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Universal Confidence Sets for Solutions of Optimization

Problems

Silvia Vogel

Abstract

We consider random approximations to deterministic optimization
problems. The objective function and the constraint set can be ap-
proximated simultaneously. Relying on concentration-of-measure re-
sults we derive universal confidence sets for the constraint set, the
optimal value and the solution set. Special attention is paid to so-
lution sets which are not single-valued. Many statistical estimators
being solutions to random optimization problems, the approach can
also be employed to derive confidence sets for constrained estimation
problems.

Keywords: random optimization problems, universal confidence
sets, convergence rate, constrained estimation

MSC2000: 90C15, 90C31, 62F25, 62F30

1 Introduction

Random approximations of deterministic or random optimization problems
come into play if unknown quantities are replaced with estimates or for nu-
merical reasons. Qualitative stability results, which make assertions on the
(semi-)convergence of the constraint sets, the optimal values, and the solu-
tion sets, are available for convergence almost surely, in probability and in
distribution, c.f. [11], [16], [7], [6], [18], [2]. Furthermore, there are quantita-
tive results which estimate the distance between the optimal values and/or
solutions sets by suitable probability metrics, see [13] for an overview.

Confidence bounds for optimal values and solution sets provide valuable
additional information. In the traditional way confidence bounds are derived
from the distribution of the statistic under consideration. However, the exact
distribution is available only in rare cases. Therefore, often knowledge about
the limit distribution is used as a surrogate. Hence qualitative stability
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results for convergence in distribution can be employed to derive asymptotic
confidence sets, see [11] and [2].

In [12] Pflug suggests an approach which can be used to derive even non-
asymptotic confidence sets without knowledge about the exact distribution.
The starting point are assertions on convergence in probability supplemented
with a suitable convergence rate and tail behavior. In [12] uniform conver-
gence with known convergence rate and tail behavior of the objective func-
tions together with a growth condition are assumed and results on inner
approximations of the solution sets are proved. In this way non-asymptotic
confidence sets can be obtained if the solution set is single-valued.

We will pursue the way proposed in [12] farther, take into account also
the approximation of the constraint set, and show how one can proceed if the
solution set is not single-valued. The results are formulated in a general way,
allowing e.g. for ‘εn-relaxed’ constraint sets and εn-optimal solutions. We
will also assume that suitable assertions on the (one-sided) uniform conver-
gence in probability of the objective functions and/or the constraint functions
with a convergence rate and tail function are available, albeit these condi-
tions are rather restrictive. It is, however, also possible to derive similar, yet
more technical assertions if one assumes some kind of continuous convergence
in probability with convergence rate and tail behavior. This so-called point-
wise approach opens the possibility to employ directly suitable concentration
inequalities. This method will be investigated elsewhere.

The results will be illustrated by three examples. Firstly, we discuss a
simple example in order to show how one can deal with the uniform conver-
gence assumptions. Secondly, we consider the approximation for a chance
constraint. The third example was chosen to emphasize the applicability
of our results in statistics. Many statistical estimators being solutions to
random optimization problems, our assertions can be employed to derive
confidence bounds for estimators, even if one does not have full knowledge
about the distribution of the underlying statistic. We will provide universal
confidence bounds for quantiles, allowing for distribution functions which are
not continuous.

The paper is organized as follows. In Chapter 2 we introduce the math-
ematical model and show how universal confidence sets can be derived. In
Chapter 3 and Chapter 4 we prove the needed convergence assertions for
the constraint sets, the optimal values, and the solutions sets. Chapter 5
contains the examples.
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2 Universal confidence sets

Let (E, d) be a complete separable metric space and [Ω, Σ, P ] a complete
probability space. We assume that a deterministic optimization problem
(P0) min

x∈Γ0

f0(x)

is approximated by a sequence of random problems
(Pn) min

x∈Γn(ω)
fn(x, ω), n ∈ N .

Additionally to (Pn), for a given ε > 0, we consider so-called ε-relaxations
(Pn,ε) min

x∈Γn,ε(ω)
fn,ε(x, ω), n ∈ N .

The relaxed problems offer the possibility to deal with approximate constraint
sets, objective functions and/or solution sets. Consequently, the approach
can be applied, e.g., to constraint sets and functions which are obtained
by Monte Carlo methods (c.f. [14], [10]) or to methods which use plug-in
estimators. Moreover, the relaxed problems occur in a natural manner if we
aim at deriving outer approximations of constraint sets and solution sets.

The following results will be formulated for (Pn,ε). The problem (Pn)
is then regarded as a special case of (Pn,ε) with objective functions and
constraint sets that do not depend on ε.

Γ0 is a nonempty closed subset of E, and f0|E → R̄1 is a lower semicon-
tinuous function. Γn,ε|Ω → 2E are closed-valued measurable multifunctions,
and fn,ε|E × Ω → R̄1 are lower semicontinuous random functions which are
supposed to be (B(E) ⊗ Σ, B̄1)-measurable. B(E) denotes the Borel-σ-field
of E and B̄1 the σ-field of Borel sets of R̄1. The measurability conditions
imposed here do not have the weakest form. We use them for sake of simplic-
ity. They are satisfied in many applications and guarantee that all functions
of ω needed in the following have the necessary measurability properties.
Furthermore, it should be mentioned that the lower semicontinuity assump-
tion of the objective functions fn,ε can be dropped. Imposing this condition,
however, we can omit some technical details in the proofs. Eventually, we
assume that all objective functions are (almost surely) proper functions, i.e.
functions with values in (−∞, +∞] which are not identically ∞.

Our main concern will be with the solution sets Ψ0 of (P0) and Ψn,ε of
(Pn,ε). We aim at proving assertions of the form

∀ε > 0 : sup
n≥n0(ε)

P{ω : Ψn,ε(ω) \ Uβn,εΨ0 6= ∅} ≤ K(ε) (1)
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and

∀ε > 0 : sup
n≥n0(ε)

P{ω : Ψ0 \ Uβn,εΨn,ε(ω) 6= ∅} ≤ K(ε). (2)

Here (βn,ε)n∈N is a sequence of nonnegative numbers which tends to zero
for each ε > 0 and K|R+ → R+ is a function with lim

ε→∞
K(ε) = 0. UαX

denotes an open neighborhood of the set X with radius α:
UαX := {x ∈ E : d(x,X) < α}.

Because of the similarity with inner approximations in probability of se-
quences of random sets (c.f. [7], [19]) we will call a sequence (Ψn,ε)n∈N ful-
filling the first relation an inner approximation in probability to Ψ0 with con-
vergence rate βn,ε and tail behavior function K (in short, an inner (βn,ε,K)-
approximation). Correspondingly a sequence (Ψn,ε)n∈N fulfilling the second
relation will be called an outer approximation in probability to Ψ0 with con-
vergence rate βn,ε and tail behavior function K (in short, an outer (βn,ε,K)-
approximation).

In order to derive universal confidence sets to the level ε0, i.e. a sequence
of random sets (Cn)n∈N with sup

n≥n0

P{ω : Ψ0 \ Cn(ω) 6= ∅} ≤ ε0, we can

proceed as follows:
Suppose that an outer (βn,ε,K)-approximation (Ψn,ε)n∈N to Ψ0 is avail-

able and choose, to ε0 > 0, an ε > 0 such that K(ε) ≤ ε0. The set

Cn := Uβn,εΨn,ε (3)

has the desired property. Of course, one is interested in small confidence sets,
hence (βn,ε)n∈N should go to zero as fast as possible and K should converge
to zero as fast as possible if ε tends to infinity.

