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Zusammenfassung

Die vorliegende Arbeit wurde hauptsächlich durch die Ergebnisse Sickels in den Arbeiten
[34, 35] und durch frühere Untersuchungen von Temlyakov in [43, 45] motiviert. Wir
studieren periodische Funktionenräume mit dominierend gemischten Glattheitseigenschaf-
ten vom Besov-, Triebel-Lizorkin- und Sobolev-Typ. Im Mittelpunkt der Untersuchun-
gen steht das Problem der optimalen Rekonstruktion von Funktionen aus einer endlichen
Menge von Funktionswerten. Die Qualität der optimalen Rekonstruktion einer Klasse von
Funktionen wird mit Hilfe der Größen ρM gemessen. Diese Größen sind mit den bekannten
linearen Weiten (oder Approximationszahlen) vergleichbar. Man beschränkt sich aller-
dings nur auf lineare Abtastoperatoren, deren Rang kleiner oder gleich M ist. In [44] findet
man erste Resultate für Räume vom Sobolev- und Nikol’skij-Besov-Typ mit dominierend
gemischter Glattheit. Diese wurden in [34] und [35] teilweise verbessert und auf periodische
Räume vom Besov- und Triebel-Lizorkin-Typ auf T

2 ausgeweitet.
Seit einiger Zeit besteht ein wachsendes Interesse (insbesondere aus der Finanzmathe-
matik) an der Lösung hochdimensionaler Probleme (d = 100, 1000, ...). In vielen Fällen
kann die Lösung nicht exakt bestimmt werden, weshalb man sich auf Näherungsverfahren
zurückziehen muss. Diese Arbeit dient unter anderem auch der Analyse spezieller derar-
tiger Verfahren. Normalerweise wächst der Aufwand für die Bestimmung einer hinreichend
genauen Näherung exponentiell in d. Die Herausforderung besteht nun darin, diesem so-
genannten “Fluch der Dimension” durch geeignete Wahl der Funktionenklassen bzw. Al-
gorithmen zu entgehen. Dazu gibt es unter anderen von Wasilkowski und Woźniakowski
verschiedene Untersuchungen in [57]. Es stellte sich heraus, dass der Smolyak-Algorithmus
und Funktionenräume mit dominierend gemischter Glattheit gut zusammenpassen.
Das Ziel der Arbeit ist die Erweiterung von Sickels Resultaten auf beliebige Dimensionen d.
Die Behandlung dieses allgemeinen Falles setzt ein genaues Studium der Theorie periodi-
scher Funktionenräume voraus. Kapitel 1 ist dem Fourier-analytischen Zugang der Räume
S r̄p,qB(Td) und S r̄p,qF (Td) auf dem d-Torus gewidmet. Wir berufen uns dabei hauptsächlich
auf die Monographie [32] von Schmeißer und Triebel. Dort wurden die genannten Skalen
auf dem R

2 eingeführt. Beide Raumskalen enthalten wichtige klassische Funktionenräume
dominierend gemischter Glattheit, beispielsweise Hölder-Zygmund-, Nikol’skij-Besov- oder
Sobolev-Räume. Letztere wurden erstmalig von Nikol’skij in den frühen sechziger Jahren
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wie folgt auf dem R
2 definiert:

S(r1,r2)
p W (R2) =

{
f ∈ Lp(R

2) : ‖f |S(r1,r2)
p W (R2)‖ = ‖f |Lp(R2)‖

+

∥∥∥∥
∂r1f

∂xr11

∣∣Lp(R2)

∥∥∥∥+

∥∥∥∥
∂r2f

∂xr22

∣∣Lp(R2)

∥∥∥∥+

∥∥∥∥
∂r1+r2f

∂xr11 ∂x
r2
2

∣∣Lp(R2)

∥∥∥∥ <∞
}
.

Dabei ist 1 < p < ∞ und ri = 0, 1, 2, ... (i = 1, 2). Die gemischte Ableitung ∂r1+r2f

∂x
r1
1 ∂x

r2
2

spielt eine dominierende Rolle und verhalf deshalb der Klasse zu ihrem Namen. Sowohl
diese Klasse als auch die verwandten Besov-Räume wurden intensiv in der früheren Sow-
jetunion untersucht, beispielsweise von Amanov, Besov, Lizorkin, Nikol’skij, Potapov und
Temlyakov, um nur einige zu nennen. Eine erste systematische Untersuchung gelang
Amanov in [1]. Angelehnt an die Theorie der isotropen Räume entwickelten Schmeißer
und Triebel Mitte der achziger Jahre den Fourier-analytischen Rahmen (siehe [32]). Dort
werden grundlegende Einbettungen, Spursätze und sogar die Charakterisierung durch Dif-
ferenzen behandelt. Außerdem führt man die isotropen periodischen Räume F s

p,q(T
d)

und Bs
p,q(T

d) ein. Das Kapitel 1 dieser Arbeit kombiniert beide Zugänge, um eine voll-
ständige Theorie der periodischen Räume mit dominierend gemischter Glattheit zu liefern.
Zunächst entwickeln wir die dazu notwendigen Werkzeuge. Die Funktionenräume wer-
den dann in voller Allgemeinheit über Tensorprodukte von klassischen Zerlegungen der
Einheit definiert. Später nehmen wir Bezug auf elementare Einbettungen der Räume un-
tereinander und untersuchen im Speziellen die Einbettungen in den Raum der periodis-
chen und stetigen Funktionen. Nach einem Abschnitt zur komplexen Interpolation der
F -Räume konzentrieren wir uns auf die Charakterisierung durch Differenzen. Basierend
auf der Charakterisierung durch Integralmittel von Differenzen erhalten wir verschiedene
äquivalente (Quasi-)Normen. Diese sind unter anderem nötig, um bestehende Resultate in
unseren Kontext einzuordnen.
Das eigentliche Vorhaben besteht in der approximationstheoretischen Untersuchung der
beschriebenen Klassen durch Abtastoperatoren auf dünnen Gittern. Eine ausführliche Un-
tersuchung dieses Gegenstandes schließt sich in Kapitel 2 an. Die zentrale Methode ist der
sogenannte Smolyak-Algorithmus, welcher lineare Abtastoperatoren auf T

d vom Typ

A(m, d) f(x) =
Mm∑

k=1

f(xmℓ )ψmℓ (x) , x ∈ T
d ,

generiert. Die Menge der Abtastknoten {xm1 , ..., xmMm
} ist fest und stellt ein sogenanntes

dünnes Gitter dar, für welches insbesondereMm ≍ 2mmd−1 gilt. Die grundlegende Idee hin-
ter der Smolyak-Konstruktion ist auch in einem elementaren Kontext verständlich. Wir be-
trachten dazu monoton wachsende, konvergente Folgen reeller Zahlen (a1

j)
∞
j=0, . . . , (a

d
j )

∞
j=0.

Die entsprechenden Grenzwerte seien a1, . . . , ad genannt. Zusätzlich setzen wir aℓ−1 = 0
für ℓ = 1, . . . , d. Dann existiert die Reihe aℓ =

∑∞
j=0(a

ℓ
j − aℓj−1) und es gilt demzufolge
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auch

a1 · . . . · ad =
∞∑

j1,... ,jd=0

d∏

ℓ=1

(aℓjℓ − aℓjℓ−1) .

Es war Smolyaks [40] Idee, die Folge

∑

j1+...+jd≤m

d∏

ℓ=1

(aℓjℓ − aℓjℓ−1) , m = 0, 1, . . . ,

zur Approximation des Produktes a1 · . . . · ad heranzuziehen. Es spricht nichts dagegen,
diese Konstruktion auch für

a1
j = a2

j = . . . = adj = Ljf(x) , x ∈ T ,

zu verwenden, wobei Lj einen Abtastoperator zu einer gewissen Menge Tj von Abtastknoten
bezeichnet. Der resultierende Abtastprozess verwendet Funktionswerte auf einem dünnen
Gitter in T

d. Im Hauptteil der vorliegenden Arbeit untersuchen wir die Approximationsrate
solcher Abtastoperatoren für Funktionen aus Besov- und Triebel-Lizorkin-Räumen mit
dominierend gemischter Glattheit (aus Kapitel 1). Bezeichnet A(Td) einen solchen Raum,
dann ist die übliche Norm eine sogenannte Kreuznorm (siehe Abschnitt 1.3 und 1.4), was
sich in der Gleichung

‖ f1 ⊗ . . .⊗ fd |A(Td)‖ =
d∏

ℓ=1

‖ fℓ |A(T)‖

ausdrückt. Die betrachteten Funktionenräume sind daher hinreichend nahe am Tensorpro-
dukt von Räumen auf dem Torus angesiedelt. Diese Eigenschaft erlaubt Abschätzungen
für die Approximationsrate des Smolyak-Algorithmus’ basierend auf der Rate der Lj. Der
Fehler wird dabei in der Lp-Metrik mit 1 ≤ p ≤ ∞ gemessen. Die Hauptresultate in Ab-
schnitt 2.4 sind scharfe Abschätzungen für diesen Fehler. Darauf basierend erhalten wir in
Abschnitt 2.6 obere Schranken für die Größen ρM(F,Lp) für F = Srp,qB(Td), 1 ≤ p, q ≤ ∞,
r > 1/p und F = Srp,qF (Td), 1 < p, q < ∞, r > max(1/p, 1/q) . Diese sehen in beiden
Fällen wie folgt aus

ρM(F,Lp(T
d)) ≤ cM−r(logM)(d−1)(r+1−1/q) .

Die Klasse der Sobolev-Räume SrpW (Td) stellt einen Spezialfall dar, und zwar gilt

ρM(SrpW (Td), Lp(T
d)) ≤ cM−r(logM)(d−1)(r+1/2)

für 1 < p < ∞ und r > max(1/p, 1/2). Das Ergebnis verbessert ein entsprechendes Re-
sultat von Temlyakov in [45] um (d − 1)/2 in der Potenz des Logarihmus’ (siehe auch
Abschnitt 2.7). Leider ist nicht klar, ob unsere Konstruktion das Optimum realisiert, d.h.
ob es auch entsprechende untere Schranken gibt.
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Um die Resultate in einem größeren Kontext zu verstehen, wird in diesem Zusammen-
hang auch auf Faltungsoperatoren eingegangen. Die in Abschnitt 2.3 präsentierte Defini-
tion des Smolyak-Algorithmus’ ist hinreichend allgemein, sodass sie sogar auf die Fourier-
Partialsumme oder auf de la Vallée-Poussin-Mittel anwendbar ist. Zu diesem Thema
(Approximation vom hyperbolischen Kreuz) existieren zahlreiche Arbeiten. Wir werden
nicht weiter ins Detail gehen und verweisen auf [3, 4], [2], [6], [9], [10, 11, 12], [15], [19],
[22], [25], [30], [31], [36], [40], [46], [45] und [39]. Am Ende des zweiten Kapitels werden
die erzielten Resultate ausführlich diskutiert und mit denen in [34], [35], [45], [11] und [57]
verglichen.
Kapitel 3 enthält schließlich eine Sammlung offener Probleme im Zusammenhang mit den
Untersuchungen dieser Arbeit und gibt außerdem verschiedene Anregungen für weiter-
führende Forschung.



Introduction

This work has essentially been motivated by Sickel’s papers [34, 35] and former investi-
gations done by Temlyakov during the late eighties and early nineties, cf. [43] as well
as [45]. We concentrate on the study of periodic function spaces with dominating mixed
smoothness of Besov, Triebel-Lizorkin and of Sobolev type. In particular, the problem of
optimal approximate recovery is studied in detail. Here we measure the quality of recovery
of a class of functions from values at a fixed finite set of points. Precisely, for fixed grid size
M we consider the quantity ρM , which can be seen as a counterpart to the linear widths.
We restrict to linear sampling operators with rank less or equal to M . The intention is to
derive lower and upper bounds for these quantities.
In [45] results were given for Nikol’skij-Besov and Sobolev type spaces on the d-torus,
where d is arbitrary. These results have been partly improved (d = 2) and extended by
Sickel to the scales of Besov and Triebel-Lizorkin spaces of dominating mixed smoothness,
Srp,qB(T2) and Srp,qF (T2).
Recently there has been significant interest in solving problems that involve functions de-
fined on high-dimensional domains (d = 100, 1000, ...), for instance in the field of financial
mathematics. In most cases solutions can not be computed exactly, but approximated in a
certain sense, for example by the methods considered below. Typically, the cost needed to
find an approximate solution, increases exponentially with the dimension d. The challenge
is to avoid this so called “Curse of Dimension” by defining appropriate function classes and
algorithms. For several results in this field we mainly refer to Wasilkowski and Woźni-
akowski and their paper [57] .
Our intention is to extend the results of Sickel to arbitrary d. The treatment of the gen-
eral case requires a detailed development of the theory of periodic spaces with dominating
mixed smoothness. Chapter 1 is devoted to the Fourier analytic approach to the function
spaces S r̄p,qB(Td) and S r̄p,qF (Td) on the d-torus in its full generality following the mono-
graph [32] by Schmeisser and Triebel, where the bivariate nonperiodic case is treated. It
is important to mention that these classes cover many well-known classical spaces (e.g. as
Hölder-Zygmund, Nikolskij-Besov and Sobolev spaces) with dominating mixed smoothness
properties. Spaces of Sobolev type on R

2 were firstly introduced by Nikol’skij in the early

x
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sixties as follows

S(r1,r2)
p W (R2) =

{
f ∈ Lp(R

2) : ‖f |S(r1,r2)
p W (R2)‖ = ‖f |Lp(R2)‖

+

∥∥∥∥
∂r1f

∂xr11

∣∣Lp(R2)

∥∥∥∥+

∥∥∥∥
∂r2f

∂xr22

∣∣Lp(R2)

∥∥∥∥+

∥∥∥∥
∂r1+r2f

∂xr11 ∂x
r2
2

∣∣Lp(R2)

∥∥∥∥ <∞
}
,

where 1 < p < ∞ and ri = 0, 1, 2, ... (i = 1, 2). The mixed derivative ∂r1+r2f

∂x
r1
1 ∂x

r2
2

dominates
the norm, which led to the name of this scale of function spaces. Later on, these classes
as well as the corresponding Besov spaces have been extensively studied in the former
Soviet Union, for example by Amanov, Besov, Lizorkin, Nikol’skij and Potapov. For a
first systematical study we refer to the monograph [1]. What concerns the Fourier analytic
treatment of Besov and Triebel-Lizorkin type spaces on R

2 we mainly consult [32]. Several
types of equivalent quasi-norms, embedding and trace theorems as well as characterizations
by differences are proved there. This reference also deals with isotropic periodic spaces,
i.e. the scales F s

p,q(T
d) and Bs

p,q(T
d). In Chapter 1 both fields have been combined in

order to present a complete theory of periodic spaces with dominating mixed smoothness
on the d-torus. We first discuss several necessary embedding properties including also
some limiting cases. After proving a result concerning complex interpolation within the
scale of Triebel-Lizorkin type spaces, we concentrate on the characterization by differences.
Several characterizations based on integral means involving differences are given. They
are important for the treatment of our main problem, which is the approximation of the
described classes by linear sampling operators acting on sparse grids presented in Chapter
2. The central construction in this field is Smolyak’s algorithm as a method to obtain a
sequence of linear sampling operators of type

A(m, d) f(x) =
Mm∑

k=1

f(xmℓ )ψmℓ (x) , x ∈ T
d ,

acting on a sparse grid {xm1 , ..., xmMm
}. The size Mm of the grid satisfies Mm ≍ 2mmd−1.

The method is based on the tensor product of sampling operators with respect to T.
Let us present the main idea in a very elementary context. Consider (a1

j)
∞
j=0, . . . , (a

d
j )

∞
j=0

as monotone increasing, convergent sequences of real numbers. The respective limits are
denoted by a1, . . . , ad. In addition we put aℓ−1 = 0, ℓ = 1, . . . , d. Then aℓ =

∑∞
j=0(a

ℓ
j−aℓj−1)

and hence,

a1 · . . . · ad =
∞∑

j1,... ,jd=0

d∏

ℓ=1

(aℓjℓ − aℓjℓ−1) .

It has been the idea of Smolyak [40] to use the sequence

∑

j1+...+jd≤m

d∏

ℓ=1

(aℓjℓ − aℓjℓ−1) , m = 0, 1, . . . ,
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to approximate the product a1 · . . . · ad. The idea is to employ this construction with

a1
j = a2

j = . . . = adj = Ljf(x) , x ∈ T ,

where Lj denotes a sampling operator with respect to a certain set Tj of sample points on
the torus. The suggested approximation procedure yields an operator which uses samples
just from a sparse grid in T

d. In the main part of the present work we investigate the
approximation power of these sampling operators for functions belonging to periodic Besov,
Triebel-Lizorkin and Sobolev spaces providing dominating mixed smoothness properties.
If A(Td) denotes such a space then the norm in these classes is a cross-norm (cf. Section
1.3 and 1.4), i.e.

‖ f1 ⊗ . . .⊗ fd |A(Td)‖ =
d∏

ℓ=1

‖ fℓ |A(T)‖ .

Hence, the function spaces we consider here are sufficiently close to the tensor product of
function spaces defined on T. This feature allows to derive sharp estimates for the rate of
convergence of Smolyak’s algorithm based on the approximation power of Lj, measured in
the Lp(Td)-metric with 1 ≤ p ≤ ∞ . Our main result reads essentially as follows. It turns
out that

ρM(F,Lp(T
d)) ≤ cM−r(logM)(d−1)(r+1−1/q) , (1)

where F = Srp,qB(Td), 1 ≤ p, q ≤ ∞, r > 1/p or F = Srp,qF (Td), 1 < p, q < ∞, r >
max(1/p, 1/q) . In the case of Sobolev spaces SrpW (Td) we obtain

ρM(SrpW (Td), Lp(T
d)) ≤ cM−r(logM)(d−1)(r+1/2)

for 1 < p < ∞ and r > 0 as a consequence of the Littlewood-Paley theory and (1). This
relation improves the corresponding result by Temlyakov by (d− 1)/2 in the power of the
logarithm (cf. Section 2.7). However, it is not clear whether this construction realizes
the optimal rate of approximate recovery. To embed these results in a general context we
consider not only sampling operators. The use of a rather general definition of Smolyak’s
algorithm covers even operators of convolution type (such as Fourier partial sums and de
la Vallée Poussin means). We shall not go into detail and will refer mainly to [39]. We
finish Chapter 2 with a detailed comparison of our results with those given in [34], [35],
[45], [11] and [57] to point out the advances. Finally, Chapter 3 includes a collection of
open problems and gives some stimulation for further investigation.
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Chapter 1

Periodic Spaces with Dominating Mixed

Smoothness

1.1 Introduction

This chapter deals with the Fourier analytical treatment of the scales of Besov- and Triebel-
Lizorkin spaces with dominating mixed smoothness properties on the d-torus, denoted by
S r̄p,qB(Td) and S r̄p,qF (Td). Here we assume r̄ = (r1, ..., rd) ∈ R

d and 0 < p, q ≤ ∞ (p < ∞
in the F-case). Our approach is based on the combination of chapter 2 and 3 in [32] .
After specifying some notation we recall briefly the concepts of tempered and periodic
distributions and point out their connection. In Section 1.3 the main tools are collected,
such as the periodic Nikol’skij-inequality and the scalar as well as vector-valued Fourier
multiplier assertions. In particular, we will pay some attention to Lizorkin’s multiplier
theorem (see [21]) which is also one of the main instruments in Chapter 2. Section 1.4
presents the definition of the spaces mentioned above in terms of Fourier analysis. We use
tensor products of scalar decompositions of unity on the Fourier side, which is a well-known
technique in this field. Afterwards elementary embeddings are considered. Especially, we
discuss the problem of necessary and sufficient conditions for the embedding into C(Td),
the space of continuous functions. This question is important since we want to study
sampling operators in Chapter 2. After having remarked on Littlewood-Paley theory and
the coincidence of S r̄p,2F (Td) and S r̄pW (Td) for 1 < p < ∞ and r̄ > 0 we consider the
subject of complex interpolation. A counterpart of a bivariate interpolation formula, given
in [31], will be proved for the spaces S r̄p,qF (Td) . Finally, we treat the technically difficult
subject of characterization by differences. The purpose of Section 1.6 is to characterize
the scales S r̄p,qB(Td) and S r̄p,qF (Td) by (quasi-)norms involving means of differences for the
largest possible range of parameters r̄ = (r1, ..., rd), given by

0 < p <∞ , 0 < q ≤ ∞ , ri > max(0, 1/p− 1, 1/q − 1) , i = 1, ..., d

in the F -case. If d = 2 our main result reads as follows.
The space S r̄p,qF (T2) is the collection of all f ∈ Lp(T

2)∩L1(T
2) satisfying the finiteness of

1
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the quantity

‖f |S r̄p,qF (T2)‖R = ‖f |Lp(T2)‖

+

∥∥∥∥
[ ∞∫

0

t−r1q
( 1∫

−1

| △m1
th,1 f(x)| dh

)q
dt

t

]1/q∣∣∣∣Lp(T
2)

∥∥∥∥

+

∥∥∥∥
[ ∞∫

0

t−r2q
( 1∫

−1

| △m2
th,2 f(x)| dh

)q
dt

t

]1/q∣∣∣∣Lp(T
2)

∥∥∥∥

+

∥∥∥∥
[ ∞∫

0

∞∫

0

t−r1q1 t−r2q2

( ∫

[−1,1]2

| △m1
t1h1,1

◦ △m2
t2h2,2

f(x)| dh
)q
dt1
t1

dt2
t2

]1/q∣∣∣∣Lp(T
2)

∥∥∥∥

assuming that mi ∈ N with mi > ri (i = 1, 2). The d-dimensional case turns out to
be more complicated. The corresponding (quasi-)norm is a sum of 2d summands of the
type given above. In addition, we present a selection of the results from [52], where
also the non-periodic case is treated in detail. Let us also refer to [32, 2.3.3/2.3.4] and
[1]. Characterizations of this type are necessary in order to compare our results with
the ones obtained by Temlyakov for periodic Nikols’kij-Besov spaces of dominating mixed
smoothness (cf. Section 2.7). We will also employ the results in Section 1.6 for an important
bump function argument in Chapter 2 (see Paragraph 2.4.4).

1.2 Preliminaries

1.2.1 Notation

First of all it is necessary to specify some notation. The symbols R,C,N,N0 and Z denote
the real numbers, complex numbers, natural numbers, natural numbers including 0 and the
integers. Furthermore T denotes the torus, defined in Paragraph 1.2.3. The symbol I will
be reserved for identity operators, whereas I is always used for countable index sets. We
shall write a ≍ b if there exists a constant c > 0 (independent of the relevant parameters
in the context) such that

c−1 a ≤ b ≤ c a .

The values of our estimating constants often change from line to line. We will indicate
this by adding subscripts. In case a constant represents a fixed value we shall use capital
letters like C1, C2, . . .. The natural number d is reserved for the dimension of the considered
Euclidean spaces T

d and R
d, where elements of them are denoted by x, y, z and sometimes

by ξ. The Euclidean distance is given as usual by |x| (the ℓd1-norm is denoted by |x|1),
where x · y =

∑d
i=1 xiyi denotes the corresponding Euclidean scalar product. Indices of d-

dimensional Fourier coefficients are always denoted by k = (k1, ..., kd) and the multi-index
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α = (α1, ..., αd) corresponds to the differential operator Dα, given by

Dα =
∂|α|1

∂xα1
1 · · · ∂xαd

d

.

We often need further vector-type quantities like indices and parameters. They are often
denoted by ℓ̄, s̄, r̄ and h̄ with numbered components . Moreover, we fix the notation 1̄ =
(1, ..., 1) and 0̄ = (0, ..., 0) . As usual we put r̄+ ℓ̄ = (r1 + ℓ1, ..., rn+ ℓn), λ · ℓ̄ = (λ · ℓ1, ..., λ ·
ℓn) , λ ∈ R , k̄ · r̄ = k1r1 + ...+ knrn and |r̄|1 = r1 + ...+ rn . Furthermore, we shall use the
operations λ + r̄ = (λ + r1, ..., λ + rn), where λ ∈ R , t̄ r̄ = (tr11 , ..., t

rn
n ), λr̄ = (λr1 , ..., λrn)

with λ > 0 and r̄ ∗ s̄ = (r1s1, ..., rnsn). We also abbreviate the relations

ri > si (ri ≥ si) , i = 1, ..., n ,

by r̄ > s̄ (r̄ ≥ s̄). Often we shortly write r̄ > s, s ∈ R, which means r̄ > (s, ..., s). During
this work the constants σp and σp,q are fixed and defined as

σp :=

(
1

p
− 1

)

+

and σp,q :=

(
1

min(p, q)
− 1

)

+

, (1.1)

where 0 < p, q ≤ ∞ and a+ = max(a, 0) for a ∈ R.

1.2.2 Tempered Distributions and Fourier Transform

As usual we denote by S = S(Rd) the Schwartz space of all complex-valued rapidly decreas-
ing infinitely differentiable functions on R

d. Its topology is generated by the (semi-)norms

‖ϕ‖k,ℓ = sup
x∈Rd

(1 + |x|)k
∑

|α|1≤ℓ

|Dαϕ(x)| , k, ℓ ∈ N0 . (1.2)

By suppψ we denote the support of the function ψ ∈ S(Rd), given by

suppψ =
{
x ∈ Rd : ψ(x) 6= 0

}
.

A linear mapping f : S(Rd) → C is called a tempered distribution if a constant c > 0 and
k, ℓ ∈ N0 exist such that

|f(ϕ)| ≤ c‖ϕ‖k,ℓ
holds for all ϕ ∈ S(Rd). The collection of all such mappings is denoted by S ′(Rd). The
support of a tempered distribution f ∈ S ′(Rd) is defined by

supp f =
{
x ∈ R

d : for all δ > 0 exists ψ ∈ S(Rd) with suppψ ⊂ Kδ(x) and f(ψ) 6= 0
}
,

where Kδ(x) = {y ∈ R
d : |x− y| < δ}.

As usual the Fourier transform defined on both S(Rd) and S ′(Rd) is given by

(Ff)(ϕ) := f(Fϕ) , ϕ ∈ S(Rd), f ∈ S ′(Rd) ,
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where

Fϕ(ξ) := (2π)−d/2
∫

Rd

e−ix·ξϕ(x) dx.

F is a bijection (in both cases) and its inverse is given by

F−1ϕ(ξ) := (2π)−d/2
∫

Rd

eix·ξϕ(x) dx , ϕ ∈ S(Rd) .

Moreover, Lp(Rd) denotes the classical Lebesgue space with 0 < p ≤ ∞ and

‖f |Lp(Rd)‖ =
( ∫

Rd

|f(x)|p dx
)1/p

. (1.3)

If p = ∞ we modify (1.3) by

‖f |L∞(Rd)‖ = ess-sup
x∈Rd

|f(x)| .

We call a (tempered) distribution T ∈ S ′(Rd) regular if a locally integrable function f :
R
d → C exists such that

T (ϕ) =

∫

Rd

f(x)ϕ(x) dx , ϕ ∈ S(Rd) .

In this sense we have the chain of embeddings

S(Rd) →֒ Lp(R
d) →֒ S ′(Rd) .

The symbol “ →֒” denotes the set-theoretical inclusion as well as the topological embedding.
The embedding on the right-hand side does not hold in the case p < 1 .
Let us mention this version of the famous Nikol’skij inequality, which is due to Stöckert
and Uninskij. As usual, derivatives have to be understood in the weak sense.

Proposition 1.1 Let b̄ > 0 and Ωb̄ = {x = (x1, ..., xd) ∈ R
d : |xi| ≤ bi , i = 1, ..., d} be

a generalized rectangle. Let further α = (α1, ..., αd) ∈ N
d
0 and 0 < p ≤ u ≤ ∞. Then a

positive constant c (independent of b̄) exists such that

‖Dαf |Lu(Rd)‖ ≤ c b
α1+1/p−1/u
1 b

α2+1/p−1/u
2 · · · bαd+1/p−1/u

d ‖f |Lp(Rd)‖

holds for all f ∈ Lp(R
d) ∩ S ′(Rd) assuming that

suppFf ⊂ Ωb̄ .

Proof A proof can be found in [32, Thm. 1.6.2.] for the bivariate case. The arguments
can easily be transferred to the case d > 2. See also [42], [54, 55] and[26] . �
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1.2.3 Distributions on the Torus, Periodic Distributions

Let T
d denote the d-torus, represented in the Euclidean space R

d by the cube T
d = [0, 2π]d,

where opposite points are identified. That means x, y ∈ T
d are identified if and only if

x− y = 2πk, where k = (k1, ..., kd) ∈ Z
d. In particular one has f(x) = f(y) if x− y = 2πk

and f ∈ D(Td). Let further D(Td) denote the collection of all complex-valued infinitely
differentiable functions on T

d. Its topology is generated by the family of norms

‖ϕ‖N =
∑

|α|1≤N

sup
x∈Td

∣∣Dαϕ(x)
∣∣ , N ∈ N0 .

A linear functional f : D(Td) → C belongs to D′(Td), if and only if there is a constant
cN > 0 such that

|f(ϕ)| ≤ cN‖ϕ‖N
holds for all ϕ ∈ D(Td) and for some natural number N . We endow D′(Td) with the
weak topology. Precisely, {fn}∞n=1 ⊂ D′(Td) converges to f ∈ D′(Td) if and only if
limn→∞ fn(ϕ) = f(ϕ) holds for all ϕ ∈ D(Td). The space D′(Td) is complete in this
topology.
Moreover, the Fourier coefficients of a distribution f ∈ D′(Td) are the complex numbers

ck(f) = (2π)−df(e−ik·x) , k ∈ Z
d.

In the sense of convergence in D′(Td) we have

f =
∑

k∈Zd

ck(f)eik·x.

We call T ∈ D′(Td) a regular distribution if a T
d-integrable function f : T

d → C exists
with

T (ϕ) =

∫

Td

f(x) · ϕ(x) dx , ϕ ∈ D(Td).

Now the calculation of the Fourier coefficients is performed by the well-known classical
integral

ck(f) = ck(T ) =
1

(2π)d

∫

Td

f(x)e−ikx dx .

See [32, Chapt. 3] for details.
Let us also mention the δ-distribution, which is not a regular distribution. It is defined by

δ(ψ) := ψ(0) , ψ ∈ D(Td) .

Of course δ ∈ D′(Td) . Obviously, the Fourier coefficients are given by

ck(δ) =
1

(2π)d
, k ∈ Z

d . (1.4)
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We will return to that later.
Let Λ be a finite subset of Z

d. Then TΛ ⊂ D(Td) denotes the collection of all trigonometric
polynomials with harmonics in Λ, precisely

TΛ =

{
t(x) =

∑

k∈Λ

ake
ik·x

∣∣∣∣ak ∈ C , k ∈ Λ

}
.

Of course, every trigonometric polynomial t(x) ∈ TΛ can also be interpreted as a tempered
distribution in the sense above

t(ϕ) :=

∫

Rd

t(x)ϕ(x) dx , ϕ ∈ S(Rd) . (1.5)

In that context t represents a periodic tempered distribution satisfying

t
(
ϕ(· + 2πk)

)
= t(ϕ) , ϕ ∈ S(Rd) , k ∈ Z

d .

It turns out that
suppFt = {k ∈ Z

d : ck(t) 6= 0} ⊂ Λ .

1.2.4 Vector-Valued Lebesgue Spaces

We follow [32, 3.4.1]. Now and subsequently the symbol I denotes a countable index-set.
The class Lp(Td) with 0 < p ≤ ∞ denotes the space of all measurable functions f : T

d → C

(f is 2π-periodic in each direction) satisfying

‖f |Lp(Td)‖ =
( ∫

Td

|f(x)|p dx
)1/p

<∞

with the usual modification in case p = ∞, see Paragraph 1.2.2 . Here we have also the
embeddings

D(Td) →֒ Lp(T
d) →֒ D′(Td)

if 1 ≤ p ≤ ∞. The second embedding does not hold in case p < 1.
Furthermore, we define for 0 < p, q ≤ ∞ the quantity

‖{fk}k∈I |Lp(Td, ℓq)‖ :=
∥∥∥
(∑

k∈I

|fk(x)|q
)1/q ∣∣∣Lp(Td)

∥∥∥ , (1.6)

where we replace (1.6) in case q = ∞ by

‖{fk}k∈I |Lp(Td, ℓ∞)‖ :=
∥∥∥ sup

k∈I
|fk(x)|

∣∣∣Lp(Td)
∥∥∥ .

The sequence {fk} is supposed to consist of Lebesgue-measurable functions on T
d. In

the sequel we may shortly write ‖fk|Lp(Td, ℓq)‖ instead of ‖{fk}k∈I |Lp(Td, ℓq)‖. The class
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Lp(T
d, ℓq) denotes the corresponding (quasi-)Banach space. If {fk}k∈I belongs to Lp(Td, ℓq)

then fk ∈ Lp(T
d) follows immediately . Finally, we define the spaces LΛ

p (Td, ℓq), where
Λ = {Λj}j∈I denotes a sequence of finite subsets of Z

d. We put

LΛ
p (Td, ℓq) =

{
{tj(x)}j∈I : tj ∈ TΛj , j ∈ I , ‖tj|Lp(Td, ℓq)‖ <∞

}

for 0 < p, q ≤ ∞ .

The following two lemmas represent important tools for the sequel. See also [32, 3.3.4] .

Lemma 1.1 Let the locally integrable function M : R
d → C be a compactly supported

tempered distribution satisfying F−1M ∈ L1(R
d) . For f ∈ L1(T

d) the following identity

∑

k∈Zd

M(k)ck(f)eikx = (2π)−d/2
∫

Rd

(F−1M)(y)f(x− y) dy (1.7)

holds true in L1(T
d) .

Proof By well-known properties of the Fourier transform, M has a continuous represen-
tative because of F−1M ∈ L1(R

d) . With that representative the expression M(k) makes
sense. Furthermore, M is compactly supported. Therefore, the sum on the left-hand side
of (1.7) exists. The function

g(x) := (2π)−d/2
∫

Rd

(F−1M)(y)f(x− y) dy

is 2π-periodic (in each direction) and integrable with respect to the d-torus T
d. This follows

by Minkowski’s inequality and F−1M ∈ L1(R
d) . We proceed by computing the Fourier

coefficients of g ∈ L1(T
d) . Let us fix k ∈ Z

d and calculate

ck(g) = (2π)−d
∫

Td

g(x)e−ikx dx

= (2π)−d/2
∫

Rd

(F−1M)(y)(2π)−d
∫

Td

f(x− y)e−ikx dx dy

= (2π)−d/2
∫

Rd

(F−1M)(y)(2π)−d
∫

Td

f(z)e−ik(z+y) dz dy

= ck(f)(2π)−d/2
∫

Rd

(F−1M)(y)e−iky dy

= ck(f)M(k) ,



1.3. Basic Tools 8

which proves the claim. �

We also would like to mention the following version of the famous Poisson summation
formula. In some sense this is a discrete counterpart of Lemma 1.1. We refer to [41, Cor.
7.2.6] .

Lemma 1.2 Let the locally integrable function M : R
d → C be a compactly supported

tempered distribution satisfying F−1M ∈ L1(R
d) . Then the identity

∑

k∈Zd

M(k)eikx = (2π)d/2
∑

ℓ̄∈Zd

F−1M(x+ 2πℓ̄) (1.8)

holds true in the space L1(T
d) .

Proof Concerning the existence of the expressions compare with the proof of the previous
lemma. Of course, we have

∑

ℓ̄∈Zd

∫

[−π,π]d

|F−1M(x+ 2πℓ̄)| dx =

∫

Rd

|F−1M(x)| dx <∞ .

Hence, the sum on the right-hand side exists in L1 . We proceed by deriving the Fourier
coefficients of the periodic L1(T

d)-function

g(x) = (2π)d/2
∑

ℓ̄∈Zd

F−1M(x+ 2πℓ̄)

with a similar calculation done in the proof of Lemma 1.1 . It turns out that

ck(g) = M(k) , k ∈ Z
d ,

which finishes the proof. �

1.3 Basic Tools

1.3.1 The Periodic Nikol’skij Inequality

Let us present the periodic Nikol’skij inequality and a counterpart of Proposition 1.1 .
Recall the connection between tempered distributions and distributions on the d-torus
mentioned in Paragraph 1.2.3 . In the sequel we need the number of elements of the set
suppFtp0 , denoted by |suppFtp0|. Here t is a trigonometric polynomial, p0 a natural
number and therefore tp0 again a trigonometric polynomial.
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Proposition 1.2 Let 0 < p ≤ q ≤ ∞ and p0 be the smallest natural number greater or
equal p/2 . For a trigonometric polynomial t(x) we put

Cp0,t =
1

2π
|suppFtp0|.

