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IN THE PRESENCE OF NONLINEARITIES
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North Park Road
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United Kingdom
FAX No.: 0392-217965

Abstract: A unified approach to exponential adaptive stabilization via switching and gain adaptation is pre-

sented for a class of systems satisfying an integral inequality on input-output data. Two types of switching

strategy are discussed. The approach leads naturally to a robust control in the presence of linear and nonlinear

perturbations. Here, we only consider robustness with respect to sector bounded actuator dynamics.
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1 Introduction
In recent papers (see, e.g. t1] - t8]) attention has been
focussed on the stabilization of multivariable systems
in the state space form S(A,B,C) in IR"

t ( t )  =  Ax ( t )+Bu( t )
v(t) = Cx(t)

(  1 .1 )

(where Ä 6 IR'x', B,e € IR,"t-) in the presence of
almost complete ignorance of system structure. More
precisely, for m-input/m-output systems, the state di-
mension n need not be known but it is assumed that it
is known that C B is nonsingular and that the system
is minimum- phase, i.e. the 'zero polynomial'

c) including exponential weighting as a mechanism
for ensuring exponential stabilization in a simi-
lar manner to [12],

d) demonstrating the possibility of including re-
cently introduced [11] switching strategies
within the general framework, and

e) extending the switching strategy to include ro'
bustness with respect to i/o nonlinearities.

One consequence of the approach is the possibility of

including nonlinear and infinite-dimensional systems
within the system class. See, for example, [7] and [i0]
for the details of related work.

In the following L$(a,b) denotes the linear space

of pintegrable functiöns on the open internal [o, ö)

with values in IRq (q defined by the context).

2 Properties of the System Class
For ease of presentation, the Paper concentrates on

single-input/single-output (SISO) systems with the
property CB + 0 and minimum-phase structure.

Under these conditions, the following result is well-

known, see e.g. [9], and the proof is omitted.

Proposition 1: Suppose (A,B,C) e E, then the

system is similarly equivalent to

i(t) = Anv(t) I Anz(t) + C Bu(t)
2(t) = Azs(t) t A22z(t) 

(2'l)

where Ä22 6 p(n-r)x("-l) is asymptotically stable

and the state is  " ( t )  -  s- ' [ l [ l ] ] ,

S € IR"x" invertible. o

In order to include the possibility of exponential
stabilization in the manner of [12] let ca(t) be a con-
tinuously differentiable, positive and non-increasing
function with limit @- € IR as t -+ *oo. Also use the
notation

z(s) - (1.2)

has roots only in the open left-half complex plane.
Under these conditions it has been demonstrated that
output feedback control laws of the form

"( t )  = -N(t )ß( t )y( t )  (1.3)

are capable of stabilizing all systems with the above
(or similar) properties. Ilere t(t) is an adaptive time-
varying gain using output data to 'search for the cor-
recü gain level' whilst .lf(t) adapts using data to 'ob-

tain the conect sign of feedback'.

A wide range of results are now available demon-
strating the feasibility of the problem and describing
the separate effects of 'small'state nonlinearities [9],
input/output nonlinearities [10], switching strategies

[11] and preliminary results on bxponential stabiliza-
tion [12] in a number of cases.

The purpose of this paper is to provide a parüial
unification of the ideas by

a) expressing the class of systems in integral in-
equality form,

b) interpreting the inequalit ies in a form directly
relevant to robustness studies,

s I - A  - B  I
c  0 l
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0(t) := u(t)exp{r.r(t)t} (2.2)



where u(.) : IR - IR" is absolutely continuous. Un-
der this structure, the following proposition can be
proved:

Proposition 2: Consider (.4, B,C) e E. Then,
for any initial condition c(te) and any a.'(') with r.r- =

0, ühere exists a constant I{ > 0 such that, for all
measurable inputs u(.), the response y(.) satisfies, for
a r b i t r a r y t ) t s , t e ) 0 .

. l
1 f - � l

*O'O< /(+ rc |  g261as * CB /  a1s;1;1s)as
Z J J

t s  t s

Proof: The exponentially weighted state space
model has the form

dr /d t  =  ( / r r *u *ü t ) f i *An2+cBü
dzldt = Azß + (Azz+@ +üt)I)2

Note that, under the stated con'-
ditions limsup,**- (r..,(t) + ü)(t)t) = ur@ -- 0 and

hence the system # = (Arr* (ar * Üt))2 is an expo.
nentially stable linear time-varying system. A simple
calculation yields

7 )

, fr tt' @ < (,4rr + cu(0))f2 * 9Arz2 + c BüÜ.

