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1 Introduction

One of the basic tasks of the theory of differential equations and dynamical systems is
to study qualitative, asymptotic, long-term behavior of solutions/orbits. Of particular
interest are compact sets which are invariant under the dynamics and attract or repel
all nearby solutions. These attractors and repellers and their basins of attraction and
repulsion form the dynamical skeleton of a system, describing its limit behavior in for-
ward and backward time. Within an attractor there can be further (local) attractors and



repellers the knowledge of which helps to understand the often complicated dynamics on
the attractor. This is the topic of Morse theory. In a compact space X, Morse theory is
a tool to construct a sequence of repellers X = Ry D R; 2 --- 2 Ry = ) corresponding
to a sequence of attractors ) = Ay C A1 C -+ C Ay = X and with it Morse sets
M; = A; N R; 1 forming the dynamical skeleton. Consider e.g.

i =t — 2’ on the interval [—1, 1]
with A; = {—1}, A2 = [-1,0] and R2 = [0,1], Ry = {1}. The Morse sets M, Ma, M3 de-
scribe the asymptotic behavior in contrast to the transient behavior in their complement
(see Fig. 1)

A 1 A2 Ry Ry
® @ ®
M, 1 A{Z A[?)

Figure 1: Morse sets for & = z* — 22 on [-1,1].

For an introduction to Morse theory for autonomous deterministic dynamical systems,
see, e.g., Conley [5], Rybakowski [16] Chapter 3, Carbinatto and Rybakowski [3], Ry-
bakowski [17] or Colonius and Kliemann [4] Appendix B2.

In this paper we undertake an approach towards a generalization of the notion of Morse
decompositions to random dynamical systems (RDS). Random dynamical systems are
formally skew-product flows — but only in the measurable category. In particular,
any topology and continuity is stripped-off from the driving or base flow. Random
dynamical systems have attractors which typically are random sets (see e.g. Crauel
and Flandoli [11], Crauel, Debussche and Flandoli [10], Crauel [6, 7, 8], Flandoli and
Schmalfuf [12], Schmalfuf} [19, 20], and for a brief survey Arnold [1] Chapter 1). However,
there are different notions of attraction, e.g. pullback attraction, forward attraction or
attraction in probability.

The main conceptual problem is to find definitions of attractor and repeller which are
matching in the sense that they allow to prove that a random attractor has a corre-
sponding repeller which then allows to define a Morse decomposition.

The structure of this paper is as follows: In Section 2 we will briefly review Morse
decompositions for topological dynamical systems. In Section 3 we will recall some basic
facts about random dynamical systems. Section 4 will be devoted to the concept of
attractors and their basins of attraction as well as to the dual concept of repellers. The
notion of a Morse decomposition for random dynamical systems will be presented in
Section 5 which also contains our main theorem, stating the dynamical interpretation
of a Morse decomposition. Section 6 contains a prototypical example: the flow on the
projective space induced by a linear random dynamical system. We conclude in Section 7
with some remarks justifying our attractor notion.



2 Morse Decompositions for Dynamical Systems

We briefly recall the basic definitions of attractors, repellers, and of the Morse decom-
position for topological dynamical systems.

Let X be a topological space. A continuous mapping ¢ : R x X — X, (t,z) — ¢(t,x),
is called a topological dynamical system if the family ¢(¢,-) = p(t) : X — X of self-
mappings of X satisfies the flow properties ©(0) = idy, ¢(t + s) = @(t) o ¢(s) for all
t,s € R, where “” denotes composition of mappings. It follows that all mappings ¢(#)
are homeomorphisms of X, and ¢(t) ! = p(—t).

2.1 Definition Let ¢ be a topological dynamical system on a compact metric space
X.

(i) Attractor: Let A be a non-empty compact subset of X which is invariant under ¢,
i.e for which ¢(t)A = A for all ¢ € R. Then A is called attractor of ¢ if there exists a
neighborhood U of A (called fundamental neighborhood) with

lim d(p(t)U, 4) = 0. (1)

(ii) Repeller: Let R be a non-empty compact subset of X which is invariant under .
Then R is called repeller if there exists a neighborhood U of R with

lim d(e(t)U,R) = 0.

t——o00

Note that (1) is equivalent to w(U) = A, i.e. A being the w-limit set of a neighborhood
of itself, similarly a repeller is the a-limit set of a neighborhood of itself.

2.2 Proposition Let ¢ be a topological dynamical system on a compact metric space
X, and let A be an attractor of ¢. Then

R={zeX :wlx)nA=0}

is a repeller and (A, R) is called attractor-repeller pair.

2.3 Definition Let ¢ be a topological dynamical system on a compact metric space
X, and let (4;, R;) be attractor-repeller pairs with

D=4 CAC--CA,=X and X=Ry2Ri2---2R,=0.
Then the family (M;);=1,..n of subsets of X defined by
M, =A;NR;_1, 1<i<n

is called a Morse decomposition of X, each M; is called Morse set.

We quote the following result on Morse decomposition for further use (see Conley [5]
Chapter II or Rybakowski [16] Chapter III).



2.4 Theorem Let ¢ be a topological dynamical system on a compact metric space X.
Then the following two statements are equivalent.

