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1 Introduction

Bacteria are ubiquitous. They grow on the skin and inside the human being as e. g. the gut flora.

But they are also abundant in soil and water. Some of them can be used in the water and waste

industry for a biological cleaning of waste water. Also other industrial branches, such as the

food, the pharmaceutical and the chemical industry make use of different bacteria when producing

cheese, vinegar, yoghurt, antibiotics, hormones, lactic acids, and many other products. However,

most of the people might think of infectious diseases when thinking of bacteria. There are many

different diseases caused by bacteria and each year many thousand people die as a consequence.

Growing resistances of the bacteria against the common drugs make the research for new effective

and powerful drugs necessary. The knowledge base for a target oriented drug search is a detailed

understanding of the structure and the function of bacteria on a molecular level.

Bacteria are single cell organisms whose cell size can range between 0.2 and 10 µm, most of

them having an average size of 1-5 µm. They are procaryotes, which means they do not have a

nucleus, however their DNA is found in circular form within the cell (genomic DNA and smaller

plasmid DNA). Other cell constituents within the cytoplasm are proteins such as for example the

ribosomes and mesosomes and storage granules. Around the cytoplasm membrane a cell wall

made of murein (peptidoglycan) is found which gives the bacteria its characteristic shape: round

cocci, rods of different length, spirals or commas. According to the structure of the cell wall

bacteria can be divided into Gram-negative and Gram-positive. Gram-negative bacteria, such as

e. g. Escherichia colipossess a thin (2 nm) peptidoglycan (murein) layer which is embedded

in a periplasmatic gel between the cytoplasm membrane and an outer membrane. Gram-positive

bacteria, such as e. g.Staphylococcus epidermidisform a thick (20-40 nm) peptidoglycan (murein)

layer which surrounds the cell. Between the cytoplasma membrane and the peptidoglycan a thin

slit filled with periplasma is found. Within the cell wall different teichoic acids, lipo-teichoic acids

and surface proteins are embedded and pervade the cell wall. Some bacteria also have a sugar-rich

slime layer or capsule around them. This additional layer facilitates the attachment of bacteria to

surfaces and plays an important role in biofilm formation. It also acts as an protective layer against

chemicals from outside such as antibiotics. For an understanding of the mechanisms of adhesion

of cells to surfaces, biofilm formation, growing resistances and the mode of action of cell wall

attacking drugs (such asβ -lactams, penicillins and glycopeptides) it is indispensable to know the

exact, spatially resolved structure of the outer bacteria layer and the dynamics occurring on it.

Beside the inhibition of the cell wall synthesis antibiotics may perturb the permeability of the cy-

toplasm membrane (polypeptide antibiotics), block the protein synthesis (amino glycosides, tetra-
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1 Introduction

cycline, chloramphenicol) or suppress the nucleic acid synthesis (gyrase inhibitors, rifampicin,

sulfonamides) [168]. Among the variety of antibiotic agents special focus is set on the gyrase

inhibitors of the fluoroquinolone type within this work. In 1994 those gyrase inhibitors made

up approx. 25% of all prescribed drugs against bacterial infections. Since their discovery in the

early 1960s the basic structure of the quinolones was modified to increase their antibacterial spec-

trum and potency, as well as to improve their bioavailability making the quinolones useful agents

for the treatment of urinary, systemic and respiratory tract infections. The target of the fluoro-

quinolones is the bacterial enzyme gyrase. This essential enzyme catalyzes the introduction of

negative supercoils into the DNA and is therefore responsible for the maintenance of the DNA

topology within the bacterial cell. By binding to the gyrase-DNA complex the quinolones block

the transcription, the DNA replication and storage which results in cell death [18]. The release of

broken DNA ends has been reported to accompany the quinolone action [162]. Currently, there is

no definitive model for the detailed interaction of the quinolones with the gyrase-DNA complex,

although mutation experiments localized the interaction area within the N-terminal domain of the

GyrA subunit close to the Tyr122 which is involved in the cleavage of the DNA double strands

[98]. Also parts of the GyrB subunit may be involved in stabilizing the ternary complex of gyrase,

DNA and quinolone [18, 97]. Shen et al. proposed a model for this ternary complex [239], which

was later modified by Morrissey et al. [163]. However, the molecular details of the interaction of

the fluoroquinolones with DNA and gyrase remain until now largely conjectural [162]. Continued

study of gyrase and its inhibitors at a molecular level as well as their impact on whole bacterial

cells is necessary to understand the action of existing drugs and to provide the knowledge base to

enable the understanding of the action of emerging compounds.

Since bacteria are so small it is impossible to distinguish by eye between the useful and harmless

ones and the unwanted and toxic ones. Fast and reliable identification methods for bacteria are

therefore of greatest interest. Furthermore, it is necessary to have a detailed knowledge about

the structure and composition of bacteria, as well as about the bacterial metabolism including

the processes of bacterial growth and biofilm formation in order to identify new target structures

for new and effective drugs. A detailed understanding of the mode of action of antibiotics on a

molecular level could help to understand the mechanisms of resistances and open new ways for

overcoming them.

Traditional microbiological diagnoses often take several days up to weeks to provide results

[81, 215, 214, 216, 217] while vibrational spectroscopy with its multitude of variations as a non-

invasive technique results complex and precise information from the inside composition as well

as from the surface structure of living bacterial cells in an extremely brief time span. Therefore,

vibrational spectroscopic methods such as IR absorption spectroscopy and Raman spectroscopy

already gained importance for the investigation of biological systems and the characterization

of bacteria in the past years [151, 152, 172]. Rich "fingerprint"-like spectral information about

the complex chemical composition of the cell and the cell components in their natural entity are

obtained while only little sample volume (down to a single cell) is required. Since no labelling

2



1 Introduction

is necessary the sample preparation is quite easy. The spectroscopic techniques are applicable

to virtually all microorganisms with only a minimal amount of sample preparation and within an

extremely brief time span precise results can be presented. Highly specific and multidimensional

spectral signatures have been obtained from bacteriophages [191, 271], whole bacterial cells and

fungi [150, 217, 229].

With micro-Raman spectroscopy the laser light can be focused down to about 1 µm, which is

roughly the size of bacterial cells. The assignment of vibrational bands to specific functional

groups, cellular compounds or substructures in the complex bacterial spectrum allows the charac-

terization of metabolic changes accompanied with growth and aging processes [180, 280], culture

conditions [151, 149, 230], the influence of exposed pollutants [242], and specific cell-drug in-

teractions [146, 179] by means of vibrational spectroscopy in combination with statistical pattern

recognition methods like hierarchical cluster analysis (HCA) and principal component analysis

(PCA). Furthermore, Raman spectra recorded from single bacterial cells have been used for a fast

and reliable differentiation and identification of microorganisms [86, 96, 103, 145, 218, 229, 284],

e. g. of contaminations or early infections.

Furthermore, it is possible to specially focus on selected components or regions of the biolog-

ical system. IR absorption spectroscopy is especially suited to probe vibrations which involve a

change in the dipole moment. Therefore, CO stretching vibrations, e. g. of the amide bonds of

peptides and proteins, carbonic acids or organic esters being present in lipids, give rise to very

intense absorption bands in the IR spectrum. Raman spectroscopy with excitation in the visible

wavelength region also provides rich spectral information about the overall chemical composition

of the bacteria with particular sensitivity to chemical groups exhibiting a high polarizability.

The high potential of Raman spectroscopy for the study of biological and biomedical problems

[172] arises also from the possibility to probe samples in all states of aggregation and all solvents,

including water. Since Raman spectroscopy is a marker-free technique it bears high potential for

clinical diagnostics and for food quality controls. It possesses also some advantages over other

high-resolution structural methods such as X-ray or NMR, because Raman spectroscopy is not re-

stricted to a certain size of the molecules. Raman spectroscopy and its variations offer a good pre-

requisites for the investigation of large biomolecules, such as genomic DNA and their interactions

with large proteins or drugs. Thereby, conventional Raman spectroscopy, UV-resonance Raman

spectroscopy and polarized Raman microspectroscopy can fulfil complementary and important

roles in such a research [23]. Vibrational spectroscopy has already successfully been employed

to investigate DNA structures [26, 39, 62], the complexation of DNA with ions [6], the structures

of small peptides [232] and proteins [235], as well as protein-DNA binding [278], drug-protein

binding [57] and drug-DNA [135, 148] interactions.

When dealing with complex biological samples the data set (of spectra) tends to increase very

quickly. In order to extract the significant and characteristic information from such large data

sets and to visualize subtle differences in the spectra often make the use of multivariate analysis

methods such as principal component, discriminant analysis and hierarchical cluster analysis [145]

3



1 Introduction

necessary. For instance, the application of classification techniques allows the rapid and accurate

identification and classification of very diverse microbial species and whole bacterial cells based

on their vibrational spectra [107, 152, 218]. For classification tasks the entire spectral information

can be used. However, certain spectral regions may be irrelevant for the problem under study.

Selecting a few wavenumbers which perform particularly well for classifying the data into rele-

vant categories (i.e. bacteria treated/untreated with antibiotics) can highlight potentially important

structural features and structural changes in the system under study.

The general drawback of Raman spectroscopy, the low scattering efficiency, can be overcome

by special Raman signal enhancing techniques such as resonance Raman (RR) spectroscopy or

surface-enhanced Raman spectroscopy (SERS). In resonance Raman spectroscopy the excitation

wavelength lies within an electronic absorption of the molecule of interest causing a resonance

enhancement of up to 108 for the vibration coupling to this electronic transition [152]. This results

in a second advantage of resonance Raman spectroscopy: depending on the selected excitation

wavelength different chromophores can be selectively enhanced and make it possible to focus on

selected traits of interest in the presence of many other molecules. In case UV light with a wave-

length of 244 nm is chosen for Raman excitation the aromatic amino acids and the purine and

pyrimidine bases of the nucleic acids [281, 280, 78] are in resonance. With excitation wavelengths

around 200 nm the protein backbone vibrations will be selectively enhanced. The resonance Ra-

man spectrum is therefore dominated by those components, despite the presence of other higher

concentrated molecules in the cell [145, 280]. This allows for tracking selected metabolites within

the cells, e. g. during bacterial growth. Extensive UV-resonance Raman studies have been per-

formed to analyze protein and peptide secondary structure [12, 13, 37, 50, 58, 141, 161].

In SERS the signal enhancement is achieved by exciting surface plasmon oscillations of a rough-

ened metal surface or metal colloid solution in the close vicinity of the sample. These surface

plasmon oscillations generate a high local electromagnetic field causing enhanced Raman signals

exhibiting scattering cross sections of 3 to 15 orders of magnitude larger than those for normal

Raman scattering [182, 119]. A recently developed technique, called tip-enhanced Raman spec-

troscopy (TERS) combines surface-enhanced Raman spectroscopy (SERS) with atomic force mi-

croscopy (AFM). The SERS active metal is reduced to the size of an AFM tip with apex sizes

of less than 50 nm in diameter [247]. This tip is moved across the sample to record the surface

features (AFM). At the same time, that part of the sample which is in the close vicinity of the

tip apex experiences the strong enhanced electromagnetic field. This evanescent electromagnetic

field decays very rapidly with increasing distance from the metal surface, so that at only 50 nm

away from a metal tip no Raman scattering enhancement can be observed anymore [184, 211].

Thus with TERS one obtains simultaneously detailed chemical information with high sensitivity

from the Raman spectra with a high spatial resolution below the diffraction limit [63, 202, 184].

This approach was already applied successfully to study DNA components [205], single-walled

carbon nanotubes [94, 93], and just recently within the frame of this work also for the first time to

investigate bacterial surfaces [178, 180]. TERS not only overcomes the low scattering efficiency
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but also the finite spatial resolution due to the diffraction limit of micro-Raman spectroscopy. It

opens the way for a detailed spatially resolved study of smaller structures, such as the bacterial

surface and might lead to an understanding of the adhesion of cells to surfaces, biofilm-formation,

and the mode of action of antibiotics likeβ -lactams, penicillins or glycopeptides which attack the

cell wall and interfere with its synthesis.

The goal of this work is to use different vibrational spectroscopic techniques to comprehen-

sively characterize bacteria and to investigate the metabolic changes upon bacterial growth. The

influence of drugs on the vibrational spectra should be studied in order to gain a deeper insight

into the molecular mechanism of antibiotic action. Special focus is put on the antibiotics of the

fluoroquinolone type. They interfere with the action of the vitally important enzyme gyrase by

attacking the gyrase-DNA complex. In order to correlate the observed changes in the vibrational

spectra of the bacteria upon drug addition to the molecular changes the biological targets of the

fluoroquinolones, the DNA and the gyrase, those molecular components have been extracted from

the bacteria and were characterized byin vitro vibrational spectroscopy.

As vibrational spectroscopic techniques the above mentioned ones are used: IR absorption

spectroscopy, micro-Raman spectroscopy, UV-resonance Raman spectroscopy as well as surface-

enhanced and tip-enhanced Raman spectroscopy. The combination of those methods leads to

an understanding of the structure and composition of the bacteria. Based on this knowledge the

metabolism within the bacteria can be explored providing a key stone to fight the pathogens. The

metabolic changes of the bacteria during different growth phases of a batch culture are investigated

by means of IR absorption, micro-Raman (bulk and single cells) and UV-resonance Raman spec-

troscopy with excitation at 244 nm. Statistical methods are used to identify the subtle wavenumber

changes which reflect changes in the chemical composition or structural changes on the cellular

components during the growth process.

Special focus is put on the outermost bacterial surface when using tip-enhanced Raman spec-

troscopy (TERS). TERS as a non-invasive technique is applied to obtain detailed chemical and

topographical information simultaneously with nanometric resolution of biological surfaces (bac-

teria). Due to short measuring times also variations in time within seconds are possible to resolve.

Before adding the fluoroquinolone drugs to the bacterial culturein vitro experiments have been

performed with the pure drug substances. For a profound interpretation of the complex bacterial

spectra with the addition of the drug, it is necessary to have a clear understanding of the spectra of

the pure drug in different chemical environments. Therefore, a detailed vibrational spectroscopic

characterization of the fluoroquinolone drugs is required. DFT calculations were incorporated for

the assignment of the vibrational modes. In order to support the tentative assignment and to learn

more about the complex drug interaction, the biological targets of the fluoroquinolone drugs, the

bacterial enzyme gyrase and the bacterial DNA, have been extracted from the bacteria and were

characterized byin vitro experiments. The small protein and DNA building blocks, the amino acid

and nucleic acid bases have been included in the comprehensive study.
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Finally, the influence of different fluoroquinolone drugs on the bacterial metabolism is inves-

tigated using the different vibrational spectroscopic techniques mentioned above (IR absorption

and micro-Raman spectroscopy with excitation in the visible, as well as UV-resonance Raman

spectroscopy). With the help of statistical methods the spectral changes due to the action of the

drug are pointed out and assigned to biological features within the cell. That way the actual model

for the mode of action of the fluoroquinolone drugs can be supported, demonstrating once again

the power of vibrational spectroscopy for biomedical and pharmaceutical problems.
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2 Theoretical fundamentals

2.1 Vibrational Spectroscopy

Each molecule is performing vibrations, even at zero Kelvin (uncertainty relation). The vibrational

frequency depends on the type of atoms (mass) and how they are connected (single bond, double

bond, triple bond, hydrogen bond). For a rough approximation the classical model of the harmonic

oscillator can be used to estimate the vibrational frequencyν0 (in Hz):

ν0 =
1

2π

√
k
µ

(2.1)

with k (in Nm−1) being the force constant describing the bond strength between the two atoms with

massm1 andm2. The reduced massµ can be calculated from the individual masses byµ = m1m2
m1+m2

.

The permitted vibrational energy levelsEvib for a harmonic oscillator as calculated from quantum

mechanics are:

Evib = hν0

(
n+

1
2

)
(2.2)

whereh is Planck’s constant andn the vibrational quantum number having integral values starting

from 0 and characterizing the eigenstates of the harmonic oscillator. As higher excited vibrational

levels are reached, the harmonic oscillator only poorly describes the real systems, and it completely

fails when it comes to the dissociation of bonds. Therefore, anharmonicity has to be included. One

way to do so is by using a Morse potential for the potential energy which results in the following

permitted energy levels:

Evib = hν0

[(
n+

1
2

)
−xe

(
n+

1
2

)2
]

(2.3)

wherexe is the anharmonicity constant.

Typical energies necessary for a vibrational transitions within molecules are in the wavenumber

region between 400 and 4000 cm−1 which corresponds to a wavelength of 25 to 2.5 µm.

If the molecule consists of N atomic nuclei it has 3N degrees of freedom, because the total

number of coordinates needed to specify the location of each atom is 3N. Out of these, three

coordinates are needed to specify the location of the center of mass of the molecule (translational

displacement). To define angles (rotation of the molecule) two coordinates are needed for a linear

molecule and three coordinates for a non-linear molecule. This leaves a total number of 3N-5
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2 Theoretical fundamentals

independent modes of vibration for a linear molecule and 3N-6 independent vibrational modes for

a non-linear molecule.

The vibrational modes can be divided into valence vibrations (stretching vibrations) and differ-

ent types of deformation vibrations. The stretching vibration (ν) changes the distance along the

bond between the involved atoms. This vibration takes place along the nucleus-nucleus-connection

line and can either be symmetric or antisymmetric with respect to the other involved vibrations.

The different deformation vibrations change the bond angles. It can be differentiated between

scissoring, wagging (ω), rocking (ρ), twisting (γ), torsion (τ) and bending (δ ) vibrations.

At comparable mass of the vibrating molecules the activation energy for bond angle deformation

is much smaller than for changes in bond length. Therefore, the valence modes are found at higher

frequencies than the corresponding deformation modes, e.g. CH stretching vibrations can be found

in the wavenumber region between 3300 and 2800 cm−1, while the CH deformation modes show

up between 1540 and 650 cm−1.

Characteristic group frequencies allow the application of vibrational spectroscopy for structure

elucidation. The sensitivity of the vibrational modes for changes in their chemical environment

make the different vibrational spectroscopic techniques well suited and widely used analytical

techniques both in research and in industry.

There are two vibrational spectroscopic techniques (and their variations) to probe the molecular

vibrations: IR absorption spectroscopy where the vibrational transitions are directly excited and

Raman spectroscopy where the vibrational transitions are probed via an inelastic scattering pro-

cess. Both techniques are used within the frame of this work and should be introduced briefly in

the next sections.

2.1.1 IR absorption spectroscopy

As mentioned above, molecular vibrations can be excited with radiation in the infrared (IR). If the

incident electromagnetic (IR) radiation matches a vibrational transition which involves a change

in the electromagnetic dipole moment of the molecule, the molecule gets excited into a higher

vibrational level v and photons of the matching electromagnetic frequency get absorbed from the

incident radiation (figure 2.1). Since at room temperature most of the molecules are in their vibra-

tional ground states, the dominant spectral transition will be the fundamental transition, marked

black in figure 2.1.

The first-order IR absorption intensity of thekth mode is proportional to the square of the change

of the electric dipole momentµ caused by the normal mode coordinateq:

Ik
IR ∝

(
δ µ

δqk

)2

. (2.4)
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n = 1
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Figure 2.1: Energy levels and transitions for an anharmonic oscillator
(black: fundamental, grey: overtones).

That means a strong change in the electromagnetic transition dipole causes high IR absorption

intensity. This is e.g. observed for polar groups such as carbonyl, nitrosyl and hydroxyl groups.

Non-polar groups, such as homonuclear diatomic molecules are IR inactive.

Each vibrational transition is accompanied by a change in the state of rotation of the molecule.

Therefore, the IR absorption spectrum represents a rotational-vibration spectrum. Due to the su-

perposition of the numerous individual vibrational transitions, especially in the solid and liquid

phase no sharp lines but rather broad bands are detected. Position, band shape and intensity of the

vibrational band contain useful information about the system under investigation.

IR absorption spectroscopy evolved to a well established technique for the identification of un-

known organic compounds. In the last years IR spectroscopy also gained importance for the study

of biological problems. Useful information about the constitution and chemical environment of

the chemical compounds can be gained from the characteristic absorption frequencies for different

structural elements.

2.1.2 Raman spectroscopy

Raman spectroscopy, named after the Indian scientist Sir Chandrasekhara Venkata Raman, is based

on inelastic light scattering by matter. Figure 2.2 depicts the basic transitions involved in the

spontaneous Raman scattering:

The Raman effect is a two photon process. A photon of the incident monochromatic light

with energyhνL transferres the molecule into a virtual state. The second photon is the released

scattered photon. Most of the times (1 out of 103 photons [109]) the incident light gets scattered
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Figure 2.2: Energy level diagram showing the basic transitions involved in the spontaneous Ra-
man scattering.

only elastically (Rayleigh scattering) where the molecular transition starts and finishes at the same

vibrational level. However, in rare cases (1 out of 107 photons [109]) the light gets scattered

inelastically, i.e. the scattered light gets modulated by the frequencies of the molecular vibrations

νvib. It can be distinguished between Stokes Raman scattering where the molecule ends up in

an excited vibrational state and the energy of the scattered photon is reduced by the vibrational

frequency, and between Anti-Stokes Raman scattering, where the initial state of the molecule was

already a vibrationally excited state and where the molecule ends up in a lower vibrational level.

At ambient temperatures (kT/hc≈ 200 cm−1) most molecular vibrations are in the ground state

and thus the Stokes transitions are more likely to occur.

In the classical description the Raman effect is due to the secondary radiation of an induced

electromagnetic dipole moment. The electromagnetic dipolmoment

µind = α ·E (2.5)

is induced by the incident electromagnetic field

E = E0 ·cos(ωt) (2.6)
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with α being the polarizability tensor of the molecule. This polarizability tensor is modulated by

the frequencyνvib,k of thekth vibrational mode:

αk = α0 +
(

δα

δqk

)
0
·q0

k ·cos(2πνvib,kt)+ ... (2.7)

which results in the following equation for the induced electromagnetic dipole moment:

µind = α0 ·E0 ·cos(2πνLt)+
(

δα

δqk

)
0
·q0

k ·cos(2πνvib,kt) ·E0 ·cos(2πνLt)+ ... (2.8)

When higher order terms are neglected trigonometric conversions results in:

µind = α0 ·E0 ·cos(2πνLt) Rayleigh scattering

+1
2 ·

(
δα

δqk

)
0
·q0

k ·E0 ·cos(2π(νL−νvib,k)t) Stokes scattering

+1
2 ·

(
δα

δqk

)
0
·q0

k ·E0 ·cos(2π(νL +νvib,k)t) Anti-Stokes scattering.

(2.9)

From equation 2.9 it becomes obvious, that the polarizabilityα of a molecule must change during

the vibration in order for that vibration to be Raman active:(
δα

δqk

)
0
6= 0 . (2.10)

The different selection rules for IR absorption (equation 2.4) and Raman scattering (equation 2.10)

make those two vibrational spectroscopic techniques complementary.

The total intensity of a Stokes Raman band of a vibrational frequency ofνvib between the initial

vibronic statei to a final statef scattered over a solid angle of 4π by a randomly oriented molecule

perturbed by electromagnetic radiation of intensityIL and frequencyνL is given by:

IStokes= const· IL(νL−νvib)4∑
ρσ

∣∣((α)ρσ ) f i
∣∣2 (2.11)

whereαρσ represents the components of the polarizability tensor associated with the transition

f ← i. Since only 1 out of 107 photons gets scattered inelastically [109] while the others form the

elastically scattered Rayleigh light, Raman spectroscopy suffers from a low scattering efficiency.

This is one of the largest drawbacks of the technique. Nowadays, there are several methods to over-

come this disadvantage, as will be seen in the next sections (resonance Raman (section 2.1.3.1),

surface-enhanced (section 2.1.3.2) and tip-enhanced Raman scattering (section 2.1.3.3)).

Nevertheless, Raman spectroscopy enjoys high popularity for both research and industrial ap-

plications. Various advantages of Raman spectroscopy, some of them superior to other major

structure elucidation methods such as NMR or X-ray, allow wide spread applications in medicine,

biology, and material sciences. In the following those advantages are listed:

11
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• samples in all states of aggregation can be used (solid, liquid, gaseous, hydrated films or

crystalline or polycrystalline state),

• all solvents can be used, also water (in contrast to IR absorption spectroscopy),

• no labelling is required since the probed vibrations are an intrinsic property of the substance

under investigation,

• minimal or no sample preparation,

• high specificity (the position and intensity of the Raman bands strongly depends on the type

of atoms and their chemical environment),

• only very small amounts of sample are required,

• good spatial resolution (especially when using micro-Raman or tip-enhanced Raman spec-

troscopy) can be achieved,

• Raman spectroscopy is a non-invasive and non-destructive technique,

• no limitation is placed on the size of the investigated structures (it is also possible to study

native DNA and large proteins),

• biomolecules and their reactions can be investigated in their natural environment,

• can be done quantitative (for concentration determination when using calibration measure-

ments).

2.1.3 Raman enhancing techniques

Since Raman scattering is an intrinsically weak process (only one out of 107 incident photons gets

scattered inelastically [109]) methods are desired to increase the Raman scattering cross section.

By looking at equation 2.11 several possibilities to increase the Raman scattering intensity can be

thought of:

• increasing the intensityIL of the incident electromagnetic field, e.g. by increasing the laser

power or by local field enhancement (e.g. SERS, TERS, see section 2.1.3.2 and 2.1.3.3.)

• choosing higher excitation frequenciesνL, and

• excitation within resonance of an electronic transition in order to increase the magnitude of

the polarizability tensorα, i.e. resonance Raman spectroscopy (see next section 2.1.3.1).

12
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2.1.3.1 Resonance Raman spectroscopy

Sum-over-state description (time independent) Kramers and Heisenberg (1925) and Dirac

(1927) derived a quantum mechanical expression for the transition polarizability tensorα (KHD

dispersion theory). The individual matrix elementsαρσ of the polarizability tensor for a transition

f ← i can be calculated from:

(αρσ ) f i =
1
h̄ ∑

r 6=i, f

(
〈 f | µρ | r〉〈r | µσ | i〉

ωri −ωL− iΓr
+
〈 f | µσ | r〉〈r | µρ | i〉

ωr f +ωL + iΓr

)
(2.12)

with µρ andµσ being the transition dipole moments andΓ a damping factor which can be related

to the life time of the excited vibronic state| r〉. h̄ relates to Planck’s constant as ¯h = h/2π andω

to the frequency asω = 2πν .

This equation describes Raman scattering as a two-photon process with a transition from the

initial state with the vibronic wavefunctioni to the entire manifold of eigenstates with the wave-

function r of the unperturbed molecule, followed by a transition to the final state with the wave-

function f as depicted in figure 2.3. For normal Raman scattering (ωri � ωL, figure 2.3A) the

weighted summation over all possible states results in no information about the eigenstates| r〉.
The initial | i〉 and final state| f 〉 play the determining role.

That changes, when the incident laser frequencyωL matches the energy gapωri to an electroni-

cally excited eigenstate| r〉 (figure 2.3B). This electronic eigenstate will dominate the whole sum:

the denominator of the first term in the sum in equation 2.12 becomes really small, causing the first

term to become very large. This explains the signal enhancement up to six to eight orders of mag-

nitude that is observed for resonance Raman compared to normal Raman scattering. The second

term in the sum, where the incident frequencyωL and the transition frequencyωri are additively

linked becomes negligible and equation 2.12 reduces to:

(αρσ ) f i =
1
h̄ ∑

r 6=i, f

(
〈 f | µρ | r〉〈r | µσ | i〉

ωri −ωL− iΓr

)
. (2.13)

Time-dependent theory Since it is very tedious (and for large molecules almost impossible) to

sum up over all possible eigenstates of the molecule, the time-dependent theory, explained in the

following, holds a lot of advantages.

Through mathematical transformations (as explained in more detail in Myers et al. [170]) the

Kramers-Heisenberg-Dirac relation can be transformed into an integral over time. The equation

for the polarizability tensorα f i then reads as:

α f i =
1
h̄

∫ ∞

0
〈 f |i(t)〉exp

{
−Γt

h̄

}
exp

{
i(Ei +EL)t

h̄

}
dt (2.14)
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Figure 2.3: Energy level diagram illustrating the sum-over-state description of the Raman scatter-
ing, A) non-resonance Raman scattering,B) the exciting laser frequencyωL matches
an actual electronic transition of the molecule (resonance Raman).

with exp
{

i(Ei+EL)t
h̄

}
being the phase factor and exp

{
−Γt

h̄

}
being the damping factor. The term

〈 f |i(t)〉 describes the overlap integral, the time-dependent Franck-Condon factor between the final

state and the initial wavefunctions propagating on the electronic surface.

A graphic interpretation of equation 2.14 is given in figure 2.4 (adopted from Ref. [169] and Ref.

[228]). The resonance Raman scattering process starts at timet = 0 in the vibrational eigenstate| i〉
of the electronic ground state. A vertical transition to the excited electronic surface is initiated by

the interaction of the electronic transition dipole moment with the incident electromagnetic field

EL. Under the influence of the HamiltonianH the wavepacket evolves and oscillates between the

inner and outer turning points of the potential (dotted line in figure 2.4A) until it gets damped by

the function exp
{
−Γt

h̄

}
. While moving back and forth on the excited state surface the wavefunc-

tion | i(t)〉 passes regions with high overlap with the wavefunction| f 〉 in the electronic ground

state and a photon of energyES is emitted. The Raman overlap〈 f |i(t)〉exp
{
−Γt

h̄

}
as a function

of time is depicted in figure 2.4B. Maximal overlap is reached a few femtoseconds after the initial

propagation (point 1 in figure 2.4A) and then again due to the damping with less amplitude on the
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Figure 2.4: Time dependent picture of resonance Raman scatteringA) Energy level diagramB)
Raman overlap as a function of timeC) Raman excitation profile (adapted from [169,
228].

return trip (point 3 in figure 2.4A). A full propagation cycle is completed at point 4 and the process

starts over again until| i(t)〉 is damped out.

By a half Fourier transformation the Raman excitation profileI f i = I f i(ω0) can be calculated

from the Raman overlap function (depicted in figure 2.4C). The influence of the damping constant

reflects on the line shape in the excitation profile: a small damping constant results in narrow lines

in the excitation profile, while a large damping constant causes broad lines.

Advantages and applications of resonance Raman spectroscopy Since resonance Raman

scattering occurs via enhanced scattering involving an excited electronic state the technique can

be used to gain information about the molecular structure and dynamic of the excited electronic

state. From the excitation profile one can determine the strength of the interactions between the

electronic excited state and the vibrational modes, the atomic displacement between ground and

excited state, and thus the change in bond length and bond angles when going from the ground to

the excited state. From the overtone progression of totally symmetric vibrations or combinations

with them the anharmonicity constant and harmonic frequencies of the appropriate vibrations can

be calculated [52, 113].
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Figure 2.5: Selectivity of resonance Raman spectroscopy.Bottom) UV/vis absorption spectrum
of guanosine-5’-monophosphate (structure shown on the right). The arrows mark
three different excitation wavelengths applied to record the Raman spectra shown in
theTop) the off-resonance Raman spectrum excited at 532 nm on the right, and the
resonance Raman spectra excited at 244 nm (middle) and 218 nm (left) involving two
different electronic transitions (spectrum excited at 218 nm taken from Ref. [77]).

However, in this work resonance Raman spectroscopy is not used because of its hight power

for photochemical analysis, but rather because of its high sensitivity and selectivity. By electronic

resonance enhancement the intensity of the scattered light can be increased by a factor of 106

compared to non-resonant Raman excitation. This improves the signal-to-noise ratio and allows

the detection of substances in solution at low concentrations (10−3−10−5 M).

As the enhancement results from a coupling of the vibrational modes (most of the time totally

symmetric vibrational modes) to an electronically excited state it is possible to exclusively select

vibrational modes from certain chromophores by choosing an appropriate wavelength Figure 2.5

illustrates this selectivity for guanosine-5’-monophosphate as an example. By varying the Raman

excitation wavelength to be resonant with different electronic transitions selective excitation of

different chromophores is possible. The off-resonance Raman spectrum excited at 532 nm (top

right in figure 2.5) shows a very complex vibrational structure, since all Raman active vibrations

contribute to this spectrum. When exciting at 244 nm only those vibrational bands are enhanced
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Figure 2.6: Resonance Raman spectroscopy and fluorescence.A) Energy level diagram (dark blue
arrows: excitation, light blue and green arrow: Raman scattering, red: fluorescence),
B) Excitation to higher electronic states. Fluorescence and Raman signals do not
interfere. C) Excitation at the high wavelength edge of the absorption band. The
Stokes shift is small and therefore the Raman and fluorescence signal overlap.

that couple to theπ −π∗ transition centered around 253 nm. The spectrum is much simpler and

special focus can be put selectively on those enhanced vibrations. A different enhancement pattern

is found in the resonance Raman spectrum excited at 218 nm allowing one to investigate a different

site within the molecule. This site-specificity due to the application of different Raman excitation

frequencies allows the study of smaller subunits in larger assemblies, as e.g. probing the active

center in proteins which is pivotal for the function of the respective molecules, or the selective

excitation of macromolecules such as proteins or DNA in the presence of other molecules, as

e.g. in whole cells. The simplification of rich vibrational spectra from complex systems can also

reduce the overlap of vibrational bands.

When using excitation wavelengths in the deep UV (< 250 nm) fluorescence which is often a

problem in biological samples is energetically far enough away from the scattered light and does

not interfere with the Raman signal. This is illustrated in figure 2.6.

