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Quasistatic inflation processes within rigid tubes

Joachim Steigenberger, Harald Abeszer ∗

July 28, 2006

Abstract

In this paper the authors consider mechanical devices that can be seen as segments of
an artificial worm or as a balloon for angioplasty. Continuing former work [St 2003] the
segment is now placed within a cylindrical or constricted rigid tube that will be touched or
pressed during inflation of the segment. Both the segment’s shape and the forces of contact
are investigated. The main mathematical tool is the Principle of Minimal Potential Energy
- handled as an optimal control problem with state constraint. The necessary optimality
conditions are carefully analyzed and simulation results for characteristic examples are
presented.
The treatment of the problem is primarily mathematical but aiming at application.
Keywords: Optimal control, state constraint, biomechanics.
MSC: 49J15, 49S05, 74F10, 92C10.

1 Introduction

In the following we continue investigations published in [St 2003]. There, the author con-
sidered the statical behavior of compliant mechanical elements called ”segments”, that
could be seen as dilatable parts of a worm or of an artificial muscle.
A segment has a hull that consists of two parallel rigid circular discs connected by a de-
formable membrane of circular cylindrical original shape. When this (stress-free) cylinder
will be filled with some (incompressible) fluid of fixed volume greater than that of the
cylinder the segment deforms into some body of revolution. The membrane enters a state
of stress, the discs longitudinally displace, and a hydrostatic pressure arises within the
fluid.
Under some working hypotheses concerning the kind of compliance of the membrane
(particularly meridional inextensibility) local equilibrium conditions (membrane equations
from shell theory) were applied whence an ordinary boundary value problem containing
the internal pressure as a parameter was obtained. Then, numerical evaluation of this bvp
yielded in particular the shape, volume, expansion, etc. of the segment in dependence of
the internal pressure, i.e., a description of the quasistatic inflation process. As a side effect
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the problem of a body of revolution with maximal volume under fixed length of meridian
was solved (limit case of infinite pressure). This result showed up to be both interesting
and useful.
Among the Conclusions of the above mentioned paper the author emphasized the follow-
ing open problem: Think of the segment centered within a surrounding cylindrical rigid
or compliant tube. Under certain geometrical opportunities, the membrane could contact
and more and more press against the tube during the inflation process. Then one should
determine the shapes of both the segment and the tube, the common surface of contact
and the contact force (per unit of area) acting there, all depending on the prescribed seg-
ment’s internal pressure. This mechanical problem is intimately connected with practical
tasks like creeping of an artificial worm along a pipe or dilating a vessel in medical surgery.
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Figure 1: Original segment (longitudinal cut, zero pressure)

Principally, the problem could be tackled in a synthetic way: consider the system segment-
tube in a state where contact is achieved and write down the equilibrium equations sep-
arately for segment and tube. These equations are both entered by the unknown force of
contact. Find this force so that at every point of the membrane the condition ’radius of
membrane not greater than inner radius of tube’ is fulfilled.
This procedure is apparently rather unwieldy. For not only the force of contact is unknown
but so is also the interval along a meridian where there is contact and the unknown force
acts.
It seems better to prefer an analytical way, and this will determine the philosophy of
the problem treatment in the sequel: Start by formulating the Principle of Minimal Po-
tential Energy for the system segment-tube (in what state ever). This principle shows
up as a variational problem or, equivalently, as an optimal control problem under state
constraint. The crucial point is that in this formulation the unknown forces of contact,
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(a) Segment under high internal pressure
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(b) Segment within constricted tube (same pressure)

Figure 2: a,b

being constraint forces, do not occur. Therefore the corresponding optimality conditions
immediately serve for to determine the shape of the overall system, again in dependence of
the internal pressure within the subsystem ’segment’. After this has been managed then,
finally, the equilibrium equations of the membrane, whose geometry is now well-known,
can be established. There, the only unknown is the force of contact (acting on an interval
that is known as a result of the foregoing control problem) which now can be found from
the equilibrium equations.
In order to open this way of investigation the authors considered in [AS 2005] optimal
control problems under state constraint and, following classical patterns, developed neces-
sary optimality conditions in a form that essentially allows for an immediate application
to the present problems. As a relevant type of problems again maximum volume problems
were solved in the above mentioned paper. Especially, since the respective solutions can
be presented in analytical form, they will be used with profit in coming iterative numerical
evaluations.
The paper will be organized in the following way. In section 2 first the inevitable facts
from geometry and membrane theory will be outlined, some type of control problems from
[AS 2005] essential in the sequel together with the corresponding optimality conditions
will be presented. In section 3 the inflation of a segment within a rigid tube will be con-
sidered. A thorough analysis of the necessary optimality conditions both yields interesting
theoretical insights and allows numerical investigation of some choice examples. Simula-
tion results are presented in section 4. The conclusions sketch some open problems.
This paper presents investigations of inflated segments surrounded by rigid tubes. Forth-
coming investigations will aim at segments within compliant tubes. Corresponding tools
from optimal control are already prepared in [AS 2005].
There exists plenty of literature on ballooning of segment-like elements, see in [St 2003],
[A 1992], [V 2005], mostly based on practical interests in connection with worms, artificial
muscles, angioplasty. In many cases the investigations exhibit a specific insufficiency since
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the authors start from more or less arbitrary presuppositions about the shape of the de-
formed element. In the following such inappropriate foundation will be avoided. Instead,
the starting-point is an ensemble of stringent assumptions concerning the rheology of the
segment. In particular in view of the complicated if not obscure structure of the plaque
forming a stenosis of a vein such assumptions seem to be inevitable.
It is not the aim of this primarily mathematical paper to end up in presenting an apparatus
of formulas that immediately fits for application by (e.g., medical) practitioners. Besides
useful theoretical insights our results are to give stimulation for further investigations
straightforwardly aiming at applications.

2 Tools from geometry, membrane theory, optimal control

The mechanical problems to be solved in this paper concern elements of rotational sym-
metry, and partly of a compliance coming from a skin-like hull. Therefore it makes sense
to put together the main things from the geometry of surfaces of revolution and from the
statics of membranes (as known from the theory of elastic shells). For optimal control
theory those parts from [AS 2005] are sketched that serve as the starting points of the
investigations.

2.1 Surfaces of revolution

Using the surface coordinates u1 = φ (latitude) and u2 = s (arc-length of meridian) a
general surface point has the radius vector

r(φ, s) = x(s)ex + y(s){cosφey + sin φez}, φ ∈ [0, 2π), s ∈ [s1, s2]. (1)

The moving frame then is

g1 = y(s){− sinφey + cosφez},
g2 = x′(s)ex + y′(s){cosφey + sinφez},
n = −y′(s)ex + x′(s){cosφey + sinφez}.

(2)

It entails
the metric tensor: g11 = y2, g12 = 0, g22 = 1,
the Christoffel symbols: Γ2

11 = −yy′, Γ1
12 = y′/y, rest zero,

the 2nd fundamental tensor: b11 = −x′y, b12 = 0, b22 = x′y′′ − x′′y′ .

The standard meridian φ = 0 is given by (x(·), y(·)). Its natural equations are

x′ = cosu, y′ = sinu, u′ = κ,

where u(s) is the angle from ex to the tangent vector g2(0, s) of the meridian, and u′(s)
is the curvature of the meridian at that point (κ = b22). Most geometry books suppose
u ∈ C∞, the present context demands to relax this strong smoothness. To start with we
shall accept the minimal assumption

u piecewise continuously differentiable.
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Thus u is piecewise continuous (class D0) and, up to finitely many points, everywhere
differentiable with continuous derivative. Then x and y describe a piecewise smooth
meridian which has a piecewise well defined continuous curvature, the surface of revolution
may have edges (along circles of latitude).

2.2 Membranes

The compliant segment to be investigated will in particular be characterized by the hy-
pothesis that its deformable latitudinal hull statically behaves like a membrane shell, i.e.,
like a solid shell with no stress couples, see [GZ 1954]. The middle surface of this shell
will be called membrane for short. In any actual state of the segment the membrane is a
surface of revolution, and the formulas from above apply.

The local equilibrium of the membrane under the action of the external force per unit area

P = Pαgα + Pnn

is governed by the membrane equations

∇βNαβ + Pα = 0, Nαβ = Nβα, bαβNαβ + Pn = 0. (3)

Here, Nαβ are the stress resultants per unit of length, they determine the stress vector
dT = dT ρgρ acting at the one-dimensional cut element df = dfαgα: dT ρ = Nρσdfσ,
dfσ = gσαdfα. ∇ is covariant derivation, ∇βNαβ = Nαβ,β +Γα

ρβNρβ + Γβ
ρβNαρ.

Remark. Since equilibrium takes place in the actual state of the segment, area and length
are those in the deformed membrane!

