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Abstract

We investigate a time discretized version of the Smoluchowski coagula-

tion equation. By means of a numerical example we prove its suitability

as a basis for the efficient simulation of the transition to gelation.
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1 Introduction

1.1 A Smoluchowski equation

In the following we denote lN = {1, 2, . . .} and define L1
+ as the set of sequences h =

(hn)n∈lN satisfying

hn ≥ 0, ‖h‖1 =
∞∑

n=1

hn < ∞. (1.1)

We consider the following Smoluchowski system of equations for L1
+-valued functions

f̃ = (f̃n)∞n=1,

∂tf̃n =
1

2

n−1∑
i=1

i(n − i)f̃if̃n−i − nf̃n ·
∞∑
i=1

if̃i (1.2)
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resp. the equivalent version [2] for f = (fn)∞n=1 = (nf̃n)∞n=1,

∂tfn =
n−1∑
i=1

ififn−i − nfn · ρ (1.3)

where (for small times t) ρ(t) = ρ∞, defined by

ρ∞[f(t)] =
∞∑
i=1

fn(t), (1.4)

is the total mass in the state space lN at time t. System (1.3) has been frequently

investigated in literature (see the review papers [1, 10]). Define the first moment of f

(i.e. the second moment of f̃)

M(t) = M [f(t)] :=
∞∑
i=1

nfn(t) (1.5)

and assume M(0) < ∞. Then a formal calculation yields the equation for M

M ′ = M2 , (1.6)

(for a rigorous derivation, see Proposition 2.3(c)). Its solution

M(t) =
M(0)

1 − M(0) · t (1.7)

remains finite only for t < 1/M(0) =: tgel. tgel is called the gelation time.

Define the partial sums

ρN(t) = ρN [f(t)] :=
N∑

i=1

fn(t). (1.8)

Then ρN satisfies

∂tρ
N =

N∑
n=1

nfn

(
ρN−n − ρ

) ≤ 0. (1.9)

Thus ρN and with this also ρ∞ are monotonically decreasing. As one can show, ρ∞(t)

remains constant until tgel; after this time, the mass starts to decrease strictly. We can

obtain formal mass conservation in our system by adding a new state variable “∞” to

the state space lN (writing lN = lN ∪ {∞}) and putting

f∞(t) := ρ∞(0) − ρ∞(t). (1.10)
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We define

ρ := ρ∞(t) + f∞(t) = ρ(0). (1.11)

For t > tgel, there are two possibilities of choosing ρ in (1.3) depending on the model

under consideration. Considering an active gel, the mass contained in f∞ still contributes

to the interaction, while it is removed in the case of a passive gel. This means that we

have to define

ρ(t) =

⎧⎨
⎩ ρ for an active gel

ρ∞(t) for a passive gel .
(1.12)

Independent of this choice there is a simple way to formally construct solutions as

functions of ρ. Given f(t0), define g(t) = (gn(t))n∈lN for t ≥ 0 by

gn(t) = fn(t0 + t) · exp

(
n

∫ t0+t

t0

ρ(τ)dτ

)
. (1.13)

Then g is uniquely given by the recursive system

g(0) = f(t0), (1.14)

g1(t) = g1(0) = const, and for n > 1, (1.15)

∂tgn =
n−1∑
i=1

igign−i (1.16)

which is bounded by the solution a = (an) of

∂tan =
n−1∑
i=1

iaian−i, an(0) = 1. (1.17)

We easily check that

an(t) = 1 + t · φn(t) (1.18)

with a continuous monotonically increasing function φn defined on lR+ = [0,∞), and

φn(0) = n(n− 1)/2. In the case of an active gel, ρ(t) = ρ is a given constant. Solutions

fp of a passive and fa of an active gel with given initial condition f(0) can be transformed

into one another using the formula

fp
n(t) · exp

(
n

∫ t

0

ρ∞(τ)dτ

)
= fa

n(t) · exp (nρt) . (1.19)
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From now on we restrict to the case of an active gel. Its solution is uniquely given from

(1.13). . . (1.16) and satisfies the inequalities

fn(t0) · exp(−ρnt) ≤ fn(t0 + t) ≤ [fn(t0) + φn(t) · t] · exp(−ρnt) (1.20)

with φn defined by (1.17), (1.18).

1.2 Objectives and outline of the paper

The Smoluchowski system introduced above is at present of high scientific interest in

combination with diffusion in physical space. The corresponding system for f(t, x) (x ∈
lRd the space coordinate) reads

∂tfn = DnΔxfn +
n−1∑
i=1

ififn−i − nρfn . (1.21)

One particular point of interest is the mutual dependence of diffusion and gelation.

For the numerical solution of (1.21) it is important to dispose of an algorithm which

is numerically efficient and capable of resolving the phase transition to gelation. In

[2, 5, 6], stochastic particle schemes for the Smoluchowski system have been proposed

which have been applied to diffusion problems e.g. in [3, 4, 7]. All these schemes are

based on the version (1.3) proposed in [2] rather than on the original version (1.2) which

turns out to be less efficient for numerical purposes. While the schemes in [5, 6, 7] use

exponentially distributed random times, those of [2, 3, 4] are based on a fixed time

discretization. It is the objective of the present paper to use this latter approach for the

derivation of a completely deterministic approximation scheme for system (1.3).

The plan of the paper is as follows. In section 2 we introduce an order relation on

L1
+ which is crucial since it controls the whole approximation process. Monotonicity

properties for solutions of the Smoluchowski equation are proven in terms of a Markov

jump process. In section 3 we piecewise linearize the Smoluchowski equation, establish

an approximation scheme and prove its convergence. Section 4 is devoted to a numerical

scheme capable of passing through the gelation time. As the most promising variant
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turns out a version which locally in time is supplemented with a small stochastic system

simulating the first transition to gel.

