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Abstract

We consider discrete dynamical systems having a homoclinic orbit asymptotic to a
hyperbolic fixed point. After we carried forward the ideas of Lin’s method to discrete
systems - cf. [5] - we provide now the necessary estimates for solving the bifurcation
equation.

We apply our results to study 1-periodic orbits near homoclinic orbits having quadratic
tangencies.

1 Introduction

In a first paper [5] we carried forward Lin’s method to discrete systems

z(n+1) = f(z(n),\) (1.1)

having, for A = 0, a homoclinic orbit I,

I:={vy(n) = f*(q),n € Z} (1.2)

asymptotic to a hyperbolic fixed point p. The main idea of this method is as follows: We
look for solutions z; of (1.1) starting in a neighborhood of ¢ following the forward orbit T'*
of the orbit I', passing p, following the backward orbit '™ of " and arriving finally after NV;
steps again in the same neighborhood of ¢. In this way we find solutions staying for all time
close to I' by solving the bifurcation equations

Of course Z; will depend on A\, N' = (V;);ez and in general on some additional parameters
u = (u;);ez which we will introduce below. Hence Z; = =;(N,u, \). However, Z; takes the
form

SN, u, N) = E%°%(ug, \) + (N, u, \). (1.4)
Here
£°%(u, \) =0 (1.5)

is the bifurcation equation for detecting homoclinic orbits of (1.1) which are close to I'. In
some cases it is relatively easy to discuss equation (1.5) - see for instance [5] Section 3.
However, the discussion of the full bifurcation equation (Z;);cz = 0 needs a good knowledge
of the term &;. Because & becomes exponentially small with respect to min{N;,: € Z} each
=, can be seen as a pertubation of £*°. But this is not sufficient to know, because we need
the sign of &; for a comprehensive discussion of the bifurcation equation - see Section 7 and
in the forthcoming paper [4]. So the primary object of this paper is the determination of the
leading terms of &;. It turns out that these terms are governed by the velocity of (-) while
approaching the fixed point and by the velocity by which solutions of the of the adjoint of
the variational equation along I' tend to zero. In Section 3 we give the precise formulation
of the main theorems.



In the section before we compile notations and results we introduced and achieved, respec-
tively, in the previous paper [5]. The analysis we will carry out here is based on these as
well as the formulation of the main theorem in Section 3.

However, we start considering the jumps & by performing transformations making the sta-
ble and unstable manifolds, respectively, flat in a neighborhood of I'. This will be done in
Section 4. The actual estimate of & will be performed in Section 5. For that we give an
appropriate representation of & and figure out the leading terms.

In Section 6 we provide assertions concerning convergence properties of solutions starting
in the stable manifold (of a discrete dynamical system) or the stable subspace (of a linear
difference equation), respectively. Although we use these results only to estimate &; they
are of some relevance as independent results in the theory of discrete systems. So we prove
that solutions in the stable manifold not starting within the strong stable manifold, decay
like (u®)™ + o((p*)™), where p® is the principal stable eigenvalue. - see Lemma 6.2. This is
a stronger estimate than this one given in [6]. Lemma 6.6 makes an analoge assertion for
linear (non-autonomous) difference equations. To define strong stable subspaces for such
equations we carry over the concept of exponential trichotomies to difference equations - see
Lemma 6.8 and Remark 6.9.

In the last part we apply our results to the case that ¢ is a non-transversal homoclinic point.
We assume that the tangent spaces at ¢ of the stable and unstable manifold intersect in
an one-dimensional subspace. Generically this scenario forms a codimension one problem
(A € R'). Moving the parameter A\ through the critical point (A = 0) we observe (the well
known phenomenon) that two transversal homoclinic points ¢;, g2 (existing for A > 0) merge
at A = 0 into ¢ and disappear afterwards. Exploiting the bifurcation equation we study the
behaviour of 1-periodic solutions. Here 1-periodicity means that the corresponding orbit hits
a sufficiently small neighborhood of ¢ exactly once. In the forthcoming paper [4] we prove
the existence of shift dynamics involving both transversal homoclinic points ¢; and ¢,.

2 Some previous results

Now we will make things we mentioned in the introduction more precise. We consider
the discrete system (1.1) where f : R¥ x Rl — RF is smooth. In particular f(-,)\) is a
diffeomorphism for all A\. Further we will assume that x = p is a hyperbolic fixed point of
(1.1) - i.e.

(HYP) f(p, ) =p,

o(Dif(p,A) NSt =0.

(D1 f(p,A)) denotes the spectrum of D;f - the derivative of f with respect to the first
variable; S' is the unite circle line (in C). Finally we assume that for A = 0 (1.1) has a
homoclinic solution (-) asymptotic to z = p:

(HOM) ~(n+1) = f(v(n),0),

lim ~(n) = p.

n—+oo

The orbit {v(n),n € Z} of the homoclinic solution vy(-) we denote by I'. Let ¢ := ~(0).
Finally we assume that the local stable and unstable manifolds are flat



(MAN) W (p) € T,W5%) (p).

I/Vlso(c /)\( ) is the local stable (unstable) manifold of the fixed point p with respect to x(n+1) =

f(z(n), ). TpVVloc,)\( ) is the tangent space of this manifold at p. See also [5, Section 4.1] to
make sure that this assumption make sense.
For the further analysis we use the following direct sum decomposition of R¥:

RE=UOWreoW @ Z, (2.1)

where U = T,Wi_,(p) N T,W}_y(p) and U & W+ = T, ™ (p). Finally we denote the
projector from R¥ on U along W+ ® W~ ® Z by Py. Now we can prove the following lemma
- see [5, Lemma 2.4]:

Lemma 2.1 For each (u,\) € U x R close to (0,0) there is a unique pair (y*(u, \)(+),
v~ (u, A)(+)) of solutions of (1.1)satisfying

(i) v+ .27 5 RF,

(ii) the orbits of v and v~ are close to T,
(i5) lim " (n) =p, lim 77 (n)=p,

(iv) ~y ( ), 7 (0) are close to v(0),

(v) 7*(0) =7~ (0) € Z and

(vi) Pu(v*)(u,N)(0) = 7(0)) = u. o
Consequently the bifurcation equation for detecting homoclinic orbits close to ' runs
€% (u, A) = 7+ (s A) (0) = 7 (1, A)(0) = 0, (2.2)

Now, let N := (N;)iez, N; € N and u := (u;);ez, u; € U, any sequences. We define

N;
Nt = {7J , N, :=N; — N}, (2.3)

where |n] denotes the integer part of n.
The solutions x; we mentioned in the introduction we compose of pertubations of v* and
v, cf. [5, Section 4]:

Theorem 2.2 There are constants ¢ and N such that for each u, A with ||u|| := sup |u;| < ¢,
I\| < ¢ and each N with N;") > 2N there are unique solutions ;7 (N, u, \)(-), 77 (N, u, A)(-)
of (1.1) satisfying
(Z) x:r(Na u, )‘)() : [07 N:H] NZ— Rk:
b (Now A)() £ =N, 50117 RE,
(ii) the orbits of ' and x; are close to the forward and backward orbit through q, respec-
tively,
(iti) & (N, u, A (Nf) = 2 (V1w A) (= Nigy),
(i) (N, u,\)(0), z; (N,u,\)(0) are close to y(0),
(U) i(Naua)‘)()_ i(Naua)‘)()EZ:



(vi) &N A (0) =7 O (w, )(O) e W BT @ 7. u
With that the solutions xz; are defined by

+ +
s = {0 s @
In particular we find x:r(_) in the form
7 W) () = 7 (s V) + 57O Wm0 (). (25)
With these notations the bifurcation equations =; = 0 take the form
SN, \) =27 (N1, 0)(0) — 27 (N, u, \)(0) = 0. (2.6)

Replacing here z;” by the representation (2.5) we see that Z; actually take the form (1.4).
Beyond it we see that

&N, \) =07 (W,u, M) (0) — 7; (M, u, \)(0) =0. (2.7)
Indeed, in [5] Theorem 2.2 was verified by proving the existence of corresponding ),
To be able to estimate the jump & we have to recall the derivation of @;r(_). In [5] we have

shown that 17: ) are solutions of the following boundary value problem

7 ) 7

v T+ 1) = Dy f (v (s, A (n), Ao (n) + YO (0, g, 07 (n), V),
UZF(N;FJ = Vi1 (=Nij1) =7 (i1, ) (=Nigy) — (i, A)( z—l—l)

=: diy1(Nig1, U, i1, N), (2.8)
v (0),v7(0) e Wr @ W-@® Z close to zero,
v (0) — v; (0) € Z.

ht(=) are defined as follows:

W (n,u,0,0) = f(y* (_)(U >\)( +0,)
A

)
—Dyf(y* (U A)(n), (29)

— F(r O, N (), )
Jv.

The boundary value problem (2.8) can be solved in two steps - see again [5, Section 4] for
the details:
First we consider the inhomogeneous equation

o7 O+ 1) = DiF(5O (i, (), Vo O () + 67 (). (2.10)

13 7

Again as in [5] we write shortening g := ((g;7, g7 ) )iez. Let @) (u;, A\, n, m) be the transition
matrix of the corresponding homogeneous equation

o7 (n+1) = Dy (O (wi, A (), N ). (2.11)

2



These equations have exponential dichotomies on Z* and Z~ with projectors P*(u;, A, )
and P~ (u, A, -), respectively. P*(=) are defined as in [5]:

im P+ (u;, A, 0) = Tw(f)(ui,)\)(o)W,\s(u) (p),

ker P (ug, A, 0) =W~ H @ Z, (2.12)
P+(*)(ui, A, n)<1>+(*)(u,~, A, n,m) = (I>+(*)(ui, A, m)PJ“(*)(ui, A, m).

Then [5, Lemma 4.6] tells that for A/, u and A as in Theorem 2.2 the system (2.10) has a

unique solution vy (u, A, g, a) := (v (+),v; (+))icz satisfying

() (id = P*(uia, A, N)vy (NF) = af
(id = P~ (s A, =N;7))v (=N;7) = aj,

(i) v (0),v;(0)eWreoW & Z,

2

(iii) v (0) — v (0) € Z.

13
Here a:r(f) are any given quantities within the images of the corresponding projectors. a :=
(af,a; )icz. Exploiting this result we can prove that for A/, u and )\ as in Theorem 2.2 the

177
system (2.10) has a unique solution vy(u, A, g, d) := (v;(+),v; (+))iez satisfying

(i) U;r—1(Ni+) —v; (=N;) =d,
(ii) v (0),v; () eWT W™ Z,

(iii) v;7(0) —v; (0) € Z.

