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Abstract: In August 2003 the computer program GRAFFITI made conjecture 1001 stating that for 

any benzenoid graph, the size of a maximum matching equals the number of positive eigenvalues. 

Later, the authors learned that this conjecture was already known in 1982 to I. Gutman 

(Kragujevac). Here we present a proof of this conjecture and of a related theorem. The results are of 

some relevance in the theory of (unsaturated) polycyclic hydrocarbons. 
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1 Introduction 

1.1 The results 

All graphs G considered in this paper are undirected and finite, loops and multiple edges do not 

occur. The number of vertices of G is denoted by n. 

Two vertices are adjacent iff they are connected by an edge; two edges are adjacent iff they 

have an end vertex in common. 

A set of vertices, or edges, is called independent (or stable) iff its elements are pairwise 

nonadjacent. 

α  is the maximum number of pairwise nonadjacent vertices of G, often called the vertex 

independence (or vertex stability) number of G. 
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β  is the maximum number of pairwise nonadjacent edges of G, often called the edge 

independence (or edge stability) number of G. 

π  and ν  are the numbers of positive and negative eigenvalues of G, respectively (eigenvalues 

are counted regarding their multiplicities; for precise definitions see Section 1.2). 

ζ  is the multiplicity of the eigenvalue zero of G. In a chemical context, this number is often 

denoted byη , and it is considered an indicator of instability of benzenoid molecules. 

In general, there are no relations between β  and π : β  may be larger than, equal to, or 

smaller than π  (see Section 1.4, Table 1 and Figure 4). However, the situation changes if G is 

restricted to the class of bipartite graphs, and even more so if G belongs to the subclass of 

hexagonal systems (benzenoid graphs). The aim of this paper is to prove the following 

propositions. 

Theorem 1. 

(i )  The number of positive (negative) eigenvalues of a bipartite graph B  is not greater than the 

maximum number of pairwise nonadjacent edges contained in B, briefly: 

( ) ( ) ( ).BBB βνπ ≤=  

(ii )  For a hexagonal system H,      ( ) ( ) ( ).HHH βνπ ==  

For bipartite graphs the number ν  of negative eigenvalues equals the number π  of positive 

eigenvalues, see Section 2, Theorem A, Observation 2. 

Theorem 2. 

(i’ )  The minimum of the numbers of nonnegative eigenvalues and of nonpositive eigenvalues of any 

graph G is not smaller than the maximum number of pairwise nonadjacent vertices contained in G; 

briefly: 

min ( ) ( ){ } ( ) ( )GGGG αζνπ ≥+ , . 

(ii’ )  For a hexagonal system H, ( ) ( ) ( ) ( ) ( )HHHHH αζνζπ =+=+ . 

Part (i’)  of Theorem 2 is Cvetkovic’ theorem1(see also Inequalities obtained on the basis of the 

spectrum of the graph 2 and the monograph Spectra of graphs 3 , Theorem 3.14) who proved it in 

1971 using Cauchy's interlacing theorem. 

Corollary to Theorems 1 and 2. 

( i’’ )  For a bipartite graph B,  ( ) ( ) ( )BBB βαζ −≥ . 

(ii’’ )  For a hexagonal system H,  ( ) ( ) ( )HHH βαζ −= . 
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Part (ii )  of Theorem 1 is of some significance for the chemistry of polycyclic hydrocarbons: β  

is a (structural) parameter of Kekulé’s model (resonance theory) counting double bonds whereas π  

is an (analytical) parameter of Hückel’s model (simple molecular orbital theory) counting bonding 

energy levels of delocalized electrons. Thus the equation πβ =  once more confirms the close 

relationship between these two models. 

For the discussion of some of I. Gutman’s work that is closely related to our investigations see 

Section 5. 

1.2 Some more definitions  

Let G be a graph with vertex set { }nvvv ,,, 21 K  and let 





=
otherwise.   0

adjacent are  and  if    1 ji
ij

vv
a  

1.2.1 The matrix ( ) ( )ijaGAA ==  is the adjacency matrix of G. 

If every vertex of graph G’ is also a vertex of G, and if two vertices of G’ are adjacent in G’ if 

and only if they are adjacent in G, then G’ is an induced subgraph of G. Note that the adjacency 

matrix A’ of G’ is a principal minor of the adjacency matrix A of G; conversely, every principal 

minor ∗A of A determines an induced subgraph ∗G of G. 