2 Preliminaries

2.1 An order relation on L1
+

We make use of the sequence spaces L1
+ as defined above and of

L∞
+ = {h = (hn)n∈lN | hn ≥ 0, ‖h‖∞ = sup

n∈lN
|hn| < ∞}. (2.1)

For γ = (γn) ∈ L1
+ and N ∈ lN = lN ∪ {∞} we define the partial sums

ρN [γ] :=
N∑

n=1

γn for N ∈ lN = lN ∪ {∞}, (2.2)

and the first moment

M [γ] :=
∞∑

n=1

nγn ∈ lR = [0,∞] . (2.3)

On L1
+ we define the mapping P by

(Pγ)n := ρN [γ] (2.4)

and denote its range as R(P). Obviously, R(P) ⊂ L∞
+ , and P : L1

+ → R(P) is a

bijection with its inverse given by

(P−1σ)n =

⎧⎨
⎩ σ1 for n = 1

σn − σn−1 else .
(2.5)

Furthermore, σ ∈ R(P) iff σn is increasing.

The central concept of our convergence analysis is now presented. On L1
+ we introduce

the partial ordering “
” by

γ 
 ξ ⇔def ρN [γ] ≤ ρN [ξ] for all n ∈ lN. (2.6)
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The componentwise ordering “≤c” (on L1
+ and L∞

+ ) is defined by

γ ≤c ξ ⇔def γn ≤ ξn for all n ∈ lN. (2.7)

Componentwise convergence of sequences is indicated by “→c”.

Some simple but useful results are

2.1 Lemma: (a) If γ, ξ ∈ L1
+ satisfy ρ∞[γ] = ρ∞[ξ] and γ 
 ξ then M [γ] ≥ M [ξ].

(b) For γ, γ(k) ∈ L1
+,

γ(k) →c γ ⇔ Pγ(k) →c Pγ (2.8)

(c) If the sequence γ(k) in L1
+ is monotone and bounded with respect to 
, then γ :=

limk→∞ γ(k) exists in L1
+.

(d) Suppose given γ, γ(k) ∈ L1
+, k ∈ lN, satisfying

ρ∞[γ(k)] = ρ∞[γ], (2.9)

γ(k) � γ, (2.10)

lim
k→∞

M [γ(k)] = M [γ] < ∞. (2.11)

Then γ(k) →c γ.

Proof: (a) follows from

∞∑
k=n

γk = ρ∞[γ] − ρn−1[γ] ≥ ρ∞[ξ] − ρn−1[ξ] =
∞∑

k=n

ξk (2.12)

and

M [γ] =
∞∑

n=1

∞∑
k=n

γk ≥
∞∑

n=1

∞∑
k=n

ξk = M [ξ]. (2.13)

(b) follows from (2.2) and (2.5).

(c) Pγ(k) is a monotone and bounded sequence in R(P) ⊂ L∞
+ and thus converges
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componentwise to some element in R(P).

(d) This follows from

∞∑
n=1

(ρ[γ] − ρn−1[γ]) =
∞∑

n=1

∞∑
�=n

γ� =
∞∑

�=1

	γ� = M [γ] = lim
k→∞

M [γ(k)]

= · · · = lim
k→∞

∞∑
n=1

(ρ[γ(k)] − ρn−1[γ(k)]) (2.14)

and

ρ∞[γ] − ρn−1[γ] ≥ ρ∞[γ(k)] − ρn−1[γ(k)] � (2.15)

combined with (b). �

The next results concerns monotonous L1
+-valued functions.

2.2 Lemma: Suppose f : [0, T ] → L1
+ satisfies

f(t) � f(t′) for 0 ≤ t < t′ ≤ T (2.16)

ρ∞[f(t)] = ρ∞[f(0)] =: ρ for 0 ≤ t ≤ T (2.17)

M [f(T )] < ∞ . (2.18)

Suppose further there exists a sequence of functions f (k) : [0, T ] → L1
+ satisfying

f (k)(t) � f(t) for 0 ≤ t ≤ T, k ∈ lN (2.19)

ρ∞[f (k)(t)] = ρ for 0 ≤ t ≤ T (2.20)

M [f (k)(T )] ↗ M [f(T )] for k → ∞. (2.21)

Then f (k) converges in the following sense.

(a) For any ε > 0 there exists N0 ∈ lN such that for all k ∈ lN and t ∈ [0, T ]

∞∑
N=N0+1

|ρN [f (k)(t)] − ρN [f(t)]| ≤ ε (2.22)

(b) For any ε > 0, n,N ∈ lN and t ∈ [0, T ] there exists K ∈ lN such that for k ≥ K

|ρN [f (k)(t)] − ρN [f(t)]| ≤ ε (2.23)

|f (k)
n (t) − fn(t)| ≤ ε (2.24)
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Proof: (a) From Lemma 2.1(a) follows

M [f (k)(t)] ≤ M [f(t)] ≤ M [f(T )] for k ∈ lN, t ∈ [0, T ]. (2.25)

For any g ∈ L1
+ with finite moment M [g],

M [g] =
∞∑

�=1

∞∑
n=�

gn = ρ∞[g] +
∞∑

N=1

(ρ∞[g] − ρN [g]) (2.26)

Thus

0 ≤ M [f(t)] − M [f (k)(t)] =
∞∑

N=1

(ρN [f (k)(t)] − ρN [f(t)]) (2.27)