13
d; are any given quantities. Indeed we prove that there is an ay(u, A, g,d) such that
Vi (u, A\ g,d) = vy(u, A g,ax(u, A, g,d)). See [5, Lemma 4.8] for the details. However,
it is worth to mention that v depends linearly on (g, d).
The second step in solving the boundary value problem (2.8) comprises the following: With
the foregoing results we rewrite (2.8) into a fixed point problem

v = ‘A’N(uaAa (h+('vuiav;_(')vA)ah_('auivvi_(')vA))iE% (dZ(Na u, )‘))ZEZ)
=: Fyx(u,v,\). (2.13)

dl(Nv u, >‘) =7 (uia )‘)(_N_) - f)/+(ui—17 )‘)(Nz+)7 d:= (dz)zEZ (2'14)

2

Now, let Sy and S_y be the spaces of functions mapping {0,...,N} and {—N,... 0},

respectively, into R¥. These spaces are equipped with the maximum norm. The space V

of all sequences v := ((v;",v; ))icz, (vi,v;) € Sy, x S_y- is equipped with the norm

|lv]| ;= max{sup||v;|ls , , sup|lv; |ls __}. See altogether [5, Definition 4.5]. With these
i€Z Nt ez N

notations equation (2.13) can (for fixed u and \) be seen as a fixed point equation in V.

This fixed point problem has for fixed N the unique solution

\_/(11, )‘) = (T);r(ua )\)(-),77;(11, A)())zEZ (2'15)

Moreover, the mapping ¥ : I3 xRl — V., (u,\) = ¥(u, \) is smooth - cf. [5, Lemma 4.13].
Now, after we have briefely repeated the steps leading to the fixed point equation (2.13) we



will reveal somewhat more of the structure of v - for the details we refer again to [5]. The
quantities v;r(f) defining v, take the form

v (0, A g a)(n) = &% (ui, A, n, 0)[Lws, A) ™ F (ui, A, agfyy, a7, Nify,

i1

N; L

and

vi (w, A g,a)(n) = @ (ug, A, 0)[L{ugy \) 7 F (ui, Ay afy gy a7, Ny, N7l
n+1
]:

Here [L(u, A\)™'-]; is the jth component of the image of the inverse of the linear operator
Liu,AN): WreW )xZxZ — W -aZ)x (WreZ)

( (id — P*+(uz, A, 0)) (w + 27) >

(w,2%,27) (id — P~ (uz, X, 0))(w + 27)

while F' is a function we will not further specify. However, we want emphasize that v;r )

actually depend only on u; and az;l, a;, and not on the entire sequences u and a.

3 The main result

As already mentioned the leading terms of & depend on the manner how the homoclinic
orbit and solutions of the adjoint of the variational equation along this orbit approach the
fixed point and zero, respectively. We will determine this behaviour by the following assump-
tions. First we will make an assumption concerning the principal eigenvalues. Let p°(\) and
p*(A) be the principal stable and unstable eigenvalues of D f(p, A), respectively. Then the
spectrum of Dy f(p, \) can be represented by

o(Dif(p,A)) = o**(A) U{p*(A), u*(A)} U™ (X),
where (3.1)
0< |ul<a® <|p(N)|<a®<1l<a®<|p"(N)]<a™™ < |

for all p € 0*°(\), it € 0"*(X). We will suppose:
(EV_R) The principal eigenvalues p*™()\) are simple and real.
Beyond it we will assume that the homoclinic orbit [ approaches the fixed point generically:
(HOM_A) 7°(0,0),7(0,0) #0
or equivalently:

[' does not approach p within the strong stable and strong unstable manifold,
respectively.



Here 1*®(u,)\) are defined by n°(u,A\) = lim D;f(p, \)"Py"(u,\)(n) and n*(u,)) =
n—o0
lim Dy f(p, \)"(id—P)y (u, A)(n). The projector P projects R¥ on T,W?*(p) along T,IW*(p).
n——o0
Lemma 6.2 and the remarks following this lemma ensure that assumption (HOM_A) makes
sense.

Further we will assume that the homoclinic point is non-transversal one but the non-
transversality should be is as small as possible.

(DIM_U) dimU = 1.
This implies that also dim Z = 1. For the Z generating element z' we will assume
(SUB) n*((id — P (us, A\, 0), \)T2Y) £ 0, n((id — P~ (u;, A, 0), \)T21) #0
or equivalently:
(id — PT(u;, A, 0))T2t and (id — P~ (u;, A, 0))T2! are not in the strong stable
subspace X3°(0) and strong unstable subspace X}*(0), respectively.
In this connection 77 are defined by n*(w(0), ) := Tim <(D1f(p, )\)*I)T)n(id— P)Tw(n)

and ™ (w(0), A) := lim ((le(p, )\)_I)T> PTw(n), respectively. The functions w(-) are here
n—o0

solutions of the variational equations w(n+1) = (Dy f(v"(ui, A)(n), \) ™) w(n), n € Z* and

w(n +1) = (Dyf (v (ui, A)(n), \) ™) w(n), n € Z~, lying within the stable and unstable

subspace, respectively, of these equations. See Lemma 6.6 for the proof that these limits

indeed exist. After the proof of Lemma 6.6 the notions (un)stable and strong (un)stable

subspaces X;s(u“)(()) of these equations will be explained as well as their connection to the
assumption (SUB).
Under the above conditions we have the following result concerning the leading terms of &;:

Theorem 3.1 If the principal eigenvalues are simple and real - (EV_R) - the tangent spaces
at q of the stable and unstable manifold intersect in one-dimensional space - (DIM_U) - and if

additionally the non-degeneracy conditions (SUB) and (HOM_A) are fulfilled then the jump
& can be written as

GOV 1) = e, ) )Y+ o, g, A) (1)

+o (O + o (e () ). &

4 Transformations

To carry out our analysis in [5] we performed a transformation we did not mention in this
paper as yet. This transformation effects that around y*(u, A)(0) (v~ (u, A)(0)) the stable

(unstable) manifold W™ (p) in the direction W*() is flat. If, for fixed A, the transformation
is denoted by 7, we have more precisely - cf.[5, (4.12), (4.13)]:

T O N (0) +wtO) e M) 0 (7 O N0 + W e W e 2)) (@41)

To perform estimates in Section 5 we need similar transformations in neighborhoods of
yt(0,A)(n) and v~ (0,\)(—n), respectively, for all n > 1. We will give transformations

7



mapping the stable (unstable) manifold around y+(=)(0, \)(n) into its tangent space. Because
the stable and unstable manifold are both flat in a neigborhood of p (cf. (MAN)), we have
to perform these transformations only in a finite number of points - say for n € {1,... Nya }-
Let for n € Z* ) N {—Ngas, - -, Naas }

U, == (0,0, (—)n,0)U. (4.2)

W, W and Z, will be defined in the same way. Further, let ﬁjn and ﬁﬁn be mappings
whose graphs locally represent the stable and unstable manifold, respectively. More precisely:
For n > 1:

Wy U x Wik =W, &2
such that for small (u,w™) € U,, x W, and for small €
Y0, () +u+wh k3, = Wi p) N B(rH(0,0)(n),e).
Here B(x,r) denotes a ball around x with radius .

Remark 4.1 T,)W3_o(p) = U®W*. So by definition U, ® W, = T,nyWi_,(p), n > 1, cf.
[6, Proposition 5.4]. Therefore exists indeed such a mapping ﬁin Moreover, Dlicg’n((), 0) =0.
0J

Similar for n < —1.
Wy U x Wy = Wi aZ
such that for small (u,w™) € U, x W, and for small €
(O, () + u+ w4 B, = W) 0 B0, )(n), €).
Further for n € Z7() N {—=Nga, ... , Naar}, n # 0, we define:

) v,ewiew,eZ, » R
ut+wt+w +z u+w++w_+z+ﬁigz)(u,w+(_)),

O vewrew, ©Z, » R
utwr4+w +z = yTO0N0) Fut+wt w42

and finally let

be defined by



Remark 4.2 Due to DBSEZ)(O, 0)=0 H;\r(f) is a diffeomorphism of a neighborhood of the

origin in R¥ onto a neighborhood of the origin in R¥. With it 7;:;5_) is indeed a (local)
transformation. O

By construction we have for sufficiently small €
Tl (770, 0(0) + T oam W™ ) = W3 (1) 0 B0, (n), ). (43)

Similar to the line of action for globalizing 7 to 7 in [5] we can globalize 7;;5_) to ’f;\frf_).
This can be done in a way such that the individual transformations do not influence each
other. Now we define (using fy for f(-,\))

Foo_ (T+ 7~ 7+ - -1 7+ 7
a= (T\,NHat © 7;\,—Nﬂat ©...0 7;\,1 © 7:\,—1) o fyo (7;\,Nﬂat ©...0 7:\,—1)

and afterwards rename f to f. After this transformation locally around 70, M) (n), n # 0,
the stable (unstable) manifold W™ (p) coincides with +(=)(0, \)(n) —i—Tw(f)(U’)\)(n)W;(“) (p).
Hence, for sufficiently small u v+()(u, A)(n) lies in such a flat area of the stable (unstable)
manifold. Altogether we have for sufficiently small u, A and € and for all n € Z, n # 0

W (p) N B(y" ) (u, A)(n), €) € v (u, A) (n) + im P (u, X, n). (4.4)

5 Estimates of the jump ¢;

In this section we will deduce estimates for & and finally prove Theorem 3.1. We start
with giving an appropriate representation of & (A, u,\) which permits the estimates of &;.
For that we decompose o; (N, u,A)(0) and v; (N, u,A)(0) by means of PT(u;A,0) and
P~ (u;, A, 0), respectively. Taking into consideration [5, Equation (4.25)], this is nothing else
but the decomposition of 17:(7)(/\/', u, \)(0) in its components of W+() and (W~ @ Z2).
Now, let (-,-) be any scalar product in R* such that the direct sum decomposition (2.1) is
an orthogonal one. Then §; can be written as

dim Z
gz(Na u, >‘) = Z <Zm7§z(~/\/’7 u, )‘)>va (51)
m=1
where Z = lin{z",m = 1,... ,dimZ} and {z™,m = 1,...,dim Z} is an orthonormal

system. The above considerations show
(" &GN, ) = (", (id — P"(u;, A, 0))0 (N, 1, 1)(0))
— (=™, (id — P‘(ui,)\ 0))v; (N, u, \)(0)). (5.2)
Next we derive representations of (id — P+ (u;, A, 0))7; ( , A)(0) appropriated for the

estimates. We will do this exemplarily for (id— P+(uz,)\ 0))g; (N u, A)(0). For that purpose
we start with the representation [5, (4.34)]:
(i — P* (15,1, 0))5F (N 0, A)(0) = & (u, A, 0, Nt i, (s, A, N)
N,
=) @ (ui, A, 0,5)(id — PH(ug, A, )R — Lug, 07 (N, w, M) (G — 1),A). (5.3)

j=1



In (5.3) we substitute a;,, by using [5, (4.46)]:
aiiy — iy = dip1 + P (Ui, A, =Ny ) v (N, 0, A) (= Ny )
=P (ui, A, N )0 (N, M) (N). (5.4)
d;+1 we write as it is defined - see (2.13). Further we make use of
af, €id— Pt (ujp, \,Ny) and  ajy, €id — P (ujy1, A, —Np; ).
[5, Lemma 4.4] states that for sufficiently large V;; and sufficiently small u, A