Integrating from ts to t ) ts and noting that, for
suitable choice of I(r, Kz ) 0

the result is easily proved. The details are omitted for
brevity. tr

The introduction of exponential weighting is moti-
vated by the following proposition relating properties
of N, ß, ar and y to the existence of exponential decay
rates on the system state. The conditions ofthe result
will become 'targets'for subsequent analysis and the
underlying basis of the proofs.

Proposition 3: With the control of equation
(1.3), suppose that N(t)e(t) is bounded on [0,m),
that tr- ) 0 and that f(.) € L2(0,m). Then there
exists real numbers M > 0 and ,\ > 0 such that

l l ' ( r ) l l  3Mo-^ ' ,  r>0

Proof: Since ar- ) 0 and t(.) € tr2(0, oo),
y(.)e^'  € L2(0,oo) for al l  A (  t , - .  Choose ) €
(0,r-) so that Azz * ).I.-1 is asymptotically sta-
ble. A simple calculation (details omitted for brevity)
then indicates that z(.)sx' € ,l-l(0,oo) and hence
r(.)er '  e Lr(0,m). Since

$ (r(t)e^t)

Ä11 -  N(r ) ' t ( t ) .cB
Azt
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i t  follows that f, (c(t)e)t) € L2(0,oo), and therefore
x(t)e^t € tr-(0, m). The result now follows trivially.
E

To conclude this section, Proposition 2 is used to
extend the potential of the analysis. More precisely,
throughout the remainder of ühe paper attention is fo-
cussed on the class of SISO systems with the property
that, for any initial internal 'state' and any c..'(.) of the
specified form with uoo = 0, there exists a constant .I(
such that for all inputs u(.), the input response sat-
isfies, for I ) t6, the inequality in Proposition 2 with
c B + 0 .

The use of the inequality permits nonlinear and
infinite dimensional perturbations and hence includes
a natural robustness into the control law performance
and analysis.

In the following sections, consideration is given to
(robust) adaptive controllers of the form of (1.3) ca-
pable of stabilizing all systems in the class defined
above.

3 The Case of CB of Known Sign
In this case, Iet

ff(.) := -sgnCB (3.1)

so that we consider the exponentially weighted output
y(') = ce(') tool olthe closed loop adaptive system

t( t )  = [A-  ssnCB. ß( t )  .  BC]x( t )  (3.2)

Suppose that ß(.) € PC(0, oo) is positive and nonde
creasing.

Using the inequality of Proposition 2, we show
in the following Lemma 1 that 

,Eg 
f(t) - oo and

,\*gr(t) 
= ur6 = 0 implies t( ') € .[2(0,m) n

tr*(O,m). The intuition is, that for ,!gß(t) 
= t-

finite but la.rge enough and ar- positive but small
enough the result of Lemma I is still valid. In this
case a suitable adaptive mechanism may be capable
of ensuring that e(t) is exponentially bounded in t.

To find &- large enough and cr- ) 0 small enough
adaptively by using the information of the output y(.),
we consider the following feedback and the adaptation
law

t
r  f ^
| !(s)Ap2(s)ds ( Ii * Ifi | !z(s)ds,

J J
t 6  t 6

u(t)

i,(t)
a(t )

-sgn (CB) .  k(t)  -y(t)  (3.3a)

leuok(t)t y(qr, ß(0) € IR+ (3.3b)

[1 + 4-' (3.3c)

i : : l \  x(t)e^,= { ^ r " * [

This is only a prototype example of a fairly rich
class of gains ß(.) and weighting function o(.) which
are related in the following way. a,,(.) at time t is cal-
culated by using data on present and past values of
the gain t(.)lfo,rt so that (i) c., o ß(t) is nonincreasing

if e(t) is nondecreasing, (ii) ar o lc(t) > 0 if t(t) > 0,
and (iii) or o lc(t) goes to zero as t(t) tends to infinity.
&(.) is constructed from measurements f(.) so that (i)
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ß(t) > 0 and nondecreasing, (ii) r(.) is bounded if

0O e Lz rl f,-, and (i i i) 0O e Lz if ß(.) is bounded.
A precise definition of these classes will be given in a
future paper, here we only consider (3.3).

