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In this paper, we model, analyse, and control an experimental set-up of a servo pneumatic
cylinder. The dynamic behaviour of pneumatic actuator systems is dominant by non-linear

functions. First, a mathematical model for the pneumatic system is derived. Secondly,
we investigate the mathematical properties of this model and show boundedness and
positiveness of certain variables. Thirdly, we prove that a proportional output feedback

controller with saturation achieves practical tracking a wide class of reference trajectories.
We verify the theoretical results and the effectiveness of the control by experiments.

1. Introduction

In this paper, we model, analyse, and control an

experimental set-up of a pneumatic actuator as

illustrated in figure 1. Pneumatic actuators are widely

used in industrial automation, such as robotics

(Manamanni et al. 2001, Park et al. 2002). The main

advantage of these actuators are low costs and high

power/weight ratio. Up to now, adequate applications

are mostly control tasks with modest requirements on

position and force accuracy; the configuration consists

of binary switching valves with pneumatic cylinders

without any sensor elements. To enlarge the field of

applications and allowing for higher accuracy, servo

pneumatic valves and sensor for pressure position

have been introduced. However, if more accuracy

on the performance is required, then non-linear

behaviour has to be taken into account. Most

contributions in this context focus on position control:

feedback linearization as control design method is

broadly used (Wey et al. 1999, Hildebrandt et al. 2002,

Xiang and Wikander 2004), and since in this case

the relative degree is lower than the system order, the

cylinder chamber pressure (Wey et al. 1999,

Hildebrandt et al. 2002) has to be measured or the

zero dynamics have to be compensated by feedforward

compensation (Sawodny and Hildebrant 2002). As an

alternative for control of pneumatic actuators, fuzzy

methods (Parnichkun and Hgaecharoenkul 2001,

Shih and Ma 1998, Schulte and Hahn 2004), neural

networks (Tanaka et al. 1999), and genetic algorithms

(Jeon et al. 1998) have been suggested. Linearization

(Shih and Tseng 1995, Wang et al. 1999) and

linearization along reference trajectories (Göttert 2003)

complete the control methods. Robust control

approaches extend the applied control techniques

(Kimura et al. 1996).
Fewer contributions focus on force control

(Hildebrandt et al. 2003). However, no matter whether

position or force control is considered, the dominant

non-linearities are in the pneumatic part, and not

in the mechanical part of the system. There is a

fundamental need for a detailed modelling of the

dynamic behaviour of the pneumatic actuator system.

A first approach is introduced by McCloy and

Martin (1980). This allows to derive system theoretic*Corresponding author. Email: achim.ilchmann@tu-ilmenau.de



properties of the model which then lead to effective

control strategies for the force control, such as

force control of the inner part of the cascaded control

concept.
The paper is organized as follows. In x 2, a mathema-

tical model of a pneumatic cylinder is derived. Basic

mathematical properties verifying the intuition of the

model are shown in x 3. In x 4, a proportional output

error controller with saturation is introduced; tracking

and robustness properties of this controller are proved.

Finally, in x 5 we present experimental results which

verify the mathematical results and show effectiveness

of the control strategy.
The meaning of the symbols in figure 1 are

p1ðtÞ, p2ðtÞ pressure at time t� 0 in left/right

chamber, resp.,
x(t) position of the piston at time t� 0,
Fp(t) pressure force on the piston at

time t� 0,
Fr(t) resulting force at time t� 0,

pv supply pressure,
p0 ambient pressure,

L>0 ½�L,L� normal operation range of

the cylinder,
L0 > 0 additional length of piston, zone of

end of travel absorbers

In addition, we close this introduction with some

remarks on notation:

A1,A2 > 0 cross sectional area left/right to the

piston, resp.,
b 2 ð0, 1Þ critical pressure fraction,
Cm>0 flow rate coefficient,

�0 standardized density measured
in kg=m3 at temperature 293K,

�>0 adiabatic exponent,
R>0 ideal gas constant,
T>0 temperature in Kelvin,

v(t) velocity of the piston, i.e. v ¼ _x
a(t) acceleration of the piston, i.e. a ¼ €x

_mð p, uÞ mass flow rate, see (3)
R�0 :¼ ½0,1Þ

B"ðx
0Þ :¼ fx 2 R

n
j kx� x0k < "g,

i.e. the open ball of radius " > 0
centred at x0 2 R

n

@B the set of all boundary points of the
set B � R

n

�B the closure of the set B � R
n

kxk1 the supremum norm of a function x
CðI;RN

Þ set of continuous functions I ! R
n,

I � R an interval,
C1ðI;RN

Þ set of continuously differenti-
able functions I ! R

N, I � R an
interval.

