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Abstract

Our aim is to explain the concept of adapüive Ä-tracking,
which is a simple proportional, time-varying outpuü feed-
back control with nonlinear, output-driven gain adapta.-
tion. This control achieves asymptotic tracking of refer-
ence signals wiihin a ),-neighbourhood of the signal. As
a method of control it is applicable to various classes of
systems, which are essentially minimum phase and have
positive (or un-mixed) high-frequency gain. Nonlinear, as
well as distributed parameter systems, are included. We
develop the intuition behind the approachr present typical
features of the control sürategy in the simple case of ßrst
order systems and illustrate its applicability to industrial
processes, including a Biogas Torver fi,eactor.

I Introduction

The seminal contributions of Morse (1983), Mareels (19g4)
and Willems and Byrnes (1984) each tackled the problem
of adaptive stabilization by using a. simple feedback slrat-
egy, rather than invoking a.n identification mechanism.
They proved that the proportional, time-r,arying output
feedback

. u(t) = -e(t)y(r),

with the gain adaptation

ia1t1 : y1t12, &(0) e R.,

when applied to

t(r) = Är(t) + bu(r), o(o) - oo € F

c(t) = "s(t, ,
yields

(1.1)

(1.2)

(1.3)

lim.*- &(t) = k- € lR

lims*- y(t) = 0.
(1.4)

This hoids true under the weaJc structural assumptions
that,4 € lRnxn,b,{ e R", (1.3) is minirnum phase (i.e.
the zeros of cr(sf * A)-ttr lie in the open left half plane)
and the high-frequency gain is positive (i.e. cb > 0) .

To uncleretand the intuition behind this adaptive con-
trol strategy assume for a moment that k(.) = fr is con-
stant. Then it is well known from root locus theory thaü
bhe poles of the closed-loop system (1.1), (1,3) tend to the
zeros of cr(sl -.4)-1ö (which are a.ssumed to be stable)
and the remairring pole tends to -oo since cä > 0. Hence
bhere exists a I so that the closed-loop system (1.i), (1.S)
ia asymptotically stable for all /c > E. Of course, the
frequency domain analysis does not hold true if the time-
varying adative strategy (f.1), (1.2) is applied. Holever,
by construction, t Ff ß(t) is monotonicaily nondecreasing
until it becomes so large that the trajactory of (1.1), (1.3)
decays exponentially which, in turn, leads to a converging
,k(ü)= &ro + Iis(r)2dr.

In the following decade, this simple approach wa.s eK-
tended üo numerous classes of systems. (See Ilchmann
(1993) for a comprehensive bibliography,) However, these
developments were still far from the applicatiom, due to
the following limitations:

- the controller is not robust with rcspect üo noise cor-
rupted output measurements,

- the class of refsrence signals which can be tracked by
ühis approach consists only of finite sums of sinusoids
including consüant signals,

- for tracking an internal model is necessary which com-
plicates the control,

- the approach ie mainly suited for linear systems,
although nonlinear perturbations could be incorpo-
rated.

A fust step towards overcoming these limitations was
the introduction of a dead-zone in the gain adaptation
(1.2). For prespecified but arbitrarilv small and positive'Supported In part by the University ofExctcr Ilosearch ffund
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,\ replace (1-2) by

j r.r f fllu(t)ll - r)'� , llv(t)ll > r
e ( r )  -  (

t  o  , l l v ( r ) l l  < , t .

ln ihis case {,he gain increases so long as y(l) is outside

Br(0), the bali of radius A centered around 0. When,L(t) is

sufficiently large, then y(t) tends to 0, so errtering B;(0),

the gain adaptation is switched off and k(t) converges.

Note that this control strategy wea.]rens the control ob-
jective: Instead of asymptotic stabilization of the output,

it is required that the output approäches or stays within

B;(0). However,.\ > 0 is prespecified and may be chosen

as small as needed.