Now we are in a position to present our üheorem
on exponenüial stabilisation.

Tlreorem 1: Suppose (A,B,C) € D. Then the
feedback evolution (3.3) applied to the system (1.1)
ensures that the solution of the adaptive closed-loop
system (3.2) exists on the whole of IR and is exponen-
tially stable, i.e. there exists p, ) 2 0 such that

l l r ( t ) l l  1 t t " - ^ ' f o r a l l  t > 0  ( 3 . 4 )

Moreover

(iv) Put tt = @ in the proof of (i). Since ß(t) is
nondecreasing (i) proves (3.5), and (3.6) follows from
(3.3c). (3.3) implies 0 e t210,m) and hence (3.7) is
proved. Finally, (3.4) follows from Proposition 3. o

If the sign of. CB in unknown, we could intro
duce a swiüching function and a Nussbaum-gain in
the spirit of [1], and obtain generalizations of Lemma
1 and Theorem 1. For brevity.we leave this for a fu-
üure paper. Instead, a different switching concept to

the Nussbaum-type seüup will be investigated.

4 Exponential Stabil ization using Alternative
Switching Strategies
It is the purpose of this section to demonstrate that
the new switching strategy introduced in [11] can be
used in conjunction with the exponential weighting

method of previous sections to produce exponential
stabilization of the system state in the sense defined

by the theorems of the previous section. For complete-

ness the switching strategy is defined fully as follows:
the switching function N(t) takes only values *1 and

changes sign at times 0 - to ( tr ( ... Defining the

suitching decision function /(.) bV

i  l i  l - 1g(t):= | N1r7t 1"'1E261ar l I O'{ia,l tl.tl
J
o L ö l

with e(.) defined in (3.3b), let {);h6n'r be a strictly
increasing, unbounded sequence of real, positive num-
bers or "thresholds". With this notation, .l/(t) is de-
fined by the following algorithm for the switching
times {t;}:

i = 0
N(t;) = I

(*) ti+r ) t; is defined by the property

N(tr)r /( t )  < ) ;a1t( ts),  t  € ( t ; , t ; . .1)
N(t;)r/(t;+r) = );",.1ß(t6) e.2)

N(t)  = N(t ;) ,  t  € [ t ; , t ;a1)
N(t;+r) = -N(1;)

i : = i * 1
go to (*)

which is well-defined as

a) lt(t) is monotonic on any interval t > 0 where
N(t) is constant

b) /(to) = [(ts) ensures correct initialization of
the algorithm.

Using Proposition 2, if o;- - 0 then

which is fundamental to the proof of the following
result generalizing Theorem I to the case ofthe above
switching policy.

,li* ß(t) = &* ( @

, l i ,rg 
tr o ß(t) = t,r- ) 0

0 ( . ) ,  r ' - ' y ( . )  €  , [ 2 (0 ,oo )

For the proof of Theorem 1 the following Lemma
is needed:

Lemma 1 If there exists a solution of (3.2) on

ll,t'), t' ( oo, and 
H, 

f(t) = oo, and @€ = 0, then

ü(.) e rz(0, /) n r-(0, r').
Proof: A. r- = 0, Proposition 2 holds and sub-

stituting for ü(t) gives

t t
1 ^  t ^  |
* :q ' ( r )  SK+rc  lg2@)as- lcB l  /  r1s ;921s ;as .
Z J J

0 0

If f(.) is not an element of .ü2(0, t'), a simple calcula-

t i o n Y i e l d s i  
r i  -  r - l

J*, / r(s)f2(s)ds lJ o'{üa'l = *-'
b L - o I

Forlarge enough t, this contradicts the necessary poe'
itivity of the right hand side of the inequality. Con-
sequenüly !(.) lies in .L2(0, t') and inspection of the
inequality then yields the consequence that y(t)2 is
uniformly bounded on [0,t'). o

Proof of Theorem 1: \\re proceed in several
stePs.

(i) Suppose there exisüs a solution of (3.2) on
(- - , t ' )  and l ( . )  (  L*(0,1 ' ) .  Then by (3.3c) ,1S, ,  o

ß(t) = oL = 0 and Lemma 1 implies i(.) € 12(0, t ')n
t r - (0, t ' ) .  Now (3.3b)  g ives t ( . )  €  , - (0, t ' ) .

