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ilchmann@mathematik.tu-ilmenau.de

Abstract: The development of the algebraic theory of time-varying linear systems
is described. The class of systems considered consists of differential-algebraic
equation in kernel presentation. This class encompasses time-varying state space,
descriptor systems as well as Rosenbrock systems, and time-invariant systems in
the behavioural approach.
One difference between time-varying and time-invariant systems is that, since the
coefficients of the differential equations are time-varying function, the differential
operator does not commute with the coefficients. However, the main difficulty is
that solutions may exhibit a finite escape time. Hence there is a conflict between
the class of time-varying coefficients and the class of admissible solution spaces.
All contributions to time-varying systems have to cope with this.
As an efficient tool in linear, time-invariant system theory, Kalman introduced in
the 1960s elementary module theory over principal ideal rings. This tool proved
efficient also for time-varying systems. Although from then on, the field of time-
varying linear systems has never been a “hot topic” in systems theory, there
has been an ongoing evolution which led to a rather substantial theory. Not
surprisingly, the theory is mainly restricted to linear systems and most results
are on such properties as controllability, and not on stability. Recent results use
successfully tools from module theory and homological algebra.
Copyright c©2005 IFAC.
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1. INTRODUCTION

1.1 An algebraic approach and solution spaces

Consider linear time-varying systems described by
differential-algebraic equations of the form

R( d
dt )w =

n
∑

i=0

Ri(t)w
(i)(t) = 0, (1)

where

R(D) =

n
∑

i=0

RiD
i ∈ R[D]

g×q ∼= Rg×q[D]

is a polynomial matrix in the indeterminate D
with coefficient matrices Ri over a certain ring
or field R of time-varying functions, defined on
an interval I ⊂ R. The solution w belongs to a
“suitable” solution space.

The polynomial ring R[D] is endowed with the
multiplication rule

Df = fD + ḟ . (2)

This is a consequence of assuming the associative
rule (Df)g = D(fg) for all differentiable functions
f, g which yields (Df)(g) = d

dtf · g + f · d
dtg =



(

d
dtf + fD

)

(g). The non-commutativity of the
elements of R[D], in contrast to the commutative
ring R[D] in the time-invariant case, is a consid-
erable but not crucial difference. In the following
we carefully distinguish between the algebraic in-
determinate D and the differential operator d

dt .

For R(D) ∈ R[D]
g×q

and a solution space of time-
varying functionsW we study the behaviour given
by the kernel representation

ker R =
{

w ∈ W
∣

∣ R( d
dτ )w(·) = 0

}

.

In analysing ker R, we have to cope with two
basic difficulties: First, how can the system theo-
retic properties of the algebraic-differential system
ker R, i.e. its behaviour, be described? Secondly,
how is the algebraic object, i.e. the ring R[D],
related to the analytic object, namely the solution
space W? For the answer of both questions the
interplay between the coefficient ring R and the
solution space W is fundamental. Loosely speak-
ing, the more general the solution space is (e.g.
distributions or even Sato’s hyperfunctions), the
more general the ring R is allowed. This is the
essential difficulty for time-varying systems.

In Subsection 1.2 we present several subclasses of
systems encompassing (1). In Subsection 1.3 we
show that even if R = R[D] the solution space
exhibits some surprises.

The following sets will be used for the ring R or
for candidates of solution spaces in the following.

CN (M,Rq) the set of N -times differentiable
functions f : M → Rq, M ⊂ R

an open set, N ∈ N ∪ {∞}
C∞pw(R

q) the set of piecewise C∞-functions
f : R \ T → Rq, T ⊂ R discrete

C∞t (Rq) the set of locally C∞-functions
around t ∈ R, i.e. functions w ∈
C∞(I,Rq) for I ⊂ R an open
interval with t ∈ I

A the ring of real analytic functions

M the quotient field of A, i.e.
the field of real meromorphic
functions

D′(I,R) the set of real valued distribu-
tions on I ⊂ R an open interval

1.2 Examples of system classes

Consider the following subclasses of systems of
(1).