(i) (M;)i=1,...n is a Morse decomposition.
(ii) (M;)i=1,...n attracts all orbits and cycles are not allowed, i.e.
o w(z),a(z) € Uj_, M for each v € X.
o Ifxy,...,xp are points such that for some 1 < jg <--- <7, <n
a(zy) C My, , and w(zy) C Mj, for 1 <k <p,

then jo < jp. Furthermore, jo < jp if and only if z) ¢ U?:1 M; for some k,
whereas otherwise jo = - -+ = jp.

3 Random Dynamical Systems and Random Sets

A random dynamical system (RDS) consists of a continuous cocycle ¢ on a topological
space over a measurable flow 6 on a probability space. To be more precise, let (2, .%, P)
be a probability space, and let 8 : Rx ) — 2 be a measurable map such that 6, ; = 0,00,
for all s,t € R, where 0; : Q@ — Q, 0;(w) = 0(t,w), and 6; preserves P for every
t > 0, and (6;)er is ergodic. Given (Q2,.%, P; (6;)), let (X, d) be a metric space, and let
p:RxQx X — X be a measurable map such that the cocycle property holds, i.e.

ot + s,w) = @(t,0sw) o p(s,w) forallt,s € R and w € €, (2)

where p(t,w) : X = X, p(t,w)z = ¢(t,w, ), is assumed to be continuous for all ¢t € R,
w e Q.

For a systematic discussion of RDS, comprising more general classes than those consid-
ered here, and also presenting several ways of their generation, see Arnold [1] Part I.

3.1 Remark Having assumed two-sided time for ¢ it is straightforward to verify that
¢(t,w) is a homeomorphism on X, and ¢(t,w)™! = p(—t,,w).

We introduce some notation. Any set M C X x € is determined by its w-sections
Mw) ={z € X : (z,w) € M}. We will sometimes identify M with w — M (w). Recall
that, for A and B non-empty subsets of X, the Hausdorff semi-metric d(A, B) is defined
by

d(A, B) := supd(a, B) = sup inf d(b,a).
a€A acAbEB

3.2 Definition (Random Set) (i) A function w — M (w) taking values in the non-
empty compact subsets of X is called a compact random set if w — d(z, M(w)) is
measurable for each € X, where d(z, M) := inf,ca d(z,y).

(ii) A function w — U(w) taking values in the open subsets of X is called an open random
set if w— U(w)® is a closed random set, where U¢ denotes the complement of U.



3.3 Definition (Invariance of Random Set) A random set M is said to be forward
invariant under the RDS ¢ if p(t,w)M(w) C M(fyw) for all ¢ > 0. It is said to be
invariant if p(t,w)M(w) = M (6;w) for all t > 0.

3.4 Remark Suppose that, for some random set M, ¢(t,w)M(w) C M(Ow) for all
t € R. Then it is straightforward to verify that M is invariant, invoking Remark 3.1.
Furthermore, a similar argument gives that p(t,w)M(w) = M (fw) for all t € R for an
invariant set M.

3.5 Definition (Isolated Invariant Random Set) An invariant random set M is
called isolated, if there exists a random neighborhood U of M such that for each random
variable z with the property that the orbit through x remains in U almost surely then
the orbit already belongs to M almost surely, i.e. the inclusion

o(t,w)r(w) € U(fw) forallt € R as. implies z(w) € M(w) a.s.

4 Attractors and Repellers

4.1 Definition (Attractors and Repellers) Let ¢ be an RDS.

(i) A random compact set A which is invariant under ¢ is called (local) attractor of ¢ if
there exists a random open neighborhood U of A (i.e. A(w) C U(w) a.s.), which is forward
invariant such that for each random closed set V' C U the distance d(p(t,w)V (w), A(6;w))
converges to 0 in probability, i.e.

tgrgo P{d(p(t,w)V(w), A(Bw)) > e} =0 for every ¢ > 0. (3)

The neighborhood U is said to be a fundamental neighborhood of A.

(ii) A random compact set R which is invariant under ¢ is called (local) repeller of ¢ if
there exists a random open neighborhood U of R which is backward invariant such that
for each random closed set V' C U the distance d(p(t,w)V (w), R(f;w)) converges to 0 in
probability as ¢ — —o0, i.e.

t_l}r_nooP{d(w(t,w)V(w),R(Htw)) >e}=0 for every ¢ > 0. (4)

The neighborhood U is said to be a fundamental neighborhood of R.

4.2 Remark (Attractors and Attracting Universes) Associated with an attractor,
the notion of a universe is used in the literature (see e.g. Arnold [1] Definition 9.3.1). A
universe denotes a family of subsets of X x €2 such that with every element of this family
also every of its subsets is an element of the family. An attractor for a universe is then
a compact, invariant random set such that (3) holds for every element of the universe,
and such, in addition, the attractor itself is an element of the universe.

Given a local attractor A with forward invariant neighborhood U satisfying (3) for each
closed random V' C U, we get a universe in this sense by taking

U={VCcXxQ:V(w) CU(w)} .



Clearly we have, for any V € 4,

lim d(p(t,w)V (w), A(bw)) =0 in probability, (5)

t—o0
and obviously A € 4.

4.3 Remark (i) Suppose that Uy, Us are fundamental neighborhoods of a local attractor
A. Then also Uy N U, is a fundamental neighborhood of A.