From (2.19) and (2.21) follows for N ∈ lN, t ∈ [0, T ]

ρN [f (k)(t)] ≥ ρN [f(t)] (2.28)

ρN [f (k)(t)] → ρN [f(t)] for k → ∞ (2.29)

Now choose N0 ∈ lN such that

∞∑
N=N0+1

(ρ − ρN [f(T )]) ≤ ε (2.30)

(2.16) implies

∞∑
N=N0+1

(ρ − ρN [f(t)]) ≤ ε for t ∈ [0, T ] (2.31)

∞∑
N=N0+1

(ρ − ρN [f (k)(t)]) ≤ ε for t ∈ [0, T ], k ∈ lN (2.32)

and thus

0 ≤
∞∑

N=N0+1

ρN [f (k)(t)] − ρN [f(t)] ≤ ε for t ∈ [0, T ], k ∈ lN, N ≥ N0 (2.33)

(b) Choose N0 as in (a). Then for all N > N0,

0 ≤ ρN [f (k)(t)] − ρN [f(t)] ≤
∞∑

N=N0+1

ρN [f (k)(t)] − ρN [f(t)] ≤ ε (2.34)
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and because of (2.29) we find K ∈ lN such that for all k ≥ K and N ≤ N0

0 ≤ ρN [f (k)(t)] − ρN [f(t)] ≤ ε (2.35)

From this and

0 ≤ ρN+1[f (k)(t)] − ρN+1[f(t)] = f
(k)
N (t) − fN(t) + ρN [f (k)(t)] − ρN [f(t)] ≤ ε (2.36)

we conclude

|f (k)
N (t) − fN(t)| ≤ ε � (2.37)

A first link between the above ordering and the Smoluchowski equation is given by the

first part of Proposition 2.3 for the following linear system.

Given a sufficiently regular function b : [0, T ] → L1
+ with

0 <

∞∑
n=1

bn(t) ≤ ρ for all t ≥ 0, (2.38)

consider the linear Smoluchowski equation

∂tfn =
n−1∑
i=1

κ(i)fibn−i − κ(n)fn · ρ for n ∈ lN, for t ≥ 0, (2.39)

with given κ : lN → lR+ satisfying

1 ≤ κ(n) ≤ n. (2.40)

The unique solution f to a corresponding IVP can be readily constructed using the

method described in section 1.1 for

gn(t) = fn(0) · exp(κ(n)ρt). (2.41)

We easiliy find

2.3 Proposition: (a) For 0 ≤ t ≤ t′,

f(t′) 
 f(t). (2.42)
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In particular, ρ∞[f(t)] is monotonically decreasing.

(b) Suppose

sup
t∈[0,T ]

M [b(t)] < ∞, and M [f(0)] = M0 < ∞. (2.43)

Define m(t) as the solution of the IVP

m′(t) = M [b(t)] · m(t), m(0) = M0. (2.44)

Then

M [f(t)] ≤ m(t) for t ∈ [0, T ]. (2.45)

If in addition ‖b(t)‖1 = ρ for all t, then ρ∞[f(t)] = ρ∞[f(0)].

(c) Choose κ(n) = n and b(.) = f(.). If M [f(0)] = M0 < ∞, and m is the solution of

the IVP

m′(t) = m(t)2, m(0) = M0, (2.46)

then

M [f(t)] = m(t) =
M0

1 − M0 · t . (2.47)

Proof: (a) Like in the nonlinear case (compare (1.9)),

∂tρ
N =

N∑
n=1

κ(n)fn

(
N−n∑
�=1

b� − ρ

)
≤ 0. (2.48)

(b) Define

MN [f ] :=
N∑

n=1

nfn. (2.49)

Then because of

N∑
n=1

n

n−1∑
i=1

κ(i)fibn−i − ρ

N∑
n=1

nκ(n)fn

=
N∑

i=1

κ(i)fi

N−i∑
�=1

	b� −
N∑

n=1

nκ(n)fn

(
ρ −

N−n∑
�1

b�

)
≤ M [f ] · M [b], (2.50)
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MN [f(t)] and M [f(t)] are bounded by m(t).

As long as M [f ] is bounded, the condition ‖b(t)‖1 = ρ and the theorem on dominated

convergence yield ∂tρ
∞[f ] = 0 when passing to the limit N → ∞ in (2.48).

(c) From (b) follows M [f(t)] ≤ m(t). For the inequality M [f(t)] ≥ m(t), see Remark

3.5(a). �

A central role in our investigations is played by a monotonicity property which is for-

mulated in the following. The solution f of the above system depends on an initial

condition f(0) = γ ∈ L1
+, the function b(.) (serving as a “background medium”), and

the function κ governing the interaction frequency. We indicate this dependence by

writing f [γ,b(.), κ].

2.4 Proposition: Suppose given γ(1), γ(2) ∈ L1
+, two monotonous functions κ(1), κ(2) :

lN → [1,∞) satisfying (2.40), and b(1),b(2) : [0, T ] → L1
+ such that

γ(1) � γ(2), (2.51)

b(1)(t′) � b(2)(t) for t′, t ∈ [0, T ], t′ ≥ t, (2.52)

κ(1) ≤c κ(2). (2.53)

Then

f [γ(1),b(1)(.), κ(1)](t) � f [γ(2),b(2)(.), κ(2)](t) for t ∈ [0, T ]. (2.54)

The proof will be given in the next section in terms of a Markov chain process producing

a stochastic solution of the Smoluchowski system.

2.2 A Markov jump process

Under the condition (2.38), the system (2.39) may be interpreted as the generator of a

certain non-homogeneous Markov jump process X(t) on the countable state space lN.