2. Model of a pneumatic actuator system

The aim of the present paper is to control a desired
force Fp on the piston rod by the pressures p1 and p2
in two cylinder chambers, see figure 1. The pressures
p1 and p2 are measured by two pressure sensors.
The force on the piston Fp depends on the effective
cross section areas A1 and A2�A1 in the cylinder
chambers, i.e.

FpðtÞ ¼ A1p1ðtÞ � A2p2ðtÞ:

Note that due to friction effects, the resulting
force Fr on the piston rod is not identical to the
force Fp. However, in this paper we focus on the
pneumatic dynamics and on controlling Fp.

To control the force Fp, i.e. the pressure difference, the
differential cylinder is connected with a 3/5-servo-valve.
The notation of 3/5 means, that the valve has three
different modes of operation and five ports (one for
the supply pressure pv, two for the ambient
pressure p0, and two for the chambers of the cylinder).
Between these three modes one may change
continuously. The first mode is the zero-position of the
valve as depicted in figure 1; the second mode is filling
chamber 1 and exhausting chamber 2 simultaneously;
the third operation mode is deaerating chamber 1 and
filling chamber 2. It will be assumed that the control
input u is standardized such that u ¼ �1 corresponds
to maximum flow-rate filling chamber 2 and for u¼ 1
vice versa (see figure 2).

Fp(t)

Fr(t) 

x(t)

L L0LL0 0

p1(t)

p2(t)

u(t)

pvp0 p0

Figure 1. The pneumatic cylinder.
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The mechanical dynamics are described by

_x ¼ v, xð0Þ ¼ x0 2 ½�L,L�,

_v ¼ a, vð0Þ ¼ v0 2 R,

�
ð1Þ

where x is the position, v the velocity and a the
acceleration of the piston. We assume that the
force compensation, which determines a, is realized
such that

xðtÞ 2 ½�L,L� 8 t � 0:

This assumption may be justified by the size of the
cylinder and—possibly—an action of an external
position controller; which is typically satisfied in such
applications as assembling by force fitting.
The pressure in the cylinder chambers can be

modelled (Ohligschläger 1990, Hildebrandt et al. 2002),
invoking the principles of constant mass and
conservation of energy, by the following differential
equation:

_p1 ¼
�

A1ðL0 þ Lþ xÞ

�
RT _mðp1, uÞ � p1A1 _x

�
,

_p2 ¼
�

A2ðL0 þ L� xÞ

�
RT _mðp2, �uÞ þ p2A2 _x

�
:

9>=
>; ð2Þ

The mass flow rate _m depends on the flow rate function
of the servo valve. The mass flow can be assumed to be a
flow of a compressible fluid in a turbulent regime
through a conical nozzle. In case of filling the cylinder
chamber, a characteristic depending on the pressure
ratio and gas flow rate is described by a square root
function. Let b 2 ð0, 1Þ be the critical pressure fraction
and define

�b: ½0, 1� ! ½0, 1�,

q �
1, q � b,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ðq� bÞ=ð1� bÞð Þ
2

q
q � b:

(

Neglecting the leakage of the valve, the mass
flow rate can be described by the following equation

(Göttert 2003, Sawodny and Hildebrandt 2002) (see
also figure 3)

_m: R>0 � ½�1, 1� ! R,

ðp, uÞ�

��0Cm p�bðpv=pÞ u, if u > 0, p � pv,

�0Cm pv �bðp=pvÞ u, if u > 0, p � pv,

0, if u ¼ 0,

�0Cm p�bðp0=pÞ u, if u < 0, p � p0,

��0Cm p0�bðp=p0Þ u, if u < 0, p � p0:

8>>>>>>><
>>>>>>>:

ð3Þ

The combined mechanical and pneumatic model with
feedback control is shown in figure 4.

3. Properties of the model

In this section, we investigate the properties of the
open-loop system model. It will be shown that without
further assumptions, the differential equation has a
unique solution with properties ensuring correct
modelling; for example, the variables of the pressure
stay positive and bounded.

We first consider the situation when the piston does
not move.