The membrane equations will be solved under the following assumptions:
- surface of revolution,
- only normal forces acting (Pα = 0),
- rotationally symmetric state of stress (Nαβ,1 = 0).

Then the equations appear as

d
dsN

12 + 2y′
y N12 = 0,

d
dsN

22 + y′
y N22 − yy′N11 = 0,

−yx′N11 + (x′y′′ − x′′y′)N22 + Pn = 0.

(4)

As to the rheological behavior of the membrane the following working hypotheses will be
introduced again [St 2003]:
- The membrane shell has original constant thickness h and it is incompressible;
- the membrane is skin-like, i.e., any state of the segment is stable only if the stress
resultants are tensile, N11 ≥ 0, N22 ≥ 0, else a breakdown occurs (total flexibility);
- the membrane is meridionally inextensible;
- latitudinally, the membrane is homogeneously hyperelastic.
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So the principal strain in s-direction vanishes,

ε2 = 0,

and N22 appears as reaction to this constraint. The meridians keep their length , the
arc-length s is an invariant during deformation.

The principal strain in ϕ-direction is constant along any circle of latitude, it is given by
the original (r) and actual radius (y),

ε1(s) = (y(s)− r)/r. (5)

If σ1 denotes the principal stress in latitudinal direction then hyperelasticity means

σ1 = Eχ(ε1) (6)

(χ(ε) = ε for Hooke material). Generally, E denotes some constant Young’s modulus that
is given in case of Hooke material and else fictitious and to be suitably chosen. χ(·) is a
smooth function from R+ to R+, χ(0) = 0, monotonically increasing in most cases. It is
given by experiments or suitably chosen in theory.
Note that σ1 means force (at a cut φ = const) in φ-direction divided by the original area
of the cut element. Thus (recall ds invariant under deformation) with g0

1 := g1/ ‖ g1 ‖
there holds σ1hdsg0

1 = N11df1g1, df = df1g1 = dsg0
1, df1 = g11df

1 = yds, and it follows

y2N11 = hEχ(
y

r
− 1).

With regard to later calculations it seems promising to skip to quantities of physical
dimension 1. For this end we fix some suitable L0 as unit of length (i.e., put x = L0x̃, etc.,
and drop the tilda after introduction); later on for L0 the segment’s meridional length will
be chosen. Moreover let

N11 = (
hE

L2
0

)n11, N12 = (
hE

L0
)n12, N22 = (hE)n22, Pn = (

2hE

L0
)pn (7)

(the parenthesized quantities now are the respective units of measurement, nαβ, pn to be
used in calculations take real numbers as their values).
The constitutive law now takes the normalized form

n11 = ψ(y)/y2, where ψ(y) := χ(
y

r
− 1), (8)

and the membrane equations write, using a dot for d
ds ,

(y2n12)· = 0,
(yn22)· − y2 sinun11 = 0,
u̇n22 − y cosu n11 + 2pn = 0.

(9)
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Mind that in general the normal load pn is

pn = p + z, (10)

where p is a hydrostatic (constant) pressure while z, the reaction to a contact segment-
tube, is a priori totally unknown.

If the constitutive law is taken into account, the second membrane equation solves by

yn22 = Ψ(y) + c22, where Ψ(y) :=
∫ y

r
ψ(η)dη. (11)

c22 is some integration constant which will be specified by boundary conditions.

The third membrane equation then yields

2yz = −2yp− u̇[Ψ(y) + c22] + ψ(y) cos u. (12)

Reminding what had been said in the Introduction, it becomes now clear how to determine
the force of contact as soon as the actual shape (u(·), y(·)) including the meridional interval
of contact is known.

We conclude this section by giving an expression for the potential energy stored in the
deformed membrane. Per original unit volume this energy is (no normalization yet)

∫ ε1

0
σ1(ε)dε =

∫ ε1

0
Eχ(ε)dε =

E

r

∫ y

r
ψ(η)dη =

E

r
Ψ(y),

an original volume h ds rdφ then contains hE ds dφΨ(y), and the total energy follows by
integration about meridian× (0, 2π). With normalization there results the total potential
energy of the deformed membrane

W [y] =
∫

Ψ(y(s))ds, measured in units 2πhEL2
0. (13)

Integration is along the full (normalized) length of a meridian.

2.3 Optimal control problems

In this section we quote some results from [AS 2005]. There, the authors considered Bolza-
type optimal control problems with state x ∈ Rn and control u ∈ Rm of the following form
(roughly):

I[x, u] := g0(t0, x(t0), T, x(T )) +
∫ T
t0

f0(t, x, u)dt → min,

ẋ = f(t, x, u), (dynamics)
Q(t, x, u) ≥ 0, (control restriction)
S(t, x) ≥ 0, (state restriction)
g(t0, x(t0), T, x(T )) = 0, (boundary restriction).
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In order to establish a tool for quick application to the problems under investigation in
the following sections we introduce as
(i) simplifications: no control restrictions, no finite term of the cost functional (drop Q
and g0), some fixed boundary values (some coordinates of x(t0), x(T ) given), simplest
dynamics, autonomous cost, scleronomic state restriction;
(ii) supplement : internal point condition.

Optimal control problem P1:

Find (x, u) ∈ D1
n[t0, T ]×D0

m[t0, T ], t0, T fixed, such that

I[x, u] :=
∫ T
t0

f0(x, u)dt → min, f0 ∈ C2(Rn+m,R),
ẋ = f(u), f ∈ C2(Rm,Rn), (dynamics)
xj(t0) = xj0, j ∈ J, xk(T ) = xk1, k ∈ K, (boundary condition)
xl(τ) = ξl, l ∈ L, for given τ ∈ (t0, T ), (internal point condition)
S(x) ≥ 0, S ∈ C2(Rn,R), (state restriction).

(14)

J, K, L are given subsets of {1, .., n}.
Regarding the state constraint the following assumption holds (relative degree h = 1 ):

S(x(T )) > 0,
R0(x, u) := S,x (x)f(u), R0,u (x, u) 6= 0 if S(x) = 0.

Points tβ ∈ [t0, T ] where the solution curve t 7→ x(t) enters (joins) or leaves (disjoins) the
manifold S(x) = 0 are called junction points.
Let B := {discontinuity points of u(·), junction points}.
Using the indirect method (i.e., the Lie-derivative R0 instead of S enters the Hamiltonian,
see [AS 2005]) we have the following

Optimality conditions for P1:

Let (x, u) solve P1.
Then there exists a multiplier (l0, λ(·), ρ(·)), l0 ∈ R+, λ ∈ D1[t0, T ], but λl, l ∈ L, possibly
discontinuous at τ, ρ ∈ D0[t0, T ] and piecewise differentiable on intervals where S(x(t)) >
0, such that with the Hamiltonian

H(x, u, l0, λ, ρ) := l0f0(x, u) + λf(u) + ρR0(x, u)

there holds
(a) ∀t ∈ [t0, T ] (l0, λ(t), ρ(t)) 6= 0,

(b) λ̇i = −H,xi , i /∈ L, t ∈ [t0, T ] \B,

λ̇l = −H,xl
, l ∈ L, t ∈ [t0, T ] \ (B ∪ {τ}),

(c) λi(t0) = 0, i /∈ J, (λi + ρS,xi )t=T = 0, i /∈ K,
possibly λl(τ − 0) 6= λl(τ + 0), l ∈ L,

(d) H,u = 0, t ∈ [t0, T ],
(e) H = const, t ∈ [t0, T ] \ {τ},
(f) H,uu≤ 0,
(g) 0 = ρ̇S(x) p.w., ρ non-decreasing, (ρS)t=t0 = 0.

(15)
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Remark. The fact that discontinuities of λl and H at τ have to be allowed emerges
during the derivation of the optimality conditions by means of variational arguments (see
[AS 2005]). Observing the internal point condition xl(τ) = ξl the variations δt and δxl

must be zero at τ whence certain indeterminations (jumps of λl and H) may result.

3 Segment within a rigid tube

We consider a compliant segment of original radius r and length L0 showing the rheological
constitution described in section 2.2. Following the lines given there this length L0 will
be taken as the unit of lengths, so, formally L0 = 1. The segment is inserted in a
long rigid tube that has an inner radius R(x), where, as usual, x is the longitudinal
coordinate. Under certain symmetry assumptions the quasistatic inflation process of the
segment will be investigated in the following. Before starting we note that due to the
presupposed meridional inextensibility of the segment there exists a maximal volume the
free segment (without restriction by the surrounding tube) can approach during inflation,
see the corresponding investigations in [AS 2005]. Let R̄(r) be the equatorial radius of the
free segment in this maximal volume shape.