(See, e.g. [8]; here we adopt the notation used there.) The realizations of X(t) are

11



piecewise constant, right continuous paths. The states n ∈ lN are exponential holding

states with waiting times distributed according to exp(−κ(n)ρt). The state ∞ is a trap.

For the description of X(t) we use the following construction which is of particular use for

the proof of the monotonicity properties of Proposition 2.4. Consider a pair ω = (ζ, ξ),

where ζ is a realization of a Poisson process with parameter ρ, and ξ = (ξn)∞n=0 is

a sequence of i.i.d. random variables on ([0, 1], dλ). (dλ is the Lebesgue measure on

[0, 1].) The path ζ is piecewise constant and increasing and can be described as

ζ(t) = n for t ∈ [τn, τn+1), (2.55)

where τ0 = 0 and the increments Δτn = τn+1 − τn are independent and distributed

according to exp(−ρt). Almost surely we have

lim
n→∞

τn = ∞. (2.56)

By recursion we now define the piecewise constant path X(t, ω) related to the Smolu-

chowski system with initial condition

f(0) = γ ∈ L1
+, ‖γ‖1 ≤ 1 . (2.57)

First of all, we define T0 := 0 and X0 ∈ lN distributed according to γ by putting

X0 :=

⎧⎨
⎩ n if

∑n−1
i=1 γi < ξ0 ≤

∑n
i=1 γi

∞ if
∑∞

i=1 γi < ξ0 .
(2.58)

Given Tk and Xk = n, we set

Tk+1 :=

⎧⎨
⎩ Tk if Xk = ∞

Tk + Δτk/κ(Xk) else
(2.59)

and

Xk+1 :=

⎧⎨
⎩ ∞ if Xk = ∞

Xk + Δxk else
(2.60)
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where

Δxk :=

⎧⎨
⎩ n if

∑n−1
i=1 bi(Tk+1) < ρξk+1 ≤

∑n
i=1 bi(Tk+1)

∞ if
∑∞

i=1 bi(Tk+1) < ρξk+1 .
(2.61)

Finally, we define the explosion time

T ∗ := lim
n→∞

Tn (2.62)

and the path

X(t) =

⎧⎨
⎩ Xn for t ∈ [Tn, Tn+1)

∞ if t ≥ T ∗ .
(2.63)

For n ∈ lN define

fn(t) := P ({ω : X(t) = n}). (2.64)

Then by construction fn is continuous, fn(0) = γn for n ∈ lN, and by the formula on

conditional probabilities follows

fn(t + Δt) = fn(t) · (1 − κ(n)ρΔt) +
n−1∑
i=1

fi(t)κ(i)

∫ t+Δt

t

bn−i(s)ds + O(Δt2). (2.65)

This proves

2.5 Lemma: f = (fn)n∈lN as defined by (2.64) is a solution of (2.39), (2.57).

Finally, we notice that

ρN [f(t)] = P ({ω : X(t) ≤ N}). (2.66)

To indicate the dependence of the paths on γ, b and κ, we write Tn[γ,b(.), κ], Xn[γ,b(.), κ],

and X[γ,b(.), κ](t). The proof of Proposition 2.4 now follows from

2.6 Lemma: Let γ(i),b(i)(.), κ(i), i = 1, 2, be as in Proposition 2.4.

(a) For all k ∈ lN,

Tk[γ
(1),b(1)(.), κ(1)] ≥ Tk[γ

(2),b(2)(.), κ(2)] a.s., (2.67)

Xk[γ
(1),b(1)(.), κ(1)] ≤ Xk[γ

(2),b(2)(.), κ(2)] a.s. (2.68)
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(b) For all N ∈ lN, t ≥ 0

{ω : X[γ(2),b(2)(.), κ(2)](t) ≤ N} ⊆ {ω : X[γ(1),b(1)(.), κ(1)](t) ≤ N}. (2.69)

Proof: For short we write T
(i)
k instead of Tk[γ

(i),b(i)(.), κ(i)] and similarly X
(i)
k and

X(i)(t).

(a) For k = 0, (2.67) and (2.68) hold by construction. Suppose (2.67) and (2.68) are

valid for k ∈ lN. Then T
(1)
k+1 ≥ T

(2)
k+1 holds because of

κ(1)(X
(1)
k ) ≤ κ(1)(X

(2)
k ) ≤ κ(2)(X

(2)
k ). (2.70)

Furthermore, from

b(1)(T
(1)
k+1) � b(2)(T

(2)
k+1) (2.71)

we deduce Δx
(1)
k+1 ≤ Δx

(2)
k+1 and X

(1)
k+1 ≤ X

(2)
k+1.

(b) Given t > 0, define K(i) ∈ lN ∪ {0} such that

T
(i)
k ≤ t < T

(i)
k+1. (2.72)

Then because of K(2) ≥ K(1) and because the paths are monotonically increasing, we

have

X(2)(t) = X
(2)

K(2) ≥ X
(2)

K(1) ≥ X
(1)

K(1) = X(1)(t) (2.73)

which proves (2.69). �

3 Approximations to the Smoluchowski system

In the course of this section we will introduce two modifications of the Smoluchowski

system. In the following we choose Δt > 0 and define tk := kΔt. The first modification

consists of a piecewise linearization and leads to the system in the time interval [tk, tk+1],

∂tfn(t) =
n−1∑
i=1

ifi(t)fn−i(tk) − nρfn(t). (3.1)
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We will denote the solution (fn)n∈lN of (3.1) (with given initial condition) as f (1). The

second modification concerns the stiffness problem caused by the factor nρ in the loss

term on the right hand side of (3.1). This leads to another approximation denoted as

f (2), which will be controlled by the results of section 2.

