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Rates of consistency for nonparametric estimation of
the mode in absence of smoothness assumptions

Eva Herrmann and Klaus Ziegler
Technical University of Darmstadt and Technical University of Ilmenau

Abstract Nonparametric estimation of the mode of a density or regression function via
kernel methods is considered. It is shown that the rate of consistency of the mode estimator can
be determined without the typical smoothness conditions. Only the uniform rate of the so-called
stochastic part of the problem together with some mild conditions characterizing the shape or
“acuteness” of the mode influence the rate of the mode estimator. In particular, outside the
location of the mode, our assumptions do not even imply continuity. Overall, it turns out that
the location of the mode can be estimated at a rate that is the better the “peakier” (and hence
non-smooth) the mode is, while the contrary holds with estimation of the size of the mode.

AMS subject classification: 62G05, 62G07
Key words and phrases: nonparametric curve estimation, mode, kernel smoothing, rates of
consistency, non-smooth curves

1 Introduction and assumptions

An important problem in nonparametric curve estimation consists in estimation of the mo-
de, i.e., the location of an isolated maximum of the unknown density or regression function.
A number of distinguished papers deal with this topic. There are, among others, Parzen
(1962), Rüschendorf (1977), Eddy (1980, 1982), Müller (1985, 1989), Romano (1988a,b),
Grund and Hall (1995), Ehm (1996), and, most recently, Mokkadem and Pelletier (2003)
as well as Abraham, Biau and Cadre (2003).

In the following, we will restrict to the univariate situation but extensions to the mul-
tivariate case are possible. The classical approach is as follows. Let f be the unknown
real-valued curve and θ the mode of f , i.e.

f(θ) > sup
|x−θ|>ε

f(x) for each ε > 0, (1)

which means that θ is the location of the unique global maximum of f . Then θ is estimated
from the location θ̂ ≡ θ̂n of a maximum of a curve estimator f̂ ≡ f̂n for f . Uniqueness of the
maximum or even a condition like (1) for f̂ cannot be expected here, but, in general, this
does not affect the validity of asymptotic theory. It is well-known that uniform consistency
of f̂n for f is sufficient to ensure consistency of θ̂n for θ (see, e.g., Parzen, 1962; Rüschendorf,
1977; Nadaraya, 1989).
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To obtain rates, however, one has to know some more about the “local geometry” of f
around θ. Müller (1985) showed, in essence, that if the uniform consistency of f̂ is of order
βn, i.e.

sup
x

|f̂n(x) − f(x)| = O(βn) (2)

(in probability or a.s.), and if there are ρ > 0, c > 0 such that

f(θ) − f(x) ≥ c|x − θ|ρ in a neighborhood of θ, (3)

then
θ̂n − θ = O(β1/ρ

n ) (4)

in probability or a.s. depending on what holds in (2). A similar concept was used by
Boularan et al. (1995) for estimation of points θ with f (p)(θ) = b, i.e. where some p-th
derivative of the curve takes a given value b.

So, (2) seems to be crucial for (4). But in order to obtain (2), global smoothness
conditions have to be imposed on f . Most authors, among them Müller (1985), assume f
to be twice continuously differentiable. Differentiability, however, excludes the case ρ ≤ 1
in (3), (4), and hence his results do not apply to “cusp-shaped modes” (ρ = 1, see Ehm,
1996, where, however, Cp-smoothness, p ≥ 2, of f is assumed outside of θ) or even “proper
peaks” (ρ < 1). In fact, Müller’s conditions tacitly even imply ρ ≥ 2, and the case ρ < 2
doesn’t seem to have been considered explicitly so far. It should be mentioned here that
Härdle et al. require only some uniform local Lipschitz condition instead of differentiability
in order to obtain (2), but this is still a global smoothness condition.