Concerning the internal profile of the tube we assume D2-smoothness and adopt the
Assumption:

(a) ∀x ∈ (−∞,∞) R(−x) = R(x), r < R(x) ≤ R̄(r),
(b) ∀x ∈ (−∞, 0) −∞ < R′(x) < 0 or R(·) = const.

(16)

By (a) a symmetry w.r.t. x = 0 is ensured, the tube is neither too narrow as to crumple
the membrane nor too wide as to avoid any contact under inflation. With (b) the profile
either represents a constriction of the tube or the inner radius is constant.
To be concise the arc {(x, R(x)) : x ∈ R} will be called profile in the following.

3.1 Inflation within a rigid tube

Using the tools, notations, and the normalization introduced in section 2 we start with
the Principle of Minimal Potential Energy for the segment,

W [y]− pV [y, u] → min , (17)

where p is the actual internal hydrostatic pressure and V =
∫

y2 cosuds is the actual
volume of the segment, W =

∫
Ψ(y)ds is the deformation energy of the membrane. Remind

Ψ(y) :=
∫ y
r ψ(η)dη, where ψ governs the latitudinal stress-strain relation of the membrane

material (see section 2.2). It makes sense to introduce

q := 1/p ∈ R+ (18)

as a new parameter; then q = 0 exhibits the maximum volume problem (which is purely
geometrical though appearing mechanically as the limit case p →∞).
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If we take the above variational principle literally then the task is to find the shape of
the segment (at given pressure p ) and its position within the tube such that the potential
energy achieves its minimum. That leads to the following optimal control problem with a
parameter ξ (in this first formulation we disregard smoothness classes).

Find (ξ, x, y, u), ξ ∈ R, such that
∫ 1

2

− 1
2

{qΨ(y)− y2 cosu}ds → min,

ẋ = cosu, x(0) = ξ,
ẏ = sin u, y(±1

2) = r,
S(x, y) := R(x)− y ≥ 0.

(Equivalently, we could use any x(s0) instead of x(0)). In view of the applications we have
in mind our primary interest is not directed to the absolute minimum of the potential
energy and the corresponding position, ξ, if it exists. Rather, we prescribe some ξ (in-
stantaneously, the segment of a worm is at some position during the worm’s motion, the
balloon for angioplasty is placed to some position within the tube) and then focus on the
shape of the segment that minimizes the energy in this position.

Using Assumption (16,a) it is simple matter to prove the following proposition for the
feasible functions (satisfying the restrictions within the problem).

Proposition 3.1 At given ξ let s 7→ (ξ, x(s), y(s), u(s)) be feasible.

Then also s 7→ (−ξ,−x(−s), y(−s),−u(−s)) is feasible with the same value of the cost
functional.

This means that every feasibly shaped segment at position ξ has a mirror twin w.r.t. x = 0
(forced by the eveness of R(·)). Both segments have the same value of the potential energy,
Proposition 3.1 describes their isomorphism. For shapes with symmetry w.r.t. x = 0 the
twins coincide.

In this paper on radially constrained segments we shall restrict our considerations to
segments placed at ξ = 0 - though, for applications as in angioplasty, eccentrically (w.r.t.
the symmetric profile) positioned inflating segments could be of interest as well.

Now we have to deal with the following optimal control problem. (D̃1
1 denotes the

class of p.w.continuous and p.w.continuously differentiable functions.)

Find (x, y, u) ∈ D1
2[−1

2 , 1
2 ]× D̃1

1[−1
2 , 1

2 ] such that
∫ 1

2

− 1
2

{qΨ(y)− y2 cosu}ds → min,

ẋ = cosu, x(0) = 0,
ẏ = sinu, y(±1

2) = r,
S(x, y) := R(x)− y ≥ 0.

(19)

This is an optimal control problem of type P1 (see section 2.3) with state (x, y), control
u and a state constraint S(x, y) ≥ 0. The relative degree of the problem is h = 1,
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i.e., Ṡ = R′(x) cos u − sinu explicitly depends on u and the rank condition Ṡ,u 6= 0 is
generically fulfilled (violated at some s iff at s the extremal hits the profile orthogonally).
The relatively strong smoothness of u is inherited from the theory of surfaces in section
2.1. As a peculiarity there occurs the restriction to zero of the state coordinate x at the
inner point s = 0 of (−1

2 , 1
2). This internal point condition entails some discontinuities to

be allowed in the optimality conditions (see section 2.3) but, fortunately, it simplifies the
search for the optimal solutions by means of the following proposition.

Proposition 3.2 Any solution of the optimal control problem (19) is symmetric in the
sense

∀s ∈ [−1
2
,
1
2
] x(−s) = −x(s), y(−s) = y(s), u(−s) = −u(s).

Proof. For the sake of brevity let

(x, y, u) =: X =:
{

X1 on [−1
2 , 0)

X2 on (0, 1
2 ]

and, with feasible X, write the potential energy

∫ 1
2

− 1
2

{qΨ(y)− y2 cosu}ds =: I[X] = I1[X1] + I2[X2]

where I1 =
∫ 0
− 1

2
... , and I2 =

∫ 1
2

0 ... . Now, following Proposition 3.1, let X̃ be the mirror

twin of X, i.e., X̃(s) = (−x(−s), y(−s),−u(−s)) and introduce X̃1, X̃2 as done above.
Compare the integrals I1[X1] and I1[X̃1], put X∗

1 := X1 if I1[X1] ≤ I1[X̃1] else X∗
1 := X̃1

then proceed analogously with I2 and define X∗
2 . It is easily seen that

X∗ =:
{

X∗
1 on [−1

2 , 0)
X∗

2 on (0, 1
2 ]

is feasible and symmetric and there holds I[X∗] ≤ I[X] = I[X̃]. So, if there exists a
(minimizing) solution then it is symmetric. ¥
This proposition has a nice consequence: computations of solutions and, partly, the analysis
of optimality conditions may be confined to s ∈ [−1

2 , 0).

In order to formulate the necessary optimality conditions (see [AS 2005] and section 2.3)
we define the Hamiltonian

H(x, y, u, l0, λ1, λ2, ρ) :=
l0[−y2 cosu + qΨ(y)] + λ1 cosu + λ2 sinu + ρ[R′(x) cos u− sinu].

(20)

The optimality conditions then are the following:

Let (x, y, u) be a solution of the optimal control problem (19).
Then there exists a multiplier (l0, λ1(·), λ2(·), ρ(·)), l0 ∈ R+, λ1 ∈ D1[−1

2 , 1
2 ] but possibly

11



discontinuous at s = 0, λ2 ∈ D1[−1
2 , 1

2 ], ρ ∈ D0[−1
2 , 1

2 ] and piecewise differentiable on
intervals where S(x(s), y(s)) > 0, such that

(a) ∀s ∈ [−1
2 , 1

2 ] (l0, λ1(s), λ2(s), ρ(s)) 6= 0,

(b) λ̇1 = −H,x = −ρR′′(x) cos u, s ∈ [−1
2 , 1

2 ] \ (B ∪ {0})
(b1) λ1(−1

2) = 0, λ1(1
2) = −(ρR′(x))s=1/2,

(c) λ̇2 = −H,y = −l0[qψ(y)− 2y cosu], s ∈ [−1
2 , 1

2 ] \B
(d) 0 = H,u = [l0y2 − λ1 − ρR′(x)] sin u + [λ2 − ρ] cos u,
(e) H = const, s ∈ [−1

2 , 0) ∪ (0, 1
2 ]

(f) 0 ≤ H,uu = −H + l0qΨ(y),
(g) 0 = ρ̇S = ρ̇[R(x)− y], ρ non-decreasing, (ρS)s=−1/2 = 0.

(21)

The set B consists of all the discontinuity points of u and junction points meridian-tube.

Remark: If (x, y, u, λ, ρ) solves the necessary conditions (21) then for the sake of brevity
(x, y, u) will be called an extremal of the problem.

The optimal control task (19) aims at a particular class of objects, the segments as in-
troduced in section 2.2. Therefore some further side conditions issuing from physical
assumptions given in section 2.2 which are not immanent to the Principle as formulated
above must be observed as well.
First, the membrane has been assumed to be skin-like, i.e., the stress resultants are non-
negative (tensile stresses only). And second, it had been tacitly assumed in section 2.2
that active constraint be physically ideal, i.e., the reaction force z acts in normal direction
and is governed by (12), while inactive constraint yields z = 0. z, applied from outside
(from the tube) to the membrane, must be a pressure, therefore z ≤ 0 (no adhesion).

Now
(i) 0 ≤ n11(s) = ψ(y(s))/y2(s) implies

y(s) ≥ r.

(ii) 0 ≤ n22(s) can be exploited in the following way. At a cut s = const ≤ 0 the
equilibrium of longitudinal forces reads

n22(s)y(s) cos u(s)− py2(s)− 2
∫ s

− 1
2

z(t)y(t) sin u(t)dt = 0, s ∈ [−1
2
, 0].