3.1 Piecewise linear systems

For a given continuous L1
+-valued function b(t) with ‖b(t)‖1 ≤ ρ consider the linear

initial value problem (IVP) for g

∂tgn =
n−1∑
i=1

igibn−i − nρgn, g(T0) = h(T0). (3.2)

In the case b ≡ g, (3.2) is the original Smoluchowski system. Due to the linearity of

the system, g can be written as

g(t) =
∞∑

r=1

gr(T0) · s[0,r](t) (3.3)

where the fundamental solutions s[0,r] = s[0,r][b] are defined as the unique solutions of

the IVP’s

∂tsn =
n−1∑
i=1

isibn−i − nρsn, sn(T0) = δn,r . (3.4)

We introduce the approximation g(1) of g given by

g(1)(t) =
∞∑

r=1

gr(T0) · s[1,r](t) (3.5)

where s[1,r] = s[0,r][b(T0)] is the fundamental solution obtained by replacing b(.) with

its initial value b(T0). The following results are easily derived.

3.1 Lemma: (a) Suppose b(.) satisfies b(t) � b(t′) for all T0 ≤ t ≤ t′. Then g and

g(1) are monotone in the sense that for all t′ ≥ t

g(t) � g(t′), g(1)(t) � g(1)(t′). (3.6)
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Furthermore, for all t ≥ T0

g(t) � g(1)(t). (3.7)

(b) If b satisfies in addition the inequalities (1.20),

bn(t0) · exp(−ρnt) ≤ bn(t0 + t) ≤ [bn(t0) + φn(t) · t] · exp(−ρnt), (3.8)

then there exist constants γn (not depending on g(T0) or b) such that for all t ∈
[T0, T0 + 1]

|gn(t) − g(1)
n (t)| ≤ γn(t − T0)

2. (3.9)

Proof: (a) is a special case of Proposition 2.4.

(b) follows from the Lipschitz continuity of bn with Lipschitz constants not depending

on g(T0) or b. We want to mention that a more detailed analysis using the function a

of formulas (1.17), (1.18) yield

|s[0,r]
n (t) − s[1,r]

n (t)| ≤ t2Φn(t − T0) · exp (−nρ(t − T0)) (3.10)

from which we may derive a more detailed estimate for |gn(t) − g
(1)
n (t)|. �

Now let f be a solution of the Smoluchowski system, and define the continuous function

f (1) by f (1)(t0) = f(t0), and in [tk, tk+1] as the solution of

∂tfn =
n−1∑
i=1

ififn−i(tk) − nρfn. (3.11)

Then a consequence of the preceding lemma is

3.2 Lemma: (a) f (1) is monotonically decreasing, and for all t ≥ t0

f(t) 
 f (1)(t). (3.12)

(b) Fix T1 > T0. Then there exist constants cn and Mn such that for all Δt ≤ 1 and

t ∈ [T0, T1]

|fn(t) − f (1)
n (t)| ≤ Δtcn exp(Mn(t − T0)) . (3.13)
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Proof: (a) For t ∈ [t0, t1], the inequalities follow from Lemma 3.1(a). The proof for

t ∈ [tk, tk+1], k > 0, follows by induction from Propositions 2.3(a) and 2.4.

(b) Lemma 3.1(b) proves that the approximation f (1) for f is consistent with order 1.

Thus (b) follows from standard arguments of numerics for ODE’s. (Keep in mind that

for the estimate (3.13) we only need to consider the finite-dimensional systems (fi)
n
i=1

resp. (f
(1)
i )n

i=1.) �

3.2 Truncation of interaction frequency

One major problem in establishing a numerical scheme is the stiffness of the system

f caused by the loss term −nρfn. Using the description as a stochastic process of

section 2.2, a particle starting from state r at time ti, stays in this state for some time

distributed according to r exp(−rt) and then jumps into some state r + 	 > r. The new

jump time is shorter (in the mean), since it is distributed as (r + 	) exp(−(r + 	)t). The

next modification we introduce is a slight truncation in the sense that in the whole time

interval [tk, tk+1) the distribution of the jump times is fixed at the initial distribution

r exp(−rt). As we find below, we are able to control this modification in terms of the

moment M [f ].

Choose b ∈ L1
+ with ‖b‖1 = ρ and define s[2,r] as the solution of

∂ts
[2,r]
n = r

n−1∑
i=1

s
[2,r]
i bn−i − rρs[2,r]

n , sn(T0) = δr,n. (3.14)

3.3 Lemma: (a) s[2,r] satisfies the mass conservation property

‖s[2,r](t)‖1 = 1 for t ≥ T0 (3.15)

(b) For all n ≤ r, s
[2,r]
n − s

[1,r]
n ≡ 0.