RE = im (id — P*(us, A, Nit,)) @ im (id — P~ (i1, A, —N77,)). (5.5)

2

Let P(us, uiy1, A, Nit1) be the corresponding projector with range im (id — P+ (us, A, Ni,)).
Then (id — P*(u;, A, 0))7; (N, u,A)(0) can be written as:

(id — P*(uz, A,0))07 (N, 1, A)(0) = @7 (us, A, 0, Njiy) (id — P¥(uz, A, Nify)) o

P(ui, wit1, A, Niy1) (77(Uz‘+1: )\)(—Ni:rl) - ’Y+(Uia )‘)(NiJ—rl—l)
+P~ (Ui-i-l; )‘v _Nijrl)ﬁz;l(-/\/” u, )‘)(_szrl)
P (s, A NGB (N, A (V)

+
Ni+1

— Z O (us, X, 0,7)(id — P (ui, A, 5)hH (5 — 1w, o (N, u, M) (5 — 1), A). (5.6)

J=1

In a similar way we get an expression for (id— P~ (u;, A, 0))7; (N, u, A)(0). Plugging this into
the scalar product (5.2) and thereby taking into consideration ®+(=) (... 0,n)P*()(... ,n) =
P (.. ,0)®+t)(...,0,n) we obtain

(2" &GN, u,0)) =
<<I>+(ui, X0, Nt )T (id — P*(uz, A, 0)) 2™,

P(uia Ujt1, )‘7 Ni-l-l) <fy_ (ui-i-l? A)(_sz»l) - f)/+ (ui? )\) (NZ—:I)

+P (Uiy1, A —Ni;1)77i:r1(Na u, )\)(_Nijrl)
P (i, A Vi) B Vw0 (NG ) )

+
Ni+1

—(27 30 @ (i, A, 0,9) (i — P (s A DAY = 1, 5V w, )G = 1)) )

J=1

(07 (00,0, = N7 (id = P 0,0)) "7,

(i — P i1, N3)) (7 (i1, DN = 7 (wiy A (=)
+P+(ui*17 )‘7 Ni+)6it1(N7 u, )‘) (Nz+)
s —P~ (i, A, =N, (N A)(=N])) )

—(2" DT @ (i, A, 0,7)(id = P (s, A )BT — Lt (N w, ) (= 1),0). (5.7)

j=0

10



By AT we denote the adjoint of A with respect to (-, -).

Next we will estimate the individual terms in (5.7). We start with the
Estimate of (®1())T(id — P+(=))Tz™

We will consider exemplarily (®%(u;, A, 0, N7 )" (id — P*(u;, A, 0))7 2™

Lemma 5.1 Let ®(-,-) be the transition matriz of x(n + 1) = A(n)x(n). Then ¥(n,m) =
®(m,n)" = (®(n,m)~")" is the transition matriz of the formally adjoint equation y(n+1) =

(A(n)™) " y(n).

Proof
An—=1)-...-A(m) , n>m
®(n,m) = id , n=m
An) L. Am=1)"" | n<m.
Therefore
(An—1)"HT- .- (Am)™T | n>m
U(n,m) = id , n=m
Am)T - .- Am =17 , n<m.
Hence ¥(n +1,m) = (A(n)~")"¥(n, m). |

Corollary 5.2 Ut (u;, A\,n,m) := & (u;, \, m,n)" is the transition matriz of
wh(n+1) = (Duf (v (ui, A)(n), )~ w™ (n). (5.8)
See also (2.11). |

Therefore ®* (u;, A, 0,n)" (id — P (u;, A, 0))72™ solves (5.8). Equation (5.8) has an exponen-
tial dichotomy. This is true because of

1
(D (p ) ) = {; weo(Dif(p, A))} | (5.9)
Moreover we have
{550 19 i A1, 0] < 0} = (T4, W) (5.10)
ne

The proof of this runs completely parallel to that of Lemma 1.6 in [8]. Furthermore - see
(2.12) it holds true

(Tt ey Wi ()" = im (id — P* (u;, A, 0))" (5.11)

Let pf(A) and p*(\) again be the principal stable and unstable eigenvalues of D;f(p, \),
respectively. According to Lemma 6.6 we will assume that

(EV) the eigenvalues pf(A) and p*(\) are simple (but possibly complex).
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Besides we use the notation introduced in (3.1). (5.9) provides that (u*(\))™" is the principal
stable eigenvalue of (D f(p, ) 1)T. Now applying Lemma 6.6 to (5.8) yields:

wh(n) = ((Dif(p, A)7)")" " (A, w™(0)) + O((max{(a™) ", (@) *})"). (5.12)
nT (A, wt(0)) is defined as in (6.10). The quantity § we used in Lemma 6.6 may be replaced
by (a*)~! in the case under consideration. This becomes clear by invoking Lemma 6.2.
Especially for wt(n) = ®*(u;, A, 0,n)" (id — P*(u;, A, 0))"2™ (5.12) reads for n = N;},

Ot (u, A, 0, N7 ,) " (id — PH(ui, A, 0))" 2
= ((Duf (0, )N (O, (i = P (i, 2, 0))72™) (5.13)
+ O((max{(a™) ™", ()2} ).
Completely analogously we obtain
O (ui, A\, 0, =N )T (id — P~ (u;, X, 0))Tzm
= ((Dof (0, )™ (A, (id = P~ (ui, A, 0))72™) (5.14)
+ O((max{(a*), (o)} ).
Now we proceed in each case to estimate the terms in the second component of (-, -) in (5.7).

Estimate of P(y~ 4+ ~v1)

Assuming the eigenvalue condition (EV) Lemma 6.2 provides that there are eigenvectors
(generalized ones - in the case of complex eigenvalues) v®(u, \) and v"(u, A) of p*(\) and
p"(A) such that

7w, A)(n) =
7w, A)(=n) = D1 f(p, A

respectively.

D.f ( A" (u, A) + O((max{a*, (a*)*})")  and (5.15)
) |

n"(u, A) + O((max{ (™)™, (o) 72})"),

Remark 5.3 If ;5 ()\) are complex eigenvalues and 7*(")(u, \) corresponding eigenvectors
then 7°® (u, A) € lin{R 7™ (u, \), I 7*® (u, \)}. O

Remark 5.4 If 1*)()) are real (and still simple) then
Dif(p, )'n*(w, A) = (7 (A)"0"(u, A) and Dy f(p, A)~"n" (w, A) = (*(A) ™" (, A).
With that (5.15) reads

7w, A)(n) = (* (M) (u, A) + O((max{a, (a*)?})")  and
v~ (u, A)(=n) = (1" (A) 7" (u, A) + O((max{(a) ™", (") 72})")

as n tends to infinity. Together with Lemma 6.18 and Lemma 6.19 and taking into consid-
eration (MAN) we get finally

P(uiyuign, A Niga )y (wign, N (=Ni) = (u(A) Ve (g1, A)
+ O((max{e®, (a*) 7" }(p*(N) 7)) + O((max{(a™) 7", (a*)72})Nirr)

(5.16)

(5.17)

12



and

Plugy i, A Neg)7* (s, N (N ) = O((ma{a, (0%) (1) V)

L (5.18)
+ O((max{c®, (a*)~'} max{a?®®, (a®)?}) Vi),
Similar we get
(1d — ﬁ(ui_l,ui,)\,Ni))fy+(ui_1,)\)(N+) (1 ()N (o, A) (5.19)
+O((max{a?, (")~} (\)™M) + O((max{a**, (a*)?}) M)
and
(id — P(ui—1,uiy A, Ni))y~ (i, A)(=N;) = O((max{a?, (@) 1} (u"(\) M) (5.20)
+ O((max{a®, (@) '} max{(a™) "', (a") 2})").
In each case is O(...) as N; and N;,1, respectively, tend to infinity. O

Estimate of P(P~v L1+ P
Now we take up the estimate of P~ (uir1, A\, =N 1)oi (N, w, A)(=Nigy) =P (ug, A, Nit)
7 (N, u, A)(N;h,) - the next term in (5.7): Let H;" (u;, 5, \) () € Sy, and H (u;, 5, \)(-) €

S_y- be defined by H;" 7 (u,v,A)(n) := b (n,u,v(n), ). Then H = ((h},h;))icz € V.
According to [5, (4.32)] we have
1P (i1, Ay =N )0y N, A) (= Nipy) = PH(u, A, N )7 (N a, A (V) (e

L \ ) (5.21)
< Cre™*Mlay (u, A, 7, ANV, u, A)) i, + Oy || H (u, %, \) ||y

2N is a lower bound of {N;,i € Z}. Looking carefully at the proof of this estimate we see
that (5.21) may be specified to

|1 P~ (i1, A, Nz-}—l) ;l—l(N u, )‘)(_Nijrl) _P+(Uza)‘ N;-FH) (N u, A)( iJ-rl—l)“Rk
< Cpetmaxdinats NGy 4 Oy (|| H (us, 05 M s A IH G (i, B, Mls - )-
+

i+1

(5.22)

From the definition we see H;"(u;,0,\) = 0 and Dy H;" (ug,0,\) = 0, see also [5, Lemma 4.10]
for the latter equality. Hence we have uniformly in u, A

IA{;F(’LLZ, 17+

7

A) = Ol 1) (5.23a)

Analogously we satisfy as to

~

Hiy (uivn; U7, A) = O([0754117). (5.23b)

Next we give appropriate estimates for v, =) To it we benefit that v(u, A) solves the fixed
point problem (2.13). According to [5, (4 43)] we have uniformly in u and A

lva(w A A7, )| < CUHIly + lldllis,). (5.24)
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Again going carefully through the proof given in [5] we see that in particular

1@ T )l xs_ o < CUIHT (w75, 2), Hiy (i, T, Mls gy xs_ -

i+l ir1 "N

i1 (N, 1w, A)|s)- (5.25)
Due to (5.23) there is a € > 0 such that for ||¥]| < e

OY(H (s, B35, N)y i (i, O, s o xs_ - < 3@ 00 llsye s o - (5:26)

i+1 i+1 i+1 i+1

Together with (5.25) this shows that there is a constant C' such that

1w, 771-11)||SN_++1x57N_7 < Clldii (N 1, A) || (5.27)

i+1

By the definition of d; - see (2.14) - and assuming the eigenvalue condition (EV) the repre-
sentation (5.15) provides

(@, 51,) = O((max{a®, (a") 1}) V). (5.28)

Here we took into consideration (2.3). Hence by (5.23)

~

(F (i 7, )y By (wi, B, V) = O((max{a”, () 713)2V), (5.29)

1)

Together with (5.22) this yields

1P~ (i1, A, = Ny )0y (N 0, A (= Nigy) = P (ug, A, N o (N, w, ) (V)

A (5.30)
< C(max{a®, (o) 1})#,

Moreover, the corresponding proofs in [5] tell that there are constants N and ¢ such that
(5.30) remains true (with the same constant C') for all ||u|,|A| < c and all N with N; > 2N,
i € Z. Cf. in particular [5, Lemma 4.6, Lemma 4.8 and Lemma 4.13]. (5.30) together with
Lemma 6.17 provides

P(tiy wir1, A Nigt) [P~ (i1, Ay —Niy )i (N, 0, A) (=N

. (5.31a)
— P (ug, A, Nltl) (./\/ u, \)( 7,+1)] - O((max{as,(au)ﬂ})QNlH)

and

(id — P(uiy i1, A Niga)) [P (w1, A, N)TE (N 0, A (V)

_ (5.31b)
— P7(ui, A, =N, )0y (N, u, A)(=N;)] = O((max{a®, (a*)~1})*" ).