Now z(t) = 0 if at t there is no contact segment-tube , z(t) ≤ 0 and (owing to (16)(b))
sinu(t) < 0 if there is contact. So the integral is non-negative thus n22(s) cosu(s) > 0 if
p > 0 and therefore n22(s) > 0 and cosu(s) > 0. Hence there holds

p > 0 ⇒ ∀s ∈ [−1
2
, 0] u(s) ∈ (−π

2
,
π

2
). (22)

Moreover, it is necessary that (if p > 0)

u(−1
2

+ 0) =: u(
1
2
) =: α > 0. (23)
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Clearly, α < 0 would lead to ẏ(−1
2+0) = sinα < 0 and y(s) < r in some right neighborhood

of −1
2 .

So assume α = 0. Then for the same reason u̇(−1
2 + 0) ≥ 0 must hold. Owing to the

assumptions (16) there is no active constraint (z = 0) in a right neighborhood of −1
2 . The

formula (12) yields with s → −1
2

0 < 2rp = −u̇(−1
2

+ 0)rn22(−1
2
),

and this entails the contradicting boundedness u̇(−1
2 + 0) < 0.

Finally the stronger restriction (for p > 0)

u continuous at s ∈ (−1
2
, 0) ⇒ y(s) > r. (24)

will be shown.
Assume y(s0) = r. For y(·) not to go below r it is necessary that u(s0) = 0. Owing to
the assumptions (16) there is no active constraint in a neighborhood of s0, there holds
z(s) = 0 and thus, according to (12)

0 < 2py(s) = −u̇(s)y(s)n22(s) + ψ(y(s)) cos u(s)

for all s in this neighborhood (possibly up to finitely many points where u(·) or u̇(·) has
a jump). So s → s0 ± 0 yields (ψ(y(s0)) = ψ(r) = 0)

0 < 2pr = −u̇(s0 ± 0)rn22(s0).

Since n22 > 0 everywhere we obtain u̇(s0 ± 0) < 0. Hence u(s) < 0 and as a consequence
y(s) < r in a right neighborhood of s0: contradiction!

Remark: Later on we shall show that u is continuous everywhere, then y(s) > r will
become true on all of (−1

2 , 0).

Due to the symmetry of the extremals the inequalities (22) and (24) hold true for the
s > 0 part of the extremals.

Being strong inequalities, these side conditions (22) and (24) do not influence the opti-
mality conditions via additional multipliers but they will prove important in the sequel.

The analysis of the optimality conditions will be done through several steps.

(1) Normality : Assume l0 = 0. At s = −1
2 the constraint is inactive (S > 0) hence

from the optimality conditions we obtain in turn (g): ρ(−1
2) = 0, (b1): λ1(−1

2) = 0, (d):
λ2(−1

2) = 0. Thus the total multiplier vanishes at s = −1
2 : contradiction!

So let l0 = 1 for all that follows.

(2) Multipliers and ’energy’ constant : Following (21)(e) let

H = c1 and H = c2 for s ∈ [−1
2
, 0) and s ∈ (0,

1
2
], respectively.

13



In corresponding intervals solve the equations H = ci and H,u = 0 for λ,

λ1 = y2 − qΨ(y) cos u + ci cosu− ρR′(x),
λ2 = −qΨ(y) sin u + ci sinu + ρ,

, i = 1, 2.

Observing (b1) and u(−1
2) = α = −u(1

2) (symmetry), s → ±1
2 yields

0 = λ1(−1
2
) = r2 + c1 cosα, 0 = λ1(

1
2
) + (ρR′(x))s=1/2 = r2 + c2 cosα,

so that with (22) c1 = c2 =: c,

c = − r2

cosα
< 0. (25)

The multipliers λ now become

λ1 = y2 − [ r2

cos α + qΨ(y)] cos u− ρR′(x),

λ2 = −[ r2

cos α + qΨ(y)] sinu + ρ.
(26)

As a consequence we obtain the smoothness properties of ρ on the full interval [−1/2, 1/2].

(3) Continuity of the control u:
a) At s 6= 0. In any open interval with active constraint there holds y = R(x), u(s) =
arctan(R′(x(s))), x(·) continuous, thus u is continuous in this interval. Let s0 ∈ (−1

2 , 0)
be any point outside of such intervals, let y0 := y(s0), u±0 := u(s0 ± 0), etc. Continuity of
λ2 at s0 implies

−[qΨ(y0)− c] sinu−0 + ρ−0 = −[qΨ(y0)− c] sinu+
0 + ρ+

0 ,

and, since ρ is non-decreasing,

0 ≤ ρ+
0 − ρ−0 = [qΨ(y0)− c](sinu+

0 − sinu−0 ).

Analogously, continuity of λ1 at s0 implies

0 ≤ −R′(x0)(ρ+
0 − ρ−0 ) = [qΨ(y0)− c](cosu+

0 − cosu−0 ).

Eliminating the ρ±0 and dropping the positive bracket we obtain

−R′(x0)(sinu+
0 − sinu−0 ) = (cos u+

0 − cosu−0 ).

If s0 is not a junction point (S > 0, ρ = const around s0) then ρ+
0 − ρ−0 = 0, the

parenthesized expressions both must vanish whence u+
0 = u−0 which means continuity.

If s0 is a junction point where the extremal enters the profile then R′(x0) = tanu+
0 , the

last equation yields cos(u+
0 − u−0 ) = 1 hence u−0 = u+

0 (continuity) follows. In a junction
point where the extremal leaves the profile (disjunction) the same reasoning yields the
same result. If s0 is a touch point (junction ∧ disjunction) then disjunction demands
4u+

0 ≤ U0 = arctanR′(x0) < 0 while ρ+
0 − ρ−0 ≥ 0 entails u−0 ≤ u+

0 . But then u−0 < U0

14



would contradict junction hence u−0 = u+
0 = U0 must hold.

Owing to the symmetry, u(−s) = −u(s), continuity has now been ensured on [−1
2 , 1

2 ]\{0}.
b) At s = 0. If the constraint is active in a neighborhood of s = 0, then the continuity
proves as in a).
Again, let y0 := y(0), etc. Since λ2 is continuous at 0 (whereas λ1 may have a jump) we
proceed as above and, using the symmetry u−0 = −u+

0 , obtain

2[qΨ(y0)− c] sin u+
0 = ρ+

0 − ρ−0 .

If in a full neighborhood of 0 the constraint is inactive then ρ = const on this neighborhood
thus u+

0 = 0 which implies continuity.
If, finally, s = 0 is both junction and disjunction point (one-point touch) then ρ may have
a jump and therefore sinu+

0 ≥ 0 holds. This implies u+
0 ≥ 0, and in a right neighborhood

of s = 0 we have y(s) = R(0)+s sinu+
0 +o(s). This violates the constraint (note R′(0) = 0)

if not u+
0 = 0. Then u is continuous with u(0) = 0 and this also entails continuity of ρ

and λ1 at s = 0.
Summarizing, we have found u ∈ C0[−1

2 , 1
2 ], u(0) = 0. This implies

(x, y) ∈ C1
2 [−1

2
,
1
2
], λ ∈ D1

2[−
1
2
,
1
2
], ρ ∈ D1[−1

2
,
1
2
].

(4) Differentiability of the control : Consider

λ1 = {y2 − [
r2

cosα
+ qΨ(y)] cos u} − ρR′(x)

and condition (b), λ̇1 = −ρR′′(x) cosu, which imply

d

ds
{y2 − [

r2

cosα
+ qΨ(y)] cosu} = ρ̇R′(x), piecewise.

We introduce the state-control function Φ,

Φ(y, u; α, q) := y2 − [
r2

cosα
+ qΨ(y)] cos u. (27)

Then λ1 = Φ− ρR′ entails

ϕ(·; α, q) := Φ(y(·), u(·);α, q) ∈ D1[−1
2
,
1
2
],

and there holds, owing to the optimality condition (b),

d

ds
ϕ = ρ̇R′(x), piecewise. (28)

Using condition (g) we deduce the following alternative: if the constraint is inactive then
ρ̇ = 0, thus ϕ = C = const, whereas in intervals of active constraint ρ̇ ≥ 0 and R′(x) < 0
exhibit ϕ on [−1

2 , 0] as a non-increasing function.
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The initial values y(−1
2) = r, u(−1

2) = α yield ϕ(−1
2 ; α, q) = 0, Ss=−1/2 > 0 entails S > 0

in some right neighborhood of s = −1
2 . Therefore C = 0 in this utmost left interval of

inactive constraint and C ≤ 0 in any further such interval whithin [−1
2 , 0].