More generally, and of greater relevance in many appli-

catious, we introduce the adapiive A-tracker

If (1.5) is applied to a minimum phase system of the
form (1.3) with cö ) 0, then Ä-tracft.ing is achieved. This
means that for arbitrary bounded y*r(.), ruith essentially
bounded derivative (V.ur(-) may have jumps), the feed-
back system (1.3), (1.5) has a unique solution (s(.),k(.))
on [0, oo), ,t(.) is bounded and

,l5g airt (lls(t) -s,"s(t)ll,[0,]J) = 6.

This concept was introduced by Ilchmann and Ryan
(199a) and has been generalized to numerous classes of
systems, such as multivariable nonlinear systems, dis-
tributed pa,rameter systems and systems with sampled
output. F\rrthermore, the Ä-tracking approach has been
provea as a suitable method for numerous industrial pro-
cess control problems. Specific applications, respectively
erctensions, to biochemical processes, both in simulations
a.nd experimental studies, include:

- Set point control of different pll-values in a Biogas
Tower Reactor. This includes an experimental im-
plementation whic.h was run over more than three
months on an industrial pilot plant. In this applica-
tion tbe system is MII{O with strong nonlinear cou-
plings, so thaü the relative degree condiüion is noü
satisfied and the feedbad< law has üo be modified. see
Ilchmann and Pabl (1990).

- The anaerobic degradation of organic waste by micro-
organisms which is described by a five dimensional
nonlinear SISO system. Here the input va^riable is

the dilution rate and the control variable is the te'

tal organic concentration, see Ilchmann and Weirig
(1996) and l lchmann (1996).

- Methanol synthesis in a polytropic, catalytic conti-

nous stirrecl tank reactor on a solid pha-se catalyst

was studied for a commelcially releva.nt problem. [n

this case the nonlinea.r system is SISO but of order

nine, see Allgöwer et d. (f997).

- The control of a birrary distillation column by two

input variables (the reflux stream and the vapour

stream) in order to achieve set point, regulation for

one temperature in the rectifying section and another
temperature in the stripping section, see Allgöwer

and Ilchmann (1995).

In the remainder of this note we proceed as follows-
In Section 2 we explain the .\-tracking concept in more

detail but restrict our attention to first order systerns,
Many typical features of the adaptation strategy become
already clea.r for this simple class of systems. In Section
3 we describe system classes to which the concept of I-
tracking has been applied. Finally, in Section 4 vre discuss
some of the industrial applications mentioned above.

2 ,\-tracking for first order systems

Irr this section we focus our attention on the simple class
offirst ordersystems

i(l) = oo(t) + öu(t), a(o) : ao 6 P
(2.1)

u(4 = cs(t),

with unlrcnown system parameters o,b,c E R and the only
structural assumption imposed is that

c ö > 0 . (2.2)

Proposition 2.7- Let I > 0 ond ossame thct yr.s(.) is
a bounded function, differentiablc alrnost eaerywhere with
essentiallg bounded derioatiue. Il the \-tracker (1.i) is
opplied, to ony sgstem of the form (2.1), uhich sotisfies
(2.2), then the closeil-Ioop system hos o unique solution
("(.), ß(.)) defined on [0, m) ond satisfies

(i/ liml-1- l(i) = ß- e R,

fit [mü-+- dist (ly(t)-s6(t)f,[0,)l) = o.

A typical feature of all proofs in this high-gain context,
even ifthe Bystem classes are nonlinea,r and/or infiaite di-
mensional, is that ühe most difficult part is to show bound-
edness of ß('). To this end an essential part of proposition
2.1 relies on the following so called l{igh-Gain Lemma.

.o,

"(t) : -k(ü)e(t), e(r) = y(t) - v*r(t)

* t r )  =  { ( l l ' ( t ) i l - r ) ' � ,  
l l e ( t ) l l > )

(  0 ,  l l " ( t ) l l  <Ä.
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Lemma 2.2 Under the ossumptions oJ Proposition 2'1

and if there enists a solution ("('), k(')) of the closed-loop

system (2.1),(1.5) on [0,a), t 'or som'e a e (0,x], and iJ

,1{x k(l) = *,

then

J5i(u(4-?"er(')) 
: o'

Proof; e(t) : g(t) - y."r(t) satisfies

e(t) = [o - k(t)cb]e(t) +lb(t), (2'3)

where
t!(t) := ayt(t) - y*r(t) .