Remark 5.5 (5.28) provides that &(N,u,\) = O((max{a”, (a“)’l})Nitrl). However, this
estimate is unsuitable for solving the bifurcation equation because it contains no information
regarding the sign of &;. Our effort in giving estimates of &; is devoted just this subject.
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A first summary

Before dealing with the estimates of the remaining terms we will briefly sum up our results
up to this point. However we will do this by assuming the requirements (EV_R), (HOM_A),
(DIM_U) and (SUB) we stated in Section 3. Linear algebra teaches

(n*((id — P*(0,0,0))"2",0),7(0,0)) # 0,
(n~((id — P~(0,0,0))"2",0),7°(0,0)) # 0.

Mind that n* ((id — P*(u;, A,0))72", A) and 5= ((id — P~ (u;, A, 0))72', \) are (due to (EV_R))
eigenvectors of (Dyf(p,\)™")7 to the eigenvalues p“(\)~' and uf(\)~', respectively. As
well n%(u, A) and n®(u, \) are eigenvectors of D; f(p, A) to the eigenvalues p*(\) and p®(A),
respectively.

Now, taking into consideration (5.32), our previous estimates provide

(5.32)

<<I>+(ul,)\ 0, Nt )7 (id — P*(us, A, 0))72!
P(uia Ujt1, )‘7 Ni-l-l) <77 (ui-i-l? A)(_sz»l) - f)/+ (ui? )\) (NZ—:I)
+ P (ti1, A, —Nij1) 0 (N w4, A) (=N ) (5.33)
= P (i A N D) (N ) (V) ) )
= " (u, w1, ) (1 (A) N+ o[ (A) 7,
where ¢“(u;, uir1,A) = (nt((id — P (u;, X, 0))72", A), n*(uiy1, ) and according to (5.32)
c*(0,0,0) # 0. And as well we get
<<I>’(uz-, A0, — N (id — P (us, A, 0))T21,
(id = Plus1, 01,2, N9) (7 (i1, DN =7 (uz, N(=N7)
+ Pt (ui—1, A, N;))o; (N )(Nj) (5.34)
— P~ (i, A, =N ) (N ><—N;>)>
= ¢ (ui—1, 1z, A) (1 (M) + o(|(1* () ]),
where ¢* is defined similar to ¢*. Again we have ¢*(0,0,0) # 0.
Comparing the results presented in (5.33) and (5.34) with representation (5.7) of the jump

&; we see that the proof of Theorem 3.1 is done if also the remaining terms Y ®*(id — P*)h*
are small o quantities with respect to (p*(\))"i and (u%(\))~Ni+1, respectively.

Remark 5.6 Also if we replace the eigenvalue condition (EV_R) by the somewhat weaker
condition (EV) - so we admit the principal eigenvalues to be complex - still (®F(...)7 (id —
P )2 P(o )y (.) and (@(.. )T (id — P=(...)72Y, (id — P(...))y*(...)) are the
leading terms of &;. O
Estimate of > ®1(¢d — Pt)h™T

Now we start to estimate the remaining terms in (5.7). We will do the estimate exemplarily

+
N7,+1

for Y & (uy, A, 0,7)(id — PH(ug, \, )b (5 — 1, ui, 0 (N, u, A)(j — 1), A). For it we define
i=1
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the stable and unstable part v;”* and v;"" of v}

v () = (id — P (us, A, §))v (7)) and  0(5) == P (i, A, 4)vf (5), (5.35)

2

respectively. So vj = v;"* + v and v, v € Snz.,- Now (2.9) provides
3

(id — PT(us, A, ))hH (5 — 1wy v (5 — 1), A)
= (id = P (u,;, A,j))[f(v+(uz, NG =1 +v7 (G = 1) + v = 1),
— OO (ui, M) (G = 1), )
- le(7 Oui, NG = 1), )00 = 1) + 0" = 1))

For fixed j the mean value theorem provides
FOt (NG = 1) +0,0) = F(rFO(u, )G — 1), A fD1 (u, \)(j = 1) + 7v, A)dT)o.

Plugging this into (5.36) and splitting v;" into its stable and unstable part according to (5.35)
we get

(5.36)

i = P (00 DG Lo G 1) 4G = 1))
= (id — P*(u;, A,j))[f Dif(yH(ui, NG = 1) +7(07°( = 1) +4,7"(5 = 1)), A)
LDy (s, NG — 1), Nl — 1) + 6 — 1)
—[flavsud P, M) e NG — 1)+ 705G = 1) 40P G - 1)), 3) (5.37)
2 (id = P (e, M ) S (i NG — 1), Nl (G — 1)
aiud = P M) (s NG — 1)+ (07— 1)+ 0 (G — 1), )
— (i = P (g A ) P i, NG — 1), N — 1),

Applying again the mean value theorem (on the last item in (5.37)) yields

+

ol

(id — P*(ui, M, 5)hT (G — 1, ug,0,° (5 — 1) + 0 %(j — 1), \)

)

= [ el — P (a2 ) e N — 1)
°°+m( (G = 1)+ 0 — 1), Nndn)(o*(f — 1), 07— 1)

B [ (i — P (e A ) (0 (s N — 1) (5.39)
T nn (@ — 1) 46— 1), Ndndn) (6 — 1), 584G - 1)

(
+[ff (i — P* (s, M ) F (o (s, )G — 1)
P90 — 1)+ 0P — 1), Nrdm] (6 (G — 1), 57— 1)),

For further investigation of the first item on the right hand side in (5.38) we need the
transformation introduced in Section 4: Let ||v;"*(j — 1)||Rk < €. Then we have v;*(j —1) €
W(p)NB(y*(u, \)(j —1),€). For j > 1 this is true, since v;*(j —1) € im P*(u, A, j—1) and

+ 77 (v
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since after the transformation we performed in Section 4 around v*(u, A)(j — 1) the stable
manifold W3 (p) coincides with 7%+ x)-1yW3(p) = im P*(u, A, j —1). For j = 1 we use
v;7(0) € WH @ W~ @ Z and the transformation we performed in [5] - see also (4.1). Because
f(-;A) leaves W3 (p) invariant the same argument provides also

(id — P (u, X, 7)) £ (0" (u, A) (j = )+v (j—1),A) =0.

EWy (p)ﬂB(7+(u,>\)(J) €)=im P*(u,\,j)

Therefore

2

a(vs)2

(id — P*(u, A, ) f (7" (u, A)(j = 1) + 0%, 1) =0

for all v* € W (p)NB(y*(u,A\)(j —1),€). So we can rewrite the first item on the right hand
side in (5.38) and close-fitting apply the mean value theorem. This provides

[ i = P DT s NG = 1)
P2 = 1) 407G = 1), N (676 — 1,07 - 1)

iy (id = P+ (ui, A, 7)) f (7 (us, M) (G = 1)
+ (G —1) + v (G — 1)), Ndndr

L (id = PH(ug A ) f (7 (s, A) (G = 1)

+ ;N (f = 1), Ndndn | (07 (5 = 1),v°(j = 1))
e (id = P (i, A ) (s, )G — 1)
et — 1) + iy — 1), A)dﬁdedTg]

(v7°(7 = 1),07°(j = 1),v7"(j — 1))

Exploiting the boundedness of v;”*(...) and of the partial derivatives of (id—P* (... ,5)f(...)
we get

+ 172 (v;

1]

Sy

(5.39)

o
i~

|

o
o .

:[0}

(id — P*(ui, A ) 0* (5 = 1o, v (5 = 1), A) [l

. o . (5.40)
< Cllo" (7 = Dllre (1o (G = Dlle + o7 (G = Dllee).

Taking into consideration (id — P*)? = (id — P™) and exponential dichotomy of ® we get
NE,
|| Z q)+(ui7 )\7 07])(Zd o P+(ui7 Aa]))zh—i_(j - 17 Uy, @j(Na u, )‘)(] - 1)7 )‘)HRk
=1
< @) MENG (s Can)e (541)

]6{17 7N +1}

lGid = P, A DAY G = 1, 5 V0 A)G = 1)) ).

17



Choosing 0 < § < 1 such that (da*)~" < 1 and N;;, as large as 6NI+IN;5FI < 1 (5.41) together
with (5.40) yields

+
Nz+1

|| z (I)+(U,Z,)\,O,])(Zd— P+(ula)‘7]))2h+(] - 17Ui7@i+(N7 u, )‘)(j - 1)7)‘)||Rk
j=1

< () NEC|lu (N, u, A)HSN%( sup ()N |t (N, M) ( — l)HRk).