Then the following inequality holds for every trigonometric polynomial t(x)

‖t(x)|Lq(Td)‖ ≤ C
1/p−1/q
p0,t ‖t(x)|Lp(Td)‖ .

Proof See again [26] and also [32, Prop. 3.3.2] . �

A useful special case is the following theorem, which is similar to Proposition 1.1 .

Theorem 1.1 Let 0 < p ≤ q ≤ ∞ and

Λ ⊂ {k ∈ Z
d : |kj| ≤ Nj, j = 1, ..., d} ,

where the Nj are natural numbers. Then a constant c > 0 exists such that

‖t(x)|Lq(Td)‖ ≤ c
( d∏

j=1

Nj

)1/p−1/q‖t(x)|Lp(Td)‖

holds for every trigonometric polynomial t ∈ TΛ .

1.3.2 Maximal Inequalities

For a locally integrable function f : R
d → C we denote by Mf(x) the classical Hardy-

Littlewood maximal function defined by

(Mf)(x) = sup
x∈Q

1

|Q|

∫

Q

|f(y)| dy , x ∈ R
d , (1.9)

where the supremum is taken over all cubes centered at x with sides parallel to the coor-
dinate axes. We firstly refer to the famous Hardy-Littlewood maximal inequality. There
is a constant c > 0 such that

‖Mf |Lp(Rd)‖ ≤ c‖f |Lp(Rd)‖

holds if 1 < p ≤ ∞. A vector valued generalization is due to Fefferman and Stein [14]. For
1 < p <∞ and 1 < q ≤ ∞

‖Mfk|Lp(Rd, ℓq)‖ ≤ c ‖fk|Lp(Rd, ℓq)‖ (1.10)

holds for every {fk}k∈N ∈ Lp(R
d, ℓq). The appearing vector-valued spaces with respect to

R
d are the nonperiodic counterparts of (1.6).

Now we recall a standard procedure to obtain a corresponding assertion also for periodic
functions. See also [32, 3.2.4].
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Proposition 1.3 Let 1 < p <∞ and 1 < q ≤ ∞. Then a constant c > 0 exists with

‖Mfk|Lp(Td, ℓq)‖ ≤ c ‖fk|Lp(Td, ℓq)‖

for all {fk}k∈I ∈ Lp(T
d, ℓq).

Proof Let g ∈ Lp(T
d). Because of the periodicity of g one obtains the inequality

Mg(x) ≤ cMg̃(x) for x ∈ T
d ,

where g̃(x) is the restriction of g(x) on [−3π, 3π]d and in particular not longer a periodic
function. Then (1.10) implies

‖Mfk|Lp(Td, ℓq)‖ ≤ c1‖Mf̃k|Lp(Rd, ℓq)‖
≤ c2‖f̃k|Lp(Rd, ℓq)‖
≤ c3‖fk|Lp(Td, ℓq)‖.

�

Now we define a one-dimensional version of (1.9)

(Mif)(x) = sup
s>0

1

2s

xi+s∫

xi−s

|f(x1, ..., xi−1, t, xi+1, ..., xd)| dt , x ∈ R
d. (1.11)

It is necessary to prove that this operator maps two equivalent representatives of f to
the same equivalence class. Having this in mind, one can show the following version of
Proposition 1.3.

Proposition 1.4 For 1 < p <∞ and 1 < q ≤ ∞ a constant c > 0 exists such that

‖Mifk|Lp(Td, ℓq)‖ ≤ c‖fk|Lp(Td, ℓq)‖ , i = 1, ..., d ,

holds for all sequences {fk}k∈I ∈ Lp(T
d, ℓq).

Proof One only has to split the integration over R
d into d integrations over R

1 and apply
Proposition 1.3 to the integration according to xi. �

The following construction of a maximal function is due to Peetre. Let b̄ = (b1, ..., bd) and
s̄ = (s1, ..., sd) belong to R

d and satisfy b̄, s̄ > 0. Let further f ∈ S ′(Rd) be a tempered
distribution with compactly supported Fourier transform Ff . In this situation the famous
theorem of Paley-Wiener-Schwartz implies that f is an entire analytic function (see also
Theorem 1.8 in Paragraph 1.6.2). We define the maximal function Pb̄,s̄f by

Pb̄,s̄f(x) = sup
z∈Rd

|f(x− z)|
(1 + |b1z1|s1) · ... · (1 + |bdzd|sd)

. (1.12)

In addition, we need another maximal inequality. Details concerning the following asser-
tions can be found in [32, 1.6.4].
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Lemma 1.3 Let Ω ⊂ R
d be compact, s̄ = (s1, ..., sd) > 0 and α = (α1, ..., αd) ∈ N

d
0. Then

two constants c1, c2 > 0 exist (independent of f , but dependent of Ω) such that

P1̄,s̄(D
αf)(x) ≤ c1P1̄,s̄f(x)

≤ c2
(
Md

(
Md−1

(
...
(
M1|f |1/s1

)s1/s2 ...
)sd−2/sd−1

)sd−1/sd
)sd(x)

holds for all f ∈ S ′(Rd) with suppFf ⊂ Ω and all x ∈ R
d.

This lemma leads to the following important maximal inequality.

Proposition 1.5 Let 0 < p < ∞ and 0 < q ≤ ∞. Let further b̄ℓ = (bℓ1, ..., b
ℓ
d) > 0 for

ℓ ∈ I and Λ = {Λℓ}ℓ∈I be finite subsets of Z
d satisfying

Λℓ ⊂ {ξ ∈ R
d : |ξi| ≤ bℓi , i = 1, ..., d} , ℓ ∈ I .

Finally, the tuple s̄ = (s1, ..., sd) >
1

min(p,q)
is fixed. Under these assumptions we have a

constant c > 0 (independent of f and Λ) such that
∥∥Pb̄ℓ,s̄fℓ|Lp(Td, ℓq)

∥∥ ≤ c
∥∥fℓ |Lp(Td, ℓq)

∥∥

holds for all systems f = {fℓ}ℓ∈I ⊂ LΛ
p (Td, ℓq).

Proof This assertion is a direct consequence of the previous lemma, Proposition 1.4 and
a homogeneity argument: Let f̃ℓ (x) be defined as

f̃ℓ(x1, ..., xd) := fℓ (x1/b
ℓ
1, ..., xd/b

ℓ
d) .

Then
Pb̄ℓ,s̄fℓ (x1, ..., xd) = P1̄,s̄f̃ℓ (b

ℓ
1 x1, ..., b

ℓ
d xd)

holds true. Because of suppF f̃ℓ ⊂ [−1, 1]d the constant c can be chosen
independently of Λ. �

1.3.3 Fourier Multipliers

In the following two sections we develop parts of the theory of Fourier multipliers for scalar
and vector-valued Lp-spaces. This section deals with Fourier multipliers for Lp(Td). Our
approach basically is the combination of [32, 1.8.3] and [32, 3.3.4] . First of all we need
some spaces of functions on R

d. Let κ̄ ≥ 0. Then a function f ∈ L2(R
d) belongs to

Sκ̄2H(Rd) if

‖ f |Sκ̄2H(Rd)‖ :=
∥∥(1 + |ξ1|2)κ1/2 . . . (1 + |ξd|2)κd/2 |Ff(ξ)| |L2(R

d)
∥∥ <∞ . (1.13)

In case d = 1 we shall write Hκ
2 (R) instead of Sκ̄2H(R) . See also (1.40) in Paragraph 1.4.4

for the periodic counterpart of these spaces.
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Remark 1.1 Let us point out an important property of spaces defined in this way.
Consider d functions gi ∈ Hκi

2 (R) for κi ≥ 0 , i = 1, ..., d. Their tensor product is defined
by

(g1 ⊗ · · · ⊗ gd)(x1, ..., xd) := g1(x1) · ... · gd(xd) , x = (x1, ..., xd) ∈ R
d ,

and satisfies

‖g1 ⊗ · · · ⊗ gd|Sκ̄2H(Rd)‖ = ‖g1|Hκ1
2 (R)‖ · ... · ‖gd|Hκd

2 (R)‖ (1.14)

and therefore belongs to Sκ̄2H(Rd) . Because of property (1.14) we call ‖ · |Sκ̄2H(Rd)‖ a
cross-norm. The spaces defined below also provide this property. See also Remark 1.8 .

Lemma 1.4 Let 0 < p ≤ 2 and m̄ = (m1, ...,md) ≥ 0 ∈ R
d. Let further r̄ = (r1, ..., rd) ∈

R
d satisfy

r̄ > m̄+
1

p
− 1

2
.

Then a positive constant c exists such that

‖(1 + ξ2
1)
m1/2(1 + ξ2

2)
m2/2 · · · (1 + ξ2

d)
md/2Ff(ξ)|Lp(Rd)‖ ≤ c‖f |S r̄2H(Rd)‖ . (1.15)

Proof We follow [32, 1.8.3], where the proof is given in case d = 2. Let us start with the
left-hand side of (1.15) and use Hölder’s inequality twice with p/2 + (2− p)/2 = 1 . Recall
the notation given in Paragraph 1.2.1 concerning vector-valued quantities. In addition, we
shall use (1.47) in Paragraph 1.6.1 to decompose the integration over R

d into a sum of
integrals over dyadic rectangles. This gives

(∫

Rd

d∏

k=1

(1 + |ξk|2)pmk/2|Ff(ξ)
∣∣p dξ

)1/p

=
(∑

ℓ̄∈Nd
0

2ℓ̄·m̄p
∫

Q∆
ℓ̄

|Ff(ξ)|p
)1/p

≤
[∑

ℓ̄∈Nd
0

2ℓ̄(m̄+1/p−1/2)p
( ∫

Q∆
ℓ̄

|Ff(ξ)|2 dξ
)p/2]1/p

=
[∑

ℓ̄∈Nd
0

2ℓ̄(m̄+1/p−1/2−r̄)p2r̄ℓ̄p
( ∫

Q∆
ℓ̄

|Ff(ξ)|2 dξ
)p/2]1/p

≤ c1

(∑

ℓ̄∈Nd
0

22r̄ℓ̄

∫

Q∆
ℓ̄

|Ff(ξ)|2 dξ
)1/2

≤ c2 ‖f |S r̄2H(Rd)‖ .

�

Let us present the main result of this section.
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Proposition 1.6 Let b̄ > 0 and Λ ⊂ Z
d be a finite subset of Z

d satisfying Λ ⊂ Qb̄ = {x ∈
R
d : |xi| ≤ bi , i = 1, ..., d}. Let further 0 < p ≤ ∞ and r̄ ∈ R

d satisfy

r̄ >
1

min(1, p)
− 1

2
.

Then a constant c > 0 exists (independent of b̄) such that
∥∥∥
∑

k∈Λ

M(k)ck(t)e
ikx|Lp(Td)

∥∥∥ ≤ c‖M(b1·, ..., bd·)|S r̄2H(Rd)‖ · ‖t|Lp(Td)‖

holds for all M ∈ S r̄2H(Rd) and all t ∈ TΛ.

Remark 1.2 Because of M ∈ S r̄2H(Rd) the previous lemma, applied with m̄ = (0, ..., 0),
implies FM ∈ L1(R

d) . This gives immediately the continuity of M (with interpretation).
Therefore M(k) is well-defined.

Proof Let ψ(ξ) be a function belonging to S(Rd) satisfying suppψ ⊂ [−2, 2]d and

ψ(ξ) = 1 , x ∈ [−1, 1]d .

Of course, we have ψM ∈ S r̄2H(Rd) and

‖ψM |S r̄2H‖ ≤ cψ‖M |S r̄2H‖. (1.16)

By ψ̃(x) we denote the function

ψ̃(x) = ψ(b−1
1 x1, ..., b

−1
d xd).

This implies immediately ψ̃(ξ) = 1 for x ∈ Qb̄. Lemma 1.4 used with m̄ = (0, ..., 0) again
gives F(ψ̃M) ∈ L1(R

d). With the help of Lemma 1.1 we derive
∣∣∣
∑

k∈Λ

M(k)ck(t)e
ikx
∣∣∣ =
∣∣∣
∑

k∈Λ

(M(k)ψ̃(k))ck(t)e
ikx
∣∣∣

≤c
∫

Rd

|F−1(ψ̃M)(y)t(x− y)|dy

and therefore
∣∣∣∣∣
∑

k∈Λ

M(k)ck(t)e
ikx

∣∣∣∣∣ ≤ c‖F−1(ψ̃M)(y)t(x− y)|L1(R
d, y)‖ .

For fixed x ∈ T
d the function

g(y) = F−1(ψ̃M)(y)t(x− y)
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has the Fourier transform

Fg(ξ) =
1

√
2π

d

∑

k∈Λ

ck(t)e
ikx

∫

Rd

F−1(ψ̃M)(y)e−iy(k+ξ)dy

=
∑

k∈Λ

ck(t)e
ikx(ψ̃M)(k + ξ) .

Consequently, suppFg is included in {y : |yi| ≤ 3bi}. Let us apply Proposition 1.1
(Nikol’skij’s inequality) to the function g(y) by putting p̃ = min(p, 1) and α = (0, ..., 0).
This yields

∣∣∣
∑

k∈Λ

M(k)ck(t)e
ikx
∣∣∣ ≤c‖F−1(ψ̃M)(y)t(x− y)|L1(R

d, y)‖

≤c1b1/p̃−1
1 · · · b1/p̃−1

d ‖F−1(ψ̃M)(y)t(x− y)|Lp̃(Rd, y)‖.
Taking the Lp(Td)-(quasi-)norm we obtain
∥∥∥
∑

k∈Λ

M(k)ck(t)e
ikx
∣∣∣Lp(Td)

∥∥∥ ≤c1b1/p̃−1
1 · · · b1/p̃−1

d ×

×
[ ∫

Td

(∫

Rd

|F−1(ψ̃M)(y)t(x− y)|p̃dy
)p/p̃

dx
]1/p

.

In the case 0 < p ≤ 1 we have p̃ = p. Fubini’s theorem implies
∥∥∥
∑

k∈Λ

M(k)ck(t)e
ikx
∣∣∣Lp(Td)

∥∥∥ ≤ c1b
1/p̃−1
1 · · · b1/p̃−1

d ‖t|Lp(Td)‖ · ‖F−1(ψ̃M)(y)|Lp(Rd)‖.

Minkowski’s inequality gives
∥∥∥
∑

k∈Λ

M(k)ck(t)e
ikx
∣∣∣Lp(Td)

∥∥∥ ≤ c1b
1/p̃−1
1 · · · b1/p̃−1

d ‖F−1(ψ̃M)|L1(R
d)‖ · ‖t|Lp(Td)‖

in the case p > 1 (p̃ = 1). Therefore, both cases finish in the inequality
∥∥∥
∑

k∈Λ

M(k)ck(t)e
ikx
∣∣∣Lp(Td)

∥∥∥ ≤c1b1/p̃−1
1 · · · b1/p̃−1

d ‖F−1(ψ̃M)|Lp̃(Rd)‖ · ‖t|Lp(Td)‖

=c1‖F−1(ψM(b1·, ..., bd·))|Lp̃(Rd)‖ · ‖t|Lp(Td)‖ .
Because of r̄ > 1

p̃
− 1

2
we can apply Lemma 1.4 on F−1(ψM(b1·, ..., bd·)) with m̄ = (0, ..., 0) .

This yields

‖F−1(ψM(b1·, ..., bd·))|Lp̃(Rd)‖ ≤ c2‖ψM(b1·, ..., bd·)|S r̄2H(Rd)‖.
The right-hand side can be estimated using (1.16) by a constant cψ. Together with (1.17)
we finally get

∥∥∥
∑

k∈Λ

M(k)ck(t)e
ikx
∣∣∣Lp(Td)

∥∥∥ ≤ c3‖M(b1·, ..., bd·)|S r̄2H(Rd)‖ · ‖t|Lp(Td)‖.

�
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1.3.4 Fourier Multipliers for Vector-Valued Spaces

Let us now present a Fourier multiplier assertion for the spaces Lp(Td, ℓq), defined in
Paragraph 1.2.4 . We combine [32, 1.10.3] and [32, 3.4.1] to obtain the following result.

Proposition 1.7 Let 0 < p < ∞ and 0 < q ≤ ∞. Let further {b̄ℓ̄}ℓ̄∈Nd
0
⊂ (0,∞)d and

Λ = {Λℓ̄}ℓ̄∈Nd
0

be a sequence of finite subsets of Z
d satisfying

Λℓ̄ ⊂ {x ∈ R
d : |xi| ≤ bℓ̄i , i = 1, ..., d}.

The vector κ̄ = (κ1, ..., κd) is supposed to fulfill

κ̄ >
1

min(p, q)
+

1

2
. (1.17)

Then a constant c > 0 exists (independent of {b̄ℓ̄}ℓ̄∈Nd
0
,Λ and Mℓ̄) such that

∥∥∥
∑

k∈Zd

Mℓ̄(k)ck(tℓ̄)e
ikx
∣∣∣Lp(Td, ℓq)

∥∥∥ ≤ c sup
ℓ̄∈Nd

0

‖Mℓ̄(b
ℓ̄
1·, ..., bℓ̄d·)|Sκ̄2H(Rd)‖ · ‖tℓ̄|Lp(Td, ℓq)‖

holds for all systems t = {tℓ̄}ℓ̄∈Nd
0
∈ Lp(T

d, ℓq) and all sequences {Mℓ̄}ℓ̄∈Nd
0
⊂ Sκ̄2H(Rd).

Proof We fix ℓ̄ ∈ N
d
0 and put

gℓ̄(x) :=
∑

k∈Zd

Mℓ̄(k)ck(tℓ̄)e
ikx.

Analogously to the scalar case we estimate

|gℓ̄(x)| ≤ c

∫

Rd

|(F−1Mℓ̄)(y)| · |tℓ̄(x− y)| dy.

In order to use the maximal function technique we consider

|gℓ̄(x− z)|

≤ c

∫

Rd

|(F−1Mℓ̄)(x− z − y)| · |tℓ̄(y)| dy

= c

∫

Rd

|(F−1Mℓ̄)(x− z − y)| · |tℓ̄(x− (x− y))|
d∏
i=1

(1 + |bℓ̄i(xi − yi)|mi)

×

× (1 + |bℓ̄1(x1 − y1)|m1) · ... · (1 + |bℓ̄d(xd − yd)|md) dy

≤ c Pb̄ℓ̄,m̄ tℓ̄(x)

∫

Rd

|(F−1Mℓ̄)(x− z − y)|×

× (1 + |bℓ̄1(x1 − y1)|m1) · ... · (1 + |bℓ̄d(xd − yd)|md) dy.

(1.18)
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The vector m̄ = (m1, ...,md) is at our disposal. By the change of variable

ui = bℓ̄i(xi − zi − yi) , i = 1, ..., d,

we continue with (1.18) and obtain

|gℓ̄(x− z)| ≤ c Pb̄ℓ̄,m̄ tℓ̄(x) ·
1

bℓ̄1 · ... · bℓ̄d

∫

Rd

∣∣∣(F−1Mℓ̄)
(u1

bℓ̄1
, ...,

ud

bℓ̄d

)∣∣∣×

(1 + |u1 + bℓ̄1z1|m1) · ... · (1 + |ud + bℓ̄dzd|md) du.

Because of (1 + |a+ b|s) ≤ cs(1 + |a|s)(1 + |b|s) (a, b ∈ R and s > 0) and

1

bℓ̄1 · ... · bℓ̄d
(F−1Mℓ̄)

(
u1

bℓ̄1
, ...,

ud

bℓ̄d

)
= (F−1Mℓ̄(b

ℓ̄
1·, ..., bℓ̄d·))(u)

we obtain

Pb̄ℓ̄,m̄gℓ̄(x) ≤c Pb̄ℓ̄,m̄tℓ̄(x)×
× ‖(1 + |u1|m1) · ... · (1 + |ud|md)(F−1Mℓ̄(b

ℓ̄
1·, ..., bℓ̄d·))(u)|L1(R

d)‖.
Let us now employ Lemma 1.4 with p = 1, where the quantities mi are chosen such that
mi > 1/min(p, q) and κi > mi+1/2, i = 1, ..., d. We can proceed like this because of (1.17).
The first condition is required later in order to employ Proposition 1.5. Now Lemma 1.4
gives

‖(1 + |u1|m1) · ... · (1 + |ud|md)(F−1Mℓ̄(b
ℓ̄
1·, ..., bℓ̄d·))(u)|L1(R

d)‖
≤ c1‖Mℓ̄(b

ℓ̄
1·, ..., bℓ̄1·)|Sκ̄2H(Rd)‖ .

This means

|gℓ̄(x)| ≤ Pb̄ℓ̄,m̄gℓ̄(x) ≤ c2Pb̄ℓ̄,m̄tℓ̄(x) × ‖Mℓ̄(b
ℓ̄
1·, ..., bℓ̄1·)|Sκ̄2H(Rd)‖ .

Taking the Lp(Td)-(quasi-)norm, Proposition 1.5 guarantees

‖gℓ̄ |Lp(Td, ℓq)‖ ≤ c3 sup
ℓ̄∈Nd

0

‖Mℓ̄(b
ℓ̄
1·, ..., bℓ̄1·)|Sκ̄2H(Rd)‖ · ‖tℓ̄ |Lp(Td, ℓq)‖.

�

1.3.5 Lizorkin’s Multiplier Theorem

Let us recall the definition of signed and complex measures. For details concerning the
following we mainly refer to [23, A.6]. Here (X,F) denotes a measurable space. A mapping
µ : F → R∪{−∞,∞} is called a signed measure if and only if the following two conditions
are satisfied
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(i) µ(∅) = 0 ,

(ii)µ

(
∞⋃
n=1

An

)
=

∞∑
n=1

µ(An) , for Ai, Aj ∈ F with Ai ∩ Aj = ∅ , i 6= j.

Complex measures are defined analogously. The variation of a signed (complex) measure
is given by the positive measure

|µ|(E) = sup
{ n∑

k=1

|µ(Ak)| : Ak ∈ F pairwise disjoint ,
n⋃

k=1

Ak = E
}
.

The number |µ|(X) is called total variation of the signed (complex) measure µ on the
space X. Now we are able to state Lizorkin’s multiplier theorem. As measurable space we
consider now (Rd,Rd), where Rd denotes the usual Borel σ-algebra.

Proposition 1.8 Let 1 < p, q <∞. Let further M = {Mj(x)}∞j=0 ⊂ L∞(Rd)
be a sequence of functions satisfying

(i) There are finite complex measures µj, j = 0, 1, ..., on (Rd,Rd) such that

Mj(x1, ..., xd) = µj((−∞, x1] × ...× (−∞, xd]) .

(ii) The measures µj, j = 0, 1, 2... provide uniformly bounded total variation on R
d, i.e.

|µj|(Rd) ≤ CM , j = 0, 1, 2... .

(iii) The functions Mj(x), j = 0, 1, 2... are continuous in all points k ∈ Z
d.

Under these conditions we have the existence of a positive constant C(p, q, d) such that
∥∥∥
∑

k∈Zd

Mj(k)ck(fj)e
ik·x
∣∣∣Lp(Td, ℓq)

∥∥∥ ≤ C · CM‖fj|Lp(Td, ℓq)‖

holds for all {fj}∞j=0 ∈ Lp(T
d, ℓq).

Proof The nonperiodic counterpart is due to Lizorkin, cf. [21]. The lemma follows by
applying Theorem 3.4.2 in [32]. �

Remark 1.3 Consider a compactly supported piecewise linear continuous function γ : R →
C uniquely defined by the nodes {(k, γ(k)) : k ∈ Z} and its weak derivative denoted by γ′(x).
The latter exists as a piecewise constant step function. Consequently, the corresponding
complex measure µ, which satisfies µ((−∞, x]) = γ(x), x ∈ R, is given by

µ(A) =

∫

A

γ′(x) dx , A ∈ R .
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Then we observe
|µ|(R) =

∑

k∈Z

|γ(k) − γ(k − 1)| . (1.19)

Let us now consider a sequence γ = {γj(x)}∞j=0 of such functions. The sequence {µj}∞j=0

denotes the corresponding measures. Additionally, we assume the uniform boundedness of
(1.19), i.e.

sup
j∈N0

∑

k∈Z

|γj(k) − γj(k − 1)| =: Cγ <∞ .

Their tensor product

Mu(x1, ..., xd) := γu1(x1) · ... · γud
(xd) , x = (x1, ..., xd) ∈ R

d ,

can be written as

Mu(x1, ..., xd) = µu1((−∞, x1]) · ... · µud
((−∞, xd])

= (µu1 ⊗ ...⊗ µud
)((−∞, x1] × ...× (−∞, xd]) .

Here µu1 ⊗ ...⊗ µud
denotes the product measure of µu1 , ..., µud

. An easy calculation using
the Jordan decomposition of a signed measure yields

|µu1 ⊗ ...⊗ µud
|(Rd) ≤ (4Cγ)

d .

See for instance [23, A.6] and (1.19).
Finally, Proposition 1.8 implies

∥∥∥
∑

k∈Zd

ck(fu)Mu(k)e
ikx
∣∣∣Lp(Td, ℓq)

∥∥∥ ≤ C · (4Cγ)d‖fu|Lp(Td, ℓq)‖ ,

for all systems f = {fu}u∈Nd
0
∈ Lp(T

d, ℓq), where C just depends on p, q and d.

1.4 The Spaces S r̄p,qF (Td) and S r̄p,qB(Td)

This section is devoted to the definition of Besov and Triebel-Lizorkin as well as Sobolev
type spaces with dominating mixed smoothness properties. We follow the approach in [32,
Chapt. 2], where the nonperiodic bivariate case is treated. As we have seen in the previous
paragraph all the necessary techniques carry over to the periodic setting.

1.4.1 Decomposition of Unity

First of all we introduce the classical concept of a smooth dyadic decomposition of unity.
It is used to decompose a distribution into Fourier analytical building blocks to decide
whether this distribution belongs to a certain function space of Besov and Triebel-Lizorkin
type.
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Definition 1.1 Let Φ(R) be the collection of all systems ϕ = {ϕj(x)}∞j=0 ⊂ S(R) satisfying

(i) supp ϕ0 ⊂ {x : |x| ≤ 2} ,

(ii) supp ϕj ⊂ {x : 2j−1 ≤ |x| ≤ 2j+1} , j = 1, 2, ...,

(iii) ∀ ℓ ∈ N0 we have sup
x,j

2jℓ |Dℓϕj(x)| ≤ cℓ <∞ ,

(iv)
∞∑
j=0

ϕj(x) = 1 for all x ∈ R.

Remark 1.4 The class Φ(R) is not empty. Consider the following example. Let ϕ0(x) ∈
S(R) be smooth function with ϕ0(x) = 1 on [−1, 1] and ϕ0(x) = 0 if |x| > 2. For j > 0 we
define

ϕj(x) = ϕ0(2
−jx) − ϕ0(2

−j+1x).

Now it is easy to verify that the system ϕ = {ϕj(x)}∞j=0 satisfies (i) - (iv).

Let us modify this definition in the following way and define the class Ψ(R).

Definition 1.2 A system ϕ = {ϕj}∞j=0 ⊂ S(R) belongs to the class Ψ(R) if and only if

(i) A positive constant A exists such that suppϕ0 ⊂ [−A,A].

(ii) There are constants 0 < B < C with suppϕj ⊂ {x ∈ R : B2j ≤ |x| ≤ C2j}.

(iii) For all ℓ ∈ N0 holds
sup

x∈R,j∈N0

2jℓ|Dℓϕj(x)| ≤ cℓ <∞ .

(iv) The identity
∞∑
j=0

ϕj(x) = 1 is valid for all x ∈ R.

Remark 1.5 The inclusion Φ(R) ⊂ Ψ(R) follows immediately.

Based on this we construct decompositions of unity in R
d via tensor products . This

requires the following notation. Assume ϕi = {ϕij(x)}∞j=0 ⊂ S(R), i = 1, ..., d, and let
ℓ̄ = (ℓ1, ..., ℓd) ∈ N

d
0 . We put

(ϕ1 ⊗ ...⊗ ϕd)ℓ̄(x) := ϕ1
ℓ1

(x1) · ... · ϕdℓd(xd) , x ∈ R
d .

If ϕ = ϕ1 = ... = ϕd we simply write ϕℓ̄(x) instead of (ϕ1 ⊗ ...⊗ ϕd)ℓ̄(x) , ℓ̄ ∈ N
d
0 . Suppose

(ϕ1, ..., ϕd) ∈ Ψ(R)d. Then one can decompose f ∈ D′(Td) into the sum

f =
∑

ℓ̄∈Nd
0

fℓ̄ , (1.20)

where
fℓ̄(x) =

∑

k∈Zd

(ϕ1 ⊗ ...⊗ ϕd)ℓ̄(k)ck(f)eik·x , x ∈ T
d . (1.21)

The convergence is considered in D′(Td), see Paragraph 1.2.3 .
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1.4.2 Definition and Basic Properties

Let us introduce the function spaces S r̄p,qB(Td) and S r̄p,qF (Td) of Besov and Triebel-Lizorkin
spaces with dominating mixed smoothness. We make use of the building blocks given in
(1.21) .

Definition 1.3 Let r̄ = (r1, ..., rd) ∈ R
d and ϕ̄ = (ϕ1, ..., ϕd) ∈ Ψ(R)d.

(i) Let 0 < p ≤ ∞ and 0 < q < ∞. Then S r̄p,qB(Td) is the collection of all f ∈ D′(Td)
such that

‖f |S r̄p,qB(Td)‖ϕ̄ =
(∑

ℓ̄∈Nd
0

2r̄·ℓ̄q
∥∥∥
∑

k∈Zd

(ϕ1 ⊗ ...⊗ ϕd)ℓ̄(k)ck(f)eik·x
∣∣∣Lp(Td)

∥∥∥
q)1/q

(1.22)

is finite. In case q = ∞ we replace (1.22) by

‖f |S r̄p,∞B(Td)‖ϕ̄ = sup
ℓ̄∈Nd

0

2r̄·ℓ̄
∥∥∥∥
∑

k∈Zd

(ϕ1 ⊗ ...⊗ ϕd)ℓ̄(k)ck(f)eik·x
∣∣∣∣Lp(T

d)

∥∥∥∥ .

(ii) Let 0 < p < ∞ and 0 < q < ∞. Then S r̄p,qF (Td) is the collection of all f ∈ D′(Td)
such that

‖f |S r̄p,qF (Td)‖ϕ̄ =
∥∥∥
(∑

ℓ̄∈Nd
0

2r̄·ℓ̄q
∣∣∣
∑

k∈Zd

(ϕ1 ⊗ ...⊗ϕd)ℓ̄(k)ck(f)eik·x
∣∣∣
q)1/q∣∣∣Lp(Td)

∥∥∥ (1.23)

is finite. In case q = ∞ we replace (1.23) by

‖f |S r̄p,∞F (Td)‖ϕ̄ =

∥∥∥∥ sup
ℓ̄∈Nd

0

2r̄·ℓ̄
∣∣∣
∑

k∈Zd

(ϕ1 ⊗ ...⊗ ϕd)ℓ̄(k)ck(f)eik·x
∣∣∣
∣∣∣∣Lp(T

d)

∥∥∥∥ .

Remark 1.6 (i) In the special case r̄ = (r, ..., r), r ∈ R, we simply write Srp,qF (Td) and
Srp,qB(Td) instead of S r̄p,qF (Td) and S r̄p,qB(Td) .
(ii) In case d = 1 the spaces defined degenerate into the usual isotropic Besov and Triebel-
Lizorkin spaces on the torus. They are denoted by Br

p,q(T) and F r
p,q(T).

See also [32, Chapt. 3].
(iii) The spaces S r̄p,pB(Td) and S r̄p,pF (Td) coincide. In this situation even the (quasi-)norms
(1.22) and (1.23) are equal.

Remark 1.7 We observe that all these classes are (quasi-)normed spaces (normed spaces
in case min(p, q) ≥ 1). Although indicated the spaces do not depend on the chosen system
ϕ̄ ∈ Ψ(R)d. The corresponding (quasi-)norms are even equivalent, see Theorem 1.2 below.
The analogous definition of S r̄∞,qF (Td) does not work (the spaces would depend on the
system ϕ̄), cf. also [32, 3.5.2].
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Remark 1.8 Recall Remark 1.1. The (quasi-)norms ‖ · |S r̄p,qB(Td)‖ϕ̄ and ‖ · |S r̄p,qF (Td)‖ϕ̄
are cross-norms in the sense

‖(g1 ⊗ · · · ⊗ gd)|S r̄p,qB(Td)‖ϕ̄ = ‖g1|Br1
p,q(T)‖ϕ1 · ... · ‖gd|Brd

p,q(T)‖ϕd

and
‖(g1 ⊗ · · · ⊗ gd)|S r̄p,qF (Td)‖ϕ̄ = ‖g1|F r1

p,q(T)‖ϕ1 · ... · ‖gd|F rd
p,q(T)‖ϕd

.

Let us state the independence of the spaces from the chosen system ϕ̄ ∈ Ψ(R)d. For sake
of simplicity we will prove it only in case ϕ̄ ∈ Φ(R)d by following [32, 2.2.3] .

Theorem 1.2 Let ϕ̄, ψ̄ ∈ Ψ(R)d, r̄ = (r1, ..., rd) ∈ R
d and 0 < q ≤ ∞ . Then the following

assertions hold true.

(i) If 0 < p ≤ ∞ the (quasi-)norms ‖ · |S r̄p,qB(Td)‖ϕ̄ and ‖ · |S r̄p,qB(Td)‖ψ̄ are equivalent.

(ii) If 0 < p <∞ the (quasi-)norms ‖ · |S r̄p,qF (Td)‖ϕ̄ and ‖ · |S r̄p,qF (Td)‖ψ̄ are equivalent.

Proof We show the existence of a constant c with ‖ · |S r̄p,qF‖ϕ̄ ≤ c‖ · |S r̄p,qF‖ψ̄ . In the
B-case the proof is similar. We follow the proof of [48, Prop. 2.3.2/1] and [32, Prop. 2.2.3] .
The properties (ii) and (iv) in Definition 1.1 imply

ϕij(t) = (ψij−1(j) + ψij(t) + ψij+1(t))ϕ
i
j(t) , t ∈ R , i = 1, ..., d.

Putting always ϕi−1, ψ
i
−1 ≡ 0 we have for any ℓ̄ ∈ N

d
0

(ϕ1 ⊗ ...⊗ ϕd)ℓ̄(ξ)

=
( ∑

j̄∈{−1,0,1}d

(ψ1 ⊗ ...⊗ ψd)ℓ̄+j̄(ξ)
)
(ϕ1 ⊗ ...⊗ ϕd)ℓ̄(ξ) , ξ ∈ R

d .

This immediately yields
∑

k∈Zd

(ϕ1 ⊗ ...⊗ ϕd)ℓ̄(k)ck(f)eikx

=
∑

j̄∈{−1,0,1}d

(∑

k∈Zd

(ϕ1 ⊗ ...⊗ ϕd)ℓ̄(k) · (ψ1 ⊗ ...⊗ ψd)ℓ̄+j̄(k)ck(f)eikx
)

, x ∈ T
d ,

for a fixed f ∈ D′(Td). Taking the Lp(T
d, ℓq)-(quasi-)norm and applying the triangle

inequality this leads to
∥∥∥2r̄ℓ̄

∑

k∈Zd

(ϕ1 ⊗ ...⊗ ϕd)ℓ̄(k)ck(f)eikx
∣∣∣Lp(Td, ℓq)

∥∥∥

≤ c
∑

j̄∈{−1,0,1}d

∥∥∥2r̄ℓ̄
∑

k∈Zd

(ϕ1 ⊗ ...⊗ ϕd)ℓ̄(k) · (ψ1 ⊗ ...⊗ ψd)ℓ̄+j̄(k)ck(f)eikx
∣∣∣Lp(Td, ℓq)

∥∥∥ .
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Using again Definition 1.1/(ii) together with Proposition 1.7 we derive
∥∥∥2r̄ℓ̄

∑

k∈Zd

(ϕ1 ⊗ ...⊗ ϕd)ℓ̄(k)ck(f)eikx
∣∣∣Lp(Td, ℓq)

∥∥∥

≤ c1 · C(ϕ̄) ·
∑

j̄∈{−1,0,1}d

∥∥∥2r̄ℓ̄
∑

k∈Zd

(ψ1 ⊗ ...⊗ ψd)ℓ̄+j̄(k)ck(f)eikx
∣∣∣Lp(Td, ℓq)

∥∥∥ ,

where

C(ϕ̄) := sup
ℓ̄∈Nd

0

‖ϕ1
ℓ1

(2ℓ1+2x1) · ... · ϕdℓd(2
ℓd+2xd)|Sκ̄2H(Rd)‖

= sup
ℓ∈N0

‖ϕ1
ℓ1

(2ℓ1+2·)|Hκ1
2 (R)‖ · ... · sup

ℓd∈N0

‖ϕdℓd(2
ℓd+2·)|Hκd

2 (R)‖

with κ̄ large enough. Elementary properties of the Fourier transform together with (ii) and
(iii) in Definition 1.1 imply the uniform boundedness of ‖ϕin(2n+2·)|Hκd

2 (R)‖ , i = 1, ..., d,
for n ∈ N0. Together with this we receive

C(ϕ̄) <∞ .