−1

u

pvp0 p0

1

u

pvp0 p0

Figure 2. Operation modes of the 3/5-servo-valve.

m

0 p 

u = 1

u = −1

p0 pv

Figure 3. Qualitative behaviour of the mass flow rate _m.
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Proposition 1: Suppose that (1) satisfies v � _x � 0

and x � x0 2 ½�L,L�. Then, for every piecewise
continuous input u: R�0 ! ½�1, 1� and any initial data

ðp01, p
0
2Þ 2 ½p0, pv�� ½p0, pv�, the initial value problem (2),�

p1ð0Þ, p2ð0Þ
�
¼ ðp01, p

0
2Þ has a unique solution

ðp1, p2Þ: R�0 ! ½p0, pv� � ½p0, pv�:

Proof: Existence and uniqueness of a maximally

extended solution ðp1, p2Þ: ½0,!Þ ! R
2 to (2) for some

! 2 ð0,1� follows from the theory of ordinary

differential equations (e.g. Theorem 54 in Sontag

(1998)). We will show that p1ðtÞ, p2ðtÞ 2 ½p0, pv� for

all t 2 ð0,!Þ; which then implies, by maximality of !,
that ! ¼ 1.
We consider different cases for p1ðtÞ, p2ðtÞ with

respect to p0, pv. First, suppose that p1ðtÞ > pv for

some t 2 ð0,!Þ. Since p1ð0Þ � pv, there exists t0 such
that 0 � t0 < t, p1ðt0Þ ¼ pv and p1ð�Þ � pv for all

� 2 ðt0, tÞ. By (3), it follows that, for every u 2 ½�1, 1�

and � 2 ðt0, tÞ, we have _m
�
p1ð�Þ, u

�
� 0. Hence, by

invoking (2), _x � 0, and _p1ð�Þ � 0 for all � 2 ðt0, tÞ,

we arrive at the contradiction

0 < p1ðtÞ � p1ðt0Þ ¼

ðt
t0

_p1ð�Þ d� � 0:

The other three cases p1ðtÞ < p0, p2ðtÞ > pv and p2ðtÞ < p0
are treated analogously and the proofs are omitted.

This completes the proof of the proposition. œ

The result of Proposition 1 is, from a physical point
of view, not surprising: it confirms that the pressures
in the chambers cannot become larger than the
supply pressure pv and not smaller than the ambient
pressure p0.

The next proposition considers the more general case
where movement of the piston is allowed and the control
input is any piecewise continuous function. Under these
rather weak assumptions it still holds that the pressures
stay bounded and positive.

Proposition 2: Consider (1) for some locally integr-
able function a: R�0 ! R such that xðtÞ 2 ½�L,L�
for all t � 0. Then, for every initial value ðp01, p

0
2Þ 2 R

2
>0

and for every piecewise continuous input u: R�0 !

½�1, 1�, there exists a unique solution to the initial
value problem (2), ðp1ð0Þ, p2ð0ÞÞ ¼ ðp01, p

0
2Þ; and this

solution

ðp1, p2Þ: R�0 ! R>0 � R>0

is bounded and has positive values only.

Proof: Let u: R�0 ! ½�1, 1� be piecewise continuous
and ðp01, p

0
2Þ 2 R

2
>0. Then existence and uniqueness

of a maximally extended solution ðp1, p2Þ: ½0,!Þ !
R>0 �R>0 to the initial value problem (2),
ðp1ð0Þ, p2ð0ÞÞ ¼ ðp01, p

0
2Þ, for some ! 2 ð0,1�, follows

from the theory of ordinary differential equations
(e.g. Theorem 54 in Sontag (1998)).

We show boundedness of p1 and p2 from above on
½0,!Þ. Suppose there exists �>0 such that p1ð�Þ >
maxfpv, p

0
1g. Note that if this is not satisfied, then p1

.
x = v

.
v = a

Mechanical part

Compensation a 

.
p1 =

−kp1v
L0+L+x +

kRT
A1[L0+L+x] (p1, u)

.
p2 =

kp2v

L0+L−x
+ kRT

A2[L0+L−x]

.
m

.
m

(p2, u)

y = A1p1 − A2p2

Pneumatic part

u(t) = g(t, e(t))

Controller

yref

(x, v)

+

y

−e

u

Figure 4. The model of the piston control.
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is bounded. We may choose an interval ½�, �� � ½0,!Þ
such that

p1ð�Þ ¼ maxfpv, p
0
1g and

p1ðtÞ � maxfpv, p
0
1g 8 t 2 ½�, ��:

Then

_mðp1ðtÞ, uÞ � 0 8 t 2 ½�, �� 8 u 2 ½�1, 1�,

and therefore

_p1ðtÞ �
��vðtÞ

L0 þ Lþ xðtÞ
p1ðtÞ 8 t 2 ½�, ��,

whence

p1ð�Þ � e
�
Ð �

�
ð�vðsÞ=L0þLþxðsÞÞds

maxfpv, p
0
1g:

In passing, observe that

�

ð�
�

�vðsÞ

L0 þ Lþ xðsÞ
ds

¼ �� ln
1

L0 þ Lþ xð�Þ
� � ln

1

L0 þ Lþ xð�Þ

¼ � ln
L0 þ Lþ xð�Þ

L0 þ Lþ xð�Þ
: ð4Þ

Now in view of xðtÞ 2 ½�L,L� for all t � 0,

p1ðtÞ �
L0 þ 2L

L0

� ��

maxfpv, p
0
1g 8 t 2 ½�, ��

and hence p1 is bounded from above on ½0,!Þ. Using
the same reasoning, boundedness of p2 can be shown.
We show that (p1, p2) is bounded away from

zero. Suppose there exists �>0 such that p1ð�Þ <
minfp0, p

0
1g. We may choose an interval ½�, �� � ½0,!Þ

so that

p1ð�Þ ¼ minfp0, p
0
1g and

0 < p1ðtÞ � minfp0, p
0
1g 8 t 2 ½�, ��:

Then

_mðp1ðtÞ, sgn uÞ � 0 8 t 2 ½�, �� 8 u 2 ½�1, 1�,

and therefore

_p1ðtÞ � �
�vðtÞ

L0 þ Lþ xðtÞ
p1ðtÞ 8 t 2 ½�, ��,

whence

p1ð�Þ � e
�
Ð �

�
ð�vðsÞ=L0þLþxðsÞÞds

minfp0, p
0
1g:

Next, invoking (4) and the fact that xðtÞ 2 ½�L,L�
for all t � 0, yields

p1ðtÞ �
L0

L0 þ 2L

� ��

minfpv, p
0
1g 8 t 2 ½�, ��,

and hence p1 is bounded away from zero on ½0,!Þ.
Similarly, it can be shown that p2 is bounded
away from zero. Hence ! ¼ 1 and the proof is
complete. œ

Remark 1: If ðp01, p
0
2Þ 2 ½p0, pv� � ½p0, pv�, then the proof

of Proposition 2 for all t� 0, i¼ 1,2, shows that

L0

L0 þ 2L

� ��

p0 � piðtÞ �
L0 þ 2L

L0

� ��

pv:

The following lemma shows that if the distance
of ðp1ðtÞ, p2ðtÞÞ to the point ðpv, p0Þ, measured by the
distance function

dðq1, q2Þðp1, p2Þ :¼
��ðp1, p2Þ � ðq1, q2Þ

��2
2

for p1, p2, q1, q2 > 0, ð5Þ

is not zero and if the input signal is positive, then this
distance is decreasing (under the assumption that the
‘disturbance’ v is sufficiently small).

Lemma 1: Let ðp01, p
0
2Þ 2 R>0 �R>0, u: R�0 ! ½�1, 1�

a piecewise continuous function, v: R�0 ! R a continu-
ous function such that _x ¼ v and xðtÞ 2 ½�L,L� for
all t� 0. Consider the unique solution ðp1, p2Þ: R�0 !

R>0 �R>0 to the initial value problem (2),
ð p1ð0Þ, p2ð0ÞÞ ¼ ð p01, p

0
2Þ. Then for every " > 0 and

u0> 0, there exist �v ¼ �vð", u0Þ > 0 and � ¼ �ð", u0Þ > 0
such that, for all t� 0, the following implications hold:

uðtÞ � u0 ^ dðpv,p0Þðp1ðtÞ,p2ðtÞÞ � " ^ jvðtÞj � �v

¼)
d

dt
dðpv,p0Þ p1ðtÞ,p2ðtÞð Þ ���,

uðtÞ ��u0 ^ dðp0,pvÞðp1ðtÞ,p2ðtÞÞ � " ^ jvðtÞj � �v

¼)
d

dt
dðp0,pvÞ p1ðtÞ,p2ðtÞð Þ ���:

9>>>>>>>>>=
>>>>>>>>>;

ð6Þ
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Proof: Consider the solution ðp1, p2Þ given in the
statement of the lemma, suppose uðtÞ � u0 for some
t� 0. Then (2) gives

d

dt
dðpv, p0Þ

�
p1ðtÞ, p2ðtÞ

�
¼ 2ðp1ðtÞ � pv

�
_p1ðtÞ þ 2ðp2ðtÞ � p0

�
_p2ðtÞ

¼
2�RT

A1½L0 þ Lþ xðtÞ�

�
p1ðtÞ � pv

�
_m
�
p1ðtÞ, uðtÞ

�

þ
2�RT

A2½L0 þ L� xðtÞ�

�
p2ðtÞ � p0

�
_m
�
p2ðtÞ, �uðtÞ

�

þ �
2ðp1ðtÞ � pvÞp1ðtÞ�

L0 þ Lþ xðtÞ
þ
2ðp2ðtÞ � p0Þp2ðtÞ�

L0 þ L� xðtÞ

� �
vðtÞ:

By Proposition 2, the number

pmax :¼ max
�
k
�
p1ð�Þ, p2ð�Þ

�
k
		 � � 0



> 0 ð7Þ

is well defined, and hence we may define

M1 :¼
max

x2½�L,L�
p1, p22½0, pmax�

�2ðp1 � pvÞp1�

L0 þ Lþ x

				 þ
2ðp2 � p0Þp2�

L0 þ L� x

				:

For " > 0 let
�
p"1ðtÞ, p

"
2ðtÞ

�
be the projection of�

p1ðtÞ, p2ðtÞ
�
onto the circle around ðpv, p0Þ with radius

" > 0, i.e.