The characteristic polynomial ( )xfG  of G is the characteristic polynomial of the adjacency 

matrix of G: ( ) ( )AxIxfG −= det  ( Fig.1). Analogously we define the eigenvalues and the 

spectrum of G. 

 
1.2.2 A dumbbell consists of two distinct vertices and an edge joining them. A matching is a set of 

pairwise disjoint dumbbells, its size is the number of dumbbells (or edges) it contains. A vertex v is 

covered by matching M iff v belongs to some dumbbell of M ( Fig. 2). A matching of G is perfect 

iff it covers all vertices of G. 
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The size of a maximum matching of G  is often called the matching number and denoted by 

( )Gmm = ; note that ( ) ( )GGm β= . For a comprehensive monograph on matching theory the 

reader is referred to the work of L. Lovász and M.D. Plummer 4 (1986). 

 

 
1.2.3 A hexagonal system (also called polyhex, honeycomb, benzenoid graph, …) is a finite 

connected plane graph H that can be drawn such that 

• all of its finite faces are regular hexagons of equal size, 

• its boundary (that is the boundary of the infinite face) is a topological circuit (Fig. 2). 

Note that a hexagonal system is 2-connected, every vertex on its boundary has valency 2 or 3, 

every interior vertex has valency 3. 

In addition, we shall assume that some of the edges are perpendicular to a given straight line 

which is considered horizontal: with respect to this picture, we will freely use the concepts “up”, 
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“down”; “high”, “low”; “top”, “bottom”; etc. .  A monotone path is always considered decreasing, 

i.e. running down, from top to bottom (Fig. 2). As each hexagonal system is bipartite, we will 

assume its vertices to be coloured black and white such that every edge connects a black vertex 

with a white one and, in addition, that the highest vertices of all finite faces are white (and the 

lowest are  
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black). The locally highest [lowest] vertices of the graph H are called its peaks [valleys]; the peaks 

and valleys are the extremal vertices of H (Fig. 2). 

A slightly more general concept is that of a topological hexagonal system: this is a finite two-

connected plane graph whose finite faces are (topological) hexagons, whose vertices on the 

boundary circuit C of the infinite face have valencies 2 or 3, and whose vertices in the interior of C 

have valency 3. Such a graph can always be drawn on a suitably chosen Riemann surface such that 

the finite faces are realized by regular plane (schlicht) hexagons of equal size. A topological 

hexagonal system that cannot be realized this way in the plane (without overlapping) has 

sometimes been called a helicene graph (Fig. 3). 

1.3 A remark on possible extensions  

Part (ii )  of Theorem 1 can easily be extended to a larger class of bipartite plane graphs including, 

in particular, the class of helicene graphs. However, for the sake of simplicity, we shall here restrict 

our considerations to the class of hexagonal systems as defined above. 

1.4 Some simple examples 

1) The spectrum of a circuit on n vertices consists of the numbers cos2 ( )nνπ ⋅2  , n,,2,1 K=ν , 

(Spectra of Graphs 3 , p.72). For circuits the numbers β=m  and π  can be taken from Table 1. 

 

n m== βα  π  

4k 2k 12 −k  

14 +k  2k 12 +k  

24 +k  12 +k  12 +k  

34 +k  12 +k  12 +k  
 

Table 1 

2) The graphs of Fig. 4 both have 3=π , 4== mβ . 
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2 Preparation of the Proofs 

We recall some known results and formulate a Lemma. 

Theorem A lists some well-known general properties of bipartite graphs (see, e.g., Spectra of 

Graphs 3 , p.87). 

Theorem A. Let B denote a bipartite graph on n vertices. 

Observation 1. 

( )
L

L

+−+−=

+++=
−−

−

4
4

2
2

1
1

         nnn

n
nn

B

xbxbx

axaxxf
 

where 0531 ==== Laaa and ( ) 01 22 ≥−= i
i

i ab  











=
2

,,2,1
n

i K . 

Observation 2. The collection of eigenvalues of B, which are all real, is symmetric with respect to 

the zero point of the real axis. 