In intervals of active constraint, y(s) = R(x(s)), there holds u(s) = arctanR′(x(s)) ∈
(−π

2 , π
2 ). If x → R(x) was assumed to be of class Ck, k ≥ 2, then u is Ck−1 in these

intervals.
In intervals of inactive constraint we have y2 − [ r2

cos α + qΨ(y)] cosu = C = const ≤ 0 (the
value of C depends on the interval). Now u = arccos{(y2 − C)/[ r2

cos α + qΨ(y)]} yields

u ∈ C1 if u 6= 0 and, using ẋ = cosu, ẏ = sinu, iteratively, u ∈ C∞ if u(s) 6= 0 and
Ψ ∈ C∞.

(5) Description of the extremals: Again, we restrict our considerations to the s−interval
[−1

2 , 0]. Now at least for points where u(s) 6= 0 we get

d

ds
ϕ = sin u{2y − qψ(y) cos u + [

r2

cosα
+ qΨ(y)]u̇}.

So we obtain for the curvature of the extremal in any interval of inactive constraint

u̇ = {−2y + qψ(y) cos u}/[
r2

cosα
+ qΨ(y)]. (29)

The previous condition u 6= 0 can now be dropped because of the rhs continuity, u̇ is
continuous in these intervals. In combination with ẋ = cosu, ẏ = sin u the last equation
(29) forms a differential equation the unconstrained parts of the extremals must satisfy.
In an interval of active constraint, y(s) = R(x(s)), tanu(s) = R′(x(s)), the curvature is
K = R′′(1 + R′2)−

3
2 , and we get

d

ds
ϕ = R′(1 + R′2)−

1
2 {2R− qψ(R)(1 + R′2)−

1
2 + [

r2

cosα
+ qΨ(R)]K}

as a function of x(s). Since R′ < 0, ϕ̇ ≤ 0 then means

0 ≤ 2R(x)− qψ(R(x))(1 + R′2(x))−
1
2 + [

r2

cosα
+ qΨ(R(x))]K(x) (30)

in any interval with active constraint.

Now either the extremal never hits the profile (i.e., y(s) < R(x(s)) for all s ∈ [−1
2 , 0]) or

it is at some smallest s = t1 ∈ (−1
2 , 0] that the extremal tangentially (continuity of u !)

enters the profile. If (x, y, u) is the (unconstrained part of the) extremal on the interval
[−1

2 , t1) then this means

x(t1 − 0) = x1, y(t1 − 0) = R(x1), u(t1 − 0) = arctanR′(x1), (31)

with some x1 ∈ (−1
2 , 0] not known in advance but rather, together with α, to be deter-

mined by means of the last equations (for details see following sections).
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Remark: Mechanically, the skin-like membrane would allow edges. So it is by far not
self-evident that the extremal has contunous u and, thus, joins the profile tangentially
while at most showing a jump of its curvature u̇.

If t1 < 0 then an s−interval (t1, t2) with active constraint could follow. There the extremal
is governed by y(s) = R(x(s)), u(s) = arctanR′(x(s)), and (30) must be fulfilled. This
interval terminates at some t2 ∈ [t1, t?] where at t? the rhs in (30) turns to negative values.
If t2 < 0 the extremal tangentially leaves the profile, and again an interval with inactive
constraint follows. Along this interval then ϕ(s;α, q) = C holds with C = ϕ(t2;α, q) ≤ 0.
Whether this case occurs or not seemingly depends both on the profile function R and the
function ψ which characterizes the kind of hyperelasticity of the membrane and also on
q. There is no practicable and general rule in sight. Merely for convex profiles (R′′ ≥ 0)
disjunctions can be excluded in a fairly simple way using phase-space considerations. We
come back to this item in section 3.4.

Summarizing, the extremals s 7→ (x, y, u)(s) , s ∈ [−1
2 , 0] , are characterized in the fol-

lowing way (the characterization of the right parts, s ∈ [0, 1
2 ], is obvious because of the

symmetry of the extremals).
(a) In intervals of inactive constraint, y < R(x), the extremal with boundary values

y(−1
2
) = r, u(−1

2
) = α

solves the differential equation

ẋ = cosu,
ẏ = sinu,

u̇ = {−2y + qψ(y) cos u}/[ r2

cos α + qΨ(y)],
(32)

(unconstrained extremal) for which

Φ(y, u; α, q) := y2 − [
r2

cosα
+ qΨ(y)] cos u = C = const ≤ 0 (33)

is a first integral. C depends on the interval. Note that both the differential equation and
the first integral explicitly depend on the initial value α which is not known in advance
but rather has to be found from the supplementing boundary condition u(0) = 0 or in
connection with junction conditions (31).
(b) In intervals of active constraint, y = R(x), the extremal is governed by

y = R(x(s)),
u = arctanR′(x(s)),
s =

∫ √
1 + R′(x)2dx

(34)

no longer than (30) is fulfilled, which means nothing else but ϕ non-increasing along these
intervals.
Appropriate junction conditions (31) make (x, y) a C1−curve which is C∞ or Ck in inter-
vals of inactive or active constraint, respectively, and may have a jump of its curvature in
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junction/disjunction points.

Amazingly, the function −Φ behaves like an entropy along any extremal (s ∈ [−1/2, 0]).
Its derivative along an extremal gets a clear mechanical meaning in the following. (This
is indeed a nice fact, since the strongly related multiplier ρ usually remains a bit obscure
in literature.)

(6) The constraint forces: The constraint force per unit of area, z, is given in section 2.2
by (12). The integration constant there, c22, follows from the equilibrium of longitudinal
forces at the left disc: 0 = 2πrN22(−1

2) cos α−πr2P as c22 = pr2/ cosα. Then (12) yields

2qyz = −2y − [
r2

cosα
+ qΨ(y)]u̇ + qψ(y) cos u. (35)

Indeed, the differential equations (32) make z vanish along intervals of inactive constraint
whereas along intervals of active constraint z follows from (35) by means of (34).

Consider first the simple but practically important case R(x) = R1 = const (cylindrical
tube). Then there follows at once

z = −p +
1

2R1
ψ(R1) (36)

for s ∈ (t1, 0], where t1 has to be found via the junction conditions (31). We refer to
respective simulations in section 4.

In the general case it is easily seen that

2qy sinu · z =
d

ds
{−y2 + [

r2

cosα
+ qΨ(y)] cosu} = −ϕ̇ ≥ 0. (37)

Observing sinu = R′(1 − R′2)−1/2 < 0 the last inequality means z ≤ 0. This expresses
the fact that the reaction z, which the tube exerts on the membrane, cannot be tensile
(physically, this excludes adhesion), it must be pressing if not zero. ϕ̇ = 0 is feasible for
both inactive and active constraint. To make things a bit clearer we introduce the

Definition 3.3 The constraint R(x)−y ≥ 0 is called strongly active if y = R(x) ∧ z < 0,
weakly active if y = R(x) ∧ z = 0.

The following proposition is then obvious. (Remind that we are with s ≤ 0, x ≤ 0.)

Proposition 3.4 If R(x) 6= const then the following alternative holds: the constraint is
strongly active iff ϕ̇ < 0, the constraint is inactive or weakly active iff ϕ̇ = 0.

It is obvious that weak activity just means a chance coincidence of the unconstrained
extremal and the profile.
Along active constraint intervals there holds ϕ̇ = ∂

∂xΦ(R(x), ...) cosu and hence a rule for
to calculate z is

z = −p 1
2RR′(x)

∂
∂xΦ(R(x), arctanR′(x);α, q)

= −p{1 + r2

cos α
1

2R(x)K(x)}+ 1
2R(x){ψ(R(x))[1 + R′2(x)]−1/2 −Ψ(R(x))K(x)}, (38)
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where K = R′′(1 + R′2)−3/2 is the curvature of the profile. Note the structure inherited
from pΦ = p(y2 − r2

cos α cosu)−Ψ(y) cos u :

z = z1[p,R] + z2[R, ψ],

the first term depends on p (also via α !) and the profile whereas the second, p-free term
is determined by the profile and the material hyperelasticity.

From (37) it is easily seen that (up to the measuring unit 2πL0hE)

−pdϕ = sinu · z · 2yds (39)

is just the longitudinal component of the total constraint force acting at the inner surface
element 2πyds of the tube. This is another interpretation of Φ.

3.2 Maximum volume segment within a rigid tube

The purely geometric problem of maximal volume of a segment within a rigid tube,

Find (x, y, u) : V [y, u] → max, R(x)− y ≥ 0,

is embedded in our current considerations as the limit case q = 0. This case deserves
special attention not only because of its interesting geometric content but in particular for
the following fact: it shows up to be solvable by quadratures and, thus, it proves useful as
a starting element for iterative calculations in treating problems q > 0.

