should we use the approximation now under consideration),
it is clear that |λν0| and |λµ0| will be smaller than unity, hopefully small enough so that√

1− λ2(ν2 + µ2) ≈ 1 − λ2

2 (ν2 + µ2) is justified. For this to be true the next term of the

Taylor expansion has to be small compared to π, that is kη λ4

8 (ν2 + µ2) � π. Now the
convolution kernel assumes the form

{} ≈ e2πi[ν(x−x′)+µ(y−y′−λη
2 (ν2+µ2))]dν dµ = (32.47)

=

∫
e2πi[ν(x−x′)−λη ν2

2 ]dν

∫
e2πi[µ(y−y′)−λη η2

2 ]dµ

So far we did not really say anything about the limits of integration, which actually should
be given by ν2

L +µ2
L = 1, such including all plane waves, but excluding all evanescent waves,

which stick closely to u(x, y, z), and hence cannot contribute to u(x, y, z + η) at distances
η � λ. However, now we let the integrals go from −∞ to +∞, which will not change the
result because the integrand oscillates heavily outside of ν2 + µ2 = 1. This may seem fishy.
As long as the root in the exponent

√
1− λ2(ν2 + µ2) was still intact we did stick to the

ν2 + µ2 ≤ 1 region of integration, but now with √. . . = 1 − λ2

2 (ν2 − µ2) we just ignore
the plane wave limitation ν2 + µ2 ≤ 1 by integrating over the whole (ν, µ) domain. If the
integrand oscillates, except around the saddlepoint (ν0, µ0), then a change of the region of
integration does not matter, as long as the saddle point stays inside of the legitimate bounds
ν2 + µ2 ≤ 1.

∫∫
A1

eikf(ν)dν dµ ≈
∫ ∫
A1+A2

eikf(ν,µ)dν dµ (32.48)

if eikf(ν) oscillates except at (ν0, µ0) which is within region A1.

We did all this in order to get our unknown integrals into the shape of the Fresnel integral:

+∞∫
−∞

eiαx2

=

√
iπ

α
(32.49)
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We do this by filling up the exponent into a quadratic expression:

2π

[
ν(x − x′)− λην

2

2

]
= −[ν2πλη − 2νπ(x− x′)] = (32.50)

= −πλη
[
ν2 + 2ν

x− x′
λη

]
= −πλη

[
ν − x− x′

λη

]2

+ πλη

[
x− x′
λη

]2

∞∫
−∞

e2πi[ν(x−x′)−λη ν2

2 ]dν = eiπ
(x−x′)2

λη

∞∫
−∞

e−iπλη[ν− (x−x′)
λη ]2dν = (32.51)

= eiπ (x−x′)2

λη

∞∫
−∞

e−iπλην′2

dν′ = eiπ (x−x′)2

λη

√
iπ

−πλ|η| = e+...

√
−i
λ|η|

where ν′ = ν − x−x′

λη .

In the same way one gets for the second integral:

∫
e
2πi

h
µ(y−y′)−ληµ2

2

i
dµ ≈ eiπ (y−y′)2

λη

√
−i
λ|η| (32.52)

and as their product:

≈ −i
λ|η|e

iπ (x−x′)2+(y−y′)2

λη (32.53)

Inserting this result into the original formula 32.46 of the Fresnel- or propagation operator
P , we get:

P [u(x, y, z), η] ≈ −i
λ|η|

∫∫
u(x′, y′, z)eiπ (x−x′)2+(y−y′)2

λη dx′ dy′ (32.54)

u(x, y, z + η) = eikηP [u(x, y, z), η]

Connecting this with our earlier notation it is
P [. . . ,+η] ∼ ˆ. . . (forward propagation), P [. . . ,−η] ∼ ˇ. . . (backward propagation).

32.6 Off-Line Fresnel Holography

Leith & Upatnieks, JOSA 52, 1123 (1962)

This is the fourth and by far the most important attempt to overcome the twin-image prob-
lem. It is probably the most important achievement in holography since Gabor’s original
invention. First I will explain it qualitatively in terms of Fresnel zone plates, later in a more
quantitative way.
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Figure 32.11: The interference formed during hologram recording (Notice: the
FZP center Q is not on the hologram).

32.6.1 Recording Step

An off-center portion of a FZP interference fringe system is recorded on the hologram (Fig.
32.11). The FZP-center would appear where the plane reference wave, coming from the prism,
is parallel to the spherical wave, coming from the object point. Important: the hologram is
as wide as the reference beam. (Making the hologram smaller would waste some light from
the reference beam; making it wider is not meaningful, because we get the phase information
from the object wave only by way of interference with the reference wave.) Under these
circumstances the FZP-center Q for any object point besides the prism will be outside of the
hologram.

Figure 32.12: Reconstruction of the off-axis hologram.



32.6 Off-Line Fresnel Holography 385

32.6.2 Reconstruction

For understanding the reconstruction process remember that FZP acted simultaneously like a
plane plate (a), like a positive lens (B), and like a negative lens (C) (Fig. 32.12). The lens
center is at the FZP center.

The virtual image point, the FZP center point Q, and the real image point are on a joint
straight line. This follows from considering the FZP (same as the hologram) as a pair of
positive and negative lenses. (Rays going through a lens center are not deviated by refraction.)
Looking at the reconstruction figure (Fig. 32.12) tells us that the three beams (true or virtual,
conjugate or real, direct) can be separated at a suitable z-plane, if and only if Q is off the
hologram. But this is assured if the (plane) reference wave in the recording process comes
from beside the object. As we will see later, it is not necessary in general that the plane wave
used for reconstruction duplicates the plane reference reference wave of the recording process.

32.6.3 Theory of Off-Line-Fresnel Holography

The object in z = 0 is illuminated by means of uL(x, y, z) = eikz ;
immediately before the object: uL(x, y, z) = 1;
immediately behind the object with
complex amplitude transmission u0: u(x, y,+0) = uL(x, y,−0)u0(x, y) = u0(x, y);

u0(x, y) =
∫∫
ũ0(ν, µ)e2πi(xν+yµ)dν dµ;

Propagation to the hologram plane z = zH ;

u(x, y, zH) =

∫∫
ũ0(ν, µ)e

2πi
h
xν+yµ+

√
1−λ2(ν2+µ2)

zH
λ

i
dν dµ (32.55)

There also a tilted plane wave arrives from the prism.
Both waves together (object wave + reference wave) are: uH(x, y) = u(x, y, zH)+e−2πixνR .

Recorded will be the intensity:

IH(x, y) = |uH(x, y)|2 = 1+u(x, y, zH)e2πixνR+u∗(x, y, zH)e−2πixνR+|u(x, y, zH)|2
(32.56)

Next we develop the hologram photographically, again linearly; that means the (com-
plex) amplitude transmittance after developing is equal to the recorded intensity, VH(x, y) =
IH(x, y).

Will it be possible to separate the various terms of VH?
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VH = 1︸︷︷︸
direct

+ ue2πixνR︸ ︷︷ ︸
true or
virtual

+ u∗e−2πixνR︸ ︷︷ ︸
conjugate or
real

+ |u|2︸︷︷︸
intramodulation

(32.57)

The intramodulation term is often but not always negligible! (From now on we will use
only the newer names true and conjugate instead of the old ones virtual and real).

Looking at the reconstruction figure (Fig. 32.12) tells us that the chances for cutting out all
but one term, say true, are the better the farther we are away from the hologram. Hence it might
be best at infinity, which can be realized in the rear focal plane of a lens. But there one would
observe the Fourier transform (due to Fraunhofer diffraction) of the hologram transmittance
VH . Let’s compute ṼH .

Ṽ(ν, µ) =

∫∫
IH(x, y)e−2πi(xν+yµ)dx dy = (32.58)

= δ(ν, µ) +

+

∫∫∫∫
ũ0(ν

′, µ′)e2πi
h
ν′x+µ′y+

√
1−λ2(ν′2+µ′2)

zH
λ +νRx−νx−µy

i
d(ν′ µ′ x y)

+

∫∫∫∫
ũ∗0(ν

′, µ′)e2πi
h
−ν′x−µ′y−

√
1−λ2(ν′2+µ′2)

zH
λ −νRx−νx−µy

i
d(ν′ µ′ x y)

+

∫∫∫∫∫∫
ũ0(ν

′, µ′)ũ∗0(ν
′′, µ′′) ·

· e
2πi

h
ν′x+µ′y+

√
1−λ2(ν′2+µ′2)

zH
λ −{ν′′x+µ′′y+

√
1−λ2(ν′′2+µ′′2)

zH
λ }−νx−µy

i
d(ν′µ′ν′′µ′′xy)

=

direct︷ ︸︸ ︷
δ(ν, µ)+

true︷ ︸︸ ︷
ũ0(ν − νR, µ) eπi

√
1−λ2{(ν−νR)2+µ2} zH

λ +

+

conjugate︷ ︸︸ ︷
ũ∗0(−ν − νR,−µR) e−2πi

√
1−λ2{(ν+νR)2+µ2} zH

λ +

+

intramodulation︷ ︸︸ ︷∫∫
ũ0(ν

′, µ′)ũ∗0(ν
′ − ν, µ′ − µ) e

2πi
zH
λ

h√
1−λ2(ν′2+µ′2)−

√
1−λ2{(ν′−ν)2+(µ′−µ)2}

i
dν′ dµ′

Consequences: true and conjugate are separable from direct if |νR| ≥ ∆ν
2 , where ∆ν is

the spectral width of the object (Fig. 32.13). If the intramodulation term is not negligible,
one has to require even more for true-intramodulation separation, |νR| ≥ 3∆ν

2 . If the object
spectrum ũ0(ν, µ) does not simply cover a square or a circular region of the frequency domain
(ν, µ), it might pay off to rotate the object u0(x, y) around the z-axis. This becomes clear in
the following case, where (at left) the (ν, µ) - domain is better utilized. This will become even
clearer when we discuss later the influence of the photographic material.

Here, as well as in connection with the previous figure, it was tacitly assumed to be know
that the intramodulation integral can cover a (ν, µ) area of twice the diameter of the (ν, µ)
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Figure 32.13: The diffraction pattern (1D) of an off-line hologramm — location
of the various distributions (terms in Eqs 32.58).