Observation 3. If kn 2=  then 

( ) ( )
( ) ( ) ( )21det     

01

λ∏−==

=−=
k

Bn
k

n

BA

fba
 

where the product is taken over all non-negative eigenvalues of B. 

The following theorem is a special case of a result obtained by D.M. Cvetkovic, I. Gutman and N. 

Trinajstic in 1974 (Graph theory and molecular orbitals, VII. The role of resonance structures 5 ; 

see Spectra of Graphs 3 , Theorem 8.13 on page 243; see also H. Sachs 6 ); it also follows from a 

general theorem due to P.W. Kasteleyn (Dimer statistics and phase transition 7 (1963)); see also 

Kasteleyn's survey article 8 (1967). Orginally formulated for connected graphs, the theorem 

immediately extends to non-connected graphs, too. 

Theorem B. Let G be a plane graph on n vertices all of whose finite faces are hexagons. Then G is 

bipartite and the number of perfect matchings of G is equal to the product of all non-negative 

eigenvalues of G. 

Corollary. If G has a perfect matching then 

( ) ( )
2
n

GGm == π . 

For the next theorem (the “coefficients theorem”, H. Sachs 9 and L. Spialter 10(1964); see Spectra 

of Graphs 3 , Theorem 1.3 on page 32) we need another concept. 
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A basic figure U of a graph is a (not necessarily induced) subgraph that has only circuits and 

dumbbells as its components (Fig. 5). Let ( )Uq  and ( )Uc  denote the number of components of U , 

and the number of circuits among these components, respectively. 

 
Theorem C. Let G be an arbitrary graph with characteristic polynomial 

( ) n
nn

G cxcxxf +++= − L1
1 . 

Then 

( ) ( ) ( )∑ −= UcUq
ic 21 , ni ,,2,1 K=  

where the sum is taken over all basic figures U of G on precisely i vertices. 

A set R of vertices of a graph G represents the edges of G iff, for every edge of G, at least one of 

its end vertices is contained in R. 

In 1931 in his paper 11Graphs and Matrices (Hungarian) D. König proved the following famous 

theorem (Theorem 14 in chapter XIV of the first monograph on graph theory (D. König 12 , 1936)). 

Theorem D. In any bipartite graph B, the maximum number of pairwise nonadjacent edges, β  (i.e. 

the size of a maximum matching, m ) equals the minimum number of vertices representing the edges 

of B . 

We use Theorem D to prove the following well-known proposition. 

Theorem E. For any bipartite graph B , ( ) ( ) ( )BnBB =+ βα . 

Proof. Claim I: n≤+ βα . 

Proof of Claim I. Let S  be a maximum independent vertex set. Then α=S , and the α−n  

vertices not in S  represent all edges of B , for an edge not so represented would have to have both 

of its end vertices in S  - a contradiction. By Theorem D, βα ≥−n , thus n≤+ βα . 

Claim II: n≥+ βα . 
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Proof of Claim II. By theorem D, there is a vertex set R  with β=R representing all edges of B . 

The β−n  vertices not in R  are pairwise nonadjacent for otherwise there were an edge not 

represented by some vertex of R . Therefore, αβ ≤−n , thus n≥+ βα . c  

Remark. The ideas of the above proof may also be used to derive Theorem D from Theorem E. 

Thus König’s theorem and Theorem E are equivalent. 

The proof of the following lemma (which is crucial) is left to the reader (see Fig. 6). 

Lemma. Let H  be a hexagonal system and let M  denote a maximum matching of H . Colour all 

edges of H  that belong to M  red and the remaining edges blue; accentuate the red oblique edges 

and the blue perpendicular edges. Then the accentuated edges display a system P of disjoint 

monotone paths with the colours red and blue alternating on each path. The top vertex of a path 

∈P P is either a (white) peak covered by M  and followed by a red edge or a non-extremal black 

vertex not covered by M  and followed by a blue edge, its bottom vertex is either a (black) valley 

covered by M  and preceded by a red edge or a non-extremal white vertex not covered by M  and 

preceded by a blue edge. 

In P there is no path connecting two non-extremal non-covered vertices. (For otherwise an 

interchange of colours on such a path would result in a matching that has one edge more than M .) 

Thus we distinguish between two types of paths P  in P: 

Type 1.  Both end vertices of P  are extremal ( P  connects a peak with a valley). 