With q = 0 we obtain from (32) the curvature u̇ = (−2y cosα)/r2 of the unconstrained
parts of the extremals. Thus these parts have negative curvature (right-handed curves).
This implies a fact that already had been noted above: If the profile is convex (R′′ ≥ 0)
then at most one junction point t1 < 0 can occur. Clearly, if there were a disjunction at
t2 < 0, then a right-handed part of the extremal would follow which never can hit the
left-handed profile again.

Due to the negative curvature u is strictly monotonic and can be used as a parameter for
representing the unconstrained part of the extremal. For the sake of brevity let

√
cosα =: γ > 0,

and x1 := x(t1), y1 := y(t1), u1 := u(t1). Using (32) and (33) with C = 0 the initial value
problem then reads

dx
du = − r

2γ

√
cosu, ds

du = − r
2γ

1√
cos u

, u ∈ (u1, α],

x(u1) = x1, s(u1) = t1, y1 = r
γ

√
cosu1.

(40)

By means of the elliptic integrals

F (z, k) :=
∫ z
0

1√
1−v2

√
1−k2v2

dv, E(z, k) :=
∫ z
0

√
1−k2v2√
1−v2

dv,

F(z) := F (z, i), E(z) := E(z, i)
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we have
∫ u
0

√
cos vdv =

√
2E(

√
2 sin u

2 , 1√
2
) = sign(sin u

2 ){E(1)− E(
√

cosu)},
∫ u
0

1√
cos v

dv =
√

2F (
√

2 sin u
2 , 1√

2
) = 2sign(sin u

2 ){F(1)−F(
√

cosu)},
and the extremal can be given the representation

x = x1 − 1√
2

r
γ {E(

√
2 sin u

2 , 1√
2
)−E(

√
2 sin u1

2 , 1√
2
)},

y = r
γ

√
cosu,

s = −1
2 − 1√

2
r
γ {F (

√
2 sin u

2 , 1√
2
)− F (

√
2 sin α

2 , 1√
2
)},

u ∈ (u1, α]. (41)

Now at the junction point (s, x, y, u) = (t1, x1, y1, u1) there holds

r
γ

√
cosu1 = R(x1),

u1 = arctanR′(x1),

t1 = −1
2 − 1√

2
r
γ {F (

√
2 sin u1

2 , 1√
2
)− F (

√
2 sin α

2 , 1√
2
)},

while the x−equation in (41) becomes an identity. x1 ≤ 0 clearly implies u1 ≤ 0. The
first two equations lead to

γ2 = cosα =
r2

R(x1)2
1√

1 + R′(x1)2
. (42)

So α is known as soon as x1 has been found.

If there is no disjunction point t2 < 0, i.e., if there is contact along the full interval (t1, 0],
the coincidence of arclengths,

t1 =
∫ x1

0

√
1 + R′(x)2dx,

together with the second and third equation above yields another equation for the deter-
mination of x1.

Observing
√

2 sin u1
2 < 0 we obtain

1
2 +

∫ x1

0

√
1 + R′(x)2dx =

= −R(x1)[1 + R′(x1)2]
1
4 {F([1 + R′(x1)2]−

1
4 )− 2F(1)+

+F( r
R(x1) [1 + R′(x1)2]−

1
4 )}

(43)

as a single equation for the unknown x1 ∈ (−1
2 , 0).

For the case R(x) = R1 = const the relations from [AS 2005] are met again.

Let us finally recall the equatorial radius, R̄(r), of the unconstrained maximal volume
segment. R̄(r) is the general upper bound of y (for all q ≤ 0). It can easily be found as
y1 from above if junction (and disjunction) happens at x1 = t1 = 0, u1 = 0. It follows

R̄(r) =
r

γ0(r)
, where γ0 solves γ0 = 2r{F(1)−F(γ0)}. (44)
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In [St 2003]

r 7→ .382210 + .745230r + .060065r2 + .005035r3 (45)

was shown to be a fairly good L2-approximation of R̄(r) if r ∈ [0, 1.5].

3.3 Phase-plane considerations

The unconstrained (parts of) extremals are described by the autonomous differential equa-
tions (32), which admit Φ(y, u; α, q), given by (33), as a first integral that is zero-valued
along any trajectory (x, y, u) with initial values (∗, r, α).

Since the x-differential equation decouples from the others it is apparently convenient to
look at the core of the problem in a (u, y)-phase-plane. There are several opportunities
to do this. Generally, we fix r > 0. Then first, fixing q ≥ 0, we could investigate the
family of phase-portraits Pα parameterized by α ∈ R. Among the trajectories of Pα,
described by Φ = C = const ∈ R, there is the unique one passing the point (α, r), de-
scribed by Φ = 0. Second, we could gather exactly these exceptional trajectories, one
from each Pα. So we get a distinguished phase-portrait P, whose elements are given by
y2− [ r2

cos α + qΨ(y)] cosu = 0, α ∈ R. Therefore the generating α-free differential equation
to P now is

u̇ = {−2y + qψ(y) cos u} cos u
y2 ,

ẏ = sinu.
(46)

Clearly, in the proper context of extremals all the objects under consideration are of
importance only under the restrictions

0 < r ≤ y ≤ R̄(r),
−π

2 < −α ≤ u ≤ α < π
2 ,

C ≤ 0.

Remark: One should keep in mind that x(· ) is disregarded in phase-plane considerations.
So phase-plane events are only necessary for what happens with extremals in (x, y)-space.
Nevertheless the (u, y)-trajectories are in any case parameterized by s, the arc-length of
the curve (x(· ), y(· )) !

In order to have a concrete start we suppose a linear ψ (Hooke constitution of the mem-
brane), i.e.,

ψ(y) :=
1
r
(y − r), Ψ(y) :=

1
2r

(y − r)2.

1. Phase portrait Pα for fixed α

The phase-space is, of course, a cylinder (u = −π, u = π identified).
Differential equations (r, q, α fixed):

u̇ = {−2y + q 1
r (y − r) cos u}/[ r2

cos α + q 1
2r (y − r)2],

ẏ = sinu.
(47)
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Geometric location of horizontal line elements: (ẏ = 0)

h = {(0, y), (π, y) | y ∈ R}.
Geometric location of vertical line elements: (u̇ = 0)

v := {(u, y) | (q cosu− 2r)y − rq cosu = 0}.
Fixed points: (h ∩ v)

FP1 : u = 0, (q − 2r)y − rq = 0,

FP2 : u = π, (q + 2r)y − rq = 0.

Note that the fixed points do not depend on α and that q = 2r is a distinguished value
strongly influencing the shape of the portrait. For q → 2r ± 0 we observe FP1 →
(0,±∞), FP2 → (π, r

2). Inspecting the linearized differential equations we obtain

if q < 2r then FP1 is a focus and FP2 is a saddle,

if q = 2r then FP1 is absent and FP2 is a saddle,

if q > 2r then FP1 and FP2 are saddles.

The slope of the eigenvectors to the saddle points depends monotonically increasing on α.

With r = .1 and for characteristic values of q (small, big) the following figures sketch the
essentials of phase portraits Pα with arbitrarily chosen α = π/3. The parameters r and
α are indicated by the horizontal lines y = r, y = R̄(r), and by the initial point (α, r).
Within the direction field the geometric location v reflects the respective q, and a choice
collection of some trajectories (each a level curve Φ = const) gives an impression of the
portrait. For q = 0 the whole problem reduces to a pendulum dynamics.

Remark: Note that it is just the orbit Φ = 0 through (α, r) which passes the point
(π

2 , 0) vertically. Any orbit Φ = C < 0 is located below the former one. All these orbits
are bounded from above by a heteroclinic if q ≤ 2r or by the stable and unstable manifold
of FP1 if q > 2r. Then in the domain y > r these bounded trajectories are, for any q,
oriented from right to left, this implies u̇(s) < 0, and that means negative curvature of
the (x, y)-curves (meridian) corresponding to free (parts of) extremals.
By the same argument as used at the beginning of section 3.2 we deduce the following
proposition which holds for any q ≥ 0 and almost linear ψ(· ) (i.e., hypoelasticity close to
Hooke one).

Proposition 3.5 Let s∗ < 0 be a junction point. If the profile is convex (R′′(x) ≥ 0)
for x ∈ (x(s∗), 0) then disjunction is impossible on the s-interval (s∗, 0). If the profile
is everywhere convex then junction-disjunction-rejunction scenarios are excluded once for
all.

We guess that the negative statements of the proposition are the top of what can be
gained by the tools used so far. Therefore the general question for circumstances allowing
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Figure 3: Phase portrait Pα, α = π/3, with r = .1, q = r/2
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Figure 4: Phase portrait Pα, α = π/3, with r = .1, q = 3r

disjunction and rejunction to happen is left as an open problem.