( i i) Since (i) gives ß(.) e I-(0,r'), (3.2) satisfies
a global Lipschitz condition on (0, t'). Therefore (3.2)
does not have a finite escape time on [0, t').

( i i i) Suppose [0,t '), , '  ( oo , is the maximal in-
terval of existence of &(.), i.". 

H,ß(t) 
= m. Then by

(ii), there exists a unique solution r(.) € L2(0,{) n
,-(0, r '). This contradicts unboundedness of ,t(.) and
proves t' = oo.

(3.5)

(3.6)

(3.7)

f,v"Ol s K + j o't lo,lK + cBü(t)l (4.3)
0



Theorem 2: Suppose (A,B,C) € E' Then the

feedback and adaption law

u(t) = -N(t)ß(t)s(t) $-aa)
. r t 2
i ,(t) = 

le'"t( ')t3/1t)l , ß(0) € IR+ (4'4b)

u(t )  = [ t  + t ] -1 (a.ac)

where /V(-) is produced by (4.2), applied to (1.1)

yields a closed loop system whose solution exists on

the whole of IR and satislies (3.4)-(3'7)' and moreover

,b(t) has a finite limit ü- as t + *oo, (4.5)

the switching function N(t) switches only a

finite number of t imes ty,t2, . . .,t7'J

so that /V(t) is constant for t/t7a.
(4.6)

Proof:

(i) We show that if there exists a solution "(') €
L2(0,t '), t '  ( oo, of the adaptive closed loop sys-

tem i  = lA+ NkBC)x then ß( ' )  €  t r - (0, t ' ) .  Sup-
pose ß(.) 4 L*(0,1'). Then it follows from (4.4c) that

,1S,, 
o e(t) = c.r! = 0 and (4.3) is valid. Thus r/(') €

tr-(0, t') since otherwise C Brlt(') would take arbitrar-

ily positive and negative values and (a.3) would imply

a contradiction. As /(') i. monotonic on each interval

[ti, ti+r) it has a finite limit 
,t$, 

r/(t) - ry'* and hence

a finite number of switching times t1, . . .,tM l tt oc-

cur. In particular, for t € ftu,t'),ff(t) is constant

with value *1 or -1. If ff(t) = -sgn CB for t €

I tu, t ' )  then Lemma l  g ives 0( . )  e  fz(O, t ' )nr- (0, r ' )
and therefore, by using (4.4b), *( ') € I""(0,t '). This

contradicts the original assumption that fr(t) is un-

bounded. It remains to consider the case that N(t) =

sgnCB for t € lt*t,t'). Then the argument in part (i)

of the proof of Proposition 3.5 in [11] yields that r/(t)

is unbounded. This is a contradiction and the proof

of (i) is complete.

(ii) In a similar manner to the proof of Theorem

1 it can be shown that the solution e(') exists on

the whole of IR and is unique. We omit the proof for

brevity.

(iii) For ß(.) e tr-(0,oo) the arguments of part

(iv) of the proof of Theorem 1 remain valid with

ll/(t)l S i- for all t 2 0, which follows from (4.1). Us-

ing algorithm 4.2 and note (i) following it, the bound-

edness of ry' hence yields (4.5) and (4.6). The proof of

the theorem is now complete. o

Clearly, the use of the switching algorithm (4.2)

retains all of the global stabilization properties of

ühe Nussbaum switching rule whilst avoiding the
"growth" requirements of N. Adaptation of the gain

e(t) is the only growth mechanism in the control law
and hence, intuitively, there is a possibility of achiev-
ing stabil ization with reduced limit gains ß-" The
proof of only a finite number of switching times is
an important aspect of the result, although the ac-

tual number in a given situation will depend upon
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,t(0), r(0) and the choice of threshold. {};}. The lat-
ter problem will be the subject of further study.

5 Robustnese of the Alternative Switching
Strategr
The use of the switching decision function (a.1) in-
cludes a large degree of robustness of the control laws.

The presence of input/output actuator and sensor

nonlinearities is not included however. The purpose

of this section is to indicate the robustness of the al-

ternative switching strategy of Section 4 to this sit-

uation by consideration of input nonlinearities. The

results are a parallel of those appearing in [11] for the

Nussbaum switching case. They also indicate that the

choice of thresholds {};} in Section 4 may be useful

in ensuring robustness.