Type 2.  Exactly only one end vertex of P  is extremal (Fig. 6a). 

In each non-extremal black vertex that is not covered by M  there originates, and in each non-

extremal white vertex that is not covered by M  there terminates, a path of type 2. 

3 Proof of Theorem 1 

Recall Theorem A, Observations 1 and 2. By Vieta's theorem, π2a  is the product of all nonzero 

eigenvalues of B, and 02 =ia  for π>i . Thus 

02 >πb ,                                                                          (1a) 

  02 =ib  for π>i                                                                     (1b) 

3.1 Proof of Part ( i )  

Let ( )Bππ = , ( )Bmm = ; we have to show that m≤π . 
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B  being bipartite, each component of any basic figure of B  is a circuit of even length or a 

dumbbell, thus any basic figure on i2  vertices contains as a subgraph some matching of size i . 

Consequently, for mi >  there is no basic figure on i2  vertices in B  and therefore, by Theorem C 

(in connection with Theorem A, Observation 1), 02 =ib . Assuming m>π  we obtain 

02 =πb contradicting (1a). 

3.2 Proof of Part ( i i )  

Let ( )Hππ = , ( )Hmm = . It remains to show that m≥π . Recall Observation 1 of Theorem A. We 

shall prove that 02 ≠ma , thus 02 ≠mb  which, by (1b), implies π≤m . 

By a well-known theorem of matrix theory, ma2  is the sum of the determinants of all principal 

minors of ( )HA  of size m2 ; equivalently, in terms of subgraphs, 

( )HAa m ′∑= det2                                                                  (2) 

where the sum is taken over all induced subgraphs H ′  of H  on m2  vertices (see 1.2.1). 

Recall that ( )HA ′det  is the product of the eigenvalues of H ′ . Graph H  being bipartite, so are 

the H ′ . By Theorem A, Observation 2, the nonzero eigenvalues of H ′  can be arranged in pairs 

( )µµ −, ( )0>µ , thus the nonzero among the ( )HA ′det  (the terms of the sum in equation (2)) all 

have the same sign (namely, ( )m1− ). Therefore, in order to show that 02 ≠ma , it suffices to show 

that ( ) 0det ≠′HA  for at least one of the H ′ . 

Consider any maximum matching M  of H  and colour the edges of H  as described in the 

Lemma (for an example see Fig. 6). Interchange the colours red and blue on all paths of type 2: this 

results in a new colouring of H  where 

(i) the red edges again determine a maximum matching - ∗M , say - of H , 

(ii) all nonextremal vertices are covered by ∗M (all paths in the corresponding set P* are of type 1). 

Deleting the vertices that are not covered by ∗M (these are certain peaks and/or valleys, all lying 

on the boundary of H ) we obtain an induced subgraph ∗H of H  on m2  vertices all of whose finite 

faces are hexagons; note that ∗M is a perfect matching of ∗H . By the Corollary to Theorem B, 

graph ∗H  has m  positive eigenvalues; by Theorem A, Observation 2, zero is not an eigenvalue of 
∗H . Observation 3 of Theorem A now yields the desired result that  ( ) 0det ≠∗HA .      c  

Remark. Once having established the existence of ∗H , we immediately obtain that not only 

ma2 but all coefficients ia2 ( )mi ,,2,1 K=  are different from zero, or, equivalently: 
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Theorem 3. For a hexagonal system H , 

( ) ( ) mn
m

mnnn
H xbxbxbxxf 2

2
4

4
2

2 1 −−− −++−+−= L  

where mbbb 242 ,,, K  are positive. 

This in particular implies Theorem 1, Part (ii). 

4 Proof of Theorem 2 

As remarked above, Part (i’) is identical with Cvetkovic’ theorem. 

Part (ii’) is an immediate consequence of Part (ii) of Theorem 1 and König’s theorem in the form 

of Theorem E: from βπν ==  and βανπζ +=++=n  we obtain 

απβαπζνζπ =−+=−=+=+ n .                                                                                          c  

5 Remark on a paper of I. Gutman 

Already in 1982, in his paper Characteristic and Matching Polynomials of Benzenoid 

Hydrocarbons, I. Gutman13formulated a statement (Theorem 4 on page 341) that is equivalent to 

the following interesting assertion. 