2. Phase portrait P of orbits through (α, r), α ∈ (0, π
2 )

As phase-space serves now (−π
2 , π

2 )× (0,∞).
Differential equation:

u̇ = {−2y + q 1
r (y − r) cos u} cos u

y2 ,

ẏ = sinu.
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Fixed points:

saddle FP1 : u = 0, y = rq
q−2r if q > 2r,

none if q ≤ 2r.

Again for r = .1 and the same values of q the following figures sketch the orbits belonging
to various α, each given as the level curve Φ(y, u; α, q) = 0. On every orbit, starting at
(α, r) with s = −1

2 , the point s = 0 is marked. The orbit representing the unrestricted
extremal is the one with u(0) = 0 (and, then, (u, y)(1

2) = (−α, r)), i.e., the corresponding
curve (x, y) has length 1.
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Figure 5: Phase portrait P with r = .1, q = r/2. Trajectories starting at (s, u, y) =
(−1/2, α, r), phase-points s = 0 marked.

Concluding this excursion to phase-spaces let us discuss the junction problem for small
q = 1

2r (high pressure) and some simple constraints R(x)− y ≥ 0.

1. Cylindrical tube, R(x) = R1 = const
The phase-curve of the profile y = R1 is the point P = (0, R1) of the (u, y)-plane. Then,
because of the continuity of u(·) and y(·), the correct trajectory in P is the one meeting the
point P (whereby α gets uniquely fixed). To ensure the end condition (u, y)(1

2) = (−α, r),
the phase-point has to ’wait’ at P for twice the ’time’ it would need (without constraint)
to go from P to A (phase-point s = 0 on orbit) and then proceed its ride until s = 1

2 . This
scenario is sketched in Figure 7 and should be recovered in Figure 11.

2. Convex constriction, R(x) = a + bx2

With a = 3
2r and b = 1

2 the phase-curve of the profile y = R(x) is the convex curve P:
y = .15 + .5 tan2 u (fat curve) with orientation given by increasing u (corresponding to
increasing x in the (x, y)-configuration space) and parameterized by the arc-length of the
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Figure 6: Phase portrait P with r = .1, q = 3r. Trajectories starting at (s, u, y) =
(−1/2, α, r), phase-points s = 0 marked.
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Figure 7: Junction scenario in P for r = .1, q = r/2, R(x) = .35 (no constriction).

profile (put to zero at u = 0). The correct trajectory in P starting at s = −1
2 with some

positive α (emphasized orbit) now hits P at s = t1 < 0 in that point P1 with u1 < 0 whose
parameter value (on the profile) equals t1. Then the phase-point runs down P arriving the
lowest point (0, a) with s = 0. So the left part s ∈ [−1

2 , 0] of the extremal is described, rest
follows by symmetry. Practically, this construction suffers from the lack of an effective
way to find the correct α.
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Figure 8: Junction scenario in P for r = .1, q = r/2, convex constriction.

Clearly, a disjunction at some t2 ∈ (t1, 0) cannot occur because a following unconstrained
(part of the) phase-curve (dashed curves) would be governed by Φ(y, u; r, α, q) = C <
0, u̇(s) < 0, and never hits P again (see Proposition 3.5). This scenario is sketched in
Figure 8 and should be checked in Figure 14.

3.4 On the join-disjoin-rejoin problem

According to Proposition 3.5 it is clear that the occurence of disjunction-rejunction events
essentially depends on a variation of sign of the profile curvature K. Experimental sim-
ulations, aimed at the construction of appropriate profiles R(·), hint at the necessity of
big negative part of K. Unfortunately, neither such a property of the profile nor the
’supervizing’ condition ”parameter interval of trajectory has length 1” can be recognized
in the (u, y)-phase-plane. Analytical methods (emerging from necessary optimality condi-
tions) do not, of course, provide any sufficient statement about disjunction. The problem
addressed here exhibits as a global one. It is not startling that the experimental and
analytical attempts to prove or disprove disjunction-rejunction phenomena failed.

In the following we give another qualitative attempt to show (by gedankenexperiment)
that disjunction-rejunction eventually may happen. These considerations are based on
the

Conjecture: Let R(·) be a feasible profile (class C2 under Assumption (16)), and let
(x, y)R ∈ C2

2 be the corresponding solution of the optimal control problem. Then the map
R 7→ (x, y)R is in C0[C2, C0

2 ].

The strategy is to start from a well understood configuration and then to deform the profile
(at fixed q) in appropriate way. We confine to q = 0 and use a very narrow parabolic (thus
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convex) profile in order to have the explicit representations of section 3.2 at our disposal.
The starting configuration is shown in Figure 9 (4th quadrant of (x,y)-plane only).

0
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0.1

0.15

0.2

0.25

0.3

–0.4 –0.3 –0.2 –0.1 0

Figure 9: Parabolic profile and extremal (q = 0)

Now there is space enough to to perform a C2-deformation of the profile such that (a) a
bit more than the contact region (from (0, R(0)) until point B) is kept fixed, and (b) the
upper part gets a straight line (beginning at point A) of negative slope u0 that touches
the extremal in (x0, y0). Mind that the deformation effectively takes place only within a
non-contact domain and, thus, does not influence the extremal. Figures 10 sketch the new
configuration and the corresponding phase-portrait (the respective C2-splines ÂB are not
drawn in the figures).

This configuration will be called configuration c0, and the characteristic data are α0 and
γ0 =

√
cosα0. Due to junction and touch the points (u1, R(x1)) and (u0, y0) are on the

orbit Φ(y, u;α0, 0) = y2 − r2

γ2
0

cosu = 0, so it holds

γ2
0 = r2 cosu1/R2(x1) = r2 cosu0/y2

0, u1 = arctanR′(x1).

Now we perform another C2-deformation of the profile such that the right part from
(0, R(0)) until point B is kept fixed, the part left of point A achieves a downward transla-
tion (y → y− δ, 0 < δ, small) while the splines ÂB deform. Thereby, surely, the extremal
is deformed. According to the continuity conjecture the deformation is small, therefore
neither the contact part (below (x1, y1)) nor the free part (formerly between (x0, y0) and
(x1, y1)) will disappear. For this configuration cδ there are three topological options:
1o: (x0, y0), displaced, is again a single touch point ;
2o: (x0, y0) has split into two neighbored touch points;
3o: (x0, y0) has turned into a small contact interval.
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(a) Deformed profile and extremal
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(b) Corresponding (u, y)-phase portrait

Figure 10: a, b

Claim: Options 1 and 2 are impossible.
Proof. If 2o were true then, between the two touch points, the extremal would need a
piece of positive curvature, which is impossible (see section 3.2).
If 1o happened then (u0, y0− δ) belongs to the deformed orbit Φ(y, u;αδ, 0) = 0 and, with
cosαδ = γ2

δ there holds

γ2
δ = r2 cosu0/(y0 − δ)2 > γ2

0 , thus αδ < α0.

The slightly displaced junction point (x1δ, y1δ), y1δ = R(x1δ) can be found from

γ2
δ = r2 cosu1δ/R2(x1δ), with u1δ = arctanR′(x1δ),

since (u1δ, y1δ) is on the same orbit Φ(y, u;αδ, 0) = 0. It is simple matter to show γδ >
γ0 ⇒ x10 < x1δ < 0 ⇒ u1 < u1δ < 0. Then we can compare the parameter intervals of the
free parts of orbits using (40) (mind signs of integrals):

s1δ + 1
2 = − r

2γδ

∫ u1δ

αδ

1√
cos u

du

..... < − r
2γ0

∫ u1δ

αδ

1√
cos u

du = − r
2γ0

(
∫ α0

αδ
+

∫ u1

α0
+

∫ u1δ

u1
) 1√

cos u
du

....... < − r
2γ0

∫ u1

α0
1√

cos u
du = s1 + 1

2 .

T1δ =
∫ 0
x1δ

√
1 + R′(x)2dx is the length of the contact interval, therefore T1δ < T1,

where in configuration c0 there holds s1 + T1 = 1
2 (half of parameter interval, T1 =∫ 0

x1

√
1 + R′(x)2dx). So we obtain s1δ + T1δ < s1 + T1 = 1

2 : cδ with δ > 0 is not a feasible
configuration.¥
Finally we see that only option 3o describes a feasible topology, and this proves that
junction-disjunction-rejunction scenarios must not principally be excluded from investiga-
tions.
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4 Simulation results

The results presented in the following three sections are the outcome of calculations done
by means of Maple7 straight on the basis of the theory developed above. The simulations
focus on segments within tubes of three different types: cylindrical tube, tube with convex
constriction, tube with non-convex constriction. The strategy of tackling the problems is
always the same: (i) start with the maximum volume problem q = 0 (evaluation of formu-
las and one finite equation containing elliptic integrals), important outcome is the junction
point t01; (ii) subdivide the interval (t01, 0] into (equal) parts by t1ν , ν = 1, .., n, and deter-
mine for positive q the unconstrained parts of the extremals on [−1

2 , t1ν) by solving the
respective boundary value problem, i.e., initial values (u, y)(−1/2) = (α, r), and junction
condition (31) with t1 = t1ν using a shooting procedure to find the corresponding qν > 0
and αν ; (iii) for q > qn there is no contact anymore, the extremals can be found by solving
boundary value problems with some decreasing y0 = y(0) using again a shooting procedure
to obtain the corresponding q and α.