Figure 32.14: The diffraction pattern (2D) of an off-line hologramm — location
of the various distributions (terms in Eqs 32.58).

area from |ũ0(ν, µ)|. This is quite plausible, if the intramodulation integral is visualized in
the following steps: take ũ0(ν

′, µ′), then take ũ∗0, but shift it by a vector (ν, µ), overlap (=
multiply) ũ0(ν

′, µ′) and ũ∗0(ν
′ − ν, µ′ − µ). This product can be non-zero only if ũ0(ν

′, µ′)
and ũ∗0(ν

′ − ν, µ′ − µ) overlap in the (ν′, µ′) domain. For this to be true the shift of ũ0 and
ũ∗0 should not exceed the diameter of ũ0 itself. But the shift might go into positive and into
negative direction, hence the autocorrelation integral of u0 might extend from−∆ν to ∆ν.

32.6.4 Theory of the reconstruction process

Illuminate the hologram (in z = zH − 0) with: e−2πixνR ;
immediately behind the hologram: V(x, y, zH + 0) = V(x, y)e−2πixνR ;

V(x, y, zH+0) = e−2πixνR+u(x, y, zH)+u∗(x, y, zH)e−4πixνR+|u(x, y, zH)|2e−2πixνR

(32.59)

The second term is a perfect replica of the original object wavefront. As long as we
observe only in z > zH it is impossible to say if this wavefront comes directly from the
original object (without the hologram), or if this wavefront is formed by the hologram (and no
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object is around). u(x, y, zH) is now called the true or virtual wavefield. “Virtual” refers to
the fact that we cannot catch an image on a screen from this wavefront. A lens is needed, for
example the eye’s lens, to produce an image, which is called “the image of the virtual or true
image”. In the reconstruction setup shown in Fig. 32.15 it is possible to block the direct light
in the rear focal plane of the lens where the direct light is focussed. And the conjugate image
can be rejected in z = 2f

3 .

Figure 32.15: Reconstruction of an off-line hologramm.

Now let us discuss the wavefront, which would create the conjugate image, in some detail.

u∗0(x, y, zH)e−4πixνR =

∫∫
ũ∗0(ν, µ)e

2πi
h
−xν−yµ−

√
1−λ2(ν2+µ2)

zH
λ −2xνR

i
dν dµ

(32.60)

Let us assume the reconstruction setup of Fig. 32.15, but without the lens behind the
hologram. We know from our qualitative FZP discussion, that the real image will appear in
z = 2zH . This time I will do it in a somewhat different style, a style which sometimes is more
practical, but nevertheless the same as Rayleigh-Sommerfeld-Debye, fundamentally. Instead
of computing the propagation process for the whole complex amplitude, we compute it first for
convenient parts, and then add up the result. This is allowed because the propagation operator
is a linear operator, more specifically a convolution. For a linear operator P : P [u1(x) +
u2(x); η] = P [u1(x); η] + P [u2(x); η]. This can be generalized to include also integration,
which is a summation of infinitely many terms:

if u(x) =

∫
u(σ)Ψ(σ, x)dσ; then (32.61)

P

[∫
u(σ)Ψ(σ, x)dσ; η

]
=

∫
u(σ) {P [Ψ(σ, x); η]} dσ

This might simplify things if P [Ψ(σ, x); η] is easy to get. In our case, where we want to
compute the propagation from zH to 2zH we have to apply eikzHP [. . . ; η] upon
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∫∫
ũ∗0(ν, µ)e

2πi
h
−xν−yµ−

√
1−λ2(ν2+µ2)

zH
λ −2xνR

i
dν dµ.

As justified on the previous page, we may go with the operator into the integral, where we
have to evaluate:

eikzHP [e−2πi[x(ν+2νR)+yµ]; zH ] = e
2πi

h
−x(ν+2νR)−yµ+

√
1−λ2{(ν+2νR)2+µ2} zH

λ

i

which is multiplied by the not-(x, y) dependent factor

ũ∗0(ν, µ)e−2πi
√

1−λ2(ν2+µ2)
zH
λ , and integrated

∫∫
. . .dν dµ:

∫∫
u∗0(ν, µ)e

2πi
h
−x(ν+2νR)−yµ+

zH
λ

“√
1−λ2{(ν+2νR)2+µ2}−

√
1−λ2(ν2+µ2)

”i
dν dµ

(32.62)

(√
1− λ2{(ν + 2νR)2 + µ2} −

√
1− λ2(ν2 + µ2)

)
≈ (32.63)

≈ 1− λ2

2

{
(ν + 2νR)2 + µ2

}
+
λ4

8
{. . .}2 − 1 +

λ2

2
(ν2 + µ2)− λ4

8
(ν2 + µ2) =

−2λ2(νRν + νR) + λ4ε(ν, µ)

The term ε which contains the higher orders is sometimes called “holographic wave aber-
rations” (R. W. Meier, 1965). Now let us pull in front of the integral in Eq. 32.65 whatever
possible.

Figure 32.16: Modified reconstruction setup in order to avoid the phase error
on the conjugate image.

e−2πi(2νRx−2zHλν2
R)

∫∫
ũ∗0(ν, µ)

lateral shift︷ ︸︸ ︷
e−2πi[ν(x+2λzHνR)+y]

phase error︷ ︸︸ ︷
e2πiλ3zHε(ν,µ) dν dµ ≈

≈ u∗0(x+ 2λzHνR, y) [ε neglected] (32.64)

We see that the conjugate image is not perfect due to the phase factor with ε. The phase
factor in front of the integral is harmless, because it drops out when we compute the inten-
sity of the conjugate image by forming the modulus square. However, it is quite easy to
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get a perfect conjugate image by illuminating the hologram transmittance VH(x, y) not with
e−2πixνR but with e+2πixνR :

VH(x, y, zH + 0) = VH(x, y)e2πixνR + u(x, y, zH)e4πixνR + (32.65)

+u∗(x, y, zH) + |u(x, y, zH)|2e2πixνR

The third term is perfect for getting a conjugate image at 2zH . But now the true image
will suffer from an ε-phase factor, and it will be laterally shifted x −→ x + 2λνRzH . What
really changed was only the angle of incidence.

32.6.5 About the Pseudoscopic Structure of the Conjugate Image

Figure 32.17: Virtual and real images during hologram reconstruction.

To avoid confusion it is desirable to again make some remarks about the nomenclature. If
the illumination wave used in reconstruction is a replica of the reference wave of the recording
process, then the complex conjugate in IH ≈ 1 + ue+... + u∗e−... will create a real image,
while the term without the star will be responsible for the virtual image. “Real” in the sense
of geometrical optics means that this image is located outside of the area between source and
hologram, so that it is accessible for an observer. For example this image can be captured on a
screen. But the virtual image will be created somewhere between source and hologram, where
it is not accessible. If you would put there a white screen, you would not see the virtual image
because at that place the light did not yet have the opportunity to get any information about
the original object out of the hologram. However, behind the hologram, the wave behaves as if
there had been an object (= virtual image) in front of the hologram. The “as if” is a complete
simulation, since one can do everything with the virtual wavefield one could have done with
the original wavefield which came directly from an actual object. If you reach around the
hologram, as most first-time viewers do, you will find that the “as if” simulation is complete
only in z ≥ zH .

“Pseudoscopic” means a depth inversion. For example, when looking at the pseudoscopic
image of a face the nose does not appear as the usual prominence but as a dent.
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Figure 32.18: Variety of possible reconstruction situations of an object from
the recorded hologram.

One reason why the u∗-term should not be called the real wavefield and the u-term called
the virtual wavefront anymore is that these terms are ambiguous as R. W. Meier (JOSA, 55,
987, 1965) has shown. This ambiguity may occur if the curvature of the reference wave is dif-
ferent from the curvature of the re-illuminating wave. In this more general case it is possible
to have the conjugate image (from u∗) appear in front of the hologram, such that it is actually
virtual in the sense of geometrical optics. But it will always be pseudoscopic, while the “true
image” (from u) will create always an orthoscopic image, which may be located in front of
the hologram (=virtual) or behind the hologram (= real). This depends on the curvatures of
the reference and re-illumination waves as we will see soon. All conceivable situations might
actually occur as shown in the Fig. 32.18. The object is a flower pot with the blossom bent to
the right. Both the object and later the hologram are illuminated from the left.

For the proof it is important to recognize the difference between a divergent and a conver-
gent spherical wave (Fig. 32.19).

divergent: e+ikr = eik
√

x2+y2+z2 ≈ eikze
iπ
λz (x2+y2)
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Figure 32.19: Convergent and divergent spherical waves.

convergent: e−ikr = e−ik
√

x2+y2+z2 ≈ e−ikze−
iπ
λz (x2+y2)

It is the ±-sign of the quadratic portion of the exponent which indicates the property: di-
vergent (+), or convergent (−). The e±ikz is merely an uninteresting constant in this context.
Now let us assume the recording setup illustrated in Fig. 32.20:

Figure 32.20: Setups for recording with divergent and convergent illumination.