(G1) Let H  be a hexagonal system with characteristic polynomial 

( ) L+−+−= −− 4
4

2
2

nnn
H xbxbxxf  

(see Theorem A in Section 2 above) 

and let ( )kHp ,  denote the number of matchings of size k  contained in H . Then 

( ) 21, bHp = , ( ) 42, bHp = , 

( ) kbkHp 2, <  for mk ,,4,3 K= , 

( ) 0, 2 == kbkHp  for mk > . 

Using (i) of Theorem 1, (G1) immediately implies 

(G2)                                           02 =kb      if and only if     ( ) 0, =kHp . 

This is Theorem 3 in Gutman’s paper. 

Obviously, the last statement is equivalent to our Theorem 3 (Section 3). 

Unfortunately, Gutman’s proof of his Theorem 4 - and thus of (G1) and (G2) – is incomplete. 

6 Miscellaneous remarks 

For hexagonal systems,                 mnnn 22 −=−=−−= βνπζ                  which means that 

for a hexagonal system, the multiplicity of the eigenvalue zero equals the number of vertices left 

uncovered by a maximum matching. 
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Graphs for which equality holds in Cvetcovic’ inequalities (Theorem 2, Part (i’)) are called 

plants (there are two kinds, helio- and geo-tropic plants, see Spectra of Graphs 3  3 rd  edition, p. 

416) and surprisingly, there are many examples of these objects. They include, for example, all 

trees, and as we know now, all hexagonal systems. 

Concluding remark 

The main result of this paper may be summarized as follows. 

In any hexagonal system, the edge independence number equals the number of positive eigenvalues, 

and the vertex independence number equals the number of nonnegative eigenvalues. 

Acknowledgements 

The authors thank I. Gutman (Kragujevac) for bringing his work to their attention, and Mrs. B. 

Hamann and Mrs. G. Käppler for their cooperation and technical support. 

6 References 

1. D.M. Cvetkovic, Graphs and their spectra (Grafovi i njihovi spectri) (Thesis). Univ. Be-

ograd Publ. Elektrotehn. Fak., Ser. Mat. Fiz., No. 354 - No. 356 (1971) 1-50. 

2. D.M. Cvetkovic, Studia Sci. Math. Hung. 8 (1973) 433-436. 

3. D.M. Cvetkovic, M. Doob and H. Sachs, Spectra of Graphs -Theory and Application. 

Deutscher Verlag der Wissenschaften, Berlin 1980, 1982; Academic Press, New York - San 

Francisco - London 1979; 3rd revised and enlarged edition, Johann Ambrosius Barth 

Verlag, Heidelberg - Leipzig 1995. 

4. L. Lovász and M.D. Plummer, Matching Theory. Akadémiai Kiadó, Budapest 1986; North-

Holland (Ann. Discr. Math. 29), Amsterdam 1986. 

5. D.M. Cvetkovic, I. Gutman and N. Trinajstic, J. Chem. Phys. 61 (1974) 2700-2706. 

6. H. Sachs, On the number of perfect matchings in bipartite plane graphs. In:  Algebra und 

Graphentheorie (Beiträge der Jahrestagung „Algebra und Grenzgebiet“, Siebenlehn, 

28.10.-1.11.1985), Bergakademie Freiberg, Freiberg 1986. 

7. P.W. Kasteleyn, J. Math. Phys. 4 (1963) 287-293. 

8. P.W. Kasteleyn, Graph theory and crystal physics. In: Graph Theory and Theoretical 

Physics (ed. F. Harary), Academic Press, London - New York 1967, pp. 43-110. 

9. H. Sachs, Publ. Math. Debrecen 11 (1964) 74-84. 

10. L. Spialter, J. Chem. Doc. 4 (1964) 269-274. 

11. D. König, Mat. és Fiz. Lapok 38 (1931) 116-119. 



 15

12. D. König, Theorie der endlichen und unendlichen Graphen. Akademische Verlagsgesell-

schaft, Leipzig 1936; Chelsea, New York 1950; B.G. Teubner Verlagsgesellschaft, Leipzig 

1986. English Translation: Theory of Finite and Infinite Graphs. Birkhäuser, Boston - Basel 

- Berlin 1989. 

13. I. Gutman, J. Chem. Soc. Faraday Trans. 2, 79 (1983) 337-345 