If one considers approximating problems (Pn) without relaxation, then
under reasonable conditions one obtains inner approximations only. This
is satisfying if all approximating problems (Pn) have solutions which are
uniformly bounded and the solution set to the problem (P0) is single-valued,
because in this case inner approximations are also outer approximations and
we can proceed as above.

What can be done if the solution set to (P0) is not single-valued ? Taking
into account that we need knowledge about convergence rates anyway, we can
exploit this knowledge to determine suitable relaxing sequences (κn,ε)n∈N ,
which tend to zero for each ε > 0 and consider κn,ε-optimal solutions Ψκn

n,ε.
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The problem, that, without relaxing, only inner approximations can be
obtained is also apparent for the constraint sets. There are problems, where
κn,ε-relaxations are needed to obtain outer approximations of the constraint
sets. An example will be considered in Chapter 5.

In order to obtain reasonable confidence sets one would like to have
lim

n→∞
β

(i)
n,ε = 0 and lim

ε→∞
Ki → 0 for all sequences (β

(i)
n,ε)n∈N and functions

Ki which occur in the following. As mentioned, in order to obtain ‘small’
confidence sets, the limits should go to zero as fast as possible. These prop-
erties are, however, not needed to prove the results in Chapter 3 and Chapter
4. We only assume throughout the paper that the sequences (β

(i)
n,ε)n∈N are

non-increasing sequences of positive numbers and the functions Ki|R+ → R+

are non-increasing.
As a by-product, from the results presented in the following, one can also

derive confidence sets for the optimal values, proceeding as described above
for the solution sets. Hence the approach can help to assess the quality of
a solution to an approximate optimization problem and may be of interest
also for model selection.

3 Approximation of the constraint set

In this section we consider constraint sets, which are given by inequality
constraints, and their approximations. Results of that kind are of course
needed if approximation of the constraint set is inherent in the problem under
consideration. Moreover, the statements will be employed to derive assertions
on the behavior of the solution sets, regarding the difference between the
true objective function and the optimal value as constraint function. As the
objective values for problems which κn,ε-relaxed constraint sets may depend
on ε, the resulting constraint function may depend on ε, too. Furthermore,
when applying Theorem 1 below to the solution sets, the multifunctions Qn

will be interpreted as constraint sets, hence we have to allow that they depend
on ε, too. Consequently, we have to make sure, that even the results for the
constraint sets hold for relaxed constraint functions and multifunctions.

Let Q0 a closed non-empty subset of E and J = {1, . . . , jM} a finite index
set. We consider functions gj

0|E → R1, j ∈ J , which are lower semicontinu-
ous in all points x ∈ E, and define Γ0 := {x : gj

0(x) ≤ 0, j ∈ J} ∩Q0. Γ0 is
assumed to be nonempty.

For each ε > 0, the set Q0 is approximated by a sequence (Qn,ε)n∈N of
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closed-valued measurable multifunctions, and the functions gj
0, j ∈ J, are

approximated by sequences (gj
n,ε)n∈N of functions gj

n,ε|E → R1, j ∈ J, which
are (B(E)⊗ Σ,B1)-measurable. Furthermore, we assume that the functions
gn,ε(·, ω) are lower semicontinuous for all ω ∈ Ω. Also these measurability
and semicontinuity properties could be weakened.

Eventually Γn,ε is defined by
Γn,ε(ω) := {x ∈ E : gj

n,ε(x, ω) ≤ 0, j ∈ J}∩Qn,ε(ω). Under our assumptions
Γn,ε is a closed-valued measurable multifunction.

If we have Q0 = Qn,ε(ω) ≡ E, we will use the denotation Γ̂0 and Γ̂n,ε,

respectively: Γ̂0 = {x ∈ E : gj
0(x) ≤ 0, j ∈ J} and Γ̂n,ε(ω) := {x ∈ E :

gj
n,ε(x, ω) ≤ 0, j ∈ J}.

In the following we use functions ν, µ and λ. We assume that they map
R+ into R+, fulfill ν(0) = µ(0) = λ(0) = 0, are increasing and non-constant.
By the superscript −1 we denote their right inverses: ν−1(y) := inf{x ∈ R :
ν(x) > y}.

Theorem 1 (Inner Approximation of the Constraint Set) Assume that
the following conditions are satisfied:

(CI1) There exist a function K1 and to all ε > 0 a sequence (β
(1)
n,ε)n∈N such

that
sup
n∈N

P{ω : Qn,ε(ω) \ U
β

(1)
n,ε

Q0 6= ∅} ≤ K1(ε).

(CI2) There exist a function K2 and to all ε > 0 a sequence (β
(2)
n,ε)n∈N such

that
sup
j∈J

sup
n∈N

P{ω : inf
x∈UQ0\Γ0

(gj
n,ε(x, ω)− gj

0(x)) ≤ −β
(2)
n,ε} ≤ K2(ε)

for a suitable neighborhood UQ0.

(CI3) There exists a function ν such that for all ε > 0
UεΓ0 ⊃ Uν(ε)Q0 ∩ Uν(ε)Γ̂0.

(CI4) There exists a function µ such that for all ε > 0
∀ x ∈ UεQ0 \ UεΓ̂0 ∃j ∈ J : gj

0(x) ≥ µ(ε).

Then for all ε > 0, β
(3)
n,ε = max{ν−1(β

(1)
n,ε), ν−1(µ−1(β

(2)
n,ε))}, and

n0(ε) = min{k : U
β

(3)
k,ε

Q0 ⊂ UQ0} the relation
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sup
n≥n0(ε)

P{ω : Γn,ε(ω) \ U
β

(3)
n,ε

Γ0 6= ∅} ≤ K1(ε) + jMK2(ε)

holds.

Proof. Assume that for given ε > 0, n ≥ n0(ε), and ω ∈ Ω the relation
sup

n≥n0(ε)

P{ω : Γn,ε(ω) \ U
β

(3)
n,ε

Γ0 6= ∅} holds. Then there is xn,ε(ω) ∈ Γn,ε(ω)

which does not belong to U
β

(3)
n,ε

Γ0. Because of (CI3) we have xn,ε(ω) /∈
U

ν(β
(3)
n,ε)

Q0 or xn,ε(ω) ∈ U
ν(β

(3)
n,ε)

Q0 and xn,ε(ω) /∈ U
ν(β

(3)
n,ε)

Γ̂0. In the first

case we obtain Qn,ε \ U
ν(β

(3)
n,ε)

Q0 6= ∅. Hence, because of ν(β
(3)
n,ε) ≥ β

(1)
n,ε,

Qn,ε(ω) \ U
β

(1)
n,ε

Q0 6= ∅, and we can employ (CI1). In the second case we ob-

tain by (CI4) for at least one j ∈ J , gj
0(xn,ε(ω)) ≥ µ(ν(β

(3)
n,ε)) ≥ β

(2)
n,ε, hence,

because of U
ν(β

(3)
n,ε)

Q0 ⊂ UQ0, inf
x∈UQ0\Γ0

(gj
n,ε(x, ω)−gj

0(x)) ≤ −β
(2)
n,ε. It remains

to employ (CI2). ¤

The conditions (CI2) and (CI4) can be replaced using strict inequalities
in the following form without changing the conclusion of Theorem 1. This
holds correspondingly for further assertions.