(ii) An RDS is a nonautonomous system in the way described by the cocycle property (2).
It hence matters whether we define asymptotic properties like attractivity (a) by going
from —t to 0 or (b) by going from 0 to ¢, and then letting ¢ — oo. The choice (a) offers
itself as the mathematically natural one for the following reason: While ¢ is moving,
the quantity in question, d(p(t,0_w)V (0_w), A(w)), is always studied at time 0, where
typically w-wise convergence can be expected. The choice (b), in contrast, seems to be
physically natural, but considers quantities, namely d(p(t,w)V (w), A(6;w)), which are
moving with ¢ forever, being responsible for the fact that they often do not converge
w-wise.

The choice of the weaker mode of convergence in probability symmetrizes the situation
and makes the two approaches equivalent since

P{d(p(t,0_w)V (0-w), A(w)) > e} = P{d(p(t,w)V (w), A(fw)) > €}

due to the fact that P is invariant under 6;.

Random attractors defined by the choice (a) are know as “pullback attractors” and were
introduced and studied by Crauel and Flandoli [11], Crauel, Debussche and Flandoli [10],
Crauel [6, 7, 9], Flandoli and Schmalfuf§ [12] and Schmalfuf} [19, 20] among others.

The concept of attractor given in Definition 4.1 (i) was introduced and studied by
Ochs [14] under the name “weak attractor”. Relations between these notions of at-
traction have been investigated by Scheutzow [18]. Note that an attractor as defined in
Definition 4.1 attracts random sets which is in general stronger than the notion of point
attractors attracting only random variables (see Crauel [7]).

We will make use of an auxiliary lemma.

4.4 Lemma Suppose that U is a forward invariant random set for an RDS ¢, i.e.,
o(t,w)U(w) C U(fw) for every t >0, w € Q.
Then for every s <t we have

o(t,0_w)U(O_1w) C p(s,0_sw)U(0_sw).



Proor With t = s+t — s, and noting that t — s > 0, we have

Pls 1= 5,0 @)U w) = pls,0-w)(lt — 5.0-w)U(0_w))
C ‘P(sao—sw)U(ot—s(o—tw))
= ¢(s,0_sw)U(0_sw),
where we used forward invariance to get p(t — s,0_w)U (0_w) C U(0;—s0_1w).

The following lemma is inspired by Proposition 2.5 in Ashwin and Ochs [2], where a
similar result is proved for point attractors.

4.5 Lemma (Basin of Attraction and Repulsion) Let ¢ be an RDS.
(i) Suppose that A is an attractor of ¢ with a forward invariant fundamental neighbor-

hood U. Then
Cw) :={z € X : p(t,w)z € U(fw) for some t > 0} (6)
is a random set with the following properties
e C is invariant,
o C(@) = Uso @1, 0)U () = lim (=T, 07)U (0r),
e A is attracting every closed random set V. C C, i.e. (3) holds.

C is called the basin of attraction of A.

(ii) Suppose that R is an attractor of ¢ with a backward invariant fundamental neigh-

borhood U. Then
Cw) :={z € X : p(t,w)z € U(fw) for some t < 0}
is a random set with the following properties
e C is invariant,
o C() = Usco #(—1,00)U (0) = lim (T, 0 1)U (0 1w),
e R is repelling every closed random set V C C, i.e. (4) holds.
C is called the basin of repulsion of R.

Note that the basin of attraction or repulsion, respectively, is independent of the funda-
mental neighborhood. This assertion follows from Proposition 5.1 about repellers below,
and will be formulated in Corollary 5.2.

PROOF We prove only (i), the arguments for (ii) are similar.

To see that C(w) = U~ ¢(—t, Oiw)U (Ayw), note that z € C(w) is equivalent to ¢(t,w)z €
U(fw) for some t > 0, or, equivalently, = € ¢(—t,6;w)U(6;w), invoking ¢(t,w)™! =



¢(—t,6,w) again. But this inclusion holds if and only if = € {J;~q ¢(—t, iw)U (Gw).
From Lemma 4.4 (applied to —T < —t for every t < T) we get

U et 0w)UOw) = o(~T, b7w)U (67w) (7)
0<t<T

for every T' > 0. This implies, in particular, that ¢(—T, 07w)U (frw) is increasing in T for
every w. Having assumed ¢ to have two-sided time, whence (¢, w) is a homeomorphism,
this implies that C, given by C(w) = lim p(—T, 7w)U (Arw), is an open random set.

Invariance of C' follows from
o(s,w) (p(—T,07w)U(07w)) = (s — T, 0r_0sw)U (Or_sOw)

for every s > 0, noting that the left hand side increases to ¢(s,w)C(w), while the right
hand side increases to C'(6sw), as T — oo.

To prove that A attracts every random closed set in C, choose a random closed set V' with
V(w) C C(w) = Upsg o(—t,0:w)U(6iw). By compactness of V' together with (7) there
exists T = T'(w) > 0 such that V(w) C ¢(=T,07w)U (7w), and therefore o(t,w)V (w) C
o(t—T,0rw)U(frw) C U(fw) for all ¢t > T by forward invariance of U. Define a random
variable n by n(w) = inf{n € N : ¢(n,w)V(w) C U(Opw)}, and put Q,, = {w : n(w) <
m}. For any € > 0 there is Np € N such that P(Q%, ) < 5. Define

| V(w) for w € Qu,
Z(w) = { A(w) for w ¢ on,

then Z is a compact random set with ¢(¢,w)Z(w) C U(fw) for all w and ¢ > 0, and
therefore lim d (¢ (¢, w)Z(w), A(fiw)) = 0 in probability for ¢ — co. Consequently, there
exists T'(g) > 0 such that P{d(p(t,w)Z(w), A(Bw)) > e} < § for all t > T(e). We
therefore get

Plw : d(p(t,w)V (), A(w)) > €}

< P({w d(p(t,w)V (w), A(Gw)) > e} N QN0> + P(Q%,)

< Pld(e(t,w)Z(w), A(Bw)) > e} + P(QR,)
< S4+i=¢  forallt>T(e).
2 2
which implies that V is attracted by A in probability. Since this holds for every closed
V c C, A is an attractor with basin of attraction C. |

5 Morse Decompositions for Random Dynamical Systems

One of the building blocks of Morse theory is an attractor-repeller pair, i.e. a repeller cor-
responding to a given attractor. The proof of the following proposition follows Ochs [14].



