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Abstract: In August 2003 the computer program GRAFFITI made conjecture 1001 gating that for
any benzenoid grgph, the sSze of a maximum matching equas the number of podtive egenvaues.
Later, the authors learned that this conjecture was dready known in 1982 to |. Gutman
(Kraguievac). Here we present a proof of this conjecture and of a related theorem. The results are of
some relevance in the theory of (unsaturated) polycyclic hydrocarbons.
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1 Introduction
1.1 Theresults

All grgphs G congdered in this paper are undirected and finite, loops and multiple edges do not
occur. The number of vertices of G isdenoted by n.

Two vertices are adjacent iff they are connected by an edge; two edges are adjacent iff they
have an end vertex in common.

A st of vertices, or edges, is called independent (or stable) iff its dements are pairwise
nonadjacent.

a isthe maximum number of pairwise nonadjacent vertices of G, often cdled the vertex
independence (or vertex stability) number of G.



b isthe maximum number of pairwise nonadjacent edges of G, often cdled the edge
independence (or edge stability) number of G.

p andn arethe numbersof postive and negative eigenvaues of G, respectively (eigenvalues
are counted regarding their multiplicities; for precise definitions see Section 1.2).

z isthemultipliaty of the egenvadue zero of G. Inachemica context, this number is often
denoted bynh , and it is congdered an indicator of ingtability of benzenoid molecules.

In generd, there are no relations between b and p : b may belarger than, equa to, or
amdlerthan p (see Section 1.4, Table 1 and Figure 4). However, the Situation changesif G is
restricted to the class of bipartite graphs, and even more so if G belongs to the subclass of
hexagona systems (benzenoid graphs). The aim of this paper is to prove the following
propositions.

Theorem 1.

(i) The number of positive (negative) eigenvalues of a bipartite graph B is not greater than the
maximum number of pairwise nonadjacent edges contained in B, briefly:

p(B)=n(B)£b(B)
(i) For a hexagonal systemH, p(H)=n(H)=b(H)
For bipartite graphs the number n  of negative eigenvalues equas the number p of postive
eigenvalues, see Section 2, Theorem A, Observation 2.

Theorem 2.
(i’ ) The minimum of the numbers of nonnegative eigenvalues and of nonpositive eigenval ues of any
graph G isnot smaller than the maximum number of pairwise nonadjacent vertices contained in G;
briefly:

min{ p(G)n(G)}+2(G)* a(G).
(i") For ahexagonal systemH, p(H)+z(H)=n(H)+z(H)=a(H).

Part (") of Theorem 2 is Cvetkovic' theorem* (see also Inequalities obtained on the basis of the

spectrum of the graph # and the monograph Spectra of graphs®, Theorem 3.14) who proved it in
1971 using Cauchy's interlacing theorem.

Corollary to Theorems 1 and 2.

a
(i) For ahexagonal systemH, z (H)=a(H)- b(H).



Part (ii ) of Theorem 1 is of some sgnificance for the chemistry of polycyclic hydrocarbons: b
isa(structurd) parameter of Kekul€ smodel (resonance theory) counting double bonds whereas p
isan (andyticd) parameter of Hiicke’s modd (smple molecular orbitd theory) counting bonding
energy levels of ddlocaized dectrons. Thusthe equation b =p once more confirms the close
relationship between these two models.

For the discussion of some of |. Gutman’swork that is closely related to our investigations see
Section 5.

1.2 Some mor e definitions

Let G be agraph with vertex set {v,,v,,...,v.} and let

11 if v, and v; are adjacent

aij =1 .
710 otherwise.

121 Themarix A= AG) = (a, ) isthe adjacency matrix of G.

If every vertex of graph G’ isdso avertex of G, and if two verticesof G” areadjacent in G’ if
and only if they are adjacent in G, then G’ isan induced subgraph of G. Note that the adjacency
matrix A’ of G’ isaprincipal minor of the adjacency matrix A of G; conversdly, every principd
minor A of A determines an induced subgraph G’ of G.

The characteristic polynomial fG(x) of G isthe characterigtic polynomia of the adjacency
matrix of G: fo(x)=det(xl - A) (Fig.1). Andogoudy we define the eigenval ues and the

spectrumof G.
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Figure 1: Graph G with adjacency matrix A and characteristic polynomial fg(z)

1.2.2 A dumbbell conssts of two digtinct vertices and an edge joining them. A matching isaset of
pairwise digoint dumbbells, its size is the number of dumbbells (or edges) it contains. A vertex v is

covered by matching M iff v belongs to some dumbbell of M ( Fig. 2). A matching of G is perfect

iff it coversdl vertices of G.