(CI2-s) There exist a function K2 and to all ε > 0 a sequence (β
(2)
n,ε)n∈N such

that
sup
j∈J

sup
n∈N

P{ω : inf
x∈UQ0\Γ0

(gj
n,ε(x, ω)− gj

0(x)) < −β
(2)
n,ε} ≤ K2(ε)

for a suitable neighborhood UQ0.

(CI4-s) There exists a function µ such that for all ε > 0
∀ x ∈ UεQ0 \ UεΓ̂0 ∃j ∈ J : gj

0(x) > µ(ε).

If the set Q0 remains fixed in all approximations, i.e. Qn,ε ≡ Q0, the
assumptions in Theorem 1 can be weakened.

Corollary 1.1 Assume that the following assumptions are satisfied:

(CI2-W) There exist a function K2 and to all ε > 0 a sequence (β
(2)
n,ε)n∈N such

that
sup
j∈J

sup
n∈N

P{ω : inf
x∈Q0\Γ0

(gj
n,ε(x, ω)− gj

0(x)) ≤ −β
(2)
n,ε} ≤ K2(ε).
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(CI4-W) There exists a function µ such that for all ε > 0
∀ x ∈ Q0 \ UεΓ̂0 ∃j ∈ J : gj

0(x) ≥ µ(ε).

Then for all ε > 0 and β
(3)
n,ε = µ−1(β

(2)
n,ε) the relation

sup
n∈N

P{ω : Γn,ε(ω) \ U
β

(3)
n,ε

Γ0 6= ∅} ≤ jMK2(ε)

holds.

Proof. We can choose ν(ε) = ε. (CI1) is satisfied with K1 ≡ 0 and an

arbitrary β
(1)
n,ε. As we are interested in small values of β

(3)
n,ε, we use the form

given in the assertion. ¤

If we want to employ Theorem 1 for solution sets we have to deal with
one constraint function only. The following corollary is a specialization of
Theorem 1 to jM = 1 and g1

0 =: g0, g1
n,ε =: gn,ε. Additionally, we replace

(CI4) with a growth condition.

Corollary 1.2 Assume that (CI1), (CI2), (CI3), and the following con-
dition (Gr-g0) are satisfied.

(Gr-g0) There exist an increasing function ψ1|R+ → R+ and constants c1 > 0,
δ1 > 0, and θ1 > 0 such that
∀x ∈ UQ0 : g0(x) ≥ ψ1(d(x, Γ̂0)) and
∀ 0 < θ < θ1 : ψ1(θ) ≥ c1 · θδ1.

Then for all ε > 0, β
(3)
n,ε = max{ν−1(β

(1)
n,ε), ν−1((

β
(2)
n,ε

c1
)

1
δ1 )}, and

n0(ε) = min{k : U
β

(3)
k,ε

Q0 ⊂ Uθ1Q0 ∩ UQ0} the relation

sup
n≥n0(ε)

P{ω : Γn,ε(ω) \ U
β

(3)
n,ε

Γ0 6= ∅} ≤ K1(ε) +K2(ε)

holds.

If the functions gn,ε do not depend on ε, Qn,ε ≡ Q0 and β
(2)
n,ε = ε

γn
holds,

instead of (CI2) the following condition can be used:

(CI2’) There exist a function K2 and a sequence (γn)n∈N →∞ such that
sup
n∈N

P{ω : γn( inf
x∈Q0\Γ0

(gn(x, ω)− g0(x)) ≤ −ε} ≤ K2(ε).

In this case Corollary 1.2 can be simplified in the following way:
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Corollary 1.3 Assume that (CI2’) and (Gr-g0) with Q0 instead of UQ0

are satisfied. Then for all ε > 0 the relation
sup
n∈N

P{ω : Γn(ω) \ U ε

(γn)

1
δ1

Γ0 6= ∅} ≤ K2(c1ε
δ1)

holds.

Proof. With Corollary 1.1 and Corollary 1.2 we obtain

sup
n∈N

P{ω : Γn(ω) \ U
β

(3)
n,ε

Γ0 6= ∅} ≤ K2(ε) with β
(3)
n,ε = ( ε

c1γn
)

1
δ1 . Replacing ε

with c1η
δ1 yields the conclusion. ¤

As mentioned in the introduction, in general, the sequence (Γn)n∈N ap-
proximates a subset of Γ0 only. In order to obtain outer approximations,
additional assumptions have to be imposed. Qualitative stability theory
usually assumes that the condition Γ0 ⊂ cl{x ∈ Q0 : gj

0(x) < 0, ∀j ∈ J} is
fulfilled where cl denotes the closure. In order to obtain also a convergence
rate and a tail function, we impose a ‘quantified version’ of this assumption,
see (CO3) below. Unfortunately, a condition of that kind is useless if one
intends to employ the result for the solution set, because (CO3) can not be
satisfied by g̃n := fn−Φn where Φn denotes the optimal value to the problem
(Pn).

Hence we will provide a second approach which considers inequality con-
straints of the form gj

n,ε(x, ω) < κn,ε, j ∈ J, where (κn,ε)n∈N is a suitable
sequence of positive reals with lim

n→∞
κn,ε = 0 ∀ε > 0.

For the formulation of (CO3) we need the ε-interior of Γ0. Let, for a given
ε > 0, CI(ε) := Γ0 \ Uε(E \ Γ0). Ūε denotes the closure of Uε.

Theorem 2 (Outer Approximation of the Constraint Set, Inner Point)
Assume that the following conditions are satisfied:

(CO1) There exist a function K1 and to all ε > 0 a sequence (β
(1)
n,ε)n∈N such

that
sup
n∈N

P{ω : Q0 \ U
β

(1)
n,ε

Qn,ε(ω) 6= ∅} ≤ K1(ε).

(CO2) There exist a function K2 and to all ε > 0 a sequence (β
(2)
n,ε)n∈N such

that
sup
j∈J

sup
n∈N

P{ω : sup
x∈Γ0

(gj
n,ε(x, ω)− gj

0(x)) ≥ β
(2)
n,ε} ≤ K2(ε).
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(CO3) There exist ε̃ > 0 and a function µ such that for all 0 < ε ≤ ε̃
Γ0 ⊂ ŪεCI(ε) and
∀x ∈ CI(ε) ∀j ∈ J : gj

0(x) ≤ −µ(ε).

Then for all 0 < ε ≤ ε̃, β
(3)
n,ε = max{β(1)

n,ε, µ−1(2β
(2)
n,ε)}, and

n0(ε) = min{k : β
(3)
k,ε ≤ 2ε̃} the relation

sup
n≥n0(ε)

P{ω : Γ0 \ (U
β

(3)
n,ε

Γ̂n,ε(ω) ∩ U
β

(1)
n,ε

Qn,ε(ω)) 6= ∅} ≤ K1(ε) + jMK2(ε)

holds.