�
p"1ðtÞ, p

"
2ðtÞ

�
:¼ ðpv, p0Þ þ "

�
p1ðtÞ, p2ðtÞ

�
� ðpv, p0Þ

dðpv, p0Þ
�
p1ðtÞ, p2ðtÞ

� :

By properties of _m (see figure 3), it is easy to see that

ðp1ðtÞ � pv
�
_m
�
p1ðtÞ, uðtÞ

�
�

�
p"1ðtÞ � pv

�
_m
�
p"1ðtÞ, u0

�
� 0 and�

p2ðtÞ � p0
�
_m
�
p2ðtÞ, � uðtÞ

�
�

�
p"2ðtÞ � p0

�
_m
�
p"2ðtÞ, � u0

�
:

Hence

�1 :¼ � max
x2½�L,L�

ðp"
1
, p"

2
Þ2@B"ðpv, p0Þ

2�RT
�
p"1 � pv

�
_m
�
p"1, u0

�
A1½L0 þ Lþ x�

�

þ
2�RT

�
p"2 � p0

�
_m
�
p"2, � u0

�
A2½L0 þ L� x�

�
� 0,

and

d

dt
dðpv, p0Þ

�
p1ðtÞ, p2ðtÞ

�
� ��1 þM1 jvðtÞj:

We will show that �1 > 0. Seeking a contradiction,
suppose that �1 ¼ 0. Then there exist p"1, p

"
2 2

@B"ðpv, p0Þ such that

�
p"1 � pv

�
_m
�
p"1, u0

�
¼ 0 and�

p"2 � p0
�
_m
�
p"2, �u0

�
¼ 0:

By properties of _m (see figure 3), this is only possible
if p"1 ¼ pv and p"2 ¼ p0, which contradicts ðp"1, p

"
2Þ 2

@B"ðpv, p0Þ. Therefore, �1 > 0.
The second implication in (6) follows analogously;

so there exist �2 > 0 and M2>0 such that

d

dt
dðp0, pvÞ

�
p1ðtÞ, p2ðtÞ

�
� ��2 þM2 jvðtÞj:

For any �v 2 0, <minfð�1=M1Þ, ð�2=M2Þgð Þ, and � :¼
minf�1��vM1, �2 � �vM2g > 0 we have, for jvðtÞj < �v,

d

dt
dðp0, pvÞ

�
p1ðtÞ, p2ðtÞ

�
< �� and

d

dt
dðpv, p0Þ

�
p1ðtÞ, p2ðtÞ

�
< ��, resp:

This completes the proof of the lemma. œ

The following corollary, an immediate consequence of
Lemma 1, highlights an important property of the
model, reflecting the following physical property: if
uðtÞ � u0 > 0 for all t � 0, then the pressures p1ðtÞ
and p2ðtÞ converge to pv and p0 as t! 1, resp.

Corollary 1: Consider (2) with initial values ðp01, p
0
2Þ 2

R>0 �R>0, u: R�0 ! ½�1, 1� a piecewise continuous
function, and v � 0, i.e. xðtÞ ¼ x0 2 ½�L,L� for all
t� 0. Let ðp1, p2Þ: R�0 ! R>0 � R>0 denote the unique
solution to the initial value problem (2),

�
p1ð0Þ, p2ð0Þ

�
¼

ðp01, p
0
2Þ. Then the following implications hold, for every

u0> 0:

h
9t0 > 0 8 t � t0 : uðtÞ � u0

i
) lim

t!1

�
p1ðtÞ, p2ðtÞ

�
¼ ð pv, p0Þ,h

9t0 > 0 8 t � t0 : uðtÞ � �u0

i
) lim

t!1

�
p1ðtÞ, p2ðtÞ

�
¼ ð p0, pvÞ:
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4. Force control

In this section, it will be shown that the output,
for cross sectional areas A1,A2 > 0 of the piston,

yðtÞ ¼ A1p1ðtÞ � A2p2ðtÞ 8 t � 0, ð8Þ

in combination with the simple proportional feedback
controller, for k>0, with saturation

uðtÞ ¼ sat½�1, 1�

�
� k eðtÞ

�
with

eðtÞ :¼ yðtÞ � yrefðtÞ 8 t � 0,
ð9Þ

achieves practical tracking in the following sense.