5.1 Proposition (Repeller from Attractor) Let p be an RDS on a compact metric
space X and let A be an attractor with a forward invariant fundamental neighborhood U,
i.e., C as defined in (6) is the basin of attraction. Then R, given by

R(w) = X'\ C(w),
is a repeller with basin of repulsion X \ A(w), and A and R are disjoint.

PRrROOF Lemma 4.5 implies that R(w) = X \ C'(w) is an invariant compact random set.
Moreover, A(w) C C(w), thus A(w) N R(w) = 0.

Let € > 0. Then B:(R(w)) := {z € X : d(z, R(w)) < €} is an open random set. Let V
be a random compact set with V' C A¢. Using ¢(—t,0;w)~! = ¢(t,w) and ;-invariance
of P, we get for t > 0

P{d(p(~t,0)V (0w), Rw)) 2 e} = P{p(~t,6,)V (61w) N Bo(R(w))* # 0}
P{o(t,w) B-(R(w))* NV (6,) # 0}
= P{p(t,0-1w) B.(R(0-w))° NV () # 0.

Since VN A = 0, we can find a 6 > 0 with P{V(w) N Bs(A(w)) # 0} < 5. Since
B.(R(w))¢ C C(w), the basin of attraction of A, there exists T'(¢,d) > 0 such that

P{d(p(t,0—1w) B:(R(0-w))", A(w)) > 6}
= P{o(t,0_1w)B(R(0_w))° N Bs(A(w))¢ # 0} <

DN ™

for all t > T'(¢,0). Now, we have

P{p(t,0-w) B=(R(0_w))° NV (w) # 0}
= P{(p(t,0-w)B:(R(6_w))° N V(w) N Bs(A(w))°) # 0}
+P{(¢(t, 0—w) B:(R(6_w))° NV (w) N Bs(A(w))) # 0}
< P{p(t,0_w)B-(R(0_w))° N B5(A(w))" # 0} + P{V(w) N Bs(A(w)) # 0}

< = + f=e
2 2
for all t > T'(e,0), which implies that V is repelled by R. Consequently, R is a repeller
with basin of repulsion X \ A. O

5.2 Corollary (Basin of Attraction is Well-Defined) Let ¢ be an RDS on a
compact metric space X and let A be an attractor with a forward invariant fundamental
neighborhood U. Then the basin of attraction C, as defined in (6), is independent of U
almost surely.

PROOF Suppose that A is an attractor with two basins of attraction C7 and C3. Then,
by Proposition 5.3, R;(w) := X \ Ci(w) and Ry(w) := X \ C2(w) are two repellers with
the same basin of repulsion X \ A(w). Thus, R; is a random compact set lying in the
basin of repulsion of R, so that

t_l)im d(p(t,0_1w)Ry(0_4w), Ro(w)) =0 in probability.
—00



~in probability

Figure 2: Construction of Repeller.

Invariance of R; implies
d(Ry(w), Re(w)) =0 a.s.,

hence R; C Rs a.s. Applying the same argument with the roles of Ry and Ry inter-
changed we get Ro C R; a.s., and thus R; = Ry a.s. or, equivalently, Cy = (5 a.s.
O

5.3 Definition (Attractor-Repeller Pair) Let ¢ be an RDS on a compact metric
space X, and let A be an attractor with basin of attraction C. Then R, given by

R(w) = X\ C(w),

is called the repeller corresponding to A, and (A, R) is said to be an attractor-repeller
pair.

5.4 Theorem Suppose that Ay C Ay a.s. are two attractors of ¢ with corresponding
repellers Ry, Ro, respectively. Then R1 2 Ra a.s.

PROOF Since Ry is a repeller with basin of repulsion A§ we have Ry C AS, and from
AS C Af we therefore get that Ry is a compact random set in Af, which is the basin of
repulsion of R;. Consequently, limd(go(—t, 0,w)Re (Oyw), Ry (w)) = 0 in probability for
t — 00, which, in view of the invariance of Ry, implies d(R2(w), R1(w)) = 0 a.s., which
means Ry, C Ry a.s. It remains to prove that R; # Ry a.s., which amounts to showing
that Ry \ Ry # 0 a.s.

Since Ay \ A1 # 0 a.s., and Ay, Ay are compact random sets, for any £ > 0 there
exists & > 0 such that P(Q5) > 1 — 5, where Q5 = {w : d(42(w), 41(w)) > §}. Put

10



§(w) := 3d(Az(w), A1(w)), and define the random set

W) = Bs(y (Af(w)) N Az(w) for w € Qs
Blw) = { }%1(w) for w ¢ Q5.

