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Abstract: A unified approach to exponential adaptive stabilization via switching and gain adaptation is pre-
sented for a class of systems satisfying an integral inequality on input-output data. Two types of switching
strategy are discussed. The approach leads naturally to a robust control in the presence of linear and nonlinear
perturbations. Here, we only consider robustness with respect to sector bounded actuator dynamics.
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1 Introduction

In recent papers (see, e.g. [1] - [8]) attention has been
focussed on the stabilization of multivariable systems
in the state space form S(A,B,C) in R"

(t)
y(t)

(where A € IR**", B,CT € IR**™) in the presence of
almost complete ignorance of system structure. More
precisely, for m-input/m-output systems, the state di-
mension n need not be known but it is assumed that it
is known that C'B is nonsingular and that the system
is minimum- phase, i.e. the ‘zero polynomial’

Az(t) + Bu(t)
Cz(t)

(1.1)

sI-A -B

z(s) = c 0 (1.2)

has roots only in the open left-half complex plane.
Under these conditions it has been demonstrated that
output feedback control laws of the form

u(t) = —N()k(t)y(?)

are capable of stabilizing all systems with the above
(or similar) properties. Here k(t) is an adaptive time-
varying gain using output data to ‘search for the cor-
rect gain level’ whilst N(¢) adapts using data to ‘ob-
tain the correct sign of feedback’.

(1.3)

A wide range of results are now available demon-
strating the feasibility of the problem and describing
the separate effects of ‘small’ state nonlinearities (9],
input/output nonlinearities [10], switching strategies
[11] and preliminary results on ‘exponential stabiliza-
tion {12] in a number of cases.

The purpose of this paper is to provide a partial
unification of the ideas by

a) expressing the class of systems in integral in-
equality form,

b) interpreting the inequalities in a form directly
relevant to robustness studies,

c) including exponential weighting as a mechanism
for ensuring exponential stabilization in a simi-
lar manner to [12],

d) demonstrating the possibility of including re-
cently introduced [11] switching strategies
within the general framework, and

e) extending the switching strategy to include ro-
bustness with respect to i/o nonlinearities.

One consequence of the approach is the possibility of
including nonlinear and infinite-dimensional systems
within the system class. See, for example, [7] and [10]
for the details of related work.

In the following L{(a,b) denotes the linear space
of p-integrable functions on the open internal [a,b)
with values in IR? (¢ defined by the context).

2 Properties of the System Class

For ease of presentation, the paper concentrates on
single-input/single-output (SISO) systems with the
property CB # 0 and minimum-phase structure.
Under these conditions, the following result is well-

~ known, see e.g. [9], and the proof is omitted.

Proposition 1: Suppose (4, B,C) € L, then the
system is similarly equivalent to

y(t)
#(t)
where Agy € R(r-1x(n-1) 5 asymptotically stable
and the state is z(t) = S—1 [zgg] ,
S € R™*" invertible. ' (u}

In order to include the possibility of exponential
stabilization in the manner of [12] let w(t) be a con-
tinuously differentiable, positive and non-increasing
function with limit we, € IR as t — +00. Also use the

notation
9(t) := v(t)exp{w(t)t}

Auy(t) + Alzz(t) + CBu.(t)

Ag1y(t) + Azaz(t) (2.1)

itu

(2.9
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where v(-) : IR — IR" is absolutely continuous. Un-
der this structure, the following proposition can be
proved:

Proposition 2: Consider (A, B,C) € X. Then,
for any initial condition z(¢g) and any w(-) with we, =
0, there exists a constant K > 0 such that, for all
measurable inputs u(-), the response y(-) satisfies, for
arbitrary ¢t > tg, to > 0.

b

%;?(t) <K+K / 9%(s)ds + CB / a(s)(s)ds

to to

Proof: The exponentially weighted state space
model has the form

dj/dt = (A +w+wt)j+ A2z + CBa
dﬁ/dt = Aay+ (Azg + (w +d)t)[)2

Note that, under the stated ~ con-
ditions limsup,_, , ., (w(t) + @(t)t) = we = 0 and
hence the system 42 = (A2; + (w + wt))? is an expo-
nentially stable linear time-varying system. A simple
calculation yields