The object may consist of a single point, which creates a spherical wave (divergent) in the
hologram plane. The reference wave is also a divergent spherical wave, but with a different
curvature. But the reference wave could be also convergent, as in the right-hand section of
Fig. 32.20. (Notice: a length is counted positive if indicated as −→, and negative if←−).

u(x, y, zH) =

reference wave︷ ︸︸ ︷
e

iπ
(x−xR)2+y2

λzR +

object wave︷ ︸︸ ︷
ae

iπ
λz0 (32.66)

IH(x, y) = |u(x, y, zH)|2 (32.67)

≈ 1 + ae
i π

λ

»
x2+y2

z0
− (x−xR)2+y2

zR

–
+ a∗e

−i π
λ

»
x2+y2

z0
− (x−xR)2+y2

zR

–

= 1 + ae
i π

λ

h
(x2+y2)

“
1

z0
− 1

zR

”
+something

i
+ a∗e−i π

λ

h
(x2+y2)

“
1

z0
− 1

zR

”
+something

i
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“Something” stands for everything which is not quadratic in (x, y), and which has there-
fore no influence on the curvature of the wave. After linear photographic development we get
IH(x, y) = VH(x, y). Next we illuminate the hologram with a spherical wave:

VL(x, y, zH − 0) = e
i π(x+y)

λzL =

 zL > 0 ∼ divergent
zL < 0 ∼ convergent
zL =∞ ∼ plane wave

(32.68)

This spherical illumination wave has its convergent point on the z-axis somewhere. This
specialization is unimportant in this context since only the quadratic phase terms determine
the z-locations of the images. Behind the hologram the complex amplitude is:

VH(x, y, zH + 0) = V(x, y, zH − 0)VH(x, y) = e
iπ x2+y2

λzL + (32.69)

+ ae
i π

λ

h
(x2+y2)

“
1

z0
− 1

zR
+ 1

zL

”
+something

i︸ ︷︷ ︸
I

+ a∗ei π
λ

h
(x2+y2)

“
− 1

z0
+ 1

zR
+ 1

zL

”
+something

i︸ ︷︷ ︸
II

The term I is called the true wavefront; it is convergent if 1
z0
− 1

zR
+ 1

zL
< 0 and divergent

if 1
z0
− 1

zR
+ 1

zL
> 0.

The term II is called the conjugate wavefront; it is convergent if − 1
z0

+ 1
zR

+ 1
zL
< 0 and

divergent if − 1
z0

+ 1
zR

+ 1
zL

> 0.

A convergent wave will come to a focus to the right of the hologram, while a divergent
wave has a virtual focus to the left of the hologram (focus “as if”). The “something” term
might be linear in x and y, and also contain constants. The linear x, y terms describe merely a
lateral (x, y) shift of the focal points. It is now convenient to describe the spherical wavefronts
in curvatures c = 1

z instead of the distance z from the spherical wave center to the plane of
observation.

c0 =
1

zobj
; cR =

1

zref
; cL =

1

zillum.
; c1 =

1

zconj.
; c2 =

1

ztrue
; (32.70)

Two more abbreviations: x2 + y2 = �2; “something not quadratic in (x, y)” = s. In this
notation the wavefield behind the hologram during reconstruction is:

VH(x, y, zH + 0) = ei
πcL�2

λ︸ ︷︷ ︸
direct

+a ei π
λ [(+c0−cR+cL)�2+s]︸ ︷︷ ︸

true

+a∗ ei π
λ [(−c0+cR+cL)�2+s]︸ ︷︷ ︸

conjugate

(32.71)
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The term “true” with +c0 must be orthoscopic (= no depth inversion), because c0 appeared
with + in front of it in the original wavefield.

Let me explain this in some more detail. Suppose the object consisted of two points at
different depth positions z01, z02 (Fig. 32.21), where z02 > z01 =⇒ c02 < c01:

u(x, y, zH) = uref + a1e
i π

λ (c01�2+s) + a2e
i π

λ (c02�2+s) (32.72)

VH(x, y) = |u(x, y, zH)|2 ≈ |uref |2 + u∗ref(a1e
+ + a2e

+) + u∗ref(a
∗
1e

− + a∗2e
−);

V(x, y, zH + 0) = V(x, y, zH − 0)VH(x, y)

uref = ei π
λ (cR�2+s);VL = ei π

λ (cL�2+s)

Figure 32.21: Object with two points at different depth positions.

V(x, y, zH + 0) = ei π
λ (cL�2+s) + (32.73)

+ ei π
λ [(cL−cR)�2+s]

[
a1e

i π
λ (c01�2+s) + a2e

i π
λ (c02�2+s)

]
︸ ︷︷ ︸

true

+

+ ei π
λ [(cL+cR)�2+s]

[
a∗1e

i π
λ (−c01�2+s) + a∗2e

i π
λ (−c02�2+s)

]
︸ ︷︷ ︸

conjugate

=

= ei π
λ (cL�2+s) +

+ a1e
i π

λ [(c01+cL−cR)�2+s] + a2e
i π

λ [(c02+cL−cR)�2+s]︸ ︷︷ ︸
true

+

+ a∗1e
i π

λ [(−c01+cL+cR)�2+s] + a∗2e
i π

λ [(−c02+cL+cR)�2+s]︸ ︷︷ ︸
conjugate

The true term with a1 and a2 without ∗must be orthoscoic for the following reason. Since
by assumption c01 > c02, it is also true that (c01 + cL − cR) > (c02 + cL − cR). Hence it
follows z11 < z12 and z01 < z02, which means that the depth-order in the true image is the
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same as in the object. Similarly we find for the conjugate terms with a∗1 and a∗2: z01 < z02
and z21 < z22. This means that the depth-order in the conjugate image is opposite from the
depth order in the object.

One can show the same thing much more briefly: the object wave aei π
λ (cO�2+s) is recon-

structed as:

aei π
λ (c1�2+s)︸ ︷︷ ︸
true

+ a∗ei π
λ (c1�2+s)︸ ︷︷ ︸

conjugate

(32.74)

Herein the curvatures c1 and c2 are:

c1 = c0 − cR + cL; c2 = −c0 + cR + cL (32.75)

We compare these two image wave curvatures with the object wave curvature by comput-
ing the derivatives dc1

dc0
= +1 and dc2

dc0
= −1. Translating these curvature statements we get

on the basis of the definition c = 1
z :

dz1
dz0

=

(
dz1
dz0

)2
dc1
dc0

;
dc1
dc0

= +1 =⇒ dz1
dz0

> 0 true is orthoscopic (32.76)

dz2
dz0

=

(
dz2
dz0

)2
dc2
dc0

;
dc2
dc0

= −1 =⇒ dz2
dz0

< 0 conjugate is pseudoscopic

Now let us return to the question of whether the true and conjugate images will appear in
front of or behind the hologram.

true left from hologram if c1 > 0 −→ +c0 − cR + cL > 0;
true right from hologram if c1 < 0 −→ +c0 − cR + cL < 0;
conjugate left from hologram if c2 > 0 −→ −c0 + cR + cL > 0;
conjugate right from hologram if c2 < 0 −→ −c0 + cR + cL < 0;
center gravity left from hologram if c1 + c2 > 0 −→ cL > 0;

These results are summarized in Fig. 32.22. The (cR, cL) domain is divided into eight
equal octants around (cL = 0), cR = c0. The eight corresponding configurations of true im-
age, conjugate image and hologram had been shown before in a corresponding arrangement in
Fig. 32.18. Although this classification in terms of curvatures c gives a neater result, the cor-
responding classification in depth coordinates z = 1

c is easier to relate to a given experimental
situation.

Two more topics in connection with the pseudoscopic property of the conjugate image
should be discussed, firstly a more general and elegant proof of the pseudoscopic feature, and
secondly an attempt to explain why it is so hard to observe visually the pseudoscopic image.
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Figure 32.22: Hologram reconstruction in the (cR, cL) domain.

�� ��

Figure 32.23: Hologram reconstruction in the (zL, zR)-domain: a) shaded
area: 1

z0
− 1

zR
+ 1

zL
> 0 means true image left of hologram. The conjugate

image is right of the image if zR > z0; b) Shaded area: − 1
z0

+ 1
zR

+ 1
zL

< 0
means conjugate image right of hologram. Center of gravity left of the holo-
gram in zL < 0. (Sign convention: the hologram is at z = 0. Positive z-values
are left of the hologram, negative z-values to the right of it)

As we will see, the occurrence of the pseudoscopic by-product is due to the fact that a
hologram transmittance is real. (Complex holograms are exceptions to be treated later.) A
wave amplitude v(x, y) in plane z is assumed to be real: v(x, y) = v∗(x, y). Another way to
state the reality of v(x, y) is to split it up into two conjugate portions: v(x, y) = u(x, y) +
u∗(x, y). This can be done of course in many different ways, but you might think of u(x, y) as
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coming from the “true” portion of IH(x, y) and u∗ from the “conjugate” portion. The direct
term of IH is of no interest in this context. Let us call temporarily u(x, y) = u1(x, y) and
u∗(x, y) = u2(x, y). From these definitions it follows immediately that it is u∗1 = u2. Now
we compute two propagations; one forward, and another backwards:

u1(x, y) from z to z − η : u1(x, y, z − η) (32.77)

u2(x, y) from z to z + η : u1(x, y, z + η)

According to Eq. 32.42:

u1(x, y, z − η) = e−ikηP [u1(x, y);−η] (32.78)

u2(x, y, η) = e+ikηP [u1(x, y); +η]

Now we want to make use of a symmetry property of P , which holds for any function
inside of []. Using this for u1(x, y, z − η) we get:

u1(x, y, z − η) = e−kηP [u1(x, y);−η] = e−ikη {P [u∗1(x, y); +η]}∗ = (32.79)

=
{
e+ikηP [u∗1(x, y); +η]

}∗
Insert now the assumption u∗1 = u2, which yields = {u2(x, y, z + η)}∗ = u1(x, y, z−η).

This says what is forward propagated (z −→ −η) from u∗(x, y) is the same (except for a∗)
as what is backward propagated (z −→ +η) from u(x, y). Hence u and u∗ create wavefields
which are symmetrical to each other, folded around plane z. This z-folding means depth in-
version. In other words, while an object uO(x) in z = 0 might create u(x, z) in z �= 0, the
associated complex conjugate object u∗(x) will create a wavefield u∗(x,−z).

Methods of linear optics (lenses, transparencies, polarizers, waveplates, phase-shifters,
etc.) cannot produce a (∗)-operation. Hence no depth-inversion can be produced with those
components. For a depth inversion it takes something non-linear like the modulus-square pro-
cess to create a (∗). A mirror is an interesting case to study. After reflection the z-coordinate
of the object is inverted, if �z0 is the surface normal vector. But also the z-component of all the
k-vectors have been inverted. Hence zkz = z′k′z . In that case no pseudoscopic effect occurs.
The ortho-pseudo transformation z′′k′z = −zkz .