Then Z(w) C Af(w), so Z is repelled by R;, hence for all §; > 0 there exists 7'(d;) > 0
such that for all t > T'(6;)

P{d(p(~t,0:w)Z(0w), Ri(w)) < &1} > 1 _g

or, equivalently,

£
fﬁ¢p¢ﬁwazwwocl%ARﬂw»}zl—é
for all ¢ > T'(01). Now since p(—t,0w)Z(0w) C Az(w) for all w € Q5, we have

P(Ag N 351 (Rl) 7é @)

> P(Q;n{A2N Bs (Ry) # 0})
> P(QN{p(~t,0w)Z(0w) C Bs, (Ri1(w))})
> 1—%—%:1—5

for all ¢ > T(d1), 61 > 0 and € > 0. That means, if we define Qf := {w : Az(w) N
B51 (R1 (w)) 7é @} then
P(Q5,) = 1 for every 01 > 0.

Put Q* := N9, Q% , then P(Q*) = 1. We prove that As(w) N Ry (w) # 0 for all w € Q*.

Suppose that with some w* € Q* we have As(w*) N Ry(w*) = (. Then because of the
compactness of As(w*) and R;(w*), we have

6" := inf d(a,r)>0.
a€Ag(w*),
rERy(w*)

Thus As(w*) N By« (R1(w*)) = 0, which is a contradiction to the definition of Q*. There-
fore, Ao N Ry # 0 a.s., and because A3 N Ry = () a.s. we have Ry # Ry a.s., which yields
Ry C Ry as. O

5.5 Definition (Morse decomposition) Let ¢ be an RDS on a compact metric
space X. Suppose that (A4;, R;) are attractor-repeller pairs with

D=4 CA C---CA, =X as. and X=Ry2Ri 2--2R,=0as.
Then the family (M;)i—1,. » of subsets of X, defined by
M;=A,NR; 1, 1<i<n

is called a Morse decomposition of X, and each M; is called Morse set.

11



5.6 Example Consider the Stratonovich stochastic differential equation (SDE)
dX; = (X; — XP)dt + (X, — X}) o dW,.
in the interval [—1,1]. This SDE generates an RDS ¢ : R x @ x [-1,1] — [—1, 1] with

rettWt (w)

t,w)r =
ol w) (1 — 22 + 2e2+2Wi(w))3

(see e.g. Kloeden [13], p. 123). It can be shown that A; = {—1} is an attractor with
basin of attraction C' = [—1,0); Ay = {—1,1} is an attractor with basin of attraction
C = [-1,0) U (0,1]. Thus the corresponding repellers are R; = [0,1] and Ry = {0}.
Therefore, the Morse sets are M; = {—1}, My = {1} and M3 = {0}. Note that also
Ay = {1}, Ry = [—1,0] is an admissible choice yielding the Morse sets M; = {1}, My =
{—1} and M3 = {0}.

Example 5.6 is simply a modification of a deterministic Morse decomposition. For an
example with random Morse sets, see Crauel [7] or the example in Section 6 below.

5.7 Lemma (Properties of Morse sets) Morse sets are non-empty, invariant,
pairwise disjoint and isolated.

PROOF Let M; = A; N R; 1 be a Morse set. Then M; is non-empty by Theorem 5.4.
Furthermore, M; is the intersection of two invariant sets and hence invariant. Let M; =
A; N Rj_; be another Morse set, assuming 7 < j without loss of generality. Using the
fact that A; C Aj_l C Aj, Rj_l C Rj, we get

M; " M; = A;NR;_1 N Aj NRj 1= A; N R; 1 C Aj,1 NR;j = 0.
To prove that M; is isolated note that 4 and Jg, defined by

oa(w) = mei}\r/l[f(w) d(m, A;_1(w)) and or(w) = mei}\r/l[f(w) d(m, R;(w)),

are random variables, and hence
U(w) := Bs()(M;(w)) with 0(w) = 3 min{d4(w), dr(w)}

is a random set. Suppose that x is a random variable which satisfies

o(t,w)z(w) € U(fiw) forallte R (8)
and P{z(w) ¢ M;(w)} > 0. Using the fact that M{ = AU R} ,, AY is the basin of
repulsion of R; and Rf is the basin of attraction of A; 1, we can choose T > 0 such
that P{d(o(T,w)x(w), Ai-1(w)) < 6} > 0 and P{d(p(-T,w)z(w), Ri(w)) < 0} > 0,
contradicting (8) O

5.8 Remark (i) Using the theory of RDS on random subsets (see Chapter 1.9 in
Arnold [1]) one can easily generalize the notion of a Morse decomposition to RDS which
are restricted to compact invariant random subsets.
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(ii) If (M;)i=1,..n is a Morse decomposition with defining attractor-repeller sequence
(A;, R;) then (A;_1, M;) is an attractor-repeller pair in the compact metric space A;.

(iii) Suppose that we are given a Morse decomposition (M;);—1,.. , with defining attrac-
tor-repeller sequence (A;, R;), 1 < i < n. The question now is how to recover (A;, R;)
based on what we know about (Af;)i—1,. . To answer this question, first note that
M, = Ay and M, = R,_y. Since (A,_1,R,—1) is an attractor-repeller pair in the
invariant compact metric space X = A,,, we can recover A, 1 by using the information
we know about R,_; (in fact, A,_; is the complement in X = A, of the basin of
repulsion of M,, = R,,_1). In general, suppose that we know A;. Now, using (a), we can
recover A;_1 by using the fact that A;_; is the complement in A; of the basin of repulsion
of M;. The same argument is used to recover the repeller R;_; from the attractor A;_;.
Therefore by induction we can recover all attractor-repeller pairs based on the Morse
decomposition.