Je{1,.. 7N+1}
Now (5.28) provides
N+
I Z O (ui, A, 0, 7) (id — P (ui, A, J))2h+(J = Loug, o (W0, 0) (G = 1), ) [l
=
Nt (5.42)

< {60y (masfar, (22) 1))V
I GO Ll A APV VR DI

Finally we will show that supje{l,m N+1}( )Nﬁl—fHTJ;““(N, u, A)(j — 1)||gr can be estimated

by (max{a’, (a*)~}) N
According to [5, (4.42)] we have
175 W w, A) (G = Dllre = [1(id — P+ (us, A, j = 1)77 (W, 0, A) (5 — 1)
< ||q>+(uz-,)\ J = LN (id = P*(ui, X, Nyl (uis A, N )|
7,+1

+| Z O (us, A, 7 — 1,n)(id — P (us, \,n))2h T (n — 1,us, 07 (N, u, A) (n — 1), A)||.

n=j—1
Therefore, using (5.40) and taking into consideration that ®* has an exponential dichotomy
we get
()5 |0 (N, A) (= 1)
< ()" (@) "N T laf (s, A, N

+
Ni+1

+C ()N Y 1(04“)*””’1||vi+’“(n = Dlles(lv;™* (0 = D)llre + [0 (0 — 1) [[gx)
n=j—

< laiyy (uis A, NEDI 4+ Csup,eg o NEL) ((au)Nﬁl—nH@#U(N u, \)(n— 1)
(o7 (WS, ) (0= D]+ o (N, w, A (n = 1)) m)

Therefore

+ 4 .
Sup,eqo,.. vty (@) M o (W w, 2) (G = 1)
< lafy (us, A, N | + C'supj ey, ’N+1}( )Nﬁl oMV w, A (G- 1) (5.43)
supjeo,.. vy (107 WV w ) (G = DI+ 157V, A (5 - DIDNE.
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SUPjefo,..., N}

(|7;7°(G — D)|| + ||7"(j — 1)||) can be estimated by C’||17~+||5 , which again
+

tends exponentially fast to zero as Nt 1 tends to infinity. Therefore for sufficiently large
N;%, we have

»S U 1
sup (oW, w, (G = DI+ [0V, (G = DIDNE, < 55 (5.44)
7€{0,....N} |}
Together with (5.43) this provides for sufficiently large N,
4w .
sup ()M oM (N A (G = DI S Cllagy (ui A NI (5.45)

7€{0,....N} |}

lafy (ui, A, N )|| can be estimated by making use of (5.4), (5.30), the definition of d;;; (cf.
(2.8)) and finally the estimates of 4yt and v~ - see Remark 5.4. It turns out that

la,y (ui, A, N ) || < C(max{a®, (o)1 }) Vi, (5.46)
Hence

sup (o) |gH N, w, A (G - 1)]] < Clmax{a?, (@) 71N (5.47)

7€{0,....N} |}
and finally (see (5.42))

I ]Z O (ui, A, 0, ) (id = P (ui, A, J))2h+(1 = Lo, 07 (N, A) (G = 1), A) e

< C(da") ™ (max{a®, (a") 71}

(5.48)

We see that indeed the term at the left-hand side of (5.48) is of order o((u") Ni+1).
~N; 41

Similar we get Y. @7 (u;, A, 0,7)(id — P~ (ui, A\, 7))*h™ (5 — 1, ui, 5, (N, u, A)(j—1),A) =
=0

o((u)™).

6 Estimates used in Section 4

In this section we will make available assertions needed for the estimates in Section 5. This
section is divided into two subsections. In the first one we study the asymptotic behaviour
of solutions of a discrete system starting in the stable (unstable) manifold of a hyperbolic
fixed point. The main result in this direction is Lemma 6.2. This lemma gives the most
weakly converging part of a solution in the stable manifold. For the proof we write the
diffeomorphism f as f = A+ g. A is a matrix and g represents the higher order terms.
Replacingn ¢g by a matrix B which depends on n, leads to Lemma 6.6. This lemma makes
an assertion similar to that of Lemma 6.2 but for non-autonomous perturbed linear systems.
Lemma 6.8 gives the justification to speak of strong stable (unstable) subspaces also in the
context of non-autonomous linear systems.

In the second subsection we give estimates regarding P which was introduced in Section 5.
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6.1 Behaviour in the stable and unstable manifold

We start with the consideration of the behaviour in the stable manifold of a fixed point.
Lemma 5.3 in [6] states that a solution (starting in the stable manifold) tends exponentially
fast to the fixed point. Looking at the proof one perceives that the exponential decaying
rate can be specified:

Corollary 6.1 Let p be a hyperbolic fized point of the smooth family of C* diffeomorphisms
f( N RF — RF X € R Further let A(N\) := Dif(p,\) and let K > 0 and 1 > p, > 0
be any numbers such that ||A"z|| < Kul||z|| for all x in the stable subspace of A := A(0).
Then for each o € (0, —1n p,) there are constants C, €, § > 0 such that for all X, ||| < €
and for all n € N it holds f*(x,\) € WiN B(p,¢€) if only x € Wi N B(p,d). Moreover those
x tend exponentially fast towards p under iteration of f: || f"(z, ) —pl| < Ce=*"||z||. W

The following lemma is the discrete version of Lemma 1.7 in [7].
Lemma 6.2 We consider
z(n+1) = f(z(n),\) with f(0,\)=0 (6.1)

for f € C*(RF xR, R¥). Let the spectrum o (D, f(0,0)) be inside the unite circle. Further we
will assume that the principal eigenvalue p®(0) of Dy f(0,0) is simple (but possibly complex).
More precisely o(Dy f(0,\)) = {p*(A)}Uo® (), where 0 < |p] < ® < |u*(N)] < a® <1 for
all € o%¥(\). We choose o such that (a®)* < |u*(N\)| for sufficiently small |\|. Let X*(\)
and X**(X\) be the generalized eigenspaces of Dy f(0,\) associated to p*(\) and o**(\). Let
P,(\) be the projector projecting RF on X*()\) along X**(\). Finally let €,5 be constants
according to Corollary 6.1 for a« = —1Ina”.

Then for all solutions x(-) with ||x(0)|] < § ezists the limit

2(z(0),3) := Tim (D1(0, ) " Pa(N)(n) € X*(N). (6.2
Furthermore there is a constant ¢ such that
[2(n) — (D1 £(0,X))"n(x(0), M) < e(max{a’, (a*)*})". (6.3)

Proof Let A(\) := Dyf(0,A). f(z,A) = ANz + g(x,N), g(0,\) = D1g(0,\) = 0. By
® (A, -, ) we denote the transition matrix of x(n + 1) = A(A)z(n). Then z(-) is a solution of
(6.1) iff

n

w(n) = @A nmz(m)+ Y 2\ n,j)g(x(j— 1),

j=m+1

= AW Mx(m) + Y AN Tg(a(j — 1), ). (6.4)

j=m+1

Next we prove that A7"()\)(Py()\)
) S

m n)) is a fundamental sequence. Because of A(\)(X?*()\)) C
X?%(A) and A(N)(X*5(N) C X*5(N)

z(
(A) we have Py(A)A(N) = A(MN)Ps(\). This together with
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(6.4) implies:

AN T PNz (n) = AA) T Ps(A Z A )g(x(j = 1), A). (6.5)

j=m+1

Then for any ny,ne € N, ny > ng, there is a constant K such that

ni

1A ™™ P (N (m) = AN BNz(no)ll < Y AN TRV lllg(z(G — 1), Al

j:n2+1

N Ly 4261
< > K () @) (&6)

j:n2+1

for all z(-) with ||z(0)|| < 0. That estimate we obtain by exploiting that p* is simple, invoking
Corollary 6.1 and using finally that (due to g € C?) there is a constant ¢, such that

lg(z, VI < cgllz]l?, Vo - lzfl <. (6.7)

Due to the definition of ¢ this estimate is uniform in \. Because of (®)? < |u*()\)| formula

(6.6) provides that {A(X\)™"Ps(A)z(n)}nen is a fundamental sequence and therefore conver-

gent. n(x(0),\) := lim A(X)"P;(A\)z(n). Because A(\)~! leaves X*(\) invariant and X*(\)
n—0o0

is closed we have n(z(0),\) € X*(\).

Proof of the inequality (6.3):

For that we write (6.4) as a system taking into consideration that A()\) commutes with
Pi(\):

P,(Nxz(n) = AN ™Py(\ Z AN TP, (N g(z(j —1),)) (6.8a)
(id — P,(\)z(n) = AN ™(id — P,( Z AN (id — P,(N))

g((j — 1), A). (6.8b)
First we consider (6.8a). The results of the first part of the proof show that for both addends
on the right-hand side of (6.8a) the limit for m to infinity does exist - we get

P,(\)z(n) = A\)™y +ZA )=, (M) g(z(j — 1), \).

This together with (6.8b) provides
[(n) - A(A)”U( (0), VIl < ]AN)™ ™ (id — Py(A))z(m)]|
Y AN (id ~ P))gla(i-1). )||+||]§ AN PN g(z(i—1), M)

J=m+1

< (@ latml+ 3 (@ loal-1 )+ X0 la-1,21) O
< (@ el + 3 (@l - DIF + S (00 e - DIE).
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For the latter estimate we used (6.7). The constant C' may differ from one to next step in
our estimates. Now let ||z(0)]| < 6. Hence ||z(m)|| <€, Ym € N and moreover ||z(j — 1)|| <
C(a®)7Hz(0)]| - cf. Corollary 6.1 and remind that here p = 0. So, for fixed m the terms in
(6.9) can be estimated as follows:

()™l (m)]] < er(a)",

> (@) lali=DIP < ey 3 (92) < al@)? + @)

j=m+1 j=m+1
> (@) la(f = DIP < ese®)” 3o ()7 (o) < ez(a”)™.
J=n j=n
This together with (6.9) yields (6.3). |

Remark 6.3 Estimate (6.6) is uniform with respect to x(0) and A. Hence the sequence
(A(N)""Ps(N)x(n))nen converges uniformly. Therefore 7(-,-) is continuous. O

Remark 6.4 In Lemma 6.2 we assumed that 0 is a asymptotically stable fixed point. If
0 is a hyperbolic fixed point then Lemma 6.2 describes the behaviour of solutions in the
stable manifold. By reversing 'time’ we obtain a similar lemma for solutions in the unstable
manifold. O

Remark 6.5 Let the hypothesis of Lemma 6.2 hold. Then n(z,\) # 0 iff = ¢ W$*(0).
W3#(0) denotes the strong stable manifold. This is due to f™(x, ) - [p*(A)|™™ — 0 as n — o0
if v € W*(0) - cf. [9]. O

Lemma 6.6 Let A: R — L(R*,RF) and for alln € N B(n,-) : R — L(R*,R¥) be smooth.
Furthermore we will assume:

(i) o(A(0)) is hyperbolic.

(i) The principal stable eigenvalue p*(\) of A(X) is simple (but possibly complez).
(iii) o(A(N)) = (AN)U{p’(A\)}Uc™(A) where 0 < |pu] < o® < |[pP(N)] < o’ <1< o™ < |f

for all € 0°*(X\) and i € o*(N).