(a) Time-varying descriptor systems of the form

E(t) d
dtx(t) = A(t)x(t) + B(t)u(t),

y(t) = C(t)x(t) + F (t)u(t),
(3)

with matrices E,A,B,C, F of appropriate
dimension and defined over a ring of time-
varying functions. If E(·) ≡ In, then (3)
describes a state space system; this is fairly
standard, see for example the standard mono-
graph (Rugh, 1996). However, if E is sin-
gular, then even for time-invariant matrices
E,A,B,C, F the system (3) does not allow to
speak of inputs, outputs, and states. To see
this consider the variables x1, . . . , x4, u1, u2

of the descriptor system (3) with

E =









0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0









, A =









1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0









, B =









0 0
1 0
0 1
0 0









,

C =
[

0 0 0 1
]

, F = 01×2 .

Then an equivalent description is

u2 = 0, ẋ2 = x1, y = x4, ẋ3 = x2 + u1 ,

and therefore u2 is constrained to be 0 and
cannot be freely chosen, as it could in the
case of state space systems. The variables
x1 and x4 can be viewed as input or state
variables, the system description does not
determine this. Note also that if we chose the
input u1 as a step function, then we would
have to enlarge our solution space in order
to allow that x1 is a delta distribution. But
even if we do so, then we have the problem
that x1 is not observable from the output
y. This observation stresses to analyse (3)
and in particular (1) from the behavioural
viewpoint, where state-, output-, and input-
variables are not distinguished.

(b) In (Ilchmann et al., 1984) time-varying poly-
nomial systems of the form

P ( d
dt ) z(t) = Q( d

dt )u(t),

y(t) = V ( d
dt ) z(t) + W ( d

dt )u(t),
(4)

where P (D), Q(D), V (D) and W (D) are
matrices of size r × r, r × m, p × r, p × m,
respectively, over M[D] are studied under
the following assumptions:

(i) P (D) represents a so called full operator,
i.e. if z is a real analytic solution of
P ( d

dt )z = 0 on some interval I ⊂ R,
then this solution can be analytically
extended to the whole of R.

(ii) For every u ∈ C∞(R,Rm) with bounded
support to the left, there exist some z ∈
C∞(R,Rr) and y ∈ C∞(R,Rp) so that
(4) is satisfied.

Time-invariant polynomial systems, also called
Rosenbrock systems, of the form (4), i.e.
P (D), Q(D), V (D) and W (D) are matrices
over R[D] and detP (·) 6= 0, were introduced
in (Rosenbrock, 1970), and are well stud-



ied, see for example (Hinrichsen and Prätzel-
Wolters, 1980; Wolovich, 1974).

(c) Time-invariant polynomial systems in the so
called kernel representation kerR have been
introduced by Willems in (Willems, 1981);
see also (Willems, 1986a; Willems, 1986b;
Willems, 1987) and the textbook (Polderman
and Willems, 1998).

1.3 Examples of time-varying scalar differential

equations

To understand a fundamental difference between
time-varying and time-invariant linear differen-
tial equations consider the following examples for
scalar r(D) ∈ R[D] and the ring of polynomials
R = R[t].

(i) Let r(D) = tD + 1 . Then the function
t 7→ w(t) = t−1 is a meromorphic solution
of r( d

dt )w = t d
dtw + w = 0. The point 0 is

the only zero of the leading coefficient t 7→ t
of r(D), and 0 is also a pole of t 7→ w(t).
Therefore, for every open interval I ⊂ R with
0 6∈ I,

dim kerM r( d
dt ) = dim kerA|

I

r( d
dt )

= dim kerD′(I,R) r( d
dt )

= 1 = deg r(D).