Finally, we obtain

‖f |S r̄p,qF (Td)‖ϕ̄ ≤ c3‖f |S r̄p,qF (Td)‖ψ̄ .

Of course, the converse inequality holds as well. This proves (ii). �

Remark 1.9 The modifications in the case ϕ̄, ψ̄ ∈ Ψ(R)d are obvious.

Remark 1.10 Let us give a remark on Lizorkin representations of Besov as well as Triebel-
Lizorkin spaces. We need a special covering of R

d. Let

P0 := [−1, 1] , Pk := {x ∈ R
d : 2k−1 < |x| ≤ 2k} , k ∈ N ,

Pk̄ := Pk1 × . . . × Pkd
, k̄ ∈ N

d
0 . (1.24)

Then
R
d =

⋃

k̄∈Nd
0

Pk̄ and Pk̄ ∩ Pℓ̄ = ∅ if k̄ 6= ℓ̄ .

Hence, with
f̃ℓ̄(x) :=

∑

k∈Pℓ̄

ck(f) eikx , x ∈ T
d, ℓ̄ ∈ N

d
0 , (1.25)

we find
f =

∑

ℓ̄∈Nd
0

f̃ℓ̄

(convergence in D′(Td), compare with (1.20)).
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Lemma 1.5 Let 1 < p <∞ and r̄ ∈ R
d. Then, if 0 < q ≤ ∞

‖ f |S r̄p,qB(Td)‖ ≍
(∑

ℓ̄∈Nd
0

2r̄ℓ̄q ‖ f̃ℓ̄ |Lp(Td)‖q
)1/q

, (1.26)

and if 1 < q <∞

‖ f |S r̄p,qF (Td)‖ ≍
∥∥∥
(∑

ℓ̄∈Nd
0

2r̄ℓ̄q |f̃ℓ̄(x)|q
)1/q∣∣∣Lp(Td)

∥∥∥ (1.27)

holds for all f ∈ D′(Td) (modification in case q = ∞).

1.4.3 Elementary Embeddings

Let S r̄p,qA(Td) be either S r̄p,qB(Td) or S r̄p,qF (Td) (with p < ∞ in the F -case). We observe
the following elementary continuous embeddings.

Lemma 1.6 Let (r1, ..., rd) ∈ R
d and 0 < p ≤ ∞.

(i) Let 0 < q ≤ v ≤ ∞. Then we have

S r̄p,qA(Td) →֒ S r̄p,vA(Td).

(ii) Let 0 < q, v ≤ ∞ and ε̄ = (ε1, ..., εd) with ε̄ ≥ 0. Then

S r̄+ε̄p,q A(Td) →֒ S r̄p,qA(Td).

If ε̄ satisfies ε̄ > 0, even the embedding

S r̄+ε̄p,q A(Td) →֒ S r̄p,vA(Td)

holds.

(iii) Let 0 < q ≤ ∞ and 0 < p <∞. The chain of embeddings

S r̄p,min(p,q)B(Td) →֒ S r̄p,qF (Td) →֒ S r̄p,max(p,q)B(Td) (1.28)

holds true.

Proof In [32, 2.2.3] the nonperiodic case d = 2 is treated in detail. In the periodic case
all arguments carry over. Let us also refer to Temlyakov [45, pp. 20/21] . �

Let S r̄p,qA(Td) be either S r̄p,qB(Td) or S r̄p,qF (Td) (with p <∞ in the F -case).
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Lemma 1.7 Let r̄ = (r1, ..., rd) ∈ R
d and 0 < p, q ≤ ∞. In this case the embedding

D(Td) →֒ Srp,qA(Td) →֒ D′(Td)

is valid.

Proof Step 1. Because of Lemma 1.6 it suffices to show

D(Td) →֒ S r̄∞,∞B(Td) (1.29)

for every r̄ ∈ R
d.

It holds
‖f |S r̄∞,∞B(Td)‖ ≤ C(ᾱ, r̄)

∑

γ̄≤ᾱ

‖Dγ̄f |L∞(Td)‖ (1.30)

for f ∈ D(Td) and r̄ ≤ ᾱ ∈ N
d
0, which implies immediately (1.29). See Paragraph 1.2.3.

Let us now prove (1.30). We make use of the partition N
d
0 =

⋃
β̄∈{0,1}d Iβ̄, see Paragraph

1.6.1 below. Recall the definition ᾱ ∗ β̄ in Paragraph 1.2.1. Assume that ϕ ∈ Φ(R). Then
we obtain

‖f |S r̄∞,∞B(Td)‖ = sup
ℓ̄∈Nd

0

2r̄ℓ̄
∥∥∥
∑

k∈Zd

ϕℓ̄(k)ck(f)eik·x
∣∣∣L∞(Td)

∥∥∥

≤
∑

β̄∈{0,1}d

sup
ℓ̄∈Iβ̄

2r̄ℓ̄
∥∥∥
∑

k∈Zd

ϕℓ̄(k)Mᾱ∗β̄(k)ψℓ̄(k)(ik)
ᾱ∗β̄ck(f)eik·x

∣∣∣L∞(Td)
∥∥∥ ,

with ᾱ ≥ r̄. Furthermore, the function Mᾱ is given by

Mᾱ(x1, ..., xd) = Mα1(x1) · ... ·Mαd
(xd) .

Additionally we assume for α ∈ N0

|Mα(x)| ≤ cα(1 + |x|2)−α/2 , x ∈ R ,

and Mα(k) = (ik)−α for k ∈ Z \ {0} . Finally, ψ ∈ S(Rd) is supposed to satisfy

ψ(x) =

{
1 : |x| ≤ 2
0 : |x| > 3

and ψℓ̄(x) = ψ(2−ℓ1x1)·...·ψ(2−ℓdxd) for x ∈ R
d and ℓ̄ ∈ N

d
0 . Now we obtain by Proposition

1.6

sup
ℓ̄∈Iβ̄

2r̄ℓ̄
∥∥∥
∑

k∈Zd

ϕℓ̄(k)Mᾱ∗β̄(k)ψℓ̄(k)(ik)
ᾱ∗β̄ck(f)eik·x

∣∣∣L∞(Td)
∥∥∥

≤ c1 sup
ℓ̄∈Iβ̄

2r̄ℓ̄‖ϕℓ̄(2ℓ1 ·, ..., 2ℓd ·)Mᾱ∗β̄(2
ℓ1 ·, ..., 2ℓd ·)|S 1̄

2H(Rd)‖

×
∥∥∥
∑

k∈Zd

ψℓ̄(k)(ik)
ᾱ∗β̄ck(f)eik·x

∣∣∣L∞(Td)
∥∥∥ .

(1.31)
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Of course, it also holds

sup
ℓ̄∈Iβ̄

2r̄ℓ̄‖ϕℓ̄(2ℓ1 ·, ..., 2ℓd ·)Mᾱ(2
ℓ1 ·, ..., 2ℓd ·)|S 1̄

2H(Rd)‖

≤ sup
ℓ̄∈Iβ̄

d∏

i=1

2riℓiβi‖ϕℓi(2ℓi·)Mαiβi
(2ℓi ·)|H1

2 (R)‖ .
(1.32)

Now, for ℓ > 0 we have

2ℓri‖ϕℓ(2ℓ·)Mαi
(2ℓ·)|H1

2 (R)‖ ≤ 2ℓ(ri−αi)
∥∥∥
ϕℓ(2

ℓxi)

|xi|αi

∣∣∣H1
2 (R)

∥∥∥. (1.33)

The uniform boundedness of ∥∥∥
ϕℓ(2

ℓxi)

|xi|αi

∣∣∣H1
2 (R)

∥∥∥

(with respect to ℓ) directly follows from Definition 1.1 . Consequently, (1.31), (1.32), (1.33)
and ᾱ ≥ r̄ imply

‖f |S r̄∞,∞B(Td)‖ ≤ c2
∑

β̄∈{0,1}d

sup
ℓ̄∈Iβ̄

∥∥∥
∑

k∈Zd

ψℓ̄(k)(ik)
ᾱ∗β̄ck(f)eik·x

∣∣∣L∞(Td)
∥∥∥

= c2
∑

β̄∈{0,1}d

sup
ℓ̄∈Iβ̄

∥∥∥
∑

k∈Zd

ψℓ̄(k)ck(D
ᾱ∗β̄f)eik·x

∣∣∣L∞(Td)
∥∥∥

≤ c3
∑

β̄∈{0,1}d

‖Dᾱ∗β̄f |L∞(Td)‖

≤ c3
∑

γ̄≤ᾱ

‖Dγ̄f |L∞(Td)‖.

The last step is a consequence of Lemma 1.1, where we used the uniform boundedness of
‖F−1ψℓ̄|L1(R

d)‖.

Step 2. We follow [32, 2.2.4]. It suffices to prove

S r̄p,∞B(Td) →֒ D′(Td) .

Let f ∈ S r̄p,∞B(Td), ϕ = {ϕj}j ∈ Φ(R) and ψ ∈ D(Td) . We put ϕ̄ = (ϕ, ..., ϕ). Let us
further define

χj = ϕj−1 + ϕj + ϕj+1 ,

where again ϕ−1 ≡ 0. Therefore, we can estimate.

|f(ψ)| =
∣∣∣
∑

ℓ̄∈Nd
0

∑

k∈Zd

ϕℓ̄(k) · χℓ̄(k)ck(f)

∫

Td

eikxψ(x) dx
∣∣∣

=
∣∣∣
∑

ℓ̄∈Nd
0

∫

Td

(∑

k∈Zd

ϕℓ̄(k)ck(f)eikx
)
·
( ∑

m∈Zd

χℓ̄(−m)cm(ψ)eimx
)
dx
∣∣∣

≤ c
∑

ℓ∈Nd
0

∥∥∥
∑

k∈Zd

ϕℓ̄(k)ck(f)eikx
∣∣∣L∞(Td)

∥∥∥×
∥∥∥
∑

m∈Zd

χℓ̄(−m)cm(ψ)eimx
∣∣∣L1(T

d)
∥∥∥ .
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Nikol’skij’s inequality, see Theorem 1.1, gives

|f(ψ)| ≤ c1
∑

ℓ∈Nd
0

2ℓ1/p+...+ℓd/p
∥∥∥
∑

k∈Zd

ϕℓ̄(k)ck(f)eikx
∣∣∣Lp(Td)

∥∥∥×

×
∥∥∥
∑

m∈Zd

χℓ̄(−m)cm(ψ)eimx
∣∣∣L1(T

d)
∥∥∥ ,

which implies immediately

|f(ψ)| ≤ c2‖f |S r̄p,∞B(Td)‖ϕ̄ · ‖ψ|Sκ̄1,1B(Td)‖ϕ̄ ,

where κ̄ = (1/p− r1, ..., 1/p− rd) . With Step 1 we obtain for N ∈ N large enough

|f(ψ)| ≤ c3‖f |S r̄p,∞B(Td)‖ · ‖ψ‖N . (1.34)

This proves that S r̄p,∞B(Td) is continuously embedded in D′(Td) .
�

Theorem 1.3 Let 0 < p, q ≤ ∞ and r̄ ∈ R
d. Then the spaces S r̄p,qA(Td) are

(quasi-)Banach spaces .

Proof This is a consequence of Remark 1.7, Lemma 1.7 and the completeness of D′(Td),
cf. Paragraph 1.2.3 . �

We proceed with the following important embedding.

Proposition 1.9 Let 0 < p, q ≤ ∞. The continuous embedding

S r̄p,qA(Td) →֒ Lp(T
d) ∩ Lmax(p,1)(T

d)

holds for r̄ > σp .

Proof Step 1. Following [32, Prop. 2.2.3/3] we show the embedding Srp,∞B(Td) →֒
Lmax(p,1)(T

d) . The right-hand side space is a Banach space. Thus, we have the usual
triangle inequality available. Recall the decomposition (1.20) of f ∈ S r̄p,qB(Td). Although
it is not yet clear whether f belongs to Lmax(p,1)(T

d) we estimate using Nikol’skij’s inequality
(Theorem 1.1)

‖f |Lmax(p,1)(T
d)‖ ≤

∑

ℓ∈Nd
0

‖fℓ|Lmax(1,p)(T
d)‖

≤ c1
∑

ℓ∈Nd
0

2ℓ1(1/min(1,p)−1)+...+ℓd(1/min(1,p)−1)‖fℓ|Lp(Td)‖

≤ c1
∑

ℓ∈Nd
0

2ℓ1(1/min(1,p)−1−r1)+...+ℓd(1/min(1,p)−1−rd)2r̄ℓ‖fℓ|Lp(Td)‖

≤ c2‖f |S r̄p,∞B(Td)‖ .

(1.35)
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Because of its absolute convergence the sum of course exists in Lmax(p,1)(T
d). As we have

f =
∑

ℓ∈Nd
0
fℓ in D′(Td) the limit element must be f . The embedding L1(T

d) →֒ Lp(T
d)

gives us also f ∈ Lp(T
d) if p < 1. Here the situation is much simpler than in the non-

periodic case, compare with [32, 2.2.3] . Having this, we conclude

‖f |Lp(Td)‖ =
∥∥∥
∑

ℓ∈Nd
0

fℓ

∣∣∣Lp(Td)
∥∥∥ ≤

∥∥∥
∑

ℓ∈Nd
0

|fℓ|
∣∣∣Lp(Td)

∥∥∥

= ‖f |S 0̄
p,1F (Td)‖ ≤ ‖f |S r̄p,∞B(Td)‖ .

�

Remark 1.11 The previous embedding is sharp in the following way. If r̄ = σp then
the corresponding space Sσp

p,qA(Td) contains distributions, which are not regular (see Para-
graph 1.2.3). Recall the δ-distribution from Paragraph 1.2.3. We show that δ belongs to
S

1/p−1
p,∞ B(Td) if p ≤ 1. Let us choose a system ϕ ∈ Φ(R). With view on (1.4) we have to

estimate the quantities
∥∥∥
∑

k∈Zd

ϕℓ̄(k)e
ikx
∣∣∣Lp(Td)

∥∥∥ , ℓ̄ ∈ N
d
0 .

By using Lemma 1.2 we derive for fixed ℓ̄ ∈ N0 the following. The first estimate will be a
consequence of the inequality (

∑ |ak|)p ≤
∑ |ak|p for p ≤ 1 . We obtain

∥∥∥
∑

k∈Zd

ϕℓ̄(k)e
ikx
∣∣∣Lp(Td)

∥∥∥ = c1

(∫

Td

∣∣∣
∑

ℓ̄∈Zd

F−1ϕℓ̄ (x+ 2πℓ̄)
∣∣∣
p

dx
)1/p

≤ c2

(∫

Td

∑

ℓ̄∈Zd

|F−1ϕℓ̄ (x+ 2πℓ̄)|p dx
)1/p

= c2

(∑

ℓ̄∈Zd

∫

Td

|F−1ϕℓ̄ (x+ 2πℓ̄)|p dx
)1/p

= c2

(∫

Rd

|F−1ϕℓ̄ (y)|p dy
)1/p

.

Now well-known homogeneity properties of the Fourier transform yield finally
∥∥∥
∑

k∈Zd

ϕℓ̄(k)e
ikx
∣∣∣Lp(Td)

∥∥∥ ≤ c32
|ℓ̄|1(1−1/p) . (1.36)

We finish with

‖f |S1/p−1
p,∞ B(Td)‖ = sup

ℓ̄∈Nd
0

2|ℓ̄|1(1/p−1)
∥∥∥
∑

k∈Zd

ϕℓ̄(k)e
ikx
∣∣∣Lp(Td)

∥∥∥

≤ c32
|ℓ̄|1(1/p−1)2|ℓ̄|1(1−1/p) <∞ .

(1.37)
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It is important for us to know which conditions force the considered function spaces to
be continuously embedded into the space C(Td). This space has to be considered as the
closed subspace of L∞(Td) containing only continuous functions. We restrict to the case
where we have the same smoothness in each direction. See Remark 1.6 .

Theorem 1.4 Let 0 < p ≤ ∞, 0 < q ≤ ∞ and r ∈ R. Then the following assertions are
equivalent.
(i) Srp,qB(Td) →֒ C(Td) ,
(ii) Srp,qB(Td) →֒ L∞(Td) and
(iii) r > 1/p or r = 1/p and q ≤ 1 .

Proof Step 1. Let us prove the implications (iii) → (i) and (iii) → (ii) simultaneously.
We start with an f ∈ Srp,qB(Td) . Let us estimate ‖f |L∞(Td)‖ with the help of Theorem
1.1

‖f |L∞(Td)‖ ≤
∑

ℓ̄∈Nd
0

‖fℓ̄|L∞(Td)‖

≤ c1
∑

ℓ̄∈Nd
0

2ℓ1/p+...+ℓd/p‖fℓ̄|Lp(Td)‖

≤ c2‖f |S1/p
p,1 B(Td)‖ .

Precisely, we argue as follows. Reading the estimates backwards we observe that
∑

ℓ̄ fℓ̄,
where fℓ̄ is continuous, converges absolutely in L∞(Td). This implies the convergence itself
and because of (1.20) the limit must be f .
Step 2. We prove ¬(iii) → ¬(i) and ¬(iii) → ¬(ii) simultaneously. We assume r < 1/p
or (r = 1/p and q > 1). We construct a family {f̃n}n ⊂ C(Td) of functions satisfying

sup
n

‖f̃n|L∞(Td)‖ = ∞ and sup
n

‖f̃n|Srp,qB(Td)‖ <∞ . (1.38)

Let us define the building blocks gℓ ∈ C(T), ℓ ∈ N, by

gℓ(x) =
1

ℓ2ℓ

∑

k∈Z

ψℓ(k)e
ikx ,

where ψℓ = ψ0(2
−ℓx), ψ0(x) = ψ(10/9x) − ψ(4/3x) and 0 ≤ ψ ≤ 1 satisfies

ψ(x) =

{
1 : |x| ≤ 1
0 : |x| > 10/9 .

Of course, suppψ0 ⊂ [3/4, 1] and ψ0(x) = 1 for all x ∈ [5/6, 9/10] . The functions fn are
defined by

fn =
n∑

ℓ=1

gℓ , n ∈ N .
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Further, we need a special element ϕ ∈ Φ(R). We refer to Remark 1.4 and make use of
almost the same function ϕ0(x) we employed in this context but with the modification
ϕ(x) = 0 for |x| > 3/2 . Obviously ϕℓ(x) = 1 if x ∈ suppψℓ . Then for fixed n ∈ N we have
the equation

∥∥∥
∑

k∈Z

ϕℓ(k)ck(fn)e
ikx
∣∣∣Lp(T)

∥∥∥ =
1

ℓ2ℓ

∥∥∥
∑

k∈Z

ψℓ(k)e
ikx
∣∣∣Lp(T)

∥∥∥ , ℓ ∈ N .

Let us distinguish the cases p ≤ 1 and p > 1 . The first case can be treated as in Remark
1.11 . Using Lemma 1.2 we obtain in the case p ≤ 1

∥∥∥
∑

k∈Z

ϕℓ(k)ck(fn)e
ikx
∣∣∣Lp(T)

∥∥∥ ≤ c

ℓ2ℓ
2ℓ(1−1/p) =

c

ℓ2ℓ/p
, ℓ ∈ N .

The same holds in the case p > 1. We employ Lemma 1.1, Minkowski’s inequality and use
assertions concerning the Lp(T)-norm of the Dirichlet kernel. See for instance [45, Sect.
I.1] . Recall that r < 1/p or r = 1/p and q > 1. Hence, for n ∈ N

‖fn|Br
p,q(T)‖ϕ =

(∑

ℓ∈N0

2rℓq
∥∥∥
∑

k∈Z

ϕℓ(k)ck(fn)e
ikx
∣∣∣Lp(T)

∥∥∥
q)1/q

≤ c
(∑

ℓ∈N

2ℓ(r−1/p)q

ℓq

)1/q

≤ C(r, p, q) <∞

holds (modification in case q = ∞). So we have uniform boundedness of ‖fn|Br
p,q(T)‖

which implies immediately the same for ‖f̃n|Srp,qB(Td), where

f̃n(x1, ..., xd) = fn(x1) , n ∈ N .

It remains to prove the first equation in (1.38) . Obviously, we have

‖f̃n|L∞(Td)‖ = ‖fn|L∞(T)‖ ≥ |fn(0)| =
n∑

ℓ=1

gℓ(0)

=
n∑

ℓ=1

1

ℓ2ℓ

∑

k∈Z

ψℓ(k) ≥ c1

n∑

ℓ=1

1

ℓ
−−−→
n→∞

∞

with some positive constant c1 > 0 . �

For the F -scale we have a similar result.

Theorem 1.5 Let 0 < p < ∞, 0 < q ≤ ∞ and r ∈ R. Then the following assertions are
equivalent.
(i) Srp,qF (Td) →֒ C(Td) ,
(ii) Srp,qF (Td) →֒ L∞(Td) and
(iii) r > 1/p or r = 1/p and p ≤ 1 .
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Proof We apply the strategy used in [20, Lem. 4.7] (real interpolation of vector-valued
Lp-spaces) to prove the embedding

S1/p
p,∞F (Td) →֒ S0

∞,pB(Td) .

All arguments used there carry over to the periodic d-dimensional case. Theorem 1.4 then
implies

S1/p
p,∞F (Td) →֒ C(Td)

if p ≤ 1. What remains follows as a consequence of a corresponding result for isotropic
F -spaces (see for instance [38]) and Remark 1.8 (cross-norm). �

Corollary 1.1 Let 0 < p ≤ ∞, 0 < q ≤ ∞ and r̄ ∈ R
d satisfying r̄ > 1/p. Then we have

both
S r̄p,qB(Td) →֒ C(Td) and S r̄p,qF (Td) →֒ C(Td) ,

with p <∞ in the F -case .

1.4.4 Littlewood-Paley Theory

We also state a theorem of Littlewood-Paley type for spaces with dominating mixed
smoothness. Let us first define Sobolev spaces of this type. This is the direct general-
ization of the spaces Nikol’skij considered (recall the introduction).

If r̄ ∈ N
d
0 and 1 ≤ p ≤ ∞ the Sobolev space S r̄pW (Td) of dominating mixed smoothness of

order r̄ is defined as the collection of all f ∈ Lp(T
d) such that

Dαf ∈ Lp(T
d) , α = (α1, . . . , αd) , 0 ≤ α ≤ r̄.

Derivatives have to be understood in the weak sense. We endow these classes with the
norm

‖ f |S r̄pW (Td)‖ :=
∑

α≤r̄

‖Dαf |Lp(Td)‖ . (1.39)

For general r̄ ≥ 0 and 1 < p <∞ one may use
∑

k∈Zd

ck(f)(1 + |k1|2)r1/2 . . . (1 + |kd|2)rd/2 eikx ∈ Lp(T
d)

as well as

‖ f |S r̄pW (Td)‖ :=
∥∥∥
∑

k∈Zd

ck(f)(1 + |k1|2)r1/2 . . . (1 + |kd|2)rd/2 eikx
∣∣∣Lp(Td)

∥∥∥ . (1.40)

We will also write SrpW (Td) instead of S(r,...,r)
p W (Td) . Clearly we have S(0,...,0)

p W (Td) =
Lp(T

d). Also the following assertion of Littlewood-Paley type holds true.
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Theorem 1.6 Let 1 < p <∞ and r̄ ≥ 0. Let fℓ̄ be defined as in (1.20). Then

‖ f |S r̄pW (Td)‖ ≍
∥∥∥
(∑

ℓ̄∈Nd
0

22r̄ℓ̄|fℓ̄(x)|2
)1/2∣∣∣Lp(Td)

∥∥∥

holds for all f ∈ Lp(T
d).

Proof For r̄ = (0, ..., 0) this can be found in Nikol’skij [27, 1.5.2/(13)]. In the general case
one has to use a lifting property. We refer to [32, 2.2.6] and [32, 2.3.1] for the nonperiodic
counterpart. �

Now the following corollary is obvious.

Corollary 1.2 Let 1 < p <∞ and r̄ ≥ 0. Then the identity

S r̄pW (Td) = S r̄p,2F (Td)

is valid in the sense of equivalent norms.

1.5 Complex Interpolation

We briefly describe the complex interpolation method following [47]. Let A0, A1 be Banach
spaces. If a linear Hausdorff space A exists such that A0, A1 →֒ A then (A0, A1) is said to
be an interpolation couple. For two interpolation couples (A0, A1) and (B0, B1) we denote
by L((A0, A1), (B0, B1)) the collection of all linear operators T : A0 + A1 → B0 + B1 such
that the restrictions T |Ai

: Ai → Bi, i = 0, 1 are continuous.
The class F = F(A0, A1) is the collection of all vector valued continuous functions f : S̄ →
A0 + A1, which are additionally analytic on S := {z ∈ C : 0 < Re z < 1} ⊂ C. This class
equipped with the norm

‖f |F‖ = max
{

sup
t∈R

‖f(it)|A0‖ , sup
t∈R

‖f(1 + it)|A1‖
}

is a Banach space. Finally, the interpolation space [A0, A1]ϑ is defined via

[A0, A1]ϑ := {a ∈ A0 + A1 : it exists f ∈ F such that a = f(ϑ)}

and equipped with the norm

‖a|[A0, A1]ϑ‖ := inf
f∈F , f(ϑ)=a

‖f |F‖ . (1.41)

Let T belong to L((A0, A1), (B0, B1)) then it turns out that
(i)

T |[A0,A1]ϑ : [A0, A1]ϑ → [B0, B1]ϑ
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is continuous and moreover
(ii)

‖T : [A0, A1]ϑ → [B0, B1]ϑ‖ ≤ ‖T : A0 → B0‖1−ϑ‖T : A1 → B1‖ϑ. (1.42)

In order to apply this method to function spaces, let us mention the retraction and core-
traction concept. For two Banach spaces A and B we call a linear continuous mapping R ∈
L(A,B) retraction if an operator S ∈ L(B,A) exists such that R ◦S = idB. We call S the
corresponding coretraction. Let R ∈ L((A0, A1), (B0, B1)) and S ∈ L((B0, B1), (A0, A1))
be retraction and coreatraction in L(A0, B0) as well as in L(A1, B1). Then

‖f | [B0, B1]ϑ‖ ≍ ‖Sf | [A0, A1]ϑ‖ , f ∈ [B0, B1]ϑ , (1.43)

holds true.

1.5.1 Basic Tools

Consider the interpolation method applied to weighted sequence spaces of type ℓσp(Aj)
(defined comparably with [47, 1.18.1/2]), where A = {Aj}j is a sequence of Banach spaces.
In the case 1 ≤ q0, q1 <∞, σ0, σ1 ∈ R this method yields the formula

[ℓσ0
q0

(Aj), ℓ
σ1
q1

(Bj)]ϑ = ℓσq ([Aj, Bj]ϑ) , (1.44)

where 0 < ϑ < 1 and also

(1/q, σ) = (1 − ϑ)(1/q0, σ0) + ϑ(1/q1, σ1) .

Secondly, we need a result concerning Lp(A)-spaces of A-valued functions, where A is a
Banach space (see [47, 1.18.4]) .

Lemma 1.8 Let 1 ≤ p0, p1 < ∞, 0 < ϑ < 1 and 1
p

= 1−ϑ
p0

+ ϑ
p1

. Then the interpolation
formula

[Lp0(A), Lp1(B)]ϑ = Lp([A,B]ϑ)

is valid.

Proof A proof can be found in [47, 1.18.4]. �

Comparable with [31] for the case d = 2 we introduce the sequence spaces

ℓσp(N
d
0) =

{
a = {aℓ̄}ℓ̄∈Nd

0

∣∣∣ aℓ̄ ∈ C and ‖a|ℓσp‖ =
(∑

ℓ̄∈Nd
0

2σ|ℓ̄|1p|aℓ̄|p
)1/p

<∞
}
,

and obtain the following interpolation result.

Lemma 1.9 Let 1 ≤ q0, q1 <∞, σ, ν ∈ R and 0 < ϑ < 1 satisfy the equation

(1/p, µ) = (1 − ϑ)(1/p0, σ) + ϑ(1/p1, ν).

Then the formula
[ℓσp0(N

d
0), ℓ

ν
p1

(Nd
0)]ϑ = ℓµp(N

d
0)

holds true.

Proof We prove this formula by iterating (1.44) .
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1.5.2 Interpolation within the Scale Sr
p,qF (Td)

We construct proper retractions and coretractions (see (1.43)) to apply the results from
the previous paragraph. Recall that

‖f |Srp,qF (Td)‖ = ‖fℓ̄|Lp(Td, ℓrq)‖ ,

where fℓ̄ , ℓ̄ ∈ N
d
0, comes from (1.20) . Let us fix a system ϕ = {ϕj(x)}∞j=0 ∈ Φ(R).

According to this we define once more the system ψ = {ψj}j ⊂ S(R) by

ψj(x) = ϕj−1(x) + ϕj(x) + ϕj+1(x) , x ∈ R .

Let us start by defining the mapping Sϕ through

Sϕ f(x) =
{∑

k∈Zd

ϕℓ̄(k)ck(f)eik·x
}
ℓ̄∈Nd

0

, f ∈ D′(Td) .

Moreover, the mapping Rψ is defined by

Rψ g = Rψ(gℓ̄)ℓ̄∈Nd
0

=
∑

ℓ̄∈Nd
0

(∑

k∈Zd

ψℓ̄(k)ck(gℓ̄)e
ikx
)

, g = (gℓ̄)ℓ̄ ⊂ D′(Td) ,

providing that the right-hand side makes sense. A simple consequence is the following. Let
f belong to D′(Td). Then Rψ(Sϕ f) is well-defined and we obtain

Rψ(Sϕf) =
∑

ℓ̄∈Nd
0

ψℓ̄(k)

(
∑

k∈Zd

ϕℓ̄(k)f̂(k)eik·x

)

=
∑

ℓ̄∈Nd
0

(
∑

k∈Zd

ϕℓ̄(k)f̂(k)eik·x

)

= f.

Consequently, we can prove the following result.

Lemma 1.10 If we assume 1 ≤ p <∞, 1 ≤ q ≤ ∞ and r > 0 then both Sϕ : Srp,qF (Td) →
Lp(T

d, ℓrq) and Rψ : Lp(T
d, ℓrq) → Srp,qF (Td) are bounded linear operators.

Proof Obviously, Sϕ belongs to L(Srp,qF (Td), Lp(T
d, ℓrq)) because of

‖Sϕf |Lp(Td, ℓrq)‖ = ‖f |Srp,qF (Td)‖ .
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Let g = (gℓ̄)ℓ̄ be an element of the space Lp(Td, ℓrq). Of course, for fixed ℓ̄ ∈ N
d
0, gℓ̄ belongs

to Lp(Td). This leads to

‖Rψg|Srp,qF (Td)‖ϕ = ‖Rψ{gℓ̄}ℓ̄|Srp,qF (Td)‖ϕ

=
∥∥∥
∑

ℓ̄∈Nd
0

(∑

k∈Zd

ϕū(k)ψℓ̄(k)ck(gℓ̄)e
ik·x
)∣∣∣Lp(Td, ℓrq)

∥∥∥

=
∥∥∥
∑

|uj−ℓj |≤2

j=1,...,d

(∑

k∈Zd

ϕū(k)ψℓ̄(k)ck(gℓ̄)e
ik·x
)∣∣∣Lp(Td, ℓrq)

∥∥∥

≤
∑

ℓ̄∈([−2,2]∩Z)d

∥∥∥
∑

k∈Zd

(ϕū · ψū+ℓ̄︸ ︷︷ ︸
=:Φū,ℓ̄

)(k)ck(gū+ℓ̄)e
ikx
∣∣∣Lp(Td, ℓrq)

∥∥∥.

Lemma 1.1 gives
∑

k∈Zd

Φū,ℓ̄(k)ck(gū+ℓ̄)e
ikx = (2π)−d/2

∫

Rd

F−1Φū,ℓ̄(y)gū+ℓ̄(x− y) dy , x ∈ T
d .

Using Minkowski’s inequality for the Banach space Lp(ℓq) and the uniform boundedness of
∫

Rd

|F−1Φū,ℓ̄(y)| dy

we obtain by a standard argumentation

‖Rψg|Srp,qF (Td)‖ ≤ c3‖gū|Lp(Td), ℓrq‖ .
�

The final result of this subsection reads as follows.

Theorem 1.7 Let 1 ≤ p0, p1 < ∞, 1 ≤ q0, q1 < ∞ and r0, r1 ∈ R. Let further 0 < ϑ < 1
and

(1/p, 1/q, r) = (1 − ϑ) · (1/p0, 1/q0, r0) + ϑ · (1/p1, 1/q1, r1).

Under these assumptions we get the complex interpolation formula

[Sr0p0,q0F (Td), Sr1p1,q1F (Td)]ϑ = Srp,qF (Td) .

Proof We make use of both Lemma 1.8 and the previously defined mappings Sϕ and Rψ to-
gether with (1.43). We consider the interpolation couple (A0, A1) =

(
Lp0(T

d, ℓr0q0), Lp1(T
d, ℓr1q1)

)

as well as (B0, B1) =
(
Sr0p0,q0F (Td), Sr1p1,q1F (Td)

)
. This leads to

‖f | [Sr0p0,q0F (Td), Sr1p1,q1F (Td)]ϑ ‖ ≍ ‖Sϕf | [Lp0(Td, ℓr0q0), Lp1(T
d, ℓr1q1)]ϑ ‖

≍ ‖Sϕf |Lp(Td, [ℓr0q0 , ℓ
r1
q1

]ϑ)‖
≍ ‖Sϕf |Lp(Td, ℓrq)‖
≍ ‖f |Srp,qF (Td)‖ϕ .

�
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1.6 Characterization by Differences

This section deals with the problem of characterizing the spaces, defined in Section 1.4, by
quantities involving first (or even higher) order differences of type ∆hf(x) = f(x+h)−f(x).
This field has a long tradition, especially in the former Soviet Union (see [1], [45], [27] and
others). Here we present results for the characterization of the spaces S r̄p,qF (Td) and
S r̄p,qB(Td) by integral means of differences for arbitrary d, see Paragraph 1.6.4. We mainly
aim to give a counterpart of what Triebel did in [48, 2.5.11] for the isotropic case, i.e.
F s
p,q(R

d) . Based on this we additionally obtain further difference characterizations, which
use for instance classical moduli of smoothness. See Paragraph 1.6.6, Section 1.6.7 and
confer also [32, 2.3.3, 2.3.4] for the bivariate case. Finally, we concentrate on the question,
whether one can replace

∫∞

0
by
∫ 1

0
in our characterizations. This problem investigated in

Paragraph 1.6.5 turned out to be rather difficult in the dominating mixed case. However,
we are able to give a partial answer.

1.6.1 Notation

Let us introduce some further notation. To shorten some formulas (integrals) in the sequel
we shall often use dh̄ = (dh1, ..., dhn), dt̄

t̄
= dt1

t1
· · · dtn

tn
and λ

t̄
=
(
λ
t1
, ..., λ

tn

)
, where λ ∈ R.

Also the following convention will be helpful. If we have a tuple β̄ ∈ {0, 1}d such that
|β̄|1 = n ≥ 1, we assign a tuple δ̄ = (δ1, ..., δn) to β̄ with the property

1 ≤ δ1 < δ2 < · · · < δn ≤ d and βδi = 1 , i = 1, ..., n. (1.45)

Let us here fix some often used sets and index-sets. For k ∈ Z we put

Ik = [−2k, 2k] and I+
k = [0, 2k].

Additionally, we put for j ∈ N0 and k ∈ Z

I∆
j :=

{
Ij \ Ij−1 : j ≥ 1
I0 : j = 0

and I +∆
k := I+

k \ I+
k−1 .