Proof. Assume that for given ε > 0, n ∈ N, and ω ∈ Ω the relation
Γ0 \ (U

β
(3)
n,ε

Γ̂n,ε(ω)∩U
β

(1)
n,ε

Qn,ε(ω)) 6= ∅ holds. Then there is xn,ε(ω) ∈ Γ0 which

does not belong to U
β

(3)
n,ε

Γ̂n,ε(ω) ∩ U
β

(1)
n,ε

Qn,ε(ω). If xn,ε(ω) /∈ U
β

(1)
n,ε

Qn,ε(ω) we

can employ (CO1). If xn,ε(ω) /∈ U
β

(3)
n,ε

Γ̂n,ε(ω) we can choose x̃n,ε(ω) ∈ CI(
β

(3)
n,ε

2
)

with x̃n,ε(ω) /∈ Γ̂n,ε(ω), i.e. gj0
n,ε(x̃n,ε(ω), ω) > 0 for at least one j0 ∈ J . Be-

cause of gj0
0 (x̃n,ε(ω)) ≤ −µ(

β
(3)
n,ε

2
) ≤ −β

(2)
n,ε we can employ (CO2). ¤

Now we consider κn,ε-relaxed inequality constraints. Let Γ̂κn
n,ε(ω) := {x ∈

E : gj
n,ε(x, ω) < κn,ε, j ∈ J} and Γκn

n,ε(ω) = Γ̂κn
n,ε(ω) ∩Qn,ε.

Theorem 3 (Outer Approximation of the Constraint Set, Relaxation)
Assume that (CO1) and (CO2) are satisfied.

Then for all ε > 0, κn,ε = β
(2)
n,ε and β

(3)
n,ε = max{β(1)

n,ε, β
(2)
n,ε} the relation

sup
n∈N

P{ω : Γ0 \ (Γ̂κn
n,ε(ω) ∩ U

β
(1)
n,ε

Qn,ε(ω)) 6= ∅} ≤ K1(ε) + jMK2(ε)

holds.

Proof: Assume that for given ε > 0, n ∈ N, and ω ∈ Ω the relation
Γ0 \ (Γ̂κn

n,ε(ω) ∩ U
β

(1)
n,ε

Qn,ε(ω)) 6= ∅ holds. Then there is xn,ε(ω) ∈ Γ0 which

does not belong to Γ̂κn
n,ε(ω)∩U

β
(1)
n,ε

Qn,ε(ω). Hence gj
0(xn,ε(ω)) ≤ 0 ∀j ∈ J and

xn,ε(ω) ∈ Q0(ω), but either xn,ε(ω) /∈ U
β

(1)
n,ε

Qn,ε(ω) or gj
n,ε(xn,ε(ω), ω) > β

(2)
n,ε =

κn,ε for at least one j ∈ J . In the first case we obtain Q0 \ U
β

(1)
n,ε

Qn,ε(ω) 6= ∅.
The second case yields sup

x∈Γ0

(gj
n,ε(x, ω)− gj

0(x)) > β
(2)
n,ε for at least one j ∈ J .

¤
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A corresponding result holds if U
β

(1)
n,ε

Qn,ε is replaced with Qn,ε in the con-

dition (CO1) and in the assertion.

The question arises under what conditions (Γκn
n,ε)n∈N is also an inner ap-

proximation. Results of that kind will help to assess the quality of an outer
approximation. An inspection of the proof to Theorem 1 shows that with
κn,ε = β

(2)
n,ε the following statement can be obtained.

Theorem 4 (Inner Approximation of the Constraint Set, Relaxation)
Assume that (CI1), (CI2), (CI3), and (CI4) are satisfied. Then for all ε > 0,

κn,ε = β
(2)
n,ε, β

(3)
n,ε = max{ν−1(β

(1)
n,ε), ν−1(µ−1(2β

(2)
n,ε))}, and n0(ε) = min{k :

U
β

(3)
k,ε

Q0 ⊂ UQ0} the relation

∀ε > 0 sup
n≥n0(ε)

P{ω : Γκn
n,ε(ω) \ U

β
(3)
n,ε

Γ0 6= ∅} ≤ K1(ε) + jMK2(ε)

holds.

Finally, we will summarize what we obtain for one constraint function
under a growth condition.

Theorem 5 (Approximation of the Constraint Set, Relaxation) Assume
that jM = 1 and (CI1), (CO1) (CI2), (CO2), (CI3), and (Gr-g0) are satis-
fied.

Then for all ε > 0, κn,ε = β
(2)
n,ε, β

(3)
n,ε = max{β(1)

n,ε, β
(2)
n,ε, ν−1(β

(1)
n,ε), ν−1((

2β
(2)
n,ε

c1
)

1
δ1 )},

and n0(ε) = min{k : U
β

(3)
k,ε

Q0 ⊂ UQ0} the relation

sup
n≥n0(ε)

P{ω : (Γκn
n,ε(ω) \ U

β
(3)
n,ε

Γ0) ∪ (Γ0 \ (Γ̂κn
n,ε(ω) ∩Qn,ε(ω)) 6= ∅} ≤ 2K1(ε) +

2K2(ε)
holds.

Proof. We have
P{ω : (Γκn

n,ε(ω) \ U
β

(3)
n,ε

Γ0) ∪ (Γ0 \ (Γ̂κn
n,ε(ω) ∩Qn,ε(ω)) 6= ∅}

≤ P{ω : Γκn
n,ε(ω) \ U

β
(3)
n,ε

Γ0 6= ∅}+ P{ω : Γ0 \ (Γ̂κn
n,ε(ω) ∩Qn,ε(ω)) 6= ∅}.

The assumptions of Theorem 3 and Theorem 4 are satisfied with µ(ε) = c1ε
δ1

and β̃
(1)
n,ε = β̃

(2)
n,ε = β

(3)
n,ε. ¤

Unfortunately, the result is not ‘symmetric’. In order to derive a result
of the form

11



sup
n≥n0(ε)

P{ω : (Γκn
n,ε(ω) \ U

β
(3)
n,ε

Γ0) ∪ (Γ0 \ U
β

(3)
n,ε

Γκn
n,ε(ω)) 6= ∅} ≤ K(ε)

we would need functions νn,ε and conditions similar to (CI3) for each n.

Now assume that there is only one constraint function gn, which does
not depend on ε, and Qn,ε ≡ Q0 holds. If β

(2)
n,ε = ε

γn
, instead of (CO2) the

following condition can be used:

(CO2’) There exist a function K2 and a sequence (γn)n∈N →∞ such that
sup
n∈N

P{ω : γn sup
x∈Γ0

(gn(x, ω)− g0(x)) ≥ ε} ≤ K2(ε).

Then the following result can be derived.

Corollary 5.1 Assume that (CI2’), (CO2’), and (Gr-g0) with Q0 instead

of UQ0 are satisfied. Then for all ε > 0, κn,ε = ε
γn

, β
(3)
n,ε = max{ ε

γn
, ( 2ε

c1γn
)

1
δ1 },

and n0(ε) = min{k : β
(3)
k,ε ≤ θ1} the relation

sup
n≥n0(ε)

P{ω : (Γκn
n,ε(ω) \ U

β
(3)
n,ε)

Γ0) ∪ (Γ0 \ Γκn
n,ε(ω)) 6= ∅} ≤ 2K2(ε)

holds.

Proof. The proof follows by Theorem 5 proceeding in a similar way as in
the derivation of Corollary 1.3. ¤

If max{ ε
γn

, ( 2ε
c1γn

)
1
δ1 } = ( 2ε

c1γn
)

1
δ1 the result can be rewritten as in Corollary

1.3.

4 Approximation of the optimal values and

the solution sets

We turn to the optimal values and the solutions sets of the problems (P0) and
(Pn,ε). Let Φn,ε(ω) := inf

x∈Γn,ε(ω)
fn,ε(x, ω) and Ψn,ε(ω) denote the correspond-

ing solution set. In the following, the constraint sets and their approximations
are not supposed the have a special form. Especially, Γn,ε can have the form
which was used in Chapter 3, but it can also denote a set originating from a
relaxation like Γκn

n,ε.