For the meromorphic solution space, its di-
mension equals the degree of r(D). This is
not true in general as illustrated by the
following Example (ii). However, it can be
shown that there exists a distribution W ∈
D′(R,R) such that W coincides with the reg-
ular distribution generated by w on R \ {0}
for all test functions with support excluding
{0} or, more formally,

kerA r( d
dt ) = kerC∞(R,R) r( d

dt )

= {0} ( kerD′(R,R) r( d
dt ) .

(ii) Let r(D) = t2D + 1 . The function t 7→
w(t) = e1/t solves r( d

dt )w = 0. The point 0 is
again the only zero of the leading coefficient
t 7→ t2 of r(D), and 0 is also a pole of
t 7→ w(t). But w is not meromorphic and
the singularity at t = 0 differs from (i) as
follows: no matter whether the solution w in
(i) approaches 0 from the left or right, the
limit at t = 0 does not exist; whereas, for the
solution w in the present example, we have
limt→0− w(t) = 0 and limt→0+ w(t) = ∞ .
Hence,

kerM r( d
dt ) = {0}.

For every open interval I ⊂ R with 0 6∈ I we
have

dim kerM|
I

r( d
dt ) = 1 = deg r(D).

(iii) Let r(D) = tD−1 . The function t 7→ w(t) =
t solves r( d

dt )w = 0 and

dim kerA r( d
dt ) = 1 = deg r(D).

Note that again the point t = 0 is the
only zero of the leading coefficient t 7→ t of
r(D), but this time the zero does not produce
a pole of the solution, the solution w is
even a real analytic function on R. However,
the solution is not as arbitrary as for time-
invariant systems, since w(0) = 0 is the only
value at t = 0.

(iv) Let r(D) = 2tD − 1 . The functions t 7→
w+(t) =

√
t and t 7→ w−(t) =

√
−t solve

r( d
dt )w = 0 on (0,∞), (−∞, 0), respectively.

For every open interval I ⊂ R with 0 6∈ I, we
have

dim kerA|
I

r( d
dt ) = 1 = deg r(D).

However,

kerM r( d
dt ) = {0}.

The real analytic solution w+ on (0,∞) can-
not be continued to (−ε,∞) for any ε > 0.

(v) Consider r(D) = (1 − t2)2 D + 2 t . The
function

t 7→ w(t) =

{

e−(1−t2)−1

, t ∈ (−1, 1)
0, t ∈ R \ (−1, 1)

satisfies w ∈ kerC∞ r( d
dt ), is not real analytic

and has compact support. This is impossible
for time-invariant, scalar, inhomogeneous dif-
ferential equations.

(vi) Let r(D) = t3D + 1 . Then the function
t 7→ w(t) = exp{1/2t2} solves r( d

dt )w = 0
on every open interval I ⊂ R with 0 6∈ I.
However, in contrast to Example (i), it may
be shown that

kerA r( d
dt ) = {0} = kerD′(R,R) r( d

dt ).

In other words, there does not exist any
distribution in D′(R,R) which coincides with
the regular distribution generated by w on
R \ {0} for all test functions with support
excluding {0}. 2

The above examples may give an impression of the
different kind of problems already introduced by
scalar differential equations with real polynomials
as coefficients.

2. SYSTEM THEORETIC CONCEPTS

Since solutions of R( d
dt )w(·) = 0 may even in

the scalar case exhibit a finite escape time, see
the examples in Sub-section 1.3, system theoretic
concepts are defined locally.



Let R(D) ∈ R[D]
g×q

and Wt be a set of time-
varying functions defined in an open neighbour-
hood around t ∈ R, of sufficient smoothness,
and of appropriate dimension. Then the local be-
haviour at t ∈ R is

kert R =
{

w ∈ Wt

∣

∣R( d
dτ )w(·) = 0

}

.

Local controllability is now defined as a property
of local solutions respectively trajectories.