32.6.6 Why is it so tricky to see the pseudoscopic image?

There are two reasons for the difficulty of seeing the pseudoscopic image, in my opinion
(which differs from what you might find in the literature), firstly a simple geometrical rea-
son, and then, our brain computer is confused when presented with pseudoscopic information.
To understand the geometrical reason let us assume that the pseudoscopic or conjugate im-
age is between hologram and eye, as is common in practice since mostly cR ≈ cL applies.
To emphasize this geometrical reason let the object be much wider than the hologram. The
distance eye-image zE (conjugate or true) may be the same for both cases (see Figs 32.24).
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Figure 32.24: Observation of pseudoscopic images: a) recording process; b)
observation of the true image: all of the object is visible from one eye posi-
tion; c) observation of the conjugate image: observation from the same distance
image-to-eye. Now only a small portion of the image is back illuminated for any
particular eye position. One cannot see the whole image simultaneously.

These figures show that one cannot see all parts of the conjugate image at the same time, only
sequentially by moving the head sidewise. This is a handicap for comprehending the image,
even if the object is flat. Even for the comprehension of a local detail (say a single letter in a
written word) it is very desirable, and often necessary to see simultaneously the environment,
the “context”. The “geometrical reason” we have just considered occurs whenever an image
is located in front of the hologram as seen from the eye. This situation can happen both for
the true and for the conjugate image. Hence this reason is not necessarily connected with the
pseudoscopic (= conjugate) image. However, in practice the conjugate image is usually in
front of the hologram and the true image behind it. One reason for doing it this way is that the
“holographic aberrations” (see page 389) will be small in that configuration.

To explain the second reason it is necessary to comment first on how we perceive depth
visually. To a certain degree we can vary the focal power of our eye lens, till we find a sharp
position. But as depth-locating method this approach is probably useless beyond arm’s length.
More far-reaching is binocular triangulation, but not beyond a few meters. Thereafter we rely
on dynamic experiences.

Apparent angular velocity Obscuration
object is still eye moves (Fig. 32.25)

Observation:
∣∣dα
dx

∣∣ < ∣∣∣dβ
dx

∣∣∣ Observation: B-object obscures A

Conclusion: zA > zB Conclusion: zA < zB
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Figure 32.25: Perception of depth through trinagulation.

32.6.7 Dynamic angular velocity

Also longitudinal movements of the eye provide a depth clue. If the angular extent of object

A at distance zA, is α and for B at zB it is β, then
∣∣dα
dx

∣∣ < ∣∣∣dβ
dx

∣∣∣ −→ zA > zB.

Whenever we can apply these two dynamic schemes and draw conclusions from obscu-
ration observations, even at short distances we probably do better than with focusing and
triangulation.

Observation of the true image (Fig. 32.26 a)):

1. relative angular velocity
∣∣dα
dx

∣∣ < ∣∣∣dβ
dx

∣∣∣ −→ zA > zB .

2. B can obscure A −→ zA > zB .

Observation of the conjugate image (Fig. 32.26 b)):

3.
∣∣∣dα′

dx

∣∣∣ > ∣∣∣dβ′

dx

∣∣∣ −→ z′A < z′B

4. B’ (which is wider than A’) can obscure A’ −→ z′B < z′A

(3) and (4) are contradictory!

The longitudinal movement yields the same conclusion as the lateral movement of the eye.
When two indirect means of assessing depth give contradicting results, the brain-computer’s
diagnostic message is “execution inhibited”. The final, mental act of synthesizing a hypothesis
of the 3D structure of the outer world is not possible, because the input data are logically
inconsistent. This experience is as confusing as if you were to look at a candle, and whenever
you held your hand behind the candle, the candle was obscured (Fig. 32.27).

Maybe someone could make a hologram with cO, cR, cL parameters such that the “geo-
metrical trouble” is not severe. Take a cardboard model of the hand and of the candle.
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Figure 32.26: Observation of the a) real and b) pseudoscopic image recon-
structed by a hologram.

Figure 32.27: Watching a candle in front of the hand.

Finally a remark on how to get the most striking 3D effects: take in two steps the conjugate
image of the conjugate image, which will be orthoscopic again. Set it up so that it appears a
short distance before the second-generation hologram as seen from the eye.

32.7 Classification of holographic setups

As we have said many times before the basic trick to holography, which enables us to preserve
phase information despite a photographic recording process (modulus square sensitive), is to
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superpose upon the unknown object wave a known reference wave, which in the recording
process acts like the local oscillator of a heterodyne receiver. Re-illuminating the hologram
with a wave which is a replica of the former reference wave is all we have to do to recreate the
former object wave. In this recipe it is never said where in the optical setup we should place
the hologram. We can do it everywhere in principle, although from a practical point of view
the four setups shown in Fig. 32.28 each have their own merits. In Fig. 32.28 we only sketch
the off-line setups.

Figure 32.28: Various configurations for off-line holography.

32.7.1 Fraunhofer off-line holography

You might find the nomenclature confusing. It really is, mainly due to lack of coordination, but
perhaps also due to personal vanity, or for making patent claims seem novel. Anyway, Fraun-
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hofer diffraction is the very-far version of Fresnel diffraction. “Very far” means that if the
object uO(x, y) �= 0 only in |x| ≤ ∆x0

2 , |y| ≤ ∆y0

2 , then the distance from object to hologram

(where the Fraunhofer diffraction pattern is recorded) shall be large: 2zH ≥ (∆x0)
2+(∆y0)

2

λ .
This is the condition under which the Fresnel transformation can be approximated by a Fourier
transformation.

Illumination: uL(x, y, z) = eikz in z ≤ 0
in z = −0, in front of the object: uL(x, y,−0) = 1
behind the object: u(x, y, 0) = uL(x, y,−0)u0(x, y) = u0(x, y)

After propagation from z = 0 to z = zH (see Eq. 32.63):

u(x, y, zH) = eikzHP [u(x, y,+0), zH ] = (32.80)

≈ −ieikzH

λ|zH |
∫∫

u0(x
′, y′)ei π

λzH
{(x−x′)2+(y−y′)2}dx′dy′

where
{
(x− x′)2 + (y − y′)2} = x2 + y2 − 2(xx′ + yy′) + x′2 + y′2

The (x2 +y2) term can be pulled out of the integral. The (x′2 +y′2) term can be neglected
if the object size is limited by (∆x0)

2 + (∆y0)
2 ≤ 2λzH .

u(x, y, zH) ≈ −i
λ|zH |e

ik
“

zH+ x2+y2

2zH

” ∫∫
u0(x

′, y′)e−2πi xx′+yy′

λzH dx′dy′ (32.81)

=
−i
λ|zH |e

ik
“

zH+ x2+y2

2zH

”
ũ0

(
x

λzH
,
y

λzH

)
This wave arrives from the object at the hologram. In addition a plane reference wave will

be there: eikzH . Both together form the exposing intensity IH = |eikzH − i
λzH

. . . |2.

IH(x, y) ≈ 1︸︷︷︸
direct

− i

λ|zH |e
ik (x2+y2)

2zH ũ0

(
x

λzH
,
y

λzH

)
︸ ︷︷ ︸

true

+
i

λ|zH |e
−...ũ∗0︸ ︷︷ ︸

conjugate

+
|ũ0|2

(λzH)2︸ ︷︷ ︸
intramodulation

(32.82)

In reconstruction the true and the conjugate images are at distances zH in front of and
behind the hologram as shown in Fig. 32.28. If the two twin images are so very far (2zH)
apart one can afford not to bother about any mutual disturbance even for in-line Fraunhofer
holography. This case has been studied in particular by B. J. Thompson et al. The Reynolds
& DeVelis book contains a detailed discussion.

32.7.2 Fourier holography (off-line)

Both in Fourier holography and in Fraunhofer holography the Fourier transform ũ0 of the ob-
ject u0 falls onto the hologram. That is why many people feel there should only be one name
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for both. But there are two differences, although minor ones: the production of the reference
wave happens in a different way (see Fig. 32.28); furthermore in Fraunhofer holography it is

not ũ0 itself, but ũ0

(
x

λzH
, y

λzH

)
e

i
“

π
λzH

”
(x2+y2)

which arrives from the object at the holo-

gram plane. It is a matter of taste whether this quadratic phase factor should justify a whole
new category in holography. Such a phase factor can occur also if any one of the lenses in the
Fourier-recording setup is shifted longitudinally.

The theory of Fourier holography is very simple, and similar to previous Fourier manipu-
lations:

Recording:

u(x, y) −→ ũ

(
x

λf
,
y

λf

)
−→

∣∣∣∣ũ( x

λf
,
y

λf

)
+ e2πi

xx0+yy0)
λf

∣∣∣∣2 = (32.83)

= IH(x, y) = ũ0e
− + ũ0e

+ + 1 + |ũ0|2; IH −→ VH = IH

Reconstruction:

Another Fourier transform for VH , which might be illuminated under normal incidence
(but not necessarily).

1

(λf)2

∫∫
VH(x′, y′)e−2πi xx′+yy′

λf dx′ dy′ = (32.84)

= δ(x, y)︸ ︷︷ ︸
direct

+ u0(−x− x0,−y − y0)︸ ︷︷ ︸
true

+ u∗0(x− x0, y − y0)︸ ︷︷ ︸
conjugate

+

+

∫∫
u0(x, y)u

∗
0(x+ x, y + y)dxdy︸ ︷︷ ︸

intramodulation

32.7.3 Lensless Fourier holography

The setups shown for lensless Fourier holography in Fig. 32.28 were incomplete. Reconstruc-
tion can be achieved in different ways (Fig. 32.29).