We are now able to formulate our main result on a dynamical interpretation of a Morse
decomposition.

5.9 Theorem (Dynamical Properties of Morse Decomposition) Suppose that
(M;)i=1,...n is a Morse decomposition for an RDS ¢ on a compact metric space X, given
by attractor-repeller pairs (A;, R;), 1 < i < m. Then the compact random set M, given

by
n
M(UJ) = U Mi(w)a
i=1
determines the limiting behaviour of ¢ on X. Furthermore, cycles between the Morse
sets are not allowed. More precisely:

(i) For every X -valued random wvariable © the set M attracts both forward and back-
ward in time, which means that d(p(t, w)z(w), M(6;w)) converges to 0 in proba-
bility for t — £oo.

(ii) If a random variable x is attracted by M; and repelled by M; for some 1 <i,j < mn,
i.e., if

lim d(p(t, w)z(w), M;(Ow)) = Oandt_ljznood(@(t,w)x(w),Mj (Oiw)) =0

t—o00
in probability, then 1 < j.
(iii) If the conditions of (ii) are satisfied, then i = j if and only if © € M; a.s.

(iv) If z1,...,zp are X-valued random variables such that for some 1 < jo,...,j, < n,
xy is repelled by Mj, | and attracted by M, , then jo < j,. Furthermore, jo < jp
if and only if P(xy ¢ M) > 0 for some k, whereas otherwise jo = --- = jp.

PROOF Invariance and compactness of M follow from invariance and compactness of
the Morse sets M;, 1 <1 < n.

13



In order to prove (i), partition 2 into
Q; = {z(w) € R{(w) N R;—1(w)}, 1<i<m,
recalling that we have X = Ry D Ry D --- 2 R, = () for the repellers. Then
P{d(p(t,w)z(w), M(w)) >r}

- ZP<{d(<P(t,w)x(w),Mi(w)) >r)n Qz)
i—0

= ZP({d((p(t,w)x(w),Ai(w) NR;i_1(w)) >r}N Qi>,
i=0

where each of the components of the last sum is small for ¢ sufficiently big due to the fact
that z(w) € Rf(w)NR;—1(w) for w € Q;, whence it is attracted by A;NR;_;. Therefore «
is attracted by M forward in time.

A completely analogous argument, using a partition of €2 according to repulsion by
putting Q; = {z(w) € A ;(w) N Aj(w)}, 1 < i < n, gives the assertion for attraction
of M backward in time.

To prove assertion (ii), note that repulsion of M; = A; N R;_; implies that
P{d(p(-T,0rw)z(0rw),A;j(w)) < 6} can be made arbitrarily close to one by choosing
T > 0 large enough, which means that ¢(—T, 07w)z(07w) € Bs(A;(w)) with probability
arbitrarily close to one. Since Bs(A;) is in the domain of attraction of A; for § suf-
ficiently small with arbitrarily large probability, this implies that x is attracted by A;
with positive probability. Having assumed z to be attracted by M; = A; N R;_1, we
infer from R;_; C A | that A;NAS | # () with positive probability (and therefore with
probability one). Now j < ¢ would imply A; C A;_1, and therefore A;NAS | = (), which
would give a contradiction. Consequently, we must have 7 < j.

In order to prove (iii), suppose that ¢ = j. If z € M; a.s. is not satisfied then P{x ¢ A;} >
0,or P{x ¢ R;_1} > 0. In case = ¢ A; with positive probability, it is repelled by R; with
the same probability, which contradicts repulsion of x by M;, since R;\NM; C R;NA; =0
a.s., while in case z ¢ R; 1 with positive probability, then it is attracted by A; 1 with
positive probability, whence attraction of by M; contradicts A;_1NM; C A;_1NR;—1 =
() a.s. Consequently, attraction and repulsion of z by the same Morse set M; implies
x € M; a.s. The other direction of the assertion is immediate from the invariance of the
Morse sets.

Finally, to prove (iv) first note that (ii) implies jx_1 < ji for 1 < k < p, and (iii) gives
Jk—1 < ji in case P(zy ¢ M) > 0 for some k. O

Note that the assertion of Theorem 5.9 does not translate literally to arbitrary (random)
sets instead of points. In fact, already the deterministic example & = z(1 —z) on X =
[0,1] has a Morse decomposition given by A; = {1} C A3 = X and Ry = {0} 2 Ry = 0),

14



giving My = A; = {1} and My = R; = {0}. The compact set X is neither attracted nor
repelled by M = M UM, = {1}U{0}. If, however, the random sets are assumed to have
nonempty intersection with the Morse sets M a.s. then the assertions of Theorem 5.9
hold for those sets instead of points.

5.10 Remark (Characterization of Morse decomposition) Is the inverse of
Theorem 5.9 true? Assume that M;, 1 < i < n, are compact invariant random sets such
that conditions (i)—(iv) of Theorem 5.9 hold. Can we show that (M;);—=; . is a Morse
decomposition? Actually property (ii) allows us to define an order relation

M; < Mj =4

there are indices jo,. .., jp with jo =7 and j, = j, and there are random variables
Zi,...,%p € X, such that, for k =1,...,p,
lim d((p(t,w)wk(w),Mjkfl(Htw)) =0 and tgrgo d((,o(t,ou)wk(ou),Mj,c (Otw)) =0.

t——o0

Thus we can relabel the indices such that M; < My, if and only if j < k.