The 9ze of amaximum matching of G is often caled the matching number and denoted by
m=m(G); notethat m(G) = b (G). For a comprehensive monograph on matching theory the
reader is referred to the work of L. Lovasz and M.D. Plummer * (1986).
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A hexagonal system
Figure 2

1.2.3 A hexagonal system (dso cdled polyhex, honeycomb, benzenoid graph, ...) isafinite
connected plane graph H that can be drawn such that
- dl of itsfinite faces are regular hexagons of equd Sze,
- its boundary (that is the boundary of the infinite face) is atopologica circuit (Fig. 2).

Note that a hexagona system is 2-connected, every vertex on its boundary has valency 2 or 3,
every interior vertex has valency 3.

In addition, we shall assume that some of the edges are perpendicular to a given straight line
which is consdered horizonta: with respect to this picture, we will freely use the concepts “up”,



“down”; “high”, “low”; “top”, “bottom”; etc. . A monotone path is dways consdered decreasing,
I.e. running down, from top to bottom (Fig. 2). As each hexagona system is bipartite, we will
assume its vertices to be coloured black and white such that every edge connects ablack vertex
with awhite one and, in addition, that the highest vertices of dl finite faces are white (and the

lowest are
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black). The locdly highest [lowest] vertices of the graph H are called its peaks [valleys]; the peaks
and vdleys are the extremal verticesof H (Fig. 2).

A dightly more generd concept isthat of atopological hexagonal system: thisis afinite two-
connected plane graph whose finite faces are (topologica) hexagons, whose vertices on the
boundary circuit C of the infinite face have vaencies 2 or 3, and whose verticesin the interior of C
have vaency 3. Such agraph can aways be drawn on a suitably chosen Riemann surface such that
the finite faces are redlized by regular plane (schlicht) hexagons of equal size. A topologica
hexagond system that cannot be redlized this way in the plane (without overlapping) has
sometimes been caled a helicene graph (Fig. 3).

1.3 A remark on possible extensions
Part (ii) of Theorem 1 can easily be extended to alarger class of bipartite plane graphsincluding,
in particular, the class of helicene graphs. However, for the sake of amplicity, we shall here redtrict

our condderations to the class of hexagond systems as defined above.

1.4 Some simple examples

1) The spectrum of adircuit on n vertices consists of the numbers 2cos (2p »n/n) ,n =12,...,n,

(Spectraof Graphs®, p.72). For circuitsthe numbers m=b and p can be taken from Table 1.

n a=b=m p
4k 2k 2k-1
4k +1 2k 2k+1

4k +2 2k+1 2k+1
4k +3 2k+1 2k+1

Table1
2) Thegraphsof Fig. 4bothhavep =3, b =m=4.

a=2>5 a=4

Figure 4



2 Preparation of the Proofs

We recdl some known results and formulate a Lemma.

Theorem A ligts some well-known genera properties of bipartite graphs (see, e.g., Soectra of
Graphs®, p.87).

Theorem A. Let B denote a bipartite graph on n vertices.

Observation 1.
fo(x)=x"+ax" +.--+a,
:Xn_ bzxn—2+b4xn—4_ +...
wherea, =a, =a, =---=0and b, =(- 1)'a, 3 0 {;a?:l,Z,...,?Egg.
e &2ty

Observation 2. The collection of eigenvalues of B, which are all real, is symmetric with respect to
the zero point of thereal axis.
Observation 3. If n =2k then
a, =(- )b, = f4(0)
=det ABB)=(- 2)“(O1 )?

where the product is taken over all non-negative eigenvalues of B.

The following theorem is a specia case of aresult obtained by D.M. Cvetkovic, . Gutman and N.
Tringdtic in 1974 (Graph theory and molecular orbitals, VII. The role of resonance structures °;
see Spectra of Graphs®, Theorem 8.13 on page 243; see also H. Sachs®); it dso follows from a
genera theorem due to P.W. Kastdleyn (Dimer statistics and phase transition’ (1963)); see dso

Kagteleyn's survey aticle® (1967). Orginally formulated for connected graphs, the theorem
immediately extends to non-connected graphs, too.