12



We do not impose compactness conditions on Γ0 and Γn,ε. Instead we
assume, for sake of simplicity, that the original and the approximating prob-
lems have a solution.

Theorem 6 (Lower Approximation of the Optimal Value) Assume that
the following conditions are satisfied:

(VL1) There exist a function K1 and to all ε > 0 a sequence (β
(1)
n,ε)n∈N such

that
sup
n∈N

P{ω : Γn,ε(ω) \ U
β

(1)
n,ε

Γ0 6= ∅} ≤ K1(ε).

(VL2) There exist a function K2 and to all ε > 0 a sequence (β
(2)
n,ε)n∈N such

that
sup
n∈N

P{ω : inf
x∈UΓ0

(fn,ε(x, ω) − f0(x)) ≤ −β
(2)
n,ε} ≤ K2(ε) for a suitable

neighborhood UΓ0.

(VL3) There exists a function λ such that for all ε > 0
∀ x ∈ Uλ(ε)Γ0 ∩ UΓ0 : f0(x) ≥ Φ0 − ε.

Then for all ε > 0, β
(3)
n,ε = max{2λ−1(β

(1)
n,ε), 2β

(2)
n,ε}, and

n0(ε) = min{k : U
λ(

β
(3)
k,ε
2

)

Γ0 ⊂ UΓ0} the relation

sup
n≥n0(ε)

P{ω : Φn,ε(ω)− Φ0 ≤ −β
(3)
n,ε} ≤ K1(ε) +K2(ε)

holds.

Proof. Assume that for given ε > 0, n ≥ n0(ε), and ω ∈ Ω the relation

Φn,ε(ω) ≤ Φ0 − β
(3)
n,ε holds. Then there exists xn,ε(ω) ∈ Γn,ε(ω) such that

fn,ε(xn,ε(ω), ω) = Φn,ε(ω) ≤ Φ0 − β
(3)
n,ε.

Firstly, let xn,ε(ω) ∈ U
λ(

β
(3)
n,ε
2

)
Γ0. Then

inf
x∈UΓ0

(fn,ε(x, ω)−f0(x)) ≤ fn,ε(xn,ε(ω), ω)−f0(xn,ε(ω)) ≤ Φn,ε(ω)−Φ0 +
β

(3)
n,ε

2

≤ −β
(3)
n,ε

2
≤ −β

(2)
n,ε.

Eventually, if xn,ε(ω) /∈ U
λ(

β
(3)
n,ε
2

)
Γ0, we have Γn,ε(ω) \ U

β
(1)
n,ε

Γ0 6= ∅. ¤

The proof shows that also the following assertion holds.
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Corollary 6.1 Assume that Γn,ε ≡ Γ0 and the following condition is
satisfied:

(VL2’) There exist a function K2 and to all ε > 0 a sequence (β
(2)
n,ε)n∈N such

that
sup
n∈N

P{ω : inf
x∈Γ0

(fn,ε(x, ω)− f0(x)) ≤ −β
(2)
n,ε} ≤ K2(ε).

Then for all ε > 0 the relation
sup
n∈N

P{ω : Φn,ε(ω)− Φ0 ≤ −β
(2)
n,ε} ≤ K2(ε)

holds.

In the following we consider upper approximations and distinguish two
cases according to whether
∀ε > 0 : sup

n≥n0(ε)

P{ω : Γ0 \ U
β

(1)
n,ε

Γn,ε(ω) 6= ∅} ≤ K1(ε) or

∀ε > 0 : sup
n≥n0(ε)

P{ω : Γ0 \ Γn,ε(ω) 6= ∅} ≤ K1(ε)

is imposed. As expected, in the second case we obtain a better tail behavior.

Theorem 7 (Upper Approximation of the Optimal Value I) Assume
that the following conditions are satisfied:

(VU1) There exist a function K1 and to all ε > 0 a sequence (β
(1)
n,ε)n∈N such

that
sup
n∈N

P{ω : Γ0 \ U
β

(1)
n,ε

Γn,ε(ω) 6= ∅} ≤ K1(ε).

(VU2) There exist a function K2 and to all ε > 0 a sequence (β
(2)
n,ε)n∈N such

that
sup
n∈N

P{ω : sup
x∈UΨ0

(fn,ε(x, ω) − f0(x)) ≥ β
(2)
n,ε} ≤ K2(ε) for a suitable

neighborhood UΨ0.

(VU3) There exists a function λ such that for all ε > 0
∀ x ∈ Uλ(ε)Ψ0 ∩ UΨ0 : f0(x) ≤ Φ0 + ε.

Then for all ε > 0, β
(3)
n,ε = max{2λ−1(β

(1)
n,ε), 2β

(2)
n,ε}, and

n0(ε) = min{k : U
λ(

β
(3)
k,ε
2

)

Ψ0 ⊂ UΨ0} the relation

sup
n≥n0(ε)

P{ω : Φn,ε(ω)− Φ0 ≥ β
(3)
n,ε} ≤ K1(ε) +K2(ε)

holds.
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Proof. Assume that for given ε > 0, n ≥ n0(ε), and ω ∈ Ω the relation

Φn,ε(ω) ≥ Φ0 + β
(3)
n,ε holds. Then there exists xn,ε(ω) ∈ Γn,ε(ω) such that

fn,ε(xn,ε(ω), ω) = Φn,ε(ω) ≥ Φ0 + β
(3)
n,ε. To xn,ε(ω) we select x̃n,ε(ω) ∈ Γn,ε(ω)

such that d(x̃n,ε(ω), Ψ0) = min
x∈Γn,ε(ω)

d(x, Ψ0).

Firstly, assume that x̃n,ε(ω) ∈ U
λ(

β
(3)
n,ε
2

)
Ψ0. Then

fn,ε(x̃n,ε(ω), ω) ≥ Φn,ε(ω) ≥ Φ0 + β
(3)
n,ε ≥ f0(x̃n,ε(ω)) +

β
(3)
n,ε

2

and consequently, sup
x∈UΨ0

(fn,ε(x, ω) − f0(x)) ≥ β
(3)
n,ε

2
≥ β

(2)
n,ε. If x̃n,ε(ω) /∈

U
λ(

β
(3)
n,ε
2

)
Ψ0, we have Γ0 \ U

β
(1)
n,ε

Γn,ε(ω) 6= ∅. ¤

If we impose the special upper semicontinuity condition (UCon) for f0,
we obtain the following corollary.

Corollary 7.1 (Upper Approximation of the Optimal Value I)
Assume that (VU1), (VU2) and the following condition (UCon) are satisfied:

(UCon) There exist an increasing function ψ2|R+ → R+ and constants
c2 > 0, δ2 > 0 and θ2 > 0 such that
∀x ∈ UΨ0 : f0(x) ≤ Φ0 + ψ2(d(x, Ψ0)) and
∀ 0 < θ < θ2 : ψ2(θ) ≤ c2θ

δ2 .

Then, for all ε > 0, β
(3)
n,ε = max{2c2(β

(1)
n,ε)δ2 , 2β

(2)
n,ε}, and

n0(ε) = min{k : Uλk,ε
Ψ0 ⊂ UΨ0 ∩ Uδ2Ψ0} with λk,ε = (

β
(3)
k,ε

2c2
)

1
δ2

the relation
sup

n≥n0(ε)

P{ω : Φn,ε(ω)− Φ0 ≥ β
(3)
n,ε} ≤ K1(ε) +K2(ε)

holds.