To show that (M;);=1,..., is a Morse decomposition we would have to show that M; = A;
is an attractor in the sense of Definition 4.1, i.e. attracting closed sets in its basin. The
crucial point is to find a forward invariant fundamental neighborhood. We are not aware
of a technique to construct such a forward invariant neighborhood of M; in general.
However, if we assume that (Mi)izl,___,n is a Morse decomposition then we can show that

Cj,i = A?—l N ch N Aj NR;,_1 for j >4

are invariant, open random sets with the property that closed random sets V with
V' C Cj,; a.s. are repelled by M; and attracted by M;. Moreover, the C;; and the M;

form a partition

n

X = UMZ U UCj:i'

i=1 §>i
We see that the existence of those sets Cj; is a necessary condition for (M;);—1,. . to
be a Morse decomposition. On the other hand, once we have invariant, open random
sets C; disjoint from M and with the property that closed random sets V' C C; are
repelled by M, and attracted by M;, we can use similar arguments as in Remark 5.8
to recover an attractor sequence A; with corresponding repeller sequence R; such that
M; = A; N R;_1, hence proving the inverse of Theorem 5.9.

6 A Prototypical Example

Suppose that ® : R x Q x R? — R? is a linear RDS over (Q,.%, P; (6;)icr), satisfying
the integrability condition of Oseledets’ Multiplicative Ergodic Theorem (MET) (see,
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e.g., Arnold [1] Part II, Theorems 3.4.1 and 3.4.11 or, for the original formulation,
Oseledets [15]). Then there are real numbers A\; > A9 > ... > A, for some n, 1 <n <d,
called the Lyapunov ezponents of ®, such that lim; o 1 log (¢, w)z|| € {\1,...,A¢}
for all z € R? \ {0}, for P-almost all w. Furthermore, there are invariant random linear
subspaces E1,..., E,, called Oseledets spaces, such that

1
lim —log||®(t,w)z|| = A; ifand only if z € E;(w)\ {0}
t—too t

where convergence is uniform with respect to x € E;(w) N S~!. In particular, E1(w) @

Note that equivalence of norms in finite dimensional linear spaces implies that all the
assertions of the MET do not depend on the choice of a norm.

Linearity and invertibility of ® imply that ® induces RDS on each of the homogeneous
spaces of the general linear group, amongst which there are the Grafimann manifolds
and, as a special case of these, the projective space P4~!. For a systematic presentation
see, e.g., Arnold [1] Chapter 6. We restrict ourselves here to the case of the projective
space. Denote by P® : R x P! x @ — P4=! the RDS induced by ® on P4~'. Note
that P! is compact. Projecting the Oseledets spaces Fi, ..., E, of ® to P! defines
compact random invariant sets M; = PE; for P®.

The proof of the next theorem is essentially a reformulation of well known results. We
give a simplified argument for the case of Oseledets spaces which are orthogonal with
respect to some scalar product, and we give the arguments for the unit sphere instead
of the projective space. In the general case one may then use the fact that uniform
attraction in probability is invariant under Lyapunov cohomology, and that general
systems are Lyapunov cohomologous to systems with orthogonal Oseledets spaces. See,
e.g., Arnold [1] Section 4.3 for details.

6.1 Theorem Let ® be a linear RDS satisfying the assumptions of the MET. Then the
compact invariant random sets M; = PE; define a Morse decomposition of the induced
RDS P& on P4-1.

ProOF It is sufficient to prove that A; = P(E; @ --- @ E;) defines a set attractor, the
basin of attraction of which is P4~!\ R;, where Rj = P(E;11 @ --- & E,,) is the repeller
corresponding to A;.

Suppose that the Oseledets spaces are orthogonal with respect to some scalar product,
and denote by p(t,w)z = % the RDS induced by ® on the unit sphere S?~! with
respect to the norm induced by the corresponding scalar product. We prove the stronger
statement

tlgfr)lo d(p(t,w)V (w), Aj(Bw)) =0 a.s.

for any random compact set V with V(w) C S9!\ R;(w) a.s., which implies convergence
in probability.
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Fixing w, every z € V(w) can be written as z = 2{21 ;T + Z?:j+1 o; i, where a;x; is
the image of = under the projection to E;, and z; € E;NS% 1. So we have ||z|| = ||lz;|| = 1
fori =1,...,n. Since z ¢ R;, ZZI yoiz; #0. The map Py : V(w) = E1 @ -+ @ Ej,
z — Y., o, is continuous, hence 0 = min,cy () [|[Pj(z)]| > 0. From the pairwise
orthogonality of F;(w) and go(t,w)EZ( )N §d—t = (Otw) NS4 we get

J ] J

H Z (P(tv w)aixz
i=1

Z lo(t, w)aia; ||* = 2:|04i|2||<P(t,w)xill2 =) el > 8%

i=1 i=1

Similary, || Dot go(t,w)az-miHQ < A? for some A > 0.
The MET implies limy_, 1 log ||®(¢,w)y|| = A; uniformly on M;,i = 1,...n. Therefore
for any 0 < e < 3 min;<;(X; — ;), there exists T'(¢) > 0 such that for all ¢ > T'(e) > 0