Recording theory: in z = 0 the objectu0(x, y) and a point source beside it are u(x, y,+0) =
u0(x, y) + δ(x− x0, y − y0). Propagation to the plane of the hologram:
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Figure 32.29: Setups for recording (a) and reconstruction (b) of lensless Fourier
holograms.

u(x, y, zH) = eikzHP [u(x, y,+0); zH ] = (32.85)

=
−ieikzH

λ|zH |
∫∫

u(x′, y′,+0)e
i π

λzH
[(x−x′)2+(y−y′)2]

dx′ dy′ =

=
−ieik

“
zH

x′+y′

zH

”

λ|zH |
∫∫

u(x′, y′,+0)e
i π

λzH
(−2xx′−2yy′+x′2+y′2)

dx′ dy′ =

=
−ieik

“
zH

x′+y′

zH

”

λ|zH |
{∫∫

u(x′, y′)ei π
λzH

(−2xx′−2yy′+x′2+y′2)
dx′ dy′ +

+ e
i π

λzH
(−2xx′−2yy′+x′2+y′2)

}
Now we assume that the object u0 is small compared to the distance zH from object to

hologram. More precisely, u0(x
′, y′) �= 0 only in |x′| ≤ ∆x0

2 ; |y′| ≤ ∆y0

2 ;

π(x′2 + y′2)
λ|zH | ≤ π{(∆x0)

2 + (∆y0)
2}

4λ|zH | ≤ π

4
(32.86)

This assumption (made before on other occasions of diffraction at “very far distances”) is

(∆x0)
2 + (∆y0)

2 ≤ λ|zH | (32.87)

If this assumption is justified we can neglect (x′2 + y′2)-term in the exponent of the∫ ∫
u0 . . .dx

′ dy′, which now becomes:
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∫∫
u0(x

′, y′)e−2πi (xx′+yy′)
λzH dx′ dy′ = ũ0

(
x

λzH
,
y

λzH

)
(32.88)

The intensity falling onto the hologram is

IH(x, y) = |u(x, y, zH)|2 =
1

(λzH)2
|{. . .}|2 = (32.89)

=
1

(λzH)2

[
1 + ũ0

(
x

λzH
,
y

λzH

)
e
−i π

λzH
(x2

0+y2
0−2xx0−2yy0) + c.c.+ |ũ0|2

]
The “1” corresponds to the “direct light”, the ũ0 to the “true” image, the ũ∗0 to the “conju-

gate” image, and |ũ0|2 is the “intramodulation term”.

Now comes the photographic development process, which we assume to be linear, that is
the amplitude transmittance VH(x, y) after development is assumed to be proportional to the
intensity IH(x, y) before exposure:

VH(x, y) = IH(x, y) (32.90)

In reconstruction let us this time compute the simpler setup (Fig. 32.29), which contains
only one lens. By the way, the term “lensless” refers to the fact that no lens is between object
and hologram in the recording process. The nomenclature “lensless” is misleading. When
reading some of the literature one might make the following invalid conclusion. For X-rays
we do not have lenses, at least not good lenses. Hence a lensless recording setup is highly
desirable for X-ray holography. However the fact that in the so-called “lensless” scheme no
lens is needed between object and hologram does not make this scheme suitable for X-ray
holography because a lens is needed in front of the object.

The hologram in z = 0 is illuminated by a convergent spherical wave: VH(x, y,−0) =

e
−iπ x′2+y′2

λzH . This wave would come to a focus at a distance which is assumed to be equal
to zH , the distance between object and hologram during recording. Behind the hologram the
complex amplitude is V(x, y,+0) = VL(x, y,−0)VH(x, y). We will find the two images at
z = zH , which can be computed by applying the propagation operator:

VH(x, y, zH) = eikzHP [V(x, y,+0); zH ] ≈ (32.91)

≈ −ieikzH

λ|zH |
∫∫
V(x′, y′,+0)e

iπ (x−x′)2+(y−y′)2

λzH dx′ dy′ =

=
−ieik

“
zH+ x′+y′

λzH

”

λ|zH |
∫∫
V(x′, y′,+0)e

i π
λzH

(−2xx′−2yy′+x′2+y′2)
dx′ dy′

At this point we do not make any assumption about the width of V(x′, y′,+0) which would
allow us to drop the x′2 + y′2 term in the exponent. This means, although our object u0 had to
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be limited in lateral size, our hologram VH can be as wide as we want it to be. In actuality the
hologram is mostly wider than the object, so that the viewing angle is large, which allows us
to enjoy parallax observation. Now let us insert V(x′, y′,+0) from Eq. 32.89. It is convenient
to change the integration variables: x′ −→ λνzH ; y′ −→ λνzH ; dx′dy′ =⇒ (λzH)2dνdµ.

VH(x, y, zH) =
−ieik

“
zH+ x′2+y′2

zH

”

λ|zH |
∫∫

e−iπλzH (ν2+µ2)︸ ︷︷ ︸
VL

. . . (32.92)

. . .

[
1 + ũ0(ν, µ)e2πi(x0ν+y0µ)e

−iπ
(x2

0+y2
0)

λzH + c.c.+ |ũ0|2
]

︸ ︷︷ ︸
VH

. . .

. . . e−2πi(xν+yµ)eiπλzH (ν2+µ2)︸ ︷︷ ︸
from propagation operator

dνdµ

The e±iπλzH (ν2+µ2) terms cancel each other. Hence we get

−ieik
“

zH+ x2+y2

zH

”

λ|zH |
[∫∫

e−2πi(xν+yµ)dνdµ+ (32.93)

+ e
−iπ

(x2
0+y2

0)

λzH

∫∫
ũ0(ν, µ)e2πi{ν(x0−x)+µ(y0−y)}dνdµ+

+ e
iπ

(x2
0+y2

0)

λzH

∫∫
ũ∗0(ν, µ)e−2πi{ν(x0+x)+µ(y−y0)}dνdµ+

+

∫∫
|ũ0(ν, µ)|2e−2πi(xν+yµ)dν dµ

]
=

=
−ieik

“
zH+ x2+y2

zH

”

λ|zH |
[
δ(x, y) + e

−i π
λzH

(x2
0+y2

0)
u0(−x+ x0,−y + y0)+

+ e
i π

λzH
(x2

0+y2
0)
u∗0(+x+ x0,+y + y0) +

∫∫
u0(x

′, y′)u∗0(x
′ + x, y′ + y)dx′ dy′

]
We have again the same rules for avoiding overlap between the “true” and the “conjugate”

images. In the case of Fourier holography these two images appear in the same place. This
might seem somewhat inconsistent since (with plane reference and illumination wave) the two
images occurred in front of and behind the hologram at equal distance. This is true too. The
“true” image is at −∞ and the “conjugate” image at +∞ from the hologram. The location
−∞ is in the front focal plane of the lens in front of the hologram, in other words in the object
plane. From there it is imaged into the plane where the conjugate image occurs, which is the
back focal plane of the lens behind the hologram.

The rule for avoiding overlapping is now x0 ≥ ∆x0

2 , which means the reference point
δ(x− x0) has to be outside of the object u0(x) ( �= 0 in |x| ≤ ∆x0

2 ). If furthermore separation
from the intramodulation terms is wanted, one has to shift the reference point even farther out:
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Figure 32.30: The reconstruction plane of a lensless Fourier hologram.

x0 ≥ 3∆x0

2

There were several phase factors in Eq. 32.92 for V(x, y, zH), all of which are unimpor-
tant, although for different reasons. What we observe is the intensity |V(x, y, zH)|2.

|V(x, y, zH)|2 =

∣∣∣∣∣∣−ie
ik

“
zH+ x2+y2

zH

”

λ|zH | [. . .]

∣∣∣∣∣∣
2

= |[. . .]|2 1

(λzH)2
(32.94)

Hence the phase factor −ie
ik

„
zH+

x2+y2

zH

«

λ|zH | is not observable. Inside of [. . .] we have phase
factors

e
∓iπ

(x2
0+y2

0)

λzH = e∓iϕ; (32.95)

|[. . .]|2 = δ2 + |u0|2 + |u∗0|2 + |u0 ⊗ u∗0|2 +

2Re

{
u0e

−iϕδ + u∗0e
iϕδ + u0e

−iϕ(u∗0e
iϕ)∗ +

∫∫
. . .dx′dy′(δ + u0e

−iϕ + u∗0e
iϕ)∗

}
The ϕ appears only in the mixed terms of 2Re {. . .}, which however are all zero, because

each term in 2Re {. . .} consists of a product of two factors which are shifted and do not over-
lap in (x, y). Hence ϕ is of no consequence for |V(x, y, zH)|2. The square of the δ-function is
mathematically nonsense. But the physicists’ δ-function is a narrow and rectangular function
or a skinny sinc-function may very well be squared. Since only the physical δ-function exists
in reality, a δ2 is nonsense only in the unreal world of a pure mathematician.

32.7.4 Image holography

The main point of that paper was: an interferogram is a special type of a hologram, an image-
hologram, recorded in the image plane of the object. Historically this means that “holograms”
have been made long before Gabor realized that one can reconstruct a wavefront which has
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been recorded as a hologram. However non of the interferogram-makers realized that he could
reconstruct the wave if he wanted to. Practically this means that we can now apply modern
methods for the investigation of a wavefront, which did exist long before these methods, like
phase contrast, had been invented. The same thing in more general terms: holography offers
the opportunity for a posteriori processing. For example a transient windtunnel event, recorded
on a hologram, can later be processed in leisure by all kinds of Schlieren methods, etc. We
do not have to select the processing method before the unknown event takes place. Also we
do not have to know the depth position of the event to be recorded on a hologram. Fig. 32.31
shows a typical setup for image holography. (recommended reading: ”Interferograms are
Image Holograms”, JOSA 58 (1968), 141, see Appendix page 486)

Figure 32.31: Typical setup for recording an image plane hologram.

Figure 32.32: Reconstruction of an image plane hologram with the knife edge
method (Foucault).
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Figure 32.33: Reconstruction with phase amplification from a hologram with
higher harmonics due to nonlinear photographic development. All of the +2.
order goes through the pinhole; the center of the +1 order goes through the
pinhole and provides a plane reference wave.





33 Talbot bands

This chapter is a supplement to the section on coherence. It is a pity that this nice effect is so
little known. Maybe it is honestly forgotten, or it is bypassed because it does not fit into the
normal teaching pattern, or the authors of textbooks pay attention only to those effects which
are useful for making money? Anyway, this effect is worth teaching for three reasons: (a)
it gives an unusual but useful insight into the problems of temporal coherence, (b) it demon-
strates the powerful “dynamic” approach of multi-wavelength diffraction theory, (c) it shows
how easily one may jump to a wrong conclusion when neglecting to distinguish between “nec-
essary” and “sufficient”.