Results of type (2) are always proven by splitting into a stochastic part f̂n(x) − fn(x)
and a deterministic part fn(x) − f(x) where in density estimation, fn(x) = Ef̂n(x) and
the analytic part is simply the bias. A look at the proofs being available in the literature
reveals that smoothness conditions are needed exclusively for handling the analytic part
whereas a rate of the stochastic part

sup
x

|f̂n(x) − fn(x)| = O(Un) (5)

(a.s. or in probability) can be determined without imposing any smoothness conditions.
For example, if f̂n is the Rosenblatt-Parzen kernel density estimator

f̂n(x) =
1

nhn

n∑
i=1

K(
x − Xi

hn

) (6)

based on i.i.d. observations Xi having density f , (5) can be established with a.s. rate

Un =

√
log n

nhn

under some regularity conditions on the kernel K and the bandwidth hn. An analogous
result holds for regression estimators, see, e.g., Härdle et al. (1988) and can also be derived
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from the results contained in Ziegler (2002). Similar results with somewhat worse rates are
available in the case of dependent observations and in the multivariate case (see Györfi et
al., 1989; Koshkin and Vasil’iev, 1998; Liebscher, 2001).

The aim of the present paper is to show that the knowledge of the rate of the stochastic
part Un in (6) together with some information about the shape or “acuteness” of the peak
already suffice to prove a result like (4), with no smoothness conditions being required at
all. Apart from θ, continuity of f will at most be required for (5), which is sometimes the
case due to technical reasons, see e.g. Einmahl and Mason (1999) where even the constant
in the O-term is determined.

In the sequel, we consider the slightly more general case of θ being the location of a local
maximum of f , with (1) holding for x in some neighborhood I of θ. In part, the local shape
of the peak is characterized by (3) (holding for x in some maybe smaller neighborhood
J ⊂ I), but this gives only an upper bound for f around θ. A lower bound will be needed
in addition. Therefore, we introduce the further condition that there are ρ̃ > 0, d > 0 such
that

f(θ) − f(x) ≤ d|x − θ|ρ̃ in a neighborhood of θ. (7)

Note, that (3) together with (7) implies ρ̃ ≤ ρ. Indeed, ρ̃ > ρ would imply d|x − θ|ρ̃ <
c|x − θ|ρ for |x − θ| being small enough. If, e.g., f is twice continuously differentiable in
a neighborhood of θ, then, by Taylor’s theorem and f ′(θ) = 0, the choice ρ̃ = ρ = 2 is
possible. Even in this case, our result still improves on known ones, because this is only a
local smoothness assumption while (2) always requires global smoothness.

If f has a “cusp-shaped” mode at θ, i.e. the one-sided derivatives exist in θ with
f ′(θ − 0) > 0, f ′(θ − 0) < 0 and if f is continuously differentiable in left and right
neighborhoods of θ, then ρ̃ = ρ = 1. For ρ < 1 there is necessarily f ′(θ−0) = ∞, f ′(θ+0) =
−∞. We will return to a discussion of these special cases in the remark after the corollary
below and in Section 3.

In the next section, we will show for the density estimator (6) that (5), where again
fn = Ef̂n, together with (1), (3) and (7) imply (4) with βn = Un + hρ̃

n. This is the same
rate as being obtained in (4) from (2) from the global smoothness assumption that f is
uniform local Lipschitz of order ρ̃. We will also prove a rate for the estimation of the size
f(θ) of the peak.

In Section 3 we compare our results to those being available in the literature and in
Section 4 we indicate how to extend our techniques to regression analysis.

2 Main results

For simplicity, we give the result only for fixed, i.e., non-data-driven bandwidths and
compactly supported kernels but we stress that they remain valid for data-dependent
bandwidths and more general kernels. This can be achieved using the techniques described
in Romano (1988a), Herrmann (2000) or Ziegler (2002). Our methods also apply to
the estimation of modes of derivatives of f using integration by parts as, e.g., in Zieg-
ler (2002). And finally we remark that extensions to the multivariate case are possible, too.
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Theorem 1 Let K ≥ 0 be a bounded and symmetric kernel function with
∫

K(u)du = 1

and compact support, hn > 0, hn → 0 a bandwidth sequence, f̂n the density estimator (6).
We assume that there are a neighborhood I of θ and a numerical sequence Un such that

sup
x∈I

|f̂n(x) − Ef̂n(x)| = O(Un) a.s. (8)

Let f and its mode θ satisfy (1) for all x ∈ I. We also assume that (3), (7) hold and θ̂n is
defined by

f̂n(θ̂n) = max
x∈I

f̂n(x) . (9)

Then
θ̂n − θ = O((Un + hρ̃

n)1/ρ) a.s. (10)

Outline of proof Write again fn(x) for Ef̂n(x). In the proof of Theorem 2.1 in Grund and
Hall (1995) it has been shown (see also, Ziegler, 2002) that for each ε > 0 the inequality
|θ̂n − θ| > ε implies

sup
x∈I

|f̂n(x) − fn(x)| ≥ 1

2
(fn(θ) − sup

|x−θ|>ε

fn(x)) .