Hence, by the Variation-of-Parameters formula, for all 0 <

t 6 ( t ( t - t ,

e(r) = *p {Jl: t' 
- k(r)cölrlr} e(to)

+ Jlt exp {.f 
p - k(r)cbldr}r/(s)ris.

Since, by construction (1.5), t ,+ k(ü) is monotonically
nondecreasing and M := supr>o lri.r(t)l exists' a crude es-

timate yields

le(t) l

+ M t""*p{ltr-k(r)cbldr}ds.

Now choose t6 € (0,r,r) sufficiently large so that

[ a - k ( t ) c b ]  < 0  f o r a l l  t ) t o .

Then

lr(t)l S enp {la- e(to)cDJ(t - ts)} le(t6)l+ ;6;u1,o1.61f

The larger f6 is chosen, the gmaller the second term on the
righü hand side becomes and si{rce the first summand tends
to zero arryway when ü tends to u, ühe claim is proved. tr

We are now in a position to prove Proposition 2.1.

Proof of Proposition 2.1: We proceed in ffve steps.

STEP 1: By the tbeory of ordinary differential equations
there exists a unique solution (c(,),k(.)) on [0,4r), where
ar € (0roo] is mucimal-

STEP 2: If ,t(.) is unbounded, then the High-Gain Lemma
yields e(t) -+ 0 and hence, by the dead zone incorporated
in (1.5), tc(.) is bounded. This contradiction esüablishee
boundedoess of &(-) on [0,o).
STEP 3: If ur is finite, then by boundedness of k(') and
(2.3), e(') cannot have a 6nite escape time. Therefore,
o, = oo. This proves the statement (i), and it remains to

prove (ü).

STEP 4: We prove boundeöess of e( ) on [0, m).

To this end let

dr(e) := I (l ' l- )) '  l" l > a
|  0  , l " l  < Ä

and write (2.3) as

ä(t) = -e(t) + fr(t) + fz(t), (2.4)

where

n(4 := [1-o - ft(t)cb] [e(t) - dr(e(t))] +ü$),

h(t) := [1 - o - k(t)cbJ di(e(t)).

Variation-of-Parameters applied to (2,4) yields

r t
e(r) - e-'e(O) + / e-(t-"l1.fr(s) + fz(e)lits,

J O

and since /.(.) € tr-(O,m) attd /r(.) € L2(0,m) and
the convolution of the expouential function with an .L--
respectively an l,2-function is bounded (see Ilchmann
and Logemann (1997), it follows from above that e(') is
bounded.

STEP 5: Since

)  -  p(r \ä/ t \

ftd ile(t)), = 2d1 (e(r)) :ff ( 2d1 (e (t)) | e(r) | | ä(r) I,

and the right hand side of (2.3) is bounded, it follorvs that

f;a11e1t112 € .L*(0,0o). This together witfr ar(e(t))z €

,Lt (0, oo) yields lirnl-1- d1(e(t))2 = 0 (see, e'g., Ilchmann
(1993), p.17), and hence statcment (ii) is proved- tr

3 Generalizations and extensions of the

Ä-tracking approach

The simple adaptive )-tracker (t,5), which Las been de-

ecribed in detail in the previous gection for first order sys-

tems, has been successfully applied to many other classes

of systems, such as lin€ax distributed parameüer systemg

a,nd nonlinear systems of the form

ü(t) : !(t,y(t),2(t\ '1 * G(t,11$),2(t))u(t) 
(s.1)

i '(t) : h(t,y(t),2(t)).