Let us start with a “dynamic” description of grating diffraction, which is probably due
to Schuster (∼ 1920). The following hypothesis will turn out to be quite useful: White light
consists of single pulses (Fig. 33.1). The various monochromatic components in the exit plane
of the grating spectroscope are created by the grating due to the time delays τ(α) of partial
pulses going through adjacent grating slits. The wavelength is λ = cτ = c

νt
= d sinα.

Figure 33.1: The shape of a light pulse and its spectrum.

The unusual aspect of this explanation of the grating spectroscope is that the wavelength λ
exists only behind the grating. The newly derived formula λ = d sinα is of course consistent
with the standard formula sinα = λ

d . For comparison let us sketch how the standard formula is
usually derived. An arbitrary light wave function V0(t) coming from the source can be thought
of consisting of purely monofrequency components: V0(t) =

∫
Ṽ (νt)e

−2πiνttdt. First we
treat one such monofrequency e−2πniνtt alone. The corresponding wavelength λ = c

νt
arrives

at the exit plane at a point described by sinα = λ
d . Next we add up all the contributions

from all the other monofrequencies. Since they are arriving at different spots of the exit plane,
they cannot interfere (which they could not anyway for other reasons). Hence we observe the
intensities |Ṽ (νt)|2 at the various places defined by sinα = λ

d = c
νtd

.
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Figure 33.2: Grating diffraction with short ligth pulses.

Now, according to Schuster, we figure as resulting amplitude V (t, α) at place α a sum of
delayed light amplitudes V0(t−mτ):

V (t, α) =
∑
(m)

V0(t−mτ); τ = d
sinα

c
(33.1)

The summation
∑
(m)

goes over all the grating slits:

∑
(m)

V0(t−mτ) =
∑
(m)

∫
Ṽ0(ν)e

−2πiν(t−mτ)dν =

∫
Ṽ0(ν)

∑
(m)

e2πimντe−2πiνtdν

(33.2)

herein:
∑
(m)

e2πimντ ≈∑
(n)

δ(ντ − n)

This expression would contain the straight equality sign (=) if the sum would extend from
m = −∞ to m = +∞. But that is unrealistic since all gratings have only a finite number of
slits.

V (t, α) =

∫
Ṽ0(ν)

∑
(n)

δ(ντ − n)e−2πiνtdν = (33.3)

1

τ

∑
(n)

∫
Ṽ0(ν)δ(ντ − n)e−2πiνtdν =

1

τ

∑
(n)

Ṽ0

(n
τ

)
e−2πiνt

The receiver in the exit plane observes the time-integrated modulus square.

I(α) =

∫
|V (t, α)|2dt =

(
1

τ

)2∑
(n)

∑
(m)

Ṽ0

(n
τ

)
Ṽ ∗

0

(m
τ

)∫
e−2πi(n−m) t

τ dt (33.4)
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The integral is τ if n = m, and zero if n �= m.

I(α) =
1

τ2

∑
(n)

∣∣∣Ṽ0

(n
τ

)∣∣∣2 ; τ = d sin
α

c
(33.5)

�� ��

Figure 33.3: a) Spectral width of a pulse V0(t); b) spatial distribution in the
diffraction plane depending of the diffraction angle (order).

In the visible region: 2
νblue

> 1
νred

; or 2λblue > λred

Now let us use the dynamic approach for the explanation of the Talbot bands. The or-
dinary approach, where one first computes a monofrequency component e−2πiνt all the way
through the plane of observation, is of course physically correct too, but it leads in this case to
an extremely messy mathematical treatment.

Figure 33.4: The effect of a phase plate in the aperture in front of the diffraction
grating.

Plate thickness: D;
Plate refraction index: n;
Grating constant: d;
Grating width or aperture size: Nd = B;
Shift between neighbours: δL = d · sinα;
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Shift between the two half-trains: ∆L = (n− 1)D due to retardation in glass;
Length of full train (if no glass plate): L = NδL.

For the +1st order the upper half of the total wave train is delayed so that the lower half
can catch up and interfere with the upper half. But in the -1st order the upper half is de-
layed for two reasons: retardation in the glass plate and detour on the way downwards. Hence
the two parts cannot overlap. This explains why the Talbot bands appear in the +1st order only.

The most vivid Talbot bands are to be expected if the retardation (n − 1)D equals the
length of a half-train N

2 δL.

N

2
δL = d

sinα

2
N = d

sinα

2

B

d
= B

sinα

2
(33.6)

2(n− 1)D = B sinα = Nλ (33.7)

Now let us determine the fringe distance of Talbot bands, measured in angular coordinate
α. The brightest fringe is at α0, which is given by (n − 1)D = B sin α0

2 . The adjacent fringe
maximum occurs where the two half-trains are shifted by one wavelength (Fig. 33.5):

Figure 33.5: Interference of two wavefronts shifted by one wavelength.

B
sinα1

2
+ d

sinα1

2
= (n− 1)D (33.8)

or :
B

2
sinα1 = (n− 1)D − λ1

We call the angular period α0 − α1 = δα, which can be computed this way:

B sinα1 + d sinα1 = 2(n− 1)D = B sinα0; α1 = α0 − δα; (33.9)

B sin(α0 − δα) + d sin(α0 − δα) ≈ B sinα0 −B cosα0 · δα+ d sinα0

By comparison we concludeB cosα0 · δα0 = d sinα0;

δα =
d

B
tanα0 =

d sinα0

B cosα2
=

λ0

B cosα0
(33.10)
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Now follows the quantitative theory: Assume the center slit of the grating, where the edge
of the glass plate is to be blocked. Below and above may be N

2 slits. At the observation plane
is x = f tanα the total amplitude is:

V (t, α) =
−1∑

m=−N
2

V0(t−mτ) +

+ N
2∑

m=+1

V0(t−mτ + ∆t) (33.11)

= Ṽ0(ν)

 −1∑
m=−N

2

e2πimτ +

+ N
2∑

m=+1

e2πi(mτ−∆t)

 e−2πiνtdν

Figure 33.6: Diffraction at a grating with an additional phase shifting plate.

Herein τ = d
c sinα, and ∆t = D

c (n− 1), and [. . .] = F̃ (ν;α).

The observed intensity is:

I(α) =

∫
|V (t, α)|2dt = (33.12)

=

∫∫∫
Ṽ (ν′)F̃ (ν′, α)Ṽ ∗

0 (ν′′)F̃ ∗(ν′′, α)e−2πi(ν′−ν′′)td(ν′ν′′t)

=

∫
|Ṽ0(ν)|2|F̃ (ν, α)|2dν

Notice: the phase of Ṽ0 has no influence on the intensity distribution I(α).

F̃ (ν, α) = e−iπ∆tν

 −1∑
−N

2

e2πiν(mτ+∆t
2 ) +

+ N
2∑

−+1

e2πiν(mτ−∆t
2 )

 = (33.13)

= 2e−iπ∆tν sin
(
πNτ ν

2

)
sin(πτν)

cos

[
πν

(
∆t−

(
N

2
+ 1

)
τ

)]
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Figure 33.7: Graphical illustration of the three terms in Eq. 33.15 in the
(λ, sin α) domain:
a) |Ṽ0

`
c
λ

´
|; notice: λred < 2λblue;

b) sin(...)
sin(...)

; lines at τν = 0,±1,±2,±3, . . ., or sin α = 0,±λ
d
, 2λ

d
, . . .;

c) {1 + cos[. . .]} maxima at: ν
`
∆t − τ

`
N
2

+ 1
´´

= 0,±1,±2,±3, . . . or

sin α = (n−1)D

( N
2

+1)d
+ 0, or ± λ

( N
2

+1)d
, or 2λ

( N
2

+1)d
. . .;

vertical line distance: ∆ sin α = λ

( N
2

+1)d
≈ 2λ

Nd
= 2λ

B
.

|F̃ (ν, α)|2 = 2
sin2

(
πNτ ν

2

)
sin2 (πντ)

{
1 + cos

[
2πν

(
∆t−

(
N

2
+ 1

)
τ

)]}
; (33.14)

τ = d
sinα

c

Now let us discuss I(α) graphically:

I(α) =

∫
|Ṽ0(ν)|2|F̃ (ν, α)|2dν = (33.15)

= 2

∫
|Ṽ0(ν)|2

sin2
(
πNτ ν

2

)
sin2 (πντ)

{
1 + cos

[
2πν

(
∆t−

(
N

2
+ 1

)
τ

)]}
dν

It is more convenient to use λ = c
ν instead of ν as the variable of integration. The three

factors of this integral have the distribution in the (λ, sinα)-domain shown in Fig. 33.7.

Only the factor {1+cos[. . .]} contains the glass plate parameter ν∆t = (n−1)D
λ . Hence it

is primarily responsible for the Talbot bands. The first two factors together describe ordinary
grating diffraction. The

∫
. . .dλ can be visualized as a collapsing projection of |Ṽ0|2 sin2

sin2 {1+
cos} onto the sinα-axis. The question is, in which regions of sinα will the {1 + cos}-
modulation not be smeared out. This {1 + cos}-modulation is what creates the Talbot bands
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of I(α). Obviously, the most complete modulation is achieved where the {1 + cos} fringes in
the (sinα, λ) diagram are horizontal, or at least close to it:

sinα0 =
2(n− 1)D

B
(33.16)

This calls for sinα0 > 0. For sinα < 0 the two stripe-systems sin2(...)
sin2(...) and {1 + cos}

are crossing under such a small angle, that everything will be smeared out. Remember the
{1 + cos}-stripes have a width of λ

B , and adjacent stripes are only 2λ
B apart.

Another point is of importance here. Since the visible region of the light covers a little bit
less than an octave (λred < 2λblue), it is possible to find conditions such that each spike from

the {1+cos}-star hits only once the spikes of the coarse star sin2(...)
sin2(...)

within the visible region,
at least if working in the 1st order (Fig. 33.8).

Figure 33.8: Graphical solution of the Talbot bands.

The second grating diffraction order will not exhibit strong Talbot fringes due to overlap
of the 3rd order on the sinα-axis. Actually with normal dispersion (dn

dλ < 0) the situation
becomes even better in the +1st order because the

{
1 + cos

[
πν
(
∆t− N

2 τ
)]}

star is slightly
bent: ν

(
∆t− N

2 τ
)

= 0,±1,±2,±3, . . ..