(iv) Thereis a B € (0,1) such that ||B(n,\)|| < " and o5 < |u(N)| for small |A|.
Let X*(X\), X*¥(\) and X"(\) be the generalized eigenspaces of A(N\) associated to p*(N),
o5 (\) and o™ ()\), respectively. Further let Py(\) be the projector projecting RE on X*(\)
along X°5(\) @ X"(\).
Then for every solution z(-) of x(n+1) = A(N)zx(n)+ B(n, A)x(n) tending to zero as n — 0o
there exists the limit

n(xz(0),A) := lim A(X) "Ps(N)x(n) € X*(N\). (6.10)

n—o0

Furthermore there is a constant ¢ such that

[l(n) — A(N)"n((0), V]| < c(max{a®®, a”F})". (6.11)

22



Proof Not only the formulation of this lemma is very similar to that of Lemma 6.2 but
also the proof. Only the details in the estimates have to be changed.

Similar to (2.8) in [5] we find the stable solutions of z(n + 1) = A(AN)xz(n) + B(n, \)z(n) as
bounded solutions of

w(n) = AN ma(m)+ Y AN IP()B( — 1, Na(j — 1)

50 J=m (6.12)
- ,:Z;IA(A)”‘J(id —P(X5)B( —1,M)xz(j —1).

P(A,n) are projectors concerned with the exponential dichotomy of z(n + 1) = A(N)z(n)
on N. In particular let P(A,n) be chosen such that im P(\,n) = X°(\) & X*(\) and
ker P(A\,n) = X*(\). So we have P(A\,n) = P()\), Vn € N. From this definition we get
PA)Ps(A) = Ps(A)P(A).

The next step is again to prove that (A(X\)™"P;(A\)z(n))en is a fundamental sequence. In-
stead of (6.5) we have to consider

AN "P(Na(n) = AQN) a(m) + Y AN TPOLA(BG - LA )e(i 1) (6.13)

j=m+1

Mind that im P(X) C ker Ps(\). Now, using the estimates of B assumed in the lemma and
of () caused by the exponential dichotomy of

z(n+1) =AN)z(n) + B(n, \)z(n) (6.14)

we get the same estimate as (6.6). To see that o’ is indeed an appropriate constant for
the exponential dichotomy of (6.14) use Lemma A.5 in [5] and the Roughness Theorem - cf.
Proposition 2.10 in [6]. So we get similar to the proof of Lemma 6.2 the validity of (6.10).
Also the proof of (6.11) runs (on principle) along the same lines as the proof of (6.3). This
time we get

[(n) = A(A)"n(2(0), M| < [[AN)" " (id — Ps(A))z(m)]|
+I X AWTPN(id — Py(A)B(j = 1, M)z — 1)]]

j=m+1

+ || ji::HA(A)n_j(id — P(\)(id — P,(\)B(j — 1, \)z(j — 1)|| (6.15)
+ | _§+1A(A)njp()\)(id — P,(\)B( — 1, \)z(j — 1)|.

In difference to (6.9) we have here an additional term, which can be estimated as

| S AW i(id — PO))(id — PO)B( — 1, Na(j — 1)

j=n+1 -
<Y ela)™ I (@tBY ! < (atB)"
j=n+1

The remaining terms in (6.15) can be estimated as (6.9) - by using again the estimates of
B(-,-) and z(-). This provides (6.11). |
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Remark 6.7 Analogously to Remark 6.3 we get the continuity of 7(-, -). O

In accordance with Remark 6.5 we will show that n(x, \) # 0 iff x is not in the ’strong stable
subspace’ of x(n+1) = A(AN)z(n)+ B(n, A)z(n). Because this is a non-autonomous equation
the notion of such subspaces has to be introduced. For equations having an exponential
dichotomy on N the stable subspace is well defined:

Let z(n+1) = A(n)z(n) have an exponential dichotomy on N defined by positive constants
K, o and projectors P(n) such that ||®(n, m)P(m)|| < Ke ™™ n > m. Here ®(-,-) is
the transition matrix of the equation under consideration. Then we can define the stable
subspace E*(n) (depending on n) by E*(n) :=im P(n). This means nothing else but just so-
lutions of the initial value problems z(n+1) = A(n)z(n), x(m) € E*(m) decay exponentially
and, what’s more, with an exponential rate of at least —«a - see in the appendix of [5]. To
define strong stable subspaces E**(n) we introduce the concept of exponential trichotomies
as it is usual for ordinary differential equations - cf. [1] or [3]. Consider a linear equation

z(n+1) = A(n)xz(n), (6.16)

where for each n € N A(n) is invertible. The transition matrix of (6.16) we denote by ®(-,-).
We say that (6.16) has an exponential trichotomy on N if there exist positive constants
as < a. < 1 < a® < «a, and projectors Py(n), P.(n) and P,(n) satisfying id = Ps(n) +
P.(n)+ P,(n), Yn € N and ®(n, m)P;(m) = P;(n)®(n,m), for i = s, ¢, u and ¥n, m € N such
that for all n,m € N

|®(n, m)Ps(m)|| < Ka®™  ,n>m,
n,m m)|| < Ko ™" m>n
1@ (n, m)P(m)|| < Kae ™™ , 61
n,m)P.(m)|| < K(a)"" n>m :
[®(n, m)Pe(m)|| < K(a)™™™ ,
|®(n,m)Pu(m)]| < Ko™ ™ ,m > n.

That means: A solution z(-) of (6.16) with z(m) € P;(m) decayes exponentially with ex-
ponential rate Ina. If z(m) € P,(m) then x(-) growes exponentially with exponential rate
Ina,. If z(m) € P.(m) then z(-) does not decay faster than oZ~™ and simultaneously it
does not grow faster than (a)"~™.

Let A(n) = A, Vn e N. 0(A) =0*Uc“Uc™ 0% 0° 0" # () and

peo & 0<ul <1,
peETt & ul=1,
peET & ul>1.

Then z(n + 1) = Az(n) has an exponential trichotomy. But also if 0 = () we can allocate
an exponential trichotomy to z(n + 1) = Az(n). Let

o(A)=0"Uoc*Uo":

6.18

O< P <ag<a.<p’ <l<a<a,<p* p?eoc® u eco’ u”eao®. ( )
Then z(n + 1) = Az(n) has an exponential trichotomy with

imP,=X* imP.=X°’ imP,=X" (6.19)
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and constants K = K4 (cf. (6.17)), as, ., af and «,. X*, X® and X" are the generalized
eigenspaces to o%, ¢° and o“, respectively. To utilize exponential trichotomies for our
application we have to prove a corresponding roughness theorem. Indeed we will prove only
the first part of the roughness theorem - see also Remark 6.9 below. What we prove can
also be seen as a generalization of the notion exponential dichotomy (as it is given in [6] for
difference equations or in [2] for differential equations) in the sense that solutions starting in
certain subspace decay exponentially (at least with an exponential rate In «y and all other
solutions do not decay faster than o] ™, as n — oo - if they decay at all. The usual notion
of exponential dichotomy contains that these solutions grow exponentially fast.

Lemma 6.8 Let A € L(RF,R*) with spectrum as in (6.18). The above considerations show
that x(n + 1) = Az(n) has an exponential trichotomy with constants K = K, (c¢f. (6.17)),
s, ¢, af and ay,. Further, for alln € N let B(n) € L(R¥, R*) with

IB(n)|| < Kpf", B €(0,1). (6.20)
The transition matriz of
z(n+1)= (A4 B(n))z(n) (6.21)

we denote by ®g(-,-). Then there exist projectors Qs(n) and a constant IC such that for all
n,méeN

Dp(n,m)Qs(m) = Qs(n)Pp(n, m) (6.22)
and

|Ps(n, m)Qs(m)|| < Kal™™ ,n>m

6.23
1 5(n, m)(id = Qs(m))|| < Kaz ™™ ,m > n. (0:29)

Proof The proof is similar to [7, Lemma 1.1].
Exactly the solutions z(-,m) of (6.21) decaying for n > m exponentially with a rate In a;; we
find as solutions of the fixed point problem

n

z(n,m) = ®(n,m)n+ ,:ZH(I’(TL,]’)PSB(]' —1Da(j —1,m)
- ,:il@(”d)(id — P)B(j — Da(j — 1,m) (6.24)

=t (Ty(z,n))(n,m),

nmeNn>m,npeimP;, > ...=:0.

j=m+1
Here ®(:,-) is the transition matrix of x(n + 1) = Az(n) and P as introduced in (6.19).
Equation (6.24) has to be solved in

Sa, = {7z : Nx N = R* : sup o™ "||z(n, m) ||zt < c0}.

n>m
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Sa. equipped with the norm ||z|| := su up o a7 "||z(n, m)||rs is a Banach space. The equivalence

of the corresponding solutions of (6 21) and (6.24) can be seen as follows: Equation (6.21)
is equivalent to

w(n,m) = ®(n,m)z(m,m) + > B(n,5)BG — 1)z(j — 1,m)

= ®(n,m)Psxz(m,m) J;E;En, m)(id — Ps)x(m,m) (6.25)

j=m+1

Now let = € S,, be solution of (6.21). Therefore the representation of (N, m) can be taken
from the first line in (6.25). Letting acting ®(n, N)(id — P;) from the left yields

®(n, N)(id — Py)x(N,m) = ®(n,m)(id — Py)z(m,m)

b @ni)lid - R)BG - et~ 1m). O
Combining (6.25) and (6.26) we get: o
s(n,m) = B(n, m)Pa:(m m) + ®(n, N)(id — P,)z(N,m)
- ®(n)id = R)B( ~ )x(j ~ 1.m) 621)
+ 3 00n§)PB( ~ ali~ 1,m)

Exploiting (generalized) dichotomy of z(n + 1) = Az(n) and x € S,, we get ||®(n, N)(id —
N
P)x(N,m)|| < ¢(n,m) (Z—) . Because of 0 < a5 < .. this implies | ®(n, N)(id—Ps)z(N, m)||

— 0 as N — oo. Similar we see that Nlim Z ®(n, j)(id — Ps)B(j — 1)z(j — 1, m) does

=00 ;0
exist. Hence by tending N — oo arises (6.24) from (6.27). On the other hand it is a easy
computation to verify that each solution z € S,, of (6.24) satifies (6.21). So we can consider
(6.24) in S,, instead of (6.21).