Assuming β̄ ∈ {0, 1}d with |β̄|1 = n ≥ 1 and δ̄ according to β̄ we define for µ̄ ∈ Z
d

Qµ̄,β̄ := Iµδ1
× ...× Iµδn

,

Q+
µ̄,β̄

:= I+
µδ1

× ...× I+
µδn

,

Q+∆
µ̄,β̄

:= I +∆
µδ1

× ...× I +∆
µδn

(1.46)

and for µ̄ ∈ N
d
0

Q∆
µ̄,β̄ := I∆

µδ1
× ...× I∆

µδn
. (1.47)
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If β̄ = (1, ..., 1) we put Qµ̄ := Qµ̄,β̄ , Q+
µ̄ := Q+

µ̄,β̄
, Q+ ∆

µ̄ := Q+∆
µ̄,β̄

and Q∆
µ̄ := Q∆

µ̄,β̄
.

The mentioned index-sets are given by

Iβ̄ = {ℓ̄ = (ℓ1, ..., ℓd) ∈ N
d
0 : ℓi = 0 ⇐⇒ βi = 0 , i = 1, ..., d} ,

Zβ̄ =
{
(k1, ..., kd) ∈ Z

d : βi = 0 =⇒ ki = 0, i = 1, ..., d
}
,

Z̄β̄ = Z1̄−β̄ ,

Nβ̄ = Zβ̄ ∩ N
d
0 ,

N̄β̄ = N1̄−β̄ ,

Eβ̄ = Zβ̄ ∩ {0, 1}d ,
Ēβ̄ = E1̄−β̄ .

(1.48)

And according to m̄ = (m1, ...,md) ∈ N
d we define the sets M i

1 = {0, ...,mi} and M i
0 = {0},

i = 1, ..., d. Finally, for β̄ ∈ {0, 1}d we put

Mβ̄ = M1
β1

× ...×Md
βd
. (1.49)

1.6.2 Preliminaries

For several reasons we will need a modification of the famous Paley-Wiener-Schwartz the-
orem.

Theorem 1.8 Let b̄ > 0. The following assertions are equivalent.

(i) f belongs to S ′(Rd) and satisfies suppFf ⊂ {y : |yi| ≤ bi, i = 1, ..., d}.

(ii) f is a regular distribution which can be holomorphically extended to C
d. Furthermore,

we have the growth condition: For an appropriate real number λ > 0 and any ε > 0
there exists a constant cε such that

|f(z)| ≤ cε(1 + |x|)λe(b1+ε)|y1| · ... · e(bd+ε)|yd| , z = x+ iy , x, y ∈ R
d.

Proof With some obvious modifications in the proof of the classical theorem, see for ex-
ample [58, VI.4], one obtains the version above. �

Remark 1.12 For us an important consequence is the following. We consider f ∈ S ′(Rd)
with suppFf ⊂ {y : |yi| ≤ bi, i = 1, ..., d}. One direction of Theorem 1.8 tells us that
f is representable as an entire analytic function f(z) with some growth condition. If we
fix one variable, say zk, in f (to a real number) the outcome is also an entire analytic
function on C

d−1 with a corresponding growth condition, but without the term e(bk+ε)|yk|.
Applying the second direction of the equivalence one can interpret this trace function as a
tempered distribution with support of the Fourier transform in [−b1, b1]×...×[−bk−1, bk−1]×
[−bk+1, bk+1] × ...× [−bd, bd].
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Recall Paragraph 1.3.2. It is necessary to introduce a modification of the Peetre-Feffermann-
Stein maximal operator, defined in (1.12). Let b̄, s̄ and f be defined like in this context.
Additionally, we need a parameter ᾱ ∈ {0, 1}d\{(0, ..., 0)}. The modified maximal function
Pb̄,s̄,ᾱf is given by

Pb̄,s̄,ᾱf(x) := sup
z∈Rd

|f(x− ᾱ ∗ z)|
(1 + |b1α1z1|s1) · ... · (1 + |bdαdzd|sd)

. (1.50)

Obviously, the maximal operator defined in (1.12) is applied to the directions where the
corresponding component of ᾱ equals one. With the same arguments used for the maximal
operator M and Mi, respectively, we obtain the following generalization of Proposition 1.5 .

Theorem 1.9 Assume p, q, b̄ℓ, s̄ and Λ = {Λℓ}ℓ∈I as in Proposition 1.5. Let further be
ᾱ ∈ {0, 1}d. Then a constant c > 0 exists (independent of f and Λ) such that

∥∥Pb̄ℓ,s̄,ᾱfℓ|Lp(Td, ℓq)
∥∥ ≤ c

∥∥fℓ|Lp(Td, ℓq)
∥∥

holds for all systems f = {fℓ}ℓ∈I ⊂ LΛ
p (Td, ℓq).

Proof We argue analogously to Proposition 1.4. Doing so the assertion follows immedi-
ately from Proposition 1.5, Theorem 1.8 and Remark 1.12. �

1.6.3 Differences versus Maximal Functions

Definitions

We define differences of order M as well as corresponding mixed differences. Essentially
the same notation will be used as in [32, 2.3.3]. Fix h ∈ R. Under a first order difference
with step-length h of a function f : R → C we want to understand the function △hf which
is defined by

△hf(x) = f(x+ h) − f(x) , x ∈ R.

Iteration leads to Mth order differences, given by

△M
h f(x) = △h(△M−1

h f)(x) , M ∈ N , △0
h = I. (1.51)

Using mathematical induction one can show the explicit formula

△M
h f(x) =

M∑

j=0

(−1)j
(
M

j

)
f(x+ (M − j)h). (1.52)

For our special purpose we need differences with respect to a certain component of f as
well as mixed differences. Let us first define the operator △m

h,if applied to a function
f : R

d → C. Having (1.52) in mind we set

△m
h,if(x) =

m∑

j=0

(−1)j
(
m

j

)
f(x1, ..., xi + (m− j)h, xi+1, ..., xd) , (1.53)
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where m ∈ N0, h ∈ R, i = 1, ..., d and x = (x1, ..., xd) ∈ R
d. Hence, one obtains similar to

(1.51) for m ∈ N the recursion formula

△m
h,if(x) = △1

h,i(△m−1
h,i f)(x) , i = 1, ..., d.

The combination of this kind of operators (acting on different components) is called mixed
difference. For later use we need a suitable abbreviating symbol. Let h̄ ∈ R

d, ᾱ ∈ {0, 1}d
and δ̄ be assigned to |ᾱ|1 = n ≥ 1 in the sense of (1.45). Let us further define the operator

△m̄
h̄, ᾱ :=

( n∏

i=1

△mδi

hδi
,δi

)
:=

{ △mδ1
hδ1

,δ1
◦ · · · ◦ △mδn

hδn ,δn
: |ᾱ|1 = n

I : |ᾱ|1 = 0
. (1.54)

We try to avoid the product-symbol. Nevertheless, in few cases it is useful and therefore
we will refer to (1.54) to recall the exact definition.

Differences and Maximal Functions

We want to develop some tools to estimate differences by maximal functions.
The first inequality is obvious but nevertheless essential. Let m ∈ N0 and f be a locally
integrable function. Then

1∫

−1

|f(x+mh)| dh ≤ 2 ·Mf(x) (1.55)

holds for almost all x ∈ R. In the following we concentrate on estimating differences by
maximal functions, defined in (1.12) and (1.50). See also [32, Lem. 2.3.3].

Lemma 1.11 Let a, b > 0, m ∈ N, h ∈ R and f ∈ S ′(R) with suppFf ⊂ [−b, b]. Then
there exists a constant c > 0 independent of f , b and h such that

| △m
h f(x)| ≤ cmax(1, |bh|a) min(1, |bh|m)Pb,af(x)

holds for all x ∈ R.

Proof The main instruments of the proof are the left-hand inequality in Lemma 1.3 and
the mean-value theorem of calculus. Because of Theorem 1.8 the distribution f is an entire
analytic function and hence the restriction to R is C∞. So the mean-value theorem provides
us ξ with |ξ − x| ≤ h such that

| △1
h f(x)| = f ′(ξ) · h.

Iteration of this argument leads to

| △m
h f(x)| = | △1

h (△m−1
h f)(x)|

≤ sup
|y|≤h

| △m−1
h f ′(x− y)| · |h|

...

≤ |h|m sup
|y|≤mh

|f (m)(x− y)|
1 + |by|a (1 + |by|a).
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Hence, we obtain

| △m
h f(x)| ≤ |h|m sup

y∈R

|f (m)(x− y)|
1 + |by|a · sup

|y|≤mh

(1 + |by|a)

= |h|m sup
y∈R

|f (m)(x− y)|
1 + |by|a · (1 +ma|bh|a)

≤ 2ma
︸︷︷︸
=:cm,a

·|h|m max(1, |bh|a) sup
y∈R

|f (m)(x− y)|
1 + |by|a .

(1.56)

What remains is a consequence of a homogeneity argument. To understand this let g ∈
S ′(R) such that suppFg ⊂ [−1, 1]. Then

| △m
h g(x)| ≤ cm,a|h|m max(1, |h|a) · sup

y∈R

|g(m)(x− y)|
1 + |y|a (1.57)

follows by (1.56). We apply (1.57) to the function g(x) = f(x/b). It is easy to see, that
g ∈ S ′(R) and suppFg ⊂ [−1, 1]. Furthermore, we have

△m
h f(x) = △m

bhg(bx).

Hence, (1.57) gives us

| △m
h f(x)| = | △m

bh g(bx)|

≤ cm,a|bh|m max(1, |bh|a) · sup
y∈R

|g(m)(bx− y)|
1 + |y|a .

At next we use the left hand side of Lemma 1.3 and obtain

| △m
h f(x)| ≤ c′m,a|bh|m max(1, |bh|a) sup

y∈R

|g(bx− y)|
1 + |y|a

= c′m,a|bh|m max(1, |bh|a) sup
y∈R

|g(b(x− y))|
1 + |by|a

= c′m,a|bh|m max(1, |bh|a)Pb,af(x).

(1.58)

On the other hand we can directly estimate using (1.52). This yields

| △m
h f(x)| =

∣∣∣∣∣

m∑

j=0

(−1)j
(
m

j

)
f(x+ (m− j)h)

∣∣∣∣∣

≤ cm sup
|y|≤mh

|f(x− y)|
1 + |by|a (1 + |by|a)

≤ 2c′′m sup
y∈R

|f(x− y)|
1 + |by|a · max(1, |mhb|a)

≤ c′′m,a max(1, |hb|a)Pb,af(x).

(1.59)
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And finally, (1.58) together with (1.59) completes the proof. �

The following lemma generalizes the previous one to d dimensions. For sake of brevity we
define

A(s, t) := max(1, s) min(1, t) , for s, t ≥ 0.

A simple property consists in the following. For fixed v, w > 0 there is a constant cv,w > 0
such that

A(v · s, w · t) ≤ cv,wA(s, t) (1.60)

for all s, t ≥ 0.

Lemma 1.12 Let ā = (a1, ..., ad), b̄ = (b1, ..., bd) ∈ R
d satisfy ā, b̄ > 0. Let further be

m̄ = (m1, ...,md) ∈ N
d, h̄ = (h1, ..., hd) ∈ R

d and f ∈ S ′(Rd) with suppFf ⊂ Qb̄, where

Qb̄ := [−b1, b1] × ...× [−bd, bd].
Then there exists a constant c > 0 (independent of f , b̄ and h̄) such that

|(△m1
h1,1

◦ △m2
h2,2

◦ · · · ◦ △md

hd,d
f)(x)|

≤ c · A(|b1h1|a1 , |b1h1|m1) · ... · A(|bdhd|ad , |bdhd|md) · Pb̄,āf(x)

holds for all x ∈ R
d.

Proof The idea is to iterate the previous lemma. We define the function g by

g = (△m2
h2,2

◦ · · · ◦ △md

hd,d
f)(x).

Because of
Fg = (eiξ2h2 − 1)m2 · ... · (eiξdhd − 1)mdFf

the inclusion suppFg ⊂ suppFf ⊂ Qb̄ holds. Let us now fix the components x2, ..., xd
and consider the function

g̃ := g(·, x2, ..., xd).

Remark 1.12 after Theorem 1.8 gives us g̃ ∈ S ′(R) and suppF g̃ ⊂ [−b1, b1]. Finally, we
use Lemma 1.11 with △m1

h1
g̃(x1) = △m1

h1,1
g(x1, ..., xd) and obtain

|(△m1
h1,1

◦ △m2
h2,2

◦ · · · ◦ △md

hd,d
f)(x)| = △m1

h1
g̃(x1)

≤ ca1,m1A(|b1h1|a1 , |b1h1|m1) · Pb1,a1 g̃(x1)

= ca1,m1A(|b1h1|a1 , |b1h1|m1) · sup
y1

|g(x1 − y1, x2, ..., xd)|
(1 + |b1y1|a1)

.

We continue by estimating |g(x1 − y1, x2, ..., xd)| in the same manner. Iteration of this
procedure finishes the proof. �

Remark 1.13 With exactly the same arguments one proves a version of the previous
lemma to estimate mixed differences of type △m̄

h̄,ᾱ
f(x) by the maximal function Pb̄,ā,ᾱf . �
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1.6.4 Integral Means of Differences

The main result in this section is a characterization of the spaces S r̄p,qF (Td), 0 < p < ∞,
0 < q ≤ ∞ and r̄ > σp,q, using integral means (rectangle means) of differences. In some
sense it is the counterpart of [48, Th. 2.5.11], where the isotropic scale is treated in terms
of ball means. It will be also used as starting point for further difference characterization
later in this section.

Theorem 1.10 Let 0 < p < ∞, 0 < q ≤ ∞, r̄ = (r1, ..., rd) ∈ R
d and m̄ = (m1, ...,md) ∈

N
d with m̄ > r̄ > σp,q. Under these conditions the space S r̄p,qF (Td) is the collection of all

functions f ∈ Lp(T
d) ∩ L1(T

d), such that

‖f |S r̄p,qF (Td)‖R = ‖f |Lp(Td)‖ +
∑

β̄∈{0,1}d,|β̄|1≥1

SRβ̄ (f) <∞ . (1.61)

For |β̄|1 = n ≥ 1 we put

SRβ̄ (f) =

∥∥∥∥
[ ∫

(0,∞)n

( n∏

i=1

t
−rδi

q

i

)( ∫

[−1,1]n

∣∣(△mδ1
t1h1,δ1

◦ · · · ◦ △mδn

tnhn,δn
f)(x)

∣∣dh̄
)q
dt̄

t̄

]1/q∣∣∣∣Lp(T
d)

∥∥∥∥

(1.62)
with δ̄ assigned to β̄ in the sense of (1.45). In case q = ∞ one has to replace (1.62) by

SRβ̄ (f) =

∥∥∥∥ sup
t̄∈(0,∞)n

( n∏

i=1

t
−rδi

i

) ∫

[−1,1]n

∣∣(△mδ1
t1h1,δ1

◦ · · · ◦ △mδn

tnhn,δn
f)(x)

∣∣ dh̄
∣∣∣∣Lp(T

d)

∥∥∥∥.

Moreover, (1.61) is an equivalent (quasi-)norm in S r̄p,qF (Td).

Proof The proof will be divided into 2 steps.

Step 1. We fix ϕ̄ = (ϕ1, ..., ϕd) ∈ Φ(R)d. We want to show that a constant c > 0 exists
such that

‖f |S r̄p,qF‖R ≤ c‖f |S r̄p,qF‖ϕ̄

holds for every f ∈ L1(T
d)∩Lp(Td). The basic idea is to use the decomposition (1.20) and

proceed by estimating the appearing differences by maximal functions via (1.55), Lemma
1.11 and Lemma 1.12. Afterwards we shall exploit the maximal inequalities, Proposition
1.4 and Proposition 1.9. We follow [48, 2.5.11] and apply the isotropic strategy in a
certain sense to every direction. Let us make some further preparation. We choose a tuple
ā = (a1, ..., ad) >

1
min(p,q)

and a number 0 < λ < min(p, q) such that r̄ > (1 − λ)ā. It is
easy to see that this is possible: In case min(p, q) ≤ 1 we have

ri >
1

min(p, q)
(1 − min(p, q)) , i = 1, ..., d ,
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as a consequence of r̄ > σp,q . In case min(p, q) > 1 we simply choose λ = 1.
Assume firstly q <∞. We start by considering the expression Aβ̄(x) defined by

Aβ̄(x) =

∫

(0,∞)n

( n∏

i=1

t
−rδi

q

i

)( ∫

[−1,1]n

∣∣(△mδ1
t1h1,δ1

◦ · · · ◦ △mδn

tnhn,δn
f
)
(x)
∣∣dh̄
)q
dt̄

t̄
, (1.63)

where β̄ with |β̄|1 = n > 0 (and corresponding δ̄) is fixed. In order to replace in (1.63) the
integral by a sum we obtain with elementary calculations

Aβ̄(x) ≤ c
∑

k̄∈Zβ̄

∫

Q+∆
−k̄,β̄

2r̄k̄q
(

2k̄
∫

Q−k̄,β̄

∣∣(△mδ1
h1,δ1

◦ · · · ◦ △mδn

hn,δn
f)(x)

∣∣ dh̄
)q

dt̄

2−k̄

≤ c
∑

k̄∈Zβ̄

2r̄k̄q
(

2k̄
∫

Q−k̄,β̄

∣∣(△mδ1
h1,δ1

◦ · · · ◦ △mδn

hn,δn
f)(x)

∣∣ dh̄
)q

= c
∑

k̄∈Zβ̄

2r̄k̄q
( ∫

[−1,1]n

∣∣(△mδ1

2
−kδ1 h1,δ1

◦ · · · ◦ △mδn

2−kδn hn,δn
f)(x)

∣∣ dh̄
)q

≤ c
∑

k̄∈Zβ̄

2r̄k̄q
( ∫

[−1,1]d

∣∣△m̄
2−k̄∗h̄, β̄

f(x)
∣∣ dh̄
)q

.

For the used notation we refer to (1.46). Recall the Fourier analytical decomposition of f
in

fℓ̄(x) =
∑

k∈Zd

(ϕ1 ⊗ ...⊗ ϕd)ℓ̄(k)ck(f)eik·x , x ∈ T
d, ℓ̄ ∈ N

d
0.

See (1.20) for details. Obviously, it holds for every k̄ ∈ Zβ̄

f =
∑

ℓ̄∈Zβ̄

∑

ū∈N̄β̄

fk̄+ℓ̄+ū (1.64)

in D′(Td), where we put ϕiℓ ≡ 0, i = 1, ..., d if ℓ < 0. Hence, for q ≤ 1 we obtain

Aβ̄(x) ≤ c
∑

ℓ̄∈Zβ̄

∑

ū∈N̄β̄

∑

k̄∈Zβ̄

2r̄k̄q
( ∫

[−1,1]d

∣∣△m̄
2−k̄∗h̄, β̄

fk̄+ℓ̄+ū(x)
∣∣ dh̄
)q
. (1.65)

Precisely, we used the unconditional L1([−1, 1]n)-convergence (with respect to h̄) of the
sum ∑

ℓ̄∈Zβ̄

∑

ū∈N̄β̄

△m̄
2−k̄∗h̄, β̄

fk̄+ℓ̄+ū(x)

for fixed x. This follows from its absolute L1-convergence and (1.64). In some sense the
arguments are justified if one reads the estimates backwards.
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If q > 1 the triangle inequality in ℓq gives the estimate

Aβ̄(x)
1/q ≤ c

∑

ℓ̄∈Zβ̄

∑

ū∈N̄β̄

[ ∑

k̄∈Zβ̄

2r̄k̄q
( ∫

[−1,1]d

∣∣△m̄
2−k̄∗h̄, β̄

fk̄+ℓ̄+ū(x)
∣∣ dh̄
)q ]1/q

(1.66)

instead of (1.65). We continue in estimating Aβ̄(x) in case q ≤ 1. For the moment we
postpone the case q > 1. We decompose RHS(1.65) into the following blocks with respect
to the ℓ̄-sum

Aᾱβ̄(x) =
∑

ℓ̄∈Zᾱ
β̄

∑

ū∈N̄β̄

∑

k̄∈Zβ̄

2r̄k̄q
( ∫

[−1,1]d

∣∣△m̄
2−k̄∗h̄, β̄

fk̄+ℓ̄+ū(x)
∣∣ dh̄
)q

, (1.67)

where ᾱ ≤ β̄,

Z ᾱ
β̄ =

{
(k1, ..., kd) ∈ Z

d : (βi = 0 =⇒ ki = 0)

∧ ((αi, βi) = (0, 1) =⇒ ki ≥ 0)

∧ ((αi, βi) = (1, 1) =⇒ ki ≤ 0) , i = 1, ..., d
}

and hence Zβ̄ ⊂ ⋃
ᾱ≤β̄

Z ᾱ
β̄
. Consequently, we obtain

Aβ̄(x) ≤ c
∑

ᾱ≤β̄

Aᾱβ̄(x). (1.68)

We investigate the behaviour of the integral
∫

[−1,1]d

∣∣△m̄
2−k̄∗h̄, β̄

fk̄+ℓ̄+ū(x)
∣∣ dh̄ =

∫

[−1,1]d

∣∣△m̄
2−k̄∗h̄, ᾱ

◦ △m̄
2−k̄∗h̄, (β̄−ᾱ)

fk̄+ℓ̄+ū(x)
∣∣ dh̄ (1.69)

inside RHS(1.67) for a fixed ᾱ ≤ β̄. To avoid technical difficulties we just consider the
special situation β̄ = (1, ..., 1, 0, ..., 0) and ᾱ = (1, ..., 1, 0, ..., 0), where |ᾱ|1 ≤ |β̄|1. All other
cases can be treated analogously. One only has to change the order of difference operators
appropriately. With the help of Lemma 1.12 and Remark 1.13, respectively, we lose the
first part △m̄

2−k̄∗h̄,ᾱ
of the mixed difference in (1.69). Estimation by a maximal function of

type (1.50) using Lemma 1.12 and (1.60) yields
∫

[−1,1]d

∣∣△m̄
2−k̄∗h̄, ᾱ

◦ △m̄
2−k̄∗h̄, (β̄−ᾱ)

fk̄+ℓ̄+ū(x)
∣∣ dh̄

≤ c1A(|2ℓ1+k12−k1 |a1 , |2ℓ1+k12−k1 |m1) · ... · A(|2ℓ|ᾱ|1
+k|ᾱ|12−k|ᾱ|1 |a|ᾱ|1 , |2ℓ|ᾱ|1

+k|ᾱ|12−k|ᾱ|1 |m|ᾱ|1 )

·
∫

[−1,1]d

Pb̄,ā,ᾱ(△m̄
2−k̄∗h̄,(β̄−ᾱ)

fk̄+ℓ̄+ū)(x) dh̄ ,

(1.70)
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where ā was chosen together with λ right at the beginning. Additionally, we put b̄ =
(2k1+ℓ1 , ..., 2kd+ℓd). Recall the fact ℓ1, ..., ℓ|ᾱ|1 ≤ 0. In case |ᾱ|1 < |β̄|1 = n this simplifies
estimate (1.70) to

∫

[−1,1]d

∣∣△m̄
2−k̄∗h̄, ᾱ

◦ △m̄
2−k̄∗h̄, (β̄−ᾱ)

fk̄+ℓ̄+ū(x)
∣∣ dh̄

≤ c12
ℓ1m1 · ... · 2ℓ|ᾱ|1

m|ᾱ|1

∫

[−1,1]d

Pb̄,ā,ᾱ(△m̄
2−k̄∗h̄,(β̄−ᾱ)

fk̄+ℓ̄+ū)(x) dh̄ .

(1.71)

Whereas we otherwise (in case |ᾱ|1 = |β̄|1) end up with
∫

[−1,1]d

∣∣△m̄
2−k̄∗h̄, ᾱ

◦ △m̄
2−k̄∗h̄, (β̄−ᾱ)

fk̄+ℓ̄+ū(x)
∣∣ dh̄ ≤ c12

ℓ1m1 · ... · 2ℓnmnPb̄,ā,β̄(fk̄+ℓ̄+ū)(x)

instead of (1.71). To proceed with (1.71) we need a new strategy. The remaining difference
operator inside (1.71) acts on the components of fk̄+ℓ̄+ū(x), that correspond to the ℓ̄-
components in Z ᾱ

β̄
, which run over N0. Of course, it can be estimated in the same manner

we did above. We obtain by Lemma 1.12

Pb̄,ā,ᾱ(△m̄
2−k̄∗h̄,(β̄−ᾱ)

fk̄+ℓ̄+ū)(x) ≤ c2ℓ|ᾱ|1+1a|ᾱ|1+1 · ... · 2ℓnanPb̄,ā,β̄(fk̄+ℓ̄+ū)(x). (1.72)

Let us first split the integrand in RHS(1.71) into the product

Pb̄,ā,ᾱ(△m̄
2−k̄∗h̄,(β̄−ᾱ)

fk̄+ℓ̄+ū)(x)

= |Pb̄,ā,ᾱ(△m̄
2−k̄∗h̄,(β̄−ᾱ)

fk̄+ℓ̄+ū)|1−λ(x) · |Pb̄,ā,ᾱ(△m̄
2−k̄∗h̄,(β̄−ᾱ)

fk̄+ℓ̄+ū)|λ(x).
(1.73)

In case min(p, q) > 1 there is no need for such a splitting, as λ = 1 indicates. Moreover,
the difference △m̄

2−k̄∗h̄,(β̄−ᾱ)
fk̄+ℓ̄+ū can be expanded to a sum with the help of (1.53). Using

an obvious subadditivity property of the operator Pb̄,ā,ᾱ, we can tear the sum out of the
argument. This yields

Pb̄,ā,ᾱ(△m̄
2−k̄∗h̄,(β̄−ᾱ)

fk̄+ℓ̄+ū)(x) ≤ c2
∑

w̄∈Mβ̄−ᾱ

cw̄Pb̄,ā,ᾱ(fk̄+ℓ̄+ū)(x+ w̄ ∗ 2−k̄ ∗ h̄) , (1.74)

where we refer to (1.49) for the index notation. Combining (1.72), (1.74) and (1.73) we
obtain

∫

[−1,1]d

∣∣△m̄
2−k̄∗h̄, ᾱ

◦ △m̄
2−k̄∗h̄, (β̄−ᾱ)

fk̄+ℓ̄+ū(x)
∣∣ dh̄

≤ c32
ℓ1m1 · ... · 2ℓ|ᾱ|1

m|ᾱ|12ℓ|ᾱ|1+1a|ᾱ|1+1(1−λ) · ... · 2ℓnan(1−λ)|Pb̄,ā,β̄(fk̄+ℓ̄+ū)|1−λ(x)×

×
∑

w̄∈Mβ̄−ᾱ

cw̄

∫

[−1,1]d

|Pb̄,ā,ᾱ(fk̄+ℓ̄+ū)|λ(x+ w̄ ∗ 2−k̄ ∗ h̄) dh̄.
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And finally Lemma 1.55 leads to

∫

[−1,1]d

∣∣△m̄
2−k̄∗h̄, ᾱ

◦ △m̄
2−k̄∗h̄, (β̄−ᾱ)

fk̄+ℓ̄+ū(x)
∣∣ dh̄

≤ c42
ℓ1m1 · ... · 2ℓ|ᾱ|1

m|ᾱ|12ℓ|ᾱ|1+1a|ᾱ|1+1(1−λ) · ... · 2ℓnan(1−λ)|Pb̄,ā,β̄(fk̄+ℓ̄+ū)|1−λ(x)
·M|ᾱ|1+1 ◦ ... ◦Mn(|Pb̄,ā,ᾱ(fk̄+ℓ̄+ū)|λ)(x).

(1.75)

We return to Aᾱ
β̄
(x). Together with (1.75) we obtain in our special situation

Aᾱβ̄(x) ≤c4
∑

ℓ̄∈Zα
β̄

2ℓ1(m1−r1)q · ... · 2ℓ|ᾱ|1
(m|ᾱ|1

−r|ᾱ|1
)q

· 2ℓ|ᾱ|1+1[a|ᾱ|1+1(1−λ)−r|ᾱ|1+1]q · ... · 2ℓn[an(1−λ)−rn]q

·
∑

ū∈N̄β̄

∑

k̄∈Zβ̄

2r̄(k̄+ℓ̄)q|Pb̄,ā,β̄(fk̄+ℓ̄+ū)|(1−λ)q(x)

·
∣∣M|ᾱ|1+1 ◦ ... ◦Mn(|Pb̄,ā,ᾱ(fk̄+ℓ̄+ū)|λ)

∣∣q(x).

(1.76)

After modifying the sum over k̄ in order to make it independent of ℓ̄, the sum over ℓ̄ is
nothing but a geometric series and breaks down to a constant. This is a consequence of
m̄ > r̄ and the second condition to λ (and ā). Hence, we arrive at

Aᾱβ̄(x) ≤c5
∑

ū∈N̄β̄

∑

k̄∈Nβ̄

2r̄·k̄q|P2k̄,ā,β̄(fk̄+ū)|(1−λ)q(x) ·
∣∣M|ᾱ|1+1 ◦ ... ◦Mn(|P2k̄,ā,ᾱ(fk̄+ū)|λ)

∣∣q(x)

=c5
∑

k̄∈Nd
0

2(r̄∗β̄)·k̄q|P2k̄,ā,β̄fk̄|(1−λ)q(x) ·
∣∣Mβ̄−ᾱ(|P2k̄,ā,ᾱfk̄|λ)

∣∣q(x) ,

where Mγ̄ = Mδ1 ◦ ...◦Mδ|γ̄|
(recall (1.11)) and δ̄ belongs to γ̄ ∈ {0, 1}d as usual. Altogether

we obtain the following estimates for the cases (C1) |ᾱ|1 < |β̄|1 and for (C2) |ᾱ|1 = |β̄|1,
respectively,

Aᾱβ̄(x) ≤ c5





∑
k̄∈Nd

0

2(r̄∗β̄)·k̄q|P2k̄,ā,β̄fk̄|(1−λ)q(x) ·
∣∣Mβ̄−ᾱ(|P2k̄,ā,ᾱfk̄|λ)

∣∣q(x) : C1

∑
k̄∈Nd

0

2(r̄∗β̄)·k̄q|P2k̄,ā,β̄(fk̄)|q(x) : C2
. (1.77)

The case ᾱ = (0, ..., 0), i.e. |ᾱ|1 = 0, fits into (C1). One only has to replace P2k̄,ā,ᾱfk̄ by fk̄.
With obvious modifications we obtain (1.77) for arbitrary β̄ and ᾱ ≤ β̄. Inequality (1.77)
invites us to exploit the Theorems 1.4 and 1.9 for estimating ‖Aᾱ

β̄
(x)1/q|Lp(Td)‖. Hence,
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we obtain in case (C2)

‖Aᾱβ̄(x)1/q|Lp(Td)‖ ≤ c5

∥∥∥∥
(∑

k̄∈Nd
0

2(r̄∗β̄)·k̄q|P2k̄,ā,β̄(fk̄)|q(x)
)1/q∣∣∣∣Lp(T

d)

∥∥∥∥

= c5
∥∥P2k̄,ā,β̄(2

(r̄∗β̄)·k̄fk̄)
∣∣Lp(ℓq)

∥∥

≤ c6
∥∥2(r̄∗β̄)·k̄fk̄

∣∣Lp(ℓq)
∥∥

≤ c7 ‖f |S r̄p,qF‖ϕ̄.

(1.78)

Let us now consider the case (C1). We begin using Hölder’s inequality for sums with the
exponents 1

λ
and 1

1−λ
and obtain

Aᾱβ̄(x) ≤ c5

(∑

k̄∈Nd
0

2(r̄∗β̄)·k̄q
∣∣Mβ̄−ᾱ(|P2k̄,ā,ᾱfk̄|λ)

∣∣q/λ(x)
)λ(∑

k̄∈Nd
0

2(r̄∗β̄)·k̄q|P2k̄,ā,β̄fk̄|q(x)
)1−λ

.

Applying the Lp(Td)-(quasi-)norm to the previous inequality this leads to

‖Aᾱβ̄(x)1/q|Lp(Td)‖

≤ c5

∥∥∥∥
(∑

k̄∈Nd
0

2(r̄∗β̄)·k̄q
∣∣Mβ̄−ᾱ(|P2k̄,ā,ᾱfk̄|λ)

∣∣q/λ(x)
)λp

q

×
(∑

k̄∈Nd
0

2(r̄∗β̄)·k̄q|P2k̄,ā,β̄fk̄|q(x)
) (1−λ)p

q
∣∣∣∣L1(T

d)

∥∥∥∥
1/p

≤ c5

∥∥∥∥
(∑

k̄∈Nd
0

2(r̄∗β̄)·k̄q
∣∣Mβ̄−ᾱ(|P2k̄,ā,ᾱfk̄|λ)

∣∣q/λ(x)
) p

q
∣∣∣∣L1(T

d)

∥∥∥∥
λ/p

×

×
∥∥∥∥
(∑

k̄∈Nd
0

2(r̄∗β̄)·k̄q|P2k̄,ā,β̄fk̄|q(x)
) p

q
∣∣∣∣L1(T

d)

∥∥∥∥
(1−λ)/p

.

Again we used Hölder’s inequality with the same exponents, but this time for integrals.
Rewriting of the last inequality shows

‖Aᾱβ̄(x)1/q|Lp(Td)‖ ≤c5
∥∥Mβ̄−ᾱ(|P2k̄,ā,ᾱ(2

(r̄∗β̄)·k̄fk̄)|λ)(x)
∣∣Lp/λ(Td, ℓq/λ)

∥∥×
×
∥∥P2k̄,ā,β̄(2

(r̄∗β̄)·k̄fk̄)(x)
∣∣Lp(Td, ℓq)

∥∥1−λ
.

(1.79)

The second factor can be estimated analogously to (1.78), i.e

∥∥P2k̄,ā,β̄(2
(r̄∗β̄)·k̄fk̄)(x)

∣∣Lp(Td, ℓq)
∥∥1−λ ≤ c5‖2(r̄∗β̄)·k̄fk̄|Lp(Td, ℓq)‖1−λ

≤ c7‖f |S r̄p,qF‖1−λ.
(1.80)
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Because of p/λ, q/λ > 1 and Theorem 1.4 the first part of the product (1.79) can be reduced
to
∥∥∥Mβ̄−ᾱ(|P2k̄,ā,ᾱ(2

(r̄∗β̄)·k̄fk̄)|λ)(x)
∣∣∣Lp/λ(Td, ℓq/λ)

∥∥∥ ≤ c8 ‖ |P2k̄,ā,ᾱ(2
(r̄∗β̄)·k̄fk̄)|λ|Lp/λ(Td, ℓq/λ)‖

= c8 ‖P2k̄,ā,ᾱ(2
(r̄∗β̄)·k̄fk̄)|Lp(Td, ℓq)‖λ

≤ c9 ‖2(r̄∗β̄)·k̄fk̄)|Lp(Td, ℓq)‖λ

≤ c10 ‖f |S r̄p,qF‖λ.

This fact combined with (1.79) and (1.80) yields

‖Aᾱβ̄(x)1/q|Lp(Td)‖ ≤ c11‖f |S r̄p,qF‖ϕ̄.

Hence, (1.68) gives

SRβ̄ (f) = ‖A1/q

β̄
(x)|Lp(Td)‖ ≤ c11‖f |S r̄p,qF‖ϕ̄.

What remains follows by Proposition 1.9. We now finish the case q ≤ 1. To complete Step
1 it remains to describe the necessary modifications in the case q > 1. Let us start with
(1.66).
The condition r̄ > 0 allows the following estimation

A
1/q

β̄
(x) ≤ c

∑

ℓ̄∈Zβ̄

∑

ū∈N̄β̄

2−r̄·ū2r̄·ū[· · · ]1/q ≤ c
∑

ℓ̄∈Zβ̄

sup
ū

2r̄·ū[· · · ]1/q
∑

ū∈N̄β̄

2−r̄·ū

≤ c′
∑

ℓ̄∈Zβ̄

( ∑

ū∈N̄β̄

2r̄·ūq[· · · ]
)1/q

= c′
∑

ℓ̄∈Zβ̄

(∑

k̄∈Zβ̄

∑

ū∈N̄β̄

2r̄·k̄q2r̄·ūq
( ∫

[−1,1]d

∣∣△m̄
2−k̄∗h̄, β̄

fk̄+ℓ̄+ū(x)
∣∣ dh̄
)q)1/q

.

At next, we decompose the sum over ℓ̄ in the same way we did in (1.68) and put

Aᾱβ̄(x)
1/q =

∑

ℓ̄∈Zᾱ
β̄

( ∑

ū∈N̄β̄

∑

k̄∈Zβ̄

( ∫

[−1,1]d

∣∣△m̄
2−k̄∗h̄, β̄

fk̄+ℓ̄+ū(x)
∣∣ dh̄
)q)1/q

.