In case resonance Raman spectroscopy occurs via the same electronic excited states where

the fluorescence emission originates (figure 2.6A), the Raman signals are often masked by the

17



2 Theoretical fundamentals

broad and featureless fluorescence spectra. This is especially the case when the Stokes shift, i.e.

the energy difference between the absorption maximum and the fluorescence maximum, is only

small (figure 2.6C). In UV-resonance Raman spectroscopy energy-rich UV-light is used, so that

higher electronic excited states are incorporated. Raman scattering occurs within the first few

femtoseconds (10−15 s) directly from the high electronic state. The fluorescence process occurs

only on a time scale of nanoseconds (10−9 s), and therefore the molecule can relax to the lowest

excited electronic state via radiationless processes. Since fluorescence consequently in most cases

occurs from the lowest-energy excited state (Kasha’s rule), the Raman and fluorescence signals

are well separated on the energy scale as shown in figure 2.6B.

The high sensitivity, selectivity and the absence of interfering fluorescence brought forth various

applications of the resonance Raman technique in biological, biochemical and medicinal research

in the last years. The techniques was successfully applied to study DNA conformation, native

structures of proteins and peptides, the local environment of biological chromophores (such as

hemoglobin, bacterio rhodopsin, carotinoids, just to name some of them) [11, 23, 67, 114, 115,

117, 116, 231, 245, 246, 252, 277] in-situ and in dilute aqueous solutions, and for the differentia-

tion and identification of various bacteria, fungi and algae [82, 108, 145].

Despite all the advantages experimental difficulties arise due to strong absorption of the exci-

tation light which can cause thermal decomposition and unwanted photoreactions of the sample.

Reabsorption of the scattered light makes a quantitative evaluation of the Raman intensity difficult

and internal standards have to be used [272].

In this work the high sensitivity and selectivity of resonance Raman spectroscopy are used to

investigate metabolic changes within bacterial cells during bacterial growth and under the influ-

ence of antibiotics. Furthermore, the biological targets of the drugs, namely DNA and the bacterial

enzyme gyrase, are study in aqueous solutions at biological relevant concentrations.

2.1.3.2 Surface-enhanced Raman spectroscopy (SERS)

For the investigation of surfaces special techniques like surface-enhanced Raman spectroscopy

(SERS) showed to have a high potential. In 1974 Fleischmann et al. [73] first reported huge

Raman signals from pyridine adsorbed onto electrochemically roughened silver electrodes. Some

years later, Albrecht and Creighton [7], and Jeanmaire and van Duyne [110] independently ex-

plained this high increase (up to six orders of magnitude) of the Raman scattering cross section

of the adsorbed molecule by complex electromagnetic interactions of the adsorbate with the metal

surface. This surface enhancing Raman effect provides another way to overcome the drawback of

normal Raman spectroscopy: the low scattering efficiency.

Mechanisms of surface enhancement The Raman intensity of normal Raman scattering is

proportional to the square of the induced electric transition dipole momentµ. According to equa-

tion 2.5 there are two ways to increase the Raman scattering intensities: first by increasing the

electromagnetic fieldE and second by enhancing the transition polarizability tensorα. The first
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is named electromagnetic field enhancement mechanism, the second charge transfer, or chemical

enhancement mechanism. Discussions over the relative contributions to the total enhancement of

the two mechanisms are still ongoing [190, 121, 10, 164, 189].

Electromagnetic enhancement mechanism The local increase of the electromagnetic field at

metal surfaces is due to the excitation of surface plasmon resonance. Plasmons are the quantums

of the collective oscillations of the free electron gas (conduction electrons) against the positive

ion cores of the metal at optical frequencies. One differentiates between bulk plasmons which de-

note electron fluctuations inside the bulk and surface plasmons which are collective charge density

fluctuations at the metal-vacuum or metal-dielectric interface. If the metal surface is roughened

the plasmons are no longer confined and the electric field can radiate both in parallel and perpen-

dicular direction to the surface. It is possible to excite the plasmons in metal particles as has been

reported for various metals [125]. Because of its resonant character the oscillation may result in

a polarization and an electric field exceeding that of the exciting light, often referred to as field

enhancement. For metals such as Ag, Au and Cu, the plasmon resonances are in the visible re-

gion of the electromagnetic spectrum. Particle size and shape (morphology) were found to have

a strong influence on the resonance frequency. The field enhancement should be most intense at

edges where the curvature of the particle is high, and therefore, the density of the electric flux is

highest (lightening rod effect).

If a sample is brought into close contact with a rough metal surface, usually silver, gold or

copper, and the surface plasmons of the metal are excited with a laser, the enhanced evanescent

electromagnetic field causes an enhanced Raman signal with a scattering cross section of 3 to 15

orders of magnitude larger than those for normal Raman scattering [119].

The range of the electromagnetic field of the excited surface plasmons quickly decreases with

distanced from the surface of the spherical metal particle with radiusr. A single molecule close to

the metal surface experiences the following distance dependence of the electromagnetic enhance-

ment EMenhance[190] as was obtained as a result of the dipolar plasmon approximation for silver

spheres by McCall [159]:

EMenhance∝
(

r
r +d

)12

. (2.15)

For a monolayer of molecules the equation changes to [190]:

EMenhance∝
(

r
r +d

)10

. (2.16)

as was experimentally determined by Cotton et al. using Langmuir-Blodgett monolayers and well

defined spacers [56]. Besides the strong distance dependence of the enhancement, equation 2.15

and 2.16 show furthermore, that larger metal particles produce an electromagnetic enhancement

with further spatial range.
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Charge transfer enhancement mechanism The charge-transfer enhancement is thought of

to result from the direct chemisorption of the adsorbate on the metal surface forming a surface

complex. This interaction with the conduction and/or valence bands of the metal surface (lig-

and to metal and/or metal-to-ligand charge transfer interactions) causes changes in the electronic

structure of the analyte. If the exciting laser light fits the charge-transfer energy gap, resonance

Raman scattering occurs (see section 2.1.3.1). As the mechanism depends on a metal-adsorbate

bond, it effectively operates only on the first layer of adsorbates (absolute first-layer enhance-

ment). Compared to the normal Raman spectra the surface-enhanced Raman spectra might exhibit

shifted vibrational bands and a changed intensity pattern due to the selective enhancement of the

vibrational modes coupling to the excited electronic transitions of the analyte-metal complex.

Applications and limitations SERS is a very sensitive technique capable to obtain rich chem-

ical information from the surfaces of substances in close contact to the metal. Due to the surface

enhancement the sensitivity is increased compared to normal Raman by 3 to 15 orders of magni-

tude. This lowers the detection limit and analytes at very low concentrations down 10−11 M (e.g.

Rhodamine6G at silver colloid [120]) can be detected. It was even possible to record surface-

enhanced Raman spectra from single molecules [122, 120, 285, 154, 182, 225].

For the interpretation of the spectra surface selection rules have to be applied and also Raman

inactive bands may become observable. In their simplest form, and assuming no specific symmetry

selection rules, those Raman bands that originate from vibrations with an induced polarization of

the adsorbate electron cloud perpendicular to the metal surface are predicted to show the highest

intensity [60, 165]. This allows useful conclusions about the relative orientation of adsorbed

molecules and helps to gain insights into the molecular basis of a number of surface problems.

Exemplarily, this was shown for benzene and monosubstituted benzene by Gao et al. [80].

Various biomedical applications simplifying medical diagnostics and biological imaging have

been developed using SERS techniques. It is possible to identify DNA and detect DNA biotargets

(e.g. gene sequences, bacterial and viral DNA fragments) [266, 105] via hybridization to DNA

sequences complementary to that probe [265, 267], to determine the secondary structure of DNA

(helical vs. denatured) [171], and also to differentiate and identify single bacterial cells [202].

Despite all the advances, the technique still suffers from limitations. Up to now the main draw-

back is the rather poor quantitative reproducibility, since the SERS signal is extremely sensitive to

the nature and shape of the metal surface roughness, and a number of factors involving the adsorp-

tion process such as the orientation at the metal surface and the extent of adsorption. Great research

effort is put into the development of reproducible SERS substrates [127, 240, 290, 137, 89, 87, 31].

The very high sensitivity of SERS (enhancement factors up to 1015 [182]) allows single molecule

detection. However, it can also be possible that an impurity within a sample or a species formed

by surface photochemistry is preferentially enhanced. The exclusion of such unwanted signals

can sometimes be difficult since the specific selection rules of SERS might make it complicated

to relate the SER spectra to the Raman scattering from the parent species before adsorption. Fur-
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Figure 2.7: Tip-enhanced Raman spectroscopy (TERS) configuration: the exciting laser is fo-
cused on the SERS active particle at the tip apex of the AFM tip and excites there the
surface plasmons in the metal. The evanescent near-field causes an enhanced Raman
signal in the close vicinity of the tip apex (Fig. slightly adapted from ref. [204]).

thermore, since the analyte requires to be in close proximity to a suitable roughened surface, one

has to be aware of contamination of the sample with metal colloid.

2.1.3.3 Tip-enhanced Raman spectroscopy (TERS)

Some of the drawbacks of surface-enhanced Raman spectroscopy can be overcome when moving

to tip-enhanced Raman spectroscopy (TERS). Here, the enhancing metal surface is reduced to a

small tip of ideally one metal particle. Illumination of the tip with a laser beam excites confined

localized surface plasmons of the metal which cause an enhanced electromagnetic near field. Sig-

nificant enhancement of the Raman signal is observed in a small area in close vicinity of the tip

apex (figure 2.7). Since no colloidal solution of metal particles is used contamination of the sample

with metal is avoided. In order to control the position of the enhancing metal tip over the sample

surface, the scanning tip is combined with an atomic force microscope (AFM) (see next section

2.2). This combination of SERS and AFM allows simultaneously the investigation of the surface

structure by AFM and the detailed chemical characterization of those surface structures from the

vibrational information of the (tip-enhanced) Raman spectra.

Using this near field technique the Rayleigh criterion of the Abbe diffraction limit [204]

d = 0.61
λ

NA
(2.17)

21



2 Theoretical fundamentals

with λ denoting the wavelength of the exciting light andNA the numerical aperture of the lens,

can be overcome and the smallest distinguishable distanced between two adjacent objects is only

determined by the sizes of the enhancing metal particle:

d≈ s (2.18)

Usually the tip sizes are in the range between 10 and 50 nm providing a spatial resolution in

x-y-direction below the diffraction limit [247]. Also the information obtainable in z-direction is

confined to a few nanometer due to the rapidly decaying evanescent field [184, 211].

TERS provides increased sensitivity, selectivity and spatial resolution over conventional Raman

spectroscopy. So far, this technique has been applied to small pure substances like CN-ions ad-

sorbed at gold surfaces [196], malachite green isothiocyanate [197, 198], benzenethiol [210], Rho-

damine6G [270], single walled carbon nanotubes [94, 93], and DNA components [205]. Within

the scope of this work TERS spectra from surfaces of complex biological systems, such as whole

bacterial cells have been recorded for the first time (chapter 5).

2.2 Atomic force microscopy (AFM)

Atomic force microscopy is an imaging technique that is based on the measurement of very small

forces between two approaching atoms, that is the probing tip and the sample (figure 2.8) [32].

Those interaction force show a very large distance dependence, so that a good spatial resolution

of the sample surface is obtained when using sharp probes. The probing tip is mounted on the free

vibrating end of a flexible cantilever which is hold on a fixed support with the other end. The tip

is brought into close contact to the sample and scanned across the surface. The local attractive or

repulsive forcesF between the tip and the sample cause a deflectionsof the cantilever towards or

away from the substrate according to Hooke’s Law:

F =−k ·s (2.19)

with k being the force constant. This (vertical) deflections is detected by a laser beam which is re-

flected from the back of the cantilever onto a photo-detector. A small change in the bending angle

of the cantilever gets converted into a measurable deflection of a reflected laser spot on the pho-

todetector (optical lever principle), which again is used to calculate a 3-dimensional topographic

image of the scanned surface.

Imaging modes

There are two main modes to probe the sample surface: one direct feedback mode where the

static feedback of the cantilever is measured while scanning over the surface and one dynamic

mode where the cantilever vibrates and the slight changes in the oscillation of the cantilever upon
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Figure 2.8: Atomic force microscopy: The AFM cantilever with the very sharp tip is scanned
above the sample surface. Due to force interactions between the tip and the sample
the cantilever bends which is monitored by the deflection of the laser beam on the
photo-detector.

interaction with the sample are used to image the sample surface. The first one is known as

"contact-mode" (figure 2.9A). It can be run in constant-height mode, where the height of the

cantilever is kept constant and the change in force is recorded, or in the more often used constant-

force mode. In the latter, the cantilever is moving up and down via a feedback loop over high and

low parts of the sample so that all parts of the sample experience the same force.

The dynamic modes can be distinguished according to the amount of oscillation cycles the tip

is in contact with the surface. If the tip is vibrating well above the surface without getting in touch

with the surface it is called "non-contact mode" (figure 2.9B). The opposite of this mode is the

"force modulation mode" (figure 2.9C) where the tip does not leave the surface at all during the

oscillation cycle. This can be thought of a dynamic version of the "contact mode". The probably

most popular mode is the "intermittent contact mode" ("tapping mode") where the tip gets in

(repulsive) contact with the sample at its lowest point of oscillation (figure 2.9D).

Cantilevers

Cantilevers are especially designed for either imaging mode. For the contact mode cantilevers have

to have a low spring constant and a low resonant frequency in order to image the surface without

getting damaged or damaging the sample due to too high applied forces. Cantilevers designed

for the intermittent contact mode have to be stiffer and have to have a higher force constant and

a higher resonant frequency (ideally between 200 and 300 kHz). Those cantilevers are usually

shorter and thicker than the non-contact ones.
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A

B

C

D

Figure 2.9: Imaging modes of an atomic force microscope:A) contact mode,B) non-contact
mode,C) force modulation mode,D) intermittent contact mode (figure adapted from
the jpk user manual).

Advantages of AFM

Since there is no need of staining or coating the sample atomic force microscopy has grown to a

very powerful technique for the investigation of biological surfaces. Single cells as well as single

molecules, such as DNA and proteins have been studies so far [5, 28, 43, 68, 91, 158, 224, 237].

2.3 Statistical evaluation methods: Multivariate data analysis

Investigating dependencies quite often covers the analysis of a multidimensional problem, that is

the variable of interest depends on not only one, but several factors. Also analyzing spectral data,

as is done within the scope of this work, involves the evaluation and classification of complex data

sets with a multidimensional dependence, such as the intensity at different wavenumbers, and ad-

ditionally the age of the bacterial culture (chapter 4), or the concentration of added drugs (chapter

9). For a proper data assessment and to recognize correlations the use of statistical methods such

as multivariate data analysis is necessary.

The aim of multivariate data analysis is to display the intrinsic data structure, to allow the

discrimination and classification of groups of data and also to use it for regression and prediction.
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Among the large variety of statistical methods hierarchical cluster analysis and principal compo-

nent analysis have been used successfully within this work. These two methods are unsupervised

classification methods, which means that no information about the affiliation of the individual ob-

jects is required for the data analysis. Unsupervised techniques are mainly used for the search for

natural similarities in a data set [22]. Supervised statistical methods such as linear discriminant

analysis (LDA), artificial neural networks (ANN) or support vector machines (SVM) take from

the beginning the class affiliation into account. With known objects (spectra in this case) a model

is created, validated and can than be used to identify unknown objects (spectra).

2.3.1 Hierarchical cluster analysis (HCA)

The hierarchical cluster analysis is an unsupervised method that arranges the individual objects

according to their similarity in groups (clusters). The result of a hierarchical cluster analysis

(HCA) is presented in a dendrogram which shows some similarity to the genealogical tree in

taxonomy.

As a measure for the similarity of the individual spectra serves the heterogeneity, or spectral

distance. The smaller the spectral distance the more similar are the spectra. Two identical spectra

have the spectral distance of zero. To calculate the spectral difference several methods are possible.

In the following the algorithm of the "standard method" and the "factorization method" will be

explained shortly.

The standard method uses the euclidian distance between the intensities of the spectraa andb

for all data pointsk in the chosen spectral range to calculate the spectral distanceD:

D =
√

∑
k

(a(k)−b(k))2 (2.20)

When using the factorization method first a principal component analysis (PCA) is performed

(see section 2.3.2) and the spectrum is expressed as a linear combination of score coefficient and

loadings. The spectral distance is then also calculated from the euclidian distance using equation

2.20, but instead of the intensities of the raw spectra the scores of the PCA are used.

It showed to be useful to perform a vector normalization of the spectra prior to calculating the

spectral distance by standard or factorization method.

After having calculated the distance matrix the individual objects are grouped into clusters, first

merging the two most similar spectra into a cluster. In a next step the spectral distances between

all objects (clusters and spectra) are recalculated, and again the two most similar objects are united

to form a cluster. This procedure goes on until all spectra are incorporated in the cluster. There

are several methods how the two closest clusters are identified and the third object is added. The

most common algorithms are single, complete, average and weighted average linkage as well as

median, centroid and Ward’s technique. In this work Ward’s technique has been exclusively used

to minimize intra class variances and maximize inter class variances.
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Ward’s linkage uses an analysis of variance approach to evaluate the distances between clusters

in order to form as homogeneous as possible clusters. Therefore, always the two subclusters are

merged that cause the smallest increase in heterogeneityH which is calculated as:

H(r, i) = D(r, i) =
{np +ni} ·D(p, i)+

{
nq +ni

}
·D(q, i)−ni ·D(p,q)

np +nq +ni
(2.21)

with r being the cluster composed ofp andq to which the objecti has to be added. The variablen

accounts for the number of spectra in the respective cluster.

Ward’s algorithm is regarded as very efficient and proofed to be especially suited for the cluster

analysis of bacterial spectra [2].

2.3.2 Principal component analysis (PCA)

Principal component analysis (PCA) has been widely adopted to extract abstract features and to

reduce dimensionality in many pattern recognition problems. Also in spectroscopy where one has

to deal with large amount of data PCA proofed to be useful to develop smaller and straightforward,

clear models that describe the data, allow the detection of outliers and classify the objects of

investigation. This is achieved by calculating a new coordinate system. The new orthogonal and

independent axis of this coordinate systems are the principal components (PC). The first PC (PC1)

is positioned along the direction of maximum variance in the data set, the second PC (PC2) lies

in a direction orthogonal to the first PC and in the direction of the second largest variance. This

continues until all PCs are determined. The total number of PCs is limited to either the number

of objects minus one, or the number of variables, depending on which is the smaller number.

Since the higher order principal components will lie along directions where there is only very

little spread in the objects, these directions can progressively thought of as "noise" directions.

Therefore, by performing the principal component analysis the data set is decomposed into a

structured part which is described by the first PCs and a noise part, which is described by the

higher order PCs. If the samples under investigation are connected by any correlation the number

of "useful" principal components will be much less than the initial variables or objects and the

dimension of the multivariate data is reduced whilst most of the variance is preserved. The number

of principal components that are needed to reliably described the data set can be estimated with

the Scree-test after Cattell [100]. Here the variance of the residues is plotted against the number

of PCs and only those PCs are further investigated that still significantly decrease the variance of

the residues.

Any PC can also be thought of as a linear combination of the original variables p of the data set

X. The PC-vector will containp coefficients, one for each of thep vectors. These coefficients are

called loadings. The loadings from all the principal components constitute a matrixP which can

be thought of a transformation matrix between the original variable space and the space spanned

by the PCs. In the space spanned by the principal components the investigated objects will have
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new coordinates with respect to the individual PCs which are called scores. The scores for all

objects form together the score matrixT. The columns of this score matrixT describe the scores

for one PC. They are orthogonal and are called score vectorst. A graphical description of the

spectra in the PC space is called scores plot.

In this work the principal component analysis was performed using the program "The Unscram-

bler" (CAMO Process AS, Version 9.2) which calculates the PCs following the NIPALS algorithm

(Nonlinear Iterative Projections by Alternating Least Squares) and is sketched briefly below:

1. Centering of the data matrixXi

2. The first score vectorti is selected as a column from theX-matrix.

3. The corresponding loadings pi are calculated and normalized:pi = XT ti
|XT ti | .

4. For these new scores the loadings are calculated:ti,new= X pi .

5. Check the convergence: if| ti,new− ti,old |> criterion, go back to step 2, otherwise continue.

6. Updating (deflation):Xi+1 = Xi− ti pT
i The first principal component is subtracted from the

data matrix.

7. Step 2 through 6 are repeated until enough PCs have been calculated.

2.3.3 Further multivariate data analysis methods

Besides hierarchical cluster analysis and principal component analysis two more multivariate data

analyzing methods were applied in this work and should be explained briefly in the following.

A supervised classification method is thelinear discriminant analysis (LDA) . It seeks to find a

linear transformation by maximizing the between-class variance and minimizing the within-class

variance. It has proved to be a suitable technique for discriminating different pattern classes and

was applied in this work as an objective function in the reverse elimination tabu search.

The Reverse elimination tabu search (REM-TS)is a variable selection process. Following

special search routines variables are selected and those selected models are evaluated with objec-

tive functions and cross validation. The objective function might be a classification or a regression

method. At the end a model is obtained with variables that show the lowest error rate for that ob-

jective function. This technique has been applied in chapter 4.3 and 9 to select the wavenumbers

of high importance for the discrimination of the spectra of bacteria in different growth phases or

under the influence of different drug concentration. More details on the method are given in the

experimental section 3.4.
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3 Material and Methods

In this chapter a description of the used instruments and applied methods is given. A detailed

list of the chemical composition of buffers and media (especially for the extraction procedures) as

well as the origin of the commercially obtained chemicals can be found in the appendix under the

chapter "Chemicals and media" (chapter A).

3.1 Spectroscopic instrumentation

3.1.1 UV/vis absorption spectroscopy

UV/vis absorption spectra of the fluoroquinolones were recorded on a Perkin Elmer UV/vis spec-

trometer Lambda 16 at 20◦C. Also the temperature dependent measurements of the DNA (denat-

uration) have been performed with this spectrometer.

The growth of the bacterial cultures was monitored by measuring the absorption at 630 nm using

a Spekol 1100 UV/vis spectrometer (Carl Zeiss Technology).

A Cary5000 UV-Vis-NIR absorption spectrophotometer (Varian) was used to record the UV/vis

absorption spectra of the nucleic acids, DNA bases, proteins and amino acids.

3.1.2 Raman spectroscopy

Micro-Raman spectra were obtained with an excitation wavelength of 532 nm from a frequency

doubled Nd:YAG laser, 633 nm from a HeNe-laser and 830 nm from a diode laser, using a LabRam

HR spectrometer (Jobin Yvon, Horiba). The laser light was focused by means of a 100x micro-

scope objective onto the sample down to a spot diameter of approximately 1 µm having a laser

power of circa 10 mW incident on the sample when using the 532 nm laser, 2 mW when using the

633 nm laser and 4 mW when exciting with 830 nm. The 180◦ back-scattered Raman signal was

detected with a CCD camera (1024 x 512 pixels) operating at 220 K.

The Raman spectra of the fluoroquinolones excited at 1064 nm (Nd:YAG laser) laser light were

recorded with a Fourier transform (FT) spectrometer (Bruker, Model IFS120HR) equipped with

a Raman module (Model FRA106). Detection was achieved with a liquid nitrogen cooled Ge

detector.
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Figure 3.1: Experimental setup of the resonance Raman experiments when cooling the sample
(Linkam stage).

3.1.3 UV-resonance Raman spectroscopy

Ultra-violet (UV) resonance Raman (RR) experiments were performed with excitation at 244 nm

and 257 nm from an intracavity frequency doubled argon-ion laser (Innova 300, MotoFreD, Co-

herent Inc.). The output power at the laser head ranged between 32 and 45 mW, the laser power at

the microscope objective (LMU-40x-UVB, OFR) before hitting the sample was about 1.5 mW. A

micro-Raman setup (HR800, Horiba/Jobin-Yvon) with a focal length of 800 mm and a 2400 lines/mm

grating was used. The signal was recorded with a liquid N2 cooled CCD camera. Calibration of

the wavenumber axis was performed using the known Raman signals from teflon.

To avoid combustion or photo (and thermal) degradation the sample was rotated on a moved

table. The UVRR spectra of the samples showed no significant time dependence, indicating no

appreciable photodecomposition during data collection protocols. Some experiments (bulk sam-

ples of fluoroquinoles, DNA) were performed at lowered temperatures of -80◦C and -20◦C which

were achieved with a liquid nitrogen cooled and moved table (Linkam stage, figure 3.1).

For most experiments an integration time of 120 s was found to give spectra with a good signal-

to-noise ratio.
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Resonance Raman experiments of the fluoroquinolones with excitation at 275 nm were per-

formed with an argon-ion laser (Spectra Physics Model 2085). A rotating cell in a 90◦ scatter-

ing arrangement was used to investigate the aqueous solutions of the quinolones. The scattered

light was collected with an f = 50 mm (1:1.3) quartz lens and analyzed with a Spex 1404 double

monochromator equipped with a 2400 lines/mm gratings. The dispersed Raman straylight was

detected with a Photometrics model RDS 200 CCD Raman detector system.

3.1.4 IR absorption spectroscopy

IR absorption spectra were recorded on a Bruker IFS66 spectrometer with 4 cm−1 resolution. For

each FT-IR spectrum 128 interferograms were coadded and averaged. A DTGS (doped triglyc-

erinsulfate) detector was used.

IR spectra of the pure substances of the fluoroquinolones and the DNA bases were recorded

solid in KBr. IR transmission spectra of the solid nucleic acids (lyophilized powder) and the

crystalline nucleic acid bases were recorded using a microscope. The sample was placed on a

silicon waver. For convenient presentation the transmission spectra have been converted to IR

absorption spectra using the OPUS software package.

IR absorption spectra of bacteria were recorded from dried suspension on KRS-5TM plates.

KRS-5 is a crystal of 42 mol% TlBr and 58 mol% TlI with a maximum transmission of 75%. It is

only poorly soluble in water (at 300 K 5· 10−2 g/100 g H2O) and an ideal support for transparent

bacterial films [172].

For each sampling mode a one-beam reference spectrum with the pure support (KBr, silicon or

KRS-5) was recorded in order to account for the moisture and impurities in the optical material.

3.1.5 Tip-enhanced Raman spectroscopy (TERS)

The experiments using tip-enhanced Raman spectroscopy were performed in the laboratory of PD

Dr. Volker Deckert at the Institute for Analytical Sciences (ISAS) in Dortmund.

3.1.5.1 Experimental TERS set-up

The experimental set-up is shown in figure 3.2. A commercially available atomic force micro-

scope (NanoWizard atomic force microscopy, JPK Instrument AG, Germany) is mounted onto an

inverted Raman microscope (HR LabRam, Horiba Jobin Yvon, France; 800 mm focal length, 600

lines/mm grating). The ultra sharp silver coated AFM tip with an apex size of less than 50 nm

(NSG10, ATOS GmbH, Germany) was placed above the sample and used in non-contact mode.

The laser beam (568 nm, krypton-ion, Coherent, Santa Clara, USA) was focused from below onto

the silver-coated tip via an oil immersion objective (60x, NA 1.45, Olympus) to excite the surface

plasmons at the point of the tip apex. The laser power at sample was 1.5 mW. The specimen was

moved in xy-direction via a piezo controlled sample stage, while the xy-position of the AFM-tip

was fixed to the position of the laser spot. Defocusing in z-direction due to height changes during
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Figure 3.2: Experimental set-up of the TERS experiments (reproduced from ref. [205]).

a scan was avoided by a synchronized movement of tip and microscope objective. That way, a

topographic image of the sample was recorded. Special, well defined points on the sample were

then selected to record TERS spectra at different positions on the cell and, for reference purposes,

at positions where no cells were present. The enhanced Raman signal stems from only a very

small area in the vicinity of the probe point, which can be roughly estimated by the tip radius. In

our case the tip radius is assumed to be less than 50 nm. The detection of the Raman signal was

performed in 180◦ back-scattering geometry through the same oil immersion objective. Due to the

strong signal enhancement an acquisition time of one second was sufficient. This facilitates re-

vealing dynamics on the cell surface on a reasonable time scale. For such measurements the probe

was kept on a fixed position at the cell and spectra were recorded continuously. The integrity of

the bacterial cells was checked before and after the TERS experiment by AFM measurements. No

changes in the bacterial surface structure could be detected. Also the probing tip did not contain

any material from the cell surface or combustion products as was checked in control experiments.

Therefore, it can be assumed that the cells did not get damaged in the experiment.

The AFM was operated in the instrument’s intermittent contact mode, a variety of non-contact

methods (see section 2.2). That way a proper measurement of the specimen was possible and

shifting of the bacteria (S. epidermidis) on the glass substrate could be avoided as was not the

case when using the contact mode. However, it was found that the smallerE. coli cells can be

investigated in the contact mode.
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3.1.5.2 Enhancing AFM tips

Ultrasharp AFM tips were commercially obtained from ATOS GmbH, Germany, and later from

NT-MDT, Netherlands. The non-contact AFM tips NSG-10 have a curvature radius of 10 nm, a

force constant between 5.5 - 22.5 N/m and a resonance frequency between 190 and 325 kHz. The

contact mode AFM tips CSG-10 have a force constant between 0.03 and 0.2 N/m and a resonance

frequency between 14 and 28 kHz (manufacturer information).

In order to obtain a SERS active particle at the tip apex for the field enhancement the tips were

evaporated with 20 nm of silver. This was done under an argon atmosphere of about 104 mbar,

starting from an initial vacuum of 2−5 ·10−7 mbar. The silver was evaporated at a rate of 0.02-

0.07 nm/s applying a current of 30-36 A at a voltage of 4 V.

To produce small silver islands some of the silver-coated tips have been annealed (60 s at

300◦C). Figure 3.3 shows the scanning electron microscope (SEM) images of a silver coated tip

(A) and a silver coated tip that has been annealed (B) from three different viewing angles: (1)

from top, where the tip is coming out of the cantilever and facing the observer, (2) from the side,

and (3) a magnification of the tip apex. The tip apex after silver evaporation is less than 50 nm in

diameter. Clearly the silver islands are visible on the cantilever of the annealed tip.

Characterization of the plasmon resonant frequency of the silver coated AFM tips The

plasmon resonance of the tip was characterized by light microscopy. Figure 3.4A and B show

the bright and dark field microscope images of a silver coated AFM tip, respectively. Figure

3.4C-F represent the absorption curves at different positions on the tip and cantilever. At the tip

apex the plasmon oscillation has a maximum around 560 nm. The laser at 568 nm used in these

TERS experiments excites those plasmons slightly on the red side of the maximum and therefore

should cause a maximum enhancement. However, it should be noted that with this technique only

macroscopic, far-field characteristics of the enhancing tip are probed. In the TERS experiment

ideally a single silver particle is causing the signal enhancement about which nothing is learnt in

this experiment.

Tuning of the AFM tips Intermittent contact-mode cantilevers have to be excited to oscillations.

To give a reasonable amplitude for the oscillation the driving frequency has to be close to the

resonant frequency of the cantilever. The resonant frequencyf of a cantilever depends on its mass

m and spring constantk:

f =
1

2π

√
k
m

. (3.1)

The parameters are adjusted before the experiment and figure 3.5 shows such a tuning curve. After

silver evaporation the resonant frequency of the non-contact mode are found in a range of 230

and 330 kHz. The phase of the cantilever oscillation (blue curve) can provide additional sample

information such as stiffness and adhesion.
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A(1) A(2) A(3)

B(1) B(2) B(3)

Figure 3.3: Scanning electron microscope images of the silver-coated AFM-tips for the TERS
experimentsA) non-contact tip covered with 20 nm of silver,B) non-contact AFM-tip
covered with 20 nm of silver and annealed (60s at 300◦C) at three different viewing
angles(1) from top, where the tip is coming out of the cantilever and facing the viewer,
(2) from the side,(3) a magnification of the tip apex.

Sensitivity calibration The topography of the surface is measured by recording the deflection

of the reflected (AFM) laser beam from the back of the cantilever with a photodiode (figure 2.8).

When there are rises or declines on the surface, the cantilever bends and thereupon the position of

the reflected laser on the photodiode changes. In order to convert the photodetector signal of the

cantilever deflection into a quantitative value of force and to determine the oscillation amplitude of

the cantilever in nanometer, force-distance measurements have been performed with the tip. The

plain cantilever tip is approached to a bare hard surface until the deflection of the cantilever rises

steeply in the repulsive contact region. For a hard surface and tip this slope in deflection (in Volts)

rises linearly with the piezo height (in nm) and can therefore be used to calculate the sensitivity

of the cantilever spring. The oscillation amplitude of the free cantilever was set to 10 nm whereas

the setpoint for feedback was set to 60% of that value. All these values vary around 10% from tip

to tip.
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Figure 3.4: Plasmon resonance of the silver-coated AFM-tips for the TERS experimentA) light
microscope image of the tip,B) dark field microscope image of the same tipC-F)
spectra of the scattered light from different positions on and near the tip apex as indi-
cated in figure B.
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Figure 3.5: Tuning curve of the non-contact AFM tips, red curve: frequency, blue curve: phase.
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Figure 3.6: Optical response (reflectivity image) when scanning the silver-coated AFM tip
through the laser focus.