Indeed maps T5(-,n) Sq, into S,,: Let z € S,,. Then there are corresponding constants such
that

I m) (o, m) e < @00, mnll + 35 (120, D) PIIBG — Dl — 1.m)]|

j=m+1
+ 3 ol g)id = P)IBG =Dl —1,m)]
] n
<clarmlnl+ 3 ar g el el + Y arp ]
j=m+1 j=n+1

< Canm,

Both mappings, x — Tz, + = 1, 2, where

(Ti)(n,m) = > ®(n, )P,B(j — a(j —1,m) and

j= m+1

(L) (n.m) = 3> @(n,g)(id — P)B(j — 1)x(j — 1,m)

j=n+1
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are linear and moreover 11, Ty € I,(S,,, S, ). If

1
Kgp < YN min{a, — oy, oy — fag} (6.28)

then, together with (6.20), this provides that their norms are less than % Hence (6.24) can
be solved for x depending on 7, z(-,-) = zs(n)(+,-). Here z4(n)(+,-) depends linearly on 7.
Hence x4(n)(m, m) depends linearly on 7 as well. This implies

zs(0)(m,m) =0 (6.29)
We will show that

Qs(m): R¥ — R*
£ = z(Pg)(m,m)

are projectors: We consider Q.(m)% = :US(PﬁQS(m)ﬁ)(m,m). If we have shown that
P,Q.(m) = P, then the above equation implies Q,(m)* = Q,(m).

xS(Psg)(n7 m) = q)(nam)Ps€ + i q)(naj)PsB(] - 1)335(Ps§)(] - 17m)

o j=mtl (6.30)
—j:%1<1>(n,1')(id — P)B(j — Das(P&) (5 — 1,m).
From that we see that indeed
P,Qy(m)é = Pyy(P€)(m,m) = P& (6.31)
- mind that §:+1 ...=0. (6.31) together with (6.29) yields
j=m
ker Py = ker Q (). (6.32)

Altogether the above considerations show

2s(Ps&)(n,m) = @B(n,m)Qs(m)f. (6.33)
Now there is a constant K > 0 such that

@5 (n, m)Qs(m)l| = sup [|@(n, m)Qs(m)é|

lell=1

= ||§ﬁp |25 (Ps&) (n, m)||rr < ||§ﬁp |25 (Ps&) (- ) [[sa, 0™ (6.34)
=1 =1

< Ko™, n>m

because {¢ : ||€|| = 1} is compact and & — x4 (Ps€)(+, -) is continuous.
Tieing up to (6.33) we can also prove

im Q,(n) = ®p(n, m)(im Q,(m)). (6.35)
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Namely, let £ € im Qs(m) Then for £ > n > m we have
1@ (k, n)@p(n, m)E|| = |@p(k,m)é| < Kag™™¢]] < Kag™"|€]. (6.36)

That means that the solution ®g(-,-)®g(n,m)¢ of (6.21) is in S,,. This again implies
that ®5(n,m)¢ € imQ,(n). Hence ®5(n,m) (im Qs(m)) C imQ,(n). Since, due to (6.32)
dimim Q,(m) = dimim Q,(n) equation (6.35) is proved. A

However, unfortunately ®p does not commute with Q5. So QQs(n) are not the wanted pro-
jectors. But exploiting (6.35) we see that for each n

RE = im Q,(n) ® ®g(n, 0)<kerQs(0)) (6.37)

is a direct sum decomposition of R¥. Let Q4(n) be the corresponding projector with
im Qs (n) = im Q,(n). We will show that Q4(n) are the projectors we are looking for:
First, by construction we have

D p(n,m)Qs(m) = Qs(n)Pg(n, m). (6.38)
So it remains to prove (6.23). We start with developing a fixed point problem for detecting
solutions of (6.21) starting in ker Q4(m). This fixed point problem runs

z(n,m) = ®(n,m)(id — P)+ > ®(n, j)PB(j — )x(j — 1,m)

Jj=1

35 @(n,j)(id — PYB(j — a(j — 1,m) (6.39)

j=n+1

= (Tu(x,€))(n,m).

Indeed it is a easy computation to verify that each solution of (6.39) also satisties (6.21) -
mind ®(n + 1,n) = A. Vice versa, for m > n we have

m

Dp(n,m) = O(n,m)@p(m,m) — Y _ ®(n,j)B(j — 1)®p(j — 1,m). (6.40)

j=n+1

Now putting n = 0 in (6.40) and letting acting ®(n,0)P; from the left in this equation
and combining this result finally with (6.25) leads to (note that in (6.25) z(n, m) stands for
¢B(”a"0§)

Op(n,m)E = ®(n,m)(id — Ps)®g(m, m)€ + ®(n,0) PP (0, m)

+jnzlq)(n,j)PsB(j —1)®p(j —1,m)¢ (6.41)

— S @(nj)(id— P)B(j — 1)@u(j — 1,m)E.

j=n+1

If £ € dg(m, 0)(ker QS(O)) = ker Qs(m) then ®5(0, m)¢ € ker Q4(0). Because of P;Q,(0) =
P, (cf. (6.31) and definition of Q,(-) via (6.37) which yields Q,(0) = Q,(0)) we have

28



P,®5(0,m)¢ = 0. That means z(n,m) := ®p(n,m)¢ satisfies (6.39). In the opposite
direction (6.41) yields that ®5(n, m)¢ is a solution of (6.39) only if

P,®5(0,m)¢ =0 @p(0,m)é € ker Py = ker Q4(0) < £ € ker Q(m).

This means for solutions z(-,-) of (6.39) that x(m, m) € ker Qs(m).
We will solve (6.39) in the space

S% = {z: N x N = RF : sup o "||(n, m)||gs < oc}.

m>n

S@ equipped with the norm ||z|| := sup o "||z(n, m)||g+ is a Banach space. Similar to the
m>n

corresponding assertions regarding T one can prove that 7, maps S% into itself and that
(6.39) can be solved for z(-,-) = z,((id — Ps)&)(-, ). Again the mappings

Qu(m): RF — RF
& = x,((id — Py)&)(m,m)

are projectors. If z(-,-) is a solution of (6.39) then x(0,0) = (id — Ps)¢ € im (id — P;). With
that our considerations show im Q,(m) = ®z(m, 0) ( ker QS(O)) and - similar to (6.34)

|®5(n, m)Qu(m)|| < Ko™, m>n, (6.42)
K = maX{”snglEl 125 (Ps&) (-, ) |5 \|S§1||l£1 |z ((id — P)E) (-, -)||seu }- (6.43)

Because im Q,(m) = im Q,(m) and im (id — Q,(m)) = im Q,(m) we have

~

@5 (n,m)Q,(m) = (0, m)Q(m)Qy(m) and 6.4
@ (1, ) id — Qu(m)) = @, 1) Qu(m) id — Q,(m).

Hence, taking into consideration (6.34) and (6.42), the estimates (6.23) are proved if ||Qs(m)||
is bounded - more precisely, if sup ||Qs(m)|| < co. For that we fix m € N. Consider £ € R”.

Let & = Qu(m)€ and &, := (id — Q,(m))€. Now

Qs(m)g = gs = Qs(m)é‘s

= Psgs — j:§+1 q)(m,])(ld - Ps)B(] - l)l's(Psfs)(] - 17 m) (645)
— Ps€ - Psgu - iJrl(I)(ma])(ld - Ps)B(] - 1)x5(PS§s)(] - 1am)

On the other hand
= (Zd - Ps)gu - Zl q)(maj)PsB(] - l)xu((ld - Ps)gu)(] - 17 m)
j=
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Therefore

m

Psgu = Z(I)(maj)PsB(] - l)xu((Zd - Ps)gu)(] - lam)'

i=1

Combining this with (6.45) yields:

Qu(m)E = P& = B(m, j)PB( — Dau((id = PYE)G — 1,m)

7j=1

- i q)(maj)(ld - PS)B(] - 1)x5(PS€s)(] - 17m)

j=m+1

This equation can be written as

Qum)E = P& — Y &(m, j)P,B(j — DB (j — 1, m)Qu(m)(id — Q,(m))¢
N A (6.46)
= 5 @m, )i = P)BG —1)®( — 1, m)Qu(m)Qs(m)e.

From that it follows

1Qs(m)Il - < [Pl

+jm21 1@ (m, NP BG = DIN®@p( = 1,m)Qum) | (1 + Qs (m)]])

+ S [l @(m.j)(id — PYIBG — DIlI@s( — 1m)Qu(m)llIIQs(m)]
j=m-+1 . i (647)
< P+ ) Kakek (o)™ gt
j=1

#(35 aar ()" gt B e ()"0 Q)|

7j=1 j=m+1
< |Pf| + FAZEEC 4 FATEEC|| Qs (m).

Here C':= 3 /. If besides (6.28) also

7=0

<«
2K KC

then (6.47) provides that ||@Qs(m)]| is indeed bounded. (6.44) together with (6.34) and (6.42)

gives an appropriate IC according to the lemma.

Writing (6.20)as ||B(n)|| < Kpf™ 3" " and defining Kp,, := K™ we can make Kp,, as

small as we wish. With this Kp,, we can do the same considerations and get the estimates

(6.23) for all n,m > n,. Then by enlarging K we get (6.23) for all n,m € N. |

Kg (6.48)

Remark 6.9 Similar to Lemma 6.8 one can prove that there exist projectors Q.s(n) such
that

[®5 (1, m)Qes(m)[| < K(af)"™™ ,n = m,

||@B(nam)(ld - ch(m))H < Ka;(min) ,m > n.
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Then we get projectors Qs(n), Q.(n) and @Q,(n) defining an exponential trichotomy of (6.21):

Qs(n) we get according to Lemma 6.8, Q.(n) := (id—Qs(n))Qcs(n) and @y (n) := id—Q.s(n).
U

Remark 6.10 Let (6.21) be a variational equation associated with a nonlinear system x(n+
1) = f(xz(n)) having a hyperbolic fixed point p. Let ¢ € W*°(p) be a point in the strong
stable manifold. Then we can apply Lemma 6.8 on z(n + 1) = Df(f™(q))z(n). Similar to
[6, Proposition 5.4] we can prove im Qs(m) = Tym )W *(p). O

We will now consider the case that B in the equation (6.21) depends smoothly on a parameter
AeR:

z(n+1)(A+ B\ n))z(n). (6.49)

We will take on the assumptions concerning A made in Lemma 6.8. Moreover we assume
that the estimate (6.20) of B holds true uniformely in A and besides this also

IDAB(A\,n)|| < KpB", B € (0,1). (6.50)
Then, of course, the assertion of Lemma 6.8 remains true for all \.