Therefore, in order to derive (10) from (8), it suffices to find for each η > 0 some τ > 0
such that, for Vn = (Un + hρ̃

n)1/ρ it holds that

fn(θ) − sup
|x−θ|>τVn

fn(x) ≥ ηUn . (11)

Let x ∈ I with |x − θ| > τVn be given (with τ to be specified later). According to (1) and
(3), there exists δ > 0 such that

f(θ) − f(x − hnu) ≥ min(c|θ − x + hnu|ρ, δ) ≥ min(c|θ − x|ρ, δ)
for either u > 0 or u < 0, depending on the sign of θ − x. Choose M > 0 such that
supp K ⊂ [−M, M]. Then, according to (7)

f(θ − hnu) − f(θ) ≥ −dhρ̃
n|u|ρ̃

for n large enough and u ∈ [−M,M ]. Hence, with d̃ = d
∫M

−M
|u|ρ̃K(u)du < ∞ and c̃ =

c
∫M

0
K(u)du = c

∫ 0

−M
K(u)du = 1

2
c we have for n large enough, by K ≥ 0, that

fn(θ) − fn(x) =

∫ M

−M

K(u)(f(θ − hnu) − f(x − hnu))du

=

∫ M

−M

K(u)(f(θ − hnu) − f(θ))du +

∫ M

−M

K(u)(f(θ) − f(x − hnu))du

≥ −d̃hρ̃
n + c̃τ ρV ρ

n

= −d̃hρ̃
n + c̃τ ρhρ̃

n + c̃τ ρUn .
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If we now take τ such that c̃τ ρ ≥ max(d̃, η), then (11) will be satisfied. �

Remarks (a) By quite the same proof, we see that if (8) holds in probability instead
of a.s., the result (10) is also obtained in probability instead of a.s.
(b) The existence of a θn with (9) is e.g. automatically ensured if K is taken to be
continuous, since due to the compact support, f̂n is also continuous and compactly
supported then.

Of course, the estimation of the height f(θ) of the peak is of interest, too. A natural
estimator is f̂n(θ̂n) = supx∈R

f̂n(x). See, e.g., Nadaraya (1989) for results under smoothness

conditions. A rate for the consistency of f̂n(θ̂n) can be derived from (8) and (10) if we
replace (7) by a locally uniform version.

Theorem 2 Let the conditions of Theorem 1 be fulfilled. Instead of (7), assume that

|f(x) − f(y)| ≤ d|x − y|ρ̃ x, y in a neighborhood of θ (12)

holds for some ρ̃, d > 0. Then

f̂n(θ̂n) − f(θ) = O((Un + hρ̃
n)ρ̃/ρ) a.s.

Proof First we note that from (12) it follows that

Ef̂n(x) − f(x) = O(hρ̃
n) uniformly in x in a neighborhood of θ (13)

since |Ef̂n(x) − f(x)| ≤ ∫M

−M
K(u)|f(x − uhn) − f(x)|du ≤ dhρ̃

n

∫M

−M
|u|ρ̃K(u)du for small

enough hn so that x and x − uhn are both in the neighborhood where (12) holds if x is in
a certain smaller neighborhood.

Then, from (8), (10), (12) and (13),

f̂n(θ̂n) − f(θ) = f̂n(θ̂n) − f(θ̂n) + f(θ̂n) − f(θ)

= O(Un + hρ̃
n) + O(|θ̂n − θ|ρ̃)

= O((Un + hρ̃
n)ρ̃/ρ)

where we have used ρ̃ ≤ ρ. �

Remarks (a) Again we obtain the assertion of Theorem 2 in probability if (8) is
assumed to hold in probability.
(b) The condition (12) means that f is locally uniform Lipschitz of order ρ̃ in a neigh-
borhood of θ, which is stronger than (7). Indeed, it is known that for estimation of the
size of the mode, stronger smoothness assumptions are required than for estimation of the
location of the mode. See, e.g., Ziegler (2002).
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As we have mentioned in the introduction, in case of i.i.d. observations Xi, the rate

Un =
√

log n
nhn

being attained a.s. for the stochastic part is familiar. Here, the rate of Un +hρ̃
n

becomes best if we choose

hn = O

((
log n

n

) 1
2ρ̃+1

)
,

which leads to

Un + hρ̃
n = O

((
log n

n

) ρ̃
2ρ̃+1

)
.