3.1.5.3 Practical tip placement / focal spot adjustment

For the maximum enhancement of the Raman signal the tip has to be positioned with the tip apex

inside the laser focus. After a coarse adjustment of the entire AFM-head, the tip scans in the

tip-scanning mode of the AFM through the laser focus and the reflected signal is detected by a

simple photodiode (figure 3.2). If there is a silver particle at the apex of the tip a bright signal

(high reflectivity) is recorded in the optical response as shown in figure 3.6.

The diameter of the tip apex after silver evaporation is expected to be well below 50 nm. How-

ever, the spot size of the tip response in the picture (figure 3.6) is larger and can be explained by a

convolution of the effective tip area and the size of the laser spot (the diffraction limited diameter

of the focused laser should be around 500 nm). The point of highest response marks the optimal

alignment for the TERS experiment as was proven by recording tip-enhanced Raman spectra from

a homogeneously thick reference sample in the area of highest reflectivity and surrounding spots.

At the position of highest tip-enhanced Raman intensity, which is also the point of highest re-

flectivity, the tip was fixed and subsequently the AFM was operated in the sample-stage-scanning

mode to address regions or points of interest on the sample. A closed loop capacitive feedback

system of the AFM preserved the position of the tip within the laser focus with a precision of 1 nm.

Thermal drift was avoided as far as possible by letting the system equilibrate prior to the actual

measurements.

3.1.5.4 Spectrometer calibration

Each day before starting the experiments a Raman spectrum of BSB (Bis-2-methylstyryl-1,4-

benzene) has been recorded to check the instrument performance. The Raman spectrum of this

substance together with its molecular structure is shown in figure 3.7.
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Figure 3.7: Raman spectrum of BSB (Bis-2-methylstyryl-1,4-benzene).

3.1.5.5 Sample preparation

As a sample organism the Gram-positive bacteriaStaphylococcus epidermidisATCC 35984 have

been investigated. The cells were grown on casein-peptone-soy meal-peptone (CASO, Merck)

agar plates at 37◦C. After three days one colony of bacteria was suspended in 1 ml of pure water

and 10 µl of that dilute suspension were placed onto a clean glass plate. The glass plate was dried

in light vacuum for 10 minutes to give well separated individual cells, being used for the TERS

experiments.

As the bacterial cell wall is composed of peptidoglycan and surrounded by PIA (polysaccharide

intercellular adhesin) and teichoic acids, which all contain N-acetylglucosamine as a building

block, TERS spectra of N-acetylglucosamine were recorded for comparison. For this purpose,

4 µl of a concentrated aqueous solution of N-acetylglucosamine were placed onto a clean glass

plate and dried to provide a homogeneous film.
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3.2 Biological samples

3.2.1 Bacteria

Within this work the following bacterial strains have been investigated by micro-Raman, UV-

resonance Raman, and IR absorption spectroscopy. The location in brackets assigns the origin of

the bacteria.

Bacillus pumilusDSM 27 (DSMZ, Braunschweig)

Bacillus pumilusDSM 361 (DSMZ, Braunschweig)

Bacillus subtilisDSM 10 (DSMZ, Braunschweig)

Bacillus subtilisDSM 347 (DSMZ, Braunschweig)

Escherichia coliDSM 423 (DSMZ, Braunschweig)

Staphylococcus epidermidisRP62A (ATCC 35984) (Universität Würzburg)

For S. epidermidisRP62A (ATCC 35984) additionally tip-enhanced Raman spectra have been

recorded.

Bacillus pumilusand Bacillus subtiliswere grown in batch culture in liquid media (nutrient

broth, Merck) at 30◦C with shaking or on agar plates of the same media at 30◦C in the incubator.

Escherichia coliDSM 423 was also grown in nutrient broth (Merck) or on nutrient agar at a

temperature of 37◦C.

Staphyloccocus epidermidisrequire for optimal growth 37◦C. They were cultivated in liquid

media in casein-peptone - soy meal-peptone (CASO, Merck) broth with shaking or on agar plates

in the incubator.

The bacterial growth in a batch culture in liquid media was monitored by measuring the absorp-

tion at 630 nm which is directly related to the amount of biomass.

3.2.1.1 Sample preparation for the vibrational spectroscopic investigations

The cells were harvested from liquid culture by centrifugation. In order to remove the medium the

cells were washed two or three times with water. The centrifugate was resuspended in water and a

droplet of that bacterial suspension was given onto the support to dry and give a homogenous film.

The substrates were CaF2, fused silica or KRS-5 plates for the micro-Raman, the UV-resonance

Raman or the IR absorption experiments, respectively. For the single cell micro-Raman analysis

and the TERS measurements a highly diluted suspension was dried on a CaF2 or a glass plate to

give well separated individual cells.

When using cultures grown on agar plates the cells were harvested with a dilution loop and di-

rectly smeared on the support. For single cell analysis a diluted bacterial suspension was prepared

as well.

CaF2 was found to be an ideal substrate for the Raman spectroscopic investigations because it

gives no background signal, has a single Raman band at 322 cm−1 [71] and therefore, does not

interfere with the bacterial Raman bands.
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Figure 3.8: Antibiotic susceptibility test of norfloxacin againstB. pumilusDSM 361.

3.2.1.2 Antibiotics susceptibility tests

The minimal inhibition concentration (MIC) of various drugs for different bacteria was determined

in drug dilution series. Therefore, bacteria have been incubated for 4 hours after inoculation with

an overnight-culture (1:100). The culture (being in the exponential growth phase) was diluted to

McFarland-Standard 0.5 and further diluted (1:200) to result in suspensions with about 105−106

cells/ml [1]. One milliliter of this bacterial suspension was added to one milliliter of different con-

centrated antibiotic solutions in the broth, prepared in a dilution series. The concentration range of

the drug was between 0.1 and 200 µg/ml for norfloxacin, ciprofloxacin and vancomycin. For the

highly active new drug moxifloxacin the dilution series covered concentrations between 30 and

0.0001 µg/ml. The individual test-tubes are incubated for 18 hours at the ideal growth tempera-

ture of the bacterial strain (30◦C for Bacillus pumilus, and 37◦C for Staphylococcus epidermidis

andEscherichia coli). The minimal inhibition concentration (MIC) denotes the lowest antibiotic

concentration at which no bacterial growth is observed. Figure 3.8 shows such a dilution series

for norfloxacin againstB. pumilusDSM361. In tube number 1 the reference solution without any

drug is found, tube number 2 contains the highest drug concentration of 200 µg/ml. Tube number

6 containing 12 µg/ml is the lowest drug concentration at which the bacterial growth is completely

inhibited. Therefore the MIC for norfloxacin onB. pumilusDSM361 is less than 12 µg/ml.
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3.2.1.3 Bacterial growth curves

In order to characterize the bacterial growth, growth curves have been recorded forB. pumilusand

S. epidermidis. The bacteria were grown in batch culture in liquid media. At different growth

times aliquots of the bacterial suspension were taken and the biomass density was determined by

measuring the absorption at 630 nm.

To record the micro-Raman, UV-resonance Raman and IR absorption spectra, the cells were

washed twice with water to remove the last traces of the medium, and transferred onto a CaF2,

fused silica or KRS-5 plate to form a homogeneous bacterial film, as described above (section

3.2.1.1).

3.2.1.4 Characterizing bacterial growth under the influence of antibiotics

The bacteria were grown in a batch culture in liquid media as described for the recording of the

growth curves (section 3.2.1.3). At different times after the inoculation different concentrations

of antibiotics were added to the bacterial suspension. During the growth process aliquots were

taken from the suspensions and the cell mass was determined by turbidity measurements. Within

the used interval the optical density at 630 nm is proportional to the cell mass present in the

suspension. The further proceeding is identical to the one described above.

The largest effect on the growth of the bacterial culture was observed when the drug was added

to the culture during the exponential growth phase. During this growth phase the cells were found

to be most susceptible to changes in their environment. Therefore, most of the experiments were

performed by adding different drug concentrations to the bacterial culture at the beginning of

the exponential growth phase (1 to 4 hours after inoculation) and only those experiments will be

discussed in chapter 9.

3.2.2 DNA

DNA is one of the major targets of the fluoroquinolone drugs. In order to study the interactionsin

vitro bacterial plasmid DNA has been extracted fromE. coli, as well as amplified from precursors

by polymerase chain reaction (PCR). Additionally, DNA and synthetic nucleotides with differ-

ent composition were commercially obtained to study the effect of the primary DNA structure

(sequence and composition) on the vibrational spectra.

3.2.2.1 DNA-Extraction from E. coli : plasmid DNA pBR322

The plasmid pBR322 was chosen as a major study object because it has a length of 4361 base pairs

which is still small enough to separate in an electrophoretic gel the different topoisomers (relaxed,

superhelical and open circle), but also large enough to provide a large enough working surface for

the enzyme gyrase.
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The plasmid pBR322 was isolated from with pBR322 DNA transformedE. coli K12, JM109,

following a modified method of the alkaline/SDS lysis by Birnboim and Doly [33] and using the

Nucleobond AX Set from Macherey-Nagel. A detailed description of the used buffers and chem-

icals is given in the appendix in section A.4.1.E. coli cells were grown at 37◦C in 2 liters of

LB medium containing 100 µg/ml ampicillin. The cells were harvested from an overnight culture

by centrifugation (7500 rfc, 10 min, Sorvall Evolutin RC superspeed centrifuge, rotor SLC1500)

and resuspended in 24 ml of a RNAse containing Tris/HCl - EDTA solution. Cell lysis was ini-

tiated by adding 24 ml of the lysis buffer which contained NaOH and SDS (Nucleobond AX Set,

Macherey-Nagel, incubation time 5 min, not longer!). From the slimy solution the chromosomal

DNA was precipitated by adding 24 ml of a KAc containing neutralization buffer (Nucleobond

AX Set, Macherey-Nagel) and removed together with the other bacterial debris by centrifugation

(>12000 rfc, 4◦C, 40 min, rotorSS34, Sorvall centrifuge). The clear, slightly yellow supernatant

was purified by column chromatography using an equilibrated column from the Nucleobond AX

Set (Macherey-Nagel) and two washing steps. From the 15 ml elute the plasmid DNA was pre-

cipitated with 11 ml of isopropanol. After centrifugation (>15000 rfc, 4◦C, 30 min, rotor SS34,

Sorval centrifuge) the DNA pellet was washed twice with ethanol to remove excess salt, dried and

resuspended in pure water to give a DNA solution of 1.1 mg pBR322/ml.

Relaxation of the supercoiled DNA Half of the isolated (supercoiled) DNA was converted into

the relaxed form using topoisomerase I from calf thymus, incubating for 90 minutes at 37◦C .

The reaction mixture (500 µl) contained:

100 µl TNE II 5x

50 µl pBR322

100 µl topoisomerase I (purified from calf thymus by FPLC [44, 249])

250 µl bidistilled H2O.

Purification of DNA: Phenolization and precipitation Both pBR322 solutions, the relaxed

and the supercoiled form, were purified from remaining proteins by phenol/chloroform/isoamyl

alcohol extraction. Therefore, 1 volume share phenol/chloroform (Roth) were added, the so-

lution was vortexed and 2-3 minutes centrifuged. The upper aqueous phase was transferred to

a new tube and the process repeated until no protein precipitated at the interphase anymore.

The remaining dissolved phenol in the aqueous solution was removed by washing with chloro-

form/isoamylaclohol (1 volume element, Roth). The plasmid was precipitated in the cold (-20◦C)

with 0.1 volume share of 3 M sodium acetate and 2 volume shares of absolute ethanol. The pellet

was washed with 70% ethanol to remove excess salt and resuspended in pure water to give DNA

solutions of 1.5 mg pBR322/ml which were used for the UV-resonance Raman experiments.

Determination of the concentration The DNA concentration was determined by UV absorbance

measurements using an extinction coefficient of 20 L· g−1· cm−1 at 260 nm with a BioPhohotome-
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ter (Eppendorf). The ratio of the absorbance between 260 and 280 nm was determined to be 1.8

for the relaxed and the supercoiled form. Values between 1.8 and 2.0 were manifested for pure

DNA [160], ensuring high optical and biological purity of the extracted DNA.

Gel electrophoresis The purity and the success of the relaxation of the plasmid DNA were

assessed by agarose gel electrophoresis. The horizontal agarose gel was prepared by dissolving

0.4 g agarose in TAE buffer (Beutenberg recipe) to give 40 ml solution. A mixture of 1 µl plasmid

DNA, 14 µl distilled H2O and 2 µl glycerin-bromine phenolblue were loaded onto the 1% gel. The

gel was run in TAE-buffer at room temperature for 8 hours applying a voltage of 20 V. After being

stained with ethidium bromide the gel was illuminated with ultraviolet radiation and photographed

as shown in figure 7.12 in section 7.5.1. Clearly the two different topoisomers are separated: the

fast migrating supercoiled DNA in the left lane (S) and the slower migrating relaxed from in the

right lane (R) of figure 7.12.

Lyophilization of DNA In order to keep the DNA over a longer time span and to transfrom it

into a state of highest concentration, the DNA solutions were lyophilized. The white solid was

used to record micro-Raman and IR absorption spectra.

3.2.2.2 DNA synthesis by polymerase chain reaction (PCR)

DNA synthesis by polymerase chain reaction (PCR) was performed at the Institut für medizinische

Mikrobiologie (Semmelweisstrasse 4, Jena) to obtain two DNA sequences of similar size but with

a different GC content. For 4 samples 50 µl of a master mix and 5 µl template were used.

The reaction mixture consisted of:

108 µl distilled water

20 µl buffer

20 µl MgCl2
20 µl dNTP mix

4 µl primer (forward, U1)

4 µl primer (backwards, U2a)

4 µl Taq polymerase

2 µl of the DNA fragment (CPG or ATOX).

The PCR was run in 30 cycles following the temperature program listed in Table 3.1.

To check for a successful PCR the DNA fragments (PCR products) were run in a 2% agarose

gel (4 g agarose in 200 ml H2O) for 50 minutes applying a voltage of 100 V and with a current of

250 mA.

The purification of the PCR products was performed by phenol/chloroform extraction as de-

scribed above.
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Table 3.1:Temperature program for the PCR of the DNA segments ATOX and CPG, the program
between the two horizontal lines was repeated for 30 cycles.

ATOX CPG
temperature in◦C time in minutes temperature in◦C time in minutes

95 3 95 5
95 30 95 30
50 30 60 30
72 90 72 90
4 7 72 10
4 ∞ 4 ∞

3.2.3 Gyrase

The bacterial enzyme gyrase introduces negative supercoils into the DNA. This is a vital process

for the bacteria and therefore, the gyrase-DNA-complex is an ideal target for antibiotics such as

the fluoroquinolones. In order to move a step towards an understanding of those drug-target-

interactions the enzyme has been extracted fromEscherichia coliand characterized by means of

vibrational spectroscopy.

3.2.3.1 Extraction of gyrase from E.coli

E. coli DSM 436 were grown from a starting culture over night in liquid LB media at 37◦C while

shaking. The cells were harvested and separated from the medium by centrifugation (10 min,

7000 rpm, rotor SLC1500, Sorvall centrifuge). From about 8 L of media roughly 30-40 g of bacte-

ria were obtained. In order to facilitate subsequent cell lysis the cells were kept in the freezer for

at least 4 hours.

For lysis the frozenE.coli cells were resuspended in a minimal amount of lysis buffer (ca.

50-60 ml). After adding lysozyme (150 mg in 15 ml of lysis buffer) the cells were incubated for

1 hour at 4◦C. The lysate was centrifuged over night at 4◦C with >1800 rpm. The supernating

protein solution was loaded onto a HiTrap-Heparin column and washed with distilled water until

the filtrate was free from protein as was assured by testing with Bradford’s reagent. Subsequent,

unspecific bound proteins were removed from the column with 0.05 M KCl solution, again until

no reaction with Bradford’s reagent was observed anymore. Both gyrase subunits GyrA and GyrB

were eluted with a 0.45 M KCl solution. The column was cleaned from remaining protein by

purging with concentrated (>1 M) KCl, followed by distilled water and finally rinsed with 20%

ethanol before keeping in the fridge.

Gel electrophoreses To separate the protein and check for the right molecular weight an SDS

polyacrylamide gel electrophoresis (PAGE) was run with the gyrase extract. The preparation de-

tails for the gel are described in the appendix (section A.5).
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Figure 3.9: Coomassie-blue stained poly(acrylamide) gels of extracted gyrase,A andB) full en-
zyme with both subunits GyrA and GyrB,C) only GyrA subunit. The marker in all
three gels contains protein fragments of different sizes denoted between A and B.

The protein was denatured by adding excess sodium dodecyl sulfate (SDS) and heating to 95◦C.

The anionic SDS compensated the negative charge of the proteins so that the proteins had a con-

stant charge distribution. This solution was loaded on a 10% polyacrylamide gel and run for 1 hour

at 130 V and about 40 mA.

Figure 3.9A and B show the polyacrylamide gel of gyrase stained with coomassie blue (slot

GyrA+GyrB). The two subunits GyrA and GyrB have a molecular weight of 97 kDa and 90 kDa,

and can be found above the protein marker band of 83 kDa. In figure 3.9A also protein crude

extract (first slot) and the protein-free wash water were loaded on the gel for comparison. The

protein loading of gyrase is quite high and therefore no clear separation between the two subunits

GyrA and GyrB is achieved as is the case in figure 3.9B.

Separation of the subunits GyrA and GyrB For a further purification of the gyrase crude

extract the gyrase solution was filtered over a coupled novobiocin-sepharose column which was

equilibrated with KCl. Unspecifically bound proteins were washed away with 0.05 M KCl buffer

followed by ATP buffer (0.1102 g ATP, 0.0536 g Mg-acetat, 149 g KCl dissolved in 10 ml). The

GyrA subunit of the enzyme was eluted with 0.8 M KCl solution, the GyrB subunit with urea in
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buffer B (see appendix section A.4). To concentrate the protein and to remove excess urea the

protein solutions were dialyzed against KCl.

3.2.3.2 Extraction of the gyrase subunit GyrA from amplified E. coli

The 97 kDa GyrA subunit of gyrase was also extracted fromE. coli M15. This bacterial strain

overproduces the 6xHis-tagged protein (His)6GyrA. These additional six histidine moieties at the

N- or C-terminal end of the protein do not interfere with the structure or function of the protein,

but can act as a label during the extraction procedure. The 6-His tag specifically binds with high

efficiency to Ni2+-NTA agarose which is used for affinity chromatography in the purification step.

The protein which is immobilized on the matrix can be washed easily and than recovered with a

high homogeneity by elution with imidazol.

The gene for (His)6GyrA was generated from the original GyrA gen by in-frame insertion of

six histidine codons in the 5’block of the encoding region. It is inducible under the control of

the T5 promoter and by twolac operator sequences. The gene for (His)6GyrA sits together with

an ampicillin resistance gene on the plasmids pQE30/GyrAliv and pQE30/GyrAnou, respectively.

Furthermore theE. colistrain M15 holds the plasmid pREP4 which carries a kanamycin resistance

gene and is responsible for the constructive overproduction of thelac repressor protein.

The bacterial cells ofE. coli M15 were grown in LB media with 70 µg/ml ampicillin and

25 µg/ml kanamycin from an overnight culture at 37◦C while shaking. When the cells were in

the exponential growth phase (after about 30 minutes) the induction of the gene for (His)6GyrA

was carried out by adding IPTG (isopropyl-β -D-thiogalactopyranoside) solution. After 60 minutes

of further growth the cells were harvested by centrifugation as described above. The pellet was

resuspended in a native lysis buffer (see appendix section A.4 for composition) and gently stirred

for 30 minutes. The suspension was put in an ice bath and treated with ultrasound (200-300 W)

for 2-3 minutes in 10 s intervals. The cell debris was separated from the cleared lysate by cen-

trifugation (10 minutes with 12000-15000 rpm). To this cleared lysate the 50% Ni-NTA agarose

was added. The solution was stirred gently for 30 minutes on ice so that the coupling between

the (His)6-protein and the agarose matrix could occur. The mixture was loaded into a column and

washed with the washing buffer until the filtrate was free of protein (test with Bradford reagent).

The protein was eluted in 0.2 ml portions of the elution buffer. An SDS-PAGE was run to confirm

the right molecular weight of the protein.

To be able to record resonance Raman spectra of the protein, the imidazol has to be removed

from the solution by dialysis against KCl. As an additional advantage dialysis achieves also a

concentrating of the protein solution.

Lyophilization of gyrase In order to keep the enzyme over a longer time span and to trans-

form it into a state of highest concentration, the dialyzed GyrA solutions were lyophilized. The

white solid (fluffy powder) was used to record micro-Raman and IR absorption spectra. However,
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lyophilization should be used with care when the gyrase should be kept in a biological active state

(see section 8.4).

3.2.4 Antibiotics

The fluoroquinolones were purchased from Sigma and Aldrich, or were kind gifts of the group

of Prof. Dr. Ulrike Holzgrabe from the University of Würzburg (see appendix section A.1). The

hydrated compounds were prepared by mixing the anhydrous fluoroquinolones (FQ) with water

in a ratio of FQ:6H2O. Figure 6.1 in chapter 6 shows the chemical structure of the investigated

quinolones and figure 6.2 the chemical structures of the investigated precursers.

3.3 Data treatment

If necessary, the vibrational wavenumbers of the individual spectra have been corrected against

vibrational wavenumbers of the standard (TiO2 for micro-Raman, teflon for UV-resonance Raman

spectra and BSB for TERS).

For the multivariate statistical data analysis the individual spectra have to be comparable, i.e.

irrelevant, random or systematic variations such as fluctuating laser power, noise, fluorescence

background etc. should ideally be removed prior to subjecting to statistical evaluation. Spectra

with spikes in the relevant spectral region have been omitted from analysis. A constant value was

subtracted from the spectra, so that the Raman intensity of the baseline level is zero.

Normalization was applied in order to remove systematic intensity variations as can be caused

by different laser powers on different days, by slightly changed focus adjustments or by a variable

thickness of the sample. In order to perform a vector normalization the spectrum was centered

around the abscissa, which is done by subtracting the mean intensity value of the whole spectrum

from each individual intensity value. Afterwards, the length of the data vector of the spectrum is

normalized to one by dividing allk points of the centered spectrum with the intensitiesIz by the

length of the data vector (the square root of the sum of all squared intensity values):

Inorm =
Iz√
∑k I2

z

. (3.2)

Curve fitting

For the determination of the ratio of the nucleic acid and protein content in section 4.3, the Raman

spectra were baseline corrected in the spectral region from 1800 to 1400 cm−1. To fit the resonance

Raman spectra ofBacillus pumilusin this region six Voigt profiles, centred at 1650, 1634, 1607,

1570, 1523, and 1480 cm−1 were used. The area of the bands at 1480 cm−1 and 1607 cm−1 were

used to calculate the nucleic acid/protein ratio.

Also for S. epidermidisthe intensity ratios of the nucleic acid (1475 cm−1) content vs. the

protein (1609 cm−1) content for different growth times was calculated from the resonance Raman
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spectra using the LabSpec software package. The experimental resonance Raman spectra ofS.

epidermidiswere fitted in the spectral region between 1850 and 1250 cm−1 with seven Lorentzian

profiles centered at 1651, 1609, 1564, 1521, 1475, 1370 and 1316 cm−1. The number of bands

is in agreement with the number of zero points in the first derivative of the spectra and also with

the vibrational bands assigned in the spectrum (see figure 4.3 (lowest spectrum) and table 4.2

in section 4.1). The two bands at 1370 and 1316 cm−1 do not reproduce the experimental data

perfectly. However, this does not affect the quality of the fit of the Raman bands at 1475, 1521

and 1609 cm−1.

Furthermore, the area under the curve of the Raman bands at 1521 and 1475 cm−1 was used

to estimate the GC-content (in combination with the relation given by Nelson, Manoharan and

Sperry in Reference [177]).

3.4 Statistical data analysis

3.4.1 Hierarchical cluster analysis

The bacterial spectra from the growth experiments (section 4.3) and from the experiments with

the fluoroquinolones (chapter 9) were evaluated with the OPUS software package (Bruker Optik

GmbH). If necessary, the first derivatives of the individual spectra was calculated to remove the

influence of baseline drifts on the classification and to reveal slight differences otherwise masked

in broad bands (especially for the IR spectra) [51]. In order to determine whether it is possible

to extract growth specific information from the spectra hierarchical cluster analysis (HCA) was

performed. The spectral distances were calculated by the standard method (IR and micro-Raman

spectra) or by the factorization method (resonance Raman spectra), and the clusters were pre-

pared following Ward’s technique. For the IR spectra the wavenumber region 500-1900 cm−1 was

used, while for the analysis of the micro-Raman spectra the wavenumber regions 600-1800 cm−1

and 2740-3130 cm−1 were applied. The UV-resonance Raman spectra were evaluated within the

wavenumber region 500-1850 cm−1.

3.4.2 Principal component analysis

Principal component analysis (PCA) was performed with the program "The Unscrambler" (CAMO

Process AS, Version 9.2) using centered spectra and complete cross validation for the same spectral

range as used for the hierarchical cluster analysis. From the loadings of the principal components

the wavenumbers having the highest variance can be identified.

3.4.3 Between-group variance (B) and the within-group variance (W)

The wavenumbers having the most discriminative power can be determined by calculating the ratio

of the between-group variance (B) and the within-group variance (W) for each single wavenumber
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[282]. This ratio is referred to as B/W-ratio. The wavenumbers corresponding to the largest

B/W-ratio are mainly responsible for separating the clusters. For calculating the B/W-ratio the

background was removed by computing the first derivative of the spectra (Savitzky-Golay, 2nd

order polynomial, 21 points). This statistical method was applied to the UV-resonance Raman

spectra ofB. pumilusunder the influence of ciprofloxacin (section 9.3).

3.4.4 Reverse elimination tabu search (REM-TS)

Wavenumbers with high importance for the discrimination of the spectra can be found with the

help of a data-driven variable selection procedure (each wavenumber represents an independent

variable in the classification problem). The reverse elimination tabu search (REM-TS) was used

to search for highly discriminatory variables [20] within the vibrational spectra of different aged

bacteria (section 4.3) and bacteria under the influence of different drug concentrations (chapter

9). REM-TS was coupled to Fisher’s discriminant analysis which was used to classify the data

based on the tentatively selected variable subsets generated by REM-TS. At each stage of the

search one variable is either added to the model or removed from the model according to the

largest decrease in the classification error. If only non-improving moves are possible, the mildest

detrimental move is accepted. In order to avoid that one and the same solution is visited more

than once, the method records recent moves in a tabu list. Hence, moves that lead to a previously

visited solution are forbidden and cannot be executed again. The only user defined parameter for

REM-TS is a termination criterion. For this study it was specified that the search was terminated

when either six variables were included in the model or when the classification error could not be

decreased by more than 3% in two consecutive iterations. The classification error was assessed

by leave-multiple-out cross-validation (LMO-CV) as objective function. In particular, the training

data set was divided into a construction set (75 %) and a validation set (25%) where the construc-

tion set is used to build the model while the validation set is used to assess this model. The average

classification error for 50 splits into construction set and test set is then used to assess the internal

predictivity of each variable subset generated during the search. It is this internal predictivity that

REM-TS optimizes. The number of variables was restricted and the early stopping rule (stop if

decrease is smaller than 3%) was applied to LMO-CV in order to avoid overfitting and to keep the

external predictivity (test set predictivity) high [19]. To evaluate the model externally the entire

data set was split into a training set (67%) and a test set (33%). This second split, which is done

before REM-TS operates on the training set, is carried out to allow an external assessment (i.e. a

test set prediction) of the classification performance that is independent of the model selection step

by REM-TS. The split into a different training set and test set is also 100 times to obtain a stringent

assessment of the external predictivity. The actual test set predictivity was computed such as in

bagging [40, 279], i.e. the class assignment for a particular spectrum is based on the major vote

of all models where this spectrum was part of the test set (i.e. on average 33 models because each

spectrum has 33% probability to end up in the test set). Major voting has commonly the effect
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of improving test set predictivity [64]. The occurrence of every variable in the 100 best variable

subsets was calculated to assess the relevance of the wavenumbers and consequently changes of

cellular components depending on interactions with different moxifloxacin concentrations. Base-

line substraction was done prior to variable selection by fitting a straight line to the baseline of

the spectra using half-quadratic minimization [157]. This method automatically identifies the rel-

evant baseline regions for the fit and ignores peak areas. Intercept and slope were then used to

subtract the estimated linear background from the spectra. An alternative to background correc-

tion by robust curve-fitting could be using the first derivative of the spectrum instead of the raw

data. However, variable selection with the first derivative is expected to be disadvantageous, as the

spectral peaks are displaced in relation to the raw spectra. Apart from that the peak maxima in the

raw data represent the zero crossing in the first derivative which results in a loss of information

about the peak intensities. Due to the huge number of possible six variable models (combinatorial

explosion), many can lead to equally good solutions. To improve the interpretability of the models,

only those regions of wavenumbers that can be assigned to spectral signals of cellular components

were considered for the search.

This method was applied for the analysis of the growth phenomena of the bacteria in section

4.3. Based on the band assignment given in table 4.1 the following wavenumber regions have been

selected from the IR absorption spectra for the analysis: 1742 cm−1, 1695-1675 cm−1, 1654 cm−1,

1639 cm−1, 1548 cm−1, 1452 cm−1, 1396 cm−1, 1300-1240 cm−1, 1239 cm−1, 1085 cm−1 and

720 cm−1. For the micro-Raman spectra the wavenumber regions around 1660 cm−1, 1614-1607

cm−1, 1575 cm−1, 1450 cm−1, 1370-1375 cm−1, 1337 cm−1, 1314 cm−1, 1242-1240 cm−1, 1128

cm−1, 1092 cm−1, 1001 cm−1, 899 cm−1, 855 cm−1, 782 cm−1, 731 cm−1, 723 cm−1, 663 cm−1,

642 cm−1, 621 cm−1, have been chosen (for an assignment see also 4.1. For the analysis of the

UV-resonance Raman spectra following wavenumbers have been selected based on the assignment

given in table 4.2: 1639 cm−1, 1609 cm−1, 1567 cm−1, 1521 cm−1, 1475 cm−1, 1359 cm−1, 1324

cm−1, 1307 cm−1, 1229 cm−1, 1168 cm−1. Each central wavenumber and approximately ten

neighboring wavenumbers were boxaveraged and constitute one spectral region.

The programs for variable selection were written and validated for MatlabTM (The Mathworks,

Inc.) by Ulrike Schmid and Knut Baumann.

3.4.5 Removing spectral contribution by orthogonalization

For the analysis of vibrational spectra of complexes where both partner in the complex tribute

spectral contributions in the wavenumber region of interest the raw data have to be pre-treated to

perform a meaningful multivariate data analysis. This involves two steps: First, to obtain consis-

tent spectra across all measurements, the spectra had to be normalized and second, the spectral

contributions of the complex partner of lesser interest had to be removed. This was done by or-

thogonalizing the spectra with respect to the spectrum of the pure partner of lesser interest. The

procedure described in the following was applied to the analysis of the DNA intercalation exper-
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iments with ethidium bromide where the spectral contributions of pure ethidium bromide to the

UV-resonance Raman spectra was eliminated. The results are discussed in section 7.6.

The UV-resonance Raman spectra of relaxed, supercoiled, and supercoiled DNA with the ad-

dition of different concentrations of ethidium bromide (referred to as matrix X) were row wise

scaled to unit vector length. In order to investigate the effect of the intercalating drug ethidium

bromide on the DNA topology, spectral contributions of pure ethidium bromide to the spectra of

the drug-DNA-complexes have to be eliminated. This is done by orthogonalization of the spectra

with respect to the ethidium bromide spectrum. This step was inspired by the first step of the di-

rect orthogonalization method [8], which was developed to remove irrelevant variation from data

in calibration experiments. In the following it is described how orthogonalization can be applied

to subtract spectral information originating from the pure ethidium bromide spectrum. In the algo-

rithm given below,X denotes anmby n matrix of measured UV-resonance Raman spectra withm

representing the number of spectra andn representing the number of wavenumbers. The ethidium

bromide spectrum is designated byy (n x 1), which is generated by calculating the mean spectrum

of replicates of a single ethidium bromide concentration (solution of 0.02% ethidium bromide). In

the next step it is necessary to estimate the amount of spectral features within each spectrum inX

correlating withy (i.e. the pure ethidium bromide spectrum). This amount (proportion) ofy in X

can then be subtracted fromX in the final step. This is done as follows: In step 1, the data matrices

are column mean centred. In step 2, the vector ˆw (m x 1) constitutes the properly scaled row wise

covariation betweenXC andyC. The values ofyc weighted with the values of are then subtracted

from the centred raw data. As a resultXCO, is obtained, which is row wise orthogonal toyC. Put

differently, XCO represents the original data matrix reduced by information correlating with the

pure ethidium bromide spectrumyC. It should be noted that even spectra that do not contain any

ethidium bromide lead to a non-zero weight because the ethidium bromide spectrum is unlikely to

be orthogonal (i.e. completely unrelated) to the spectra under scrutiny.

1. X andy are column wise centered to giveXc andyC.

2. Xc is orthogonalized with respect toyC

ŵ = XC ·yC · (yT
C ·yC)−1

XCO = XC− ŵ ·yT
C .

The orthogonalization was computed in Braunschweig by Knut Baumann and Ulrike Schmid

with an in-house written MATLAB (7.1) script.