Remark 6.11 Recall that it was our goal to show that n(z, A) # 0 iff = is not in the strong
stable subspace. In accordance with our notations the strong stable subspaces are im Q4(n).
Now, combining Lemma 6.6 and Lemma 6.8 yields that n(z, ) has to be zero if and only if

x € im Q(0). O
Next we will look at the derivatives with respect to A of the quantities under consideration:
Lemma 6.12 With the above assumptions we get that there is a constant K > 0 such that

| DA(®5(\, 1, m)Qs(A,m))|| < Ko™, n > m. (6.51)

Proof As in the proof of Lemma 6.8 we have ®5(\,n, m)Qs()\, m)& = xs(Ps&) (A, n,m) and
A = 2,(P,£) (N, -+, +) maps smoothly from R into S,,. Hence

IDA® 5 (Ao, 1, m) Qs (X, m)E) ()|
= [ Dazs(Ps&) (Ao, m, m)) ()|l = sup [ Dxzs(Ps§) (Ao, 12, m)) (A) || (6.52)

Al=1
< ||D/\:U5(Ps§) ()\oa Y ')||L(Rk,Sas)a?_m'

The latter inequality in (6.52) follows from the definition of || - [| g s,,)- Finally the lemma
follows by taking supremum for ||£]| = 1 in (6.52). |

Remark 6.13 With similar arguments as in Lemma 6.12 we get also

| DA(® (N, 7, m)Qu(A,m))|| < Ko™, m > n. (6.53)
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Remark 6.14 Let’s consider the representation (6.46) of QQs(m)& with quantities depending
on A. Then estimates similar to that of ||Qs(m)|| given in (6.47) show that also || DAQs(A, )|
is bounded. Then differentiating the equations corresponding to (6.44) with respect to A
leads to

IDA(®5(A; 7, m)Qs(A, m))|
IDA(@5(A, n,m) (id — Qs(A,m)))|

Ka™™, n > m,

Ko™ m >n

C

<
. (6.54)

O

Looking closer at (6.46) one can prove that [|[D)Qs(],-)|| even decays exponentially -cf. [7,
Lemma 1.1] for the differential equation case. However, for our purpose it is sufficient to
know that ||D,Qs(A,-)|| remain bounded.

6.2 Estimates regarding P

Next we will make available necessary estimates concerning P. P(ui, Uitr1, A, Nip1) is defined
by the direct sum decomposition (5.5). The existence of this decomposition was proved in
[5, Lemma 4.4]. In the proof of this lemma P is represented by

Plug, i, A, Nigr) = S (s, i1, X, Nigr) (id — P)S (uz, uzer, A, Nigr) ™ (6.55)
where
S(wiy uir1, A\, Niy1) = (id — P~ (uiy1, A, —N1)) P + (id — P*(u;, N, Njip)) (id — P). (6.56)
P projects R* on T,,W*(p) along T,W*(p).

Lemma 6.15 Suppose the eigenvalue condition (3.1). Then in the space L(R*, R*) of linear
mappings it holds
lim S(’LLZ, Uit 1, )\, Ni—i—l) = 1d.

NZ‘+1 —00

And moreover, there is a K > 0 such that

Nt
18 iy wig, A, Nig) = idl] < K mafo”, (o) 1}) .
Proof Equation (6.56) provides

15 (wi, wisr, A, Nisa) — id|]
<[P~ (i1, A, =N )Pl + | P* (ui, A, Njf ) (id — P)|

< NP~ (uipr, X\, =Nigy) = (id = P)IPI[ + (| P (ui, A, Nty ) = Pllfid — PJ].

13 13

Now the lemma results from [5, Corollary A.4] together with Lemma 6.2 and [5, Lemma A.5] -
see also Lemma 6.6. More precisely: [5, Corollary A.4] states that both || P~ (uj11, A, =N ) —
(id — P)|| and ||P*(u;, A, N;t;) — P|| tend exponentially fast to zero as N;i1 goes to infinity.
The residual lemmata cited above ensure that the rate of decaying is as stated in the lemma.
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Corollary 6.16 Lemma 6.15 is valid also for S(u;, uiy1, A, Niv1) ™.

Proof Let GL(k) be the set of invertible linear maps R¥ — RF. Then the mapping
GL(k) — GL(k), S — S~! is continuous (with respect to the topology induced by the
norm of L(R*, R¥). This proves (together with Lemma 6.15)

lim S(U“ Uiy, )\, Ni+1)71 =1d.

Ni+1—>00

The inequality

+

1 st A Newt) ™ — ] < & (maxcfa, (0)71}) "
becomes clear by
1S (uiy wigrs A, Niga) ™ = ad|] < IS (i wir, A Niga) THIIS (wiy wigr, A, Niga) — id]|
together with Lemma 6.15. [

Lemma 6.17 Suppose the eigenvalue condition (3.1). Then in the space L(R*, R*) of linear
mappings it holds

lim  P(u;, tit1, A, Nip1) = id — P.

Ni+1—)00

And moreover, there is a K > 0 such that

+
Ni+1

1P sy i1, 2, Niga) = (id = P)| < K (max{a®, (a")'})
Proof (6.55) provides

1P (wiy wig1, A, Niga) = (id — P)|
= ||(S(Ul, Uity )\, Ni+1) —id + Zd)(ld — P)(S(Uz, Uiy, )\, Ni+1)_1 —id + Zd) - (Zd — P)“
< (1(S (i, i1, A, Nigr) — id) (id — P)(S(wi, wirr, A, Niya) ™ — id) |
+ [|(S (i, i1, A, Nija) — id)(id = P)|| + [|(S (i, wisr, A, Niga) ™! — id)(id — P)]|.
Now the lemma follows by Lemma 6.15 and Corollary 6.16. [
Lemma 6.18 Let v* € T,WW*(p) =im P. Then

lim ﬁ(ul, Uit1, )\, Ni+1)1)s =0.

NiJrl*)OO

And moreover, there is a C > 0 such that

+
Ni+1 s

1P (s, i1, X, Nin)o'|| < € (maxfal, (@) 7'}) ™o,
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Proof
1P (wiy wigrs Ay Niga)v® || = (| P(ug, wir, A, Niga)o® — (id — P)o*||
< 1P (ui wigr, A Niyr) — (id — P)||[Jo*]].
Now the lemma follows by Lemma 6.17. [

Similar we get

Lemma 6.19 Let v* € T,W"(p) = ker P. Then

: D uo__
lm  P(u;, wipq, A, Nigq)v" = v®.
NiJrl*)OO

And moreover, there is a C' > 0 such that

+

1P, g1 X, N — 0¥ < € (maxfar, (@) 713) "o
Proof
P(ug, g1, A, Nig1)v® — v = (Pug, uiy1, A, Niyq) — (id — P))o*.
Again Lemma 6.17 provides the assertion. |

At the end of this subsection we will make some remarks concerning the derivative of P.
This projector is associated with variational equations of the form

vn+1) = Dif(r ) u, A (), Ao(n)
= (Dif () + DO N0, N) = Dif(pY) Jolm).  (657)

[

-~

=:B+()(u,\,n)

Now it is immediately clear that B+(7)(u, A, n) satisfies (6.20) uniformely in u and \. To
estimate D, B*(7)(u, \,n) we have to estimate D,y(7)(u, \)(n). We will do it exemplarily
for “+7. 4yt (u, \)(n+1) = f(v"(u, A)(n), A). Hence
Dy (u, A)(n +1) = Dif (7" (u, A)(n), ) Duy™ (u, A) (n). (6.58)
Furthermore v*(u, A)(0) € W§(p) for fixed A and all u. Hence
Du’)/+ (u, )\) (0) € T,y+(u,)\)(0)W/\s(p). (6.59)

Due to the exponential dichotomy of the equation v(n+ 1) = Dy f(y*(u, A)(n), \)v(n) equa-
tion (6.58) and formula (6.59) imply that there is a K > 0 such that

1Dury ™ (u, N ()| < K ()" (6.60)
If we assume that ;*®) are simple -(EV) - then this estimate can be rendered more severe to

Dyt (, A (n) = 1Dy (1, M)(0), ) ()" + O (max{a™, (a*)})")  (6.61)

- ¢f. Lemma 6.6. Therefore ||D,B*(7)(u, A\, n)|| decays exponentially. Hence, Remark 6.14
applied to this case reads
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Corollary 6.20 The derivatives of the projectors P with respect to u; remain bounded
as N; tend to infinity. |

Then (6.56) and (6.55) - which describe the connection of P and P - tell

Corollary 6.21 The derivatives of Pt with respect to u; remain bounded as N; tend to
infinity. [ |

7 Homoclinic Tangencies

We will apply our results to the case that ¢ is a non-transversal homoclinic point. More pre-
cisely we assume that the principal eigenvalues are simple and real - (EV_R). The assumption
dimU =1 we extend to
(HT) (i) dimU =1
(ii) rank % =2
’ (u,\)=(0,0)
To exclude degeneracies we will also assume (SUB) and (HOM_A). According to [5, Section
3] the homoclinic tangencies condition (HT) implies that [ > 1. For simplicity we put [ = 1.
Then £*(u, A) can be transformed into A + u®. Because these two cases do not differ qual-
itatively from each other we will only deal with the “-” case. In this case we find for each
A > 0 u-values ui(A) # uy(\) such that £2(u;(A), ) = 0. Assigned to these u;(\) we have
homoclinic points ¢;(\), i = 1,2, merging to the non-transversal homoclinic point ¢ at A = 0
and finally disappearing if A\ becomes negative. See [5] for more details. Indeed for A > 0
¢;(\), i = 1,2, are transversal homoclinic points.
We will give an intiutive discussion of 1-periodic orbits.
The bifurcation equation Z(N,u, \) = 0 for detecting periodic orbits (hitting a small neigh-
borhood of ¢ exactlay once - so called 1-periodic orbits) only consits of a single equation

E°(u, ) + (N, u, \) = 0.
This equation can be written in normal form
A—u?+E(N,u,\) =0 (7.1)
or equivalently
A =u? —&(N,u, \).

Essentially, for fixed N the zeros of (7.1) form (a slightly deformed) parabola A = u? which
is shifted upwards or downwards depending on £ is negative or positive. Our considerations
in Section 5 show that

E(N, ) = (1, M) (" (V)™ 4+ ¢ (w, ) (e ()Y + o (1 ()7 ) + o (12 (1))
¢*(0,0), ¢*(0,0) # 0.

(7.2)

We will make a further assumption concerning the principal eigenvalues which allows to
perceive the sign of &:

35



(EV_R*) (EV_R), and p*(\) > |p*(A)~1].

Hence p*(A) > 0 and the sign of £ coincides with the sign of ¢*(0,0).

If ¢#(0,0) is negative - the parabola will shifted upwards - then for sufficiently small A > 0
we have no intersection of {(u,\),u € R} and the “parabola” A = u? — ¢ and therefore no
periodic orbits with period N.

While for positive ¢*(0,0) we find even for for small A < 0 periodic orbits with period N.
More precisely: There is a A*(N), A* > 0if ¢* < 0 and \* < 0 if ¢ > 0, such that for A > \*
there are two 1-periodic orbits with period N which merge at A = A* and finally disappear
if A is less than A\*.

Note that for fixed A < 0 (sufficiently small of course) we do not have periodic orbits of
period N for arbitrary large N: If N is too large the entire “parabola” A\ = u? — £ will lie
above the line {(u, \),u € R}.
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