Here l ( t ,g ,z)  € R-,  G(t ,g,z)  € R-x- ,  h( t ry ,z)  eW

are smooüh funcüions which saüisfy certarn upper bounds,

but more crucially the system musü have globally, expe

nentially stable zero dynamics a.nd must satisfu a' general-

ized relative degree one condition with G being "positive"

a.nd bounded away ftom zero' The following classes of

6ystems have been investigated so fa'r:
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- multivariable linear systems subjected to nonlinear
perturbations, and SISO systems with unknown sign

of the high-frequency gain, see Ilchmann and Ryan
(1994) ,

- linear SISO systems with nonlinear actuator char-

acteristics and nonlinear pertulbations, see Ryan
(1994),

- nonlinear systems which are afine linearly bounded

and SISO, see Allgöwer et al.  (1997), and MIMO, see

Allgöwer and Ilchmann (1995),

- larger classes of nonjinear systems (e.9. not in input

affne form (3.1)) and improved transient behaviour,

see Ilchmann (1996),

- linear MIMO systems with sampled output, see llch-

rnann and Townley (1996),

- MIMO distributed parameter systems, see llchmatrn
and Logemann (f997).

4 Ä-tracking for industrial applications

We now show tbat the ,\-tracker, or simple modifications
of it, is suitable for industrial process control problems-
Indeed the simple design and cheap implementation of this
controller, together with its remarkable robustness proper-
ties, make iü appealing in regulating those process control
systems which are minimum phase and of relative degree
one. Note that in many applications it is useful to mod-
ify (1.5) slightly by introducing additional off-line tuning
parameters a,7,r which can be used to "customize" the
feedback for the specific application ab hand:

The parameters c,7 and r have transparent meaning and
their choice is in general straightforward. The function
ü(ü) might be a bounded input function, e.g- .a steady
state input viilue whidr drives the system into a neigh-
bourhood of the main operating point. A sensible choice
for the pararneter 1, which djusüs the speed of adapta-
tion, is the order of magnitude of the inverse of the dom-
inant time constant of the plant. The parameter r ) 1
affects the speed of the gain adapbation. The larger r is,
the faster that *(t) grows. Horvever, r should not be so
large a"s to stiffen the closed-loop dynamics.

We now select some of the applications already listed at
the end of Section 1 and describe them in more detail.

4.1 pH-Control of a Biogas Tower Reactor

Adaptive A-tracking has been applied to the control of

a biogas tower reactor of pilot plant scaie al Deutsche

Hefewerke (DHW) in Hamburg, Germany. The reactor is

used for anaerobic treatment of waste water Which comes

ftom a yeast production plant and contains harmfui sul-
phuric acid and organic compounds. The waste water is
fed into the biogas tower reactor where, because of micro-

organisms, a mesophile anaerobic biochemical convelsion

of the organic influent compounds takes place.

The reactor, which is 20m high and has a diameter of lm,
consists of four identical modules, cach similar in structure

to an airlift loop reactor, which are arranged in a tower

on top of each other. The waste waier strea.rn, with flow

rate fy..4, is split up into four influent streadns with flow

rates f;cca,;r where the i-th stream is fed to the i-th mod-

ule. These inflow rates a.re the four manipulated control
va,riables u;. The four variables g; to be controlled are the
pH-values in each module. These are measured on-line.

The overall process is modelled as follows

ü(t) = ,av(t) + r(u(t)) - G(s(t)) u(r) .

Here gr = (Ur,...,y1)r € ff, u = (ut,...,u1)" € IF and
the matrix

with a1, o2ras ) 0, represents a compartmental model,
The nonlinear firnction

r(y)  = ( r1(y1) , . . . , r r (yn)) r

is known to be affiae linearly bounded and to harre positive
entries. Thus it reflects the increase of the pll-value if no
waste water is fed into the reactor. Finallv

0 0
9z - AJeea 0

As - V2 ls - 9fcea
A 1 - g s  Y 4 - g t  V a -

wit}r g 1."a ) 0, gives the waste water input at the different,
modules.
The reactor is open-loop unstable and the strong nonlinear
couplings are obvious from the form of G. For details see
Ilchmann and Pahl (1996).
Irr this case the minimum phase assumption is satisfied but
the relative degree one assumption fails. For this reason
we introduce a simple extension of the )-tracker with the

'= (i' -ai;'t -r*^,4.)