3.5 DFT calculation

Density functional theory (DFT) has been used to calculate the geometries, energies and vibra-

tional spectra (Raman and IR) of the fluoroquinolones, DNA bases, nucleoside and nucleotides as

well as of the simple amino acids.

All calculations of harmonic wavenumbers and Raman scattering activities were performed by

using a fully optimized geometry as reference geometry. The DFT geometry optimizations were
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performed with the program Gaussian 98 [83] using the hybrid functionals B3LYP and B3PW91.

Both functional use Beckes’ three parameter exchange functional [21] and while B3LYP uses the

Lee-Yang-Parr correlation functional [132], B3PW91 calculates the correlation with the Perdew-

Wang 91 gradient corrected correlation functional [193]. The Gaussian type split valence basis sets

6-31G and 6-311G in combination with d polarization functions on heavy atoms (d) and p polariza-

tion functions on hydrogen atoms (p) were employed for all atoms for the geometry optimization.

In order to describe anions, molecules with lone pairs of electrons and very electronegative atoms

accurately diffuse functions were added on heavy atoms (+). The geometry optimization was fol-

lowed by a normal coordinate analysis at the same level of theory. All calculated wavenumber

values are positive, indicating that the optimized structure is indeed a true minimum on the energy

hypersurface. The calculated wavenumbers were scaled with a factor of 0.9614 [233, 206] when

using the B3PW91 method, otherwise used as obtained.

To be able to construct a calculated spectrum the Raman scattering intensityIRamanneeds to be

calculated from the polarization tensor
(

δα

δq

)2
obtained from the frequency calculations taking the

ν4 dependency into account [263]:

IRaman,k =
2π2h

c
(ν̃0− ν̃)4

ν̃ [1−exp(−hc̃ν/kT)]

(
δα

δqk

)2

, (3.3)

with h being Planck’s constant,c the speed of light,ν̃0 the excitation wavenumber,̃ν the

wavenumber of the vibration of interest,k Boltzmann’s constant andT the temperature.

To simulate the spectra the calculated lines were convoluted with a 1:1 Gaussian-Lorentzian-

profile with fixed line width of 10 cm−1 at half maximum.

In order to use the DFT calculation of the vibrational modes for a detailed band assignment

a potential energy distributions (PED) analysis was performed using the program gar2ped [153].

The PED gives the percentage of potential energy localized in a particular bond for a given mode.
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Bacteria are the cause of many infectious diseases and medical problems. Increasing resistances

of many bacterial strains against common drugs raise the steady demand for new and powerful

antibiotics. For a target-oriented design of new and effective drugs the metabolic pathways within

the bacterial organisms need to be understood on a molecular level. Furthermore, bacteria play

an important role in the clean room production, but also in the pharmaceutical and food industry.

Since many biotechnological production processes depend on an optimized functioning of the

used biocatalysts which are living microorganisms [229], a detailed understanding of the bacterial

metabolism is of greatest interest.

To gain a better insight into the metabolism of the bacteria and to learn more about the ac-

tion of antibiotics special non-destructive, highly sensitive characterization methods are needed.

During the last years vibrational spectroscopic techniques have been proven to have a high po-

tential for the study of biological problems [152, 175, 243]. It is, for example, possible to rapidly

discriminate and identify microorganism at the genus, species and strain level by different spectro-

scopic methods such as Fourier-transformed infrared (FT-IR) spectroscopy [173, 174], and micro-

Raman spectroscopy with excitation in the visible [218], near-infrared [104, 151] and ultraviolet

[145, 280], as well as by special Raman techniques, like surface enhanced Raman spectroscopy

(SERS) [66, 107, 106]. The vibrational spectra of the microorganisms consist of signal contribu-

tions of all components present in the cell and therefore reflect their overall molecular composition

and provide information on the environment in which these molecules are found within the cell

and therefore on their molecular interactions [51, 146]. While FT-IR and Raman spectroscopy

with excitation in the visible and infrared result in spectra with contributions from all compo-

nents, excitation with UV light introduces a selective enhancement of the Raman bands of the

UV-absorbing molecules due to the resonance Raman effect. This enhancement might increase

the Raman band intensity of those chromophores by a factor of 103-105 [145], which allows the

detection of molecules that occur only at low concentrations. When applying 244 nm as exci-

tation wavelength especially the spectral features of the aromatic amino acids, as well as of the

DNA/RNA bases are enhanced [57]. Furthermore, fluorescence is usually energetically far enough

away from the wavelength region where the Raman signal is recorded. This enables the specific

focussing of changes in the chemical composition within bacteria due to metabolic pathways (syn-

thesis of proteins, translation of DNA) as well as changes in the micro-environment of the DNA

and the enzymes that occur upon drug binding within the bacterial cell. In this chapter, the bacte-

rial growth in undisturbed bacterial batch cultures is investigated by means of different vibrational
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spectroscopic techniques (IR absorption, micro-Raman and UV-resonance Raman spectroscopy).

The observed subtle spectral changes are interpreted by means of statistical methods. As an exam-

ple, such a comprehensive vibrational spectroscopic characterization is shown forStaphylococcus

epidermidisin this chapter. Additionally,Bacillus pumilusand its bacterial growth is characterized

by means of UV-resonance Raman spectroscopy. The results from this chapter will be used later

in chapter 9 when interpreting the vibrational changes occurring in bacteria upon drug addition.

4.1 Vibrational spectroscopic characterization

In classical microbiology morphological parameters are used for a first differentiation between

microorganisms. Those parameters include size, shape, color of the bacteria as well as of the

colonies.

More detailed information about the chemical composition for a deeper understanding and a

profound characterization of the bacteria is gained in a non-invasive manner by vibrational spec-

troscopy. In the following, a detailed vibrational band assignment is given exemplarily for two

different bacterial strains which enables in the second part of the discussion the correlation of

observed wavenumber changes with growth time with the metabolic changes within the bacteria

(section 4.3).

4.1.1 Staphylococcus epidermidis

Staphylococcus epidermidisis a common constituent of healthy human skin and mucosal surfaces

with a low pathogenic potential. However, in recent decades the species emerged also as a leading

cause of medical-device associated nosocomial infections in immuno-compromised patients and

got into the focus of research interest [36]. The establishment ofS. epidermidisas an opportunistic

pathogen is due to the ability of certain strains to form multilayered bacterial biofilms on inert sur-

faces of medical devices (figure 4.1). These biofilms consist of staphylococcal cells embedded into

an extracellular matrix containing mainly a polysaccharide intercellular adhesin (PIA), teichoic

acids and cell surface-associated proteins. The extracellular matrix of biofilm-growing cells acts

thereby as a glue that mediates both cell-cell contacts between bacteria and adherence to polymer

and metal surfaces. Moreover, organization of staphylococci in a biofilm causes enhanced resis-

tance against host defenses and antibiotic treatment and represents an advantage in coping with

unfavourable external conditions [220]. The exact molecular details and the conditions of biofilm

formation and therefore the bacterial pathogenesis are so far not completely understood [221]. It

is in the focus of research interest to acquire a detailed knowledge of the bacterial composition and

metabolic characteristics in order to comprehend the mechanisms of bacterial pathogenesis and in

order to find better ways for treatment and vaccination.

In the followingStaphylococcus epidermidisATCC 35984 is comprehensivly characterized. It

starts with a brief phenotypic description of theS. epidermidiscells and merges to an overall vi-

54



4 Bacteria

A B

Figure 4.1: A) Teflon catheter overgrown with a biofilm ofS. epidermidis, B) Scanning electron
microscope (SEM) image of the architecture of the biofilm ofS.epidermidisATCC
35984 (images taken at the Institut für Infektionsbiologie, Universität Würzburg).

1.2 μm

0 μm

Figure 4.2: Pseudo 3D topographic AFM image of a cluster of singleS. epidermidiscells on a
glass surface.

brational spectroscopic characterization of the chemical composition of bacterial bulk material by

IR absorption spectroscopy. Less biological material down to a single cell is needed for recording

overall chemical information by means of micro-Raman spectroscopy. With UV-resonance Ra-

man spectroscopy the focus is set on selected cell components such as nucleic acid. A vibrational

spectroscopic investigation of the growth dependent metabolic changes is presented in the next

section (4.3) by means of IR absorption, micro-Raman and UVRR spectroscopy.

S. epidermidisare Gram-positive nonsporulating spherical cells of about one micrometer diam-

eter occurring singly, in pairs, short chains and in irregular clusters that are arranged like bunches
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Figure 4.3: IR absorption (upper spectrum), micro-Raman (middle spectrum,λex= 532 nm) and
UV-resonance Raman spectrum (lowest spectrum,λex= 244 nm) of bulkS. epider-
midisATCC 35984.

of grapes (Greek:staphyle= bunch of grapes). Figure 4.2 shows an pseudo 3-dimensional AFM

image of such a cluster. The colonies ofS. epidermidison agar plates are small, circular and

white-pigmented.

IR absorption and micro-Raman spectroscopy probe the overall chemical composition of the

bacteria with contributions from the genome (DNA, RNA) and phenotypic characteristics (pro-

teome and metabolites). This superposition of the individual components forms a spectral fin-

gerprint of the investigated bacteria. Due to different selection rules, Raman and IR often give

complementary information. In figure 4.3 the IR absorption and Raman spectra forS. epidermidis

are shown. A detailed tentative band assignment is given in table 4.1.

4.1.1.1 IR absorption spectra of S. epidermidis

In the IR absorption spectrum ofS. epidermidis(upper spectrum in figure 4.3) a strong broad band

resulting from N-H and O-H stretching vibrations is present around 3290 cm−1. C-H stretching

vibrations show up between 2800 and 3000 cm−1. Individual peaks can be spotted for the asym-

metric C-H stretch of methyl- and methylene groups (2960 and 2931 cm−1, respectively) and for

the symmetric C-H stretching vibration (2875 and 2854 cm−1, respectively). As in almost all bac-
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Table 4.1:Tentative assignment of the Raman (λex= 532 nm) and IR absorption bands ofS. epi-
dermidis(due to clarity not all vibrational bands are labelled in figure 4.3).

Raman tentative assignment IR absorp- tentative assignment
wavenumber tion band

in cm−1 in cm−1

3500 sh O-H str of hydroxyl groups
[152]

3312 w,br bonded N-H str; H-bonded OH groups
[152]

3291 s,br N-H str

3069 w C=C-H str aromatic, olefinic [152] 3077 m, br
2955 sh 2960 mw C-H str (asym) of -CH3 [152]
2937 s CH3 str and CH2 str 2931 mw C-H str (asym) of -CH2 [152]

2875 w C-H str (sym) of -CH3 [152]
2854 w C-H str (sym) of -CH2 [152]

2705 vw,sh Hydroxyl bonded phosphoric
ester (P-OH)

1742 w,sh C=O stretching in saturate es-
ters [152]

1695, 1685, 1675 sh amide I (antiparallel pleated
sheets andβ -turns) [152]

1660 m amide I (C=O stretch, NH2 bending, C=N
stretching) [151][152], C=C str (lipids)
[185]

1654 vs amide I (α-helix) [152]

1639 sh amide I (β -pleated sheet) [152]
1614 vw tyrosine (tryptophan) (C=C) [152, 185]
1607 w phenylalanine (tyrosine) (C=C) [152, 185]
1575 m nucleic acids (G+A ring stretch) [152]

1548 s amide II [152]
1450 m CH2 scis [276, 283, 151], CH2 def. [152] 1452 w C-H def of C-H2 [152]

1396 m C=O str (sym) of COO- [152]
1337 m CH def [151] 1337 m
1314 m guanine, CH def (protein) [185]
1242 w amide III [151, 152] 1300-1240 w,sh amide III [152]

1239 m P=O str (asym) of PO−2 (phos-
phodiester) [152]

1128 m C-N and C-C str [151, 152], =C-C= (unsat.
fatty acids in lipids) [229]

1130-1030 carbohydrates, mainly -C-C- (skeletal), C-
O, C-O-H def [229]

1178-1000 br C-O, C-C str, C-O-H, C-O-C
def of carbohydrates [152]

1092 m CC skeletal, C-O-C asymmetric stretching
in aliphatic esters, glycosidic ring [152]

1085 m P=O str (sym) of PO−2 [152],
aliphatic esters [72]

1001 m CC str aromatic ring (Phe) [151]
899 vw COC str [152]
855 w CC str, COC 1,4 glycosidic ling, "buried"

tyrosine [152]
782 m CC str ring breathing (cytosine, uracil)

[276, 283, 151, 152]
723 vw adenine [152] 720 C-H rock of C-H2 [152]
663 w guanine [152]
642 vw tyrosine (skeletal, C-C twist) [152, 185]
621 w phenylalanine (skeletal, C-C twist) [152,

185]
535 w,br C-O-C def glycosidic ring [229] 544 w C-O, P-O-C bonding (phos-

pholipids, RNA)
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terial spectra the most prominent features in the IR absorption spectrum are the amide I band at

1654 cm−1 and the amide II band at 1548 cm−1. Another protein contribution with less intensity

is the amide III band at 1239 cm−1. This band also has some contributions from the asymmetric

P=O stretching vibration of phosphodiesters. The weak band at 1452 cm−1 is due to the CH2 de-

formation vibration. The symmetric CO stretch of the deprotonated carboxyl group results in a

band centered at 1396 cm−1. The band of medium intensity at 1085 cm−1 can be assigned to the

symmetric PO stretching vibration of PO−2 as it is found in nucleic acids, and also to contribu-

tions from the asymmetric C-O-C stretching vibration in aliphatic esters and various oligo- and

polysaccharides. The spectral region below 900 cm−1 contains only very poor resolved spectral

features, so that an assignment is hard to achieve. Contributions to the spectral contour may arise

from aromatic ring vibrations of the aromatic amino acids and various nucleotides but also CH2

rocking modes of fatty acid side chains. The band at 544 cm−1 was assigned to C-O and P-O-C

bending vibration, e.g. as in phospholipids or nucleic acids.

4.1.1.2 Micro-Raman spectra

As mentioned above, similar and in part complementary information about the chemical composi-

tion of the bacteria can be gained by Raman and IR absorption spectroscopy. Due to the different

selection rules the vibrational pattern of the Raman spectrum is quite different from the one of

the IR spectrum as can be seen in figure 4.3. The most prominent feature within the Raman spec-

trum is the broad band centered around 2937 cm−1 which is a superposition of the symmetric and

antisymmetric C-H stretching vibrations of the CH2 and CH3 groups from lipids, proteins and

carbohydrates. The scissoring and deformation of the C-H bond is found around 1450 cm−1 and

1337 cm−1, respectively. Like in the IR spectrum, the amide bands can be found around 1660 cm−1

(amide I) and around 1242 cm−1 (amide III), but with less intensity. Further amino acid contribu-

tions can be found at 1001 cm−1 together with the C-C stretching vibration of the aromatic ring of

phenylalanine. The band at 1575 cm−1 was assigned to the nucleic acid ring stretches, especially

to contributions from guanine and adenine. C-N and C-C stretching vibrations cause the band at

1128 cm−1. The extended mode assignment of the Raman and IR spectra is summarized in table

4.1.

The IR and Raman spectra of the bulk material result from the averaged signal over several

bacteria. The amount of sample cells probed with each scan were estimated to be 106 - 108 for the

IR absorption spectroscopy and about 30 cells for micro-Raman investigations [81]. With micro-

Raman spectroscopy it is also possible to focus down to only one individual cell, thus allowing to

collect full spectral information from minimal sample volume. As expected, the general features

at the single cell level are similar as for bulk spectra. The single cell spectra will be discussed in

more detail later in this work in connection with the growth curve (section 4.3).
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Table 4.2:Assignment of the UV-resonance Raman bands ofS. epidermidis

Raman wavenumber in cm−1 assignment (based on reference [145])

1639 T
1609 Tyr + Trp
1570 G + A
1521 C
1475 G + A
1355 T + A
1324 A + G + Tyr
1311
1229 G + A + U
1168 Tyr

4.1.1.3 UV-resonance Raman spectra: Nucleic acid and proteins

IR absorption and Raman spectra excited at 532 nm result in spectra representing the overall

chemical composition with contributions from all substances (according to their cross sections)

as was presented in the last sections. However, for some biological or medical problems only

selected components, such as nucleic acids, are in the main focus of interest. Resonance Raman

spectroscopy provides this vibrational selection when using the right excitation frequency.

The nucleic acid bases and the aromatic amino acids strongly absorb in the UV range (190

- 280 nm). Therefore, by using UV light for exciting the Raman spectra, it is possible to par-

ticularly enhance the Raman signals of those components within the whole bacteria. Figure 4.3

(lowest spectrum) shows an UV-resonance Raman spectrum of the staphylococci using an excita-

tion wavelength of 244 nm, which is clearly dominated by the contributions of the nucleic acids, in

particular by the two purine bases (table 4.2). Adenine (A) and guanine (G) contribute with C-N

stretching vibrations to the most prominent band at 1475 cm−1 and with the NH2 deformations to

the band at 1570 cm−1. Besides guanine and adenine also uracil (U) vibrations show up via the

band at 1229 cm−1, and thymine (T) and adenine vibrations are responsible for the Raman band

at 1355 cm−1. The band at 1521 cm−1 was assigned to cytosine (C). The aromatic amino acids

tyrosine (Tyr) and tryptophan (Trp) are responsible for the band at 1609 cm−1, and in addition

tyrosine also contributes to the Raman band at 1324 cm−1.

The GC content, which is the percentage of guanine (G) and cytosine (C) in the DNA (and

RNA) of the cell, is specific for the species and is used as a distinguishing mark between bacteria

of different strains. The GC ratio varies from about 30% for staphylococci up to over 70% for

streptomyces and micrococci. Since the UV-resonance Raman spectra of bacteria are dominated

by the nucleic acid components, attempts were made to use the characteristic Raman band in-

tensities to determine the GC content of bacteria [177]. With the simplifying assumption that G

and A from both DNA and RNA contribute with equal magnitude to the Raman scattering, the

intensity of the band at 1475 cm−1 (A+G) can be set proportional to the total nucleic acid content.

Therefore, the fraction of guanine+cytosine in the bacteria should be proportional to the ratio of

the Raman peaks at 1521 (C) and 1475 cm−1. From the area under the curve of those two Ra-
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man bands, a band ratio of 0.23 was calculated which corresponds to a GC ratio of 31 to 37%

when using the calibration plot prepared by Nelson, Manoharan and Spiro [177]. This value is in

good agreement with a GC ratio of 35.2 ± 0.5 mol% determined forS. epidermidisvia biological

methods [118].

4.1.2 Bacillus pumilus

Bacillus pumilusis a common bacterium found in soil and water. As a rhizobacteria it can live

on plant roots or reside in the rhizosphere, a soil zone spanning a few millimeters around roots,

where the bacteria feed on plant juices. In industryBacillus pumilusis used for alkaline pro-

tease production, environmental decontamination of dioxins, and in the baking industry. It also

finds application as a pesticide active ingredient. However,Bacillus pumiluscan also cause food

poisoning.

Figure 4.4A shows in the top an averaged Raman spectrum ofBacillus pumilusDSM 361 ex-

cited at 532 nm. It exhibits similar spectral features as discussed in section 4.1.1.2 forS. epider-

midis: the amide I band around 1660 cm−1, the nucleic acid ring stretches around 1580 cm−1, the

CH2 and CH deformation modes around 1450 cm−1 and 1336 cm−1, the C-N and C-C stretching

modes around 1128 cm−1 and the sharp CC aromatic ring stretch of phenylalanine around 1001

cm−1. Even though the spectra of the different bacterial strains appears very similar on first sight

distinct differences in band position and band intensities can be found due to different molecu-

lar composition. This allows the differentiation between different bacterial strains by means of

vibrational spectroscopy as will be briefly sketched in section 4.2.

4.1.3 Bacillus subtilis

Another common soil bacterium isBacillus subtilis. It can be found especially in the upper soil

layers and in the rhizosphere of plants and is responsible for the decomposition of organic materi-

als.

This rod-shaped bacteria has a typical size of 2 to 3 µm and a hight of 0.6 µm. The Gram-

positive cells are flagellated. Under certain conditions (stress) it can form spores.B. subtilisis non-

pathogenic, but its close phylogenetic relation to pathogens as e.g. staphylococci and mycobacteria

make it to an interesting object for the biomolecular and medical research and nowadays it is one

of the best-studied Gram-positive bacteria.B. subtilisalso has industrial importance e.g. as a

pharmaceutical product (Utilinr or Bactisubtilr) against dermatosis or intestinal dysfunctions,

as a biological fungicide, for the synthesis of riboflavin (vitamin B12) or for the production of a

detergent enzyme (e.g. Subtilisinr).

The second spectrum from the top in Figure 4.4A shows an averaged Raman spectrum ofBacil-

lus subtilisDSM 10 excited at 532 nm. It shows great similarities to the Raman spectrum ofB.

pumilus, a strain of the same genus, and also to the spectrum ofS. epidermidis, a strain to which

B. subtilisis in close phylogenetic relation.
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Figure 4.4: A) Raman spectra ofB. pumilus, B. subtilis, S. epidermidisandE. coli. B) hierarchical
cluster analysis of the spectra shown in A (standard method, Ward’s algorithm).

4.1.4 Escherichia coli

Escherichia coliare rod-shaped cells, 1-2 µm in length and 0.1-0.5 µm in diameter as can be seen

in the AFM images in figure 4.5.E. coli are Gram-negative and flagellated. They are aerobic

and facultative anaerobic and non-spore-forming.E. coli cells are a natural inhabitant of the gut

flora. However, if displaced the bacteria can cause infections of the urinary tract or meningitis.

Escherichia coliis one of the most often used bacteria in molecular biology and modern biological

engineering. Its complete genome has been identified and by transformation it can be modified

so that the bacteria can serve as "factories" to synthesize DNA, amino acids or a variety of other

compounds such as insulin, for example.

Figure 4.4A shows in the bottom an averaged Raman spectrum ofEscherichia coliDSM 423

excited at 532 nm.
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2µm 1µm

Figure 4.5: Pseudo 3D AFM image ofE. coli.

4.2 Vibrational spectroscopic discrimination of bacteria

The degree to which a causative organism requires identification varies but identification is most

useful in complex clinical cases; for example to distinguish relapse, to indicate failure of an an-

tibiotic treatment, and to detect reinfection with a different organism in patients with recurrent

infections.

Using conventional methods, laboratory examination of potentially infected material is expen-

sive, time-consuming and labor-intensive: approximately 24 h incubation is required to obtain an

accurate colony count. An additional 12 ± 24 h is needed for organism identification and suscep-

tibility testing, which may further delay administration of the most appropriate narrow-spectrum

antibiotic [86, 192].

Figure 4.4B presents a hierarchical cluster analysis of the bulk Raman spectra of the bacteria

shown in figure 4.4A using standard method and Ward’s algorithm (see section 2.3.1). Even

though the spectra look very similar on the first view it is possible to classify them according to

the bacterial strain. Two distinct clusters are formed between the Raman spectra of the Gram-

negative escherichia bacteria and the Gram-positive bacilli and staphylococci. Further subclusters

are formed betweenS. epidermidisand the two bacillus strains. The two clusters of the closely

relatedB. pumilusandB. subtilisare separated only by a small heterogeneity. It has been shown

that appropriate classification with high recognition rates above 95% on the strain level also for

larger data sets using hierarchical cluster analysis and support vector machines [96, 95, 218].
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4.3 Bacterial metabolism: Vibrational spectroscopic study of

bacterial growth

Information about the unperturbed bacterial growth is necessary for judging the influence of drugs

on the bacterial metabolism. Also for a reliable identification of bacteria of unknown age precise

information about the range of spectral variations within one species are required. In the following

the bacterial growth ofS. epidermidisis monitored by means of IR absorption, micro-Raman and

resonance Raman spectroscopy. The subtle changes in the spectra are evaluated by statistical

methods. The vibrational spectroscopic characteristics obtained in the previous section help to

assign the observed changes in the vibrational spectra to chemical components within the bacterial

cell. ForB. pumilusa similar analysis is shown for the growth dependent UV-resonance Raman

spectra.

4.3.1 Staphylococcus epidermidis ATCC 35984

4.3.1.1 Growth curve

Figure 4.6 shows a typical growth curve forStaphylococcus epidermidisATCC 35984 under batch

conditions in a semi-logarithmic representation (natural logarithm of the cell mass as a function of

growth time). During the lag phase (I) (<100 min) the bacterial cells prepare their metabolism for

the upcoming growth phase and no net-increase of the biomass is observed. During the accelera-

tion phase (II) the growth rateµ is increasing until it reaches a constant value in the exponential

growth phase (III). This value forµ is specific for the bacterial strain and the growth conditions.

In the exponential growth phase, also called logarithmic phase, the number of bacteria increases

following the equation [123]:

N = N0exp(µt) (4.1)

with N being the number of bacteria at timet andN0 the number of bacteria at the beginning of

the exponential growth phase. From the slope of the growth curve in the exponential phase the

growth rate ofStaphylococcus epidermidisATCC 35984 in CASO at 37◦C was determined to be

µ =0.789 h−1, the generation timeg =ln2/ µ = 0.879 h, and the dividing rateν = 1/g = 1.138

h−1. These values are in good agreement with the growth rates determined by Pitt and Ross for

different growth conditions [199]. When the substrate is used up, or the population density is

getting too high, the growth rate decreases and the culture enters the retardation phase (IV). It

follows the stationary phase (V) where there is no net increase of biological mass. Finally, as the

bacterial cells age, the dying off phase follows (not shown in the diagram) in which lysis of the

biomass occurs.

Vibrational spectroscopy is used to further monitor the metabolic changes occurring during

bacterial growth. For a systematic investigation of the growth phenomenon IR absorption, micro-

Raman and UV-resonance Raman spectra were recorded at the different growth phases, mainly
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Figure 4.6: Growth curve ofS. epidermidisunder batch conditions in CASO at 37◦C. The amount
of biomass was determined by measuring the UV/vis absorption of the bacterial cul-
ture at 630 nm at different growth times. The different growth phases are marked by
Roman numbers: I lag phase, II acceleration phase, III exponential growth phase, IV
retardation phase, V stationary phase.

during the exponential growth phase and stationary phase. During the lag phase no spectra were

recorded since the bacterial concentration was too low to harvest a sufficient amount of cells. The

spectra were subjected to statistical analysis, such as hierarchical cluster analysis (HCA), princi-

pal component analysis (PCA) and linear discriminant analysis (LDA) with reverse elimination

method tabu search (REM-TS) in order to identify the wavenumber changes and therewith the

involved chemical species.

4.3.1.2 Bacterial growth monitored by IR absorption spectroscopy

Figure 4.7A shows representative IR absorption spectra for different growth times in the wavenum-

ber region between 1900 and 500 cm−1. Metabolic changes within the bacteria with growth time

are reflected in slight changes in the intensity of some IR bands. For a rough estimation of the

increase of nitrogenous structures during bacterial growth the increase of the ratio of the relative

intensities of the amide I absorption band (1654 cm−1) and the band at 1085 cm−1 due to aliphatic

esters, including phospho-esters as found in the DNA and RNA backbone can be consulted, as
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Figure 4.7: A) IR absorption spectra ofS. epidermidisat different growth times;B) Hierarchical
cluster analysis for the IR spectra ofS. epidermidisat different growth times (first
derivative, vector normalization, standard method, Ward’s algorithm);C) Scores plot
of the first two principal components of the PCA of the IR spectra ofS. epidermidis
at different growth times.

was shown previously forBacillus subtilis[72]. Table 4.3 depicts an increase of this ratio for

S. epidermidisfrom 2.9 for 335 min (exponential growth phase) to 5.3 for 1870 min (stationary

phase). A significant increase is observed between the growth time 445 min and 540 min where

the bacterial culture changes from the exponential growth phase to the stationary phase (see figure

4.6).

For a more profound analysis of the subtle changes occurring during bacterial growth the whole

spectra between 1900 and 500 cm−1 were subjected to statistical analysis. The hierarchical cluster

analysis (HCA) shown in figure 4.7B reveals a clear separation of the spectra of the exponential

growth and the stationary phase (including late retardation phase). Within theses two clusters a

further separation into sub-clusters of the individual growth times is observed, i.e., during bacterial

growth significant, systematic changes occur in the bacterial cells and can be visualized by means

of IR absorption spectroscopy. While the differences in the spectra for different growth time

within the same growth phase are relative small, more pronounced differences are visible between

bacterial spectra of different growth phases.
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Table 4.3:Change of the relative intensities of the amide I absorption band (1654 cm−1) and the
band at 1085 cm−1 due to aliphatic esters (including DNA) in the IR absorption spectra
of S. epidermidiswith growth time.

growth phase growth time in min intensity ratio 1654 cm−1/1086 cm−1

log phase 335 2.9
(exponential growth) 385 2.8

445 3.2
stationary phase 540 4.4

790 4.2
1870 5.3

The wavenumbers experiencing the highest variation during bacterial growth can be identified

by principal component analysis (PCA). The scores plot of the first two principal components

which describe together 84% of the data is shown in figure 4.7C. The spectra arrange in well

separated clusters along the first principal component (PC1) according to the growth time. IR

absorption spectra of bacteria in the exponential growth phase have negative values for PC1 while

the PC1-value of the spectra of the bacteria in the stationary growth phase is positive and increasing

with increasing growth time. The correlation of PC1 with growth time affirms the expectations

since growth time is the only varying external parameter for the individual spectra. The loading

plot for PC1 (not shown) identifies the wavenumbers around 1720 and 1669 cm−1 to have the most

important contributions to this PC, indicating that at those wavenumbers the IR spectra show the

largest variance. Further wavenumbers exhibiting noticeable contributions are 1643, 1635, 1543,

1555, 1262, 1079, 671 and 665 cm−1. Those bands can mainly be assigned to protein moieties

(amide bands) and to vibrations of esters and carboxyl groups (see table 4.1).

In order to select the wavenumber regions with the highest discrimination power Fisher’s lin-

ear discriminant analysis (LDA) in combination with the reverse elimination method tabu search

(REM-TS) [20] was applied. For the aforementioned IR data, the wavenumbers contributing the

most to the classification of the spectra could not be determined unambiguously since a multitude

of variable subsets achieve extremely good classification results with LDA. The external predic-

tions showed 98% of correctly classified spectra across the 100 different splits into training and

test sets. Thus, almost all spectra could be classified correctly using different subset combinations.

One out of the many equally good variable subsets is: 1685 cm−1 (amide I), 1548 cm−1 (amide

II) and 1085 cm−1 (P=O str). Using these variables for classification achieved a cross-validated

(internal) recognition rate of 98% for LDA as well as a test set performance of 98% correctly

classified spectra.

Thus, for the classification of the IR absorption spectra with growth time especially the protein

moieties, esters and compounds with carboxylic groups are responsible. This is in good agreement

with the ratio of the amide I absorption band (1654 cm−1) and the band at 1085 cm−1 due to

aliphatic esters (including the phospho esters in the DNA backbone) which was used by Filip et

al. [72] to estimate the progress in bacterial growth.
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Figure 4.8: A) Micro-Raman spectra of singleS. epidermidiscells at different growth times;B)
Hierarchical cluster analysis for the micro-Raman spectra (first derivative) of single
S. epidermidiscells at different growth times (vector normalization, standard method,
Ward’s algorithm);C) Scores plot of the first two principal components of the PCA
of the micro-Raman spectra of singleS. epidermidiscells at different growth times.

4.3.1.3 Bacterial growth monitored by micro-Raman spectroscopy

A similar analysis was performed for the data from micro-Raman spectroscopy. Figure 4.8A

shows the micro-Raman spectra of singleS. epidermidiscells at different growth times. As for the

IR spectra, the differences between the spectra are quite subtle. Slight intensity variations can be

seen around 1575 and 1475 cm−1. Like for the IR spectra the hierarchical cluster analysis (HCA)

shown in figure 4.8B reflects a distinct separation between the spectra of the exponential growth

phase (including the retardation phase, t< 600 min) and the stationary growth phase (> 600 min).

In contrary to the IR data, the formation of individual sub-clusters for the different growth times is

only achieved for the stationary and the retardation phase. The relative poor classification power

for the exponential growth phase can be explained with the higher variability due to the sampling

of individual bacterial cells. While some of the dividing cells are growing bigger to prepare for

the upcoming chromosome division, others already form the new cross wall between the almost
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divided cells. When recording bulk spectra, as in the IR, an average is acquired and individual

variations do not contribute so much to the classification result.

The principal component analysis (PCA) shown in figure 4.8C resembles the same features

as the HCA. In the scores plot of the first two principal components a clear separation of the

spectra of the exponential growth phase on the positive side of the first PC from the spectra of the

stationary phase on the negative side of PC1 is seen with the spectra of the retardation phase being

found in between. As for the IR spectra it is again the first PC which correlates to the growth

time. From the loading plot of PC1 the wavenumbers 1575 and 1475 cm−1 (nucleic acid [229])

were identified to have the major contribution to the spectral variances. Minor contributions result

from the vibrational bands at 2955, 1232 cm−1 (protein random coils) and 782 cm−1 (nucleic acid

[230]).

The latter results are further supported by REM-TS and LDA. The wavenumber regions that

were selected more than 50 times in 100 runs, and thus having the highest discrimination power

were the following: 3069 cm−1, 2937 cm−1, 1575 cm−1, 1475 cm−1, 1450 cm−1, 1242 cm−1,

1128 cm−1, and 855 cm−1, with 3069 cm−1 (C=C-H str), 1242 cm−1 (amide III), and 1128 cm−1

(C-N, C-C str) being selected more than 70 times. Although the selection is quite robust with re-

spect to data set composition, the recognition rate was low. The test set recognition rate obtained

by major voting was only 67%. Using the eight strongest regions of wavenumbers with an occur-

rence of more than 50 times out of the 100 runs achieved an internal recognition rate of 66% in

LMO-CV for LDA.