ν∆t = (n− 1)
D

λ
; (33.17)

ντ = d
sinα

λ
−→ sinα = 2(n− 1)

D

B
+ (0,±2

λ

B
,±4

λ

B
, . . .)

Under unusual circumstances one might expect to see Talbot bands in the -1st order, if
D dn

dλ ≥ 0. Anomalous dispersion appears at wavelengths close to resonance absorption:
χ(λ) → max. It is also possible to “fake” anomalous dispersion by imbedding a glass plate

with nG > nF, |dnG

dλ | < |dnF

dλ | into a properly chosen liquid (F). What matters now is
d

nG
nF

dλ ,
which may be ≥ 0. These “anomalous” Talbot bands have not yet been observed.

Conclusions: The hypothesis that white light has a pulse-like amplitude as a function of
time did prove quite useful both for the Schuster explanation of grating diffraction as well as
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Figure 33.9: Talbot bands at normal and anomalous disperion

Figure 33.10: Anomolous dispersion close to resonance absorption.

Figure 33.11: Short pulses as a model for white light.

for the (“dynamic”) theory of Talbot’s bands. Does this prove that white light is actually pulse-
like? Several well-renowned physicists thought so. However, if a hypothesis is quite useful
for explaining a finite number of experiments it simply says that the theory is not disproven,
but not that is proven. In other words, it was sufficient to assume that white light is pulse-
shaped in order to derive the right conclusions about Talbot’s bands, but this assumption was
not necessary. In fact, a random-sequence of quasi-monochromatic wave trains would have
been another suitable model for our purpose.

The only requirement is that quite differentV0(t) have the same |Ṽ0(ν)|2, which is possible
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since the phase of Ṽ0(ν) is never explicitly used in the quantitative theory of the observed
intensity I(α). The most dramatic case of two functions with the same |V (ν)|2 is a delta-
function and white noise (Fig. 33.12).

Figure 33.12: “White” noise and a δ-pulse which both have the same power
spectrum |Ṽ0(ν)|2.





34 Influence of the photographic material on spatial data
processing

34.1 Effects in a Photographic Emulsion

First let us discuss what happens in a photographic emulsion, then we will compare the three
hologram types “Fresnel”, “Fourier”, and “Image” in the context of the photographic materials
limitations.

1. The photographic plate is phase-blind. Not u, rather |u|2 is recorded. It is the essence of
holography to cope with this difficulty.

2. The photographic plate is polarization-blind (except for the marginal “Weigand” ef-
fect). We will discuss later a modified holographic system, which avoids the loss of
polarization-information.

3. During recording the incoming light intensity is scattered within the emulsion. Linear
(undisturbed) superposition holds for this scattering process. Details will follow shortly.

4. The photochemical development process usually means for the optical signal a point-to-
point nonlinearity (also called a “memoryless” nonlinearity).

5. The grain structure of the photographic emulsion causes a spatial noise which is not
additive.

6. An adjacency-effect (Eberhard-effect) due to unusual chemical diffusion conditions may
introduce a non-linear spread process.

We will now discuss these six effects, though not in sequence listed.

34.2 (3) Light Scattering During Recording

When Eggert & Schmidt and Frieser studied in the nineteen thirties the sound reproduction
from the sound track on the movie film they found that the highest acoustical frequencies
were reduced in amplitude. As a means of describing this effect they invented the term “spa-
tial frequencies”. When the sound track is scanned with velocity v, the spatial frequency νx

will be re-converted into temporal sound frequency νt = vνx. Since the higher sound fre-
quencies came back with reduced amplitude, they concluded the film must have a low-pass
transfer function for spatial frequencies. Frieser recognized scattering as the cause, which was
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confirmed theoretically by G. Haase and H. Müller, Optik 17, 3 (1960). Frieser found also that
with a sharp line as the aerial image intensity IA(x, y) = δ(x) falling upon the film, the effec-
tive intensity distribution after scattering has the shape of a two-sided exponential (Fig. 34.1):

IE(x, y) = 2πνpe
−2πνp|x| (34.1)

Figure 34.1: The effect of scattering on the recording of a pulse.

Next Frieser verified not only that for IA = δ(x) the double-exponent was characteristic,
but that for any aerial image IA one gets an effective image

IE(x) =

∫
IA(x′)2πνpe

−2πνp|x−x′|dx′ (34.2)

Herein νp is a typical constant, describing the “sharpness” (as it was called at first) of the
film. The experiments were not easy, because one had to keep those other effects, described
under (4) and (5), under control. The convolution result suggests describing the situation as a
linear filtering process:

IE(x, y) =

∫∫
IA(x, y)Fp(x− x′, y − y′)dx′dy′ (34.3)

ĨE(ν, µ) = ĨA(ν, µ)F̃p(ν, µ)

These formulas are two-dimensional, whereas Frieser’s experiments cover only the one-
dimensional case δ(x) −→ 2πνpe

−2πνp|x|. However this is enough knowledge for computing
Fp and F̃p, since there is no reason why the scattering should be anisotropic (dependent on
the angel within the emulsion plane).
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F̃p(ν, 0) =

∫∫
Fp(x, y)e

−2πixνdxdy =

∫ {∫
Fp(x, y)dy

}
︸ ︷︷ ︸

2πνpe−2πνp|x|

e−2πixνdx (34.4)

F̃p(ν, 0) =
1

1 +
(

ν
νp

)2 ; or in polar coordinates

ν = � cosΘ; µ = � sin Θ; F̃p(�,Θ) = F̃p(�) = F̃ (�, 0)

F̃p(�) =
1

1 +
(

�
νp

)2 ; F̃p(0) = 1; F̃p(νp) =
1

2

Figure 34.2: Typical frequency response of a holographic film described by Eq.
34.4.

A few typical characteristic frequencies νp are:

Polaroid and color film: ∼ 10− 25 mm−1

35 mm film, black-white: ∼ 50− 200 mm−1

Kodak 649: ∼ 200 mm−1

Agfa Agepan: ∼ 500 mm−1

Agfa Scientia: ∼ 1000 mm−1

Usually when selecting a photographic film one has to make a compromise between high
“bandwidth” νp and “speed” (sensitivity). - For some high resolution films one parameter νp is
no longer enough for describing the light scattering process in the emulsion. The photographic
transfer function F̃p curve looks more like

F̃p(ν) =
a

1 +
(

ν
ν1

)2 +
a

1 +
(

ν
ν2

)2 (34.5)

Typical data for very high resolution films are like
ν1 ∼ 50 mm−1

ν2 ∼ 2000 mm−1

1− a ∼ 0.8
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Figure 34.3: Typical frequency response of a high resolution holographic film
described by Eq. 34.6.

34.3 (4) The photographic nonlinear effect

It has long been known that the “density” D of a photographic plate after development de-
pends in a nonlinear way on the exposure (effective illuminating intensity times time).

Figure 34.4: Hurter & Druffield (or H&D) curve: Nonlinear dependence of the
photographic density of a film after exposure.

Definition:
density D = −log10(T

2)
T 2: intensity transmittance;
E = IE∆t: ∆T exposure time.

L. Silberstein gave a statistical explanation for the H&D curve. The chapter 7 in E.
O’Neill’s Statistical Optics presents Silberstein’s ideas in advanced form. Silberstein assumed
that each grain (a piece of Ag-halide crystal, many thousands of atoms, but mostly smaller or
only a little larger than the wavelength of light) needs, four photons to become activated, i.e.
ready to be changed permanently into a black spot due to the action of the photographic devel-
oper. Such a model explains nicely the threshold and the steep portion of the H&D curve. If
the incoming photons are so diluted that almost no grain gets the minimum of four photons the
emulsion is practically unexposed. Also the saturation can be understood in this way. When
practically all the grains in the emulsion have had their four or more photons a further increase
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of the exposure will have no effect. Although theD− logE curve (H&D) is quite adequate for
describing the nonlinear effect in the context of ordinary photography, it is better to present
the same physical effect in non-logarithmic quantities:

D = −log10(T
2) = −2log10(T ) logE = log(I∆t) = logI + log∆t (34.6)

Figure 34.5: Intensity transmittance in dependence of the exposure of a photo-
graphic medium

Between T = 0.8 and T = 0.4 a linear approximation is valid for many films and under
many development conditions (type of developer, temperature, duration).

T (E) = C0 + C1E; (C1 < 0) (34.7)

However when using also the lower region (fairly dark) of the T − E curve, a more ade-
quate description is a third order polynomial (A. Kozma, 1966; J. W. Goodman):

T (E) =

3∑
m=0

TmE
m (34.8)

dT
dE is negative because we assumed a “negative-film” (black-white inversion). Going

twice through a photographic process one can achieve in total a T (E) curve with dT
dE > 0,

which however is rarely necessary in holography, only sometimes in in-line holography. For
example, whenever we assumed “linear”-development, vH(x, y) = IH(x, y), it should have
been vH(x, y) = T0 + T1IH(x, y). With IH = 1 + ue− + u∗e+ we get:

vH = T0 + T1 + T1(ue
− + u∗e+) = T

[
T0 + T1

T1
+ ue− + u∗e+

]
(34.9)

as compared to vH = 1 + ue− + u∗e+.
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Figure 34.6: Transmittance vs. exposure curve of photographic film.

The difference is merely an overall constant T1 and a relative constant T0+T1

T1
, determin-

ing the modified ratio of “direct” light versus “true plus conjugate” light. This could be of
interest only in terms of energy economy, not in terms of image structure. However for in-line
holography the term T0+T1

T1
is of importance since the constant part or “strong background” is

a genuine part of the object u0 = 1 + ∆u0. This point is unimportant since today almost all
holograms are off-line.