From now on we can carry over the estimates given in case q ≤ 1 almost word by word.
The consequence are three cases for an upper bound concerning the expression Aᾱ

β̄
(x)1/q,

depending on |ᾱ|1 and min(p, q) (i.e. λ). We distinguish the case (C1) |ᾱ|1 < |β̄|1, λ < 1
from (C2) |ᾱ|1 < |β̄|1, λ = 1 and (C3) |ᾱ|1 = |β̄|1. Additionally, because of q > 1 the case
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min(p, q) > 1, i.e λ = 1, is possible. See also (1.77). Altogether we obtain

Aᾱβ̄(x)
1/q ≤ c′′





[
∑
k̄∈Nd

0

2r̄k̄q|P2k̄,ā,β̄fk̄|(1−λ)q(x) ·
∣∣Mβ̄−ᾱ(|P2k̄,ā,ᾱfk̄|λ)

∣∣q(x)
]1/q

: C1

[
∑
k̄∈Nd

0

2r̄k̄q
∣∣Mβ̄−ᾱ ◦ P2k̄,ā,ᾱ(fk̄)

∣∣q(x)
]1/q

: C2

[
∑
k̄∈Nd

0

2r̄k̄q|P2k̄,ā,β̄(fk̄)|q(x)
]1/q

: C3

.

What remains is similar as above. The case q = ∞ can be treated with obvious modifica-
tions and much more simpler arguments.

Step 2. We show the converse inequality using a classical construction by S. M. Nikol’skij,
cf. [27, 5.2.1]. The basic idea is to prove

‖f |S r̄p,qF‖ϕ̄ ≤ c‖f |S r̄p,qF‖R

for every f ∈ L1(T
d) ∩ Lp(Td), where ϕ̄ = (ϕ1, ..., ϕd) denotes an appropriate tuple from

Ψ(R)d. These decompositions of unity are adapted to the order of differences used to
compute ‖f |S r̄p,qF‖R. For every i ∈ {1, ..., d} we put

ϕi0(x) = (−1)mi+1

mi−1∑

µ=0

(
mi

µ

)
(−1)µψ((mi − µ)x) , (1.81)

where ψ ∈ S(R) such that

ψ(x) =

{
1 : |x| ≤ 1
0 : |x| > 3/2

.

Consequently, ϕi0 ∈ S(R) is compactly supported and moreover

ϕi0(x) =

{
1 : |x| ≤ 1/mi

0 : |x| > 3/2
. (1.82)

Equation (1.82) is clear in case |x| > 3/2. In the case |x| ≤ 1/mi we have

ϕi0(x) = (−1)mi+1

( mi∑

µ=0

(
mi

µ

)
(−1)µ − (−1)mi

)

= (−1)mi+1((1 − 1)mi − (−1)mi)

= 1.

Therefore, the function ϕi0(x) is in the sense of Definition 1.2 admissible to define via

ϕij(x) := ϕi0(2
−jx) − ϕi0(2

−j+1x) , j ≥ 1 ,
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a decomposition of unity ϕi := {ϕij(x)}∞j=0 ∈ Ψ(R). Now formula (1.52) points out the
connection to differences. Obviously, it holds

ϕi0(x) = (−1)mi+1(△mi
x ψ(0) − (−1)mi)

and
ϕij(x) = (−1)mi+1(△mi

2−jx
−△mi

2−j+1x
)ψ(0) for j > 0 ,

respectively. The effect is the occurrence of differences on the Fourier side of f . We consider
again the sequence {fℓ̄(x)}ℓ̄∈Nd

0
, where

fℓ̄(x) :=
∑

k∈Zd

(ϕ1 ⊗ ...⊗ ϕd)ℓ̄(k)ck(f)eik·x , x ∈ T
d , ℓ̄ ∈ N

d
0 ,

see (1.21) . It is necessary to divide the index-set N
d
0 into 2d disjoint subsets in the following

way
N
d
0 =

⋃

β̄∈{0,1}d

Iβ̄ ,

where we refer to (1.48) for the notation. To avoid technical difficulties we again discuss
only the case β̄ = (1, ..., 1, 0, ..., 0) with |β̄|1 = n. Hence for ℓ̄ ∈ Iβ̄ we arrive at

|fℓ̄(x)| =
∣∣∣
∑

k∈Zd

[
(△m1

2−ℓ1k1
−△m1

2−ℓ1+1k1
)ψ(0)

· (△m2

2−ℓ2k2
−△m2

2−ℓ2+1k2
)ψ(0)

...

· (△mn

2−ℓnkn
−△mn

2−ℓn+1kn
)ψ(0)

· ϕn+1
0 (kn+1) · ... · ϕd0(kd)

]
ck(f)eik·x

∣∣∣ .

Together with (1.81) we obtain

|fℓ̄(x)| =
∣∣∣
mn+1−1∑

µn+1=0

· · ·
md−1∑

µd=0

Cmn+1
µn+1

· ... · Cmd
µd

×

×
∑

k∈Zd

[
(△m1

2−ℓ1k1
−△m1

2−ℓ1+1k1
)ψ(0) · ... · (△mn

2−ℓnkn
−△mn

2−ℓn+1kn
)ψ(0)×

× ψ((mn+1 − µn+1)kn+1) · ... · ψ((md − µd)kd)
]
ck(f)eik·x

∣∣∣ ,

(1.83)

where Cm
µ := (−1)µ

(
m
µ

)
for 0 ≤ µ ≤ m. Since f ∈ L1(T

d) Lemma 1.1 gives the following
∑

k∈Zd

ψ(η1k1) · ... · ψ(ηdkd)ck(f)eik·x

= −(2π)−d/2
∫

Rd

F
[
(ψ ⊗ ...⊗ ψ)(·)

]
(h̄)f(x1 + η1h1, ..., xd + ηdhd)dh̄.
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The function g(h̄) := F
[
(ψ ⊗ ... ⊗ ψ)(·)

]
(h̄) belongs to S(Rd). Consequently, for every

r > 0 there exists constant cr > 0 such that for every h̄ ∈ R
d

(1 + |h1|2)r/2 · ... · (1 + |hd|2)r/2|g(h̄)| ≤ cr (1.84)

holds. See also (1.2). Applied to (1.83) the differences on the right-hand side carry over to
f , precisely

|fℓ̄(x)| ≤ (1.85)

c

∫

Rd

|g(h̄)| ·
∣∣(△m1

2−ℓ1h1,1
−△m1

2−ℓ1+1h1,1
) ◦ ... ◦ (△mn

2−ℓnhn,n
−△mn

2−ℓn+1hn,n
)(Lh̄f)(x)

∣∣ dh̄ ,

where

Lh̄f(x) =

mn+1−1∑

µn+1=0

· · ·
md−1∑

µd=0

Cmn+1
µn+1

· ... · Cmd
µd

× (1.86)

×f(x1, ..., xn, xn+1 + (mn+1 − µn+1)hn+1, ..., xd + (md − µd)hd).

Consulting (1.52) we notice that Lh̄f(x) is almost a mixed difference. Appropriate de-
composition of RHS(1.86) gives us precisely a sum of mixed differences. Due to technical
reasons we rewrite (1.86) in

Lh̄f(x) =

mn+1∑

µn+1=1

· · ·
md∑

µd=1

C
mn+1

mn+1−µn+1
· ... · Cmd

md−µd
×

× f(x1, ..., xn, xn+1 + µn+1hn+1, ..., xd + µdhd).

See again (1.48) for our predefined index-sets. For abbreviation we define the quantity

Cm̄
µ̄ :=

d∏
i=1

Cmi
µi

. Now it follows

Lh̄f(x) =
∑

ᾱ∈Ēβ̄

|ᾱ|1=d−n

∑

µ̄∈Mᾱ

Cm̄
m̄−µ̄ · f(x+ ᾱ ∗ µ̄ ∗ h̄)

−
∑

ᾱ∈Ēβ̄

|ᾱ|1=d−n−1

∑

µ̄∈Mᾱ

Cm̄
m̄−µ̄ · f(x+ ᾱ ∗ µ̄ ∗ h̄)

+
∑

ᾱ∈Ēβ̄

|ᾱ|1=d−n−2

∑

µ̄∈Mᾱ

Cm̄
m̄−µ̄ · f(x+ ᾱ ∗ µ̄ ∗ h̄)

...

±f(x).

(1.87)
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Obviously

| △m̄
h̄,ᾱ f(x)| =

∣∣∣∣
∑

µ̄∈Mᾱ

Cm̄
m̄−µ̄ · f(x+ ᾱ ∗ µ̄ ∗ h̄)

∣∣∣∣.

Together with (1.87) and (1.53) this implies

Lh̄f(x) =
∑

ᾱ∈Ēβ̄

εᾱ △m̄
h̄,ᾱ f(x) , (1.88)

where the εᾱ ∈ {−1, 1} were chosen suitable. Putting (1.88) into (1.85) and using the
triangle-inequality we obtain the following

|fℓ̄(x)| ≤ c
∑

ū∈Eβ̄

∑

ᾱ∈Ēβ̄

∫

Rd

|g(h̄)| ·
∣∣△m̄

2−(ℓ̄−ū)∗h̄,β̄
◦ △m̄

h̄,ᾱ f(x)
∣∣ dh̄.

We will write ℓq(I) instead of ℓq for some I ⊂ N
d
0 to indicate which index-set I belongs to

ℓq. Altogether, this gives an estimate for ‖2r̄·ℓ̄fℓ̄(x)|Lp(Td, ℓq(N
d
0))‖, namely

‖2r̄·ℓ̄fℓ̄(x)|Lp(Td, ℓq(N
d
0))‖

≤ c1
∑

β̄∈{0,1}d

‖2r̄·ℓ̄fℓ̄(x)|Lp(Td, ℓq(Iβ̄))‖

≤ c2
∑

β̄∈{0,1}d

∑

ū∈Eβ̄

∑

ᾱ∈Ēβ̄

∥∥∥∥2
r̄·ℓ̄

∫

Rd

|g(h̄)| ·
∣∣△m̄

2−(ℓ̄−ū)∗h̄,β̄
◦ △m̄

h̄,ᾱ f(x)
∣∣ dh̄
∣∣∣∣Lp(T

d, ℓq(Iβ̄))

∥∥∥∥.

(1.89)

RHS(1.89) can be increased if we use the index-set Nβ̄ instead of Iβ̄ in the ℓq-norm and
replace ℓ̄− ū by ℓ̄. We get

‖2r̄·ℓ̄fℓ̄(x)|Lp(Td, ℓq(N
d
0))‖

≤ c2
∑

β̄∈{0,1}d

∑

ū∈Eβ̄

∑

ᾱ∈Ēβ̄

∥∥∥∥2
r̄·ℓ̄

∫

Rd

|g(h̄)| ·
∣∣△m̄

2−ℓ̄∗h̄,β̄
◦ △m̄

2−ℓ̄∗h̄,ᾱ
f(x)

∣∣ dh̄
∣∣∣∣Lp(T

d, ℓq(Nβ̄))

∥∥∥∥

= c2
∑

β̄∈{0,1}d

∑

ū∈Eβ̄

∑

ᾱ∈Ēβ̄

∥∥∥∥2
r̄·ℓ̄

∫

Rd

|g(h̄)| ·
∣∣△m̄

2−ℓ̄∗h̄,β̄
◦ △m̄

2−ℓ̄∗h̄,ᾱ
f(x)

∣∣ dh̄
∣∣∣∣Lp(T

d, ℓq(Nᾱ+β̄))

∥∥∥∥.

Because of
△m̄

2−ℓ̄∗h̄,β̄
◦ △m̄

2−ℓ̄∗h̄,ᾱ
f(x) = △m̄

2−ℓ̄∗h̄,ᾱ+β̄
f(x)

for ᾱ ∈ Ēβ̄ it holds that

‖f |S r̄p,qF )‖ϕ̄ ≤ c3
∑

β̄∈{0,1}d

∑

ᾱ∈Ēβ̄

∥∥∥∥2
r̄·ℓ̄

∫

Rd

|g(h̄)| ·
∣∣△m̄

2−ℓ̄∗h̄,ᾱ+β̄
f(x)

∣∣ dh̄
∣∣∣∣Lp(T

d, ℓq(Nᾱ+β̄))

∥∥∥∥

= c3
∑

β̄∈{0,1}d

∥∥∥∥2
r̄·ℓ̄

∫

Rd

|g(h̄)| ·
∣∣△m̄

2−ℓ̄∗h̄,β̄
f(x)

∣∣ dh̄
∣∣∣∣Lp(T

d, ℓq(Nβ̄))

∥∥∥∥.
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It remains to estimate the summand
∥∥∥∥2

r̄·ℓ̄

∫

Rd

|g(h̄)| ·
∣∣△m̄

2−ℓ̄∗h̄,β̄
f(x)

∣∣ dh̄
∣∣∣∣Lp(T

d, ℓq(Nβ̄))

∥∥∥∥ (1.90)

for every β̄ ∈ {0, 1}d. In the case |β̄|1 = 0 it degenerates to
∥∥∥∥|f(x)| ·

∫

Rd

|g(h̄)| dh̄
∣∣∣∣Lp(T

d)

∥∥∥∥ ,

which equals ‖g|L1(R
d)‖ · ‖f |Lp(Td)‖. We will finish the proof by estimating (1.90) from

above by c · SR
β̄
(f) in case |β̄|1 > 0. For this purpose we want to discretisise the integral

appearing in (1.90) similar to in Step 1. For the used notation we refer to (1.46) and (1.47).
Obviously

∫

Rd

|g(h̄)| ·
∣∣△m̄

2−ℓ̄∗h̄,β̄
f(x)

∣∣ dh̄ =
∑

µ̄∈Nd
0

∫

Q∆
µ̄

|g(h̄)| ·
∣∣△m̄

2−ℓ̄∗h̄,β̄
f(x)

∣∣ dh̄.

Together with (1.84) we obtain for any s > 0

∫

Rd

|g(h̄)| ·
∣∣△m̄

2−ℓ̄∗h̄,β̄
f(x)

∣∣ dh̄ ≤ cs
∑

µ̄∈Nd
0

2−|µ̄|·s

∫

Q∆
µ̄

∣∣△m̄
2−ℓ̄∗h̄,β̄

f(x)
∣∣ dh̄

≤ cs
∑

µ̄∈Nd
0

2−|µ̄|·s2ℓ̄·β̄
∫

Qµ̄−β̄∗ℓ̄

∣∣△m̄
h̄,β̄ f(x)

∣∣ dh̄

= cs
∑

µ̄∈Nd
0

2|µ̄|(1−s)2−β̄·(µ̄−ℓ̄)2−µ̄(1̄−β̄)

∫

Qµ̄−β̄∗ℓ̄

∣∣△m̄
h̄,β̄ f(x)

∣∣ dh̄.

Consequently, we have for (1.90) in case q ≤ 1

(1.90) ≤ cs

∥∥∥∥
[ ∑

ℓ̄∈Nβ̄

∑

µ̄∈Nd
0

2r̄ℓ̄q2|µ̄|(1−s)q2−β̄·(µ̄−ℓ̄)q2−µ̄(1̄−β̄)q

( ∫

Qµ̄−β̄∗ℓ̄

∣∣△m̄
h̄,β̄f(x)

∣∣ dh̄
)q]1/q∣∣∣∣Lp(T

d)

∥∥∥∥.

The next step is to estimate the sum over ℓ̄ by an integral with respect to t̄. Having an
arbitrary tuple t̄ ∈ Q+ ∆

µ̄−β̄∗ℓ̄+1
we can rewrite the previous estimate to

(1.90) ≤ c1

∥∥∥∥
[ ∑

ℓ̄∈Nβ̄

∑

µ̄∈Nd
0

2r̄ℓ̄q2|µ̄|(1−s)q
(

1

t̄

∫

[−t1,t1]×...×[−td,td]

∣∣△m̄
h̄,β̄ f(x)

∣∣ dh̄
)q]1/q∣∣∣∣Lp(T

d)

∥∥∥∥ .
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We use 2r̄ℓ̄ = 2β̄∗(ℓ̄−µ̄)r̄ · 2(β̄∗µ̄)·r̄ ∼ t̄−r̄∗β̄ · 2(β̄∗µ̄)·r̄ and obtain

(1.90) ≤ c2

∥∥∥∥
[ ∑

ℓ̄∈Nβ̄

∑

µ̄∈Nd
0

2(β̄∗µ̄)·r̄q2|µ̄|(1−s)q t̄−(r̄∗β̄)q

( ∫

[−1,1]d

∣∣△m̄
t̄∗h̄,β̄ f(x)

∣∣ dh̄
)q]1/q∣∣∣∣Lp(T

d)

∥∥∥∥

= c2

∥∥∥∥
[ ∑

µ̄∈Nd
0

2µ̄·(1−s+β̄∗r̄)q
∑

ℓ̄∈Nβ̄

t̄−(r̄∗β̄)q

( ∫

[−1,1]d

∣∣△m̄
t̄∗h̄,β̄ f(x)

∣∣ dh̄
)q]1/q∣∣∣∣Lp(T

d)

∥∥∥∥ .

(1.91)

It should be mentioned that the chosen t̄ depends on the summation index ℓ̄. Because
of measure theoretical reasons there must be a t̄(x, ℓ̄) ∈ Q+ ∆

µ̄−β̄∗ℓ̄+1
, such that the integral

average of the function

hx(t̄) := t̄−(r̄∗β̄)q

( ∫

[−1,1]d

∣∣△m̄
t̄∗h̄,β̄ f(x)

∣∣ dh̄
)q

with respect to the rectangle Q+ ∆
µ̄−β̄∗ℓ̄+1

is greater than or equal hx(t̄). It is also remarkable
that hx is invariant in the components ti, which correspond to βi = 0. Later this will be
important later. Hence, we can replace hx(t̄) in (1.91) by

1

|Q+ ∆
µ̄−β̄∗ℓ̄+1

|

∫

Q+ ∆
µ̄−β̄∗ℓ̄+1

hx(t̄) dt̄ .

And this can be estimated from above by

c

∫

Q+ ∆
µ̄−β̄∗ℓ̄+1

hx(t̄)
dt̄

t̄
,

where c is independent of x and ℓ̄. This yields

(1.90) ≤ c3

∥∥∥∥
[ ∑

µ̄∈Nd
0

2µ̄·(1−s+β̄∗r̄)q
∑

ℓ̄∈Nβ̄

∫

Q+ ∆
µ̄−β̄∗ℓ̄+1

hx(t̄)
dt̄

t̄

]1/q∣∣∣∣Lp(T
d)

∥∥∥∥. (1.92)

Obviously the integration over the invariance-components of hx breaks down to a constant.
Finally it holds

∑

ℓ̄∈Nβ̄

∫

Q+ ∆
µ̄−β̄∗ℓ̄+1

hx(t̄)
dt̄

t̄
≤ c

∫

(0,∞)n

( n∏

i=1

t
−rδi

q

i

)( ∫

[−1,1]n

∣∣(△mδ1
t1h1,δ1

◦ · · · ◦ △mδn

tnhn,δn
f
)
(x)
∣∣dh̄
)q
dt̄

t̄
.
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Thus we lost the µ̄-dependence. Putting this into (1.92), the µ̄-sum is nothing more than
a convergent geometric series for sufficiently large s. This finishes the proof in case q ≤ 1.
In case 1 < q < ∞ we use the triangle inequality in ℓq to interchange µ̄- and ℓ̄-sum. The
modifications in case q = ∞ are obvious. �

Remark 1.14 Let us give a remark concerning Step 1 of the proof. If we would not exploit
the integral structure of the rectangle means after (1.73) and continue similar as before,
the method works only in case r̄ > 1/min(p, q). At exactly this point one gets an idea, why
the integral means are more powerful than classical difference constructions (which will be
discussed later, see Paragraph 1.6.6). Namely, the integral in RHS(1.71) allows the use
of Hardy-Littlewood maximal functions. Here we need the chosen quantities λ and ā. On
the one hand λ and ā force the convergence of the ℓ̄-sum in (1.76) and on the other hand
λ < min(p, q) is used to apply the corresponding maximal inequalities in (1.79).

Remark 1.15 It has been proved recently by Christ and Seeger, cf. [7], that at least in
the isotropic case the condition r > σp,q is necessary. We expect the same in our situation.
See also [49, 1.11.9].

1.6.5 Localization

As we have already seen, the philosophy of difference characterization is to test the smooth-
ness of a function, checking the behavior of differences with small step lengths. Now the
question arises, whether one can replace the (0,∞)-integrals in (1.62) by (0, 1)- or (what is
essentially the same) by (0, ε)-integrals, where ε > 0. This would be a certain type of local-
ization property, which holds unrestricted in the isotropic case, cf. [48, 2.5.11]. We present
a partial result in the case of Banach spaces, except the constellation 1 = p < q ≤ ∞,
using complex interpolation.
Let 0 < p < ∞, 0 < q ≤ ∞ and r̄ > 0. For f ∈ Lp(T

d). Similar to (1.61) we define the
quantity

‖f |S r̄p,qF (Td)‖R,L := ‖f |Lp(Td)‖ +
∑

|β̄|1≥1

SR,L
β̄

(f) ,

where (modification in case q = ∞)

SR,L
β̄

(f) =

∥∥∥∥
[ ∫

(0,1)n

( n∏

i=1

t
−rδi

q

i

)( ∫

[−1,1]n

∣∣(△mδ1
t1h1,δ1

◦· · ·◦△mδn

tnhn,δn
f)(x)

∣∣dh̄
)q
dt̄

t̄

]1/q ∣∣∣∣Lp(T
d)

∥∥∥∥

for |β̄|1 ≥ 1.

Proposition 1.10 Let 1 ≤ q ≤ p < ∞ and r̄ > 0. Then there exists a constant c > 0
such that

‖f |S r̄p,qF (Td)‖R ≤ c ‖f |S r̄p,qF (Td)‖R,L

for all f ∈ Lp(T
d).
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Proof We use p/q ≥ 1 and

∥∥∥
∫

X

g(x, y) dy|Lp/q(x)
∥∥∥ ≤

∫

X

‖g(x, y)|Lp/q(x)‖ dy

in order to lose the [1,∞)-integrals with respect to t̄ . For full details let us refer to [52,
Prop. 3.5.1] . �

Proposition 1.11 For 1 < p <∞ and r̄ > 0 there exists a constant c > 0 such that

‖f |S r̄p,∞F (Td)‖R ≤ c ‖f |S r̄p,∞F (Td)‖R,L

for all f ∈ Lp(T
d).

Proof Fix β̄ = (1, ..., 1, 0, ..., 0). Because of q = ∞ we obtain the relation

SRβ̄ (f) ≤ c1
∑

ᾱ∈Eβ̄

∥∥∥∥ sup
Aα1×···×Aαn

( n∏

i=1

t−rii

)
Rm̄
t̄,β̄f(x)

∣∣∣∣Lp(T
d)

∥∥∥∥ ,

where A0 = (0, 1), A1 = [1,∞) and

Rm̄
t̄,β̄f(x) =

1∫

−1

· · ·
1∫

−1

∣∣(△mδ1
t1h1,δ1

◦ · · · ◦ △mδn

tnhn,δn
f)(x)

∣∣ dhn · · · dh1.

Now Rm̄
t̄,β̄
f(x) can be partly rewritten as an iterated Hardy/Littlewood maximal operator,

see (1.9) and (1.55). The classical scalar maximal inequality completes the proof. Again
we refer to [52, Prop. 3.5.2] for the details. �

Finally we state the main theorem of this paragraph.

Theorem 1.11 Let p = q = 1 or 1 < p <∞ and 1 ≤ q ≤ ∞. Let further r̄ = (r1, ..., rd) ∈
R
d and m̄ = (m1, ...,md) ∈ N

d with m̄ > r̄ > σp,q. Then S r̄p,qF (Td) is the collection of all
functions f ∈ Lp(T

d) satisfying

‖f |S r̄p,qF (Td)‖R,L <∞.

Moreover ‖f |S r̄p,qF (Td)‖R,L is an equivalent (quasi-)norm in S r̄p,qF (Td).

Proof This is a consequence of Theorem 1.10, Proposition 1.10, 1.11 and complex inter-
polation. See also [52, Thm. 3.5.1]. �
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1.6.6 Moduli of Smoothness and Differences

This paragraph deals with equivalent (quasi-)norms for S r̄p,qF (Rd) using moduli of smooth-
ness and differences itself. The price one has to pay are more restrictive conditions to r̄,
namely r̄ > 1/min(p, q), which cannot be essentially relaxed. The aim is to derive the re-
sults from [32, 2.3.3] for arbitrary d. Our proof is based on the characterization by integral
means, cf. Theorem 1.10. The first step is a small modification of the integral means used
in Theorem 1.10.

Proposition 1.12 Let p, q, r̄ be given as in Theorem 1.10. In the sense of equivalent
(quasi-)norms the integral means

Rm̄
t̄,β̄f(x) =

∫

[−1,1]n

∣∣(△mδ1
t1h1,δ1

◦ · · · ◦ △mδn

tnhn,δn
f)(x)

∣∣ dh̄ (1.93)

in (1.62) can be replaced by

R̄m̄
t̄,β̄f(x) =

∫

1≥|hi|>1/2
i=1,...,n

∣∣(△mδ1
t1h1,δ1

◦ · · · ◦ △mδn

tnhn,δn
f)(x)

∣∣ dh̄ . (1.94)

Proof Concerning the proof we refer to [52, Prop. 3.6.1]. �

The following theorem is actually the counterpart of [48, Thm. 2.5.10] and [32, Thm.
2.3.3], respectively.

Theorem 1.12 Let 0 < p < ∞, 0 < q ≤ ∞, r̄ = (r1, ..., rd) ∈ R
d and m̄ = (m1, ...,md) ∈

N
d
0 with m̄ > r̄ > 1

min(p,q)
. The quantities

‖f |S r̄p,qF (Td)‖M/∆ = ‖f |Lp(Td)‖ +
∑

β̄∈{0,1}d,|β̄|1≥1

S
M/∆

β̄
(f)

are equivalent (quasi-)norms in S r̄p,qF (Td). In case |β̄|1 = n ≥ 1 we put

(i)

SMβ̄ (f) :=

∥∥∥∥
[ ∫

(0,∞)n

( n∏

i=1

t
−rδi

q

i

)
sup
|hi|≤ti
i=1,...,n

∣∣(△mδ1
h1,δ1

◦· · ·◦△mδn

hn,δn
f)(x)

∣∣q dt̄
t̄

]1/q∣∣∣∣Lp(T
d)

∥∥∥∥ and

(ii)

S∆
β̄ (f) :=

∥∥∥∥
[ ∫

Rn

( n∏

i=1

|hi|−rδi
q
)∣∣(△mδ1

h1,δ1
◦ · · · ◦ △mδn

hn,δn
f)(x)

∣∣q dh̄
h̃

]1/q∣∣∣∣Lp(T
d)

∥∥∥∥
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with h̃ = (|h1|, ..., |hn|) and δ̄ as above. In case q = ∞ one modifies

S
M/∆

β̄
(f) =

∥∥∥∥ sup
h̄∈R

n

h 6=0

( n∏

i=1

|hi|−rδi

)∣∣(△mδ1
h1,δ1

◦ · · · ◦ △mδn

hn,δn
f)(x)

∣∣
∣∣∣∣Lp(T

d)

∥∥∥∥.

Proof Step 1. We show ‖f |S r̄p,qF‖M ≤ c‖f |S r̄p,qF‖ϕ̄ following Step 1 of the proof of
Theorem 1.10. First we descretisise the t̄-integration and obtain (with the same notations
used in Theorem 1.10)

Aβ̄(x) =

∫

[0,∞]n

( n∏

i=1

t
−rδi

q

i

)
sup
|hi|≤ti
i=1,...,n

∣∣(△mδ1
h1,δ1

◦ · · · ◦ △mδn

hn,δn
f
)
(x)
∣∣q dt̄
t̄

≤ c1
∑

k̄∈Zβ̄

2r̄k̄q sup
h̄∈[−1,1]d

| △m̄
2−k̄∗h̄,β̄

f(x)|q.

Now we use again (1.64) and obtain in case q ≤ 1

Aβ̄(x) ≤ c2
∑

ℓ̄∈Zβ̄

∑

ū∈N̄β̄

∑

k̄∈Zβ̄

2r̄k̄q sup
h̄∈[−1,1]d

| △m̄
2−k̄∗h̄,β̄

fk̄+ℓ̄+ū(x)|q.

In case q > 1 it holds an estimate similar to (1.66). What follows is much simpler on the
one hand, but much more restrictive on the other hand. Having no integral means for
estimating differences by Hardy-Littlewood maximal functions we argue as follows. Zβ̄ is
decomposed as done before, but now we directly combine the modified estimates (1.70)
and (1.72), i.e.

sup
h̄∈[−1,1]d

| △m̄
2−k̄∗h̄

fk̄+ℓ̄+ū(x)| = sup
h̄∈[−1,1]d

| △m̄
2−k̄∗h̄,β̄

◦ △m̄
2−k̄∗h̄,β̄−ᾱ

fk̄+ℓ̄+ū(x)|

≤ c32
ℓ1m1 · ... · 2ℓ|ᾱ|1

m|ᾱ|12ℓ|ᾱ|1+1a|ᾱ|1+1 · ... · 2ℓnanPb̄,ā,β̄(fk̄+ℓ̄+ū)(x).

Recall that β̄ = (1, ..., 1, 0, ..., 0) with |β̄|1 = n, ᾱ = (1, ..., 1, 0, ..., 0) with ᾱ ≤ β̄ and
b̄ = (2k1+ℓ1 , ..., 2kd+ℓd). Now the stronger condition r̄ > 1/min(p, q) is required. In this case
it is possible to choose a tuple ā = (a1, ..., ad) such that r̄ > ā > 1/min(p, q). Proceeding
similar to Theorem 1.10 we get the estimate

Aᾱβ̄(x) ≤c4
∑

ℓ̄∈Zα
β̄

2ℓ1(m1−r1)q · ... · 2ℓ|ᾱ|1
(m|ᾱ|1

−r|ᾱ|1
)q · 2ℓ|ᾱ|1+1(a|ᾱ|1+1−r|ᾱ|1+1)q · ... · 2ℓn(an−rn)q

·
∑

ū∈N̄β̄

∑

k̄∈Zβ̄

2r̄(k̄+ℓ̄)q|Pb̄,ā,β̄(fk̄+ℓ̄+ū)|q(x)

instead of (1.76). What remains is straightforward and essentially a consequence of Theo-
rem 1.9.
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Step 2. It is sufficient to show ‖f |S r̄p,qF‖R
′ ≤ c‖f |S r̄p,qF‖∆ for all f ∈ S r̄p,qF (Td).

The case q = ∞ is trivial. Let us first consider the case 1 ≤ q < ∞. Again we refer to
(1.54). For fixed x ∈ T

d, Fubini’s theorem and Lq →֒ L1 on compact domains give

∫

(0,∞)n

( n∏

i=1

t
−rδi

q

i

)( ∫

1≥|hi|>1/2
i=1,...,n

∣∣∣∣
( n∏

i=1

△mδi

tihi,δi

)
f(x)

∣∣∣∣dh̄
)q
dt̄

t̄

≤ c1

∫

Rn

∣∣∣∣
( n∏

i=1

△mδi

hi,δi

)
f(x)

∣∣∣∣
q

·
∫

|hi|≤ti≤2|hi|
i=1,...,n

( n∏

i=1

t
−rδi

q

i

)1
t̄

dt̄

t̄
dh̄ ,

where

∫

|hi|≤ti≤2|hi|
i=1,...,n

( n∏

i=1

t
−rδi

q

i

)1
t̄

dt̄

t̄
≤ c2

n∏
i=1

|hi|−rδi
q

n∏
i=1

|hi|
.

It remains to discuss the case 0 < q < 1. We have

( ∫

1≥|hi|>1/2
i=1,...,n

∣∣∣∣
( n∏

i=1

△mδi

hi,δi

)
f(x)

∣∣∣∣ dh̄
)q

≤ sup
|hi|≤ti
i=1,...,n

∣∣∣∣
( n∏

i=1

△mδi

hi,δi

)
f(x)

∣∣∣∣
q(1−q)

×

×
(

1

t̄

∫

ti≥|hi|>ti/2
i=1,...,n

∣∣∣∣
( n∏

i=1

△mδi

hi,δi

)
f(x)

∣∣∣∣
q

dh̄

)q
.

Now we apply Hölder’s inequality with the exponents 1
q

and 1
1−q

and achieve

[ ∫

(0,∞)n

( n∏

i=1

t
−rδi

q

i

)( ∫

1≥|hi|>1/2
i=1,...,n

∣∣∣∣
( n∏

i=1

△mδi

tihi,δi

)
f(x)

∣∣∣∣dh̄
)q
dt̄

t̄

]1/q

≤
[ ∫

(0,∞)n

( n∏

i=1

t
−rδi

q

i

)1
t̄

∫

ti≥|hi|>ti/2
i=1,...,n

∣∣∣∣
( n∏

i=1

△mδi

hi,δi

)
f(x)

∣∣∣∣
q

dh̄
dt̄

t̄

]
×

×
[ ∫

(0,∞)n

( n∏

i=1

t
−rδi

q

i

)
sup
|hi|≤ti
i=1,...,n

∣∣∣∣
( n∏

i=1

△mδi

hi,δi

)
f(x)

∣∣∣∣
q] 1−q

q

.

Using Fubini and Hölder’s inequality again, we obtain the estimate

SR
′

β̄ (f) ≤
(
‖f |S r̄p,qF‖∆

)q ·
(
‖f |S r̄p,qF‖M

)1−q
.
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Having additionally

‖f |Lp‖ ≤ ‖f |Lp‖q · ‖f |Lp‖1−q

≤
(
‖f |S r̄p,qF‖∆

)q ·
(
‖f |S r̄p,qF‖M

)1−q

it turns out, that

‖f |S r̄p,qF‖R
′ ≤ c3

(
‖f |S r̄p,qF‖∆

)q ·
(
‖f |S r̄p,qF‖M

)1−q
.

With the help of Step 1 and Proposition 1.12 we can use

‖f |S r̄p,qF‖M ≤ c′‖f |S r̄p,qF‖R
′

to finish the proof. �

Remark 1.16 Step 2 proves ‖f |S r̄p,qF (Td)‖R′ ≤ c‖f |S r̄p,qF (Td)‖M on the basis of
‖f |S r̄p,qF (Td)‖R′ ≤ c‖f |S r̄p,qF (Td)‖∆. Of course, this can also be proved directly by using
the triangle-inequality for integrals starting with ‖f |S r̄p,qF (Td)‖R. Hence, we got even more
than stated in the theorem. Under the given conditions S r̄p,qF (Td) is the collection of all
f ∈ S ′(Rd) ∩ Lp(Td) such that ‖f |S r̄p,qF (Td)‖M is finite.

Remark 1.17 With a strategy similar to the proof of Proposition 1.10 one can replace
S∆
β̄

(f), |β̄|1 ≥ 1, by

S∆, L

β̄
(f) :=

∥∥∥∥
[ ∫

[−1,1]n

( n∏

i=1

|hi|−rδi
q
)∣∣(△mδ1

h1,δ1
◦ · · · ◦ △mδn

hn,δn
f)(x)

∣∣q dh̄
h̃

]1/q∣∣∣∣Lp(T
d)

∥∥∥∥

in the case 0 < q ≤ p < ∞. Hence, the corresponding quantity ‖ · |S r̄p,qF (Td)‖∆,L is an
equivalent (quasi-)norm in S r̄p,qF (Td) for r̄ >

(
1
q
− 1
)
+
.

1.6.7 Characterizations of Sr
p,qB(Td)

This paragraph deals with Besov spaces of dominating mixed smoothness property. We
give a characterization of S r̄p,qB(Td), 0 < p ≤ ∞, 0 < q ≤ ∞ and r̄ > σp, using integral
means of differences. Our main theorem is the counterpart of Theorem 1.10. In fact, it is
not surprising, that our techniques work in B-case too. The situation here is much more
simple. For the proofs we refer to [52, 3.7]. We employ scalar maximal inequalities instead
of corresponding inequalities for the vector-valued case, cf. Section 1.3. Consequently, the
condition to r̄ gets independent of q and therefore it is possible to give a characterization
for r̄ > σp.
Our main result reads as follows.
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Theorem 1.13 Let 0 < p ≤ ∞, 0 < q ≤ ∞, r̄ = (r1, ..., rd) ∈ R
d and m̄ = (m1, ...,md) ∈

N
d
0 with m̄ > r̄ > σp. Under these conditions the space S r̄p,qB(Td) is the collection of all

functions f ∈ Lp(T
d) ∩ L1(T

d) such that

‖f |S r̄p,qB(Td)‖R = ‖f |Lp(Td)‖ +
∑

β̄∈{0,1}d,|β|1≥1

SRβ̄ (f) <∞ .