(c) For q > 0

|s[2,r]
r+q (t) − s

[1,r]
r+q (t)| ≤ 2 (r + q)2 (t − T0)

2. (3.16)
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(d) For t′ ≥ t ≥ 0,

s[2,r](t) � 2[2,r](t′) � s[1,r](t′) (3.17)

(e) For t ≥ 0,

M [s[2,r](t)] = r (1 + M [b] · (t − T0)) . (3.18)

Proof: (a) Because of ‖b‖1 = ρ, ‖s[2,r](t)‖ satisfies the differential equation

∂t‖s[2,r]‖ = 0 (3.19)

(b) From the definition follows

s[1,r]
n ≡ s[2,r]

n ≡ 0 for n < r (3.20)

s[1,r]
r (t) = s[2,r]

r (t) = exp (−rρ(t − T0)) ≥ 1 − rρ(t − T0). (3.21)

(c) From (a) and (b) follows

sr+q(t) ≤ rρ(t − T0) for q ≥ 1. (3.22)

Thus for q > 0

s
[1,r]
r+q (t) =

r+q−1∑
i=r

ibr+q−i

∫ t

T0

si(τ) exp[−(r + q)ρ(t − τ)]dτ (3.23)

which leads to

0 ≤ s
[1,r]
r+q (t) − rbq

∫ t

T0

s[1,r]
r (τ) exp[−(r + q)ρ(t − τ)]dτ

≤ (r + q)

(
r+q−1∑
i=r+1

br+q−i

)
︸ ︷︷ ︸

≤‖b‖1=ρ

·rρ
∫ t

T0

(τ − T0) exp[−(r + q)ρ(t − τ)]dτ

≤ 1

2
[(r + q)ρ]2 · (t − T0)

2 (3.24)
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and

−1

2
[(r + q)ρ]2 · (t − T0)

2 ≤ s
[1,r]
r+q (t) − rbq

∫ t

T0

s[1,r]
r (τ)dτ ≤ [(r + q)ρ]2 · (t − T0)

2 (3.25)

Similarly,

−1

2
[rρ]2 · (t − T0)

2 ≤ s
[2,r]
r+q (t) − rbq

∫ t

T0

s[1,r]
r (τ)dτ ≤ [rρ]2 · (t − T0)

2 (3.26)

which proves statement (c).

(d) follows from Propositions 2.3(a) and 2.4, and (e) from

∂tM [s[2,r]] = r ·
( ∞∑

n=1

n

n−1∑
i=1

s
[2,r]
i bn−i − ρ

∞∑
n=1

ns[2,r]
n

)
(3.27)

= r · ‖s[2,r]‖1M [b] = r · M [b] � (3.28)

We now arrive at the approximation system which will serve us as the basis of a numerical

scheme. Given a time step Δt > 0, choose tk = k ·Δt, and define fΔt as the continuous

function given by fΔt(0) = f(0), and in [tk, tk+1] by

fΔt(t) =
∞∑

r=1

fΔt
r (tk)s

[2,r,k](t) (3.29)

where s[2,r,k] is given by the differential equation (3.14) and the initial condition s
[2,r,k]
n (tk) =

δr,n. The main results concerning fΔt are collected in the following theorem. Let f de-

note solution of the original Smoluchowski IVP. Furthermore, let tgel be the gelation

time as defined in section 1.1.

3.4 Theorem: (a) For all t ≥ 0,

‖fΔt(t)‖1 = ‖f(0)‖1 = 1 (3.30)

(b) For all t ≥ 0,

fΔt(t) � f(t) (3.31)
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(c) For all t ≥ 0,

M [fΔt(t)] ↗ M [f(t)] as Δt ↘ 0 (3.32)

(d) Choose T > 0 fixed. There exist constants cn > 0 such that

sup
t∈[0,T ]

|fΔt
n (t) − fn(t)| ≤ cnΔt (3.33)

(e) Choose T < Tgel and Δtk := T/k; denote f (k) := fΔtk . Then for all ε > 0 there exists

K(ε) such that

sup
k≥K(ε)

sup
t∈[0,T ]

sup
N∈lN

∣∣ρN [f (k)(t)] − ρN [f (k)(t)]
∣∣ ≤ ε (3.34)

(f) Define T and f (k) as in (e). Then for all ε > 0 there exists K(ε) such that

sup
k≥K(ε)

sup
t∈[0,T ]

sup
N∈lN

∣∣f (k)
n (t)] − f (k)

n (t)]
∣∣ ≤ ε (3.35)

(g) For t ≤ tgel

lim
N→∞

lim
Δt↘0

ρN [fΔt(t)] = lim
Δt↘0

lim
N→∞

ρN [fΔt(t)] = ‖f(0)‖1, (3.36)

and for t > tgel

lim
N→∞

lim
Δt↘0

ρN [fΔt(t)] < lim
Δt↘0

lim
N→∞

ρN [fΔt(t)] = ρ(0). (3.37)

Proof: (a) follows from the mass conservation property of Lemma 3.3(a).

(b) is a consequence of

s[2,r](t) � s[1,r](t) � s(t) (3.38)

(compare Lemmas 3.1(a) and 3.3(d)) and Proposition 2.3(a).

(c) From Lemma 3.3(e) follows that M [fΔt] is linear in [ti, ti+1], and

M [fΔt(ti+1)] = M [fΔt(ti)]
(
1 + Δt · M [fΔt(ti)]

)
(3.39)
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Therefore M [fΔt(t)] is the Euler approximation of the convex functional M [f(t)] and

thus a lower approximation.

(d) The results of Lemmas 3.2(b) and 3.3(c) show that for N ∈ lN, the finite system

(fΔt
n )N

n=1 is an approximation of (fn)N
n=1 with consistency order Δt. Thus for finite time

intervals [0, T ], the global approximation error is of order Δt.

(e) fΔt satisfies the assumptions of Lemma 2.2. Thus from Lemma 2.2(a) we conclude

that there exist K,N0 ∈ lN such that

sup
k≥K(ε)

sup
t∈[0,T ]

sup
N>N0

∣∣ρN [f (k)(t)] − ρN [f (k)(t)]
∣∣ ≤ ε (3.40)

The remaining part follows from the uniform convergence of fΔt
n (t) given in (d).

To prove (f), we use the uniform convergence (e) and the arguments of the proof of

Lemma 2.2(b).