These results suggest that in particular changes in the bands due to the nucleic acid ring stretches

and due to protein (amide bands) are responsible for the classification during bacterial growth.

This confirms what is known from biology and is in good agreement with the results obtained

from the IR spectra.

4.3.1.4 Bacterial growth monitored by UV-resonance Raman spectroscopy

The analysis of the IR and micro-Raman spectra revealed that especially the Raman bands due to

the nucleic acids and protein change during bacterial growth. Therefore, UV-resonance Raman

(UVRR) spectroscopy with excitation at 244 nm should be a well suited method to follow the bac-

terial growth, since this technique is especially sensitive to the vibrational modes of the DNA and

RNA bases as well as of the aromatic amino acids due to resonance enhancement. The bacterial

UVRR spectra for different growth times are shown in figure 4.9A. Here the relative increase of

the tyrosine and tryptophan band at 1609 cm−1 with respect to a decreasing purine base (guanine

and adenine) band at 1475 cm−1 is easily visible, indicating the relative increase of proteins with

respect to the DNA/RNA content with growth time. For a first quantitative estimation the spectral

region between 1850 cm−1 and 1250 cm−1 was deconvoluted with seven Lorentzian profiles (see

experimental section 3.3). The ratio of the area under the curve for the "nucleic acid band" at

1475 cm−1 and the "protein band" at 1609 cm−1 is plotted as a function of growth time in figure
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Figure 4.9: A) UV-resonance Raman spectra ofS. epidermidisat different growth times;B) Hi-
erarchical cluster analysis for the UV-resonance Raman spectra ofS. epidermidisat
different growth times (vector normalization, factorization method using three factors,
Ward’s algorithm);C) Scores plot of the first two principal components of the PCA
of the UV-resonance Raman spectra ofS. epidermidisat different growth times.

4.10 in comparison with the growth curve. The nucleic acid/protein ratio is high at early growth

times and falls to an almost constant level in the stationary growth phase. For a detailed quantita-

tive analysis more data are necessary. However, the phenomenon of a relative high RNA content at

the beginning of the exponential growth phase and a high protein content in the bacteria in the sta-

tionary phase [126] is reflected very well by the data. At the end of the exponential growth phase

the reduced nutrient content and the increased quorum sensing force the bacteria to change their

metabolism. In the following stationary phase the material and energy intensive protein synthesis

is reduced, the number of ribosomes is decreases and other proteins are present. With the simple

intensity ratio method the qualitative shift to other types of proteins is not resolved, but rather a

constant protein level in the stationary phase is detected.

In order to treat the whole spectral region from 500 to 1850 cm−1 and not only two bands, fur-

ther unsupervised statistical analysis were performed. The dendrogram generated by hierarchical

cluster analysis (figure 4.9B) shows a clear separation between the bacterial spectra of the expo-

nential growth phase (early growth times;< 600 min) and the bacterial spectra of the stationary
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Figure 4.10:Bottom) Relative ratio of nucleic acid and protein content ofS. epidermidisin the
different growth phases as determined from UV resonance Raman spectra using the
nucleic acid band at 1475 cm−1 and the protein band at 1609 cm−1 in comparison
with the growth curve (Top).

phase (> 600 min). Within the exponential growth phase the spectral distances between spectra of

different growth times are on the same order of magnitude as between repeated measurements of

the same growth time. Therefore, the spectra of early growth times do not form individual sub-

clusters. This changes when reaching the stationary growth phase and well separated sub-clusters

are formed for each growth time. The bacterial spectra after three days (4455 min) are even apart

from all other spectra. This can be explained with aging processes, which change the overall

composition, especially of the protein manifold.

A similar result is obtained from principal component analysis as can be seen in the scores plot

of the first two PCs in figure 4.9C. For a rough classification, the first PC describing 30% of the

data contains the information of growth time with the RR spectra of bacteria in the exponential

growth phase having negative values for PC1 and increasing growth time resulting in an increased

value for the first PC. A separation into individual clusters is recognizable but not very pronounced

at early growth times while the spectra of bacteria in the stationary phase clearly form individual

groups. From the loading plot for the first PC the Raman wavenumbers containing the largest

spectral variances were identified to be 1609 and 1475 cm−1. This is in good agreement with the

expected results from the observed changes in the nucleic acid/protein ratio. The Raman bands at

1546 and 1168 cm−1 show minor contributions to the first PC.

Subset selection by REM-TS coupled to LDA identified the wavenumbers 1639 cm−1 (T),

1609 cm−1 (Tyr+Trp), and 1475 cm−1 (G+A) with an occurrence of> 50 out of 100 runs to have
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the most significant discrimination power. The spectral region at 1324 cm−1 (A+G+Tyr) was se-

lected more than 20 times out of the 100 runs. The external recognition rate by bagging accounted

for 80%. A combination of the four strongest regions of wavenumbers with an occurrence of more

than 20 times out of the 100 runs achieved an (internal) performance of 77% of correctly classified

spectra in LMO-CV and LDA.

With the vibrational techniques discussed so far the bacterial cells have been characterized with

their overall chemical composition and more detailed information about the nucleic acids was ob-

tained by UVRR spectroscopy. The statistical analysis of the Raman and IR spectra during the

growth process revealed significant changes in protein and nucleic acid moieties. Also the results

of the UV-resonance Raman spectroscopic analysis display the same biological facts. The relative

intensity change of the hydrogen-bonding Raman marker band of the guanine and adenine stretch-

ing modes at 1477 cm−1 in the UVRR spectra suggest changing concentrations of free nucleotides

at the end of the exponential growth phase. The reduced free nucleotides initiate a switch in the

protein synthesis (e.g. less ribosomes are produced), and a change in the protein and nucleic acid

concentration is detected by Raman spectroscopy.

4.3.2 Bacillus pumilus

A similar analysis as was just presented forStaphylococcus epidermidis, but only with focus on

the UV-resonance Raman spectra is shown in this section forBacillus pumilus.

Figure 4.11A, upper panel, shows a typical growth curve forBacillus pumilusDSM 361 under

batch conditions in the semi-logarithmic representation. It shows the same characteristics as the

growth curve ofS. epidermidisshown in figure 4.6: during the short lag phase (I) (<50 min)

the bacterial cells prepare their metabolism for the upcoming growth phase. No Raman spectra

were taken during this period since the bacterial concentration was too low. During the exponential

growth phase (II) the number of bacteria increases following equation 4.1. The relative growth rate

µ which is specific for the bacterial strain and the growing conditions like media and temperature

was determined from the slope of the growth curve forBacillus pumilus(30◦C, nutrient broth) to

beµ = 0.54h−1. The generation timeg and the dividing rateν were calculated from the constant

µ to beg = ln2/ µ = 1.3 h, andν = 1/g = 0.8h−1, respectively. These values are in good agreement

with the range of g = 60 - 150 min given for soil bacteria [226]. When the substrate is used up,

or the population density is getting too high, the growth rate decreases and the culture enters

the retardation phase (III). It follows the stationary phase (IV) where there is no net increase of

biological mass. Finally, as the bacterial cells age, the dying off phase follows (not shown in the

diagram,> 3000 min) in which lysis of the biomass occurs.

Figure 4.11B shows the UV-resonance Raman spectra for three different growth times which

are marked in Figure 4.11A with circles. The lower spectrum was taken at the beginning of the

exponential phase (II, t = 100 min), the middle one at the end of the log phase in the retardation

phase (III, t = 450 min) and the upper spectrum in the stationary phase (IV, t = 1700 min). With
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Figure 4.11:A, Top) Growth curve ofBacillus pumilusunder batch conditions (natural logarithm
of the cell mass as function of growth time), the different growth phases are as fol-
lows: I, lag-phase; II, exponential phase; III retardation phase; IV, stationary phase.
A, Bottom) the relative ratio of nucleic acid and protein content of the bacteria in the
different growth phases as determined from UV-resonance Raman spectra using the
nucleic acid band at 1477 cm−1 and the protein band at 1609 cm−1. B) UV-resonance
Raman spectra (λex= 244 nm) for three different growing times, marked in figure A
(Top) with circles. The arrows point on the Raman bands used for the calculation of
the nucleic acid/protein ratio in figure A.

excitation at 244 nm, especially the vibrational bands due to the aromatic amino acids and the nu-

cleic acid bases are enhanced, as was discussed in section 4.1. Therefore, this method is especially

suitable to monitor changes that involve proteins and DNA. The general features of all spectra are

the same but the relative intensities change with time, which is visualized in figure 4.11A, lower

panel, for the nucleic acid/protein ratio as an example. The two Raman bands used to calculate

this ratio are indicated by the two arrows in figure 4.11B. The band around 1477 cm−1 is mainly

due to the N-C stretch of the guanine and adenine residues of the nucleic acids; the Raman band

around 1609 cm−1 is mainly caused by the aromatic amino acids tyrosine and tryptophan [145],

and therefore can be used as a representative band for protein.
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Table 4.4:Wavenumbers showing the largest variance and the highest discriminative power for the
bacterial spectra (IR absorption, micro-Raman (λex=532 nm) and UV-resonance Raman
(λex=244 nm)) ofS. epidermidisat different growth times as determined by means of
PCA and REM-TS/LDA, respectively.

IR IR micro-Raman micro-Raman UVRR UVRR
(λex=532 nm) (λex=532 nm) (λex=244 nm) (λex=244 nm)

loadings PC1 REM-TS/LDA loadings PC1 REM-TS/LDA loadings PC1 REM-TS/LDA assignment
in cm−1 in cm−1 in cm−1 in cm−1 in cm−1 in cm−1

3069 C=C-H str (aro-
matic, olefinic)

2955 2937 CH3 str, CH2 str
1695 1685 amide I (antiparallel

pleated sheets and
β -turns)

1652 amide I (α-helix)
1639 nucleic acid (T)

1609 1609 Tyr+Trp
1571 1575 nucleic acids (G+A

ring str)
1549 1548 1546 amide II

1475 1475 1475 1475 nucleic acid (G+A)
1450 CH2 def

1324 A+G+Tyr
1236 1232 1242 amide III, P=O str

(asym)
1128 1168 C-C str, C-O

1985 1085 P=O str (sym)
855 CC str, COC,

"buried" tyrosine
668 781 CC str ring breath-

ing (C, U)

4.4 Conclusion

Bacteria of the strainS. epidermidishave been extensively characterized by the different types of

vibrational spectroscopy, focussing on different aspects of the biochemical composition of the cell.

The protein moieties of enzymes and structure elements account for the strong amide I, amide II

and amide III vibrational bands especially in the IR absorption spectrum, but can also be found

with different intensity ratios in the micro-Raman spectrum. Contributions from the nucleic acids

(phosphate backbone) and various oligo- and polysaccharides are present in the spectrum with

characteristic vibrational bands. With UV-resonance Raman spectroscopy almost exclusively the

nucleic acids (purine and pyrimidine bases) and the aromatic amino acids from proteins can be

probed within intact living bacteria which enables e.g. the determination of the GC ratio of the

bacteria. This detailed knowledge of the vibrational bands assigned to chemical structures within

the cell provides the basis for the investigation of the metabolic changes that go along with growth

and aging of bacteria.

The metabolic changes during bacterial growth and aging are monitored by IR absorption and

micro-Raman (S. epidermidis) and also by UV-resonance Raman spectroscopy (S. epidermidisand

B. pumilus). For the data ofS. epidermidisa detailed statistical analysis was performed and valu-

able information about characteristic changes in the bacterial composition are extracted from the
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fingerprint-like spectra. Principal component analysis (PCA) identifies the wavenumbers show-

ing the largest variance across the different spectra. By means of Fisher’s linear discriminant

analysis (LDA) in combination with reverse elimination method tabu search the wavenumbers

having the highest discriminative power are identified. Table 4.4 summarizes those wavenum-

bers for the growth curves probed with the different spectroscopic methods. A high similarity of

the selected bands is found for the different spectroscopic techniques, variations are mainly due

to different selection rules. The spectroscopic data also resemble quite well to what is known

from biology: during bacterial growth DNA is translated and new proteins are synthesized, dif-

ferent ones during different growth phases. The bands having the highest discrimination power

are mainly due to protein moieties (amide I, II and III bands above 1600 cm−1, around 1548 cm−1

and around 1240 cm−1, respectively) and DNA components. While IR absorption spectroscopy

visualizes especially the DNA and RNA backbone vibration with the symmetric and asymmetric

PO stretches at 1085 and 1239 cm−1, the micro-Raman and in particular the UV-resonance Raman

spectroscopy focus on the changes at the nucleic acid bases (guanine and adenine ring stretches

around 1575 cm−1 and around 1475 cm−1, respectively). Therefore, the subtle changes occurring

within the bacterial cell during bacterial growth such as the change of the relative amount of RNA

and protein with the transition from the exponential growth phase to the stationary phase can be

tracked and located by means of vibrational spectroscopy.
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of complex biological surfaces

Tip-enhanced Raman spectroscopy bears a high potential for the investigation of surfaces because

it allows the recording of the topography of the investigated surface with highest spatial resolution

below the diffraction limit [247] while at the same time rich chemical information from those

surface structures can be obtained via vibrational spectra. Those information are especially useful

for studying surface problems as they occur in material science, catalysis or life sciences. Many

vital processes that take place at and through the cell membrane are not completely understood

so far, as e.g. signal transduction, mass transport, adhesion on surfaces, cell recognition and

enzyme reactions. Because an intact cell wall is crucial, many antibiotics, e.g. of the group

of the β -lactams, penicillines and glycopeptides interfere with the synthesis of the bacterial cell

wall. Sometimes, extracellular substances forming a biofilm around the bacteria may alter the

effectiveness of the antibiotics. Therefore, it is of greatest interest to learn more about the chemical

composition of the bacterial surface and its spatial arrangement on a molecular level, as well as

getting an understanding of the dynamics of the cell membrane.

Up to now tip-enhanced Raman spectroscopy has been successfully applied to small pure sub-

stances like CN-ions adsorbed at gold surfaces [196], malachite green isothiocyanate [197, 198],

benzenethiol [210], rhodamine 6G [270], single walled carbon nanotubes [94, 93] and DNA com-

ponents [205]. In this chapter TERS spectra from surfaces of complex biological systems, such as

whole bacterial cells are presented and compared to TERS spectra of pure substances. A tentative

band assignment is given. Furthermore, dynamics are observed on the cell surface which could be

due to surface processes. This marks a big step forward towards the non-invasive investigation of

bacterial surfaces without the need of labelling techniques.

5.1 Biological fundamentals: Cell wall structure of Gram-positive

bacteria

In the previous chapters the focus was set on bacteria as whole cells and their metabolism in

the absence and presence of drugs has been studied, as well as selected biological targets (DNA,

gyrase). However, the structure and molecular composition of the bacterial surface are of special

interest to microbiologist and pharmacologists. As a sample organismStaphylococcus epidermidis

ATCC 35984 has been chosen for the following experiments. As already introduced in chapter 4
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Figure 5.1: Scheme of the structure of the cell wall of Gram-positive bacteria (Figure adapted
from Ref. [3]).

S. epidermidisevolved to a major cause of nosocomial infections, especially associated with the

use of implanted medical devices [36]. The pathogenic potential of this strain mainly results

from binding to polymer surfaces and biofilm formation. From the biofilms, especially associated

with implanted medical devices, the bacteria get into the blood of the patients and cause a septic

disease pattern. The biofilm matrix is also responsible for reduced susceptibility of the bacteria

for antibiotics. Therefore, it is of greatest interest to learn more about the surface of the bacteria,

because those results might lead to a more profound understanding of biofilm formation and help

in the fight ofS. epidermidisas a major cause of infections.

A scheme of the cell wall of Gram-positive bacteria is given in figure 5.1 (adapted from Ref.

[3]). As for all Gram-positive bacteria its cytoplasm membrane is surrounded by peptidoglycan,

also known as murein, which is made up by linear chains of the two alternating amino sugars N-

acetyl glucosamine (NAG) and N-acetyl muramic acid (NAM). The NAM are cross-linked by short

(4 to 5 residues) amino acid chains. The peptidoglycan layer which is assumed to be around 50

nm thick is pervaded by other polysaccharides like teichoic acid and a variety of surface proteins

[36, 176]. Furthermore, on the cell membrane there are also different catalysis centers of enzymes

and anchoring and binding sites for adhesion on surfaces and cell recognition. Depending on

the growth conditions, a biofilm consisting mainly of the two polysaccharides teichoic acids (TA)

and PIA (polysaccharide intercellular adhesin), surroundsS. epidermidisATCC 35984 to a more

or lesser extend. These polymers were found to be a 1,3-Poly(glycerol phosphates) substituted

with D-glucose (Glc), D-glucosamine (GlcN), D-Alanine (Ala) and D-Glc6Ala; and a linear beta-

(1,6)-linked N-acetylglucosaminoglycan partially substituted with O-succinyl groups and parts of

the N-acetylglucosamine units being deacetylated, respectively [220, 221]. In summary, the cell

is presenting to the outside a variety of sugar and peptide components.
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Figure 5.2: A) Pseudo three-dimensional topographic image (7×7 µm) of singleS. epidermidis
cells on a glass surface,B,C,D,E) TERS spectra recorded from one line while scan-
ning the sample surface with the AFM .B,C) andE) show spectra when a cell passed
the tip,D) the spectrum was recorded when there was no cell within that line scan.

The bacterial surface is not stiff and rigid, however dynamics can be observed. Experimental

proof could be given so far by fluorescence correlation spectroscopy [14], fluorescence resonance

energy transfer (FRET) [187] and also by video enhanced differential interference contrast mi-

croscopy [128, 213]. With the latter technique, proteins were observed to move for 20 to 200 nm

in less than 30 ms [128, 213, 4].

5.2 TERS while scanning the bacterial surface with AFM

For recording the tip-enhanced Raman spectra and the topography of the bacterial cells, the sample

was moved in the stage-scanning mode of the AFM in xy-direction by a piezo, while the enhancing

tip was maintained in the laser focus and operated in the intermittent contact mode (for more

experimental details see section 3.1.5).

An example of a topographic image ofS. epidermidisATCC 35894 on a glass surface is shown

in figure 5.2A. The scanned area is 7×7 µm2 and the bacterial cells can be seen as round features

on the glass surface with a diameter of 1 µm.
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The AFM was scanning the sample surface with a rate of 1 Hz, which means, that it took 1 s

to acquire the topography of one line (7 µm). Simultaneously, tip-enhanced Raman scattering

(TERS) spectra were recorded with 1 s acquisition time, so that one TERS spectrum represents the

average TERS signal of the substances on one line of the scanned area. Raman signals were only

observed when a cell has passed the tip during that line scan. Figure 5.2B and C show such TERS

spectra of two adjacent lines on one cell as marked in the figure. Figure 5.2E was recorded while

scanning over the second cell as indicated in the figure. When no cell was underneath the tip, no

Raman signal was detected as can be seen in figure 5.2D. The good signal-to-noise ratio TERS

signals which are only obtained from lines where a bacterial cell is underneath the enhancing tip

indicate that the observed Raman signal originates indeed from the cell. The results could be

reproduced with two otherS. epidermidiscells on different days using a different silver coated

AFM-tip (results not shown). However, sometimes it was difficult to obtain a good topography

and good TERS spectra. The TERS signature slightly varies from line to line suggesting that the

chemical composition of the cell surface is not completely homogeneous. However, the spectra

present an average Raman signal over the whole line scanned by the AFM in 1 s, which includes

the width of the whole cell. It is desirable to make use of the high spatial resolution power of the

AFM and record TERS spectra from well defined positions on the cell surface. Results from those

experiments are shown in the next section together with a more detailed analysis of the vibrational

bands.

5.3 TERS on selected points on the sample surface

After recording the topography of the singleS. epidermidiscells on glass as shown in figure

5.2A several positions were chosen on the cell to record the TERS spectra. For reference purposes

spectra were also recorded on spots where no cells were present. Figure 5.3B-D shows exemplarily

three tip-enhanced Raman spectra recorded on the cell surface of the cell in the lower right corner

of the investigated sample. Figure 5.3E shows a background spectrum from the the glass surface

without any cell present. The enhanced Raman signal originates just from a very small area in the

vicinity of the tip, corresponding roughly to the tip apex size [63, 184]. In this case the diameter

of the tip apex is assumed to be less than 50 nm. Taking this nominal tip radius into account,

chemical information from the vibrational spectra of different spots on the cell can be resolved

with a spatial resolution down to a few 50 nm. The acquisition time for every spectrum was 30

seconds and the Raman intensity axes are scaled in the same way. While pronounced Raman

spectra were obtained on the cell, no signal was recorded from the background. The ever present

Raman band around 519 cm−1 is due to Raman signals from the silicon of the silver coated AFM

tip. As can be seen in figure 5.3, the relative intensities of the Raman scattering bands from the

bacterial cell are changing, as well as some of the Raman bands are disappearing and some new

are appearing in different spectra when recording spectra on one spot. This suggests some kind

of surface dynamics and that issue will be addressed in more detail in the next section (5.4). No
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Figure 5.3: A) Topographic image ofS. epidermidiscells with marked locations of the corre-
sponding TERS measurements.B, C, D) denote TERS spectra measured with a silver
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TERS experiment on the glass surface. The always present band around 519 cm−1 is
attributed to Raman scattering of the silicon tip.

detailed spectral features are visible and no fluctuation of the Raman signal is observed from a

spot where no cell is present (figure 5.3E).

Another way of verifying that the observed Raman signals are indeed due to the signal enhance-

ment of the silver coated tip over the cell surface is by performing a tip retraction experiment.

Figure 5.4A shows a spectrum recorded on the surface ofS. epidermidiswith the tip being in the

laser focus and in feedback with the sample surface. Figure 5.4B shows a spectrum recorded at the

same position with the same sampling conditions but the tip being retracted for about 100 nm from

the sample surface. There is no Raman signal obtained in that case. This is true for both cases:

when the laser focus is kept at the cell surface and when the laser focus is moved up together with

the tip (controlled via a piezo feedback loop). Therefore, it can be excluded that observed Raman

signals are just normal Raman bands and also that the enhanced signal results from a contamina-

tion of the probing tip.

Further experiments have been performed with other (staphylococcal) cells, also on different

days using a different enhancing tip. Figure 5.5 shows five TERS spectra recorded on various

positions on different individualStaphylococcus epidermidiscells (cell 1-5). Again slight fluctua-
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Figure 5.4: TERS spectra ofS. epidermidisA) the enhancing tip is approached to the sample sur-
face and a SERS spectrum with good signal-to-noise ratio is obtained,B) the enhanc-
ing tip is retracted. No TERS signal from the bacterial surface is recorded anymore.

tions in the Raman signal intensity have been observed when recording successive TERS spectra

on one spot of the bacterial surface. Fluctuating signals have also been reported by Kudelski and

Pettinger [126] when probing carbon chain segments. They assigned the variation of the scattered

signal to surface chemistry processes producing a variety of carbon chain configurations. Sum-

ming up several of the individual spectra obtained by Kudelski and coworker resulted in a typical

carbon spectrum with just two broad bands centred at 1380 and 1590 cm−1. The TERS spectra

of the bacterial cells shown in figure 5.5 are the calculated average from 15 individual 1 s-spectra

recorded on one spot on the cell surface. As the summation of the spectra does not result in a

typical carbon spectrum as found by Kudelski and Pettinger [126] carbonaceous contaminations

can be excluded and more complex processes have to account for the dynamics (see section 5.4).

It was not possible to record completely identical spectra on two different spots on a cell sur-

face, but characteristic bands of the different chemical species present on the surface occurred

repeatedly in different spectra. The spectral variations are explained by the heterogeneity of the

cell surface on a nanometer scale. As explained in a previous section (5.1) the bacterial surface

consists of a variety of sugar moieties from the murein layer and the polysaccharides PIA and

TA and various peptide moieties from the numerous surface proteins that pervade the sugar layer.
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Figure 5.5: Tip-enhanced Raman spectra (λex= 568 nm) ofS. epidermidisfrom different individ-
ual cells (cell 1-5). For comparison a TERS spectrum of the cell wall building block
N-acetylglucosamine (NAG) is shown in the top and a confocal Raman spectrum (λex=
532 nm) of a singleS. epidermidiscell at the bottom.

Varying intensity ratios of the TERS signals are expected for a different chemical composition in

the very small sample volume underneath the tip apex experiencing the signal enhancement, as

well as for a different orientation of the individual components.

At the bottom of figure 5.5, a confocal micro-Raman spectrum of a singleS. epidermidiscell ex-

cited with 532 nm is shown for comparison. Distinct differences to the TERS spectra are observed.

With the confocal micro-Raman spectrum a volume element of circa 0.8 × 0.8 × 3 µm3 is probed.

In contrast, the TERS signal results only from an area of less than 50 × 50 nm2, with a penetration
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depth of a few nm. Due to the much higher spatial resolution, the chemical information contained

in the TERS spectra results from much less chemical species and is confined to the outer most

surface layer. In standard (confocal) Raman spectroscopy a much larger volume element is probed

and the Raman bands are broader compared to the TERS bands. Similar discrepancies in band

positions and intensities were observed by Zeiri and Efrima [288] when comparing the normal

Raman spectra ofE. coli with the corresponding SERS spectra.

5.3.1 Tentative band assignment

5.3.1.1 TERS of S. epidermidis

A tentative band assignment of the TERS spectra of the bacterial surface ofS. epidermidisshown

in the previous sections is summarized in table 5.1. The assignment is based on typical SERS

assignments for biological samples from the literature. Most of the Raman bands are due to contri-

butions from peptides and polysaccharides. Protein contributions are present with the amide I band

above 1650 cm−1 , and N-acetyl-related bands (amide II) around 1535-1564 cm−1 and 1514 cm−1

[61]. For the amide III band a wide spectral range is given in the literature, so that the bands

around 1340, 1280, 1240, 1206 and 1198 cm−1 might have contributions of the amide III band

from different amino acids [243]. The latter two wavenumbers are reported to contain major con-

tributions from tyrosine and phenylalanine [243]. Further peptide Raman bands are present with

the NH2 twist (alanine) at 1144 cm−1 [250], the C-C and C-H modes of phenylalanine at 1004

and 1030 cm−1 [243], the C-C skeletal modes in proteins between 930 and 938 cm−1 [243, 287],

the NCO deformation of tyrosine at 646 cm−1 [243] and the NCO deformation of phenylalanine

at 623 cm−1 [243]. The CH2 scissoring vibration around 1432-69 cm−1 and the CH2 bending vi-

brations around 1419 cm−1 have contributions from the amino acid side chains as well as from the

carbohydrates. Further Raman bands of different carbohydrate moieties are found with the CH

bending of the CH2OH group at 1319-22 and 1209-1205 cm−1 [61], and the COH and OH de-

formation vibration at 1265-72 and 1338-39 cm−1 up to 1360 cm−1 in oligo- and polysaccharides

[61], as well as the CC backbone vibration at 474 cm−1 [243, 61].

The observed dominance of vibrational bands due to protein and sugar moieties is in good

agreement with what is known about the chemical composition of the staphylococcus surface:

sugar derivatives dominate with the peptidoglycan layer which is pervaded by TA and covered

with PIA, and in between different proteins are present.

5.3.1.2 TERS of pure substances: N-acteylglucosamine (NAG)

As explained in a previous section (5.1) the biofilm ofS. epidermidisis assumed to consist mainly

of the polysaccharides PIA and extracellular teichoic acids (TAs) [220, 221]. PIA is a poly-β -

(1-6)-N-acetylglucosamine and TA is a (1-3)-linked poly(glycerol phosphate) which is substituted

at the 2-position of the glycerol residues with glucose, N-acetylglucosamine (NAG), and alanine.

Furthermore, a variety of peptide moieties from the numerous surface proteins that pervade the
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5 Tip-enhanced Raman spectroscopy (TERS) of complex biological surfaces

sugar layer is present on the outside of the bacterial cell. As was shown in the previous sections,

indeed characteristic vibrational bands that could be assigned to the functional groups of those

sugar and protein moieties dominate the tip-enhanced Raman spectra of the bacterial surface. For

reference purposes the monomer N-acetylglucosamine (NAG) which is an abundant building block

of the two surface polymers PIA and TA and also of the cell wall itself has been investigated by

means of tip-enhanced Raman spectroscopy.

A TERS spectrum of the pure substance is shown at the top in figure 5.5 and the assignment of

the vibrational bands is included in table 5.1. Several bands show a very good agreement with the

Raman bands of the staphylococcus cell-surface, confirming the rich abundance of this sugar on

the cell surface.

5.4 Dynamics on the bacterial cell surface probed by TERS

As was already mentioned in section 5.3 and shown in figure 5.3 some of the Raman bands from

the bacterial surface show variations in intensity and peak position. Therefore, further experiments

were performed and without changing the position of the sample successive spectra were taken

on one spot on the bacterial surface. As observed before, the Raman bands exhibit variations

in intensity and position with time. Figure 5.6 depicts in a false-color plot the evolution of the

TERS signal with time on one spot on a cell. The ordinate axis represents the wavenumbers of

the spectra and the abscissa shows the progress of time. The intensities of the TERS signal are

color coded (high intensities in red and white, low intensities in black and blue). Four spectra

recorded at different times (6 s, 14 s, 31 s, and 51 s) are shown on the right panel in figure 5.6B.

It can be seen that certain bands experience changes in intensity, disappear and reappear again on

a time scale of a few seconds, e.g. the vibrational band at 1541 cm−1 in figure 5.6B, which is

most likely an amide II vibration or a coupled ring vibration. This band at 1541 cm−1 is the most

prominent feature in the spectrum after 6 s, it hardly visible in the spectrum after 14 s anymore,

reappears again in the spectrum after 31 s and is also very prominent in the spectrum after 51 s.

This behavior suggests some dynamics taking place on a molecular level. Since the probed volume

with TERS is only very small (on the order of 50 × 50 × 10 nm3) and the bacterial surface is known

to be dynamic it is very likely that a glimpse of the molecular motions on the bacterial surface is

caught. Thus some molecules experiencing the strong enhanced field, give rise to a strong TERS

signal. Once they move out of the excitation volume these molecules do not contribute to the

TERS spectrum anymore causing the TERS signal to decay or disappear. Besides a movement of

the molecule of interest out of the range of the evanescent field enhancement, a change in Raman

signal can also be caused by a change of orientation. The TERS signal can reappear when the same

molecule or a chemical similar fragment moves again into the sample volume. It is not completely

clear whether those probed dynamics are some intrinsic properties of the cell surface as Kusumi

and coworkers observed them by video enhanced differential interference contrast microscopy
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Figure 5.6: Evolution of the TERS signal on one spot of the bacterial surface with timeA) False
color plot,B) Four different individual TERS spectra from the false color plot in A)
at four different times.

of labelled proteins within membranes [128, 213, 4], or whether they are induced by the strong

localized electromagnetic field of the evanescent field in the proximity of the illuminated tip.

Kudelski and Pettinger reported remarkably fluctuating Raman bands with rather narrow halfwidth

due to carbon deposition on SERS substrates [126]. Here, those fluctuating Raman signals are

only observed when the tip was placed above a bacterial cell. Therefore, it is very unlikely that

the signal variations are due to a carbon-contaminated tip.

5.5 TERS of bacteria under special conditions: Cells under argon

Fluctuating signals have also been reported for certain SERS experiments. As a possible expla-

nation hot spot reactions of the metal surface with oxygen were given. In order to rule out this

side reaction on the metal tip the cells were purged with pure argon gas while performing the

experiment.

The dry argon atmosphere caused the bacterial cells to collapse due to dehydration as can be

seen in the pseudo three dimensional image in figure 5.7A, and therefore, the experiment was not

carried on. Nevertheless, tip-enhanced Raman spectra could be recorded from the sample surface

which also showed slight signal fluctuations in intensity and position. In figure 5.7B an averaged

spectrum from one point on the sample surface is shown. The vibrational bands are similar to

those reported earlier in this chapter forS. epidermidisunder ambient conditions (see table 5.1). A

more detailed analysis of surface processes associated with the dehydration of the cells is beyond
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Figure 5.7: Pseudo-3D-imageA) and TERS spectraB) of S.epidermidisunder an argon atmo-
sphere. The dry argon gas caused the cells to collapse.

the scope of this work and more experiments have to be performed to provide trusted results. In

future experiments under argon the noble gas should be saturated with water to provide a friendly

atmosphere for the bacteria.

5.6 Estimation of the enhancement factor

To judge the intensity of the tip-enhancing effect the enhancement factor for the experiments has

been estimated from the signal-to-noise ratio (SNR) and the probed sample area and volume to be

around 104-105. It was not possible to directly compare the Raman intensity with and without the

tip since in the absence of the enhancing metal tip no Raman spectrum of the bacteria could be

recorded under the chosen experimental condition.