Theorem 1: Define

Q� :¼ ½p0 � �, pv þ �� � ½p0 � �, pv þ �� for � � 0,

ð10Þ

and let

yref 2 C1
�
R�0; ½y, y�

�
, where

y :¼ A1p0 � A2pv, y :¼ A1pv � A2p0:

Assume that _x ¼ v 2 CðR�0,RÞ such that xðtÞ 2 ½�L,L�

for all t� 0. Let �> 0 and k � 1=�. Then there exist
�> 0 and �v ¼ �vð�, �Þ > 0, " ¼ "ð�, �Þ > 0, and t0 ¼
t0ð�, �Þ � 0 such that the solution (p1, p2) of the
closed-loop system (2), (8), (9) satisfies

h
k _yrefk1 � " ^ kvk1�v ^ 8t � 0 :

�
p1ðtÞ, p2ðtÞ

�
2 Q�

i
¼)8t � t0 : jyðtÞ � yrefðtÞj � �:

The amplitude of yref is restricted in terms of the cross
section areas and the supply and ambient pressure.
If the rectangular ½p0, pv� � ½p0, pv� is enlarged by �>0
to Q�, then for reference signals with sufficiently
small change and sufficiently small disturbance of

the piston, it is ensured that the proportional output
error with saturation (9) keeps the error yðtÞ � yrefðtÞ
within the interval ½��, ��. Note that the smaller
�>0, the larger k � 1=� and the harder the
restrictions by " and �v; the latter becomes clear in the

proof. The crucial assumption in the implication in
Theorem 1 is that ððp1ðtÞ, p2ðtÞÞ 2 Q� for all t � 0.
However, in many applications the pressures
involve in Q0 anyway. For the proof of Theorem 1

we introduce the notation, for some C � R
n

C� :¼
[
x2C

Bðx, �Þ, � > 0, ð11Þ

and state the following lemma.

Lemma 2: Consider a continuous function
f: Rn

! R
n, n 2 N, let a 2 R

n, and C � R
n be compact.

Then the following implication holds for every c1> 0
and every c2 2 ð0, c1Þ:

�
8 x 2 C : ha, fðxÞi � c1 kfðxÞk

�
¼)

�
9� > 0 8 x 2 C� : ha, fðxÞi � c2 kf ðxÞk

�
Proof: The proof follows from continuity of f and
compactness of C. œ

Proof Theorem 1: For notational convenience set
eðtÞ ¼ yðtÞ � yrefðtÞ. Let (p1, p2) denote the solution of
the closed-loop system (2), (8), (9) under the assump-
tions as specified in the proposition. We proceed in sev-
eral steps.

Step 1: We show that if jeð0Þj < �, then there exists
t0 � 0 such that jeðt0Þj � �.

Consider first the case that jeð0Þj < ��. Seeking a
contradiction suppose eðtÞ < �� for all t� 0 (and
hence, in particular, u � 1). A simple geometric
observation (see figure 5) shows that for dðpv, p0Þ as
defined in (5) we have

dðpv, p0Þ
�
p1ðtÞ, p2ðtÞ

�
> cosð�Þ �=A2 8 t � 0,

where � :¼ arctan
A1

A2
: ð12Þ

p2

p1 

(p0, pv)

(pv, p0)

y

y

y − λ

λ/A2

cos(α)λ/A
2

y(t)

(p1(t),p2(t))
d(p

v , p
0 ) (p1 (t), p

2 (t))

y + λ
λ/A1

sin(α)λ/A
1

d
(p

0 , p
v ) (p

1 (t), p
2 (t))

α

Figure 5. Geometric observation.
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Now since u � 1 we may apply Lemma 1 to conclude

the existence of �v > 0 and �>0 such that

kvk1 � �v ¼)8 t � 0 :
d

dt
dðpv, p0Þ

�
p1ðtÞ, p2ðtÞ

�
� ��:

Hence there exists t1>0 such that dðpv, p0Þðp1ðtÞ,
p2ðtÞÞ ¼ 0, which contradicts (12).

Step 2: The case eð0Þ > � is proved analogously to
Step 1, the corresponding geometrical observations

are illustrated with dotted lines in 5. The proof is

omitted.

Step 3: We show that if jeðtÞj ¼ � for some t� 0,

then sgn
�
eðtÞ

�
_eðtÞ < 0.