For |β̄|1 = n ≥ 1 we have

SRβ̄ (f) =

[ ∫

(0,∞)n

( n∏

i=1

t
−rδi

q

i

)∥∥∥∥
∫

[−1,1]n

∣∣(△mδ1
t1h1,δ1

◦ · · · ◦ △mδn

tnhn,δn
f)(x)

∣∣dh̄
∣∣∣∣Lp
∥∥∥∥
q
dt̄

t̄

]1/q

(1.95)

with δ̄ in the sense of (1.45). In case q = ∞ one has to replace (1.95) by

SRβ̄ (f) = sup
t̄∈(0,∞)n

( n∏

i=1

t
−rδi

i

)∥∥∥∥
∫

[−1,1]n

∣∣(△mδ1
t1h1,δ1

◦ · · · ◦ △mδn

tnhn,δn
f)(x)

∣∣ dh̄
∣∣∣∣Lp(T

d)

∥∥∥∥.

Moreover, ‖ · |S r̄p,qB(Td)‖R is an equivalent (quasi-)norm in S r̄p,qB(Td).

Remark 1.18 (Localization) As already done in the F -case we consider the question,
whether one can replace the (0,∞)-integrals in (1.95) by (0, 1)-integrals. We obtain a
positive answer for 1 ≤ p ≤ ∞ and 0 < q ≤ ∞. The restriction p ≥ 1 has only technical
reasons (Minkowski’s inequality) and does not seem to be a natural condition. In particular
for p < 1 the problem is open.

Let us state the results from [32, 2.3.4] for arbitrary d based on Theorem 1.13. See also
[48, 2.5.12] for the isotropic case. We use again modified integral means, see (1.93), (1.94).
Similar to Proposition 1.12 we can replace in (1.95) the quantity Rm̄

t̄,β̄
f(x) by R̄m̄

t̄,β̄
f(x) in

the sense of equivalent (quasi-)norms .
In what follows we need to compute moduli of smoothness with respect to a rectangle,
given by

( n∏

i=1

t
−rδi

i

)
sup
|hi|≤ti
i=1,...,n

∥∥(△mδ1
h1,δ1

◦... ◦ △mδn

hn,δn
f
)
(x)
∣∣Lp(Td)

∥∥ , ti > 0 , i = 1, ..., n .

The proof of the remaining two theorems are similar to the proof of Theorem 1.12. Details
can be found in [52, 3.8]. Let us first treat the case 1 ≤ p ≤ ∞. Having powerful techniques
in this case (generalized Minkowski’s inequality), we are able to cover all spaces with r̄ > 0.

Theorem 1.14 Let 1 ≤ p ≤ ∞, 0 < q ≤ ∞, r̄ = (r1, ..., rd) ∈ R
d and m̄ = (m1, ...,md) ∈

N
d
0 with m̄ > r̄ > 0. The following quantities describe equivalent (quasi-)norms in the space

S r̄p,qB(Td):

‖f |S r̄p,qB(Td)‖M/∆ = ‖f |Lp(Td)‖ +
∑

β̄∈{0,1}d,|β̄|1≥1

S
M/∆

β̄
(f) ,

where for |β̄|1 = n ≥ 1
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(i)

SMβ̄ (f) =

( ∫

(0,∞)n

( n∏

i=1

t
−rδi

q

i

)
sup
|hi|≤ti
i=1,...,n

∥∥(△mδ1
h1,δ1

◦...◦△mδn

hn,δn
f
)
(x)
∣∣Lp(Td)

∥∥q dt̄
t̄

)1/q

and

(ii)

S∆
β̄ (f) =

[ ∫

Rn

( n∏

i=1

|hi|−rδi
q
)∥∥(△mδ1

h1,δ1
◦ · · · ◦ △mδn

hn,δn
f)(x)

∣∣Lp(Td)
∥∥q dh̄

h̃

]1/q

,

with h̃ = (|h1|, ..., |hn|) and δ̄ as usual (modification if q = ∞).

Remark 1.19 Under the assumptions of the last theorem one can characterize the space
S r̄p,qB(Td) by ‖ · |S r̄p,qB(Td)‖M . See also Remark 1.16.

The last theorem in this section deals with the case 0 < p < 1. We are able to give a result
for r̄ > 1/p, but not for r̄ > σp = 1/p − 1, like is possible in the isotropic case, cf. [48,
2.5.12]. This problem still remains open, cf. also [32, Remark 2.3.4/2].

Theorem 1.15 Let 0 < p, q ≤ ∞, r̄ = (r1, ..., rd) ∈ R
d and m̄ = (m1, ...,md) ∈ N

d
0 with

m̄ > r̄ > 1/p. The following quantities describe equivalent (quasi-)norms in the space
S r̄p,qB(Td):

‖f |S r̄p,qB(Td)‖M/M ′/∆ = ‖f |Lp(Td)‖ +
∑

β̄∈{0,1}d,|β̄|1≥1

S
M/M ′/∆

β̄
(f) ,

where we define additionally to Theorem 1.14/(i)/(ii) for |β̄|1 = n ≥ 1 the quantity

SM
′

β̄ (f) =

( ∫

(0,∞)n

( n∏

i=1

t
−rδi

q

i

)∥∥ sup
|hi|≤ti
i=1,...,n

|
(
△mδ1
h1,δ1

◦... ◦ △mδn

hn,δn
f
)
(x)|

∣∣Lp(Td)
∥∥q dt̄

t̄

)1/q

with δ̄ as usual (modification if q = ∞).

Remark 1.20 In the proof of [52, Thm. 3.8.2] we showed even more. Similar to S r̄p,qF (Td)

the space S r̄p,qB(Td) can be characterized by ‖ · |S r̄p,qB(Td)‖M ′
, see Remark 1.16.

Remark 1.21 The proof for the isotropic case in [48, 2.5.12] is based on Jackson type
inequalities and characterization by approximation. It seems to be not possible to carry over
this idea to the dominating mixed scale, since the spaces S r̄p,qB(Td) can not be characterized
by quantities of best approximation. Corresponding approximation spaces with respect to
trigonometric polynomials with harmonics in hyperbolic crosses and their relation to S r̄p,qB
and S r̄p,qF are studied in [31] .
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Remark 1.22 The localized versions ‖·|S r̄p,qB(Td)‖M,L, ‖·|S r̄p,qB(Td)‖∆,L of ‖·|S r̄p,qB(Td)‖M
and ‖ · |S r̄p,qB(Td)‖∆ are equivalent (quasi-)norms in any case. One estimates the
Lp-(quasi-)norm of the differences of f according to the (1,∞)-integrals simply by the
norm of f using the translation invariance. Consequently, these integrals vanish. Recall
also Proposition 1.10.



Chapter 2

Approximation on Sparse Grids

2.1 Introduction

This chapter represents the main part of the thesis. We continue investigations of the
approximation properties of trigonometric interpolation with respect to uniform grids, see
[17, 18, 43, 45, 33]. The d-variate situation with respect to a sparse grid is studied in detail.
Precisely, we investigate the rate of convergence of the Smolyak algorithm (applied to a
sampling operator) for functions belonging to a Besov or Triebel-Lizorkin space of dom-
inating mixed smoothness. This also continues former work of Smolyak [40], Temlyakov
[43], Wasilkowski, Woźniakowski [57] and Sickel [34, 35].
Section 2.2 deals with interpolation on the torus including the discussion of some examples
(de la Vallée Poussin and Dirichlet kernels). Afterwards we switch to the d-dimensional
case in Section 2.3. To begin with, we recall the construction of the abstract Smolyak algo-
rithm, discuss a few more or less elementary properties and specify the class of univariate
sampling operators, on which it will be applied. We act in a very general setting, so let us
refer to the examples given in Section 2.5. Let A(m, d) denote a related Smolyak operator.
Since we are interested in the Lp-approximation power of A(m, d), we investigate the norm
of the error operator I − A(m, d) acting on both of the scales Srp,qB(Td) and Srp,qF (Td).
Unusual is the necessity of different strategies for the B-case and the F -case, respectively.
The F -case requires some more restrictive conditions. We just treat the case of Smolyak
applied to operators with respect to equidistant sampling knots. We mainly employ Li-
zorkin’s multiplier theorem, see Paragraph 1.3.5, and certain aspects at the field of complex
interpolation, see Section 1.5. Nevertheless the result is the same. Section 2.4 contains
these general results depending on what has been assumed in Paragraph 2.3.2. Based on
that we derive the approximation power of special classical Smolyak constructions among
the examples in Section 2.5. This will be compared with the convolution operator resulting
after Smolyak applied to classical Fourier partial sums. As one expects, this construction
provides better results and is the starting point of a theory named “approximation from
hyperbolic crosses”, which is widely treated in the literature, see e.g. [3, 4], [2], [6], [9],
[10], [15], [19], [22], [25], [30], [31], [36], [39], [40], [46], [45] and [57].

63
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Section 2.6 presents new results for the problem of optimal approximate recovery of func-
tions, which improve existing upper bounds for the quantity ρM in the case of Sobolev
type spaces, see for instance [45, Chapt. 4]. Finally, Section 2.7 is devoted to the detailed
comparison of our results with those existing in the literature.

2.2 Interpolation on the Torus

In this first section we give a short survey about certain aspects of trigonometric interpo-
lation.

2.2.1 Periodic Fundamental Interpolants

Let
Dm(t) :=

∑

|k|≤m

eikt , t ∈ T, m ∈ N0 ,

be the Dirichlet kernel of order m and let

Imf(t) :=
1

2m+ 1

2m∑

ℓ=0

f(tℓ)Dm(t− tℓ) , tℓ =
2πℓ

2m+ 1
. (2.1)

Then Imf is the unique trigonometric polynomial of degree less than or equal to m which
interpolates f at the nodes tℓ. This is the prototype for the class of sampling operators on
T we have in mind. To generalize this concept we proceed as follows.
Let n ∈ N. We put

Kn :=
{
ℓ ∈ Z : −n

2
≤ ℓ <

n

2

}
and Jn :=

{
tℓ =

2πℓ

n
: ℓ ∈ Kn

}
. (2.2)

Obviously, the cardinality |Jn| of Jn is equal to n. Here we are interested in periodic
fundamental interpolants with respect to this grid Jn, i.e. we consider continuous 2π-
periodic functions Λn such that

Λn(tℓ) = δ0,ℓ , ℓ ∈ Kn .

Here δ0,ℓ is the Kronecker symbol. As in case of the trigonometric interpolation we associate
to such a fundamental interpolant a linear operator given by

I(Λn, f)(t) :=
∑

ℓ∈Kn

f(tℓ) Λn(t− tℓ) .

In this section our aim consists in deriving some sufficient conditions on Λn such that we
can estimate the error f − I(Λn, f) in the Lp-norm for functions from Nikol’skij-Besov
spaces. For us it will be convenient to construct a sequence (Λn)n from one given function
Λ : R → R. Then the following lemma is known, cf. e.g. [36].
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Lemma 2.1 Let Λ : R → R be a continuous function such that

(E1) Λ(2πℓ) = δ0 ℓ , ℓ ∈ Z ,

(E2)
∑

k∈Z

|Λ(x+ 2πk)| is uniformly convergent on [0, 2π] .

(i) Then, for n ∈ N,
Λπ
n(t) :=

∑

ℓ∈Z

Λ(nt+ 2πℓn) , t ∈ R , (2.3)

is a continuous 2π-periodic fundamental interpolant with respect to the grid Jn.
(ii) The Fourier coefficients of these functions are given by

cℓ(Λ
π
n) =

1

n
√

2π
FΛ(ℓ/n) , ℓ ∈ Z , n ∈ N . (2.4)

2.2.2 The Rate of Convergence

Given an appropriate function Λ we shall investigate the error f−I(Λn, f) in the Lp-norm.
For us it will be sufficient to do this for functions f belonging to some Nikol’skij-Besov
space Br

p,∞ (T), see Remark 1.6/(ii) or [32, Chapt. 3].
By ψ : R → R we denote an often used smooth cut-off function, i.e. a compactly supported
ψ ∈ S(R) satisfying ψ(t) = 1 if |t| ≤ 1 and ψ(t) = 0 if |t| ≥ 2.

Proposition 2.1 Let Λ be a continuous function satisfying the hypothesis (E1) and (E2).
Let Λπ

n be defined as in (2.3). Further we assume that for some numbers 0 ≤ β < α the
function FΛ satisfies:

(E3) FΛ(ℓ) =
√

2π δ0 ,ℓ , ℓ ∈ Z;

(E4) the functions

A(ξ) := ψ

(
ξ

2

)
|ξ|−α

(
1 − FΛ(ξ)√

2π

)
,

Bℓ(ξ) := ψ

(
ξ

2

)
|ξ|−αFΛ(ξ + l) , ℓ ∈ Z \ {0}

Cℓ(ξ) :=
(
1 − ψ(2ξ)

)
|ξ|−βFΛ(ξ − ℓ) , ℓ ∈ Z ,

belong to L1(R),

(E5) the integrals
∫ ∞

−∞

|F−1A(w)| dw < ∞ ,

∑

ℓ6=0

∫ ∞

−∞

|F−1Bℓ(w)| dw < ∞ ,

and
∑

ℓ∈Z

∫ ∞

−∞

|F−1Cℓ(w)| dw < ∞
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are finite.

If 1 ≤ p ≤ ∞, r > 1/p and β < r < α then we have

‖ I − I(Λπ
n, ·) |Br

p,∞(T) → Lp(T)‖ ≍ n−r . (2.5)

Remark 2.1 A proof of the estimate from above in (2.5) can be found in [36], at least if
1 < p < ∞. The necessary modifications including the limiting cases are straightforward.
For full details we refer to [51]. For p = 2 the conditions can be simplified, see [37]. The
estimate from below can be deduced from the behaviour of the linear widths (approximation
numbers) of the embeddings Br

p,∞(T) →֒ Lp(T), see Remark 2.2 below.

Remark 2.2 Linear widths. For two Banach spaces X,Y such that X →֒ Y we define

λn(I,X, Y ) := inf
{
‖ I − L |L(X,Y )‖ : L ∈ L(X,Y ), rankL ≤ n

}
.

Since our operator I(Λπ
n, ·) has rank ≤ n we obtain

λn(I, B
r
p,∞ (T), Lp(T)) ≤ ‖ I − I(Λπ

n, ·) |L(Br
p,∞ (T), Lp(T)) ‖ .

Since λn(I, B
r
p,∞ (T), Lp(T)) ≍ n−r, cf. e.g. [45, 1.4], it is clear that our interpolation

operators yield optimal in order approximation.

2.2.3 Interpolation with de la Vallée Poussin Means

For 0 < µ < 1/2 we consider the functions

Λµ(t) := 2
sin(t/2) sin(µt)

µ t2
, t ∈ R . (2.6)

Then the Fourier transform is given by

FΛµ(ξ) =
√

2π





1 if |ξ| ≤ 1
2
− µ ,

1
2µ

(
1
2

+ µ− |ξ|
)

if 1
2
− µ < |ξ| < 1

2
+ µ ,

0 if 1
2

+ µ ≤ |ξ| ,
(2.7)

i.e. a piecewise linear function.

Lemma 2.2 Let 0 < µ < 1/2. Then the function Λµ satisfies the restrictions in Proposi-
tion 2.1 with β = 1 and α > 0 arbitrary.

Proof A proof has been given in [36]. �

Corollary 2.1 Let 0 < µ < 1/2 and Λµ be defined as in (2.6). Let further 1 ≤ p ≤ ∞
and r > 1/p. Then we have

‖ I − I(Λπ
µ,n, ·) |Br

p,∞ (T) → Lp(T)‖ ≍ n−r .
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Proof The corollary becomes a consequence of Proposition 2.1, Lemma 2.2 and complex
interpolation for the estimate from above, cf. [36] for details, and Remark 2.2 for the
estimate from below. �

Remark 2.3 Let

v2n−1(t) :=
1

n

2n−1∑

j=n

Dj(t) , t ∈ R , n ∈ N ,

denote the de la Vallée Poussin kernels of odd order. Then

ck(v2n−1) =





1 if |k| ≤ n ,
2 (1 − |k|/(2n)) if n < |k| < 2n ,
0 if |k| ≥ 2n .

From Lemma 2.1(ii) we conclude the identity

Λπ
µ,3n =

v2n−1

3n
, µ =

1

6
, n ∈ N .

Hence
I(Λπ

µ,3n, f)(t) =
1

3n

∑

ℓ∈K3n

f(tℓ) v2n−1(t− tℓ) , µ =
1

6
.

This operator even interpolates on J3n. In contrast to our treatment Temlyakov [45, 1.6]
considered the sequence of sampling operators

Rnf(t) :=
1

4n

∑

ℓ∈K4n

f(tℓ) v2n−1(t− tℓ) , tℓ ∈ J4n , (2.8)

and proved that these operators also satisfy

‖ I −Rn |Br
p,∞ (T) → Lp(T)‖ ≍ n−r ,

if 1 ≤ p ≤ ∞ and r > 1/p.

2.2.4 Interpolation with the Dirichlet Kernel

The classical case of trigonometric interpolation requires some modifications. It is not
covered by Proposition 2.1, however well-known in the literature. Recall, In has been
defined in (2.1). Then the following is known, see [17, 18, 43, 45, 33].

Proposition 2.2 Let 1 < p <∞ and let r > 1/p. Then we have

‖ I − In |Br
p,∞ (T) → Lp(T)‖ ≍ n−r .
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2.2.5 Some other Means

For better comparison we recall some well-known classical approximation properties of
the Fourier partial sums and de la Vallée Poussin means, cf. e.g. [32, Chapt. 3] or [45,
Chapt. 1]. Let

σ(t) :=





1 if |t| ≤ 1 ,
2 − |t| if 1 ≤ |t| ≤ 2 ,
0 otherwise .

For f ∈ L1(T) we put

Snf(t) :=
n∑

k=−n

ck(f) eikt ,

V2n−1f(t) :=
∞∑

k=−∞

σ(k/n) ck(f) eikt , n ∈ N0 .

Proposition 2.3 Let r > 0.
(i) Let 1 < p <∞. Then we have

‖ I − Sn |Br
p,∞ (T) → Lp(T)‖ ≍ n−r .

(ii) Let 1 ≤ p ≤ ∞. Then we have

‖ I − V2n−1 |Br
p,∞ (T) → Lp(T)‖ ≍ n−r .

2.3 The Smolyak Algorithm

2.3.1 Definition and General Properties

Let d ≥ 2. Let X and Y be Banach spaces such that X,Y →֒ L1(T). Further we assume
that P1, . . . , Pd : X → Y are continuous linear operators. Then we define its tensor
product P1 ⊗ . . .⊗ Pd to be the linear operator such that:

(P1 ⊗ . . . ⊗ Pd)(e
ik1· · . . . · eikd·)(x1, ..., xd) :=

d∏

ℓ=1

Pℓ(e
ikℓ·)(xℓ)

xℓ ∈ T, kℓ ∈ Z, ℓ = 1, . . . , d. Formally this operator is defined on trigonometric
polynomials only. If X is either Lp(T), 1 ≤ p < ∞, or if X = C(T), then, because of
the density of trigonometric polynomials, there exists a unique continuous extension of
P1 ⊗ . . . ⊗ Pd to either Lp(Td) or C(Td), respectively. For this extension we shall use the
same symbol.
Let either Lj : Lp(T) → Lp(T), 1 ≤ p < ∞, or Lj : C(T) → Lp(T), 1 ≤ p ≤ ∞, j ∈ N0,
be a sequence of continuous linear operators, denoted by L. Then we put

∆j(L) :=

{
Lj − Lj−1 if j ∈ N ,
L0 if j = 0 .
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Definition 2.1 Let m ∈ N0. The Smolyak-Algorithm A(m, d, ~L) relative to the d sequences
L1 := (L1

j)
∞
j=0, . . . , L

d := (Ldj )
∞
j=0, is the linear operator

A(m, d, ~L) :=
∑

j1+...+jd≤m

∆j1(L
1) ⊗ . . . ⊗ ∆jd(L

d) .

Remark 2.4 Originally introduced in [40] there are now hundreds of references dealing
with this construction. A few basics and some references can be found in [28] and [57]. In
particular the following formula is proved in [57]:

A(m, d, ~L) =
∑

m−d+1≤|j|1≤m

(−1)m−|j|1

(
d− 1

m− |j|1

)
L1
j1
⊗ . . . ⊗ Ldjd . (2.9)

This will be used later on.

2.3.2 Sampling Operators

Let us now specify sequences {Lj}j for which we want to consider Smolyak’s algorithm.
Here we shall restrict to a sequence of linear sampling operators of type

Ljf(x) =

Nj∑

ℓ=1

f(tjℓ)ψ
j
ℓ(x) , f ∈ C(T) , x ∈ T ,

where a set
Tj := {tj1, . . . tjNj

}

of sampling points and continuous periodic functions ψj1, ..., ψ
j
Nj

are fixed. Now we collect
several properties of L = {Lj}∞j=0 in different hypotheses. Referring to these properties
gets then very easy.
(
H1(λ)

)
The operators Lj reproduce trigonometric polynomials with degree at most λ2j,

precisely

Lj(e
ik·)(t) = eikt , t ∈ T , |k| ≤ λ 2j , k ∈ Z , j ∈ N0 .

(
H2(p, r)

)
There exists a positive constant cp,r such that

sup
j=0,1,...

2jr ‖ I − Lj |Br
p,∞(T) → Lp(T)‖ = cp,r <∞ . (2.10)

(H3) We assume the existence of positive constants C1 < C2 such that

C1 2j ≤ Nj ≤ C2 2j , j ∈ N.
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(H ′
3) It exists a constant C3 such that

∣∣∣Tj+1 \
j⋃

k=1

Tk
∣∣∣ ≥ C3 2j+1 , j ∈ N.

(H4) The sequence of sampling grids is nested , i.e.

T0 ⊂ T1 ⊂ ... ⊂ Tj ⊂ Tj+1 ⊂ ...

(H5) The operators Lj are sampling operators with respect to the equidistant grid (see
2.2) of the following type

Ljf(x) =
∑

ℓ∈KNj

f(xjℓ) Λj(x− xjℓ) , f ∈ C(T) , xjℓ ∈ JNj
,

with a trigonometric polynomial Λj, formally given by

Λj(x) =
1

Nj

∑

k∈Z

γj(k)e
ikx .

Remark 2.5 Let us recall the following formula for the Fourier coefficients of such
special sampling operators applied to a continuous function f . One has

ck(Ljf) =
γj(k)

Nj

∑

ℓ∈KNj

f(xjℓ)e
−ikxj

ℓ , k ∈ Z .

If f is a trigonometric polynomial, then even the following holds

ck(Ljf) = γj(k)
∑

w∈Z

ck+wNj
(f) , k ∈ Z . (2.11)

Therefore this gives

Lj f(x) =
∑

w∈Z

∑

k∈Z

γj(k)ck+wNj
(f)eikx

=
∑

w∈Z

e−iwNjx
∑

k∈Z

γj(k − wNj)ck(f)eikx
(2.12)

for trigonometric polynomials f .

(
H6(λ)

)
Let L be a sequence of type (H5). We assume that for every Λj exists a positive

number Aj such that the following holds true

γj(k) =

{
1 : |k| ≤ λ2j

0 : |k| > Aj
, λ2j + Aj < Nj .
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Remark 2.6 Formula (2.11) implies for the function
f(x) = eimx, m ∈ N0, the relation

ck(Lj(e
im·)) = γj(k) ·

{
1 : if Nj divides k −m
0 : otherwise

, k ∈ Z , (2.13)

which yields immediately the implication

H6(λ) =⇒ H1(λ) .

(H7) Let L = {Lj}j∈Nd
0

be a sequence of type (H5). The corresponding sequence of Λj is
supposed to provide the existence of the following quantity

C := sup
j∈N0

∑

k∈Z

|γj(k) − γj(k − 1)| .

We shall say that ~L = (L1, ..., Ld) satisfies the hypothesis (Hn) if each sequence Li, i =
1, . . . , d, satisfies (Hn).
The set of sampling points used by Lij will be denoted by T i

j . Then we put

G(m, d, ~L) :=
⋃

m−d+1≤|j|1≤m

T 1
j1
× ...× T d

jd
. (2.14)

By (2.9) the operator A(m, d, ~L) uses only samples from the grid G(m, d, ~L). To begin with
we state a simple property of the standard grid induced by the choice T i

j = J2j .

Lemma 2.3 Let ~L be a sequence of operators such that Lij uses samples from the grid
T i
j = J2j , i = 1, . . . , d, j ∈ N0 (see (2.2)). Then the cardinality S(m, d) of the grid

G(m, d, ~L) is given by

S(m, d) =
d−1∑

j=0

(
d− 1

j

)
2m−j

(
m

j

)
, (2.15)

where we put
(
m
j

)
:= 0 in case m < j.

Proof Step 1. For abbreviation we write G(m, d) instead of G(m, d, ~L). By using the
nestedness of the sequence J2n we obtain the following recursion formula (see also [24])

G(m, d+ 1) =
⋃

0≤j1+...+jd+1≤m

J2j1 × ...× J2jd+1

=
m⋃

n=0

G(m− n, d) × J2n

= (G(m, d) × J1) ∪
( m⋃

n=1

G(m− n, d) ×
(
J2n \ J2n−1

))
,
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where G(m, 1) = J2m . Therefore G(m, d+1) is decomposed into a disjoint union of subsets.
This yields

S(m, d+ 1) = S(m, d) +
m∑

n=1

S(m− n, d) 2n−1 ,

with S(m, 1) = 2m.
Step 2. We proceed by induction with respect to d. From the induction hypothesis (2.15)
and our recursion formula we derive

S(m, d+ 1) =
d−1∑

j=0

(
d− 1

j

)
2m−j

(
m

j

)
+

d−1∑

j=0

(
d− 1

j

) m∑

n=1

2m−n−j

(
m− n

j

)
2n−1

=
d−1∑

j=0

(
d− 1

j

)
2m−j

(
m

j

)
+

d−1∑

j=0

(
d− 1

j

)
2m−j−1

m∑

n=1

(
m− n

j

)
.

Using the identity
m−1∑

n=j

(
n

j

)
=

(
m

j + 1

)
, j ∈ N0 , (2.16)

we obtain

S(m, d+ 1) =
d−1∑

j=0

(
d− 1

j

)
2m−j

(
m

j

)
+

d∑

j=1

(
d− 1

j − 1

)
2m−j

(
m

j

)

=
d∑

j=0

(
d

j

)
2m−j

(
m

j

)
,

which proves our claim. �

This Lemma can be generalized to the following assertion.

Lemma 2.4 (i) The hypothesis (H3) should be fulfilled. Then the cardinality |G(m, d, ~L)|
of the grid G(m, d, ~L) satisfies

|G(m, d, ~L)| ≤ (2C2)
d S(m, d) .

(ii) If the hypotheses (H3) and (H ′
3) are fulfilled then

min(C1, C3)
dS(m, d) ≤ |G(m, d, ~L)| ≤ (2C2)

d S(m, d) , m ∈ N0 (2.17)

holds true.

Proof The same arguments as used in Step 1 of the proof of Lemma 2.3 lead to a decom-
position of G(m, d+ 1) into disjoint subsets

G(m, d+ 1) = (G(m, d) × T d+1
0 ) ∪

( m⋃

n=1

G(m− n, d) ×
(
T d+1
n \

n−1⋃

ℓ=0

T d+1
ℓ

))
.
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In view of (H3) and (H ′
3) this yields

min(C1, C3)
(
|G(m, d)| +

m∑

n=1

|G(m− n, d)| 2n−1
)
≤ |G(m, d+ 1)|

≤ 2C2

(
|G(m, d)| +

m∑

n=1

|G(m− n, d)| 2n−1
)
.

Induction with respect to d by taking (2.17) as induction hypothesis yields the desired
result. �

The following property is central for Smolyak’s algorithm. First we define a version of the
so called “ dyadic hyperbolic cross”, which was studied very intensively in connection with
“ dyadic hyperbolic cross approximation”. The following lemma points out the connection
between Smolyak’s algorithm and this field by stating a certain invariance property.

Lemma 2.5 Let

H(m, d, λ) :=
{
ℓ ∈ Z

d : ∃u1, ..., ud ∈ N0 s.t. |ℓk| ≤ 2ukλ and
d∑

k=1

uk = m
}

(2.18)

be a dyadic hyperbolic cross. Suppose that ~L satisfies (H1(λ)) for some λ > 0. Then

A(m, d, ~L) eiℓ· = eiℓ· , ℓ ∈ H(m, d, λ) .

Proof We consider the linear operators

T :=
∑

0≤j1≤m

. . .
∑

0≤jd≤m

d⊗

k=1

∆k
jk

and R :=
∑

|j|1≥m+1

d⊗

k=1

∆k
jk
,

where we put ∆k
jk

:= ∆jk(L
k). Then A(m, d, ~L) = T −R. Since

m∑
j=0

∆k
j = Lkm we obtain

T =
d⊗

k=1

Lkm , m ∈ N0 .

Obviously, if ℓ ∈ H(m, d, λ), i.e. |ℓu| ≤ λ 2m for all 1 ≤ u ≤ d, then

(
Teiℓ ·

)
(x) =

d∏

u=1

(Lume
iℓu·)(xu) = eiℓx , x ∈ T

d ,

because of (H1(λ)). It remains to prove Reiℓ · ≡ 0. Let j = (j1, ..., jd) be such that
|j|1 ≥ m + 1. Because of ℓ ∈ H(m, d, λ) there exist nonnegative integers uk, k = 1, ..., d
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satisfying
∑d

k=1 uk = m and |ℓk| ≤ 2ukλ. Thanks to |j|1 ≥ m+ 1 > m there is at least one
component jk of j with jk > uk. It follows

|ℓk| ≤ 2uk λ ≤ 2jk−1 λ < 2jk λ .

Hence, using again (H1(λ)), we find

∆k
jk
eiℓkt = Lkjke

iℓkt − Lkjk−1e
iℓkt = eiℓkt − eiℓkt = 0 , t ∈ T .

By definition of R this proves the claim. �

Remark 2.7 A special case of Lemma 2.5 can be found in [43].

In addition we need the cardinality of certain subsets of Z
d, especially the size of the

hyperbolic cross H(m, d, 1), defined in (2.18). For m ∈ N we consider also the sets

P0(m, d) =
{

(n1, ..., nd) ∈ N
d
0 :

d∑

i=1

ni = m
}

and P1(m, d) =
{

(n1, ..., nd) ∈ N
d :

d∑

i=1

ni = m
}
.

Lemma 2.6 For m ∈ N it holds
(i)

|P0(m, d)| =

(
m+ d− 1

d− 1

)
, |P1(m, d)| =

(
m− 1

d− 1

)
,

(ii) and
2d S(m, d) ≤ |H(m, d, 1)| ≤ 3d S(m, d).

Proof Part (i) is an easy consequence of the recursion formulas

|P0(m, d+ 1)| =
m∑

n=0

|P0(m− n, d)| and |P1(m, d+ 1)| =
m−d∑

n=1

|P0(m− n, d)|

with P0(m, 1) = P1(m, 1) = 1, m ∈ N and induction with respect to d using (2.16).
The same arguments as used in the proof of the Lemmas 2.3, 2.4 imply

2
(
|H(m, d)| +

m∑

n=1

|H(m− n, d)| 2n−1
)
≤ |H(m, d+ 1)|

≤ 3
(
|H(m, d)| +

m∑

n=1

|H(m− n, d)| 2n−1
)

with 2 · 2m ≤ H(m, 1) ≤ 3 · 2m. Induction with respect to d yields the result. �
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Remark 2.8 (i) Obviously, for fixed d we have

|P0(m, d)| ≍ md−1 , |P1(m, d)| ≍ md−1 and S(m, d) ≍ 2mmd−1 , m ∈ N .

We call the grids G(m, d, ~L) sparse because their cardinality is growing only with a loga-
rithmic order with respect to d.
(ii) Estimates of the cardinality of grids related to Smolyak algorithms are given at various
places. What concerns the dependence on d we refer e.g. to [24].

Lemma 2.7 Let us assume that

Lijf(t) = f(t) , t ∈ T i
j , i = 1, . . . , d , (2.19)

for all j ≤ m and all f ∈ C(T). If now (H4) (nestedness) is fulfilled then A(m, d, ~L)

interpolates on G(m, d, ~L), more precisely

A(m, d, ~L)f(x) = f(x) , x ∈ G(m, d, ~L) , f ∈ C(Td) .

Proof The proof is similar to the proof of Lemma 2.5. Observe that the nestedness of the
grids T i

j implies

G(m, d, ~L) =
⋃

|j|1≤m

T 1
j1

× . . . × T d
jd

=
⋃

|j|1=m

T 1
j1

× . . . × T d
jd
.

We employ the same notation and decomposition of A(m, d, ~L) = T − R as in proof of
Lemma 2.5. Since Lim interpolates on T i

m the operator T interpolates on T 1
m × . . . × T d

m.
Hence, it is enough to prove

Rf(x) = 0 for all x ∈ T 1
k1

× . . . × T d
kd
, |k|1 = m,

and all f ∈ C(Td). We shall prove even more, namely
(
∆1
j1
⊗ . . . ⊗ ∆d

jd

)
f(x) = 0 , x ∈ T 1

k1
× . . . × T d

kd
, |k|1 = m,

f ∈ C(Td) and |j|1 > m.
Let j, |j|1 > m, k, |k|1 = m and x ∈ G(m, d, ~L) be given. For f ∈ C(Td) and 1 ≤ u ≤ d
we put gu(t) := f(x1, . . . , xu−1, t , xu+1, . . . , xd), t ∈ T. Furthermore, there exists at least
one component u such that ku < ju. This implies Lujugu(xu) = Luju−1gu(xu) which proves
the claim. �

2.4 Main Results

This section contains our main results. As mentioned in the Introduction we will study the
approximation power of the Smolyak algorithm for functions taken from Besov, Triebel-
Lizorkin and Sobolev type spaces with dominating mixed smoothness Srp,qB(Td), Srp,qF (Td)
and SrpW (Td).
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2.4.1 Besov Spaces

Our first result is the following general estimate for sampling operators. Here we shall use
that functions from Srp,qB(Td) with r > 1/p have a continuous representative (see Corollary
1.1).

Proposition 2.4 Let 1 ≤ p, q ≤ ∞ and r > 1/p. Let further ~L satisfy the hypotheses
(H1(λ)) for a certain λ > 0 and (H2(p, s)) for 1/p < s ≤ r. Then there exists a constant
c > 0 such that

‖ I − A(m, d, ~L) |Srp,qB(Td) → Lp(T
d)‖ ≤ cm(d−1)(1−1/q) 2−mr

holds for all m ∈ N0.

Proof Step 1. We need first to prove the following lemma, which represents our main tool.

Lemma 2.8 Let 1 ≤ p ≤ ∞ and r > 0. Suppose Pj ∈ L(Br
p,p(T), Lp(T)), j = 1, . . . , d.

Then

‖P1 ⊗ . . . ⊗ Pd f |Lp(Td)‖ ≤
( d∏

j=1

‖Pj |Br
p,p(T) → Lp(T)‖

)
‖ f |Srp,pB(Td)‖

holds for all trigonometric polynomials f .

Proof Let f =
∑

k∈Zd ck(f) eikx be a trigonometric polynomial. We define k = (k1, k
′),

k1 ∈ Z, k′ ∈ Z
d−1, x = (x1, x

′), x1 ∈ T, x′ ∈ T
d−1, and

gk1(x
′) :=

∑

k′∈Zd−1

ck(f)
( d∏

n=2

Pn(e
ikn ·)(xn)

)
, x′ ∈ R

d−1 , k1 ∈ Z .

Then

‖ (P1 ⊗ . . . ⊗ Pd)f |Lp(Td)‖p =

∫

T d−1

∥∥∥P1

(∑

k1∈Z

gk1(x
′) eik1·

)
(x1)

∣∣∣Lp(T, x1)
∥∥∥
p

dx′

≤ ‖P1 ‖p
∫

T d−1

∥∥∥
(∑

k1∈Z

gk1(x
′) eik1·

)
(x1)

∣∣∣Br
p,p(T, x1)

∥∥∥
p

dx′ . (2.20)

Now, let (ϕj)j ∈ Φ(R) be an appropriate decomposition of unity, see Definition 1.1. Then

∥∥∥
(∑

k1∈Z

gk1(x
′) eik1x1

) ∣∣∣Br
p,p(T)

∥∥∥
p

=
∞∑

j1=0

2j1rp
∥∥∥
∑

k1∈Z

ϕj1(k1) gk1(x
′) eik1x1

∣∣∣Lp(T, x1)
∥∥∥
p

=
∞∑

j1=0

2j1rp
∥∥∥P2

(∑

k∈Zd

ck(f)ϕj1(k1) e
ik1x1

( d∏

n=3

Pn(e
ikn ·)(xn)

)
eik2·

)
(x2)

∣∣∣Lp(T, x1)
∥∥∥
p
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This identity will be inserted into (2.20). Then we interchange the order of integration and
proceed as above:

‖ (P1 ⊗ . . . ⊗ Pd)f |Lp(Td)‖p ≤ ‖P1 ‖p
∞∑

j1=0

2j1rp
∫

Td−1

∫ 2π

0

∣∣∣P2

(∑

k∈Zd

ck(f)ϕj1(k1) e
ik1x1

( d∏

n=3

Pn(e
ikn ·)(xn)

)
eik2·

)
(x2)

∣∣∣
p

dx2 dx1 dx3 . . . dxd

≤ ‖P1 ‖p . . . ‖Pd ‖p

×
∑

j∈Nd
0

2r|j|1p
∫

Td

∣∣∣
∑

k∈Zd

ck(f)ϕj1(k1) e
ik1x1 . . . ϕjd(kd) e

ikdxd

∣∣∣
p

dx1 . . . dxd

= ‖P1 ‖p . . . ‖Pd ‖p ‖ f |Srp,pB(Td)‖p .