1d . L B
5 77 @) < (A1 +w(0)7” + §A12 + CBig.
Integrating from tg to t > tp and noting that, for

suitable choice of K1, K9 > 0

t t
/g(s)Algf(s)ds <K+ Kg/g)z(s)ds,

to to

the result is easily proved. The details are omitted for
brevity. o

The introduction of exponential weighting is moti-
vated by the following proposition relating properties
of N, k,w and § to the existence of exponential decay
rates on the system state. The conditions of the result
will become ‘targets’ for subsequent analysis and the
underlying basis of the proofs.

Proposition 3: With the control of equation
(1.3), suppose that N(t)k(t) is bounded on [0, 00),
that wee > 0 and that §(-) € L3(0,00). Then there
exists real numbers M > 0 and XA > 0 such that

lz(®)l) < Me™, t>0

Proof: Since wee > 0 and §(-) € L3(0,00),
y(-)e* € Ly(0,00) for all A < we. Choose A €
(0,weo) so that Az + Al 1 is asymptotically sta-
ble. A simple calculation (details omitted for brevity)
then indicates that z(-)e* € L3~'(0,00) and hence
z(-)e* € L3(0, 00). Since

& (=)

= {/\In + [ An - stf(t) -CB ﬁ;z ]} z(t) e

it follows that & (z(t)e**) € L(0, 00), and therefore
z(t) e* € Lo(0,00). The result now follows trivially.
a

To conclude this section, Proposition 2 is used to
extend the potential of the analysis. More precisely,
throughout the remainder of the paper attention is fo-
cussed on the class of SISO systems with the property
that, for any initial internal ‘state’ and any w(-) of the
specified form with we, = 0, there exists a constant K
such that for all inputs u(-), the input response sat-
isfies, for ¢ > ¢y, the inequality in Proposition 2 with
CB #£0.

The use of the inequality permits nonlinear and
infinite dimenstonal perturbations and hence includes
a natural robustness into the control law performance
and analysis.

In the following sections, consideration is given to
(robust) adaptive controllers of the form of (1.3) ca-
pable of stabilizing all systems in the class defined
above.

3 The Case of CB of Known Sign
In this case, let

N(:):=—sgnCB (3.1)

so that we consider the exponentially weighted output
#(-) = cz(-) e“°F of the closed loop adaptive system

#(t) = [A—sgnCB - k(t)- BC]z(t) = (3.2)

Suppose that k(-) € PC(0, o0) is positive and nonde-
creasing.
Using the inequality of Proposition 2, we show
in the following Lemma 1 that lim k(t) = oo and
— 00

tlim w(t) = wew = 0 implies §(-) € L2(0,00) N

L (0, 00). The intuition is, that for tlim k() = ko
. —+ 00

finite but large enough and we, positive but small

enough the result of Lemma 1 is still valid. In this

case a suitable adaptive mechanism may be capable
of ensuring that z(t) is exponentially bounded in ¢.

To find ko, large enough and we, > 0 small enough
adaptively by using the information of the output y(-),
we consider the following feedback and the adaptation
law

u(t) = —sgn(CB)-k(t) - y(t) (3.3a)
) = (kO (o), k0) €Ry (3.3)
w(t) = [1+171 (3.3¢)

This is only a prototype example of a fairly rich
class of gains k(-) and weighting function w(-) which
are related in the following way. w(-) at time t is cal-
culated by using data on present and past values of
the gain k(-)|o 4 so that (i) w o k(t) is nonincreasing
if k(t) is nondecreasing, (il) w o k(t) > 0 if k(t) > 0,
and (iit) w o k(t) goes to zero as k(t) tends to infinity.
k(-) is constructed from measurements §(-) so that (i)

5
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k(t) > 0 and nondecreasing, (ii) k(-) is bounded if
9(-) € Ly N Lo, and (iii) §(-) € Lo if k(-) is bounded.
A precise definition of these classes will be given in a
future paper, here we only consider (3.3).

Now we are in a position to present our theorem
on exponential stabilisation.