Indeed, for minimization of Un + hρ̃
n the rates of Un and hρ̃

n must coincide, whence

hρ̃
n = O(

√
log n
nhn

).

Hence we have the following corollary:

Corollary Let the density estimator be based on i.i.d. samples. Then, we have under
the assumptions of Theorem 1

θ̂n − θ = O

((
log n

n

) ρ̃
(2ρ̃+1)ρ

)
(14)

(a.s.), while under the assumptions of Theorem 2 it holds that

f̂n(θ̂n) − f(θ) = O

⎛⎝( log n

n

) ρ̃2

(2ρ̃+1)ρ

⎞⎠ (15)

(a.s.) �

Remarks (a) Assume ρ = ρ̃ which will cover most situations anyway. Then, we see
from (14) that the rate of θ̂n−θ is O(( log n

n
)1/(2ρ+1)) = O(hn) which improves as ρ decreases,

i.e., as the peak gets “acuter”. Instead, the rate of f̂n(θ̂n) − f(θ) is O( log n
n

)ρ/(2ρ+1)) which
worsens with ρ getting smaller. Naturally, the latter is the same rate at which f can be
estimated uniformly if it is uniformly local Lipschitz of order ρ. This behavior is roughly
what we should have expected before. A “high and slim” peak is met more exactly by the
estimator, while its height will be “abraded” by the smoothing process. Furthermore, it is
natural that the bandwidth should be chosen the smaller the acuter the peak is.

(b) Note that our assumptions in Theorem 1 do not even imply continuity except in θ
itself. Indeed, the case ρ̃ < ρ may allow f to jump and oscillate quite heavily outside θ. In
Theorem 2, the condition (12) implies continuity of f in a neighborhood of θ. However, the
proof shows that Theorem 2 holds under the weaker condition (13) which might be valid
without continuity in special situations.
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3 Brief discussion

(a) In the twice differentiable case ρ = ρ̃ = 2 our rates coincide with the known ones in
Müller (1985; see also Vieu, 1996). However, our results are still a slight improvement in
this case since we need to impose differentiability only locally in a small neighborhood
of θ. On the other hand, under some additional requirements, the rate has been slightly
improved by Leclerc and Pierre-Loti-Viaud (2000). In the degenerate case, i.e. f ′′(θ) = 0
with some higher differentiability, the exact rate has been recently determined by
Mokkadem and Pelletier (2003). In the case ρ < 2, no results seem to have been available
so far. This has also been pointed out by Abraham et al. (2003), p.7. See, however, Ehm,
1996, where f is assumed to be Cp-smooth, p ≥ 2 except at θ itself, where it has a
“kink” (ρ = ρ̃ = 1). In this case, our rate (14), i.e. O(n−1/3) can be improved by the very
sophisticated construction of another estimator for θ.

(b) In Abraham et al. (2003), for computational reasons, a different estimator is considered
which maximizes f̂n only over the values of X1, . . . , Xn (instead of maximizing over x ∈ R

or an interval which the classical mode estimate does). The authors compare the perfor-
mance of their estimator to that of the classical one in the smooth case, and state that it
would be desirable to do the like in the non-smooth case. Now even as we have results for
the classical estimator in non-smooth cases, such a comparison is difficult since the condi-
tions given in Abraham et al. (2003) do not directly correspond to ours. However, their β
clearly equals our ρ̃ since they employ our condition (13), while their α should correspond
to our 1/ρ. Furthermore, we are in the univariate case d = 1. With i.i.d. observations being
available, the rate obtained from (14) is O(( log n

n
)ρ̃/(2ρ̃+1)ρ) = O(( log n

n
)αβ/(2β+d)). Since

αβ ≤ 1, this is slightly better than the rate given in Cor. 2.1 of Abraham et al. (2003)

which is O( (log n)2/(2β+d)

nαβ/(2β+d) ). Hence, even in the non-smooth case, the classical estimator still
seems to perform slightly superior to the computationally advantageous one. However, we
do not know if one of those rates can still be improved.