Definition 1. For R(D) ∈ R[D]g×q, the local
behaviour kert R is called locally controllable at

t ∈ R if, and only if, for every w1, w2 ∈ kert R
and every t0 ∈ (−∞, t) ∩ dom w1 there exist
t1 ∈ dom w2 ∩ (t,∞) and w ∈ kert R such that

w(t) =

{

w1(t), t ∈ (−∞, t0] ∩ dom w1

w2(t), t ∈ [t1,∞) ∩ dom w2.

t1t0 t

w
1

w

w
2

1

Fig. 1. Local controllability at t

2

Loosely speaking, controllability means that any
two trajectories w1, w2 ∈ kert R can be connected
by another trajectory w ∈ kert R so that in finite
time w1 moves via w into w2. A similar notion of
controllability via trajectories was introduced in
(Hinrichsen and Prätzel-Wolters, 1980) for time-
invariant Rosenbrock systems with of the form
(4). For time-invariant systems of the form (1),
the concept of controllability coincides with the
one introduced by Willems (Willems, 1981), see
also (Polderman and Willems, 1998, Sect. 5.2).

Definition 2. Let [R1(D), R2(D)] ∈ R[D]g×(q1+q2)

and t ∈ R. Then w2 ∈ C∞t (Rq2) is called locally

observable at t ∈ R from w1 ∈ C∞t (Rq1) for t ∈ R

if, and only if,
[

w1

w2

]

,

[

w1

w̃2

]

∈ kert[R1, R2]

implies that

∀ τ ∈ dom w2 ∩ dom w̃2 : w2(τ) = w̃2(τ) .

2

It can be shown that, under suitable assumptions,
the concepts of local controllability and observ-
ability are adjoint as for time-invariant systems.

The generalization of autonomous sub-behaviour,
see for example (Polderman and Willems, 1998,
p. 67) for time-invariant systems, is given as
follows.

Definition 3. Let R(D) ∈ R[D]g×q and t ∈ R.
A local sub-behaviour Bt ⊂ kertR is called
autonomous if, and only if, for any w1, w2 ∈ Bt

with w1 ≡ w2 on some open interval I ⊂ dom w1∩
dom w2 with t ∈ I it follows that w1 ≡ w2 on
dom w1 ∩ dom w2. 2

3. EARLY ALGEBRAIC CONTRIBUTIONS

As an efficient tool in linear, time-invariant system
theory, (Kalman et al., 1969) used elementary
module theory over principal ideal rings. These
tools have also been applied to time-varying sys-
tems. An early algebraic contribution on time-
varying systems of the form (4) with V ≡ 0 and
W ≡ 0 is given by (Ylinen, 1975). The ring R
is a certain ring of endomorphisms. Results on
minimal transfer matrices, minimal realization,
interconnection and observability are achieved.
However, the system class is rather restrictive.
In later contribution, (Ylinen, 1980) assumes that
the ring R is a subring of C∞(I,Rq), it must not
contain zero divisors of C∞(I,Rq), and [P,Q] must
be row equivalent to a matrix in upper triangular
form with coefficients in R and monic diagonal
elements. In this set-up, it can be shown that
a polynomial matrix over the ring R can only
be transformed in this normal form if any local
behaviour is a global behaviour. Controllability is
treated and characterized in terms of coprimeness
of P and Q in (4).

In (Kamen, 1976) the ring R is assumed to
be Noetherian. Under this hypothesis, a state
space realization of (4) with monic P can be
constructed. The Noether conditiion seems to be
rather restrictive , see examples given in (Kamen,
1976). The ring of real analytic function is not
Noetherian.

4. AN ALGEBRAIC APPROACH

In (Fliess, 1990) matrices over the ring of linear
differential operators R[D] is considered, where
R denotes a differential field. Linear dynamics are
finitely generated left R[D]-modules. The dynam-
ics are proved to be controllable if, and only if,
they are a free left R[D]-module. Observability
and its duality to controllability is also shown.