Theorem 1: Suppose (A, B,C) € . Then the
feedback evolution (3.3) applied to the system (1.1)
ensures that the solution of the adaptive closed-loop
system (3.2) exists on the whole of IR and is exponen-
tially stable, i.e. there exists g, A > 0 such that

llz(t)|] < pe=?* forall t>0 (3.4)
Moreover
tl_lfg() E(t) = ko <00 (3.5)
lim wok(t) = we >0 (3.6)
90), €= y() € L2(0,00) (3.7)

For the proof of Theorem 1 the following Lemma
is needed:

Lemma 1 If there exists a solution of (3.2) on
[0,t), t' < o0, and tlintl, k(t) = o0, and we = 0, then
9(-) € L2(0,t') N Lo (0, ).

Proof: Aswe = 0, Proposition 2 holds and sub-
stituting for 4(t) gives

%gz(t) <K+ K'/QQ(s)ds - |CB|/k(s)Q2(s)ds.
0 0

If §(-) is not an element of L2(0,t'), a simple calcula-

tion yields . .

-1
lim, [ K(o)i?(e)ds [ / ws)ds} =+
0

0

For large enough ¢, this contradicts the necessary pos-
itivity of the right hand side of the inequality. Con-
sequently §(-) lies in Lg(0,¢') and inspection of the
inequality then yields the consequence that (¢)? is
uniformly bounded on [0, ¢'). a

Proof of Theorem 1: We proceed in several
steps.

(1) Suppose there exists a solution of (3.2) on
(—o0,t’) and k() € Loo(0,t’). Then by (3.3¢) tlin?,w o
k(t) = wl, = 0 and Lemma 1 implies §(-) € L(0,')N
Loo(0,t"). Now (3.3b) gives k(-) € Lo (0,t').

(ii) Since (i) gives k(-) € Loo(0,1'), (3.2) satisfies
a global Lipschitz condition on (0, ¢’). Therefore (3.2)
does not have a finite escape time on [0, t').

(iii) Suppose [0,t), t’ < oo , is the maximal in-
terval of existence of k(-), i.e. t]intl' k(t) = co. Then by
(ii), there exists a unique solution z(-) € La(0,¢') N
Loo(0,t'). This contradicts unboundedness of k(-) and
proves t/ = o0.

(iv) Put ¢’ = oo in the proof of (i). Since k(t) is
nondecreasing (i) proves (3.5), and (3.6) follows from
(3.3¢). (3.3) implies § € L2(0,00) and hence (3.7) is
proved. Finally, (3.4) follows from Proposition 3. O

If the sign of CB in unknown, we could intro-
duce a switching function and a Nussbaum-gain in
the spirit of [1], and obtain generalizations of Lemma
1 and Theorem 1. For brevity we leave this for a fu-
ture paper. Instead, a different switching concept to
the Nussbaum-type setup will be investigated.

4 Exponential Stabilization using Alternative
Switching Strategies ’

It is the purpose of this section to demonstrate that
the new switching strategy introduced in [11] can be
used in conjunction with the exponential weighting
method of previous sections to produce exponential
stabilization of the system state in the sense defined

- by the theorems of the previous section. For complete-

ness the switching strategy is defined fully as follows:
the switching function N(t) takes only values £+1 and
changes sign at times 0 = ¢y < ¢; < ... Defining the
switching decision function ¢(-) by

i t -1
W)= [ NORDP [ / gﬂ(f)dr] (41)
0 0

with k(-) defined in (3.3b), let {);}icmv be a strictly
increasing, unbounded sequence of real, positive num-
bers or “thresholds”. With this notation, N(t) is de-
fined by the following algorithm for the switching
times {t;}: :

i1=0
N(t,') =1
(*) ti41 > t; is defined by the property

N(t)¥(t) < hig1k(to), t € (i, ti1)
N(t:)¥(tiv1) = Aipark(to)

N(t) = N(t,'), te [t;,t,'+1)

N(tiy1) = —N(t:)

i:=t+1

goto (%)

(4.2)

which is well-defined as

a) ¥(t) is monotonic on any interval t > 0 where
N(t) is constant

b) ¥(te) = k(tp) ensures correct initialization of
the algorithm.