(c) Note that our assumptions, even in the case ρ = ρ̃, do not imply any local symmetry of f
around θ. The situation changes dramatically as soon as we want to construct a confidence
interval for θ. For asymptotic normality of θ̂n − θ the conditions f ′(θ − 0) = −f ′(θ + 0)
and f ′′(θ − 0) = f ′′(θ + 0), i.e., local symmetry of f around θ up to order 2, seem to be
crucial. This will be shown in a forthcoming paper of the second author. However, even
in non-symmetric situations of this kind, the mode can still be estimated asymptotically
normal using a different estimator. The construction of such an estimator is described in
Ehm (1996).
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4 Extensions to regression functions

Now we turn to regression analysis. For fixed design regression

Yi = f(xi) + εi

with design points x1, . . . , xn ∈ I = [a, b] satisfying |xi − xi−1 − 1
n
| = o( 1

n
) uniformly in

2 ≤ i ≤ n and i.i.d. error variables with zero mean and variance Eε2
i = σ2 < ∞, the

Gasser-Müller estimator

f̂n(x) =
1

hn

n∑
i=1

∫ si

si−1

K(
x − u

hn

)du

(with si−1 = 1
2
(xi + xi−1), i = 2, . . . , n, s0 = a, sn = b) is known to fulfill

Ef̂n(x) =

∫
K(u)f(x − hnu)du + O(

1

nhn

)

(Müller, 1985). Therefore, our results take over to this case quite straightforwardly as long
as 1

nhn
is of smaller order than both Un and hρ̃

n which is the typical case. In the case of
random design, with

f(x) = E(Y |X = x)

to be estimated via the Nadaraya-Watson estimator

f̂n(x) =
r̂n(x)

ĝn(x)
,

where

r̂n(x) =
1

nhn

n∑
i=1

YiK(
x − Xi

hn

)

and

ĝn(x) =
1

nhn

n∑
i=1

K(
x − Xi

hn

) ,

the quantity f̂n is compared to in the stochastic part (5) is

fn(x) =
Er̂n(x)

Eĝn(x)

rather than Ef̂n(x). Note, however, that the asymptotic equivalence of the two quantities
is shown in Ziegler (2001a). For estimation from i.i.d. pairs of observations, (5) can still be
proven with

Un =

√
log n

nhn
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(see Härdle et al., 1988). For Un in the case of dependent observations, see Györfi et al.
(1989) or Liebscher (1998) among others.

To prove an analogue to our theorem for the Nadaraya-Watson estimator, one has to
find an appropriate lower bound of fn(θ)−fn(x) = Er̂n(θ)

Eĝn(θ)
− Er̂n(x)

Eĝn(x)
. If X has a design density

g being bounded away from zero and infinity on I, i.e.

0 < C1 ≤ g(x) ≤ C2 < ∞ for x ∈ I,

we have

fn(θ) − fn(x)

=

∫
K(u)f(θ − uh)g(θ − uh)du∫

K(u)g(θ − uh)du
−
∫

K(u)f(x − uh)g(x − uh)du∫
K(u)g(x − uh)du

=

∫
K(u)(f(θ − uh) − f(θ))g(θ − uh)du∫

K(u)g(θ − uh)du
+

∫
K(u)(f(θ) − f(x − uh))g(x − uh)du∫

K(u)g(x − uh)du

≥ C2

C1

∫
K(u)(f(θ − uh) − f(θ))du +

C1

C2

∫
K(u)(f(θ) − f(x − uh))du ,

and from now on one may proceed as in the proof of the theorem.
Further extensions to local polynomial smoothers are possible in a similar way.
Finally we remark that our method should take over to the estimation of points θ

with f (p) = b as mentioned in the introduction by modifying assumptions (3) and (7)
appropriately. This will be shown in a forthcoming paper of the second author.
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Rüschendorf, L. (1977). Consistency of estimators for multivariate density functions and for the
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