Proof. We employ Theorem 7. Because of (UCon) we can choose λ(θ) =

( θ
c2

)
1
δ2 and consequently λ−1(ε) = c2ε

δ2 . ¤

A similar Corollary can be proved for the lower approximation of the op-
timal values. We give only the result for the upper approximation because we
will use it in the following. Furthermore, the assertions can be supplemented
by results similar to Corollary 1.3 and Corollary 5.1.
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Theorem 8 (Upper Approximation of the Optimal Value II) Assume
that the following conditions are satisfied:

(VU1-R) There exist a function K1 and to all ε > 0 a sequence (β
(1)
n,ε)n∈N such

that
sup
n∈N

P{ω : Γ0 \ Γn,ε(ω) 6= ∅} ≤ K1(ε).

(VU2-R) There exist a function K2 and to all ε > 0 a sequence (β
(2)
n,ε)n∈N such

that
sup
n∈N

P{ω : sup
x∈Ψ0

(fn,ε(x, ω)− f0(x)) ≥ β
(2)
n,ε} ≤ K2(ε).

Then for all ε > 0 the relation
sup
n∈N

P{ω : Φn,ε(ω)− Φ0 ≥ β
(2)
n,ε} ≤ K1(ε) +K2(ε)

holds.

Proof. Assume that for given ε > 0, n ∈ N, and ω ∈ Ω the relation
Φn,ε(ω) ≥ Φ0 + β

(2)
n,ε holds. Then there exists xn,ε(ω) ∈ Γn,ε(ω) such that

fn,ε(xn,ε(ω), ω) = Φn,ε(ω) > Φ0 + β
(2)
n,ε. To xn,ε(ω) we select x̃n,ε(ω) ∈ Γn,ε(ω)

such that d(x̃n,ε(ω), Ψ0) = min
x∈Γn,ε(ω)

d(x, Ψ0).

If x̃n,ε(ω) ∈ Ψ0 we have

fn,ε(x̃n,ε(ω), ω) ≥ Φn,ε(ω) ≥ Φ0 + β
(2)
n,ε = f0(x̃n,ε(ω)) + β

(2)
n,ε

and consequently, sup
x∈Ψ0

(fn,ε(x, ω)− f0(x)) ≥ β
(2)
n,ε.

Otherwise we have Γ0 \Γn,ε(ω) 6= ∅ and can employ the first assumption.
¤

Now we turn to the solution sets. We use the abbreviation Ψ̂ = {x ∈ E :
f0(x) ≤ Φ0}.

Theorem 9 (Inner Approximation of the Solution Set) Assume that
(VL1), (VL2) and the following assumptions are satisfied:

(SI3) There exist a function K3 and to all ε > 0 a sequence (β̂
(2)
n,ε)n∈N and

n0(ε) such that

sup
n≥n0(ε)

P{ω : Φn,ε(ω)− Φ0 ≥ β̂
(2)
n,ε} ≤ K3(ε).
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(SI4) There exists a function ν such that for all ε > 0
UεΨ0 ⊃ Uν(ε)Γ0 ∩ Uν(ε)Ψ̂0.

(SI5) There exists a function µ such that for all ε > 0
∀ x ∈ UεΓ0 \ UεΨ̂0 : f0(x) ≥ Φ0 + µ(ε).

Then for all ε > 0, β
(3)
n,ε = max{ν−1(β

(1)
n,ε), ν−1(µ−1(β

(2)
n,ε + β̂

(2)
n,ε))}, and

n1(ε) = min{k ≥ n0(ε) : U
β

(3)
k,ε

Γ0 ⊂ UΓ0} the relation

sup
n≥n1(ε)

P{ω : Ψn,ε(ω) \ U
β

(3)
n,ε

Ψ0 6= ∅} ≤ K1(ε) +K2(ε) +K3(ε)

holds.

Proof. Let g̃n,ε(x, ω) := fn,ε(x, ω) − Φn,ε(ω), g̃0(x) := f0(x) − Φ0. Then
Ψn,ε(ω) = Γn,ε(ω) ∩ {x ∈ E : g̃n,ε(x, ω) ≤ 0} and
Ψ0 = Γ0 ∩ {x ∈ E : g̃0(x) ≤ 0}. Furthermore,

sup
n≥n0(ε)

P{ω : inf
x∈UΓ0\Ψ0

(g̃n,ε(x, ω)− g̃0(x)) ≤ −β
(2)
n,ε − β̂

(2)
n,ε}

≤ sup
n≥n0(ε)

P{ω : inf
x∈UΓ0\Ψ0

(fn,ε(x, ω)− f0(x)) ≤ −β
(2)
n,ε}

+ sup
n≥n0(ε)

P{ω : −Φn,ε(ω) + Φ0 ≤ −β̂
(2)
n,ε} ≤ K2(ε) +K3(ε) =: K̃2(ε).

It remains to apply Theorem 1 with β̃
(2)
n,ε = β

(2)
n,ε + β̂

(2)
n,ε and K̃2. ¤

We emphasize that we can choose ν(ε) = ε if Γn,ε ≡ Γ0.
Furthermore, if Uε̃Ψ0 ⊂ Γ0 for a suitable ε̃ > 0, we can also deal with

ν(ε) = ε for all ε ≤ ε̃.

Corollary 9.1 (Inner Approximation of the Solution Set)
Assume that (VL1), (VL2), (VU1), (VU2), (SI4), (UCon), and the following
condition are satisfied:

(Gr-f0) There exist an increasing function ψ1|R+ → R+ and constants c1 > 0,
δ1 > 0, and θ1 > 0 such that
∀x ∈ UΓ0 : f0(x)− Φ0 ≥ ψ1(d(x, Ψ̂0)) and
∀ 0 < θ < θ1 : ψ1(θ) ≥ c1 · θδ1.

Then for all ε > 0, β
(3)
n,ε = max{ν−1(β

(1)
n,ε), ν−1((

β̂
(2)
n,ε+β

(2)
n,ε

c1
)

1
δ1 )},

β̂
(2)
n,ε = max{2c2(β

(1)
n,ε)δ2 , 2β

(2)
n,ε}, and

n1(ε) = min{k ≥ n0(ε) : U
β

(3)
k,ε

Γ0 ⊂ UΓ0, U
β

(3)
k,ε

Ψ0 ⊂ UΨ0, β
(3)
k,ε ≥ max{θ1, θ2}}
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the relation
sup

n≥n1(ε)

P{ω : Ψn,ε(ω) \ U
β

(3)
n,ε

Ψ0 6= ∅} ≤ 2K1(ε) + 2K2(ε)

holds.

Proof: We apply Theorem 9 together with Corollary 7.1. (SI3) is satisfied

with β̂
(2)
n,ε and K3 = K1 + K2. (VL2) is satisfied with β̂

(2)
n,ε and K2. Theorem

9 with µ−1(ε) = ( ε
c1

)
1
δ1 yields the conclusion. ¤

If for all ε > 0 the condition

(CK-R) There exist a function K1 and to all ε > 0 a sequence (β
(1)
n,ε)n∈N such

that
sup
n∈N

P{ω : (Γn,ε(ω) \ U
β

(1)
n,ε

Γ0) ∪ (Γ0 \ Γn,ε(ω)) 6= ∅} ≤ K1(ε)

is satisfied, then also (VL1) and (VU1) are fulfilled with K1 and β
(1)
n,ε. Conse-

quently, if Γn,ε = Γκn
n,ε we can employ Theorem 5 or Corollary 5.1 in order to

determine a suitable κn,ε and formulate sufficient conditions for (VL1) and
(VU1).