This contribution is merely on the algebraic side,
the solution space is not specified.
In the same set-up with R specified to be the
quotient field M of real meromorphic functions,
(Fliess et al., 1993) investigate descriptor systems
of the form (3). Under a similar assumption as
in Sub-section 1.2 (b)(ii), the index of a transfer
function is investigated.
In (Rudolph, 1996) contributions to duality of sys-
tems in the set-up of (Fliess, 1990) for systems in
generalized state space representation are given,
however the solution space is not specified either.

An important contribution by (Fröhler and Oberst,
1998) has the following background:
In Example (i) and (vi) in Sub-section 1.3 we
have seen that even if the coefficients of R[D] are
simple polynomials in t, not every solution exists
on the whole of R and, more importantly, even if
distributions on R are allowed as solutions, then
not every local solution can be extended to such
a distribution. Hence enlarging the solution space
to allow for distributions on R does not necessar-
ily resolve the problem, even in the simple case
when the coefficients of the time-varying systems
are polynomials. However, if the solution space
is enlarged even further to allow for Sato’s hyper-
functions, i.e. generalized distributions introduced
in (Sato, 1960), then (Fröhler and Oberst, 1998)
do present a nice theory. They consider systems of
the form (1) respectively behaviour in the kernel
representation kerR, where the coefficient ma-
trices of the polynomial R(D) are defined over
rational analytic functions

f(·)
g(·) for f, g ∈ C[t] with g(t) 6= 0 for all t ∈ I.

Note that by multiplication with a least com-
mon multiple of all denominators of the coeffi-
cients, the coefficients of R(D) are polynomials.
Based on the seminal paper of extensive length
by (Oberst, 1990), where an algebraic analytic ap-
proach is developed to show a categorical duality
between the solution spaces of linear partial dif-
ferential equations with constant coefficients and
certain polynomial modules associated to them, a
generalization to time-varying but ordinary dif-
ferential equations is achieved by (Fröhler and
Oberst, 1998). However, if the set of coefficients of
R[D] is enlarged to real analytic coefficients and
not only polynomials in t, then their result does
not hold true in general.

5. THE RING M[D]

The skew polynomial ring M[D] has been in-
troduced by (Ilchmann et al., 1984) to describe
time-varying linear systems of the form (4). This
ring does not contain any zero divisors, is simple
(in the sense that the only two sided ideals are

the trivial once), and it admits right- and left-
Euclidian division. Therefore the following Te-
ichmüller-Nakayama normal form can be achieved
for matrices over M[D].

Theorem 4. (Teichmüller-Nakayama normal form)
Any R(D) ∈ M[D]g×q with rkM[D]R(D) = l can
be factorized into

R(D) = U(D)−1





Il−1 0 0
0 r(D) 0
0 0 0(g−l)×(q−l)



V (D)−1

where U(D) and V (D) are M[D]-unimodular
matrices of sizes g and q, respectively, and r(D) ∈
M[D] is non-zero, unique up to similarity, and of
unique degree.

A proof and an interesting historical description
of the development of the above normal form can
be found in (Cohn, 1971, Ch. 8). Two elements
q1, q2 ∈ M[D] are similar if, and only if, q1a =
bq2 for some a, b ∈ M[D] for which q1 and b
(q2 and a) are left (right) coprime. For example,
a(D) = D and b(D) = D − 1/t are similar:
[D + (t2 − 1)/t]a(D) = b(D) [D + t] and D +
(t2−1)/t, b(D) are right coprime, a(D), D+ t are
left coprime. Moreover, this example shows that
a unique factorisation of the ring elements cannot
be expected. However, (Ore, 1933) shows that the
degree of similar polynomials coincide. The latter
property is crucial for determining dimensions of
solution spaces.