The actuator nonlinearity is assumed to be un-

known and memoryless and possibly time-varying and

is defined by the conditions

u( t )  = { (o( t ) , t ) ,  u( t )  = N(t )A( t )y( t )  (5.1)

where { : IR x IR." * IR is assumed to be continuous
and locally Lipschitz in u and measurable and locally

integrable in t, moreover it is a sector linear bounded

function, i.e. for some unknown real numbers ö 2 a >

0 and all t > 0 it satisfies

cÄ

o) i ?3  (b2)
Without loss of generality, assume that 0 < a ( I ( ö

by absorbing, if necessary, a suitable scalar into the

scalar factor CB. For notational simplicity, the de-

pendence of ( on t will be dropped in the follo*'ing

development.

An important function in the analysis is

i  l l  l - '
,l,o(t)= / a1";91,;a" l/ o,t"la";

Jo L ö l
, ,  

. -  

v  L "  
l t r '  l - 1

= | e,Q)"q1r(s)e(s)y(s))1i(s)ds | / O,t ' la'1
J
o L ö J

(5.3 )
Clearly ry'e cannot be computed since ( is not known'

Switching will hence be based on

rt(t):=/ lr(s)r(s)iz(s)as 

'  
(5 4)

I gr!)a' , ''l'
0 '

with 'thresholds' related to the values of 
.

'  f l  l - '
/(t) := [ rpls'61a" | /o't"la"l 

(5 5)
J
o L ö J

Clearly {(t) is positive and non-decreasing if ß(t) is

positive and non-decreasing.

"L
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r  , ,  l T  I  l - t
d(r) u [ *s2as+*1r1 [ E2a' | | O'�o' + | fd'l

i { L d + l
(5.22)

It follows that y(') € Lz(0,1') otherwise l i4.d(t) >

ß(") for all ? which contradicts boundedness. As ß(')

is unbounded, u- = 0 and hence (5.20) holds proving

that y € tr-(0,1'). This completes the proof of the

lemma. tr

The above two lemmas on the behaviour in the

presence ofgain divergence form the basis ofthe proof

of the following main theorem of this section. The

theorem proves the retention of all the global stabi-

lization properties of ühe adaptive algorithm in the

presence of input nonlinearities and the switching al-

gor i thm (5.9) .

Theorem 3: Using the control law u(t) =

lv(r)f(t)y(t) with N(t) defined by the switching algo'

rithm (5.9) and its init ialization phase, suppose that

&(t) is given by (4.4b), ( .ac). Then the closed-loop

adaptive control stabilizes the system in the presence

of the input nonlinearity (5.1), (5.2) in the sense that

there exists a unique solution on the whole of IR sat-

isfying

,llg e(r) = &- ( +oo' ,!g t..l(t) - cu- ) 0 (5'23)

Iä /(t) = ü* € R, ,!ä ö(t) - d- e n (5.24)

and the switching algorithm switches only at a finite

number of t imes tt,t2,. . .,tM-trt14- Moreover, i( ') €

.ü2(0, m) so that
y(.)exp (r*.) e .02(0, m) (5.25)

and there exists real numbers TI, ̂  > 0 such that

l lr(t) l l  <Ti e-^',  for t  2 0 (5.26)

Proof: The uniqueness of the solution and the ab-

sence of a finite escape time can be proved in a simi-

lar manner to that of Theorem l. This is omitted for

brevity, so it remains to show that e(') is bounded

and that this implies (5.23)-(5.26).

If ß(t) - '  +m(t - oo) then, by Lemma 3, i( ') €

.L2(0, m) n tr- (0, m) u'hich using property (4.4b) in-

dicates that ß(.) is bounded which provides a contra-

diction. By monotonicit.v, ß(t) is bounded with limit

[- and hence ar(t) is bounded with limit ar* ) 0 and
g(.) e tz(O,oo) follorvs from (4.4b). The existence of

limits for ry' and d norv follows trivially by definition

as does the exponential bound for the süate (using

Proposition 3). It remains only to show that there are

only a finite number of srvitching times. This follows

from the fact that g e L2(0,m) and the relation

l im t(t) = .lim
t < @  l - o o

(5.27)
E
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