This proves the claim. �

Let us now proof Proposition 2.4.
Step 2. The aim of this step consists in a description of the decomposition we are going to
use. Let us recall the decomposition (1.20) of f ∈ Srp,qB(Td) into the pieces fℓ. Because
of r > 1/p we have convergence in C(Td), see Corollary 1.1 and Theorem 1.4. Next we
need to fix a natural number nλ such that 2−nλ ≤ λ. Now we suppose that m is larger
than d(nλ + 1). Further we put sm := m− d(nλ + 1) ≥ 0 (we drop the parameter λ in all
other notations). Let Im0 := [0, sm] and Im1 := (sm,∞), respectively. For b = (b1, . . . bd),
bi ∈ {0, 1}, i = 1, . . . , d, we define

Qm
b := {ℓ ∈ N

d
0 : ℓn ∈ Imbn , n = 1, . . . , d, |ℓ|1 > sm} ,

This leads to the decomposition

f(x) = h(x) +
∑

b∈{0,1}d

f b(x) ,

where
f b(x) :=

∑

ℓ∈Qm
b

fℓ(x) .

The function h(x) is a trigonometric polynomial given by

h(x) :=
∑

|ℓ|1≤sm

fℓ(x) .

Observe ck(h) 6= 0 implies ck(fℓ) 6= 0 for some ℓ ∈ Z
d satisfying |ℓ|1 ≤ sm. Hence

|kn| ≤ 2ℓn+1 ≤ 2ℓn+1+nλλ for n = 1, ..., d. Therefore k ∈ H(m, d, λ) and consequently
A(m, d, ~L)h = h follows, see Lemma 2.5 and (H1(λ)).
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Step 3. Estimation (first part). For later use we will take care of the constants and their
dependence on the dimension d in all inequalities.
By means of the invariance of h under the application of A(m, d, ~L) we find

‖ f − A(m, d, ~L)f |Lp(Td)‖ ≤
∑

b∈{0,1}d

‖ f b − A(m, d, ~L)f b |Lp(Td)‖ .

Obviously, there exists a number Mℓ ∈ N, such that the trigonometric polynomial fℓ has
all its harmonics in the hyperbolic cross H(Mℓ, d, λ). For Mℓ > |ℓ|1 + d(1+nλ) Lemma 2.5
implies

‖ fℓ − A(m, d, ~L)fℓ |Lp(Td)‖ = ‖A(Mℓ, d, ~L)fℓ − A(m, d, ~L)fℓ |Lp(Td)‖

=
∥∥∥

∑

m<|j|1≤Mℓ

( d⊗

n=1

∆n
jn

)
fℓ

∣∣∣Lp(Td)
∥∥∥

=
∥∥∥
∑

j∈Λm
ℓ

( d⊗

n=1

∆n
jn

)
fℓ

∣∣∣Lp(Td)
∥∥∥ ,

where

Λm
ℓ :=

{
j = (j1, ..., jd) : |j|1 > m, jn ≤ ℓn + 1 + nλ, n = 1, ..., d

}
.

In order to keep simple notation, we used again ∆n
jn instead of ∆jn(Ln), n = 1, ..., d,

jn = 0, 1, 2, .... The last step here is a consequence of (H1(λ)), the definition of the tensor
product and the choice of Mℓ. We continue by using Lemma 2.8. Let us choose r0 such
that 1/p < r0 < r. Then

∥∥∥
( d⊗

n=1

∆n
jn

)
fℓ

∣∣∣Lp(Td)
∥∥∥ ≤ ‖ fℓ |Sr0p,pB(Td)‖

d∏

n=1

‖∆n
jn |Br0

p,p(T) → Lp(T)‖ .

Using hypothesis (H2(r0, p)), the triangle inequality and Lemma 1.6 this gives

∥∥∥
( d⊗

n=1

∆n
jn

)
fℓ

∣∣∣Lp(Td)
∥∥∥ ≤ Cd

4 2−mr0 ‖ fℓ |Sr0p,pB(Td)‖ ,

where C4 := C0(r0) · (1 + 2r0), see (2.10). Furthermore

‖ fℓ |Sr0p,pB(Td)‖ ≤
( ∑

|jk−ℓk|≤1
k=1,...,d

2r0|j|1p sup
j∈Nd

0

‖(2π)−d/2F−1ϕj|L1(R
d)‖p · ‖fℓ|Lp(Td)‖p

)1/p

≤ C5 2r0|ℓ|1 ‖ fℓ |Lp(Td)‖ ,

where

C5 := 2r0d3d/p(2π)−d/2 max
n=0,1,... ,d

‖F−1ϕ0 |L1(R)‖n‖F−1ϕ1 |L1(R)‖d−n .
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Here we used Lemma 1.1 and the homogeneity of the Fourier transform. Altogether we
obtain

‖ f b − A(m, d, ~L)f b |Lp(Td)‖ ≤ Cd
4 C5

∑

ℓ∈Qm
b

2r0(|ℓ|1−m) |Λm
ℓ | ‖ fℓ |Lp(Td)‖

= Cd
4 C5 2−r0m

∑

ℓ∈Qm
b

2(r0−r)|ℓ|1 |Λm
ℓ | 2r|ℓ|1 ‖ fℓ |Lp(Td)‖ . (2.21)

Of course, |Λm
ℓ | denotes the cardinality of the set Λm

ℓ . We need to estimate this quantity.
Obviously

Λm
ℓ ⊂

[
m−

d∑

n=1
n6=1

(ℓn + 1 + nλ), ℓ1 + 1 + nλ

]
× · · · ×

[
m−

d∑

n=1
n6=d

(ℓn + 1 + nλ), ℓd + 1 + nλ

]
.

This implies

|Λm
ℓ | ≤ min

(
(|ℓ|1 + d(1 + nλ) + 1 −m)d ,

d∏

n=1

(ℓn + 2 + nλ)
)
. (2.22)

Step 4. Estimation (second part). Depending on the size of |b|1 we continue.
Step 4.1. Let |b|1 ≤ 1. Without loss of generality we may assume that b1 = |b|1. For given
q let q′ be such that (1/q) + (1/q′) = 1. Then we find

2−mr0
( ∑

ℓ∈Qm
b

2q
′(r0−r)|ℓ|1 |Λm

ℓ |q
′
)1/q′

≤ 2−mr0
( ∑

ℓ∈Qm
b

2q
′(r0−r)|ℓ̄|1 (|ℓ|1 + d(nλ + 1) + 1 −m)dq

′
)1/q′

≤ 2−mr0
( sm∑

ℓ2,...,ℓd=0

∞∑

u=0

2q
′(r0−r)(u+m−d(nλ+1)−1)udq

′
)1/q′

≤ 2−mr
(
md−1

∞∑

u=0

2q
′(r0−r)(u−d(nλ+1)−1)udq

′
)1/q′

≤ C6 2−mrm(d−1)(1−1/q) , (2.23)

where

C6 := 2(r−r0)(d(nλ+1)+1)
( ∞∑

u=0

2q
′(r0−r)u udq

′
)1/q′

.

In this case Hölder’s inequality and (2.23) lead to

‖ f b − A(m, d, ~L)f b) |Lp(Td)‖

≤ Cd
4 C5 2−mr0

( ∑

ℓ∈Qm
b

2q
′(r0−r)|ℓ|1 |Λm

ℓ |q
′
)1/q′ ( ∑

ℓ∈Qm
b

2r|ℓ|1q ‖ fℓ |Lp(Td)‖q
)1/q

≤ Cd
4 C5C6 2−mrm(d−1)(1−1/q) ‖ f |Srp,qB(Td)‖ . (2.24)
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Step 4.2. Let |b|1 ≥ 2. In this case the estimate becomes easier. We use

2−mr0
∑

ℓ∈Qm
b

2(r0−r)|ℓ|1 |Λm
ℓ | ≤ 2−mr0

d∏

n=1

( ∑

ℓn∈Im
bn

2(r0−r)ℓn(ℓn + 2 + nλ)
)
,

see (2.22), as well as

∞∑

ℓn=sm+1

2(r0−r)ℓn(ℓn + 2 + nλ)

= 2m(r0−r)2(r−r0)(d(nλ+1)−1)

∞∑

u=0

2(r0−r)u (u+m− d(nλ + 1) + 3)

≤ 2m(r0−r) 2(r−r0)(d(nλ+1)−1)

∞∑

u=0

2(r0−r)u (u+m+ 3)

≤ C7 2m(r0−r)m

with

C7 := 2 2(r−r0)(d(nλ+1)−1)
( ∞∑

u=0

2(r0−r)u (u+ 3)
)
,

and
sm∑

ℓn=0

2(r0−r)ℓn(ℓn + 2 + nλ) ≤ m

∞∑

u=0

2(r0−r)u ≤ C7m.

Altogether this leads to

‖ fb − A(m, d, ~L)fb |Lp(Td)‖ ≤ Cd
4 C5 ‖ f |Srp,∞B(Td)‖ 2−mr0

∑

ℓ∈Qm
b

2(r0−r)|ℓ|1 |Λm
ℓ |

≤ Cd
4 C5C

d
7 ‖ f |Srp,∞B(Td)‖ 2−mrmd2m(r0−r)(|b|1−1)

≤ Cd
4 C5C

d
7 C8 2−mr ‖ f |Srp,∞B(Td)‖ , (2.25)

where
C8 := max

n=1,...,d−1
sup
m∈N

md 2m(r0−r)n ,

see (2.21). It remains to sum up over |b|1 ≤ 1 in (2.24) and over 2 ≤ |b|1 ≤ d in (2.25),
respectively. This completes the proof of Proposition 2.4. �

Remark 2.9 Proposition 2.4 generalizes the results obtained in [34] in various directions.
In [34] the bivariate case for 1 < p < ∞ is investigated. In addition the admissible
operators A(m, d, ~L) are more general now.



81 T. Ullrich

Remark 2.10 We observe that the dependence on the dimension d is worse than expo-
nential. But this is just because of the constant Cd

7 , which has only technical reasons.
Consider for instance the operator A(m, d,D), where λ = 1 and therefore nλ = 0. In the
case 1 < p < ∞ we can use the decomposition in Remark 1.10 for the proof (see also
Lemma 1.5). The same strategy was used in the proof of [53, Lem. 3]. The quantity sm
then equals m and the factor

2(r−r0)(d(nλ+1)−1)

in the definition of C7 vanishes. Therefore the result can be rewritten as follows. If 1 <
p < ∞, 1 ≤ q ≤ ∞ and r > 1/p then exists a constant C > 0 (independently of d), such
that the relation

‖I − A(m, d,D)|Srp,qB(Td) → Lp(T
d)‖ ≤ Cdm(d−1)(1−1/q)2−rm (2.26)

holds true for all m ∈ N0. Of course, the case p = q = 2 is included. Therefore (2.26)
holds even for the space Sr2W (Td) (see Remark 1.6/(iii) and Corollary 1.2) .

The following assertion gives the estimate from below. Here we restrict to sequences ~L
using equidistant sampling knots, see (H5).

Proposition 2.5 Let 1 ≤ p, q ≤ ∞ and r > 1/p. Let further ~L be given by (H5), where
we assume

N0 < N1 < ... < Nj < Nj+1 < ... , (2.27)

and satisfy the hypotheses
(
H1(λ)

)
for a certain λ > 0, (H3) and (H4). Then there exists

a constant c > 0 such that

‖ I − A(m, d, ~L) |Srp,qB(Td) → Lp(T
d)‖ ≥ cm(d−1)(1−1/q) 2−mr

holds for all m ∈ N0 .

Step 1. Test functions. Only the estimate from below is of interest. For this reason we
construct a sequence of test functions. For m ≥ d2 we put

fm(x1, ..., xd) :=
∑

uk≥d
|u|1=m

eiNu1x1+...+iNud
xd , (2.28)

where {Nj}j is the given sequence of natural numbers according to ~L, see hypothesis (H5)
and (2.27). Let us compute ‖fm|Srp,qB(Td)‖. Let {ϕj}∞j=0 ∈ Φ(R). We use the same
notation as in Section 1.4 . Now we obtain

‖fm|Srp,qB(Td)‖ =
(∑

ℓ̄∈Nd
0

2r|ℓ̄|1q
∥∥∥
∑

k∈Zd

ϕℓ̄(k)ck(fm)eik·x
∣∣∣Lp(Td)

∥∥∥
q)1/q

=
(∑

ℓ̄∈Nd
0

2r|ℓ̄|1q
∥∥∥
∑

uk≥d

|u|1=m

ϕℓ̄(Nu1 , ..., Nud
)eiNu1x1+...+iNud

xd

∣∣∣Lp(Td)
∥∥∥
q)1/q



2.4. Main Results 82

Because of (H3) we have Nj ≍ 2j. This and Definition 1.1/(i),(ii) imply the existence of
a ∈ N such that

ϕn(Nj) 6= 0 =⇒ |j − n| ≤ a.

And therefore

‖fm|Srp,qB(Td)‖ ≤
(∑

ℓ̄∈A

2r|ℓ̄|1q
∥∥∥
∑

ū∈Bℓ̄

ϕℓ̄(Nu1 , ..., Nud
)eiNu1x1+...+iNud

xd

∣∣∣Lp(Td)
∥∥∥
q)1/q

,

where

A = {(ℓ1, ..., ℓd) ∈ N
d
0 : ∃ū ∈ N0, |ū|1 = m, |ℓk − uk| ≤ a} and

Bℓ̄ = {(u1, ..., ud) ∈ N0 : |uk − ℓk| ≤ a, uk ≥ d, k = 1, .., d, |ū|1 = m}.

Finally

‖fm|Srp,qB(Td)‖ ≤ c12
rm
(∑

ℓ̄∈A

∑

ū∈Bℓ̄

∥∥∥ϕℓ̄(M(u1), ...,M(ud))e
iM(u1)x1+...+iM(ud)xd

∣∣∣Lp(Td)
∥∥∥
q)1/q

≤ c22
rm
(∑

ℓ̄∈A

1
)1/q

≤ c32
rmm(d−1)/q

We refer to Remark 2.8.
With the usual modifications for q = ∞ we obtain as well

‖fm|Srp,∞B(Td)‖ ≤ c 2rm.

Step 2. Calculation of c(0,...,0)(A(m, d, ~L)fm). Let us first study the number c0(∆k
jk

(eiNuk
·)).

Putting

dM(N) =

{
1 if N

M
∈ Z

0 otherwise
,

we derive from (2.13) and (H1(λ))

c0(∆
k
jk

(eiNuk
·)) =

{
dNjk

(Nuk
) − dNjk−1

(Nuk
) if jk ≥ 1

dN0(Nuk
) if jk = 0

.

(H4) and (H5) together yield Nj+1/Nj ∈ N, j = 0, 1, . . .
Consequently,

c0(∆
k
jk

(eiNuk
·)) =





−1 if jk = uk + 1
1 if jk = 0
0 otherwise .

(2.29)
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This yields

c0
(
A(m, d, ~L) fm

)
=
∑

uk≥d
|u|1=m

c0
[
A(m, d, ~L)

(
eiNu1 ·+...+iNud

·
)]

=
∑

uk≥d
|u|1=m

∑

j∈Tu

c0

[( d⊗

k=1

∆k
jk

)(
eiNuk

·+...+iNud

)]

=
∑

uk≥d
|u|1=m

∑

j∈Tu

c0[∆
1
j1

(eiNu1 ·)] · ... · c0[∆d
jd

(eiNud
·)] ,

(2.30)

where

Tu =
{

(j1, ..., jd) ∈ N
d
0 : |j|1 ≤ m and either jk = uk + 1 or jk = 0,

k = 1, ..., d
}
.

Clearly, Tu does not contain (u1 + 1, . . . , ud + 1) because of |u|1 = m. Let us decompose

the index set Tu into the disjoint subsets Tu =
d⋃
ℓ=1

T ℓu , where

T ℓu = {(j1, ..., jd) ∈ Tu : exactly ℓ components of j vanish} , ℓ = 1, ..., d.

The set T ℓu contains exactly
(
d
ℓ

)
elements for every u and because of (2.29) we have

c0[∆
1
j1

(eiNu1 ·)] · ... · c0[∆d
jd

(eiNud
·)] = (−1)d−ℓ , j ∈ T ℓu .

This together with (2.30) yields

c0
(
A(m, d, ~L) fm

)
=
∑

uk≥d
|u|1=m

d∑

ℓ=1

∑

j∈T ℓ
u

(−1)d−ℓ

=
∑

uk≥d
|u|1=m

d∑

ℓ=1

(−1)d−ℓ
(
d

ℓ

)

=
∑

uk≥d
|u|1=m

d−1∑

ℓ=0

(−1)ℓ
(
d

ℓ

)
.

Because of

d−1∑

ℓ=0

(−1)ℓ
(
d

ℓ

)
=

(
d− 1

0

)
+

d−1∑

ℓ=1

(−1)ℓ
((d− 1

ℓ− 1

)
+

(
d− 1

ℓ

))
= (−1)d−1

(
d− 1

d− 1

)
= (−1)d−1
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we conclude in view of Remark 2.8
∣∣ c0
(
fm − A(m, d, ~L)fm

)∣∣ =
∣∣ c0
(
A(m, d, ~L) fm

)∣∣ =
∣∣∣
∑

uk≥d
|u|1=m

(−1)d−1
∣∣∣ ≍ md−1 .

Since we know the behaviour of ‖ fm |Srp,qB(Td)‖, we finally get

‖ I − A(m, d, ~L) |Srp,qB(Td) → Lp(T
d)‖ ≥ ‖ fm − A(m, d)fm |Lp(Td)‖

‖ fm |Srp,qB(Td)‖
≥ c 2−rmm(d−1)(1−1/q)

with some positive constant c independent of m ∈ N. �

Let us collect both propositions to our main theorem.

Theorem 2.1 Let 1 ≤ p, q ≤ ∞ and r > 1/p. Let further ~L be given by (H5), where we
assume

N0 < N1 < ... < Nj < Nj+1 < ... ,

and satisfy additionally the hypotheses (H1(λ)) for a certain λ > 0,
(
H2(p, s)

)
for 1/p <

s ≤ r, (H3) and (H4). Then the relation

‖ I − A(m, d, ~L) |Srp,qB(Td) → Lp(T
d)‖ ≍ m(d−1)(1−1/q) 2−mr

holds true.

2.4.2 Triebel-Lizorkin Spaces

Now we investigate Smolyak’s algorithm for approximating functions from Srp,qF (Td) . It
is worth underlining the result for the scale of Sobolev spaces with dominating mixed
smoothness SrpW (Td). Based on that constructive algorithm we are able to give a new
upper bound for the problem of optimal recovery. See the corresponding paragraph below.
We start by proving two lemmas, which state the same estimate from above under different
conditions. These assertions work as corner results, which will be connected using the
method of complex interpolation (see Section 1.5) . We only consider the special situation
~L = (L, ..., L) to avoid technical difficulties. To indicate this, we may write A(m, d, L)

instead of A(m, d, ~L). But nevertheless, the general case can be proved analogously.

Lemma 2.9 Let 1 ≤ p < ∞, p ≤ q ≤ ∞, r > 1/p and L = {Lj}j∈N0 satisfying (H1(λ))
and (H2(p, s)) for 1/p < s ≤ r. Then there exists a constant c > 0 such that

‖I − A(m, d, L)|Srp,qF (Td)) → Lp(T
d)‖ ≤ cm(d−1)(1−1/q)2−mr

holds for all m ∈ N0 .
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Proof This assertion is a direct consequence of Lemma 1.6 and Proposition 2.4 . �

Lemma 2.10 Let 1 < p, q < ∞, r > 1 and L = {Lj}j∈N0 be given by (H5) satisfying
(H2(p, s)) for 1 < s ≤ r, (H6(λ)) and (H7). Then there exists a constant c > 0 such that

‖I − A(m, d, L)|Srp,qF (Td) → Lp(T
d)‖ ≤ cm(d−1)(1−1/q)2−mr

holds for all m ∈ N0 .

Proof We start with the same decomposition and estimate as we did in the proof of
Proposition 2.4 . Here we do not pay any attention to the exact behaviour of the constants
with resect to d. Again we obtain

‖ f − A(m, d, L)f |Lp(Td)‖ ≤
∑

b∈{0,1}d

‖ f b − A(m, d, L)f b |Lp(Td)‖ .

and

f b − A(m, d, L)f b =
∑

ℓ∈Qm
b

∑

j∈Λm
ℓ

( d⊗

n=1

∆jn

)
fℓ , (2.31)

which implies in the case |b|1 ≥ 2 the relation

‖ fb − A(m, d, ~L)fb |Lp(Td)‖ ≤ 2−mr0
∑

ℓ∈Qm
b

2(r0−r)|ℓ|1 |Λm
ℓ | ‖ f |Srp,∞B(Td)‖

≤ c1 2−mrmd2m(r0−r)(|b|1−1)‖ f |Srp,∞B(Td)‖
≤ c2 2−mr‖ f |Srp,∞B(Td)‖
≤ c32

−mr‖f |Srp,qF (Td) .

(2.32)

The last estimate follows by Lemma 1.6/(1.28) . For the case |b|1 ≤ 1 let us go back to
(2.31) and estimate

|f b − A(m, d, L)f b| ≤
∑

ℓ∈Qm
b

∑

j∈Λm
ℓ

∑

u∈Uj

∣∣∣
( d⊗

n=1

Lun

)
fℓ

∣∣∣ , (2.33)

where
Uj =

{
(u1, ..., ud) ∈ N

d
0 : uk = jk or uk = jk − 1

}
.

Of course, the cardinality |Uj|, j ∈ N
d
0, is less or equal to 2d . Next we use (2.12) to obtain

∣∣∣
( d⊗

k=1

Luk

)
fℓ(x)

∣∣∣ ≤
∑

w∈Zd

∣∣∣
∑

k∈Zd

γu1(k1 − w1Nu1) · ... · γud
(kd − wdNud

)ck(fℓ)e
ikx

︸ ︷︷ ︸
=:fℓ,u,w(x)

∣∣∣ .
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Inserted into (2.33) and taking the Lp-norm afterwards this leads to

‖f b − A(m, d, L)f b|Lp(Td)‖ ≤
∥∥∥
∑

ℓ∈Qm
b

∑

j∈Λm
ℓ

∑

u∈Uj

∑

w∈Zd

|fℓ,u,w(x)|
∣∣∣Lp(Td)

∥∥∥ .

Let us restrict the range for w in the corresponding sum. We do not need the entire Z
d

here. Suppose that the trigonometric polynomial fℓ,u,w(x) does not vanish. Taking (H6(λ))
into account, this implies the existence of a vector k ∈ Z

d such that

|ki − wiNui
| ≤ Aui

and |ki| ≤ 2ℓi , i = 1, ..., d . (2.34)

Now again hypothesis (H6(λ)) comes into play. The first condition in (2.34) implies for all
i = 1, ..., d

|ki| ≥ |wi|Nui
− Aui

≥ |wi|Nui
− (Nui

− λ2ui)

≥ C1(|wi| − 1)2ui .

Because of u ∈ Uj and j ∈ Λm
ℓ there exists a number η > 0 such that for |wi| ≥ 2ℓi−ui+η > 1

holds
C1(|wi| − 1)2ui > 2ℓi .

This means, the condition |wi| ≥ 2ℓi−ui+η implies |ki| > 2ℓi . Altogether (2.34) leads to the
following index set for w:

Wℓ,u :=
{
(w1, ..., wd) ∈ Z

d : |wi| ≤ 2ℓi−ui+η, i = 1, ..., d
}

, for some η > 0 . (2.35)

We go further in estimating ‖f b−A(m, d, L)f b|Lp(Td)‖ by Hölder’s inequality using 1/q+
1/q′ = 1 and obtain

‖f b − A(m, d, L)f b|Lp(Td)‖ ≤
( ∑

ℓ∈Qm
b

∑

j∈Λm
ℓ

∑

u∈Uj

∑

w∈Wℓ,u

2−r|ℓ|1q
′ |Λm

ℓ | q
′/q|Wu,ℓ| q

′/q
)1/q′

×

×
∥∥∥
( ∑

ℓ∈Qm
b

∑

j∈Λm
ℓ

∑

u∈Uj

∑

w∈Wℓ,u

2r|ℓ|1q|Λm
ℓ |−1|Wℓ,u|−1|fℓ,u,w(x)|q

)1/q∣∣∣Lp(Td)
∥∥∥ .

Because of (H7), Remark 1.3 can be considered in this situation. Lizorkin’s multiplier
theorem, see Proposition 1.8, is applicable and we obtain from the previous estimate

‖f b − A(m, d, L)f b|Lp(Td)‖ ≤ c9

( ∑

ℓ∈Qm
b

∑

j∈Λm
ℓ

∑

u∈Uj

2−r|ℓ|1q
′|Λm

ℓ | q
′/q|Wu,ℓ| q

′/q+1
)1/q′

×

×
∥∥∥
( ∑

ℓ∈Qm
b

∑

j∈Λm
ℓ

∑

u∈Uj

∑

w∈Wℓ,u

2r|ℓ|1q|Λm
ℓ |−1|Wℓ,u|−1|fℓ(x)|q

)1/q∣∣∣Lp(Td)
∥∥∥ .
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This is a very comfortable situation since we can compute each sum one after another
inside the second factor. Taking into account q′/q + 1 = q′ we obtain

‖f b − A(m, d, L)f b|Lp(Td)‖ ≤c10
∥∥∥
( ∑

ℓ∈Qm
b

2r|ℓ|1q|fℓ(x)|q
)1/q∣∣∣Lp(Td)

∥∥∥×

×
( ∑

ℓ∈Qm
b

∑

j∈Λm
ℓ

∑

u∈Uj

2−r|ℓ|1q
′ |Λm

ℓ | q
′/q|Wu,ℓ|q

′
)1/q′

.

It remains to estimate the second factor in the previous inequality. We start by estimating
the size of the index sets Λm

ℓ and Wℓ,u. Because of ui ≥ ji − 1 and |j|1 > m the definition
of Wℓ,u, see (2.35), implies

|Wℓ,u| ≤ 2|ℓ|1−|j|1+d(η+3) ≤ 2|ℓ|1−m+d(η+3) .

On the basis of

Λm
ℓ ⊂

[
m−

d∑

n=1
n6=1

(ℓn + nλ + 1), ℓ1 + nλ + 1
]
× · · · ×

[
m−

d∑

n=1
n6=d

(ℓn + nλ + 1), ℓd + nλ + 1
]

we derive
|Λm

ℓ | ≤
(
|ℓ|1 + d(nλ + 1) + 1 −m

)d
.

Thus it holds

‖f b − A(m, d, L)f b|Lp(Td)‖ ≤ c11 ‖f |Srp,qF (Td)‖
( ∑

ℓ∈Qm
b

2−r|ℓ|1q
′ |Λm

ℓ |q
′

2(|ℓ|1−m)q′
)1/q′

.

Without loss of generality we may assume that b1 = |b|1. The index transform u :=
|ℓ|1 + d(nλ + 1) + 1 −m yields

( ∑

ℓ∈Qm
b

2−r|ℓ|1q
′|Λm

ℓ |q
′

2(|ℓ|1−m)q′
)1/q′

≤
( ∑

ℓ∈Qm
b

2−r|ℓ|1q
′(|ℓ|1 + d(nλ + 1) + 1 −m

)dq′
2(|ℓ|1−m)q′

)1/q′

≤ c12

( sm∑

ℓ2,...,ℓd=0

∞∑

u=0

2−r(u+m)q′udq
′

2uq
′
)1/q′

= c12 2−mr
( sm∑

ℓ2,...,ℓd=0

∞∑

u=0

2u(1−r)q
′

udq
′
)1/q′

.

Finally the condition r > 1 enters the stage. It is needed to ensure the finiteness of the
sum with respect to u. Altogether everything leads to

‖f b − A(m, d, L)f b|Lp(Td)‖ ≤ c13 2−mrm(d−1)/q′‖f |Srp,qF (Td)‖
= c13 2−mrm(d−1)(1−1/q)‖f |Srp,qF (Td)‖ .
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Summing up over b by taking (2.32) into account this completes the proof. �

Next we connect Lemma 2.9 and 2.10 by complex interpolation to obtain the result below.

Proposition 2.6 Assume that (p, q) belongs to the set [1,∞)×(1,∞]∪{(1, 1)}. Let further
r > max(1/p, 1/q). The sequence L = {Lj}∞j=0 is given by (H5) and supposed to satisfy(
H2(u, s)

)
for all 1 < u < ∞, s > 1/u as well as

(
H2(p, s)

)
for all s > 1/p. Further(

H6(λ)
)

for a certain λ > 0 and (H7) is assumed. Then it exists a constant C > 0 such
that

‖I − A(m, d, L) : Srp,qF (Td) → Lp(T
d)‖ ≤ C2−rmm(d−1)(1−1/q) (2.36)

holds for all m ∈ N0.

Proof Having Lemma 2.9 and Lemma 2.10 it remains to prove (2.36) for 1 < q < p < ∞
and 1/q < r ≤ 1. We use complex interpolation and the result stated in Theorem 1.7.
Furthermore we shall use the relations stated in Lemma 2.9 and 2.10 as corner information
to interpolate the norm of the operator I − A(m, d, L). To do this we have to construct
appropriate parameter triples (p0, q0, r0) and (p1, q1, r1). Firstly, they have to satisfy the
conditions of Lemma 2.10 and Lemma 2.9, respectively. And secondly, the triple (p, q, r)
has to be an intermediate tuple. The figure below gives an idea what we have to realize.

r = 1
p

1
p

1
p

1

11
q1

1
q

1
p0

1
p1

r0

r

r

r1

Step 1. We start by choosing p0 such that

1

p
<

1

p0

<
q

p(q − 1) + q
<

1

q
. (2.37)

This is possible because

1

p
=

q

pq
=

q

p(q − 1) + p
<

(p>q)

q

p(q − 1) + q
<

(p>q)

q

q2 − q + q
=

1

q
.
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Furthermore we choose r0 such that

1

p0

< r0 < r − 1/q − 1/p0

1 − 1/q
(1 − r) ≤ r .

This is possible because of

0 ≤ 1/q − 1/p0

1 − 1/q
(1 − r) <

1/q − 1/p0

1 − r
(1 − r) < r − 1/p0 .

This choice has the following consequences

(a)
1 − r

r − r0
<

1 − 1/q

1/q − 1/p0

(b) and
1/p0 − 1/p

1/p
<

1/q − 1/p0

1 − 1/q
.

Let us give a short comment on (b). Having (2.37) we conclude

1

p0

<
q

p(q − 1) + q
=

q − 1 + 1

p(q − 1) + q
=

1 + 1
q−1

p+ q
q−1

which implies (b). The inequalities in (a) and (b) allow us to choose a number 1 < q1 < q
such that it holds simultaneously

1 − r

r − r0
<

1/q1 − 1/q

1/q − 1/p0

and
1/p0 − 1/p

1/p
<

1/q − 1/p0

1/q1 − 1/q
.

And finally this implies the existence of r1 > 1, 1/p1 < 1/p and 0 < ϑ < 1 such that

1 − ϑ

ϑ
=
r1 − r

r − r0
=

1/q1 − 1/q

1/q − 1/p0

and
ϑ

1 − ϑ
=

1/p0 − 1/p

1/p− 1/p1

=
1/q − 1/p0

1/q1 − 1/q
.

And therefore with q0 := p0 it follows

(r, 1/p, 1/q) = (1 − ϑ)
(
r0, 1/p0, 1/q0

)
+ ϑ
(
r1, 1/p1, 1/q1

)
, (2.38)

where r0 > 1/p0, 1 < p0 = q0 <∞ and r1 > 1, 1 < p1, q1 <∞.

Step 2. As a consequence of Lemma 2.10 we obtain

‖I − A(m, d, L) : Sr0p0,q0F (Td) → Lp0(T
d)‖ ≤ c12

−mr0m(d−1)(1−1/q0) .

Additionally Lemma 2.9 implies

‖I − A(m, d, L) : Sr1p1,q1F (Td) → Lp1(T
d)‖ ≤ c22

−mr1m(d−1)(1−1/q1) .
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We finish the proof by applying Theorem 1.7, Lemma 1.8, (1.42) and (2.38) to obtain

‖I − A(m, d, L) : Srp,qF (Td) → Lp(T
d)‖

≤ ‖I − A(m, d, L) : Sr0p0,q0F → Lp0‖1−ϑ · ‖I − A(m, d, L) : Sr1p1,q1F → Lp1‖ϑ

≤ c3 2−mr0(1−ϑ)m(d−1)(1−1/q0)(1−ϑ) · 2−mr1ϑm(d−1)(1−1/q0)ϑ

= c3 2−mrm(d−1)(1−1/q) .

�

The estimate from below is covered by the following assertion.

Proposition 2.7 Let 1 ≤ p <∞, 1 ≤ q ≤ ∞, r > 1/p and L = {Lj}∞j=0 be given by (H5),
where we assume

N0 < N1 < ... < Nj < Nj+1 < ... .

Let further (H1(λ)) hold true for a certain λ > 0 and (H3) as well as (H4) are satisfied.
Then there exists a constant C > 0 such that

‖I − A(m, d, L) : Srp,qF (Td) → Lp(T
d)‖ ≥ C 2−rmm(d−1)(1−1/q) , m ∈ N0 .

Proof The proof can be transferred almost word by word from Proposition 2.5 . By the
same arguments we obtain

‖fm|Srp,qF (Td)‖ ≤ c 2rmm(d−1)/q .

What remains is completely the same as there. �

We combine Proposition 2.6 and 2.7 to the main theorem for the F -scale. It reads as
follows.

Theorem 2.2 Assume that (p, q) belongs to the set [1,∞)× (1,∞] ∪ {(1, 1)}. Let further
r > max(1/p, 1/q). The sequence L = {Lj}∞j=0 is given by (H5), where we assume

N0 < N1 < ... < Nj < Nj+1 < ... ,

and supposed to satisfy
(
H2(u, s)

)
for all 1 < u <∞, s > 1/u as well as

(
H2(p, s)

)
for all

s > 1/p. Further (H3), (H4),
(
H6(λ)

)
for a certain λ > 0 and (H7) are satisfied. Then it

holds

‖I − A(m, d, L) : Srp,qF (Td) → Lp(T
d)‖ ≍ 2−rmm(d−1)(1−1/q) , m ∈ N0 .

2.4.3 Sobolev Spaces

Let us formulate an important result for Sobolev spaces with dominating mixed smooth-
ness, defined in Paragraph 1.4.4. The following corollary is a special case of Theorem 2.2
applied with q = 2 (see also Corollary 1.2) .
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Corollary 2.2 Let 1 < p <∞. Let further r > max(1/p, 1/2). The sequence L = {Lj}∞j=0

is given by (H5), where we assume

N0 < N1 < ... < Nj < Nj+1 < ... ,

and supposed to satisfy
(
H2(u, s)

)
for all 1 < u < ∞ and s > 1/u. Moreover, we assume

(H3), (H4),
(
H6(λ)

)
for a certain λ > 0 and (H7). Then it holds

‖I − A(m, d, L) : SrpW (Td) → Lp(T
d)‖ ≍ 2−rmm(d−1)/2 , m ∈ N0 .

2.4.4 Non-Equidistant Knots

Using a simple bump function argument it turns out that we cannot improve the approx-
imation properties of Smolyak’s algorithm by admitting general sequences L, at least in
the case q = 1.

Theorem 2.3 Let ~L satisfy the hypotheses (H1), (H2), (H3) and (H ′
3). Then the following

two relations hold true.

(i) If 1 ≤ p ≤ ∞ and r > 1/p then

‖I − A(m, d, ~L)|Srp,1B(Td) → Lp(T
d)‖ ≍ 2−rm .