(u-vrca
G(s) = 

| 
'r:_i:

\  9 4 - U s [,.",)

ü(t) = -a,t(t)e(t) + &(t), e(t) = s(ü) - y,or(r)

i z.r f (lle(t)ll - .l)" , l le(f)ll > .\
f(tj = 'Y 

\
[  0  , l l e ( t ) l l  < 4 .
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Figure 1: Siabilization of pH-values in the biogas tower
reactor (experimental results).

following physically motirrated nonlinear feedback law:

u1( t )  : :

u2( t )  :=

aaf9r*, (sr(t) - u."r,r),

*cd$,* (sz G) - u".t) - #,#* "r(t),
u3(ü) :: ;r*f$;(v.(r) - y*r,r)

_ vs(r)_v:(r) 
[ur(t) + uz(t)1,

Ys (t)-st.'a

ua(t) :: *r,Hr.- (v.,$) - a.,r,n)
-#E#9 [u1(ü) + u2(t) + u3(t)].

Ihis feedback law can be viewed as a cascaded nonlinear
compensator which is combined with the adaptation law
for the gain k(r) as in (4.1). It achieves A-tracking and
convergence of the gain adaptation.

The control law with pararreters ? = 0.002, I = 0.05,
r=2, and g,.1:[6.9,6.975,7.0751r was implemented on a
DCS usiag a discrete integration algorithm, with a sam-
plin6 time of 6 minuües. For technical reasons, in the
experiment, only the three modules 1-3 were considered
and used.

Figure 1 shoq's experimental data for the pH-yalues 3r;
that were obtailed at the pilot plant when the above
"extended" ,\-tracker was applied. The controller was
switched on at time t: 48h. It can be seen that with-
out the controller, ühe pH-values drift away from the re-
quired set-point. However, within only 24 hours of having
switched on the Ä-tracker, the pH-values are brought bac.k
to the desired )-strips. These strips are depicted in Fig. 1
by the cross-hatched areas. fn common with many other
applicaüions, the gain parameter k only rises to a modest
level (&=0.08).

4,2 Chicken rrranure treatment

Many biotechnological processes can be described by

€(4 : r(ec$)) - D(r)€(t) - q({(r)) + t(t),  (4.2)

where {(t) € IR' is the stäte vecror, p(((i)) contains the
reaction rates, /(t) the feed rates, q(((t)) the gazeous out-
flow rates, K € Rnxa the stochiometric coefEcients and
D(t) denotes the dilution rate. See Bastin and Dochain
(1990) for delails.

Many of these processes have strict relative degree one in
certainpractically relevant regions. Note that they are not
in input affine form (3.1). I{owever, many systems of the
form (4.2) do have the adva.ritage that certain practically
relevant regions a.re invariants of their flows.

As an exa.mple we consider the anaerobic degradation of
organic waste by micro-organismsr more precisely in the
treatment of chicken maüure. The five dimensional model
(see Bastin and Dochain (1990), Stoyanov and Simeonov
(1995) and Bastin and Van Impe (1995)) is based on the
tbree-stage reaction scheme

S o q S r

S1 q Xt ' f9z

S z  q  X z r Q ,

where 56 denotes the influent polluting organic concen-
tration lrng / 11,,91 denotes the substrate concentration for
acidogenic bacteria [r"g I ll,,S2 denotes the concentration
of methanogenic bacteria V"S lll, Q denotes the biogas
production rate [I/Id], and S =,So + 5r * Sz denotes the
total organic concentration in the reactor.

The mathematical model is then described by:

sr(r) = -bso(f)xr (i) - [s0 (r) - yost,] . D(r)

Jir(r) : rr(sr(r))xr(r) - krxl(4 - xt(t). D(t)

st(t) : äxr(t)so(t) - pt(sl(tJxr(t) - sr(t) .p(t)

*.1t1 = p2(52(t))Xz(t\ - kzXz(t) - x2(t) - D(t)

S'(t) : y6p1(,91(f))Xr(t) - "lgt*|ÄtQ - S11)' D(t,
(4.3)

where

'ä \  F^o,  "  4
pi(S) = Tff i ,  to, i=L,2,

denote the growth rates for bacterio by Michaelis-Menten.
.9;, denotes the organic concentration in the influent,
The dilution rate D(t) (lt/dl at time t[d]) is the input.
rra^riable r('). The conürol objective is to force the output