Theorem B. Let G be a plane graph on n vertices all of whose finite faces are hexagons. Then G is
bipartite and the number of perfect matchings of G is equal to the product of all non-negative
eigenvalues of G.

Coradllary. If G has a perfect matching then

For the next theorem (the “ coefficients theorem”, H. Sachs®and L. Spiater*°(1964); see Spectra
of Graphs®, Theorem 1.3 on page 32) we need another concept.



A basic figure U of agraphisa(not necessarily induced) subgraph that has only circuits and
dumbbells as its components (Fig. 5). Let q(U ) and c(U ) denote the number of componentsof U ,
and the number of circuits among these components, respectively.

Figure 5: A graph G with one of its basic figures U where q(U) =4, ¢(U) = 2.
Theorem C. Let G be an arbitrary graph with characteristic polynomial
fo(x)=x"+c X"+ +c,.
Then
¢ =8 (1) i=12..n
where the sumis taken over all basic figures U of G on precisely i vertices.
A sat Rof vertices of agraph G representsthe edges of G iff, for every edge of G, at least one of
itsend verticesis contained in R
In 1931 in his paper " Graphs and Matrices (Hungarian) D. Konig proved the following famous
theorem (Theorem 14 in chapter X1V of the first monograph on graph theory (D. Konig*?, 1936)).

Theorem D. In any bipartite graph B, the maximum number of pairwise nonadjacent edges, b (i.e.
the size of a maximum matching, m) equals the minimum number of vertices representing the edges
of B.

We use Theorem D to prove the following well-known proposition.
Theorem E. For any bipartite graph B, a (B) + b(B) = n(B).

Proof. Claml: a +b £n.
Proof of Claim|. Let S beamaximum independent vertex set. Then [§ =a , andthe n- a

verticesnotin S represent dl edgesof B, for an edge not so represented would have to have both
of itsend verticesin S - acontradiction. By TheoremD, n-a 3 b ,thusa +b £n.

Clamll: a +b 3 n.



Proof of Claim 1. By theorem D, thereisavertex s&t R with |R = b representing dl edgesof B.
Then- b veticesnotin R are pairwise nonadjacent for otherwise there were an edge not

represented by some vertex of R. Therefore, n- b £a ,thusa +b 3 n. [ ]

Remark. The ideas of the above proof may aso be used to derive Theorem D from Theorem E.

Thus Konig's theorem and Theorem E are equivaent.
The proof of the following lemma (whichis crucial) isleft to the reader (see Fig. 6).

Lemma. Let H be a hexagonal systemand let M denote a maximum matching of H . Colour all
edgesof H that belongto M red and the remaining edges blue; accentuate the red oblique edges
and the blue perpendicular edges. Then the accentuated edges display a system P of digoint
monotone paths with the colours red and blue alternating on each path. The top vertex of a path
P1 P iseither a (white) peak covered by M and followed by a red edge or a non-extremal black
vertex not covered by M and followed by a blue edge, its bottom vertex is either a (black) valley
covered by M and preceded by a red edge or a non-extremal white vertex not covered by M and
preceded by a blue edge.

In P there is no path connecting two non-extremal non-covered vertices. (For otherwisean
interchange of colours on such a path would result in a matching theat has one edge morethan M )

Thus we distinguish between two types of paths P in P:

Typel. Bothend verticesof P are extremal (P connects a peak with a valley).
Type 2. Exactly only one end vertex of P isextremal (Fig. 6a).

In each non-extremal black vertex that is not covered by M there originates, and in each non-

extremal white vertex that is not covered by M there terminates, a path of type 2.

3 Proof of Theorem 1
Recall Theorem A, Observations 1 and 2. By Vietas theorem, a,, isthe product of al nonzero
agenvaluesof B, and a,, =0 for i >p . Thus
b,, >0, (1a)
b, =0 for i >p (1b)
3.1 Proof of Part (i)
Let p =p(B), m=m(B); wehaveto show that p £ m.

10
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B being bipartite, each component of any basic figureof B isacircuit of even length or a
dumbbell, thus any basic figureon 2i vertices contains as a subgraph some matching of sze i .
Consequently, for i > m thereisno basicfigureon 2i verticesin B and therefore, by Theorem C
(in connection with Theorem A, Observetion 1), b,, = 0. Assuming p > m we obtain

b,, = 0 contradicting (1a).
3.2 Proof of Part (ii)
Letp =p(H), m=m(H). It remainsto show that p 3 m. Recall Observation 1 of Theorem A. We
shdl provethat a,, * O, thus b,,, * O which, by (1b), impliesm£p .