Now we consider outer approximations of the solution set via κn,ε-optimal
solutions of the approximating problems.

Let Ψ̂κn
n,ε(ω) := {x ∈ E : fn,ε(x, ω) < Φn,ε(ω) + κn,ε}. Γn,ε can, e.g., be

specified as U
β

(1)
n,ε

Γn or as Γκn
n,ε.

Theorem 10 (Outer Approximation of the Solution Set, Relaxation)

Assume that for all ε > 0 there exist sequences (β
(i)
n,ε)n∈N , i = 1, 2, and func-

tions Ki, i = 1, 2, such that (VU1-R), (VU2-R) and the following assumption
are satisfied:

(SO3) There exist a function K3 and to all ε > 0 a sequence (β̂
(2)
n,ε)n∈N and

n0(ε) such that

sup
n≥n0(ε)

P{ω : Φn,ε(ω)− Φ0 ≤ −β̂
(2)
n,ε} ≤ K3(ε).

Then for all ε > 0, κn,ε = β
(2)
n,ε + β̂

(2)
n,ε and β

(3)
n,ε = max{β(1)

n,ε, β
(2)
n,ε + β̂

(2)
n,ε} the

relation
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sup
n∈N(ε)

P{ω : Ψ0 \ (Ψ̂κn
n,ε(ω) ∩ U

β
(1)
n,ε

Γn,ε(ω)) 6= ∅} ≤ K1(ε) +K2(ε) +K3(ε)

holds.

Proof. We apply Theorem 3 and label the denotations in Theorem 3 with
a tilde. With g̃n,ε(x, ω) := fn,ε(x, ω) − Φn,ε(ω) and g̃0(x) := f0(x) − Φ0 we

have Ψ0 = {x ∈ Γ0 : g̃0(x) ≤ 0} and Ψ̂κn
n,ε(ω) := {x ∈ E : g̃n,ε(x, ω) < κn,ε}.

Furthermore, let Q̃n,ε = Γn,ε,
˜̂
Γ

κn

n,ε = Ψ̂κn
n,ε, Q̃0 = Γ0, and

˜̂
Γ0 = Ψ̂0.

Because of P{ω : inf
x∈Ψ0

((fn,ε(x, ω)−Φn,ε(ω))−(f0(x)−Φ0)) ≥ β
(2)
n,ε + β̂

(2)
n,ε}

≤ P{ω : inf
x∈Ψ0

(fn,ε(x, ω)− f0(x)) ≥ β
(2)
n,ε}+ P{ω : −Φn,ε(ω) + Φ0) ≥ β̂

(2)
n,ε} ≤

K2(ε) + K3(ε) =: K̃2(ε) condition (CO2) is satisfied with β̃
(2)
n,ε = β

(2)
n,ε + β̂

(2)
n,ε

and K̃2. ¤

5 Examples

We will illustrate the approach by three examples. When applying our re-
sults to problems in decision theory or estimation theory, the most critical
assumption is probably (SI4). Fortunately, there are several important ap-
plications where some quantities do not vary with n and ν is not needed at
all or, as in our third example, (SI4) is easy to verify.

In the general case, however, if the constraint set and the objective func-
tion are approximated simultaneously and the solution lies on the boundary
of the constraint set, ν can not be ignored. Only in rare cases one should
have enough knowledge to determine it exactly. One way out are adaptive
methods for successive approximation of ν. However, even if one does not
succeed in determining ν with a satisfactory accuracy, our results still yield
assertions on the convergence rate, albeit without a reliable constant. Results
of that kind can be used to derive asymptotic confidence sets if a limiting
distribution is not available.

Firstly, we will discuss a simple example which is intended to give an idea
of how one can deal with the uniform convergence assumption for the objec-
tive functions. At the first glance this assumption seems to be rather restric-
tive. There is, however, a growing number of results from probability theory
yielding assertions of that kind, c.f. [15], [1], [12]. A more refined investiga-
tion, which relies on stability assertions adjusted to the direct utilization of
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concentration-of measure inequalities for sequences of random variables, will
be given elsewhere. Moreover, we would like to refer the reader to [12] where
several sufficient conditions are gathered.

We assume E = Rp and consider a fixed compact constraint set K and a
linear objective function q(z)T x with x = (x1, . . . , xp)

T , q|Rm → Rp. z is the
realization of a random vector Z with given distribution PZ on the sigma-
field of Borel sets of Rm. The range of q(Z) is supposed to be bounded.
For sake of simplicity we deal with the metric d(x, y) = max

i=1,...,p
|xi − yi|. The

problem
(P0) min

x∈K
Eq(Z)T x

is approximated, replacing the expectation with respect to PZ by the ex-
pectation with respect to the empirical distribution based on a sequence
Z(j), i = 1, 2, . . . , of i.i. PZ-distributed random vectors:

(Pn) min
x∈K

1
n

n∑
j=1

q(Z(j))T x.

We assume Eq(Z) 6= 0, because otherwise the problem becomes trivial, and
abbreviate m := max

i=1,...,p
sup

ω
|qi(Z(ω))|.

We consider the sets Kk = {x ∈ K : k − 1 ≤ d(0, x) ≤ k}, k = 1, 2, . . .
Let IK := {k : Kk∩K 6= ∅}. Hence we obtain by Hoeffding’s inequality ([3],
[1]):

P{ω : sup
x∈K

| 1
n

n∑
j=1

q(Z(j)(ω))T x− Eq(Z)T x| ≥ ε√
n
}

≤ ∑
k∈IK

P{ω : sup
x∈Kk

| 1
n

n∑
j=1

q(Z(j)(ω))T x− Eq(Z)T x| ≥ ε√
n
}

≤ ∑
k∈IK

P{ω : max
i=1,...,p

| 1
n

n∑
j=1

qi(Z
(j)(ω))− Eqi(Z)| ≥ ε

k
√

n
}

≤ 2
∑

k∈IK

e−
ε2

2k2m2 =: K2(ε) .

Of course this inequality can be further improved. For example, due to
the linearity, it is enough to consider a cover of the boundary of K only.
Employing other concentration inequalities, also the boundedness condition
for q(Z) can be overcome. Moreover, if the functions have a more involved
form, one can often proceed in a similar way.

We aim at employing Theorem 9 and (in case of a non-unique solution)
Theorem 10. (VL1), (VU1), and (VU1-R) are satisfied with K1 ≡ 0. (VL2),
(VU2), and (VU2-R) are fulfilled with K2. (SI4) is satisfied with ν(ε) = ε.
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It remains to investigate the growth condition (Gr-f0), where we can choose
UΓ0 = Γ0, and the semicontinuity condition (UCon).
We have f0(x)−Φ0 ≤ max

i=1,...,p
E|qi(z)| d(x, Ψ0), hence (UCon) is satisfied with

c2 = max
i=1,...,p

E|qi(z)| and δ2 = 1.