Let eðtÞ ¼ �� for some t� 0. Then, by (9), uðtÞ ¼ 1.
Since yðtÞ � �y� �, we derive, again by geometric

observation as in Step 2, that

dðpv, p0Þ
�
p1ðtÞ, p2ðtÞ

�
� cosð�Þ �=A2:

Thus, by Lemma 1, there exist �1v , � > 0, both of

which are independent of t, such that

kvk1 � �1v ¼)
d

dt
dðpv, p0Þ

�
p1ðtÞ, p2ðtÞ

�
� ��:

Using pmax introduced in (7) together with the

Cauchy-Schwartz inequality yields

� �
d

dt
dðpv, p0Þ

�
p1ðtÞ, p2ðtÞ

�				
				

¼ 2
�
p1ðtÞ � pv, p2ðtÞ � p0

�T
,
�
_p1ðtÞ, _p2ðtÞ

�TD E			 			
� 2

�
p1ðtÞ � pv, p2ðtÞ � p0

��� �� �
_p1ðtÞ, _p2ðtÞ

��� ��
� 2

ffiffiffi
2

p
pmax

�
_p1ðtÞ, _p2ðtÞ

��� ��,
or, equivalently,

�
_p1ðtÞ, _p2ðtÞ

��� �� � �=ð2
ffiffiffi
2

p
pmaxÞ > 0: ð13Þ

For x 2 ½�L,L�, write

fx: R>0 �R>0 ! R>0 � R>0,

ðp1, p2Þ �
�RT _mðp1, 1Þ

A1ðL0 þ Lþ xÞ
,
�RT _mðp2, �1Þ

A2ðL0 þ L� xÞ

� �T

:

Since fxðp1, p2Þ and ðA1, �A2Þ
T lie in the same quadrant,

there exists c1>0 (independent of x) such that

�
A1, �A2

�T
, fxðp1, p2Þ

D E
� c1 kfxðp1, p2Þk 8 ðp1, p2Þ 2 Q :¼ ½p0, pv� � ½p0, pv�:

Now by Lemma 2, there exist c2>0 and �>0 such
that, for Q� as defined (10),

A1

�A2

� �
, fxðp1, p2Þ


 �
� c2 kfxðp1, p2Þk 8 ðp1, p2Þ 2 Q� :

ð14Þ

Since

_p1ðtÞ

_p2ðtÞ

� �
¼ fxðp1ðtÞ, p2ðtÞÞ þ vðtÞ

�
p1ðtÞ�

L0 þ Lþ xðtÞ
p2ðtÞ�

L0 þ L� xðtÞ

0
BB@

1
CCA,

it follows from (13) that there exists �2v 2 ð0, �1vÞ
and �̂ > 0 such that

jvðtÞj � �v ¼) kfxðp1ðtÞ, p2ðtÞÞk � �̂ > 0: ð15Þ

Finally, applying (14) and (15) to

_yðtÞ ¼
A1

�A2

� �
,

_p1ðtÞ

_p2ðtÞ

� �
 �
¼

A1

�A2

, fxðp1ðtÞ, p2ðtÞÞ


 �

þ vðtÞ

�
� A1

�A2

� �
,

�
p1ðtÞ�

L0 þ Lþ xðtÞ
p2ðtÞ�

L0 þ L� xðtÞ

0
BB@

1
CCA
�
� ,

yields the existence of " > 0 and �v 2 ð0, �2vÞ such that

jvðtÞj < �v ¼) _yðtÞ > ",

and therefore,

j _yrefðtÞj � " ^ jvðtÞj < �v ¼) _eðtÞ ¼ _yðtÞ � _yrefðtÞ > 0,

which proves sgnðeðtÞÞ _eðtÞ < 0.
If eðtÞ ¼ �, then yðtÞ � yþ � and by analogous

reasoning as above we may conclude that
sgnðeðtÞÞ _eðtÞ < 0.

Step 4: By Steps 1–3 it follows that ½��, �� is an
attractive positive-invariant region for evolution of e.
This completes the proof of the proposition. œ
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5. Experimental set-up and measurement results

The results of the previous sections have been verified
by measurements using the experimental set-up depicted
in figure 6. A pneumatic cylinder of the manufacturer
Festo has been used; the constants given in the
table at the end of the Introduction are for this cylinder
as follows: pv ¼ 6000 hPa, p0 ¼ 1000 hPa, b¼ 0.3,
L¼ 50mm, L0¼ 5mm, A1 ¼ 	ðd1=2Þ

2 and A2 ¼ A1�

	ðd2=2Þ
2, (where d1 ¼ 25mm and d2 ¼ 10mm),

Cm ¼ 2:64 	 10�9 l/(s Pa), � ¼ 1:185 kg=m3, � ¼ 1, R ¼

287Nm=ðkgKÞ, T¼ 293K.
Two pressure sensors measure the chamber pressure

p1 and p2; the position x of the piston rod is measured
by a potentiometer. According to (9), the output y(t)
is a linear combination of the two pressures. Since the
pressure measurement is corrupted by measurement
noise, we implemented a low-pass filter of first order
with the transfer function s� ð1þ 2s=ð	f ÞÞ�1 and
cut-off frequency f¼ 20Hz. Control and measurement
data processing is implemented in Matlab/Simulink.
The Simulink structure is downloaded via the
Realtime Workshop to the controller board DS1103
of the manufacturer dspace.
All experiments illustrate how the feedback controller