(ii) If 1 ≤ p <∞ and r > 1/p then there exist two constants c1 and c2 such that

c1 2−rm ≤ ‖I − A(m, d, ~L)|Srp,1F (Td) → Lp(T
d)‖ ≤ c2 2−rmm(d−1)(1−1/p) .

Proof Step 1. We shall use the concept of periodic bump functions. Let B̃ be a compactly
supported smooth function such that supp B̃ ⊂ {x ∈ R

d : |x| ≤ 1}. Its 2π-periodic
extension is denoted by B. Obviously, B ∈ Srp,qA(Td), 1 ≤ p, q ≤ ∞, r ≥ 0. Furthermore,

if λ = (λ1, . . . , λd) ≥ 1 is given then B(λ ·) denotes the 2π-periodic extension of B̃(λ·).
Let us collect some properties in the following lemma.

Lemma 2.11 Let 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞ and λ = (λ1, ..., λd). Let r > 1/p. Then there
exists a positive constant c such that

‖B(λ·) |Srp,qB(Td)‖ ≤ c λ
r−1/p
1 · . . . · λr−1/p

d ‖B(·) |Srp,qB(Td)‖ (2.39)

and
‖B(λ·) |Lp(Td)‖ = λ

−1/p
1 · ... · λ−1/p

d ‖B(·) |Lp(Td)‖
holds for all λ ≥ 1. If p <∞ and additionally r > 1/q, then also

‖B(λ·) |Srp,qF (Td)‖ ≤ c λ
r−1/p
1 · ... · λr−1/p

d ‖B(·) |Srp,qF (Td)‖ .
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Proof These are simple consequences of characterizations of Srp,qB(Td) and Srp,qF (Td) by
differences. We refer to Theorem 1.12 and 1.14 and obtain in the B-case

‖ f |Srp,qB(Td)‖∆ := ‖ f |Lp(Td)‖ +
d∑

n=1

∑

β̄∈{0,1}d,|β̄|1=n

S∆
β̄ (f) ,

where for |β̄|1 = n ≥ 1

S∆
β̄ (f) :=

[ ∫

Rn

( n∏

i=1

|hi|−rq
)∥∥(△m

h1,δ1
◦ · · · ◦ △m

hn,δnf
)
(x)
∣∣Lp(Td)

∥∥q dh1

|h1|
· · · dhn|hn|

]1/q

,

and δ = (δ1, . . . , δn) is defined by means of β̄δi = 1, i = 1, ..., n.
For abbreviation we put Bλ(x) = B(λx). It is not difficult to recognize

(
△m
h1,δ1

◦ · · · ◦ △m
hd,δd

Bλ

)
(x) =

(
△m
λδ1

·h1,δ1
◦ · · · ◦ △m

λδd
·hd,δd

B
)
(λ1x1, ..., λdxd) ,

which corresponds to the well-known formula (△M
h f(λ·)(t) = △M

λhf(λt), t ∈ R. Finally, a
change of variable yields

S∆
β̄ (Bλ) = λ

r−1/p
δ1

· ... · λr−1/p
δd

S∆
β̄ (B) .

Now (2.39) is a consequence of λi ≥ 1 and r > 1/p. �

Step 2. Proof of Theorem 2.3. Only the estimate from below in the B-case is of in-
terest. The F -case follows from elementary embeddings, see Lemma 1.6/(iii). Associated
to L = (L1, ..., Ld) is the sequence of grids G(m, d, ~L), m ∈ N0, see (2.14). For simplicity
we concentrate for the moment on the first component. Because of (H3) we find

∣∣∣
m⋃

j=0

T 1
j

∣∣∣ ≤ C2 2m+1 .

Consequently, for every m ∈ N0 there exists an open interval Im ⊂ [−π, π], |Im| =
1
C2

2−(m+1), such that

Im ∩
( m⋃

j=0

T 1
j

)
= ∅ .

Therefore we can find a rectangle Rm := Im × [−π, π] × ...× [−π, π] providing

Rm ∩ G(m, d, ~L) = ∅ .
Let B denote the function investigated in Lemma 2.11. We choose λ1 = C2 2m+1 and
λ2 = ... = λd = 1. If xm denotes the centre of Rm the function B(λ(· − xm)) vanishes in
G(m, d, ~L). In view of Lemma 2.11 this implies

‖B(λ(· − xm)) − A(m, d, ~L)(B(λ(· − xm))) |Lp(Td)‖
‖B(λ(· − xm)) |Srp,1B(Td)‖ ≥ cλ−r1

where the corresponding constants do not depend on m. �
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2.5 Examples

2.5.1 Sampling Operators

First we consider interpolation with de la Vallée Poussin means, cf. Subsection 2.2.3. We
put

A(m, d, µ) := A(m, d, L) , Lj := I(Λπ
µ,2j , · ) , j ∈ N0 . (2.40)

L is of type (H5). As an immediate consequence of Corollary 2.1 we obtain that L satisfies
(H2(u, s)) for every admissible pair (u, s). A simple calculation shows that (H6(λ)) is
satisfied with λ = 1/2 − µ and therefore also (H1(λ)). Since I(Λπ

µ,2j , · ) uses function
values from the standard grid J2j also (H3), (H ′

3) and (H4) are fulfilled. Obviously also
(H7) holds true, which follows from (2.7) together with (2.4) . Altogether Theorem 2.1, 2.2
and Corollary 2.2 yield the following.

Corollary 2.3 Let 0 < µ < 1/2.

(i) If 1 ≤ p, q ≤ ∞ and r > 1/p then

‖ I − A(m, d, µ) |Srp,qB(Td) → Lp(T
d)‖ ≍ m(d−1)(1−1/q) 2−mr .

(ii) If (p, q) ∈ [1,∞) × (1,∞] ∪ {(1, 1)} and r > max(1/p, 1/q) then

‖ I − A(m, d, µ) |Srp,qF (Td) → Lp(T
d)‖ ≍ m(d−1)(1−1/q) 2−mr .

(iii) If 1 < p <∞ and r > max(1/p, 1/2) then

‖ I − A(m, d, µ) |SrpW (Td) → Lp(T
d)‖ ≍ m(d−1)/22−mr .

As a second example we consider Smolyak’s algorithm associated to the interpolation
operators Rn, cf. (2.8) or [45, 1.6] . Putting

A(m, d,R) := A(m, d, L) , where Lj := R2j , j ∈ N0 ,

we obtain with exactly the same arguments as above.

Corollary 2.4 (i) If 1 ≤ p, q ≤ ∞ and r > 1/p then

‖ I − A(m, d,R) |Srp,qB(Td) → Lp(T
d)‖ ≍ m(d−1)(1−1/q) 2−mr .

(ii) If (p, q) ∈ [1,∞) × (1,∞] ∪ {(1, 1)} and r > max(1/p, 1/q) then

‖ I − A(m, d,R) |Srp,qF (Td) → Lp(T
d)‖ ≍ m(d−1)(1−1/q) 2−mr .

(iii) If 1 < p <∞ and r > max(1/p, 1/2) then

‖ I − A(m, d,R) |SrpW (Td) → Lp(T
d)‖ ≍ m(d−1)/22−mr .
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Remark 2.11 Lemma 2.7 and Remark 2.3 imply that A(m, d, 1/6) f interpolates every
continuous function f ∈ C(Td) on the used sampling grid G(m, d, 1/6) given by

G(m, d, 1/6) :=
{( 2πℓ1

3 · 2j1 , . . . ,
2πℓd
3 · 2jd

)
:

−3 · 2ji−1 ≤ ℓi < 3 · 2ji−1, i = 1, . . . , d, m− d+ 1 ≤ |j|1 ≤ m
}
.

The last example of a sparse grid sampling operator is the following classical one. We
consider interpolation by means of the Dirichlet kernel, i.e. we put

A(m, d,D) := A(m, d, L) , Lj := I2j , j ∈ N0 .

Here H2(u, s) is satisfied for 1 < u <∞ and s > 1/u. Contrarily (H4) is not satisfied and
hence the Propositions 2.5, 2.7 and the Theorems 2.1, 2.2 are not applicable in the stated
form. With specific modifications of the family of testfunctions used in the proof, see
(2.28), it is also possible to obtain a sharp estimate from below (see [35] for the bivariate
case). Nevertheless, Proposition 2.4 and 2.6 give us the following.

Corollary 2.5 (i) If 1 < p < ∞, 1 ≤ q ≤ ∞ and r > 1/p then there a constant c > 0
such that

‖ I − A(m, d,D) |Srp,qB(Td) → Lp(T
d)‖ ≤ cm(d−1)(1−1/q) 2−mr , m ∈ N0 .

(ii) If 1 < p, q <∞ and r > max(1/p, 1/q) then there exists a c > 0 such that

‖ I − A(m, d,D) |Srp,qF (Td) → Lp(T
d)‖ ≤ cm(d−1)(1−1/q) 2−mr , m ∈ N0 .

(iii) If 1 < p <∞ and r > max(1/p, 1/2) then there exists a c > 0 such that

‖ I − A(m, d,D) |SrpW (Td) → Lp(T
d)‖ ≤ cm(d−1)/22−mr , m ∈ N0 .

Remark 2.12 (i) The operator A(m, d,D) uses function values from the grid

G∗(m, d) :=
{( 2πℓ1

2j1+1 + 1
, . . . ,

2πℓd
2jd+1 + 1

)
:

0 ≤ ℓi ≤ 2ji+1, i = 1, . . . , d, m− d+ 1 ≤ |j|1 ≤ m
}
.

But in general A(m, d,D) is not interpolating. To see this, it is sufficient to consider the
operator A(1, 2, D) applied to the function f(x1, x2) = ei3x1 at the point (2π/3, 0) ∈ G∗(1, 2).
Of course, the reason for this consists in

{ 2πℓ

2j+1 + 1
: 0 ≤ ℓ ≤ 2j+1

}
6⊂
{ 2πℓ

2j + 1
: 0 ≤ ℓ ≤ 2j

}
.
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(ii) Let us return to the operator A(m, d,R). Here Lemma 2.7 is not applicable in the
stated form. The condition (2.19) is not satisfied, however (H4) is. In the case d = 2 we
have the following

A(2, 2,R) f2(x1, x2) = ei2x1 + ei2x2 + ei4x1 + ei4x2 ,

A(3, 2,R) f3(x1, x2) = ei2x1 + ei2x2 + ei4x1 + ei4x2 + ei8x1 + ei8x2 ,
(2.41)

where the test functions fm are defined in Section 2.7, cf. Remark 2.17 . This shows
immediately that A(m, d,R) does not interpolate.

2.5.2 Convolution Operators

It turned out that the Smolyak algorithm applied to sampling operators yields a worst case
within a wider class of Smolyak algorithms. In particular, applied to the partial sum of the
Fourier series, it behaves better in approximation order than the Smolyak algorithm with
respect to a sampling operator. Precisely, we do the following. Let us denote by A(m, d, S)
the operator A(m, d, L) associated to the sequence

Lj := S2j , j ∈ N0 .

Of course Definition 2.1 makes also sense in this situation. This operator and its approxima-
tion properties have been studied very intensively in the former Soviet Union, for instance
by Bugrov, Dinh Dung, Galeev, Nikol’skaya, Nikol’skij, Romanyuk and Temlyakov. How-
ever, in contrast to the previous considerations, the operator A(m, d, S) leads to better
results, namely:

Theorem 2.4 Let 1 < p <∞, 1 ≤ q ≤ ∞ and r > 0. Then

‖ I − A(m, d, S) |Srp,qB(Td) → Lp(T
d)‖

≍





m(d−1)( 1
p
− 1

q
) 2−mr if 1 < p ≤ 2 and p ≤ q ≤ ∞ ,

m(d−1)( 1
2
− 1

q
) 2−mr if 2 < p <∞ and 2 < q ≤ ∞ ,

2−mr otherwise ,

m ∈ N0.

Proof A proof can be found in [39, Thm. 5] and further references. �

Furthermore in the F -case we have the following result.

Theorem 2.5 Let 1 < p <∞, 1 < q <∞ and r > 0. Then we have

‖I − A(m, d, S) : Srp,qF (Td) → Lp(T
d)‖ ≍ 2−mrm(d−1)(1/2−1/q)+ , m ∈ N .
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Proof A proof can be found in [53, Prop. 5]. �

Of significant interest is the behaviour for Sobolev type spaces. Here we obtain as a
special case (q = 2, see Corollary 1.2) of the previous theorem.

Theorem 2.6 Let 1 < p <∞ and r > 0. Then we have

‖I − A(m, d, S) : SrpW (Td) → Lp(T
d)‖ ≍ 2−mr , m ∈ N .

2.6 Optimal Recovery of Functions

In this section we study the question of optimal recovery of a function from a finite number
of function values. In order to define the quantity ρM , already mentioned in the introduc-
tion, we introduce the following framework.
Let

ΨM(f, ξ)(x) :=
M∑

j=1

f(ξj)ψj(x)

denote a general sampling operator for a class F of continuous, periodic functions defined
on T

d, where

ξ :=
{
ξ1, ..., ξM

}
, ξi ∈ T

d , i = 1, 2, . . . ,M ,

is a fixed set of sampling points and ψj : T
d → C, j = 1, . . . ,M , are fixed, continuous,

periodic functions. Then the quantity

ρM(F,Lp(T
d)) := inf

ξ
inf

ψ1,...,ψM

sup
‖f |F‖≤1

‖ f − ΨM(f, ξ) |Lp(Td)‖

measures the optimal rate of approximate recovery of the functions taken from F . We
are interested in the case, when F = SrpW (Td), 1 < p < ∞, r > 1/p, F = Srp,qF (Td),
1 ≤ p < ∞, 1 ≤ q ≤ ∞, r > 1/p and F = Srp,qB(Td), where 1 ≤ p, q ≤ ∞ and r > 1/p.
Observe, that the operator A(m, d, µ) uses M = M(m, d) ≍ 2mmd−1 function values from
its argument (see (2.40) and Remark 2.8). Therefore m ≤ c logM with some c independent
of m and hence

2−rmm(d−1)(1−1/q) ≤M−r(c log M)(d−1)(r+1−1/q) .

In view of Corollary 2.3 this implies the upper bound given below.

Corollary 2.6 Let 1 < p < ∞, 1 ≤ q ≤ ∞ and r > 1/p. Then there exist positive
constants c1 and c2 such that for all M ∈ N

c1M
−r(logM)(d−1)rη(M,d, p, q) ≤ ρM(Srp,qB(Td), Lp(T

d))

≤ c2M
−r(logM)(d−1)(r+1−1/q) ,

where
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η(M,d, p, q) :=





(logM)(d−1)( 1
2
− 1

q
) if 2 ≤ p, q ,

(logM)(d−1)( 1
p
− 1

q
) if 1 < p < 2 and p ≤ q ,

1 otherwise .
(2.42)

Proof The estimate from above follows from Corollary 2.3. It holds even in the case
1 ≤ p, q ≤ ∞. For the estimate from below we shall use some well-known results about
Kolmogorov numbers of those embedding operators. Recall, for a Banach space F →֒
Lp(T

d) we put

dM(F,Lp(T
d)) := inf

{ui}M
i=1⊂Lp(Td)

sup
‖f |F‖≤1

inf
c1,... ,cM

∥∥∥ f −
M∑

i=1

ci ui

∣∣∣Lp(Td)
∥∥∥ .

Hence dM ≤ ρM . In case of F = Srp,∞B(Td) one has the convenient references [50, 11.4.11]
and [45, Thm. 3.4.5], but with some additional restrictions what concerns r and p. For the
general case we refer to [16]. Galeev considered a bit different spaces. However, by some
standard arguments his estimates carry over to our situation, see e.g. [45, Introduction to
Chapt. 3] and Section 2.7/(2.52). For 1 < p <∞, 1 ≤ q ≤ ∞ and r > 0 this leads to

dM(I, Srp,qB(Td), Lp(T
d)) ≍M−r(logM)(d−1)rη(M,d, p, q) ,

where η(M,d, p, q) is defined in (2.42). �

Remark 2.13 For the estimate from below one can also use entropy and approximation
numbers. For a definition of these quantities we refer, e.g., to [13], [50] or [56]. Let
en(I,X, Y ) denote the n-th dyadic entropy number of the embedding operator I which maps
the Banach space X into the Banach space Y and let λn(I,X, Y ) denote the n-th approxi-
mation number (linear width, see Remark 2.2) of this embedding. Then trivially λM ≤ ρM
and furthermore en ≤ c λn under certain weak conditions on X and Y which are satisfied
in our context, see Theorem 1.3.3 in [13]. So, entropy numbers can be used as well for
deriving lower bounds of ρM . The estimates

eM(I, Srp,qB(Td), Lp(T
d)) ≥ c

{
M−r(logM)(d−1)(r+ 1

2
− 1

q
)+ if 1 < p <∞ ,

M−r(logM)(d−1)(r−1/q)+ if p = 1,∞ ,

with some positive constant c (independent of M) are known, at least in a situation very
close to ours. For (non-periodic) function spaces on domains it has been proved in [56,
Thm. 4.11]. This can be transferred to the periodic situation. In our case it is enough
to construct a bounded linear extension operator from Srp,qB((−1, 1)d) to Srp,qB(Td) and to
apply the multiplicativity of the entropy numbers, see [13, 1.3.1]. We omit details and refer
to [8] where a similar situation is investigated. Under additional restrictions on p and q
entropy numbers of the embeddings I : Srp,qB(Td) → Lp(T

d)) are studied in [5], [12] and
[44].
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Remark 2.14 In case q = ∞ Temlyakov proved the estimate from above in Corollary 2.6,
cf. [43] and [45, 4.5].

For Triebel-Lizorkin spaces Srp,qF (Td) the situation is similar.

Corollary 2.7 Let (p, q) ∈ [1,∞)× (1,∞]∪{(1, 1)}, r > max(1/p, 1/q). Then there exist
two positive constants c1 and c2 such that for all M ∈ N

c1M
−r(log M)(d−1)(r+1/2−1/q)+ ≤ ρM(Srp,qF (Td), Lp(T

d))

≤ c2M
−r(logM)(d−1)(r+1−1/q) .

(2.43)

Proof The upper bound is obtained by Corollary 2.3. For the lower bound we refer to Re-
mark 2.13. The same asymptotic lower bound holds for the quantity eM(I, Srp,qF (Td), Lp(T

d)).
The consequence for the scale of Sobolev spaces can be formulated as follows.

Corollary 2.8 Let 1 < p <∞ and r > max(1/p, 1/2). Then there exist positive constants
c1, c2 such that

c1M
−r(logM)(d−1)r ≤ ρM(SrpW (Td), Lp(T

d)) ≤ c2M
−r(logM)(d−1)(r+1/2) , M ∈ N

holds.

Remark 2.15 The Smolyak algorithm uses samples of a very specific structure. The
Corollaries 2.6, 2.7, 2.8 tell us that allowing arbitrary sets of sampling points of the
same cardinality we can not do much better. The difference is at most (logM)(d−1)/2 if
1 < p <∞.

2.7 Comparison with Known Results

This section contains a brief summary of several results available in literature. We intend
to discuss our results obtained in the Sections 2.4 and 2.6 in that context.
Let us start with Sickel and [34], [35]. The estimates given there for the operator A(m, 2, D)
can be extended to the d-dimensional setting. The use of more sophisticated constructions,
like interpolation with de la Vallée Poussin means, made it also possible to prove counter-
parts for the limiting situation p = 1 and p = ∞ (see Remark 2.9) .
Furthermore, periodic function spaces with dominating mixed smoothness in connection
with topics in approximation theory have especially been studied by Temlyakov, cf. [43, 44,
45] . In his monograph [45] he deals with several approximation techniques. In particular,
approximation from hyperbolic crosses and sampling (cf. [45, 1.6, 4.5]). For instance, the
sampling operators In and Rn are investigated there (see (2.8) in Remark 2.3). Also the
problem of approximate optimal recovery of functions is posed in the setting which we used
in Section 2.6. In fact, our approach for constructing sampling operators on T

d is basically
the same as used in [45, 4.5] . Smolyak’s algorithm with respect to the operators Rn is
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considered there. Following the Russian tradition he chose a slightly different approach for
defining classes of periodic functions with dominating mixed derivative. In order to make
a serious comparison of his results and the ones obtained in Chapter 2, it is necessary to
have a closer look at the classes MHr

p,ℓ(T
d) and MW r

p (T
d), cf. [45, 3.3]. Their definition

can be summarized as follows. For r > 0 we consider the periodic function

Fr(t) = 1 +
∞∑

k=−∞

|k|−reikt , t ∈ T .

By using Lemma 1.2 it is easy to prove that Fr belongs to Br
1,∞(T) and therefore to L1(T) .

Suppose that ϕ ∈ Lp(T) for 1 ≤ p ≤ ∞. The function ϕ ∗ Fr defined by the convolution

(ϕ ∗ Fr)(t) =
1

2π

∫

T

ϕ(y)Fr(t− y) dy

belongs to Lp(T) and moreover

‖ϕ ∗ Fr|Lp(T)‖ ≤ c‖Fr|L1(T)‖ · ‖ϕ|Lp(T)‖ . (2.44)

The Fourier coefficients of this function are given by

ck(ϕ ∗ Fr) = ck(ϕ) · ck(Fr) . (2.45)

Let us now consider the tensor product Fr(x) ∈ L1(T
d), denoted by the same symbol and

given by
Fr(x1, ..., xd) = Fr(x1) · ... · Fr(xd) , x ∈ T

d .

Similar to the case d = 1 we consider ϕ ∗ Fr as an Lp(T
d)-function for ϕ ∈ Lp(T

d) . The
classes MW r

p (T
d) are now defined as follows (see [45, 3.3]). Let 1 ≤ p ≤ ∞ and r > 0.

Then the classes MW r
p (T

d) are defined by

MW r
p (T

d) =
{
f : T

d → C : f(x) =
1

(2π)d

∫

Td

ϕ(y)Fr(x− y) dy

for some ϕ ∈ Lp(T
d) such that ‖ϕ|Lp(Td)‖ ≤ 1

}
.

(2.46)

Recall the definition of Sobolev spaces with dominating mixed smoothness SrpW (Td) in
Paragraph 1.4.4/(1.40). The following theorem will establish the relation between these
two classes in the case 1 < p < ∞. It turns out that MW r

p (T
d) in some sense is the unit

ball in SrpW (Td).

Theorem 2.7 Let 1 < p <∞ and r > 0. There are constants c1, c2 > 0 such that
(i) f ∈MW r

p (T
d) implies ‖f |SrpW (Td)‖ ≤ c1 and

(ii) f ∈ SrpW (Td) such that ‖f |SrpW (Td)‖ ≤ c2 implies f ∈MW r
p (T

d) .
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Consequently, the classes MW r
p (T

d) and SrpW (Td) are equivalent for our purposes. Let us
give a short proof of this assertion.

Proof Step 1. Let f ∈ MW r
p (T

d). Then a function ϕ ∈ Lp(T
d) exists such that

‖ϕ|Lp(Td)‖ ≤ 1 and f = ϕ ∗ Fr . For the Fourier coefficients of f we have again (2.45). It
is enough to check whether the function f (r)(x) with the Fourier series

∑

k∈Zd

ck(f)(1 + |k1|2)r/2 . . . (1 + |kd|2)r/2 eikx

belongs to Lp(Td). We consider the formal decomposition

f (r) =
∑

β̄∈{0,1}d

f
(r)

β̄
,

where Iβ̄ is defined as in Paragraph 1.6.1 and obtain

f
(r)

β̄
(x) =

∑

k∈Iβ̄

1 + |k1|2)r/2
|k1|β1r

. . .
(1 + |kd|2)r/2

|kd|βdr
ck(ϕ) eikx . (2.47)

Analogously we decompose ϕ ∈ Lp(T
d) into

∑
β̄∈{0,1}d ϕβ̄ . Now Fourier multiplier as-

sertions come into play. One uses a scalar version of the multiplier theorem by Li-
zorkin (cf. Proposition 1.8) and a periodic version of a classical theorem by Michlin-
Hörmander (cf. [32, 1.7.7]). Both require 1 < p < ∞. The result is on the one hand
‖f (r)

β̄
|Lp(Td)‖ ≤ c1‖ϕβ̄|Lp(Td)‖ and on the other hand ‖ϕβ̄|Lp(Td)‖ ≤ c2‖ϕ|Lp(Td)‖. Con-

sequently, ‖f (r)|Lp(Td)‖ ≤ ‖ϕ|Lp(Td)‖ .

Step 2. Let f ∈ SrpW (Td) such that

∥∥∥
∑

k∈Zd

ck(f)(1 + |k1|2)r/2 . . . (1 + |kd|2)r/2 eikx
∣∣∣Lp(Td)

∥∥∥ ≤ 1 .

The function ϕ given by ∑

β̄∈{0,1}d

ϕβ̄ ,

where ∑

k∈Iβ̄

ck(f)|k1|β1r . . . |kd|βdr eikx ,

belongs to Lp(Td) and satisfies ‖ϕ|Lp(Td)‖ ≤ c4‖f |SrpW (Td)‖, where c4 is independent of
f ∈ SrpW (Td) . This follows by the same arguments as used in Step 1. Moreover, we have
f = ϕ ∗ Fr which completes the proof. �
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Remark 2.16 Recall Paragraph 1.4.4. In the same manner one proves the equivalence of
the Sobolev norms (1.39) and (1.40) .

The Nikol’skij-classes of type MHr
p,ℓ(T

d), 1 ≤ p ≤ ∞, 0 < r < ℓ ∈ N are defined via:
f ∈ Lp(T

d) belongs to MHr
p,ℓ(T

d) if and only if for every β̄ ∈ {0, 1}d

S∆
β̄ (f) = sup

|hi|>0
i=1,..,n

( n∏

i=1

|hi|−r
)∥∥(△ℓ

h1,δ1
◦ · · · ◦ △ℓ

hn,δnf)(x)
∣∣Lp(Td)

∥∥ ≤ 1

holds true. See Paragraph 1.6.1 concerning notation. By Theorem 1.14 and Remark 1.19
in Section 1.6 we obtain a counterpart of Theorem 2.7, namely the following:

Theorem 2.8 Let 1 ≤ p ≤ ∞ and 0 < r < ℓ ∈ N. Then there exist c1, c2 > 0 such that
(i) f ∈MHr

p,ℓ(T
d) implies ‖f |Srp,∞B(Td)‖ ≤ c1 and

(ii) f ∈ Srp,∞B(Td) such that ‖f |Srp,∞B(Td)‖ ≤ c2 implies f ∈MHr
p,ℓ(T

d) .

Temlyakov obtained the following results in both cases.

Theorem 2.9 Let 1 ≤ p ≤ ∞ and r > 0. Then there exists a constant c > 0 such that

‖f − A(m, d,R)f |Lp(Td)‖ ≤ c 2−rmmd−1 (2.48)

holds true for all m ∈ N0 and f ∈MHr
p,ℓ(T

d) .

As a consequence of the inclusion MW r
p (T

d) ⊂ MHr
p,ℓ(T

d) the relation (2.48) is also valid
for f ∈ MW r

p (T
d) . These results can now be compared with the results stated in Section

2.5. The relation (2.48) turns out to be a special case of Corollary 2.4 . However, the
result for MW r

p (T
d), 1 < p < ∞, r > 0, is improved by (d − 1)/2 in the power of m.

This yields the same improvement in the estimate for ρM(MW r
p (T

d), Lp(T
d)), see [45, 4.5]

and Corollary 2.8 . To be precise, in case 2 < p < ∞ we have to pay the price of a more
restrictive assumption, namely r > 1/2. We do not know if this represents a necessary
condition . Let us turn to estimates from below.

Remark 2.17 In [45, 4.5] there is also stated the following inequality

sup
f∈MHr

p,ℓ

‖f − A(m, d,R)f‖ ≥ c 2−mrmd−1 . (2.49)

We add some comments, why the arguments given by Temlyakov do not apply. In [45, 4.5]
the following test functions are considered

fm(x) =
∑

|s|1=m

ei2
s1+1x1+...+i2sd+1xd , m ∈ N0 . (2.50)
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Let f s(x) = ei2
s1+1x1 · ... · ei2sd+1xd for s ∈ N

d
0, x ∈ T

d. Let further µ ∈ N0. Now (2.11)
implies

R2µ f s(t) =





f s(t) : µ ≥ s+ 1
0 : µ = s
1 : µ < s

and therefore

∆µ f
s(x) =





0 : µ ≥ s+ 2
f s(x) : µ = s+ 1
−1 : µ = s ≥ 1
0 : 1 ≤ µ < s
1 : 0 = µ < s
0 : 0 = µ = s .

(2.51)

This has the following consequence for the Fourier coefficient c(0,...,0)(A(m, d,R)f s), s ∈ N
d
0,

|s|1 = m. Because of (2.51) this coefficient vanishes in case
d∏
j=1

sj = 0. It remains to

consider the case
d∏
j=1

sj 6= 0. Using (2.51) we obtain

c(0,...,0)(A(m, d,R) f s) =
∑

u∈{0,1}d

c(0,...,0)

[( d⊗

j=1

∆uj ·sj

)
f s
]

=
∑

u∈{0,1}d

(−1)|u|1

=
d∑

ℓ=0

(−1)ℓ
(
d

ℓ

)

= (−1)d +

(
d− 1

0

)
+

d−1∑

ℓ=1

(−1)ℓ
((d− 1

ℓ− 1

)
+

(
d− 1

ℓ

))

= (−1)d + (−1)d−1 = 0 .

Hence, the family fm does not qualify for test-functions. For the necessary modifications
of fm see Proposition 2.5. �

Temlyakov also considered spaces with zero means. Here L0
p(T

d) denotes the usual Lp(Td)
space with additional conditions given by

∫

T

f(x) dxj = 0 , j = 1, .., d .

Then M0Hr
p,ℓ(T

d) can be characterized by

sup
h̄∈R

d,hi 6=0

( d∏

i=1

|hi|−r
)
‖(△ℓ

h1,1
◦ · · · ◦ △ℓ

hd,d
f)(x)|Lp(Td)‖ ≤ 1 . (2.52)
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Classes of this type were also considered by Galeev [16] to obtain estimates for several
kinds of widths. His results are also important for us (see Corollary 2.6) . In [45, Intr. to
Chapt. 3] Temlyakov pointed out that (in a certain sense) MHr

p,ℓ(T
d) is equivalent to a

sum of spaces of type M0Hr
p,ℓ(T

n), where 1 ≤ n ≤ d .
This is the starting point for the theory which is presented by Dinh Dung in [11]. In
particular, he considered periodic Hölder spaces HA

p (Td) with mixed smoothness, where
A ⊂ R

d, 1 ≤ p ≤ ∞ and
HA
p (Td) :=

⋂

ᾱ∈A

H ᾱ
p (Td) .

In the case A = {(r, ..., r)}, r > 0 these spaces coincide with M0Hr
p(T

d) . His attempt for
estimating ρM is characterized by some geometrical aspects. He solved an R

d-optimization
problem instead, where the set A is involved. A special case of [11, Thm. 4.2] is the
estimate

ρM(H(r,...,r)
p (Td), Lp(T

d)) ≤ cM−r(logM)(d−1)(r+1)

for r > 0 and 1 ≤ p ≤ ∞ . This corresponds to Temlyakov’s result (see Theorem 2.9) as
well as our results stated (special case q = ∞) in Section 2.6 .
Let us recall the results from Wasilkowski-Wozniakowski [57]. A general framework of
tensor products of Hilbert spaces is presented. This setting is also applicable to Sobolev
spaces with dominating mixed smoothness Sr2W (Td) . Under very general assumptions,
which essentially correspond to our hypothesis (H2(p, r)) in Paragraph 2.3.2 , they can
prove the following assertion.

Theorem 2.10 Let r > 0 and L = {Lj}j be a sequence of operators satisfying
(i) ‖I − Lj|W r

2 (T) → L2(T)‖ ≤ C2−rj and
(ii) ‖Lj − Lj−1|W r

2 (T) → L2(T)‖ ≤ D2−rj ,
where C,D are fixed constants. Then a constant C > 0 exists (independent of d) such that

‖I − A(m, d, L) : Sr2W (Td) → L2(T
d)‖ ≤ CHd−1

(
m

d− 1

)
2−rm

holds for every m ∈ N0. The constant H is given by H = max(2r, D) .

Again this overlaps with Temlyakov’s results. Here they took care about the explicit d-
dependence of the constant and obtained exponential dependence (but without an estimate
from below). This can be compared with the result stated in Remark 2.10 . Let us also
refer to [39]. In [39, Thm. 1,2] we also considered a more general setting, similar to [57],
and obtained better results. However, the main difference to [57] is the necessity of a
projection property of the one-dimensional operators, see hypothesis (H2) in [39], which
corresponds to hypothesis (H1(λ)) in Paragraph 2.3.2. See also the next chapter.



Chapter 3

Conclusion and Outlook

The final chapter is intended to present several unsolved problems and interesting open
questions related to the investigations in this thesis. It is divided into two sections. The
first one deals with further questions in the theory of periodic functions spaces. In the
second part we will critically discuss the results obtained in Chapter 2 and give some
stimulation for further investigation.

3.1 Open Problems for Periodic Function Spaces

Several open problems occurred while studying the classes S r̄p,qB(Td) and S r̄p,qF (Td) .
The first one appeared during Section 1.6, especially in Paragraph 1.6.5. We considered
the question, whether it is possible to replace the integrals with respect to (0,∞) by
integrals with respect to (0, 1). This was titled “Localization”. We conjectured that the
localized characterizations for S r̄p,qF (Td) are extendable to the full range of parameters. In
Theorem 1.11 the case of (quasi-)Banach spaces remains open. Remark 1.17 gives only for
0 < q ≤ p <∞ a positive answer . However, the case 0 < p < q ≤ ∞ also remains open.
Another open question concerns the B-case. It would be of big interest to extend the
characterization by moduli of smoothness (see Theorem 1.14) to 0 < p < 1 and r̄ > σp as
it holds true in the isotropic case. At the moment we have a corresponding result only for
r̄ > 1/p (see Theorem 1.15).

A further interesting problem is the characterization of the given classes via atoms and
wavelets. There are several motivations to develop a corresponding theory also for periodic
spaces with dominating mixed smoothness. For the non-periodic situation (i.e. the scales
S r̄p,qB(Rd) and S r̄p,qF (Rd)) this has already been done by Vybíral in [56].

104
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3.2 Further Remarks on Chapter 2

In this Section we want to present open problems regarding Chapter 2 as well as ideas
for some future work. Let us start with some remarks concerning the class of admis-
sible sampling operators (see Paragraph 2.3.2). In our opinion the class of admissible
operators is still too small. This is the consequence after comparing our results with the
ones by Wasilkowski-Woźniakowski [57], see Theorem 2.10. Although they use the Hilbert
space setting, their assumptions are in some sense more general. The projection condi-
tions, formulated in the hypotheses H1(λ) and H6(λ) in Paragraph 2.3.2, represent strong
assumptions. As Theorem 2.10 indicates, it would be of interest to study the problem
without these conditions. This opens the door to an investigation of spline approximation
on non-periodic spaces with dominating mixed smoothness.

Moreover, the knowledge of the optimal constants in Proposition 2.4 and especially in
Remark 2.10 is unsatisfactory. Investigations in this direction are necessary in order to
confirm the algorithm as a tool for problems in high dimensions. A first step could be the
computation of the approximation error in the case of Hilbert spaces (i.e. Sr2W (Td) and
L2(T

d)).

Let us turn to an interesting open problem from the theoretical point of view. Our results
in Section 2.6 give estimates from above for the problem of optimal recovery. It would
be interesting to prove (or disprove), that our constructive methods are optimal. If not,
one should try to find another constructive (and easy to handle) method which realizes
the optimum . Even the knowledge that a better method exists would be a progress. To
derive estimates from below for the quantity ρM one can try to extend the bump function
argument used in Paragraph 2.4.4 to all q . Characterizations of the spaces with periodic
wavelets should be very helpful in this context. See for instance [29], where the isotropic
case is treated. A first step is therefore to investigate atomic as well as wavelet decomposi-
tions of functions from Srp,qB(Td) and Srp,qF (Td) (see the previous section). However, from
the applied point of view it would make more sense to investigate algorithms with good
behavior in high dimensions.

Finally, we return to the classes S1/p
p,1 B(Td), 1 ≤ p ≤ ∞, and S1

1,qF (Td), 1 ≤ q ≤ ∞ .
Having the embedding in C(Td), they represent a large class of continuous functions (see
Theorem 1.4 and Theorem 1.5). From this point of view it would make sense to investigate
the behavior of Smolyak’s algorithm. The proof techniques used in Section 2.4 do not
apply in this situation.
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