V(.) = S(.), the total organic concentration in the reactor,
to track a (constant) reference signal.

p H

7 , O

6 , 9

module 1
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f lrc simulations are bost-d on cxperintenta,l data given llchmann, A. and M, Pahl (1996), Adaptive rrrulti-
Ity Stoy;rrrov antl Simrxlnov (1005). 'fhc setJroilt, to be variable regulation of a Biogas Tower Reactor, Reporl
trat:kr:rl is y,.r(.) - S',"1 = 45 lrno/ll. M96/22, Dcpartment ot' Mothematics, University of Ex-
In the tirst sinrrrla,tion, we ir,llow the syst0rn to converge cter
to ;ur t :qrr i l ibr irrrn point, which takr,s 30 cl;rys, bv set,t ing I lchmann A. and E. P. Ryan (1994), Universal Ä-
u(') = u( ) - 0.23. At time , > 30, thg sysbern has settled tracking for nonlinearly perturbed systerns in the presence
iutr l  wtr switch on l lur )-tracker (4.1) wittr  t l tsign plrame. of noise, Atüornatica,30,337-346
lers Ilchmann A. and S. Towuley (1996), Adaptive sampling

corrtrol of high-gain siabitizble systems, Report M 96/20,
1T = l, A = U'5' r = 2, A(0) = 0' ri(') =9.23. De4artment of Mathematics, University of Exeter

Observir thc nir:e transiont behaviorrr shown in Fig. 2-4:
Within a day, the output ,t(t) is forced, rvithout any oscil-
lations, inio the tolcrance inierval [41.5,45.5]. The output
stays in the tolerance interval and the gain converges to
a finite v-alue, which is less than 0.03. Note also the good
performance of r(t).

In order to illustrate that thc controller can also cope
with noise corrupted output we choose ,\ = 0.3 and cor-
rupt the output by noise which is chosen as the frrst com-
poncnt of the three dimensional Lorenz equation. For the
paxameters chosen (see Ilchmann (1gg6) for details), Spar_
row (1982) has shown that the noise is chaotic, bounded
by 0,1 and has borrnded derivative. In ( .l) we replace
e(t) by e(t) = y(t) + n(r) * v*.t!). We obrain rhc same
qualitative results, see Figures 5-8, and we have arjded a
cutting of the output dynamics around the point t = 30,
where the regulator is switched on, see Fig. 6_
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Figure 2: Outpuü t F+ S(t) for )-rracker (4.1) with 7 =
1, r = 2, ) :0,5, 't(30) = 0, t(.) = 0.23 appliecl to ( .3).
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Figure 3: Gain t F+ k(t) of )-tracker (4.1) with 'y = 1, 7 -

2, Ä = 0,5, &(30) = 0, ü(.) = 0.23 applied to (a.3).

Figure 6: Error t + dist(lS(t)l - u".t) on [25,40] for
A-tracker (4.1) with 1 = L, r = 2, ) = 0.3, ,L(30) =
0, d(.) = 0.23 and chaotic noise applied to (4.3).

Figure 4: Input t r* o(r) for A-tracker (4.1) with 7 :
l, r =2, Ä = 0.5, k(30) = 0, ü(') = 0.23 applied to (a.3).

Figure 7r Gain t F+ e(ü) of l-tracker (4.1) with 'f = 1, r =
2, Ä = 0.3, fr(30) : 0, i(.) = 0.23 and chaotic noise ap-
plied to (4.3).

Figure 5: Output t r+ S(t) for .\-tracker (4.1) with 7 =
1, r = !, .\ = 0.3, &(30) = 0, üO = 0.23 and chaotic
noise applied to (4.3).

Figure 8: Input t r-+ u(t) for l-tracker (4.1) with 7 =
l, r = 2, ), = 0.3, k(30) = 0, ü(-) : 0.23 and chaotic
noise applied to (4.3).
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