Using Proposition 2, if we = 0 then

% () <K + / P(s)ds [K +CBY(t)]  (4.3)
0

which is fundamental to the proof of the following
result generalizing Theorem 1 to the case of the above
switching policy.
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Theorem 2: Suppose (A, B,C) € X. Then the
feedback and adaption law

u(t) = —N@k()y(?) (4-4a)
ki) = ewWNmMa k(0) € Ry (4.4b)
w(t) = [1+7! (4.4¢)

where N(-) is produced by (4.2), applied to (1.1)
yields a closed loop system whose solution exists on
the whole of IR and satisfies (3.4)-(3.7), and moreover

¥(t) has a finite limit o as t = +o0, (4.5)
the switching function N(t) switches only a
finite number of times t1,¢5,...,tM
so that N(t) is constant for ¢ > tp.

(4.6)

Proof:
(i) We show that if there exists a solution z(-) €

L2(0,t"), ¢ < oo, of the adaptive closed loop sys- V

tem £ = [A+ NEBC)z then k() € Leo(0,t'). Sup-
pose k(-) € Loo(0,1'). Then it follows from (4.4c) that
tl'lr’rglw o k(t) = wl, = 0 and (4.3) is valid. Thus ¢(-) €
Loo(0,t') since otherwise CBi(-) would take arbitrar-
ily positive and negative values and (4.3) would imply
a contradiction. As ¥(-) is monotonic on each interval
[ti, ti41) it has a finite limit :li—.ntl' ¥(t) = Yoo and hence
a finite number of switching times t1,...,tp <1’ oc-
cur. In particular, for t € [tar,t’), N(t) is constant
with value +1 or —1. If N(t) = —sgnCB for t €
[tar,t’) then Lemma 1 gives §(-) € L2(0,t')NLeo(0,t")
and therefore, by using (4.4b), k¥(-) € Lo(0,t'). This
contradicts the original assumption that k(t) is un-
bounded. It remains to consider the case that N(t) =
sgn CB for t € [tar,t’). Then the argument in part (i)
of the proof of Proposition 3.5 in [11] yields that ¥(t)
is unbounded. This is a contradiction and the proof
of (i) is complete.

(i) In a similar manner to the proof of Theorem
1 it can be shown that the solution z(-) exists on
the whole of IR and is unique. We omit the proof for
brevity.

(iil) For k() € Lo(0,00) the arguments of part
(iv) of the proof of Theorem 1 remain valid with
|1/)(t)| < koo for all ¢ > 0, which follows from (4.1). Us-
ing algorithm 4.2 and note (i) following it, the bound-
edness of ¥ hence yields (4.5) and (4.6). The proof of
the theorem is now complete.

Clearly, the use of the switching algorithm (4.2)
retains all of the global stabilization properties of
the Nussbaum switching rule whilst avoiding the
“growth” requirements of N. Adaptation of the gain
k(t) is the only growth mechanism in the control law
and hence, intuitively, there is a possibility of achiev-
ing stabilization with reduced limit gains k.. The
proof of only a finite number of switching times is
an important aspect of the result, although the ac-
tual number in a given situation will depend upon

k(0),z(0) and the choice of thresholds {A;}. The lat-
ter problem will be the subject of further study.

5 Robustness of the Alternative Switching
Strategy

The use of the switching decision function (4.1) in-
cludes a large degree of robustness of the control laws.
The presence of input/output actuator and sensor
nonlinearities is not included however. The purpose
of this section is to indicate the robustness of the al-

- ternative switching strategy of Section 4 to this sit-

uation by consideration of input nonlinearities. The
results are a parallel of those appearing in [11] for the
Nussbaum switching case. They also indicate that the
choice of thresholds {);} in Section 4 may be useful
in ensuring robustness.