To keep the film “linear” one has to use a large enough ratio of reference wave to object
wave, and chose the exposure time ∆texp properly:

IH = 1 + ũe− + ũ∗e+; E = IH∆texp; |TH − 1| ≤ ∆I (34.10)

34.4 (6) Adjacency Effect

So far we assumed the nonlinear influence of the photographic emulsion upon the photo-
graphic signal to be of the point-to-point variety. This variety is called in the temporal domain
“memoryless”. That means, at any point (x, y) the resulting amplitude transmittance T (x, y)
depends only on the exposureE(x, y) at that point. The exposure in turn is the product of ex-
posure time ∆t and effective intensity IE . However strictly speaking this T −E relation is not
truly “point-to-point”. In general one has to write T (x, y) = NL {E(x− x′, y − y′)} dx′dy′,
where NL stands for “nonlinear Function”. For the theoretician, this is a mess, for the exper-
imentalist this so-called adjacency or Eberhard effect is often a delight because it is usually a
helpful effect which enhances edge sharpness. The human retina also has such an adjacency
effect, which proves that an adjacency effect must be good.

The adjacency effect is an inhibitory effect, whereby during the photochemical process the
used developer liquid travels away from the high exposure area and hence reduces action at
the low-exposure region. Also un-used developer diffuses from the low-exposure area into the
nearby high-exposure area. This causes an edge overshoot of the developed density D. This
diffusion process goes on largely outside of the emulsion in a thin liquid layer. Brushing the
emulsion during development eliminates the effect almost entirely.
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Figure 34.7: Diffusion causing the “adjacency effect” in photographic media

One last of warning: the term linearity is used with different meanings in different books
and papers on holography.

Figure 34.8: Linear D − logE and T − E curves

The linear portion of the T −E curve is never where D − logE is linear, but rather at the
lower bend of D − logE. “Never” refers to one-step negative-material. In a two-step photo-
graphic process the two types of linear regions may correspond, but they do not have to.
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34.5 (5) Grain-Noise

It has been found empirically that the density fluctuations are worst where the T −E curve is
steepest. Obviously this type of noise is not additive, at least if E covers a wide range. The

signal-to-noise for a small E range from E to E + dE is characterized by
dT
dE

∆T (E) .

Figure 34.9: The T − E and ∆T-E curves

34.6 The influence of light scattering within the emulsion
during holographic recording

As we have seen in the section 34.2, the light scattering within the photographic emulsion
can be described as a linear and space-invariant filter process with the aerial image intensity
IA(x, y) as input, and with effective intensity IE(x, y) (after scattering) as output:

ĨE(ν.µ) = ĨA(ν, µ)F̃P (ν, µ); (34.11)

Typically, F̃p(ν, µ) = 1

1+ ν2+µ2

ν2
P

.

Now let us investigate how the photographic transfer function F̃P (often in the literature
abbreviated as MTF, modulation transfer function) influences the flow of data from object to
reconstructed image. We assume linear development.

34.6.1 Image holography

Recording the aerial intensity:

IA(x, y) = |u0(x, y) + e−2πixνR |2 ≈ 1 + u0e
+ + u∗0e

− (34.12)

The effective intensity is:

IE = IA ⊗ Fp; or ĨE = ĨA · F̃p (34.13)
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ĨA(ν, µ) =

∫∫
IA(x, y)e−2πi(xν+yµ)dx dy = (34.14)

= δ(ν, µ) + ũ0(ν − νR, µ) + ũ∗(−ν − νR, µ) +

+

∫∫
ũ0(ν

′, µ′)ũ∗(ν′ − ν, µ′ − µ)dν′ dµ′︸ ︷︷ ︸
intramodulation

F̃p(ν, µ) =
1

1 + ν2+µ2

ν2
P

; F̃p(0, 0) = 1; F̃p ≥ 1

2
within ν2 + µ2 ≤ ν2

p (34.15)

Figure 34.10: Reconstruction plane of an image hologram

In reconstruction, if everything else goes well, the true image will have a spectrum

ũ0(ν − νR, µ)F̃p(ν, µ) = ṽT (ν, µ) (34.16)

vT (x, y) =

∫∫
ṽT (ν, µ)e2πi(xν+yµ)dν dµ =

=

∫∫
ũ0(ν − νR, µ)F̃p(ν, µ)e2πi(xν+yµ)dν dµ

= e2πixνR︸ ︷︷ ︸
unimportant
phase factor

∫∫
ũ0(ν, µ)F̃p(ν + νR, µ)e2πi(xν+yµ)dν dµ
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The object spectrum ũ0(ν, µ) will be reduced most severely by F̃p(ν + νR, µ) at ν =

+∆ν0

2 , µ = 0, that is on its right edge. We demand for this worst case as tolerance F̃p(
∆ν0

2 +

νR, 0) ≥ 1
2 ; → ∆ν0

2 + |νR| ≤ νp. The most economical use of the “photographic bandwidth
circle” above is when the frequencies of the true (virtual) image ũ0(ν − νR, µ) are as close as
possible to the intramodulation region, which occurs if νR = 3

∆νobj

2 . If the intramodulation
term is neglibly small, one might go to an even smaller reference frequency νR = ∆ν0

2 . The
photographic bandwidth frequency has to be νp = 2∆ν0, or νp ≥ ∆ν0, respectively.

Remember, overlap of the various terms, which are graphically presented in Fig. 34.10,
has to be avoided, because the contents of that figure is actually displayed in the Fourier
plane of the image-hologram-reconstruction-plane, where a proper mask eliminates all but the
true term, or all but the conjugate term. This can be done only if the various terms do not
overlap. The setup in question is shown in Fig. 32.28 and in Fig. 32.31. In summary, the
photographic MTF, which changes IA into TE (intensities), acts like a filter function F̃p(ν +
νR, µ) for the complex amplitudes u0 → vT . In this sense image holography is a system that
is linear in complex amplitude.

34.6.2 Fourier holography

Using the obvious notation the theory of the recording process can be presented very briefly:

u0(x, y) + δ(x − xR, y) −→ ũ0

(
x

λf
,
y

λf

)
+ e−2πi

xxR
λf (34.17)

−→ IA(x, y) = |ũ0 + e−|2 = 1 + ũ0e
+ + ũ∗0e

− + |ũ0|2
IE(x, y) = IA ⊗ Fp

Again we replace this convolution integral by its Fourier-reciprocal equivalent counterpart,
which is simply a multiplication ĨE(ν, µ) = ĨA(ν, µ)F̃p(ν, µ). Now we have to be alert
that we do not get confused by the various Fourier operations. During recording the object
u0(x, y) has been Fourier transformed by a lens into the plane of the Fourier hologram where

ũ0

(
x

λf ,
y

λf

)
is displayed. Next we calculate the spatial frequency spectrum ĨA(ν, µ) of the

aerial intensity in the hologram plane IA(x, y) = |ũ0

(
x

λf ,
y

λf

)
+ e−2πi

xxR
λf |2. We do this

in order to be able to take into account the influence of the light scattering in the emulsion
by multiplying ĨA · F̃p = ĨE . From there we go back by another Fourier transform to the
effective intensity IE . After linear development the effective intensity IE is represented by
the amplitude transmittance vH of the hologram. Yet another Fourier transform describes the
influence of the lens used in reconstruction. Now the formulas:

ĨA(ν, µ) = δ(ν, µ) + u0(xR − λfν,−λfµ) + u∗0(xR + λfν, λfµ) + (34.18)

+

∫∫
u0(x

′, y′)u∗0(x
′ − x, y′ − y)dx′ dy′
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ĨE(ν, µ) = ĨA(ν, µ)F̃p(ν, µ) (34.19)

IE(x, y) =

∫∫
ĨE(ν, µ)e2πi(xν+yµ)dν dµ

vH(x, y) = IE(x, y) (linear development)

Figure 34.11: Reconstruction plane of a Fourier hologram.

Reconstruction:

∫∫
vH(x′, y′)e−2πi (xx′+yy′)

λf dx′ dy′ (34.20)

=

∫∫ {∫∫
ĨE(ν.µ)e2πi(νx′+µy′)dν dµ

}
e−2πi xx′+yy′

λf dx′ dy′

= ĨE

(
x

λf
,
y

λf

)
= ĨA

(
x

λf
,
y

λf

)
F̃p

(
x

λf
,
y

λf

)
=

= F̃p

(
x

λf
,
y

λf

)
︸ ︷︷ ︸

photographic MTF, acting
like a greyish mask in the
final image plane

·

δ
(
x

λf
,
y

λf

)
︸ ︷︷ ︸

direct

+ u0(xR − x,−y)︸ ︷︷ ︸
true

+

+ u∗0(xR + x, y)︸ ︷︷ ︸
conjugate

+

∫∫
u0u

∗
0dx

′ dy′︸ ︷︷ ︸
intramodulation
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Assume u0(x, y) �= 0 only in |x| ≤ ∆x0

2 ; |y| ≤ ∆y0

2 . In the final image plane of the
reconstruction setup we have the display shown in Fig. 34.11. Result: in Fourier holography
the photographic MTF does not influence the resolution (or in better language, the spatial
spectrum of the reconstructed images) but it limits the image field size to x2 + y2 ≤ (λfνp)

2.
The worst case is at x = xR + ∆x0

2 ; y = ∆y0

2 .

34.6.3 Fresnel hologram

In Fresnel holography, which in all its properties lies in between image holography and Fourier
holography, both results from the image and from the Fourier cases are gradually true. In
practice Fresnel holography tends usually to the Fourier case because the corresponding di-
mensions are more in fashion. We will not pursue Fresnel holography now, but will introduce
first the concept of “Space-Bandwidth Product”, which is a very simple and quick tool for
understanding many things qualitatively.



35 The Space-Bandwidth-Product SW

On the following pages a report about the SW is reproduced. On the first five pages the gen-
eral properties are outlined, at first by analogy to the better known Time-Bandwidth Product.
On page 5 in Fig. 2 a case of a space-variant SW is sketched, which is no longer a rectan-
gle with axis-parallel edges. Any deviations from such a rectangle indicate space-variance,
because then, obviously, the frequency spread in νx is not the same for all locations x. On
the other hand, a piece of photographic material will always have a rectangular SW, with
axis-parallel edges. This will become important later, when the SW concept is applied to
Fresnel-holography. Before that, on p. 6 - 7, some SW-generalizations are briefly mentioned.
The pages 8 - 14 are not important in this context since they deal with coherence in holog-
raphy. However from p. 15 on the information storage capacity of holograms is discussed in
terms of SW. It turns out that a hologram has no more SW than the same piece of film used
for ordinary image recording.
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