Remark: For non-convex constriction the occurence of disjunctions has not been ex-
cluded! These cases will be tackled under the assumption that there is contact, if any, on
[t1, 0].

Remark: In [St 2003] it had been argued that for segments with r > .15 the latitudinal
strain ε1 will never be greater than 2.5. This guarantees that a Hooke law, ψ(y) = (y−r)/r,
is a good approximation of the hyperelastic (Mooney-Rivlin) behavior of incompressible
rubber or latex materials the membrane is made of. We shall adopt this approximation
in all following simulations.

4.1 Cylindrical tube (no constriction)

Let R(x) = R1 = const, r < R1 < R̄(r).
Because of various specific peculiarities this case deserves some extra considerations before
going to calculations.

With R′(x) = 0, (28) yields ϕ̇ = 0, and this means that the state-control function

Φ(y, u; α, q) := y2 − [
r2

cosα
+ qΨ(y)] cos u

now vanishes on the full s−interval [−1
2 , 0] along any extremal (x, y, u) which has initial

values y(−1
2) = r, u(−1

2) = α. This corresponds to the fact that the constraint force
has zero longitudinal component in this case. Therefore the bracket within Φ, wherever it
appears, can be replaced by y2/ cosu.

So we obtain from (26) the multiplier λ2 in the equivalent form

λ2 = −y2 tanu + ρ,

and differentiation observing the optimality condition (21)(c) yields

(2y − qψ(y) cos u) cosu + y2u̇ = ρ̇ cos2 u.
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Thus the unconstrained part of the extremal, s ∈ [−1
2 , t1), ρ̇ = 0, is governed by

u̇ = (−2y + qψ(y) cos u) cos u
y2 , u(−1

2) = α, u(t1) = 0,
ẏ = sinu, y(−1

2) = r, y(t1) = R1 (if t1 < 0),
ẋ = cosu, x(t1) = t1,

whereas for active constraint (s ∈ (t1, 0], y = R1, u = 0)

ρ̇ = 2R1 − qψ(R1)

and

cosα = r2/[R2
1 − qΨ(R1)] (48)

follow. Now ρ̇ ≥ 0 and 0 < cosα < 1 demand bounds for q,

q ≤ 2R1/ψ(R1) and q < (R2
1 − r2)/Ψ(R1).

The latter inequalities express the evident fact (remind pressure p = 1/q) that sufficiently
high pressure is needed to achieve contact segment/tube. Comparing with (36) the first
inequality also means z ≤ 0. Nevertheless the minimal value p0 of p that ensures contact
remains still unknown, since possibly

p 7→ z(p) =
{

0, p < p0,
−p + ψ(R1)/2R1, p > p0.

is discontinuous at p0 (z, the constraint force per unit of area (!) ”starts” during inflation
with a positive value).
For p > p0 we find

z(p) = −p
1

2R1
{2R1 − qψ(R1)} = − p

2R1
ρ̇.

This gives another interpretation of the multiplier ρ, valid in this case of constant R(x).

And here are some simulation results for

r = .15, R1 = r + (R̄(r) + r)/2.

Figure 11 shows the inflated segment under different pressures, p = ∞ gives maximal
volume, 1-point touch occurs at p = 2.081.
The next two figures (Figure 12(a) and Figure 12(b)) sketch the constraint force z per
unit area, divided by p to avoid values to tend to infinity. We clearly observe that z is
discontinuous at p0.
Finally, the junction point t1 is depicted as function of p (Figure 13).

30



–0.3

–0.2

–0.1

0

0.1

0.2

0.3

–0.6 –0.4 –0.2 0 0.2 0.4 0.6

Figure 11: Inflated segment under pressure p = ∞, 3.72, 2.08, 1.76, 1.46, .77, 0 (longitu-
dinal cut). 1-point touch at p0 = 2.081.

4.2 Tubes with convex constriction

(A) We consider first a tube having a quadratic constriction. And the results are given in
Figures 14 and 15.
(B) Since all calculations are done on the interval (−.5, 0), it is evident that there also
a wedge-shaped constriction ’fulfills’ the assumption (16) and can thus be successfully
tackled. And the results are given in Figures 16 and Figure 17.
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(a) z(s, p)/p vs. s for p = ∞, 3.72, 2.61, 2.25, 2.08.
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(b) z(0, p)/p vs. p.

Figure 12: a,b
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4.3 Tubes with non-convex constriction

Certainly, violation of the assumed convexity of the tube profile is of no relevance if the
intervals of active constraint do not contain flat points. In the following a Gauss-curve
profile is considered whose flat points are inside the interval (t1,−t1) in the maximum
volume shape. The results for this example are in Figures 18 and 19.
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Figure 13: Junction point t1 vs. p.
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Figure 14: Inflated segment under pressure p = ∞, 2.74, 1.61, .89, 0 (longitudinal cut).
1-point touch at p0 = .58 .
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(a) z(s, p)/p vs. s for p = ∞, 8.05, 2.66, 1.62, .91 .
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(b) Junction point t1 vs. p.

Figure 15: a,b
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Figure 16: Inflated segment under pressure p = ∞, 4.18, 2.36, 1.61, 1.09, 0; (longitudinal
cut). 1-point touch at p0 = 1.03 .
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(a) z(s, p)/p vs. s for p = ∞, 4.18, 2.36, 1.61, 1.20 .
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(b) Junction point t1 vs. p.

Figure 17: a,b
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Figure 18: Inflated segment under pressure p = ∞, 1.86, .90; (longitudinal cut). 1-point
touch at p0 = .18 .

Conclusion

The object of the investigations presented above is a compliant inflatable mechanical device
’segment ’ (part of a worm or of a system in medical endoscopy) placed in a surrounding
rigid tube. The primarily mathematical treatment based on the Principle of Minimal Po-
tential Energy aims at a principal understanding of the quasistatic inflation process of the
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(a) z(s, p)/p vs. s for p = ∞, 3.83, 2.16, 1.53, 1.14 .
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(b) Junction point t1 vs. p.

Figure 19: a,b

segment when contacting the tube. The investigations go further than comparable ones
found in literature. Not only does the theory avoid any presuppositions about the shape
of the deformed segment but starts from clear assumptions concerning the rheology of the
segment’s material and, using adapted units of measurement for all physical quantities, it
applies to any segment of fixed slenderness but of arbitrary absolute size, thickness and
modulus of elasticity. The developed analytical machinery enables one to compute both
the shape of the inflated segment and the force the segment exerts upon the tube under
contact.
What has been done here with rigid tubes is to be extended to compliant tubes in next
future.

There is a variety of open problems to be tackled as soon as possible.
(1) The evaluation of present theoretical results needs an improved numerical treatment
aiming at an increased robustness (regarding profile and parameters like q) and applica-
tion of direct methods.
(2) The theory remains incomplete without a stringent solution of the disjunction problem.
In this context the state-control function Φ and the multiplier ρ, which are both intimately
connected with the constraint force z, apparently deserve more careful inspection.
(3) Medical applications may need knowledge about very slender segments. Then a non-
Hooke hyperelasticity must be envisaged and the effects of the nonlinearity of ψ(·) demand
special observation.
Anyway, the rheology of the membrane should be extended by omitting the postulated
meridional inextensibility and allowing for a general (or isotropic) Mooney-Rivlin consti-
tution.
(4) With regard to producing segments the membrane stresses σ1 and σ2 should be deter-
mined (via n11 and n22). Then, corresponding to the strength of the membrane material,
an upper bound for practically feasible pressures could be found.
(5) Regarding the tube, wavy profiles (relaxing Assumption (16) ), non-symmetric constric-
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tions and symmetric constrictions combined with eccentrically placed segments (ξ 6= 0)
should be investigated, both theoretically and by means of direct numerical methods.
(6) In the latter case (ξ 6= 0) one expects a non-zero total longitudinal force of contact. If
this verifies then a link to dynamics shows up: propulsion of a worm with consecutively
inflating/deflating segments within a multiply constricted tube.

Amazingly, the latter fact would, according to (38) and (39) again appear as a connect-
ing link to the interpretation of the multiplier ρ that is crucial in a theory with state
constraint.
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