(g) is a consequence of

ρN [fΔt(t)] ↗ ‖fΔt(t)‖1 = ‖fΔt(0)‖1 as N → ∞ (3.41)

and

lim
N→∞

lim
Δt↘0

ρN [fΔt(t)] = lim
N→∞

ρN [f(t)] = ρ[f(t)]. � (3.42)

3.5 Remarks: (a) Formula (3.39) proves that M [fΔt(t)] converges for Δt ↘ 0 to m(t)

given by (2.47). Since the correct value M [f(t)] is an upper bound of M [fΔt(t)], this

proves that M [f(t)] ≥ m(t) which completes the proof of Proposition 2.3(c).

(b) Theorem 3.4 shows different types of convergence fΔt(t) → f(t). For T < tgel we

have uniform convergence in [0, T ] which breaks down at the gelation time. At the same

moment, the interchange of limits Δt ↘ 0 and N → ∞ is no longer allowed.
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4 Numerical investigations

4.1 A numerical scheme

We are going to establish an easy to handle and efficient scheme for the simulation

of fΔt. Since fΔt is an approximation to f of order Δt, it is sufficient to construct a

numerical scheme of the same order. Here, we restrict to the simplest explicit version,

and we will prove its applicability for the transition to the gelation phase.

Given b ∈ L1
+ with

bn ≥ 0, ‖b‖1 = ρ (4.1)

we define the mapping Θ = Θ[b] = (θi,j) : lRlN → lRlN by

θi,j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if i < j

−ρ if i = j

bi−j if i > j .

(4.2)

For numerical reasons we also introduce a truncated version. For N ∈ lN define the

N × N -matrix ΘN = (θN
i,j) by

θN
i,j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

θi,j if N > i ≥ j

0 if j = N

ρ − ∑N−1
k=1 bk−j if N = i > j .

(4.3)

For 0 ≤ λ ≤ 1/ρ define

Pλ = (pλ
i,j) := I + λΘ, PN

λ = (pλ,N
i,j ) := I + λΘN . (4.4)

It is evident that the system

η0 = f(0), ηi+1 = PΔtηi, i = 0, 1, 2, . . . (4.5)

describes the first order Euler scheme for the ODE system

∂tfn =
n−1∑
i=1

fibn−i − ρfn. (4.6)
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The following statements are obvious resp. straightforward.

4.1 Remarks: (a) For all λ ∈ [0, 1/ρ], Pλ and PN
λ are stochastic matrices in the sense

that their coefficients satisfy

pλ
i,j, p

λ,N
i,j ≥ 0, and

∞∑
j=1

pλ
i,j =

N∑
j=1

pλ,N
i,j = 1. (4.7)

(b) From (a) follows that Pλ and PN
λ are mass conserving in the sense that for f ∈ L1

+

‖Pλf‖1 = ‖f‖1, ρN [PN
λ f ] = ρN [f ]. (4.8)

(c) Pλ is transient, satisfying

(Pλ)
k →c 0 for k → ∞. (4.9)

PN
λ is obtained from Pλ by redirecting all paths which leave the lower state space

{1, . . . , N} under Pλ into state N . The state N is a trap under PN
λ , and

lim
k→∞

(PN
λ )k =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 · · · · · · 0
...

...

0 · · · · · · 0

1 · · · · · · 1

⎞
⎟⎟⎟⎟⎟⎟⎠ (4.10)

(d) If ‖b‖1 < ρ, then PN
λ is still a stochastic matrix. We may turn Pλ into a stochastic

matrix by adding an additional state ∞ to the state space lN and by defining

θ∞,j :=

⎧⎨
⎩ ρ − ∑∞

i=1 bi for j ∈ lN

0 for j = ∞ .
(4.11)

To avoid stiffness problems, we have to numerically approximate s[2,r](Δt) as given in

section 3.2 by (PΔt/r)
rs[2,r](0) which yields an approximation of the order 1, i.e.

‖s[2,r](Δt) − (PΔt/r)
rs[2,r](0)‖1 = O(Δt2). (4.12)
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Finally we need the matrices Er ∈ lRlN×lN and EN
r ∈ lRN×N given by

ei,j =

⎧⎨
⎩ 1 if i = j = r

0 else
(4.13)

to define the matrices

QΔt :=
∞∑

r=1

(PΔt/r)
rEr, QN

Δt :=
∞∑

r=1

(PN
Δt/r)

rEN
r . (4.14)

For Δt ≤ ρ, these are again stochastic matrices which follows immediately from the

Remarks 4.1. Furthermore, for r, n < N and δr being the r-th canonical unit vector,

(
(PΔt/r)

rs[2,r](0)
)

n
= (QΔtδr)n =

(
QN

Δtδr

)
n

. (4.15)

We end up with the following first order scheme fnum for fΔt (and with this for our main

object, the solution f of the Smoluchowski system) which is recursively defined by

fnum(0) = f(0), fnum((i + 1)Δt) = QΔtf
num(iΔt) . (4.16)

Its finite dimensional version, which coincides with fnum in all components n < N , reads

fnum,N(0) = f(0), fnum,N((i + 1)Δt) = QN
Δtf

num,N(iΔt) . (4.17)

4.2 Numerical transition to the gelation time

The numerical system derived in the preceding section is readily transformed into a

computer program. There are several possibilities of its realization. First, we may take

the scheme fnum,N as it is for the simulation of finite systems fN(t) = (fn(t)N
n=1. Since

the numerical effort is at least of order O(N2), this quantity should be only moderate for

the sake of efficiency. Second, since Q is a stochastic matrix, we may implement a Monte

Carlo scheme, thus being able to use much larger state spaces. Such a scheme has been

proposed and proven useful for the study of gelation in a space dependent environment

in [3, 4], and it can certainly compete with alternative stochastic schemes (see, e.g.