The Teichmüller-Nakayama normal form is the
essential tool in (Ilchmann et al., 1984) to study
time-varying Rosenbrock systems of the form (4).
The solution space is the set of C∞-functions on
the whole time axis, but this is ensured by the as-
sumption that imQ( d

dt ) ⊂ imP ( d
dt ) and, most im-

portantly, that P (D) is a “full” operator, i.e. every
local analytic solution of P ( d

dt )z = 0 is extendable
to a global analytic solution on the whole of R.
Controllability and observability are characterized
in terms of coprimeness of matrices. In the same
set-up, (Ilchmann, 1985) and (Ilchmann, 1989)
derive results on indices (controllability, minimal,
geometric, dynamical) and give a complete set of
invariants to characterize system equivalence. The
system class do encompass state space systems,
however the hypothesis of full generators is a
rather restrictive assumption.

To overcome this assumption, in (Ilchmann et

al., 2000) a first approach in the spirit of the
present paper is presented for scalar systems. This
approach is developed in detail in (?). Since the
zeros and poles of real meromorphic function is
a discrete subset of R, this carries over the set of
points in R where the elements of kerR may have
a finite escape time. Therefore, an almost global
theory is developed. Again, the main tool is the



Teichmüller-Nakayama normal form. It is shown
that kerR is controllable almost everywhere, i.e.
kert R is locally controllable for almost all t ∈ R,
if, and only if, R(D) is right invertible; which is
also equivalent to having an image representation,
i.e. there exists M(D) ∈ M[D]q×m such that, for
almost all t ∈ R,

imt M := {w ∈ C∞t (Rq)‖ ∃ l ∈ C∞t (Rm) : ∀ τ ∈
dom w ∩ dom l : w(τ) = M( d

dt ) l(τ)}.
For [R1(D), R2(D)] ∈ R[D]g×(q1+q2) associated

to

[

w1

w̃2

]

∈ ker[R1, R2], it is shown that w2 is

observable from w1, i.e. w2 ∈ C∞t (Rq2) is locally
observable from w1 ∈ C∞t (Rq1) for almost all
t ∈ R, if, and only if, R2 is left invertible.
Furthermore, it is shown that the behaviour can
be written as the direct sum of the controllable
behaviour an an arbitrary maximal autonomous
behaviour.

6. THE ALGEBRAIC APPROACH
REVISITED

Based on the findings in (?), a much more elegant
algebraic approach in the spirit of (Fröhler and
Oberst, 1998) has been developed by (Zerz, 2005).
The main tool is again the Teichmüller-Nakayama
normal form and kerR is considered as a subset
of C∞pw(R

q) for R(D) ∈ M[D]
g×q

. The main re-
sult is that the left M[D]–module C∞pw(R

q) is an
injective cogenerator. Once this result has been
established, system theoretic consequences follow:
the characterization of equivalence of behaviours;
a relationship between kernel and image represen-
tation; a characterization of autonomy of kerR
in terms of the rank of R(D) and in terms of a
module to be torsion; the characterization of the
possibility of an image representation in terms of
freeness of a module, and more.

7. DESCRIPTOR SYSTEMS

A completely different approach results from the
study of differential-algebraic equations intro-
duced in (Brenan et al., 1996; Griepentrog and
März, 1986). A general solvability theory for non-
square linear time-varying systems was first given
in (Kunkel and Mehrmann, 1993) and analysed
for control problems in a behavioural context in
(Byers et al., 1997; Kunkel et al., 2001; Rath,
1997), see also (Kunkel and Mehrmann, 2001) for
the general nonlinear case.

In (Campbell et al., 1991) controllability and ob-
servability have been studied in terms of deriva-
tive arrays, see also (Dai, 1989). In (Byers et al.,

1997) a first behaviour like approach to systems
(3) with analytic coefficients has been discussed.
A more general approach that allows for larger
classes of coefficients and that can be implemented
also numerically has been introduced in (Kunkel
et al., 2001) and generalized partially to the non-
linear case in (Kunkel and Mehrmann, 2001).
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