An exemplarily estimation of the enhancement factor is given in the following using the TERS

spectrum in figure 5.3C. The standard deviation of the signal base line was determined in a rea-

sonably flat section of the spectrum above 1800 cm−1 to be 15 units. For further evaluations

three times of that standard deviation was used. The maximum signal of the sample was around

1190 cm−1 with an intensity of 1500 units above the lowest signal level. Using these values gave

a signal-to-noise ratio of around 35. No signal could be observed under same experimental con-
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5 Tip-enhanced Raman spectroscopy (TERS) of complex biological surfaces

ditions (same acquisition time of one second) when the probe was removed. Assuming that the

non-enhanced Raman signal could just be not detected leads to a relative enhancement of 35. To

estimate the absolute value also the different excitation areas have to be taken into account. The

spot diameter of the laser is around 1 µm, as can be estimated from figure 3.6 in section 3.1.5. The

active area of the tip should be in the order of magnitude of the apex diameter which is between 20

and 50 nm as estimated from SEM pictures (figure 3.3 in section 3.1.5). This means the enhanced

area in the TERS experiment is a factor of 2500 smaller than the actual laser spot resulting in an

area corrected enhancement factor of 1.5 ·105, or of 2.4 ·104 when using a tip diameter of 50 nm.

The measurements were performed in the intermittent-contact mode of the AFM, meaning that the

tip is not in permanent contact with the sample, but rather oscillating up and down with a specific

amplitude. The TERS enhancement is strongly distance dependent as discussed in more detail in,

for instance, Richards et al. [211] or Nothinger and Elfick [184]. A distance of 5-10 nm away

from the sample results in a signal loss between 10-1000 depending on the theoretical models

used. Assuming an oscillation amplitude of 6 nm (as selected with the set point) and a linear ap-

proximation of the enhancement between the highest and lowest tip position means that half of the

time the sample experiences full enhancement and the other half 10-1000 times less. According

to this assumption, the net enhancement factor of the probe (if it is closest to the sample surface)

is between 106−108. These estimations do not take any chemical enhancement nor the sample

thickness into account. The far-field Raman experiment collects signal from the whole cell depth,

whereas the TERS is restricted to a very small depth of a few tens of a nanometer. The estimated

enhancement factors are roughly in the same order of magnitude as the ones obtained by Stöckle

et al. [247] and Pettinger et al. [197].

5.7 Possible problems

Preparation of the enhancing tips Essential for a high enhancement is the small SERS active

metal particle at the tip apex of the AFM tip. In these experiments this was obtained by silver

deposition on commercial AFM tips. Even though the silver evaporation procedure is quite con-

trolled the silver coating is not always identical. Therefore, there are always tips which do not give

a good enhancement, maybe because they do not have an enhancing silver particle at the tip apex,

or because the size and shape of that particle shifts the plasmon resonance to other frequencies so

that they could not be excited with the applied laser. A first estimation could be done by charac-

terizing the plasmon resonant frequency of the silver coated tipsby near-field absorptionprior to

the experiment. The technique was not available when the experiments have been performed but

should be operable soon in the future.

Pushing of the sample by the tip All the shown topographies and TERS spectra have been

recorded in the intermittent contact mode of the AFM. When using the AFM in the contact mode

the staphylococcus cells have been moved by the tip on the glass surface. Figure 5.8 shows the
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Figure 5.8: S.epidermidismoved on the glass plate by the AFM tip.

"aligned" bacterial cells (seen as small circles) on the support after the tip has pushed them just

outside the scanned region. The black rectangular on the left side of the picture represents the

cantilever underneath which the tip is located. This pushing problem has not been observed when

investigatingEscherichia colicells or using the intermittent contact mode.

Contamination of the tip When investigating soft biological material such as bacterial cell

surfaces special care has to be taken to avoid a contamination of the probing tip. Figure 5.9 shows

a scanning electron microscope (SEM) image of an AFM tip that has picked up parts of the cell

material. As the consequence artefacts in the AFM topography image as well as TERS spectra

irrespective of the probed sample area have been obtained. One of the easiest ways to confirm a

clean tip is to simply detect a TERS signal (or just the background signal) from the clean substrate

after it was in contact with the sample. Additional information can be obtained from SEM images

of the tip after the experiment. Furthermore AFM images after the TERS measurement can verify

intact cells.

5.8 Summary and outlook

Tip-enhanced Raman spectroscopy provides valuable chemical information of the bacterial sur-

face with a high spatial resolution below the diffraction limit in a non-invasive manner as was

shown forS. epidermidisin this chapter. The spectra of the intact surface of the whole cell con-

tain mainly contributions from protein and peptide moieties which is in good agreement with the

biological known composition of the outer bacterial layer. Characteristic vibrational bands from

N-actylglucosamine, the main building block of the cell wall and of the surface polymers PIA and

TA, could be identified in the TERS spectra of the bacteria confirming the rich abundance of this
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Figure 5.9: REM image of contaminated AFM tips after the experiment with attached sample.

compound at the outer layer of the cell. Due to the signal enhancement only short integration

times are required to record tip-enhanced Raman spectra with good signal-to-noise ratio. A rough

estimation of the enhancement factor from the signal-to-noise ratio (SNR) and the probe sample

area and volume results in an overall enhancement on the order of 105− 108 which is in good

agreement with the electric field enhancement estimated by Notinger and Elfrick [184]. The spec-

tra recorded on specified spots on the bacterial surface change on a time scale of a few seconds

and might provide a glimpse on the surface dynamics of the cell. However, the influence of the

high local electromagnetic field on the surface dynamics has not yet been investigated.

These first experiments using TERS to investigate biological cells raise a lot of further experi-

ments to study a variety of biological and biomedical problems. First of all, other bacterial surfaces

such as of Gram-negative bacteria such as for exampleEscherichia colicould be investigated and

their spectra compared with those from Gram-positive bacteria. It is also desirable to move to a

more natural environment for the bacteria and perform the experiments in solution. The addition

of drugs such asβ -lactams and glycopeptides should alter the surface of bacteria and when the

tip is chemically modified specific drug-target interactions or specific "communication" between

different cells might be sensed. Further research effort should also be invested in the production

and characterization of reproducible well-defined enhancing tips.

The great potential of tip-enhanced Raman spectroscopy is provided by the rich chemical in-

formation with a high spatial resolution while the sample preparation is very easy. It doesn’t

require any pretreatment and therefore allows the investigation in the natural biological environ-

ment. The application of this technique to complex biological systems marks a big step forward

towards the investigation of bacterial surfaces without the need of labelling techniques. With the

high spatial resolution down to a few 10 nm and the rich structural information of the vibrational

spectra obtained by TERS provide new insights into structure details, composition and arrange-
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5 Tip-enhanced Raman spectroscopy (TERS) of complex biological surfaces

ment of the individual components on the cell surface can be gained. Such information is crucial

for understanding many biological processes and mechanisms, for example, cell recognition, bac-

terial adhesion, formation of biofilms and bacterial pathogenesis. Furthermore it can be helpful on

the way to a detailed elucidation of the mode of action of cell-wall-attacking antibiotics such as

β -lactams and glycopeptides, and it might open new prospectives for the design of new drugs.
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6 Fluoroquinolones – important antibiotics

In the previous two chapters bacteria have been characterized extensively using vibrational spec-

troscopy and insights have been gained in the metabolic changes during bacterial growth. As bac-

teria are often the cause of infections, effective methods are desired to fight them. Different types

of antibiotics exist which interfere with various vital metabolic processes within the bacteria. This

chapter focusses on drugs of the fluoroquinolone type which attack the bacterial enzyme gyrase.

A variety of gyrase inhibitors (nalidixic acid, oxolinic acid, cinoxacin, flumequine, norfloxacin,

ciprofloxacin, lomefloxacin, ofloxacin, enoxacin, sarafloxacin and moxifloxacin) are investigated

by means of micro-Raman spectroscopy excited with various excitation wavelengths, both in the

off-resonance region (532, 633, 830 and 1064 nm) and in the resonance region (resonance Raman

spectroscopy at 244, 257 and 275 nm). Furthermore DFT calculations are performed to assign the

vibrational modes, as well as for an identification of intramolecular hydrogen bonding motifs. The

effect of small changes in the drug environment was studied by adding successively small amounts

of water until physiological low concentrations of the drugs in aqueous solution were obtained.

At these low concentrations resonance Raman spectroscopy proved to be a useful and sensitive

technique. Supplementary information was obtained from IR and UV/vis spectroscopy.

6.1 Background and history

Quinolones are important and effective agents for the treatment of bacterial infections [15, 102].

Since the discovery of nalidixic acid for the treatment of Gram-negative urinary tract infections in

1962, much effort was invested in the development and improvement of these drugs. New groups

were introduced in order to increase the potency of the drugs for a broader class of pathogens

and to obtain better pharmacodynamics and pharmacokinetics. Nowadays they are potent antibi-

otics against Gram-negative and Gram-positive bacteria as well as against problematic germs like

chlamydia or anarobes [194]. Recently they are also used against mycobacteria [254, 253]. In

1994 fluoroquinolone made up 25% of all prescribed antibiotics against bacterial infections.

The development of the quinolones within little more than four decades can be divided into

three generations. The first-generation agents derived directly from nalidixic acid and include

cinoxacin, oxolinic acid and also the progenitor fluorinated agent, flumequine (the structures are

depicted in figure 6.1). They were predominantly used for the treatment of urinary tract infections.

The second-generation drugs show an enhanced activity, mainly against Gram-negative pathogens,

but also a balanced broad spectrum of activity with increased potency against pneumococci. The
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6 Fluoroquinolones – important antibiotics

most popular representative of the second-generation agents is ciprofloxacin, which remains the

most potent fluoroquinolone against Gram-negative bacterial pathogens, includingPseudomonas

aeruginosa[16]. In a period of 15 years it has been prescribed more than 340 million times

[16, 17, 234]. However, many of the second-generation drugs caused adverse drug reactions in the

patients and had to withdrawn again from the market. The third-generation agents are character-

ized by markedly increased potency against Gram-positive pathogens yielding minimal inhibition

concentrations in the range of 0.06-0.25 mg/L. Moxifloxacin is a popular representative of this

generation.

The quinolones inhibit the action of the bacterial enzyme gyrase and thereby causing cell death

(for a more detailed description of gyrase and its action see chapter 8). Even though the fluo-

roquinolones are used as active agents in many antibiotics, the detailed mechanism of action on

a molecular level is so far not known. It is of greatest interest to shed light on this drug-target

interaction to provide useful information in the fight against growing resistances and obtain new

insights for the development of new powerful drugs. To reach this goal, on a first step it is essen-

tial to understand the structural characteristics of the drugs and the effects that are caused by the

environment in detail.

6.2 Structural characteristics of the fluoroquinolones

The common structural element of the fluoroquinolone drugs is the central quinolone unit. It is

depicted with the atom numbering in the bottom right corner of figure 6.1. In a few cases, as in

nalidixic acid and enoxacin, substitution of the carbon atom at 8-position by a nitrogen atom leads

to a naphthyridone skeleton. Figure 6.1 shows the chemical structure of a variety of those drugs

from different stages of development. All of them have been investigated within the frame of this

work.

Furthermore, the five precursers of the fluoroquinolone moxifloxacin have been included in the

study. Their structures is shown in figure 6.2. The precurser structures A, B and C do not have

a free carboxyl group in position 3. They did not show any antibacterial activity as was found

in antibiotic susceptibility tests (see section 3.2.1). In contrast, the structures D and E, which are

the free acids of the esters A and B were highly active against bacteria with minimal inhibition

concentrations of less than 0.05 µg/ml, as determined in antibiotic susceptibility tests. It can

therefore be concluded that the carboxyl group in position 3 pivotal involved in the mechanism of

action.

Several modifications were done to the structure of the first quinolone drug nalidixic acid dis-

covered in 1961. Piperazine substitution at the 7-position led to compounds with increased activity,

also againstPseudomonas aeruginosa, fluorination in 6-position resulted in the fluoroquinolones

and gave together with the modification of other side chains enhanced activity against Gram-

positive bacteria, improved potency against pneumococcus, improved pharmacokinetic profiles

and longer serum half-lives [15].
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Moxifloxacin is one of the newer fluoroquinolone drugs which reached the UK market in 2000

as a powerful respiratory agent. The addition of an azabicyclo group in position 7 improves the

activity against Gram-positive bacteria, and brings also a marked lipophilicity and half-lives of

more than 10 hours [9]. Moxifloxacin retains activity against many staphylococcal isolates that

developed resistance to the older fluoroquinolone drug ciprofloxacin [142]. This testifies the rec-

ognized fact in pharmaceutical and medical research that the only solution to overcome the threat

of growing resistances is to continuously develop new drugs [138]. In order to facilitate target-

oriented research new techniques that provide a fast and reliable insight into the molecular mode

of action of antibiotics are in high demand.

6.3 Proposed mode of action of the fluoroquinolones

Despite many microbiological, chemical and spectroscopic investigations the exact impact mech-

anism against infectious diseases of the 4-quinolones is not yet fully understood. It is known that

the gyrase inhibitors of the quinolone type attack the bacterial gyrase-DNA-complex [88]. This

gyrase-DNA-complex is responsible for the supercoiling of bacterial DNA and necessary dur-

ing bacteria replication (see also chapter 8). The double-stranded DNA is bound to the enzyme,

which is formed by two of each subunits GyrA and GyrB. The DNA is cut and both strands are

moved against each other so that supercoils are inserted. The disturbance of this process by the

quinolones is bactericidal. It was shown that the 4-quinolones neither bind specifically to the en-

zyme gyrase itself nor to the DNA itself but only to the gyrase-DNA-complex. Models by Shen

et al. [238, 239] and Heddle et al. [98] therefore assume the inclusion of the quinolones into the

sliced double-stranded DNA. As was found by mutation and resistance experiments the ternary

complex with the quinolone is essentially stabilized by the amino acids Ser83 and Asp87, and also

Ala67, Gly81 and Gln106 of the GyrA-subunit of the gyrase [18]. These amino acids and Tyr122

are supposed to be part of the binding pocket for the 4-quinolones. Supported by mutational exper-

iments and X-ray structural analysis of the enzyme without DNA [29, 45], it is assumed that there

are two binding pockets, one for the intercalation of the 4-quinolone into the DNA, the other for

interaction of the drug with Ser83 and Asp87 of the GyrA-subunit of the enzyme [98]. However,

the way the quinolones interact with the amino groups is still unclear. They might interact through

hydrogen bonding with the 4-oxo-3-carboxyl-group, but this is not yet proved. Even though X-

ray crystallography is a powerful tool, it is really problematic to apply it for the elucidation of

structure-activity relationships, since this technique shows only a snapshot of the very dynamical

process which is accompanied with huge conformational changes of the enzyme during the super-

coiling of the DNA. Therefore other techniques like Raman spectroscopy or NMR, for instance,

are necessary to gain insight in the mechanism. Lecomte and Baron [130] and Lecomte et al. [131]

did some first NMR and surface enhanced Raman (SER) spectroscopic investigations of the system

4-quinolone pefloxacin, Mg2+ and single and double-stranded DNA. These studies showed that

pefloxacin-DNA-interactions are enhanced in the presence of Mg2+, and that a better binding of
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pefloxacin to DNA is achieved with double-stranded DNA than with single stranded DNA. In the

work of Lecomte et al. [131], only pefloxacin was used as a quinolone and no drug-amino acid in-

teractions were considered. The interaction of quinolone antibacterial agents with metal ions was

also reviewed by Turel [260], focussing on thermal analysis, potentiometric measurements, IR-,

UV/vis and NMR spectroscopy. Vibrational spectroscopic techniques like Raman spectroscopy

represent one of the most useful tools for obtaining information about structure and properties

of molecules [195]. However, the assignment of the Raman bands of polyatomic molecules is

rather complicated. Theoretical calculations, first of all DFT calculations, are therefore the appro-

priate tools to obtain a deeper insight into the microscopic atomic displacements of complicated

molecules.

In this chapter vibrational spectroscopical and theoretical (DFT calculations) investigations

are performed on different quinolones, including quinolones of the first generation (nalidixic

acid, cinoxacin), second generation, that are used as standard quinolones nowadays (norfloxacin,

ciprofloxacin, ofloxacin, enoxcacin) and of the third generation (moxifloxacin, sarafloxacin) (fig-

ure 6.1). The understanding of the spectral properties of the quinolones could help to further

optimize already existing active agents, and also assist a specific search for new effective struc-

tures. Furthermore, the spectroscopic characterization of the quinolones should provide important

information towards the identification of the exact target structure on a molecular level and provid-

ing the tool to observe the cooperative effects more closely. The ultimate goal is the understanding

of the exact mechanism of action of the fluoroquinolones which is so far unknown, but of greatest

interest in order to fight growing resistances [98, 101]. In order to accomplish this ambitious goal

one has to start with a detailed vibrational spectroscopical characterization of the pure reactive

agent (fluoroquinolones) (and also of the isolated biological targets DNA (chapter 7) and gyrase

(chapter 8)), since the biological functionality of an agent critically depends on its structure. But

not only the pure substance itself, but also its interaction with the environment needs to be under-

stood in detail in order to describe the action of the antibiotics in the real biological environment.

Therefore, the artificial environment should be successively changed into a real biological system.

In this chapter, in a first step water was added in a well defined manner to the pure substances

until biological relevant concentrations were obtained. Furthermore, the influence of different pH

values was studied. Raman spectroscopy proved to be a very sensitive tool to monitor even weak

inter- and intramolecular interactions of the active agents, e.g. hydrogen bonding. The problem

that arises from the really low concentrations of the active agents in solution was overcome by the

use of the highly sensitive resonance Raman spectroscopy technique. With the help of DFT cal-

culations vibrational bands could be assigned and the observed spectral changes interpreted. That

way it was possible to identify the structure as well as weak interactions between the molecules,

e.g. intramolecular H-bonding which once again proved the high potency of vibrational spec-

troscopy to study the complex interaction phenomena.
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Figure 6.3: UV/vis absorption spectra of the quinolones in water.

6.4 UV/vis absorption spectra

All UV/vis spectra of the investigated substances (solutions in water) show a characteristic ab-

sorption band between 300 and 380 nm (figure 6.3). A second maximum is observed between

240 and 300 nm which is mainly due to the aromatic ring absorption (π → π∗-transition). The

longest wavelength maximum is due to ann→ π∗ (HOMO-LUMO) electronic transition [244]

and consists of two subpeaks which are caused by an equilibrium of the quinolones forming an

intermolecular hydrogen bond with the solvent molecule water and quinolones forming an in-

tramolecular hydrogen bond of the 4-keto and the 3-carboxylic acid group.

CIN is the only observed quinolone with a nitrogen atom at 2-position (see figure 6.1) influenc-

ing the chromophoric system and resulting in an absorption maximum that is bathochromically

shifted compared to the other quinolones.

NAL has the fewest electron-pushing and pulling groups (no F, no piperazyl) of all investigated

substances, i.e. its absorption maximum is found blueshifted compared to all other substances.

The quinolones contain one acidic (COOH) and a basic functional group (lone pair at nitrogen)

which can be involved into protonation and deprotonation reactions. The pKa values associated

with the carboxylic acid function range from 5.3 to 6.9 for the observed substances (table 6.1, last

column) which is slightly higher than the usual values observed for aromatic carboxylic acids, such

as benzoic acid having a pKa of 4.2. This decrease in acidity can be attributed to an intramolecular
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Table 6.1:Absorption maxima (nm) of the quinolones in aqueous solutions at different pH values.

Substance Acidic Neutral Basic pKa(COOH)/pKa(N)
pH 2 pH 7 pH 12

nalidixic acid 315 325 335 6.04a

oxolinic acid 335 337 339 6.92a

cinoxacin 354 361 361 5.32a

lomefloxacin 320 320 329 5.82/9.3b

ofloxacin 330 332 332 6.05/8.22b

flumequine 336 336 342 6.30a

norfloxacin 330 334 334 6.3/8.38b

ciprofloxacin 329 334 334 6.09/8.74b

enoxacin 338 345 345 6.31/8.69b

a Values reported by Jimenez-Lonzano et al. determined by UV spectra [111]
b Values reported by Ross and Riley [219]

H-bond formation of the acidic group with the neighboring keto function resulting in a stabilization

of the protonated species. For a physiological pH value (pH∼7.4) the molecules exist as a mixture

of the neutral and the zwitterionic form [219].

Especially the long wavelength absorption band is sensitive to pH changes. Upon increasing the

pH value of the solution a bathochromic shift of the absorption maximum is observed (see Table

6.1). This can be explained by a change of the state of protonation. For low pH values a protonated

cationic form is formed, while for intermediate pH values the neutral form and for high pH values

the deprotonated anionic form exists. As an example the UV/vis absorption spectra of NOR for

different pH values are shown in figure 6.4A.

6.5 DFT calculations

Figure 6.4B presents the optimized molecular structure of NOR (top) and its anion (bottom) with

the corresponding atom numbering as obtained by DFT calculations. The rigid quinolone ring

system is planar; the ethyl group at N1 is sticking out of the plane. The piperazine ring is in the

usual chair conformation. As can be seen in figure 6.4B (top), NOR in the solid state forms really

strong intramolecular hydrogen bonds between the hydrogen atom of the carboxylic acid and the

carbonyl oxygen O4 which causes a lengthening of the C(4) O bond (calc. 1.25 pm). In the anionic

form (figure 6.4B (bottom)) the carboxylic group is deprotonated and since hydrogen bonding is

not possible anymore, the carboxylic group is rotated along the C3- C11 axis, so that electrostatic

repulsions between the two oxygen atoms O1 and O3 are minimized. The plane through the

atoms C11, O1 and O2 is rotated by about 36◦ against the plane through the quinolone rings. The

calculated structures resemble the bond distances and angles obtained from X-ray crystallography

for several NOR derivatives by Turel et al. [262] and Florence et al. [74]. The analysis of

some metal complexes of NOR indicated the presence of two non-equivalent protonated NOR

molecules [262]. One of the NOR molecules presents an intramolecular hydrogen bond between

the carboxyl and carbonyl groups. The C4=O bond length in a copper complex is 126.6 pm while
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Figure 6.4: A) UV/vis absorption spectra of NOR at different pH values (dashed line: NOR in
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Optimized structure (B3PW91/6-31+G(p,d)) of NOR (top) and its anion (bottom).

the carboxylic C=O bond is 120.8 pm and the C-O bond is 135.4 pm indicating the very strong

intramolecular hydrogen bonding.

6.6 Raman spectra of the bulk substances

6.6.1 Micro-Raman spectra of norfloxacin

Figure 6.5 shows the calculated (DFT) and experimental Raman spectra (λex= 1064 nm) of NOR

being a representative example for the investigation of the quinolones. The calculations resemble

well the experimentally observed Raman wavenumbers and intensities. Therefore, the calculations

allow for a detailed mode assignment as it can be seen in table 6.2 for NOR. The vibrations of the

most intense band at 1400 cm−1 (calc. 1377 cm−1) are visualized with a picture of the vibrating

molecule in figure 6.6A where the length of the arrows is proportional to the intensity of the

vibration.
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Table 6.2:Detailed vibrational analysis of NOR (some experimental vibrational wavenumbers of
CIPRO are also included),λex=1064 nm, calc. BPW91/6-311+G(d).

Raman Raman Raman calc. vibrational assignment
CIPRO NOR NOR/ H2O
(cm−1) (cm−1) (cm−1) (cm−1)

—- 1722w —- 1737 νC11=O2(66) -δCO1-H(9) -δCC3-C11(7)
sh 1627s 1629sh 1615 δ inR1,R2(30) -νC5-C6(20) -νC8-C9(10) +νC5-C10(6) -δN1C12C13(5)

1617vs 1612ms 1616vs 1606 νC2-C3(23) -νN1-C2(9) -δ inR1(9) -δ iνN1C12C13(9) +νC4=O(6)
νasymCOO- in CIPRO and hydrated NOR

1591vs 1547m 1584br 1558 νC4=O(39) +δ inN1C12C13(15) -δ inR1(10) +νN1-C2(7) -νC3-C4(6)
1542vw 1520w 1527 νC6-C7(20) -νC5-C10(19) +νC9-C10(13) +δ inR2(8)
1499vw sh 1491 δ scisC12H2(40) +δ inN1C12C13(36)

1489 δ inN1C12C13(45) +δ scisC12H2(32)
1475m 1482 δ asymCH3(22) +δ scisC12H2(16) +δ inR1(10) +δ inCN1-C11(9) +δCO1-H(8) +δ asymCH3(8)

1477 δ asymCH3(66) - δ asymCH3(21) - δ rockCH3(7)
1474 δ scisC12H2(65) +δN1C12C13(22)

1455w 1462 1459 1467 δCN17H(54) +δ scisC15H2(13) +δ scisC19H2(6)
1458 δ scisC15H2(42) +δ scisC19H2(29) - δ scisC12H2(7)
1452 δ inCO1-H(21) -δ inR1(15) -δ scisCH2(9) - δ inCN1-C11(8) +δN1C12C13(6)

1448w 1448 δ scisC18H2(54) +δ scisC16H2(25) - δ scisC15H2(12)
1440 1445 δ scisC19H2(39) - δ scisC15H2(14) +δ scisC16H2(7) - δ inCN1-C11(6)

1440 δ scisC16H2(55) +δ scisC18H2(35)
1398 δ inCN1-C11(47) +δ wagC12H2(10) +δ symCH3(9) + δ scisC12H2(5)
1389 δ symCH3(31) - δ inCN1-C11(18) +δ inR1(8) - nC8-C9(6)

1382vs 1400vs 1392 1377 νC9-C10(15) -νN1-C9(8) +νC7-C8(8) -νC7-N14(7) -νC5-C6-C7(10) -δ inCN1-C11(5)
1388sh 1371 δ wagC19H2(27) +δ wagC15H2(13) +δ inCN1-C11(5)

1364m 1375m 1381sh 1367 δ wagC16H2(9) + δ wagC12H2(9) - νC6-C7(8) +νC7-C8(8) +νC9-C10(7) -δ symCH3(7)
1361 δ wagC16H2(15) +δ wagC18H2(15) +δ wagC19H2(7) + νC3-C4(5)

1353w 1345 δ wagC18H2(17) +δ wagC15H2(12) - νC5-C10(8) +δ wagC19H2(8) + δ twistC16H2(8) + νC7-N14(5)
1331vw 1335 δ wagC16H2(27) +δ twistC19H2(10) +δ wagC18H2(8) - νC7-C8(6) +νC5-C10(6)

1323 δ wagC15H2(29) +δ wagC18H2(19) +δ wagC19H2(17) +δ wagC16H2(9)
1322 δ twistC16H2(23) +δ twistC18H2(20) +δ wagC19H2(12) +δ wagC15H2(9)

1306br 1307 δN1C12C13(55) -δ inCN1-C11(11) +νN1-C2(6) -νN1-C9(6) +δ wagC12H2(5)
1301 δ twistC12H2(82) - δ rockCH3(7)

1264 1274vw 1269 1288 νC3-C11(9) +νN1-C12(9) -νC3-C4(8) +νC4-C10(7) -δ inCC2H(7) +δ inR1(7) +νC5-C10(6) -νN1-C9(5)
1256 δ twistC19H2(19) +δ twistC18H2(12) +δ twistC16H2(11) +νC5-C10(5)

1254w 1250 δ twistC15H2(27) - δ inCN1-C11(10) + nC7-N14(7) +δN1C12C13(5) - nC7-C8(5) -δ inCC2H(5) +δ wagC16H2(5)
1233vw 1235 δ inCC8H(21) +δ inN1C12C13(12) -δ inCC5H(11) -δ inCN1-C11(10) +δ inR1(7) - nC8-C9(7)

1192 δN1C12C13(10) +δ twistC19H2(9) - δ inR2(13) -νC4-C10(7) -νC6-F(7) -νC11-O1(6) -νN14-C15(5)
1187 δ twistC15H2(23) δ twistC18H2(14) +δ twistC19H2(10)
1179 νC11-O1(13) -νN1-C9(13) +νN1-C12(10) +δ inCC2H(10) -δN1C12C13(7) +δ inR2(6.)
1153 δN1C12C13(31) -δ inCN1-C11(11) -νC11-O1(8) +νN14-C15(7) -νN14-C19(5)
1145 δN1C12C13(25) -δ inCN1-C11(16) +νN14-C19(6) +νC6-F(5)
1130 δ rockC12H2(43) +δ rockCH3(31) - δ outCN1C11(7) +δ twistC12H2(6)
1121 δ outR3(13) -δ rockC15H2(11) +δ rockC16H2(10) +δ rockC18H2(10)

1104vw 1111 νN17-C18(26) -νC16-N17(22) +νC15-C16(10) +νN14-C19(9) -νN14-C15(8) -νC18-C19(7)
1092vw 1091 δN1C12C13(52) -δ inCN1-C11(25) +δ inCC12-C13(10)

1082 δN1C12C13(40) -δ inCN1-C11(24) +δ inCC12-C13(11)
1041w 1045 δN1C12C13(40) +δ inCC12-C13(35) +δ rockCH3(5)

1018 δ inR3(21) +δ rockC16H2(12) - δ rockC15H2(12) +δ inR2(7)
1006 δ rockC19H2(22) +δ rockC16H2(17) - δ rockC15H2(12) +δ rockC18H2(8) + δCN14H(7) -δ outR3(6)
1002 νC18-C19(20) +νC15-C16(18) -νN14-C19(10) -νN14-C15(8) -δ inR3(15)

971w 968 δ inCN1-C11(30) + nC12-C13(23) +δ inR1(9) +δ inCC12-C13(7) +δ rockCH3(6)
927 νC16-N17(10) +δ inR1,2(17) -νN14-C19(8) +νN17-C18(7) -νN14-C15(7) -νC12-C13(6)
915 δ outCC2H(64) -δ outCC3-C11(16) +δ outR1(13)
909 νC15-C16(28) -νC18-C19(19) -δ outCC7-N14(9)

894w 888 δ outCC5-H(65) -δ outR2(24)
875 δ inR1(16) -δN1C12C13(11) -δ rockC15H2(6)

848w 849 δ outCO1-H(94)
838 δN1C12C13(24) -δ inCN1-C11(24) +δ inR1,2(12)
819 δ rockC16H2(14) - δ rockC12H2(11) +δ rockCH3(10) +δ rockC19H2(8) - δ outCC8H(6)
816 δ rockC12H2(20) - δ rockCH3(18) - δ outCC7-N14(7) +δ rockC16H2(6) + δ outCC8H(5)

783vw 781 δ outCC7-N14(33) +δ outR2(19) -δ outCC8H(12)
776 δ outCN17H(24) +δ outCC7-N14(14) -δ outCC8H(9) +δCN17H(9) +δ outR2(8) -νN17-C18(7) -νC16-N17(7)
769 δ outCC7-N14(13) +δ outR2(9) -δ outCC8H(8) -δN1C12C13(8) +δ inR1(13)

753m 746 δN1C12C13(40) -δ inCN1-C11(26) -δ inR1(9)
741 δ outR1,2(33) -δ outCC3-C11(22) +δ outCC11=O(12) +δ outCC11-O(12) -δ outCC4=O(8)

714w 705 δ outR1,2(69) -δ outCC4=O(7)
700w 696 δN1C12C13(53) -δ inCN1-C11(18) -δ inR2(5)

687 δ outCC7-N14(37) +δ outR2(30) -δ outCC6-F(7)
667w 682 δ outR2(24) +δ outCC7-N14(22) -δ inCC12-C13(10) -δ outCC6-F(6) +δ inCC11=O(5) -δ inCC11-O(5)
642w 631 δ outR1,2(68) -δ outCN1C11(8)
624 617 δ inCN1-C11(19) -δ outR1,2(37) -δN1C12C13(13) +δ outR2(8)

606 δ inR1(33) +δ inCC7-C14( 5.)
525 554 δN1C12C13(33) -δ inCN1-C11(20) -δ inR3(7)

539 δN1C12C13(57) -δ inCN1-C11(36)
500w 490 δ outR1,2(64) +δ outCC3-C11( 14.) +δ outCN1C11( 12.)

474 δN1C12C13(53) +δ inCC12-C13(30) -δ inCN1-C11(11)
467vw 470 δ inR3(31) +δN1C12C13(26) +δ inCC12-C13(15) -δ inCN1-C11(5)
457w 454 δ outCC7-N14(59) -δ outR2(14)
447w 451 δ inCC12-C13(44) +δ inCN1-C11(19) -δ inR1(6)
401vw 426 δ inCC12-C13(40) +δN1C12C13(17) +δ inCC4=O(8)
394vw 389 δ outR3(46) + ***(10) - δ outR2(6) +δN1C12C13(5) +δ inCC7-C14(5)
377vw 376 δ outR1,2(44) -δ outCC3-C11(15) -δN1C12C13(8) +δR2,3(6)

359 δN1C12C13(42) -δ inR1(18) -δ inCC4=O(8) +δ inCC12-C13(6)
348 δN1C12C13(47) -δ inCN1-C11(24)
334 τR1,2(22) -δN1C12C13(22) +δ outCN1C11(22) -δ outCC3-C11(7) +δ inCN1-C11(6)

316w 317 δN1C12C13(59) +δ inCC12-C13(30) -δ inCN1-C11(5)
297 δ inCC12-C13(44) +δN1C12C13(26)
289 δ outR1,2(42) -δ outCC3-C11(13) +δ inCC12-C13(12)
266 τR1,2(29) -δ outCC3-C11(20) -δ inCC12-C13(11) -δ outR3(11) +δ outCN1C11(5)
250 δ inCC12-C13(30) +δ outR3(13) -δ outCC3-C11(10) +δN1C12C13(7) +δ inCN1-C11(6)

242w 233 δ outCC3-C11(15) +δ outR1,2(31) +δ inCC12-C13(10) -δ outCN1C11(6)
217w 207 δ inCC12-C13(66) +δ inCN1-C11(19) +δN1C12C13(10)
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Figure 6.7: Calculated Raman spectra of different conformation of CIN in comparison with mea-
sured Raman spectra of the solid sample:A) experimental spectrum of CIN (λex =
633 nm);B) calculated for CIN with intramolecular H-bond to N2;C) CIN without
H-bond;D) CIN with intramolecular H-bond to the carbonyl-O.