[5, 7]) in particular concerning numerical efficiency. However, such systems are affected

with unavoidable fluctuations which are hard to control quantitatively. Furthermore,
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answers to questions concerning a choice of threshold levels for the simulation of the

gelation phase are not yet convincing. For this reason, we present a third realization,

which is a hybrid code combining a deterministic and a stochastic part.

In the following we denote again as f num the numerical simulation of the deterministic

approach. We compare the simulated solutions with the exact solution

fn(t) =
1

n

(nt)n−1

n!
exp(−nt) (4.18)

given in [9]. (Notice that the exact solutions e.g. mentioned in [1, 6], concern the passive

gel and may be derived from (4.18) via the transformation (1.19).)

Before running the numerical scheme we have to determine a time step Δt. A criterium

for a proper choice is found in the fact that the numerical value M [f num] of the first

moment is a lower bound for the correct value M [f ] and that it is given as the Euler

discretization of the correct function (2.47) (see Theorem 3.4 and Remark 3.5(a)). So

it is easy to check this error depending on Δt in a simple scalar simulation. For t = 0.9

(e.g. close to tgel) and for time steps Δt between 10−4 and 10−2 the calculations show

relative errors of

M [f(0.9)] − M [fnum(0.9)]

M [f(0.9)]
≈ 20 · Δt. (4.19)

In Fig. 1 we compare for Δt = 0.01 the exact functions ρN [f(t)] (solid lines) with

the numerical ones (dotted lines) for N = 3, 9, 27, 81 (curves from left to right). As

was to be expected, the numerical values lie above the theoretical ones. However, they

are reasonable approximations. When increasing N even more one observes that the

functions approach a sharp edge at t = 1, the initialization of gelation. The simulation

of this point will be the subject of the following investigations.

The next problem concerns the question of how to simulate the transition to the gel

phase. The only possible way seems to be the truncation of the state space at some
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threshold level Ntr and to consider the whole mass above this level as gelated mass.

E.g., truncating at Ntr = 100 leads to a picture presented in Fig. 2, where the thick

solid line presents ρNtr [fnum] in comparison to the non-gelled mass of the exact solution

(dashed line), the latter exhibiting a discontinuity in the first derivative at tgel. (The

time step is Δt = 0.001.) We observe that truncation at Ntr = 100 does not describe

the approach to the gelation phase very well. (The deviations at times t � tgel result

from the discretization error; the system is only of first order.) Let us have a course look

at the mass distribution of the exact solution around the gelation time. Fig. 3 exhibits

the “sparsely populated” areas of the state space depending on time. (The abszissa

shows 100t; the value 100 corresponds to the gelation time. The ordinate shows the

state number N .) Here, a state k is marked white at time t, if

∞∑
�=k

f�(t) < Δm (4.20)

with a threshold level chosen as Δm = 0.01. The picture demonstrates the region

between the dark domain and ∞ which is almost unpopulated. This means that mass

leaving the dark domain very quickly passes over to ∞. A similar picture may be

obtained for the numerical solution, if one replaces the sum in (4.20) with
∑K

�=k fnum
� (t)

and K reasonably large. In this case, mass is again moving away very fast from the

dark region but it disappears in the upper state space and fails to reach ∞.

Taking these figures into consideration, choosing a threshold level in the white domain

should give a good description of the gel transition. E.g., taking Ntr = 100 should be

adequate for all times t ≥ 0 except for t ∈ [0.72, 1.30]. In this situation it seems near at

hand to supplement the deterministic truncated system by a stochastic part simulating

the transition in the critical phase. To this aim we implement a feature letting particles

emerge randomly into states n > Ntr at rates Δt ·∑Ntr

i=1 ififn−i, and we let these random

particles evolve stochastically as in the MC scheme described in [4, Section 2.2.2]. As a

new threshold Ngel for gelation we choose now a level Ngel � Ntr. As it turns out, the

results are quite robust with respect to the choice of Ngel.
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The results of a run are shown in Fig. 4. Here, we have chosen a time step Δt = 0.001,

a gelation threshold Ngel = 15000 and the weight 1/Ngel for the random particles. The

solid line shows the non-gelled mass consisting of the deterministic part up to state

n = Ntr and the stochastic particles within states n < Ngel. The dashed line shows the

first moment M of the combined system. The thick dots represent the number of random

particles. As it turns out, particles exist at times 0.721 < t < 1.270 which lie completely

in the time interval which we have identified above as the critical one for the simulation

of gelation. The maximal number of 1164 particles showed up at time t = 1.009, i.e.

very close to gelation time. The thin dots exhibit the whole gelated mass. As the thin

solid line in Fig. 2 proves, the portion of non-gelled mass is in the neighborhood of

tgel quite close to the theoretical values (dashed line). These calculations have been

performed on a usual PC (Intel, 3GHz, 512MB, MS-Windows) under Delphi. The pure

calculation time (without IO operations) was 170 sec. which means an average of 0.11

sec. per time step. Thus the scheme is well-suited for simulations of space dependent

problems.
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5 Figures

Fig. 1. Exact and numerical values of ρN(t), N = 3, 9, 27, 81.

Fig. 2. Non-gelled mass: exact (dotted), truncated (thick solid),

hybrid code (thin solid).
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Fig. 3. Sparsely populated areas.

Fig. 4. Passing the gelation time with the hybrid code.
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