By awel-known theorem of matrix theory, a,,, isthe sum of the determinants of al principa
minorsof A(H) of size 2m; equivaently, in terms of subgraphs,

2,, =& det A(H() 2

where the sum is taken over dl induced subgraphs H ¢ of H on 2m vertices (see 1.2.1).
Recdl that det A(H() isthe product of the eigenvaluesof H (. Graph H being bipartite, so are

the H ¢. By Theorem A, Observation 2, the nonzero eigenvaues of H ¢ can be arranged in pairs
(m- m) (m>0), thusthe nonzero among the det A(H() (the terms of the sum in eguation (2)) al
have the same sign (namely, (- 1)™). Therefore, in order to show that a,,, * 0, it sufficesto show

that det AH()* O for at lesst one of the H (.

Condder any maximum matching M of H and colour the edgesof H asdescribed inthe
Lemma (for an example see Fig. 6). Interchange the colours red and blue on dl paths of type 2: this

resultsin anew colouring of H where

(i) the red edges again determine amaximum matching - M™,say - of H ,

(i) al nonextremal vertices are covered by M ™ (all pathsin the corresponding set P are of type 1).
Ddeting the vertices that are not covered by M (these are certain pesks and/or valeys, dl lying

on the boundary of H ) we obtain an induced subgraph H™ of H on 2m vertices dl of whose finite

faces are hexagons; notethat M~ is a perfect matching of H” . By the Corollary to Theorem B,

graph H™ has m positive eigenvalues; by Theorem A, Observation 2, zero is not an eigenvaue of

H" . Observation 3 of Theorem A now yields the desired resuit that  det A(H" ) 0. n

Remar k. Once having established the existence of H™, weimmediately obtain that not only
a,,, but dl coefficients a,, (i =1,2,...,m) are different from zero, or, equivaently:

12



Theorem 3. For a hexagonal system H ,

f (X)= X" - bZXn'2 +b4xn'4 -t (_ 1)mb2mxn- 2m

where b,,b,,...,b,,, arepositive.

Thisin particular implies Theorem 1, Part (ii).

4 Proof of Theorem 2
Asremarked above, Part (i”) isidenticad with Cvetkovic' theorem.

Part (ii’) isan immediate consequence of Part (ii) of Theorem 1 and Kénig's theorem in the form

of TheoremE: fromn =p =b andn=z +p +n =a + b weobtain

p+z=n+z=n-p=a+b-p=a.

5 Remark on a paper of I. Gutman
Already in 1982, in his paper Characteristic and Matching Polynomials of Benzenoid

Hydrocarbons, 1. Gutman™*formulated a statement (Theorem 4 on page 341) that is equivalent to
the fallowing interesting assertion.
(G1) Let H be a hexagonal system with characteristic polynomial

f (X)=x"- bx"2+b,x"* - +...

(see Theorem A in Section 2 above)
and let p(H,k) denote the number of matchings of size k containedin H . Then
p(H.1)=b,, p(H,2) =h,,
p(H ’k)< t)Zk for k = 314!-”1m1
p(H,k)=b, =0 for k >m.

Usng (i) of Theorem 1, (G1) immediately implies

(G2) b, =0 ifandonlyif p(H,k)=0.

Thisis Theorem 3 in Gutman’s paper.

Obvioudy, the last satement is equivaent to our Theorem 3 (Section 3).
Unfortunatdly, Gutman’s proof of his Theorem 4 - and thus of (G1) and (G2) — isincomplete.

6 Miscellaneous remarks
For hexagona systems, Zz=n-p-n=n-2b=n-2m which means that
for a hexagonal system, the multiplicity of the eigenvalue zero equals the number of vertices left

uncovered by a maximum matching.

13



Graphsfor which equdity holdsin Cvetcovic' inequalities (Theorem 2, Part (1)) are called
plants (there are two kinds, helio- and geo-tropic plants, see Spectra of Graphs® 3™ edition, p.
416) and surprisingly, there are many examples of these objects. They include, for example, al

trees, and as we know now, al hexagond systems.

Concluding remark
The main result of this paper may be summarized as follows.
In any hexagonal system, the edge independence number equals the number of positive eigenvalues,

and the vertex independence number equals the number of nonnegative eigenval ues.
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