Very rarely a vibrational band is only due to two vibrating atoms. Most of the time it involves

a larger number of internal coordinates (many atoms). An exception are the C=O stretching vi-

bration around 1700 cm−1, the CH vibrations above 2900 cm−1 and a few CH vibrations around

900 cm−1.

6.6.2 Assignment of hydrogen bonding in the fluoroquinolones

DFT calculation can also be useful for an assignment of intermolecular hydrogen bonding. As an

example the calculations for CIN are shown in figure 6.7. Besides the hydrogen bond between

the carboxylic group and the adjacent keto group (figure 6.7D), which is possible in all observed

quinolones, in CIN also hydrogen bonding to the nitrogen in position 2 of the quinolone ring is

conceivable (figure 6.7B). Comparison with the measured Raman spectrum of solid CIN (figure
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Figure 6.8: Raman spectra of different quinolone derivatives (λex = 532 nm).

6.7A) shows best agreement with the calculated spectrum of CIN forming an intramolecular hy-

drogen bond to the adjacent keto group indicating that in bulk substance CIN mainly exists with

an intramolecular hydrogen bond to the keto oxygen. This is in good agreement with the observed

decrease of acidity of the carboxylic group. Similar calculations were performed for the other

quinolones showing that the formation of an intramolecular hydrogen bond is favorable, because

a stable 6-membered ring is formed, which leads to the geometric structure with the lowest energy

(energetically favored species).
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Table 6.3:Some characteristic Raman wavenumbers of the quinolone in the solid state.

Substance νCO νCC νCO δCH2 νring,ip δout

(cm−1) (cm−1) (cm−1) (cm−1) (cm−1) (cm−1)

Nalidixic acid NAL 1714 1614 1560 1465 1380 779
Oxolinic acid OXO 1710 1632 1575 1476 1403 773
Cinoxacin CIN 1741 1621 1555 1503 1424 768
Lomefloxacin LOM 1714 1625 1542 1549 1392 788
Ofloxacin OFL 1717 1619 1543 1452 1395 779
Flumequine FLU 1718 1619 1549 1473 1390 767
Norfloxacin NOR 1722 1612 1547 1475 1400 777
Ciprofloxacin CIPRO − 1617 1591 1448 1382 786
Enoxacin ENO − 1621 1579 1446 1402 787
Moxifloxacin MOXI 1702 1611 1544 1422 1367 823
Sarafloxacin SARA 1724 1622 1533 1448 1382 721

6.6.3 Raman spectra of the other fluoroquinolones

Figure 6.6.3 presents the bulk Raman spectra of different quinolone derivatives. A typical feature

found in the spectra of all investigated quinolones is the strong band around 1400 cm−1. This band

was assigned to the stretching vibration of the quinolone ring system (νring). Depending on the

substituents the wavenumber is shifted slightly ranging from 1380 cm−1 in NAL to 1424 cm−1 in

CIN (Table 6.3). The weak C=O stretching vibration of the carboxyl group (νCO) is found between

1700 and 1725 cm−1 for almost all quinolones. In CIN an unusual high wavenumber value was

found for this vibration (1741 cm−1) which might be due to the nitrogen in the 2- position of the

ring system which has an influence on the distribution of the electrons in the molecule and due

to a weaker intramolecular hydrogen bonding. For CIPRO and ENO the C=O vibration around

1700 cm−1 could not be observed at all indicating that these two compounds exist as zwitterions

in the crystalline state. X-ray analysis of water complexes of CIPRO proved the preference of

the zwitterions in the polycrystalline state. The carboxylic proton is here found at the terminal

piperazine nitrogen atom. For zwitterionic CIPRO the corresponding C=O bond lengths are 125.1,

125.1 and 125.4 pm, for the C4=O bond, the carboxylic C=O and the C-O bond, respectively [261].

Other characteristic vibrational bands that can be found in the Raman spectra of the investigated

quinolones are the C=C stretching vibration of the aromatic rings (νCC) around 1620 cm−1, and the

CH-bending vibrations (δCH) in the region between 1440 and 1500 cm−1. Since all the investigated

quinolones possess a similar molecular frame (figure 6.1) they show similar characteristic features

in the Raman spectra. Nevertheless, each of the active agents can be distinguished by its own

spectral fingerprint and individual features.

6.7 IR absorption spectra of the bulk substances

Complementing the Raman spectroscopic investigations, IR spectroscopy was employed as an-

other vibrational spectroscopic technique to record spectra of the solid quinolones in KBr (figure

6.9). Since the investigated molecules possess C1-symmetry, the vibrations of the molecules are
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Figure 6.9: IR absorption spectra of the quinolones (∗ denotes the C-O vibration of the cyclic
ether).

both, IR and Raman active. However, different selection rules result in different intensities with

respect to the Raman spectra, but nevertheless, the same characteristic features of the quinolones

can be observed: the C=O stretching vibration of the carboxyl group (νCO) around 1715 cm−1,

the C=C stretching vibration of the aromatic rings (νCC) around 1620 cm−1, the CH-bending vi-

brations (δCH2) in the region between 1440 and 1500 cm−1 and the stretching vibration of the

quinolone ring system (νring) around 1400 cm−1, just to name a few of them.

Nevertheless, vibrational spectroscopy is also very well suited to point out the characteristic

structural differences of the observed quinolones. As an example the C-O vibration of the cyclic

ether at 1037 cm−1 in OXO and CIN is pointed out (asterisk near the vibrational band in figure
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6.9). Only in these two quinolones this cyclic ether is present and only here this vibrational band

is observed.

6.8 Raman spectra of the quinolones in hydrated environment

Since the ultimate goal of this work is to elucidate the detailed interaction of the quinolones with

their biological targets, it is very crucial to understand the effects that are caused by small changes

of the drug environment. In the cell environment water plays an important role as a solvent.

Therefore, the first step in successively getting from the pure crystal phase (artificial environment)

towards the biological environment is to add water molecules to the bulk substances in a well

defined manner. This can be achieved by the addition of crystal water. Raman spectroscopy as a

vibrational spectroscopic technique is very sensitive for such slight changes in the environment and
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with the help of DFT calculations the observed spectral changes of band positions and intensities

will shed light on the specific drug-solvent interactions on a molecular level.

Figure 6.10 presents the FT-Raman spectra of anhydrous and hydrated NOR (figure 6.10A and

B) and CIPRO (figure 6.10C and D). In the spectra of the hydrated species (figure 6.10B and D)

a broadening of the vibrational bands occurs, while the spectra of the crystalline compounds are

characterized by sharp bands.

Significant changes in the Raman spectra can be observed for NOR upon hydration. The most

striking difference between the Raman spectrum of anhydrous NOR and the hydrated species

is the disappearance of the band at 1722 cm−1 upon solvation (figure 6.10A and B). This band

corresponds to the C=O stretching mode of the carboxyl unit (table 6.2). Nevertheless, carboxylic

C=O stretching modes usually arise around 1750 cm−1. The relatively low wavenumber observed

for the carboxylic vibration in the Raman spectrum for NOR indicates a strong intramolecular

hydrogen bonding with the neighbouring pyridone C=O group. The absence of this band in the

spectrum of the hydrated species indicates the deprotonation of the carboxylic group when water

molecules are added and the formation of an anionic or zwitterionic species.

CIPRO already exists in the anhydrous state as a zwitterion. Therefore, the structural changes

upon addition of crystalwater are not very significant which is reflected in the great similarity of

the spectra of anhydrous and hydrated CIPRO. Here, the carboxylic group is deprotonated from

the beginning and therefore, this vibrational band is not observed in CIPRO at all. In Table 6.2

some of the experimental vibrational bands of CIPRO are added.

Interestingly, the DFT calculations for NOR predict the C=O stretching mode of the pyridone

group at very low wavenumbers (1558 cm−1, see table 6.2) because of the very strong intramolec-

ular hydrogen bonding. Support for this assignment is found in the experiment, where the band at

1547 cm−1 is shifted to 1584 cm−1 (see figure 6.10) upon solvation, when the intramolecular hy-

drogen bond is destroyed. Moreover, in the Raman spectrum of NOR hydrated with D2O (spectra

not shown) this band arises at 1576 cm−1, indicating a high sensitivity of this band to the mass

effect.

The strong bands at 1627 and 1612 cm−1 in the spectrum of anhydrous NOR (figure 6.10A)

can be assigned to the stretching modes of the aromatic quinoline ring. These C=C and N=C

stretching modes are predicted around 1600 cm−1 by DFT calculations (table 6.2). For NOR·H2O

only a small band shift of this mode at 1612 cm−1 in NOR to 1616 cm−1 is observed (figure 6.10B),

since this band has probably only small contributions from the carbonyl stretching mode as proved

by DFT calculations (see table 6.2).

Nonetheless, there are probably also contributions of the antisymmetrical COO− stretching

mode to the very strong band at 1616 cm−1 in the Raman spectra of hydrated NOR, since theoret-

ical calculations for the anionic species predicted the antisymmetrical COO− stretching mode at

higher wavenumbers than the carbonyl C=O mode.

The Raman spectrum of CIPRO presents also a broad band at 1617 cm−1 with a shoulder, which

can be assigned to the ring stretching modes, but might also get contributions from the antisym-
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metrical COO− stretching mode which should be already present in anhydrous CIPRO due to the

zwitterionic structure. This is expected from the similar chemical structure of NOR and CIPRO

(figure 6.1).

In contrast to NOR, the band of very weak intensity observed at 1542 cm−1 in the Raman spec-

trum of solid CIPRO (see figure 6.10C) is probably due to the components of the ring stretching

modes predicted at 1558 and 1527 cm−1. For CIPRO the strong band at 1591 cm−1 shows changes

in intensity upon solvation. Therefore, this band seems to correspond to the carbonyl stretching

vibration, but probably also involves the antisymmetrical COO− stretching mode.

As already mentioned in the Raman section for the bulk substances, the most prominent band

in the Raman spectra of anhydrous NOR arises at 1400 cm−1. In the spectrum of hydrated NOR

this band is shifted to 1392 cm−1. Even though, the theoretical calculations predicted several

deformation modes of the ethyl and piperazyl group in this spectral region (see table 6.2), this

band can be assigned to the ring stretching mode of the quinolone unit calculated at 1377 cm−1

(figure 6.6A). This assignment is in good agreement with the characteristic and very strong band

around 1380 cm−1 found in quinoline derivatives [35]. Theoretical calculations performed for the

anionic species predicted for the aromatic ring stretching mode a coupling with the symmetrical

COO− stretching mode as depicted in figure 6.6B. As CIPRO already exists in the anhydrous

state as a zwitterion, coupling of the aromatic ring stretching mode with the symmetrical COO−

stretching mode is possible in the anhydrous and the hydrated species as well. Therefore, the

corresponding vibrational band experiences no changes upon hydration and is found at 1382 cm−1

in both species (figure 6.10C and D).

Moreover, in the spectrum of hydrated NOR a medium intense band arises at 1327 cm−1 upon

solvation which probably corresponds to the symmetrical COO− stretching vibration calculated at

1347 cm−1 for the anionic NOR (figure 6.6C).

Another band which seems to be characteristic to the zwitterionic species is the one at 1269 cm−1

in the spectrum of hydrated NOR (figure 6.10B) as this band is also found in the spectra of anhy-

drous and hydrated CIPRO at 1264 and 1268 cm−1, respectively (figure 6.10C and D). This mode

possibly involves piperazyl stretching modes and for NOR additionally the N1-C12 stretching.

Nevertheless, the piperazyl ring stretching modes are predicted at lower wavenumbers, that is in

the 1200-900 cm−1 region. A few very weak and broad bands can be observed in this spectral

region in the Raman spectra of NOR and CIPRO. The bands at 1155 and 1035 cm−1 observed

in the spectra of hydrated NOR (figure 6.10B) being sensitive to the exchange of H2O for D2O

exhibiting shifts by about 10 cm−1 upon deuteration (spectra not shown here) can be assigned to

the piperazyl stretching modes.

The medium intense band at 1475 cm−1 in the spectrum of anhydrous NOR (figure 6.10A) was

assigned to the antisymmetrical CH3 deformation mode. Such a band is absent in the spectrum

of CIPRO (figure 6.10C and D), but the cyclopropyl ring stretching mode probably gives rise to

the band at 866/867 cm−1. Both molecules, CIPRO and NOR, present CH2 deformation modes of

the piperazyl ring around 1460-1440 cm−1. Below 1000 cm−1 several in-plane and out-of-plane
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Figure 6.11:A) Comparison of Raman spectra in the bulk (a) and solution (b and c) at different
pH, and in the presence of silver colloid (SERS; d,e) for ciprofloxacin (CIPRO)
B) Surface enhance Raman spectra (SERS) of enoxacin (ENO, bottom), norfloxacin
(NOR, middle) and ciprofloxacin (CIPRO, top).

deformation modes of weak intensity can be observed. Nevertheless, the out-of-plane carbonyl

deformation mode is usually quite intense in the Raman spectrum of the solid state and probably

gives rise to the bands around 700-750 cm−1 in the Raman spectra of NOR and CIPRO. The band

at 854 cm−1 in the spectra of hydrated NOR possibly also involves carboxyl and carbonyl in-plane

deformation modes.

6.9 Raman spectra in solution, pH-dependence

In the last section only a few water molecules have been added to the substances. However, in a

biological relevant environment the antibiotics act in rather dilute aqueous solutions. Therefore,

to better resemble the actual conditions in living organism Raman spectra of dilute aqueous so-

lutions of the active substances are investigated in this section. Furthermore, the pH-dependence

of the substances is of great interest since all organisms including bacteria are very sensitive to

the pH-value of the environment. Low pH-values are found, for example within the human body

(gastric acid in the stomach), high pH-values can be reached in the environment of some bacteria

(alkaliphiles).
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The Raman spectra of an aqueous solution of CIPRO at pH 6 and at pH 11 are shown in com-

parison with the bulk substance in figure 6.11A Graph b, a and c. At pH 11 only the anionic

form should exist, while at pH 6 a mixture of the neutral and the deprotonated species should be

in equilibrium. As already seen in figure 6.10, the addition of water causes a solvent induced

band broadening. However, it is furthermore possible to detect spectral variations caused by the

change of the state of protonation. As an example the vibrational band around 1590 cm−1 in the

bulk spectrum (figure 6.11Aa) which gets its main intensity from the carbonyl stretching vibration

and the antisymmetric COO− stretching mode should be mentioned. In acidic aqueous solution at

pH 6 (figure 6.11Ab) where this group should be at least partially protonated this band is almost

vanished, while it is quite intense in basic solution (figure 6.11Ac, pH 11), though slightly shifted

in wavenumber values (from 1591 to 1581 cm−1).

Other bands that experience solvent dependent changes are the vibrational band around 1617

cm−1, which shows an enhancement upon protonation (at pH 6), and the band around 1360 cm−1.

Also the hydrogen deformation modes of the piperazyl ring hydrogens in the wavenumber range

1480-1440 cm−1 change with pH due to changed state of protonation of the terminal nitrogen

atom of the piperazyl ring. In the solid state (zwitterions) and at pH 6 this nitrogen atom bears two

hydrogen atoms while it should be deprotonated at pH 11. Even though only a poor signal-to-noise

ratio could be obtained in aqueous solutions due to the low solubility of the quinolones in water it

was possible to detect small changes occurring upon changing the environment of the quinolones.

6.10 Surface-enhanced Raman spectra

Since quinolones are used as drugs their usual active concentration is quite low (peak concentration

in the tissue c∼ 2 µg/ml). For these concentrations the application of conventional micro-Raman

spectroscopy for excitation wavelengths in the visible or near infrared region is difficult. To be

able to detect the quinolones at physiological concentrations highly sensitive Raman methods are

required. One possibility is surface-enhanced Raman spectroscopy (SERS) in which the inter-

action of the substance of interest with colloidal silver surfaces results in a signal enhancement

and makes the detection of smallest amounts of substances possible. In these experiments sil-

ver colloidal surfaces were used and due to the signal enhancement it was possible to detect the

quinolones at much lower (up to 100 fold) concentrations as in pure solution. At concentrations as

low as 0.2 µg/ml (10−7 mol/L) still Raman spectra with good signal to noise ratio (figure 6.11Ad,

Ae) could be recorded.

Furthermore, the SERS studies were also performed to investigate the structure and the orien-

tation of the quinolones upon adsorbing onto surfaces. This could serve as a first model for the

quinolones binding to larger particles, like the DNA-gyrase-complex, and give important insight

in the characteristic binding sides of the quinolones. The comparison of SERS spectra with Raman

spectra in the bulk and in solution at different pH is shown for CIPRO in figure 6.11A. It can be

seen, that upon going from the bulk spectrum to the spectrum in solution and to the SERS spectrum
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only minor changes of the spectral position of the stretching mode of the aromatic quinolone ring

around 1625 cm−1 and of the strong vibrational band around 1400 cm−1 (stretching vibrations of

the aromatic quinolone ring system) are observed (the solvent effect was already discussed in the

previous section), indicating that CIPRO is not bound chemically to the silver surface, but only via

physical interaction. Since these modes are electromagnetically enhanced they should have com-

ponents perpendicular to the silver surface. This fact is met if the interaction of the quinolones

with the silver surface is thought to occur via their carbonyl groups. Upon changing the pH of the

Ag solution (figure 6.11Ad, Ae), slight changes of the orientation of the quinolone on the surface

are observed. At pH 6 the angle of the molecular plane of the quinolone ring system and the Ag

surface is relatively small and therefore a strong enhancement of the out-of-plane vibrations in the

low frequency range below 800 cm−1 is observed (figure 6.11Ad). At pH 11 the quinolone exists

as an anion. Due to the negative charge the physical binding to the silver surface via the carbonyl

groups is improved and the angle formed between the quinolone ring system and the Ag surface is

bigger resulting in the out-of-plane vibrations being not any more perpendicular to the Ag surface

and therefore experiencing less enhancement (figure 6.11Ae).

Figure 6.11B displays the SERS spectra for CIPRO, NOR and ENO. It can be seen that almost

the same modes as in the case of CIPRO (figure 6.11A) are enhanced for these quinolones, indi-

cating that the same adsorption mechanism can be assumed for all quinolones. As already seen

in the case of CIPRO, the stretching vibrations of the aromatic ring system around 1400 cm−1 is

strongly enhanced and arises to the most intense band in the SERS spectrum. The vibrational

band around 1625 cm−1 is assigned to the stretching vibrations of the aromatic ring and the car-

bonyl vibration. In ENO with a nitrogen atom at position 8, the frequency of the ring vibrations is

slightly shifted compared to the other quinolones and an additional shoulder at the high frequency

side is observed. The band around 1555 cm−1 is also thought to have strong contributions from

the pyridine ring vibration. Due to the tilted adsoption geometry of the quinolones also the CH2

bending vibrations of the piperazyl ring contain components perpendicular to the silver surface

and are therefore enhanced. This vibration is found around 1475 cm−1 for NOR and CIPRO. Cha-

racteristic for all the spectra are also the enhanced CO out of plane vibrations around 740 cm−1.

The enormous enhancement of the Raman intensity in SERS can be explained with the electro-

magnetic and the chemical model (see also section 2.1.3.2). Upon approaching the silver surface

the attaching molecule experiences an additional electromagnetic field with different intensities

of parallel and perpendicular components which might cause a profile change of the spectrum,

the distance dependence of the Raman signal and the appearance of forbidden modes when the

adsorbate is under the influence of a strong electromagnetic field. If a chemical interaction with

the metal surface occurs, structural and eventually symmetry changes are induced in the adsorbate

molecule which results in a frequency shifts and profile change of the Raman spectrum. Since

no spectral changes are observed upon addition of the fluoroquinolones to the silver surface only

electromagnetic enhancement should be present in this case.
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Figure 6.12:Resonance Raman spectra of norfloxacin (NOR) at different excitation wavelength.

6.11 Resonance Raman spectra

Another possibility to obtain high quality Raman spectra in solution at low concentration of the

substance of interest is to apply resonance Raman spectroscopy (see also section 2.1.3.1). Due

to the coupling of the Raman signal to the electronic absorption high selectivity and sensitivity is

obtained and it is possible to record Raman spectra at physiological low concentrations with a good

signal-to-noise ratio. Furthermore, the use of silver which is normally toxic to many organisms

including bacteria, can be circumvented.

Resonance Raman spectra for NOR are shown in figure 6.12 for the three different excitation

wavelengths 244, 257 and 275 nm. As can be seen in the UV/vis absorption spectra (figure 6.3)

excitation with 257 nm and with 275 nm hits the aromatic ring absorption band and a very good

signal-to-noise ratio can be obtained. At 244 nm the molar extinction coefficient of NOR is rel-

atively low, therefore the coupling of the Raman and the electronic transition is quite low, which

results in a smaller enhancement and in a poorer signal-to-noise ratio.

Due to the selective enhancement of the vibrations coupled to the electronic transition (in this

case the vibrations of the aromatic ring) changes of the relative intensities of several bands are

observed in the resonance Raman spectrum (figure 6.12). The vibrational mode most enhanced

is the C=C stretching vibration and the ring deformation vibration around 1620 cm−1. When
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exciting with laser light of a wavelength of 257 nm the vibrational modes around 1535 cm−1 (C-C

stretch) experience also a strong enhancement. Enhancement with a wavelength of 275 nm causes

significant enhancement of the vibrational mode around 1392 cm−1 (C-C stretching vibration).

The resonance enhancement makes it possible to record good Raman spectra of the quinolones

at physiological low concentration in aqueous solution. Therefore this technique could be used in

future experiments to locate the quinolones within the bacteria.

6.12 Conclusion

In this chapter it was shown hat the investigated antibiotics can be characterized very well by

means of vibrational spectroscopy. DFT calculations show very good agreement with the ex-

perimental results and can therefore be helpful in assigning the characteristic vibrational bands.

Common characteristic features of this class of substances like the stretching vibration of the aro-

matic ring system could be summarized, as well as typical individual structural differences pointed

out. Cinoxacin (CIN), for example, shows various unique features due to the nitrogen substitution

in the 2-position of the quinolone ring system. The application of the highly sensitive resonance

Raman method allows one to detect the drugs in aqueous solution at physiological low concentra-

tions. This understanding of the spectral properties of the quinolones is useful for the elucidation

of specific interaction of these antibiotics with their biological targets, the bacterial DNA and the

enzyme DNA gyrase. Locating the drugs in their biological environment could eventually lead to

a determination of cooperative effects and finally to an elucidation of the exact mechanism of the

gyrase inhibitors on a molecular level which is so far unknown but is of greatest interest.

In the next two chapters the biological targets of these fluoroquinolone drugs (DNA and gyrase)

will be investigated and in chapter 9 the direct effect of the drugs on the bacterial cells will be

studied.
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The bacterial DNA is one of the target molecules of the fluoroquinolone drugs. In order to un-

derstand the complex drug-target interactions it is crucial to understand the vibrational spectra of

pure DNA. DNA is a large molecule which is assembled from the individual nucleotides which

constitute of a nucleic acid base, a deoxyribose moiety and a phosphate moiety. In the first section

the focus will be set on those small building blocks to provide a sound basis for the understanding

of the polymer (DNA) spectra in the later sections.

7.1 The DNA building blocks: nucleic acid bases, nucleoside and

nucleotides

The DNA building blocks are the nucleotides which consist of a purine or pyrimidine base, a

deoxyribose sugar and a phosphate residue. Due to their importance the nucleic acid building

blocks gained a lot of research interests in the past years [84, 85, 212, 203, 47, 30]. However,

since an understanding of the structural and spectroscopic properties of the small components

provides the basis for further investigations of DNA a vibrational spectroscopic characterization

of the individual bases, nucleosides (base + sugar) and nucleotides (base + sugar + phosphate)

will be given in this section. Micro-Raman and IR absorption spectroscopy has been employed to

probe the molecular vibrations of the pure substances, as well as the influence of base pairing on

the geometric parameters and the vibrational signature. The assignment of the vibrational bands

is based on DFT calculations. In order to assess vibrational spectra of the poorly soluble DNA

building blocks resonance Raman spectroscopy with excitation in the UV (244 nm and 257 nm)

has been employed.

7.1.1 The nucleic acid bases

7.1.1.1 Structural parameters of the nucleic acid bases

The DNA building blocks are the nucleotides which consist of a purine or pyrimidine base, a

deoxyribose sugar and a phosphate residue. In DNA adenine (A), guanine (G), thymine (T) and

cytosine (C) are found as nucleic acid bases. In RNA thymine is substituted by uracil, which can

be derived from cytosine by oxidation with nitrous acid. In the following the focus is set on the

four DNA bases. Figure 7.1 shows the fully optimized structures of those four bases as obtained

from DFT calculations (B3PW91/6-31+G(d,p)).
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Figure 7.1: Structures of the nucleic acid bases and their atom numbering convention. First col-
umn: the purine bases adenine and guanine, second and third column: the pyrimidine
bases thymine, cytosine and uracil.

The purine and pyrimidine ring system is planar for all bases as indicated by the average of

the torsion angles being either 0◦ or 180◦. Remarkable deviation from the all planar structure

is observed for the amino group in guanine, where the hydrogen atoms form a dihedral angle of

about 30◦ with the plane of the purine ring. For the amino groups in cytosine and adenine this

effect was not observed to this extend. The notably non-planarity of the guanine amino group was

reported previously by other groups using ab initio calculations [84] and was explained by strong

hydrogen-hydrogen repulsion between the amino-hydrogen and the hydrogen bound to N1 which

cause the amino-hydrogen to bend out of the plane.

The calculated structural parameters (bond length and angles) of the four DNA bases are com-

pared in table 7.1 with experimental values from the literature obtained from high-resolution X-ray

crystallography and neutron scattering. The experimental values are the median bond length and

angles from 21 (guanine), 28 (cytosine), 48 (adenine) and 50 (thymine) different crystal structure

measurements and therefore should be free of singularities [53]. The measurements were per-

formed with the methylated (N9 for the purines, N1 for the pyrimidines) bases, while the DFT

calculations were performed for the pure bases. However, that has only a minor affect on the

other bond lengths and angles and therefore the data can be used for comparison with the calcu-

lation. The geometric structures obtained by theory are in good agreement with the experimental
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Figure 7.2: Micro-Raman spectra of the nucleic acid bases,XA experimental spectrum (λex= 532
nm) of the solid bases,XB DFT calculation (B3PW91/6-31+G(d,p)) for gas phase.

ones. The maximum relative deviation are for all bonds and angles always below 3%. For adenine

the C4C5 bond and the C6N6 bond are calculated too long while the enclosed angles (N6C6C5,

C6C5C4 and C5C4N9) were calculated too small. However average relative deviation of the cal-

culation from the experiment is around 0.5%. Only slightly larger deviation were calculated for

thymine (deviation 7%) where the N3C4, C4C5 and C5C6 bond were modelled too long. In

guanine the double bond character of the C6=O bond, the C4C5 and C2N3 bond has been slightly

overestimated in the calculations, while the N1C6 and the C2N2 bond were calculated to be too

long. The largest deviations arise for cytosine (average 1.5% deviation). It is assumed that inter-

molecular hydrogen bonding in the crystal causes those structural modifications in comparison to

the calculated gas phase structure. The slight lengthening of the C=O bond (C6=O in guanine and

C2=O in cytosine) in the experiment compared to the calculation supports this assumption.

7.1.1.2 Micro-Raman spectra of the nucleic acid bases

The micro-Raman spectra excited at 532 nm of the individual pure nucleic acid bases in the solid

state are shown in figure 7.2. On the left side the spectra of the purine bases adenine (top, AA)

and guanine (bottom, GA) are shown, on the right side the Raman spectra of the pyrimidine bases

thymine (top, TA) and cytosine (bottom, CA). Underneath the experimental spectra the calculated

115



7 The biological target: DNA

Table
7.1:C

om
parison

of
the

geom
etry

param
eters

of
the

nucleic
acid

bases
obtained

by
D

F
T

calculations
(B

3P
W

91/6-31+
G

(d,p))
w

ith
experi-

m
entalvalues

from
X

-ray
crystallography.

T
he

experim
entalvalues

are
taken

from
C

low
ney

etal.
[53]

adenine
guanine

cytosine
thym

ine
uracil

bond
length

exp.
calc.

bond
length

exp.
calc.

bond
length

exp.
calc.

bond
length

exp.
calc.

bond
length

exp.
calc.

N
1-C

2
1.340

1.341
N

1-C
2

1.371
1.368

N
1-C

2
1.397

1.422
N

1-C
2

1.376
1.384

N
1-C

2
1.381

1.403
C

2-N
3

1.332
1.334

C
2-N

3
1.324

1.311
C

2-N
3

1.355
1.367

C
2-N

3
1.373

1.381
C

2-N
3

1.374
1.391

N
3-C

4
1.344

1.337
N

3-C
4

1.351
1.355

N
3-C

4
1.335

1.319
N

3-C
4

1.381
1.402

N
3-C

4
1.382

1.422
C

4-C
5

1.385
1.397

C
4-C

5
1.378

1.394
C

4-C
5

1.424
1.439

C
4-C

5
1.446

1.465
C

4-C
5

1.430
1.462

C
5-C

6
1.406

1.410
C

5-C
6

1.418
1.438

C
5-C

6
1.340

1.359
C

5-C
6

1.339
1.353

C
5-C

6
1.338

1.362
C

6-N
1

1.351
1.343

C
6-N

1
1.391

1.431
C

6-N
1

1.365
1.352

C
6-N

1
1.379

1.376
C

6-N
1

1.375
1.3803

C
5-N

7
1.387

1.381
C

5-N
7

1.388
1.377

C
2-O

2
1.242

1.222
C

2-O
2

1.218
1.219

C
2-O

2
1.219

1.230
N

7-C
8

1.311
1.310

N
7-C

8
1.304

1.307
C

4-N
4

1.334
1.356

C
4-O

4
1.228

1.222
C

4-O
4

1.232
1.233

C
8-N

9
1.372

1.376
C

8-N
9

1.373
1.380

N
1-C

(H
)1*

1.470*
1.01049*

C
5-M

5
1.497

1.496
N

1-C
(H

)1*
1.465*

1.017*
N

9-C
4

1.374
1.374

N
9-C

4
1.374

1.366
N

1-C
(H

)1*
1.470*

1.00928*
C

6-N
6

1.336
1.350

C
2-N

2
1.337

1.372
N

9-C
(H

)1*
1.464*

1.009
C

6-O
6

1.238
1.219

N
9-C

(H
)1*

1.461*
1.009*

bond
angle

bond
angle

bond
angle

bond
angle

bond
angle

C
6-N

1-C
2

118.5
118.6

C
6-N

1-C
2

125.1
126.6

C
6-N

1-C
2

120.3
123.4

C
6-N

1-C
2

121.2
123.8

C
6-N

1-C
2

121.2
123.8

N
1-C

2-N
3

129.2
128.7

N
1-C

2-N
3

123.7
123.5

N
1-C

2-N
3

119.1
116.4

N
1-C

2-N
3

114.4
112.8

N
1-C

2-N
3

114.9
112.7

C
2-N

3-C
4

110.6
111.2

C
2-N

3-C
4

112.0
112.5

C
2-N

3-C
4

120.0
120.3

C
2-N

3-C
4

127.1
128.0

C
2-N

3-C
4

126.9
128.3

N
3-C

4-C
5

126.7
127.0

N
3-C

4-C
5

128.7
129.3

N
3-C

4-C
5

121.9
124.0

N
3-C

4-C
5

115.3
114.8

N
3-C

4-C
5

114.6
113.4

C
4-C

5-C
6

117.0
115.8

C
4-C

5-C
6

118.8
118.5

C
4-C

5-C
6

117.4
120.0

C
4-C

5-C
6

118.0
117.9

C
4-C

5-C
6

119.6
120.0

C
5-C

6-N
1

117.6
118.7

C
5-C

6-N
1

111.4
109.6

C
5-C

6-N
1

121.0
123.4

C
5-C

6-N
1

123.6
122.7

C
5-C

6-N
1

122.6
121.8

C
4-C

5-N
7

110.6
111.4

C
4-C

5-N
7

110.8
111.0

N
1-C

2-O
2

118.9
118.1

N
1-C

2-O
2

123.1
123.1

N
1-C

2-O
2

122.8
122.7

C
5-N

7-C
8

103.9
104.0

C
5-N

7-C
8

104.4
104.5

N
3-C

2-O
2

121.9
125.5

N
3-C

2-O
2

122.3
124.1

N
3-C

2-O
2

122.3
124.6

N
7-C

8-N
9

113.8
113.4

N
7-C

8-N
9

113.1
112.8

N
3-C

4-N
4

118.1
116.9

N
3-C

4-O
4

119.9
120.2

N
3-C

4-O
4

119.6
120.2

C
8-N

9-C
4

105.8
106.8

C
8-N

9-C
4

106.4
106.8

C
5-C

4-N
4

120.2
119.1

C
5-C

4-O
4

124.9
125.0

C
5-C

4-O
4

125.9
126.4

N
9-C

4-C
5

105.8
104.4

N
9-C

4-C
5

105.4
104.9

C
6-N

1-C
(H

)1*
121.0

*
121.5*

C
4-C

5-M
5

119.0
118.1

C
6-N

1-C
(H

)1*
121.2*

121.3*
N

3-C
4-N

9
127.3

128.6
N

3-C
4-N

9
125.9

125.9
C

2-N
1-C

(H
)1*

118.5*
115.1*

C
6-C

5-M
5

122.9
124.0

C
2-N

1-C
(H

)1*
117.7*

114.9*
C

6-C
5-N

7
132.5

132.8
C

6-C
5-N

7
130.5

130.5
C

6-N
1-C

(H
)1*

120.2*
121.067*

N
1-C

6-N
6

118.5
118.9

N
1-C

2-N
2

116.4
117.0

C
2-N

1-C
(H

)1*
118.3*

115.138*
C

5-C
6-N

6
123.6

122.4
N

3-C
2-N

2
119.8

119.5
C

8-N
9-C

(H
)1*

127.6*
127.4*

N
1-C

6-O
6

120.0
119.1

C
4-N

9-C
(H

)1*
125.9*

125.8*
C

5-C
6-O

6
128.7

131.3
C

8-N
9-C

(H
)1*

127.4*
127.597*

C
4-N

9-C
(H

)1*
126.3*

125.619*

*
w

hile
the

experim
entalvalues

resultform
base

structures
w

ith
a

m
ethylgroup

attached
to

N
9

(purins)
or

N
1

(pyrim
idines)

a
hydrogen

atom
w

as
used

in
the

calculations
instead.