The actuator nonlinearity is assumed to be un-
known and memoryless and possibly time-varying and
is defined by the conditions

u(t) = &(v(t), 1), v(t) = N@Ok®y(@)  (5.1)

where £ : IR x IR;. — R is assumed to be continuous
and locally Lipschitz in v and measurable and locally
integrable in ¢, moreqver it is a sector linear bounded
function, i.e. for some unknown real numbers b > a >
0 and all ¢t > 0 it satisfies
ad < EAH) < b,
ad > £t 2 bA,

A>0

r<o. (5.2)

Without loss of generality, assume that 0 <a <1<b
by absorbing, if necessary, a suitable scalar into the
scalar factor CB. For notational simplicity, the de-
pendence of £ on ¢ will be dropped in the following
development.

An important function in the analysis is

Yolt) = / a(s)j(s)ds [ / 92(s>ds] )

0 0 “1

t t
= /e“’(‘)’E(N(s)k(s)y(s))g(s)ds /gz(s)ds
0 0
- (5.3)
Clearly ¥y cannot be computed since £ is not known.
Switching will hence be based on
1

I N(s)k(s)g*(s)ds =
¢(t) = 0 - ‘ ‘,_ (54)
.({ 72(s)ds . ﬁ

with ‘thresholds’ related to the values of

-1
$(t) := /k(s)ﬂ2(s)ds [/ Qz(s)ds} (5.5)
0 0

Clearly ¢(t) is positive and non-decreasing if k(t) is
positive and non-decreasing.
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The proposed algorithm will require certain ini-
tialization procedures and hence, noting that N(t) €
{-1,+1} implies that

[H(0] < (1),

the algorithm is assumed to be initialized by the
choice of arbitrary switching 0 = fp < &1 < 2 <
... < ta (A > 2) to assume that |¢(t4)] < é(ta)- It
is further assumed that the designer now specifies a
sequence {;} of strictly decreasing positive real num-
bers converging to zero where Xo € (0,1) is such that
[¥(ta)l < (1 — Ao)é(ta). Note that, with the above
definitions,

n(t) ;= ¥(t) - ¢(t)" P € (-1,1), t>ta

and note that 7(t) is monotonic on any interval where
N(t) is constant with
N(tya(t) 20

t>0, (5.6)

(5.7)

(5.8)

The suggested switching algorithm is now as follows
fort > 14,

i=A
N(t,') = —N(t,'_l)
(*) ti41 > t; is defined by the property

N(ti)ﬂ(t) <l- Ai+}a te (tisti"'l)
N(tn(tie1) = 1= higa (5.9)
N(t) = N(t:), t €[t tis1)
N(t,'.'.l) = —N(t,')
i=i1+4+1 ‘
goto ()

The following analysis arises to demonstrate that,
with the gain adaptations of Section 4, the global
adaptive stabilization is retained in the presence of
any input nonlinearity of the specified form (5.1)-
(5.2). Note that algorithm (5.9) is essentially that of
(4.2) with adaptive thresholds

X = (1= A:)é(t:)/k(0) (5.10)
It is convenient to define
- _ b, N(t)=+1
i(t) = { —a, N(@t)=-1 (5.11)
s(t) — a, ) N(t):-{—l .
= -b, N(it)=-1
and note that, for all ¢t > 0,
sky® < E(Nky)y < sky’ (5.12)

If ) (resp ) are functions obtained from ¥ by replac-
ing N in (5.4) by s (resp 5), then a simple calculation
yields, for t > 0,

B(t) < volt) < (1) (5.13)
and, witha <1<b,
B(t) < ¥(t) < (). (5.14)

Note also that

B(t) = O35 40t) + & y(r)

(1) = —0524() + 32 y(e) 19
and hence for o := (b — a)/(b +a) €[0,1)

P(t) = 1(+a)d(t)e+n(t)] (5.16)

Pt) = }O+a)é()[—a+n(t)

Equations (5.13), (5.14) and (5.16) provide bounds
on ¥o(t), ¥(t) and relate the bounds to the switching
algorithm.

To begin the analysis, the following lemma is first
proved.

Lemma 2: Suppose that k(t) — oco(t — t’). Then
$(t), %(t), ¥(t), Yo(t) and $(t) have finite limits as t —
.