1, w)yll

> Nt foralli=1,...,7,
1®(t,w)y|| < Xt foralli=j+1,...,n

Then we have

J J
H@(t,w) S| = H S 1Dt w)aillo(t )i
=1 =1

J

> Al > gei—et
> min () ‘;go(t,w)azx, > de
1=
and
n n
|ottw) > aw| = | 32 Iewmilet v,
i=j+1 i=j+1

< AePi+ot,

n
| > eltwais,

i=j+1

< .
< max 12 (¢, w)zi

where we use z; € F;, and that the Oseledets spaces are assumed to be orthogonal. Now
put u = (¢, w) Zl p gz and v = O(t,w) Y31 a;zi. Then for every ¢ > T(e) we
have [Ju|| > 0 —9)* and ||v|| < Ae(ti+1+€)t, Therefore

d(p(t,w)V (w), 4;(biw)) = xren\?(X)aerX(lg:w) d(p(t,w)z,a)

(¢ J

< max d((p( UJ) ( L(J) Zz 1 QiLi > = max M H

z€V(w) ||<I>(t w) aill) eV Hu+oll — Jlull

=1

< o

o€V (e HUH IIUH sev(w) lul = o]

(25+/\J+1 Aj)t

< max 2 1ol 3° e(ZEtAH= ) s () ag t — 0.

veV(w) |lull = (vl 7 1-%2e A o241 X))t

Consequently, V' is attracted by A;. O
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7 Discussion and Conclusions

In this paper Morse theory for RDS has been discussed with respect to attraction and
repulsion in probability. We claim that pullback and/or forward attraction and repulsion
will fail to serve our claim. In this section we briefly discuss some aspects.

Recall that we defined a repeller R associated to an attractor A to be the complement
of its basin of attraction, see Proposition 5.1. The deterministic theory uses a different
characterization, namely it defines

R ={z € X : (Omega limit set of ) N A = 0}.

The notion of Omega limit sets is available for RDS as well. For a random set B one

defines
U ﬂ t 9 tUJ 9 tUJ). (9)

T>0t>T

It is well known that Omega limit sets are forward invariant, and they are invariant
in case (¢(t, 0_tw)B(9_tw))t>0 is pre-compact. For an RDS ¢ consisting of homeomor-
phisms the proof is straightforward.

7.1 Lemma Suppose that ¢ is an RDS on a compact metric space X such that o(t,w)
s a homeomorphism for any t > 0 and w € Q. Then the Omega limit set Qp of any
random set B is invariant, i.e.

o(t,w)Qp(w) = Qp(Osw) forallt >0, we Q.

Proor For any t >0

p(t,w)2pw) = et,w) [ | (s 0-5w)BO-w)

T>0s>T
= ﬂ U ‘P(taw)‘P(sag—sw)B(g—sw)
T>0s>T
= ﬂ U (s +t,0__s0sw)B(0_s—s0w)
T>0s>T
= () U «(s,0-s0w)B(O_s0w) = Qp(Osw). O
T>0 s>T+t

If one wants to define the repeller associated to an attractor for an RDS ¢ by imitating
the deterministic construction, i.e., by putting

R(w)={z € X : Q;(w) N A(w) = 0}, (10)
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one gets in view of Lemma 7.1

R(Ow) = {zre€ X :Q(0w) r‘lA(Otw) 0}
= {zeX:9(tw)(w (w)) = 0} (11)
(e X 00) N Alw )=@}— R(w)

for every ¢ > 0. Ergodicity of (6;) then implies that R is constant P-a.s., independent
of w, so (10) always gives a deterministic set. We have neither been able to prove nor
to disprove that (10) defines an invariant set for ¢. Note that this means to make an
assertion about Q,(w)|, _ o(—1, B10) i.e., calculate Q, for deterministic z, and then
evaluate it in ¢(—t, 6w)z. We give two examples to exhibit how (10) may look like.

7.2 Example Consider X = S' with a two-sided time RDS having a point attractor
A(w) = {a(w)}, and a repeller R(w) = {r(w)}. Such an example is given, for instance,
by the SDE

dz = sinz o dW1(t) 4+ cos x o dWo(t),

where W1, Wy are independent one-dimensional Wiener processes, see Crauel [7] Exam-
ple 4.2. Using the same argument as in (11) one obtains that {z € S! : = {a(w)}}
as well as {z € S : Q;(w) = {r(w)}} are (6;)-invariant, and consequently they are both
constant in w out51de a P-nullset. This implies that Qu(w) = {a(w)} for every z € S!,
for P-almost all w € €2, where the nullset does not depend on = € S'. Consequently,

Rw)={z e S : Qw)NAw) =0} =0

for P-almost all w € Q. Note that one should not confuse the Omega limit set 2, (w)
of the random variable r, which is defined in (9), and satisfies Q,(w) = {r(w)}, with
Q:(w)], — r(w)- The latter is the Omega limit set of a deterministic point, evaluated at

the random variable r.

7.3 Example In Crauel [9] an example of a two-sided RDS on X = S! with a non-trivial
forward attractor — hence also a weak attractor — is constructed, which does not have
a non-trivial pullback attractor (just the compact state space S! itself). In particular,
here one has Q,(w) = S, hence the weak attractor is a proper subset of every Q,(w),
for every z € S'. Again (10) gives R(w) = 0.
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