(8), (9) achieves tracking of given reference trajectories
as predicted in Theorem 1. Moreover, we also show
how the controller compensates disturbances on the
position of the piston rod and how it follows piecewise
constant reference forces; note that the latter cases
are not covered by the theoretical results. We
apply the force control law (9) with gain parameter
k¼ 0.02, i.e. � ¼ 50, and the experiments have a
duration of 40 seconds. Certainly, the figures also
show that the measurement data contain ‘real world’
noise.
In Experiment 1, a continuously differentiable

reference signal yref as depicted in figure 7 is used.
The piston rod is fixed mechanically and so its position
is constant (i.e. the piston velocity v � 0). As can be seen
in figure 7, whenever there is a continuously differenti-
able but fast change of the reference signal with 5N or
40N difference (for example at t¼ 8 or t¼ 20), the
magnitude of the error between the output and the
reference force is 4N at most, and the control input
has peaks about 0.08 large at most. However, within
1 second the error is close to a steady state; note that
this steady state is positive, which may be due to the
experimental set-up. the set-off is much smaller than
the predicted �¼ 50-strip in Theorem 1.
In Experiment 2, a piecewise constant reference

trajectory is applied. This can be viewed as several
experiments with constant reference trajectory, where
each single experiment is stopped after finite time.
Again the position of the piston rod is fixed. As depicted

in figure 8, the peaks of the transient behaviour of the
output following the switched constant reference
trajectory mirror the heights of the steps and, most
importantly, within less than 0.1 seconds the output is
within a 1N neighbourhood of the reference trajectory;
the latter is depicted in figure 9 where we zoomed
into the time interval ½7:8, 8:1�. Again, the actual
practical tracking is much better than the conservatives
estimates given in Theorem 1.

In Experiment 3, we show the effect of an external
disturbance changing the position of the piston, i.e.
v 6� 0; the reference force is set to yref � 0. Note that
the faster the movement of the piston the larger the
error. However, although the external disturbances
produce an error of magnitude up to 60N, the
experiment shows that within 2 seconds the output y(t)
is within a 1N-neighbourhood of reference force
yrefðtÞ, see figure 10. A larger gain k in (9) would
theoretically yield a smaller error, but additional
experiments with larger gains showed unsatisfactory
behaviour due to amplifying measurement noise.

6. Conclusions

First, we have introduced a mathematical model for
a pneumatic actuator taking into account essential
non-linearities. We have then investigated the mathe-
matical properties of this model and have shown that
the mathematical properties of the model coincide with
the engineering understanding: the pressure values
remain positive, the solution is unique and bounded.

Figure 6. Experimental set-up.
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Secondly, we have investigated a proportional error

feedback control with saturation. Although intuitively

clear, it is mathematically not straightforward how

to cope with the saturation and the underlying

non-linearities of the model. However, we have

proved that practical tracking is achieved under the

assumptions that (i) the derivative of the reference

signal is limited, (ii) the disturbance, such as the velocity
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Figure 7. Experiment 1: Force control with continuously differentiable reference signal and fixed piston position.
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Figure 8. Experiment 2: Step function reference force and fixed position for piston rod.
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of the piston, is limited, and (iii) the pressures remain
in a certain compact set. These assumptions are
conservative and needed for the mathematical proof,

but as illustrated by the experimental results,
the actual measurements are much more convincing.

An important practical benefit is the sufficient
condition that the reciprocal of the tolerance of the
tracking is a lower bound for the gain: ��1 � k.

This may also be interpreted as an upper bound
for the tracking error in terms of the control gain;
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Figure 9. Experiment 2: Zoom of figure 8.
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Figure 10. Experiment 3: Force control with reference force yref � 0 and moving piston.
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the latter may be important for the design of the control.
In addition, if the practitioner can reduce the measure-
ment noise, this can be directly translated into a smaller
upper bound for the tracking error. Among the various
different approaches discussed in the Introduction,
feedback linearization may be the most powerful
alternative. However, its implementation requires
high computational power and, for the present specific
force control problem with relative degree one,
a zero dynamic equations of third order with unknown
stability properties occurs. The practical use of our
proposed output feedback controller with saturation
is, even for a highly non-linear system, boundedness
of all signals, a guaranteed region of attraction,
and a prespecified desired performance.
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