Let I := {i ∈ {1, . . . , p} : Eqi(Z) 6= 0}. According to our assumption I is
not empty. To x with d(x, Ψ̂0) > ε there are x̂ ∈ Ψ̂0 and i ∈ I such that
|xi − x̂i| > ε. Consequently (Gr-f0) is satisfied with c1 = min

i∈I
E|qi(Z)| and

δ1 = 1.

Secondly, we consider the approximation of a constraint set which is de-
termined by a probabilistic constraint. Again, replacing the true probability
measure with the empirical measure, we obtain a sequence of approximating
constraint functions.

In detail, we assume that the constraint function has the special form
g0(x) = α− PZ((−∞, γ(x)]) = α− FZ(γ(x)).

Here Z and PZ are defined as above; FZ denotes the corresponding dis-
tribution function. Additionally we restrict the considerations to p = 1.
α ∈ (0, 1) denotes a probability level and γ|E → R1 a given concave func-
tion. The inequality constraint g0(x) ≤ 0 then reads as P (Z ≤ γ(x)) ≥ α.
We assume that Γ0 = Γ̂0 = {x ∈ E : g0(x) ≤ 0} 6= ∅. The approximating
constraint set has the form Γn(ω) = {x ∈ E : α−Fn(γ(x), ω) ≤ 0} with the
empirical distribution function Fn .

In order to fulfil (CI2’) and (CO2’) we can directly apply the Dvoretzky-
Kiefer-Wolfowitz inequality with Massart’s bound ([9], [1]) and we obtain
P{ω :

√
n sup

x∈R1

|(α− Fn(γ(x), ω))− (α− FZ(γ(x))| > ε} ≤ 2e−2ε2
.

(CI3) is not needed. In order to fulfill (Gr-g0), we will impose growth
conditions for FZ and γ.

Assume that, for the given probability level α, the α-quantile qα of FZ is
unique and consider a compact set K̃ such that qα ∈ intK̃. Furthermore, let
XK̃ := {x ∈ E : γ(x) ∈ K̃} and suppose that the following conditions are
satisfied:

(IG) There exist positive constants c1,γ, c1,F , δ1,γ, δ1,F such that
∀y ∈ K̃ with y < qα : α− FZ(y) > c1,F (d(y, qα))δ1,F and
∀x ∈ XK̃ : γ(x) < qα − c1,γd(x, Γ0)

δ1,γ .

(Gr-g0) with K̃ instead of UQ0 and a strict inequality is then satisfied with
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c̃1 = cF (c1,γ)
δF and δ̃1 = δ1,γ · δF . Of course only one inequality in (IG) has

to be strict.
If Γ0 is single-valued, it remains to apply Theorem 1. Otherwise we

employ Theorem 2 and assume that the following condition is satisfied:

(OG) There exist positive constants c2,γ, c2,F , δ2,γ, δ2,F such that
∀y ∈ K̃ with y > qα : FZ(y)− α > c2,F (d(y, qα))δ2,F .
Furthermore, there exists an ε̃ > 0 such that CI(ε̃) 6= ∅ and
∀x ∈ Γ0 \ CI(ε̃) : γ(x) > qα + c2,γd(x, (E \ Γ0)

δ2,γ .

Hence, with respect to (CO3) we obtain for all 0 < ε ≤ ε̃

Γ0 ⊂ ŪεCI(ε) and ∀x ∈ Γ0 \ CI(ε̃) : g0(x) < −c̃2(d(x,E \ Γ0)
δ̃2

with c̃2 = cF (c2,γ)
δF and δ̃2 = δ2,γ · δF . Thus in Theorem 2 we can choose

µ(ε) = c̃2ε
δ̃2 .

Consequently, for all ε ≤ ε̃, β
(3)
n,ε = max{( ε

c̃1
)

1
δ̃1 n

− 1
2δ̃1 , (2 ε

c̃2
)

1
δ̃2 n

− 1
2δ̃2 }, and

n0(ε) = min{k : β
(3)
k,ε ≤ 2ε̃, γ(Γ0 \ CI(

β
(3)
k,ε

2
)) ⊂ K} the relation

sup
n≥n0(ε)

P{ω : (Γn(ω) \ U
β

(3)
n,ε

Γ0) ∪ (Γ0 \ (U
β

(3)
n,ε

Γn(ω)) 6= ∅} ≤ 4e−2ε2
holds.

Eventually, we consider quantile estimation because here relaxation of
the constraint set comes into play in a natural way. Papers dealing with
quantile estimation usually assume that the distribution function is strictly
increasing in a neighborhood of the quantile (c.f. [4], [5]). There are, however,
applications where one can not a priori assume, that the lower and the upper
quantile coincide.

We consider - as in the foregoing example - a real-valued random variable
Z with distribution PZ and distribution function FZ . We will, for a fixed
α ∈ (0, 1), investigate the lower α-quantile ql

α := inf{x ∈ R1 : FZ(x) ≥ α}.
We consider the constraint set Γ0 := {x ∈ R : FZ(x) ≥ α} and the

optimization problem
(P0) min

x∈Γ0

x.

As FZ is upper semicontinuous by definition, the set Γ0 is closed and the
minimum ql

α will be attained.
(P0) could be approximated replacing FZ by the empirical distribution

function Fn. Unfortunately, the set {x ∈ R1 : Fn(x) ≥ α}, in general, does
not approximate the whole set Γ0. In [19] we showed that with a suitable
relaxation κn,ε the solutions to the approximate problems convergence in
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probability to the desired quantile. Here we can proceed in a similar way,
consider the modified constraint set Γn,ε with
Γn,ε(ω) := {x ∈ R : Fn(x, ω) > α− ε√

n
}

and investigate the approximating optimization problems
(Pn,ε) min

x∈Γn,ε

x.

(Pn,ε) has a unique solution, too.
In order to obtain a convergence rate, we need some knowledge about FZ ,

e.g. a growth condition.

Theorem 11 (Quantile Estimation) Assume that there exist constants
c > 0, δ > 0, and θ > 0 such that
∀ x̃ with 0 < d(x̃, Γ0) ≤ θ : F0(x̃) < α− cd(x̃, Γ0)

δ.

Then for all ε > 0, β
(3)
n,ε = max{εn− 1

2 , (2ε
c
)

1
δ n−

1
2δ }, and n0(ε) = min{k :

β
(3)
k,ε ≤ θ} the relations

sup
n≥n0(ε)

P{ω : (Γn,ε(ω) \ U
β

(3)
n,ε

Γ0) ∪ (Γ0 \ Γn,ε(ω)) 6= ∅} ≤ 2e−2ε2
and

sup
n≥n0(ε)

P{ω : Ψn,ε(ω) \ U
β

(3)
n,ε

Ψ0 6= ∅} ≤ 2e−2ε2

hold.

Proof. We employ Corollary 5.1 and, since the solution is unique, Theo-
rem 9. The objective function is not approximated, hence (VL2) and (VU2)
are satisfied with K2 ≡ 0. The conditions (UCon) and (Gr-f0) are fulfilled
with ci = δi = 1, i = 1, 2. Due to the Dvoretzky-Kiefer-Wolfowitz inequal-
ity with Massart’s bound ([9], [1]), ‘strict’ variants of (CI2’) and (CO2’) are

satisfied with γn = n
1
2 and K2(ε) = e−2ε2

. The first assertion then follows by
Corollary 5.1. Furthermore, taking into account that (SI4) is satisfied with
ν(ε) = ε, the second assertion is implied by Theorem 9. ¤
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