Proof: If ¢(¢) is unbounded, suppose that the

. switching algorithm switches an infinite number of

times 0 = tp < t; < t3... < t'. By construction this
implies that
limsup 5(t) = 41, lign iglf n(t) = -1

t—t/

(5.17)

From (5.16) this gives _
lim sup ¥(t) = +o0 , li{nitnf P(t) = —oco  (5.18)
=t -t/
and hence, using (5.13),
lim sup #o(t) = +o0 , li{nitnf Yo(t) = —oo (5.19)
t—t! -t
As k(t) is unbounded, then we, = 0 and inequality
(4.3) becomes '

% () < K + / §2(s)ds - [K — CBo(t)] (5.20)
0

and a contradiction is obtained as the left-hand-side is

always positive. If ¢(¢) is unbounded it must hence be

true that there are only a finite number M of switches.

Consequently, n(t) has a limit g € (—1,1). If 4(¢) is
t

unbounded, it follows that [ kj%ds is unbounded and
0

hence
g = lim n(t)
tMm t
[ NE@ds + N(tar) [ kids
= lim O:M — (5.21)
[ kg?ds+ [ kj?ds
0 M
= N(tm) =1

which is impossible by construction. It follows that
¢ is bounded and the boundedness of 1, %, %g and ¢
follows from (5.16), (5.13) and (5.14). : u]

We also need the following lemma:

Lemma 3: If k(t) — +oo(t — t'), then §(-) €
L2(0,¢') N Lo (0, ).

Proof: From the previous lemma, 1y and ¢ are
bounded and hence, for all T > 0,t € (T, t')
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t -1

T T t
é(t) > / kj?ds+k(T) / 7ds [ 0/ #ds + T/ gﬂds]

0 T
(5-22)
It follows that §(-) € L2(0,t') otherwise ‘lirrtxl o(t) 2

k(T) for all T which contradicts boundedness. As k()
is unbounded, we, = 0 and hence (5.20) holds proving
that § € Loo(0,t'). This completes the proof of the
lemma. a

The above two lemmas on the behaviour in the
presence of gain divergence form the basis of the proof
of the following main theorem of this section. The
theorem proves the retention of all the global stabi-
lization properties of the adaptive algorithm in the
presence of input nonlinearities and the switching al-
gorithm (5.9).

Theorem 3: Using the control law u(t) =
N(t)k(t)y(t) with N(t) defined by the switching algo-
rithm (5.9) and its initialization phase, suppose that
k(t) is given by (4.4b), (4.4c). Then the closed-loop
adaptive control stabilizes the system in the presence
of the input nonlinearity (5.1), (5.2) in the sense that
there exists a unique solution on the whole of IR sat-
isfying

lim k(t) = koo < +00, lim w(t) =we >0 (5.23)
t—00 t—00

Jim ¥(t) = Yoo €R, lim #(t) = do ERR  (5.24)

and the switching algorithm switches only at a finite

number of times 11, %2, . .., tapr—1, tar- Moreover, §(-) €
L4(0, 00) so that A
y(-)exp (wee-) € L2(0, 00) (5.25)

and there exists real numbers M, A > 0 such that
lz(®)]| < Me, fort>0 (5.26)

Proof: The uniqueness of the solution and the ab-
sence of a finite escape time can be proved in a simi-
lar manner to that of Theorem 1. This is omitted for
brevity, so it remains to show that k(-) is bounded
and that this implies (5.23)-(5.26).

If k(t) — +oo(t — oo) then, by Lemma 3, §(-) €
L2(0,00) N Loo (0, 00) which using property (4.4b) in-
dicates that k(-) is bounded which provides a contra-
diction. By monotonicity, k(t) is bounded with limit
ko and hence w(t) is bounded with limit we > 0 and
#(-) € La(0, 00) follows from (4.4b). The existence of
limits for ¢ and ¢ now follows trivially by definition
as does the exponential bound for the state (using
Proposition 3). It remains only to show that there are
only a finite number of switching times. This follows
from the fact that § € Ly(0,00) and the relation

Ctibn
i
e €(-1,1)
ijo f kijds
t;

drg, () = g

(5.27)
This completes the proof of the theorem. a
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