116



7 The biological target: DNA

relative energies in 

kJ/mol
N

N
H

O

NH
2

0.0 0.0

N

N
H

OH

NH

95.5 22.8

NH

N
H

O

NH

11.1 2.7

kcal/mol

NH

NO

NH
2

7.029.2

N

NOH

NH
2

2.3 0.5

1800 1500 1200 900 600 300

R
a
m

a
n
 I
n
te

n
s
it
y

Wavenumber / cm-1

A

B

C

D

E

F

exp. 

calc. 

Figure 7.3: Five possible cytosine tautomers,A) micro-Raman spectra as obtained from DFT cal-
culations (B3PW91/6-31+G(d,p), Graph a shows an experimental spectrum (λex= 532
nm) for comparison;B) geometric structure;C) relative energy of the different tau-
tomers.

Raman spectra as obtained from ab initio DFT calculations (B3PW91/6-32+G(d,p)) and band

folding are shown for comparison (AB, GB, TB, CB). The general features of the experimental

data are well reproduced by the calculation, especially for adenine.

Variations in the intensity pattern and wavenumber position between the experimental and cal-

culated spectra are due to the fact that the calculation is based on gas phase molecules while the

measurement was performed in the crystalline state of the bases. All the bases possess several

hydrogen donor and acceptor sides and therefore, strong intermolecular interactions in the solid

phase due to hydrogen bonding will change the force constants within the molecule and thereby

the vibrational frequency. Coupling of the vibrations of two or four molecules in the crystal that

are in the same unit cell might increase the number of normal modes as has been reported for

deoxycytidine and cytosine, respectively [139].

One way to brake the specific crystal interactions would be the investigation of the substances

in solution. However, the solubility of the pure nucleic acid bases (especially guanine) is so poor,

that no normal Raman spectra with good signal-to-noise ratio of those substances in solution are

difficult to record.
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Tautomers Furthermore, a large variety of nucleic acid base structures is possible for the indi-

vidual bases when adopting different tautomers such as amino←→ imino, N7H←→ N9H (A,G),

oxo←→ hydroxy (G,T,C) and for T and G additionally N1H←→ N3H. Figure 7.3 shows the

calculated Raman spectra of four of the different tautomers of cytosine. For comparison an exper-

imental spectrum of crystalline cytosine is shown in the upper lane on the left side. The tautomer

that is second lowest in energy is the one shown in figure 7.3C and is 3.8 kJ/mol (0.9 kcal/mol)

higher in energy than tautomer B. Assuming a Boltzmann distribution:

Ntaut

Ntotal
= e−

∆Gtaut
RT (7.1)

results in about 17.6% of tautomer C at room temperatureT = 298K. For tautomer D which is

12.5 kJ/mol (3.0 kcal/mol) higher in energy than tautomer B the same calculation yields 0.5%, for

tautomer E only 0.0004%. Therefore, higher energy tautomers need not to be considered.

Those results are valid for the gas phase. In the crystalline state hydrogen bonding interaction

can change the distribution of the different tautomers. From the crystal structure of anhydrous cy-

tosine it was deduced that the amino groups form hydrogen bonds between the carbonyl groups of

the neighboring molecules while the N1H forms an H-bond to N3 of the adjacent molecule [76].

Also in cytosine monohydrate extensive intermolecular hydrogen bonding is present and the hy-

drogen bonded cytosine molecules form parallel ribbons that are cross-linked by water molecules.

The largest deviation between the calculated Raman spectrum and the experimental one is ob-

served for guanine, even though the DFT-optimized geometric parameter match quite well the

experimental values (table 7.1). Such discrepancy between the calculated (gas phase) and experi-

mental (solid state) spectra (especially for guanine), has previously been reported in the literature

[84] and caused controversial assignment of the vibrational bands by Giese and McNaughton

[84, 85], Nowak [186], Florian [75] and Santamaria [223]. However, it has to be noted that the

latter two did not use polarization functions for their DFT calculations which is necessary for a

correct prediction of the spectra [286].

Assignment of the vibrational modes with the help of DFT calculations In this work ab-

initio calculations have been performed using the split valence basis set 6-31G which was aug-

mented by d polarization function on heavy atoms (d) and p polarization functions on hydrogen

atoms (p). In order to describe the lone pairs accurately diffuse functions were added on heavy

atoms (+). Geometry optimization and frequency calculations were performed on the same level

of theory and the calculated wavenumbers were used for an assignment of the vibrational modes.

Table 7.2 shows the theoretical and experimental wavenumber values together with the assignment

of the individual vibrational modes based on the potential energy distribution (PED) for adenine,

thymine and cytosine. The PED gives the percentage of potential energy localized in a particular

bond for a given mode (number in brackets behind the vibrational assignment). The detailed band
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assignment for guanine is presented together with the corresponding nucleoside and nucleotide in

table B.1.

Most of the vibrations of the nucleic acid bases are complex and involve strongly coupled mo-

tions as can be seen from table 7.2. At high wavenumbers (>2900 cm−1 CH and NH stretching

vibrations are found (not shown in the figure). The spectral region around 1700 cm−1 is dominated

by NH2 scissoring (adenine, guanine, cytosine) and C=O stretching (thymine, cytosine, guanine)

motions. Also skeletal vibrations of the unsaturated rings become important. Between 1450 and

1000 cm−1, bending of the external NH and CH angles are found, often coupled to stretching and

deformation motions of the pyrimidine (pyr) and imidazole (im) rings. The low wavenumber re-

gion between 1000 and 200 cm−1 consists of both in-plane and out-of-plane vibrations, torsion

and bending modes with relatively weak intensity. The most dominant feature in this wavenumber

range is the very intense ring breathing mode (between 600 and 750 cm−1 for the different bases).

Below 200 cm−1 (not shown in the figure) lattice modes are found.

The nucleic acid bases are only poorly soluble in the common solvents, so it was not possible

to prepare a solution with high enough concentrations to give good and well resolved Raman

spectra. However, it is possible to record Raman spectra in solution when using resonance Raman

spectroscopy (see section 7.1.3).

Table 7.2: Assignment of the experimental and theoretical (B3PW91/6-31+G(d,p)) Raman bands of ade-

nine, thymine and cytosine. The numbers in brackets behind the mode assignment gives the

percentage of potential energy localized in that particular involved bond. Only contributions

over 5% are shown.

mode DFT DFT scaled Exp.(λex=532 nm) Assignment (PED)

in cm−1 in cm−1 in cm−1

Adenine

1 83 79 NH2 out (98)

2 165 159 pyr ring tors (69) - NH2 out (21)

3 219 211 NH2 out (53) - pyr ring tors2 (13) - C6N out (9) + N9H out (7) - pyr ring tors (6) - NH2 tors (5)

4 276 265 N6H bend (58) - C6N bend (19) + im ring bend (8) - N9H bend (6) + im ring bend2 (5)

5 300 289 im ring tors2 (44) - pyr ring tors2 (31) - N9H out (17)

6 521 501 N6H bend (54) + N9H bend (25) - C6N bend (9)

7 527 507 527 N9H out (55) + NH2 tors (17) - im ring tors2 (9) + pyr ring tors (8) - im ring tors (6)

8 530 510 533 pyr ring bend2 (88) + N6H bend (5)

9 545 524 NH2 tors (93)

10 578 556 558 pyr ring tors (57) - N9H out (17) - im ring tors2 (8) - pyr ring tors3 (6) + NH2 tors (5)

11 618 594 620 im ring bend (48) + im ring bend2 (20) - N6H bend (18)

12 669 643 im ring tors (67) + NH2 tors (10) + pyr ring tors (7) + C8H out (5)

13 687 660 im ring tors2 (35) + C6N out (34) + pyr ring tors (14) + pyr ring tors2 (12)

14 732 704 721 im ring bend (38) + N6H bend (23) - N9H bend (19) - im ring bend2 (10)

15 806 775 pyr ring tors3 (31) + C8H out (23) - im ring tors2 (20) + C6N out (14)

16 849 817 C8H out (94)

17 901 866 897 pyr ring bend2 (29) - C8H bend (27) - im ring bend (20) - 17 (9) + im ring bend2 (7)

18 943 907 940 im ring bend2 (79) - N9H bend (14)

19 976 938 C2H out (88) + pyr ring tors (9)

20 1014 975 1022 N6H bend (96)

21 1098 1056 1124 N9H bend (71) - C8H bend (28)

22 1156 1112 C8H bend (69) + N9H bend (12) + N6H bend (7) + im ring bend (7)

23 1254 1206 1232 C8H bend (49) - N6H bend (43)

24 1278 1228 1246 C8H bend (75) + N9H bend (21)

25 1359 1306 1305 C2H bend (53) - C8H bend (32) + N9H bend (12)

26 1380 1326 C2H bend (43) + NH2 bend (32) + N9H bend (12) - N6H bend (6)

27 1391 1337 1330 C8H bend (57) - N9H bend (30) - im ring bend2 (8)

28 1435 1380 1368 N9H bend (69) - C2H bend (30)

29 1454 1398 1417 NH2 bend (38) + im ring bend2 (21) + C2H bend (20) + N6H bend (10)
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7 The biological target: DNA

Table 7.2: continued

mode DFT DFT scaled Exp.(λex=532 nm) Assignment (PED)

in cm−1 in cm−1 in cm−1

30 1522 1463 1460 NH2 bend (55) - C2H bend (28) - N9H bend (11)

31 1539 1479 1479 C8H bend (82) + NH2 bend (12)

32 1620 1557 NH2 bend (94)

33 1661 1597 1595 N9H bend (54) + C8H bend (22) + im ring bend (9) - N6H bend (9)

34 1680 1615 1609 NH2 bend (91)

35 3198 3074 3038 C2H str (82) + pyr ring bend2 (16)

36 3273 3146 3115 C8H str (50) - im ring bend2 (39) - N9H bend (8)

37 3640 3499 3294 NH2 bend (42) - N6H str (31) - N6Hb str (27)

38 3685 3543 3358 N9H str (72) - im ring bend (11) + im ring bend2 (10) + C8H bend (7)

39 3784 3638 N6H str (39) - N6H bend (32) - N6Hb str (28)

Thymine

1 110 106 ring def1 (53) + N1H out (23) - ring def2 (14)

2 138 133 C5Me tors (65) + ring def2 (13) - N1H out (8) - ring def1 (5)

3 153 147 ring def2 (39) - N3H out (30) - ring def3 (27)

4 273 262 C5Me bend (68) - C4O bend (11) + ring bend1 (7)

5 295 284 C5Me out (47) -ring def1 (17) - N1H out (16) + ring def2 (10)

6 387 373 C2O bend (38) -C4O bend (26) + ring bend1 (12) - N3C4 str (8) - C2N3 str (6)

7 396 380 ring def3 (42) + ring def2 (17) - N1H out (17) - C5Me out (15) - C4O out (6)

8 460 443 477 ring bend2 (69) + C5C str (7) - C2O bend (6) + N3C4 str (6)

9 547 526 551 ring bend1 (52) + C4O bend (9) + C2N3 str (9) + C2O bend (8) + N3C4 str (6)

10 563 542 557 N1H out (89) - N3H out (6)

11 605 581 614 C4O bend (27) + C2O bend (27) + C5Me bend (13) - ring bend1 (8)

12 680 654 N3H out (85) + ring def2 (6)

13 742 713 739 C4C5 str (39) + C5C str (15) - ring bend1 (9) + N3C4 str (5)

14 744 716 749 C2O out (44) + ring def2 (31) - N3H out (12)

15 764 734 764 C4O out (47) + ring def2 (17) - C5Me out (12) + ring def1 (10)

16 807 776 803 ring bend3 (49) + C5C str (17) - N1C2 (10)

17 907 872 933 C6H out (85) + ring def3 (5)

18 972 935 983 N1C2 (26) - CH3 def1 (16) - C4C5 str (9) + C2N3 str (8) + N3H def (7) - C2O bend (5)+CH3 rock (5)

19 1022 982 1048 CH3 def1 (36) + ring bend3 (17) - CH3 rock (12) + N1C2 (7) - C5C6 str (6)

20 1062 1021 1153 CH3 rock (54) + CH3 def1 (18) + C5Me out (8) - C6H out (7) + CH3 def (5)

21 1167 1122 N3C4 str (29) - C6N1 str (14) + ring bend3 (9) - C4O bend (8) - N1H def (8) - C5C str (8)-CH3 def1 (6) -

C5Me bend (5)

22 1213 1166 1214 N3C4 str (18) - C6H def (18) - C2N3 str (17) + N1H def (15) + C6N1 str (10) - N3H def (6)

23 1249 1201 1243 C5C str (23) - C6N1 str (19) - C4C5 str (11) + N1C2 (10) - C2N3 str (10) - ring bend3 (8) - C6H def (7)

24 1378 1325 1366 C6H def (37) + C5C6 str (12) - C2N3 str (9) + N1C2 (9) - C4C5 str (8)

25 1405 1351 1375 N3H def (62) + N3C4 str (8) + C4O str (6) + N1H def (5) - C6H def (5)

26 1420 1366 1405 CH3 scis (87) + C5C str (8)

27 1436 1380 1424 N1H def (19) + C2N3 str (19) - C4C5 str (10) + C2O bend (10) - N1C2 (9) - C4O bend (6) - ring bend1 (5)

+ C5C str (5)

28 1468 1412 1432 CH3 def (68) + CH3 wag (23) - CH3 rock (7)

29 1490 1433 1459 CH3 wag (60) - CH3 def (20) + CH3 def1 (5)

30 1513 1454 1487 N1H def (27) - C6N1 str (21) + C4C5 str (9) + N1C2 (9) + C2O str (6) - N3C4 str (5) + ring bend1 (5)

31 1716 1650 1651 C5C6 str (60) - C6H def (12) - C6N1 str (9) - C5C str (5)

32 1781 1712 1670 C4O str (72) - C4C5 str (7)

33 1827 1756 1705 C2O str (68) - C2N3 str (7) - N1C2 (7)

34 3056 2938 2931 CH str (Me1) (35) + CH str (Me2) (35) + CH str (Me3) (29)

35 3126 3005 2966 CH str (Me1) (50) - CH str (Me2) (50)

36 3147 3026 2990 CH str (Me3) (70) - CH str (Me2) (15) - CH str (Me1) (15)

37 3222 3098 3062 C6H (99)

38 3631 3491 N3H str (100)

39 3674 3532 N1H str (100)

Cytosine

1 133 128 118 ring def (49) - N1H out (25) + ring def2 (22)

2 139 134 165 NH2 out (56) - NH2 twist (24) + C4N out (11)

3 201 193 214 ring def2+(48) - ring def3 (37) - ring def (5)

4 358 344 409 C4N bend (57) - C2=O bend (12) + ring bend (12) + NH2 bend (8) - C2N3 str (5)

5 397 382 439 ring def3 (40) - N1H out (23) - C5H out (14) + ring def2 (12) - C4N out (7)

6 529 509 C2=O bend (37) + NH2 twist (25) + C4N bend (13)

7 535 514 NH2 twist (48) - C2=O bend (11) -ring bend2 (11) - C4N bend (6) + N1H out (5)

8 544 523 535 ring bend2 (52) + ring bend (15) + NH2 twist (7) - C2=O bend (6)

9 577 555 549 ring bend (57) - ring bend2 (22)

10 630 606 597 N1H out (78) - C4N out (10)

11 726 698 C4N out (29) + ring def2 (21) + C6H out (20) + C5H out (18)

12 767 737 C2O out (49) + C5H out (15) + ring def (9) + ring def2 (9) - N1H out (7) - C4N out (6) + C6H out (5)

13 773 743 ring def2 (33) + C4N out (25) - C5H out (23) + C2O out (13)

14 777 747 789 N1C2 str (23) + C4C5 str (12) - ring bend3 (12) + C4N str (8) + C2N3 str (7) - ring bend (6) + N3C4 str (6)

- C5H out (5) + C4N out (5)+ring def2 (5)

15 932 896 N1C2 str (27) - C4C5 str (16) + NH2 bend (15) + ring bend3 (13) + C2=O bend (5)

16 962 925 C6H out (79) - C5H out (13)
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Table 7.2: continued

mode DFT DFT scaled Exp.(λex=532 nm) Assignment (PED)

in cm−1 in cm−1 in cm−1

17 991 952 974 ring bend3 (50) + C4C5 str (26) - NH2 bend (7)

18 1092 1050 1000 NH2 bend (40) - N1C2 str (18) - C2=O bend (16) + C2N3 str (7)

19 1131 1088 1114 C5H bend (44) + N1C6 str (23) + C5C6 str (17) - N1H bend (8)

20 1223 1176 1151 C6H bend (30) - N1H bend (25) + N1C6 str (18) - C5H bend (13) - N1C2 str (5)

21 1283 1234 1250 C2N3 str (45) - N1C2 str (13) - C4N str (10) - C2=O bend (6) - N3C4 str (5)

22 1362 1309 1290 C6H bend (26) + C5H bend (19) + C4N str (17) - C5C6 str (11) + N1H bend (9)

23 1452 1396 1374 N1H bend (35) + N1C6 str (16) + C4C5 str (13) - N3C4 str (7) - C4N str (5)

24 1520 1461 1446 N3C4 str (20) - C4N str (19) + C6H bend (14) - N1C6 str (13) + C5H bend (11) + NH2 bend (11)

25 1585 1524 1533 N3C4 str (28) - C4C5 str (23) + C5C6 str (10) + N1H bend (8) + N1C6 str (6) - ring bend (6) - C5H bend

(5)

26 1640 1576 NH2 scis (73) + C4N str (15) - C5C6 str (5)

27 1707 1641 1648 C5C6 str (39) - N3C4 str (14) - N1C6 str (10) + C6H bend (10) - ring bend2 (7) + C4N str (6)

28 1797 1727 C2=O str (72) - C2N3 str (10)

29 3223 3098 3096 C6H str (88) - C5H str (11)

30 3249 3124 3114 C5H str(88) + C6H str (11)

31 3634 3494 3189 N4Ha str (61) + N4Hb str (38)

32 3652 3511 3366 N1H str (99)

33 3780 3634 3445 N4Hb str (62) - N4Ha str (38)

7.1.1.3 Hydrogen bonding between complementary base pairs

The DNA adopts its typical double helical structure due to the strong hydrogen bonds between

the complementary base pairs of both DNA strands. In the classical Watson-Crick binding model

guanine forms three hydrogen bonds with cytosine, and adenine forms two hydrogen bonds with

thymine (figure 7.4). This specific base pairing is essential for the transfer and expression of

genetic information. Base pairing is also detectable by vibrational spectroscopy since the force

constants of the involved bonds are changed due to the hydrogen bonding.

Adenine-thymine Watson-Crick base pair Figure 7.4A shows the optimized geometric struc-

ture of the adenine-thymine Watson-Crick base pair as obtained from DFT calculations (B3PW91/6-

31+G(d,p)). Due to the hydrogen bonding interactions between the amino hydrogen of N6H2 of

adenine and the carboxyl oxygen C4=O of thymine and between the hydrogen at N3 of thymine

and the nitrogen N1 of adenine the bond length of the C6N6 bond in adenine and the N3C4 bond in

thymine are reduced while the C4O bond in thymine and the N1C6 bond in adenine loose double

bond character and are longer in the base pair than in the free base (see table 7.3).

These geometric changes affect also the force constants and changes in the vibrational spec-

tra can be detected. The simulated Raman spectrum of the adenine-thymine base pair (middle

spectrum) is shown in figure 7.4B in comparison with the simulated spectra of the free bases ade-

nine (upper spectrum) and thymine (lower spectrum). The most obvious changes are seen in the

wavenumber region above 2800 cm−1 where the NH-, NH2 and CH stretching vibrations occur.

Due to the hydrogen bonding interaction force constants between the hydrogen and nitrogen N6

of adenine are weakened and therefore the vibration is found at lower wavenumbers (for a first

approximation compare with Equation 2.1). The adenine N6H stretching vibration in the base pair

(the H vibrates towards the O4 of thymine) is found at 3279 cm−1 while the unperturbed N6H2
stretching vibration in free adenine is found at 3499 cm−1. A similar behavior shows the N3H
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Table 7.3:Geometry changes in the nucleic acid bases upon base pairing.

adenine-thymine pase pair guanine-cytosine base pair

parameter adenine parameter guanine
bond length free base in base pair diff (pair-free) in % free base in base pair diff (pair-free) in %

N1-C2 1.341 1.345 0.33 N1-C2 1.368 1.372 0.28
C2-N3 1.334 1.330 -0.32 C2-N3 1.311 1.324 1.03
N3-C4 1.337 1.339 0.21 N3-C4 1.355 1.346 -0.69
C4-C5 1.397 1.396 -0.10 C4-C5 1.394 1.399 0.29
C5-C6 1.410 1.413 0.23 C5-C6 1.438 1.428 -0.69
C6-N1 1.343 1.351 0.64 C6-N1 1.431 1.402 -2.03
C5-N7 1.381 1.380 -0.08 C5-N7 1.377 1.380 0.25
N7-C8 1.310 1.310 0.01 N7-C8 1.307 1.305 -0.11
C8-N9 1.376 1.376 0.01 C8-N9 1.380 1.383 0.17
N9-C4 1.374 1.373 -0.07 N9-C4 1.366 1.368 0.13
C6-N6 1.350 1.340 -0.77 C2-N2 1.372 1.347 -1.80

C6-O6 1.219 1.241 1.78

bond angle bond angle

C6-N1-C2 118.6 119.7 0.95 C6-N1-C2 126.6 125.9 -0.56
N1-C2-N3 128.7 128.2 -0.44 N1-C2-N3 123.5 123.3 -0.15
C2-N3-C4 111.2 111.2 0.03 C2-N3-C4 112.5 112.4 -0.11
N3-C4-C5 127.0 127.2 0.20 N3-C4-C5 129.3 129.3 0.00
C4-C5-C6 115.8 116.3 0.46 C4-C5-C6 118.5 117.7 -0.69
C5-C6-N1 118.7 117.3 -1.16 C5-C6-N1 109.6 111.5 1.69
C4-C5-N7 111.4 111.5 0.02 C4-C5-N7 111.0 111.1 0.08
C5-N7-C8 104.0 104.0 0.03 C5-N7-C8 104.5 104.5 -0.07
N7-C8-N9 113.4 113.3 -0.08 N7-C8-N9 112.8 112.9 0.10
C8-N9-C4 106.8 106.8 0.01 C8-N9-C4 106.8 106.9 0.11
N9-C4-C5 104.4 104.5 0.03 N9-C4-C5 104.9 104.6 -0.23
N3-C4-N9 128.6 128.3 -0.22 N3-C4-N9 125.9 126.1 0.20
C6-C5-N7 132.8 132.2 -0.42 C6-C5-N7 130.5 131.3 0.56
N1-C6-N6 118.9 119.5 0.55 N1-C2-N2 117.0 116.7 -0.24
C5-C6-N6 122.4 123.1 0.59 N3-C2-N2 119.5 120.0 0.43

N1-C6-O6 119.1 119.7 0.54
C5-C6-O6 131.3 128.8 -1.91

parameter thymine parameter cytosine
bond length free base in base pair diff (pair-free) in % free base in base pair diff (pair-free) in %

N1-C2 1.384 1.388 0.28 N1-C2 1.422 1.404 -1.25
C2-N3 1.381 1.376 -0.31 C2-N3 1.367 1.354 -0.94
N3-C4 1.402 1.386 -1.16 N3-C4 1.319 1.338 1.44
C4-C5 1.465 1.462 -0.22 C4-C5 1.439 1.442 0.21
C5-C6 1.353 1.354 0.08 C5-C6 1.359 1.356 -0.23
C6-N1 1.376 1.372 -0.29 C6-N1 1.352 1.358 0.43
C2-O2 1.219 1.222 0.20 C2-O2 1.222 1.236 1.16
C4-O4 1.222 1.236 1.07 C4-N4 1.356 1.333 -1.71
C5-M5 1.496 1.496 0.00

bond angle bond angle

C6-N1-C2 123.8 123.6 -0.16 C6-N1-C2 123.4 122.5 -0.69
N1-C2-N3 112.8 113.6 0.73 N1-C2-N3 116.4 117.5 0.94
C2-N3-C4 128.0 126.7 -1.02 C2-N3-C4 120.3 121.2 0.72
N3-C4-C5 114.8 116.3 1.32 N3-C4-C5 124.0 121.6 -1.90
C4-C5-C6 117.9 117.5 -0.37 C4-C5-C6 120.0 117.0 -2.53
C5-C6-N1 122.7 122.3 -0.32 C5-C6-N1 123.4 120.3 -2.51
N1-C2-O2 123.1 122.2 -0.78 N1-C2-O2 118.1 118.3 0.12
N3-C2-O2 124.1 124.2 0.12 N3-C2-O2 125.5 124.3 -0.99
N3-C4-O4 120.2 120.5 0.29 N3-C4-N4 116.9 117.7 0.67
C5-C4-O4 125.0 123.2 -1.49 C5-C4-N4 119.1 120.7 1.32
C4-C5-M5 118.1 118.6 0.44
C6-C5-M5 124.0 123.9 -0.07

122



7 The biological target: DNA

A C

B D

3000 2000 1000

R
a
m

a
n
 I
n
te

n
s
it
y

adenine

thymine

A+T

3000 2000 1000

Wavenumber / cm-1

guanine

cyto-

sine

G+C

Wavenumber / cm-1

C6

N1 N3

C4

C6

N1

C2

C4

N3

C2

Figure 7.4: The Watson-Crick DNA base pairs.A) andC) show the optimized structure of the
adenine-thymine and guanine-cytosine base pair, respectively.B) andD) show the
corresponding calculated Raman spectra (B3PW91/6-31+G(d,p).

stretching vibration of thymine. In the free base this vibration occurs at 3491 cm−1 and due to the

hydrogen bonding interaction with N1 of adenine it is lowered to 2922 cm−1.

In the wavenumber region below 1900 cm−1 the normal modes are not located at only a small

part of the molecule (such as just one bond), but rather involve larger parts of the molecule as

was discussed together with table 7.2. Nevertheless, the wavenumbers associated with the C4=O

carbonyl group shift to lower wavenumbers, since the C=O double bond looses electron density

and therewith double bond character (see also table 7.3). The N1H bending vibration of thymine

was found to move to higher wavenumbers by about 40 wavenumbers. Also the ring breathing

modes (around 730 and 710 cm−1) were found to shift slightly to higher wavenumbers. This effect

is less pronounced for the larger purine ring system of adenine (+4 cm−1) than for the smaller

pyrimidine ring (+14 cm−1).

Guanine-cytosine Watson-Crick base pair The same analysis as for the adenine-thymine base

pair was also performed for the guanine-cytosine Watson-Crick base pair. Figure 7.4C shows

the optimized geometric structure as obtained from DFT calculations (B3PW91/6-31+G(d,p)).

Changes in bond length (in the order of magnitude of 1%) are observed due to hydrogen bonding

for the bonds in close proximity to the hydrogen bonding interaction sites. The bonds close to
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the electron donors are lengthened due to the reduced electron density. In guanine this affects the

C6=O and the C2N3 bond, and in cytosine the C2=O and the N3C4 bond. The bonds adjacent to

the hydrogen donors are shortened. Those are the C6N1 and the C2N2 bond in guanine and the

C4N4 bond plus the N1C2 bond in cytosine (see table 7.3).

The calculated Raman spectra of guanine (upper spectrum), cytosine (lower spectrum) and of

the Watson-Crick base pair (middle spectrum) are presented in figure 7.4. As for the adenine-

thymine base pair major changes occur in the wavenumber region of the NH- and CH stretching

vibrations (above 2800 cm−1). The hydrogen bonding interaction between C2NH2 of guanine and

C2=O of cytosine causes a shift of the NH stretching vibration from 3494 cm−1 in the free guanine

to 3260 cm−1 in the Watson-Crick base pair. The N1H vibration of guanine shifts from 3481 cm−1

in the free base to 3106 cm−1 in the hydrogen bonded state, and finally, the symmetric N6H2

vibration in free guanine is found at 3469 cm−1 while in the H-bonded state the N6H stretching

vibration is found at 2973 cm−1.

As for adenine and thymine the wavenumber region below 1900 cm−1 shows a rather complex

origin of the involved parts of the molecule (see table 7.2). However, the shift of the C=O stretch-

ing vibrations to lower wavenumbers in the hydrogen bonded base pair can clearly be seen in figure

7.4. Due to the loss of electron density in the C=O double bond the double bond character reduces

(see also table 7.3) and the vibrations are shifted about 20 to 40 cm−1 to lower wavenumbers. All

the vibrations in the wavenumber region down to around 1350 cm−1 contain contributions from

NH deformation modes that are involved in hydrogen bonding. The ring breathing modes of gua-

nine (607 cm−1 in the free base) and of cytosine (646 cm−1 in the free base) are found at higher

wavenumbers in the base pair (shift by about 16 cm−1) which can be explained by an increased

stability of the ring due to van der Waals interactions.

The base pairing will be discussed later in this chapter when discussing the DNA spectra.

To determine the hydrogen bonding energy of the Watson-Crick base pair a single point calcu-

lation with the perturbation theory method MP/6-31++G(d,p) has been performed. The basis set

superposition error (BSSE) could be avoided by performing the single point calculation of guanine

within the ghost basis of the optimized cytosine structure of the Watson-Crick base pair and vice

versa. The stabilization enthalpy of the guanine-cytosine pair was determined to be 24 kcal mol−1

(100 kJ mol−1) and the Gibbs free energy to be 13 kcal mol−1 (53 kJ mol−1). Since guanine and

cytosine form three hydrogen bonds this gives a bonding enthalpy of 8 kcal mol−1 for each hy-

drogen bond. Santamaria et al. [223] reported a value of 34 kcal mol−1 (142 kJ mol−1) for the

stabilization energy of the guanine-cytosine Watson-Crick base pair. The discrepancy to the lit-

erature value can be explained by the fact that Santamaria et al. used a basis set which was not

augmented by polarization function. The calculated value is still higher than the experimental

value which was obtained from temperature dependent IR absorption measurements performed by

Carmona et al. [47]. They determined the cytosine-guanine Watson-Crick base pair association

enthalpy to be 6.8 ± 0.6 kcal mol−1 (28.5 kJ mol−1).
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Figure 7.5: Optimized structure of deoxyadenosine-5’-monophosphate as obtained from DFT cal-
culations (B3PW91/6-31+G(d,p)).

Further hydrogen bonding interactions between the base pairs are possible, such as inverse

Watson-Crick, Hoogsteen or inverse Hoogsteen base pairs, or even triple or quadruple interactions.

Some of them were found in naturally occurring RNA. However, since their importance in the

biological interactions of DNA is rather low, they have not been studied in detail within this work.

7.1.2 The nucleosides and nucleotides

So far, only the nucleic acid bases have been discussed. However, in the DNA the bases are

bound to a deoxyribosyl moiety (via a glycosidic linkage to N9 in adenine and guanine, and N1

in thymine and cytosine) to form a nucleoside. The individual nucleosides are connected via a

phosphate bridge which forms an ether bond with the hydroxyl groups on C3’ and C5’ of the

sugar ring. Those nucleotides composed from a nucleic acid base, a sugar moiety and a phosphate

form the building blocks of the nucleic acid.

7.1.2.1 Structural parameters

Figure 7.1.2.1 shows the fully optimized structure deoxyadenosine and deoxyadenosine-5’-mono-

phosphate as obtained from the DFT calculations (B3PW91/6-31+G(d,p)). The nucleoside and

nucleotide of the other nucleic acid bases can be obtained from the pure base by addition of the

sugar moiety and the phosphate in the same manner. In DNA the sugar deoxyribose is imple-

mented while in RNA ribose is used. The two pentoses differ only in an OH-group at C2’ which

is present in ribose and absent in deoxyribose as depicted in figure 7.1.2.1.

The sugar moiety is connected to the base via a glycosidic linkage to N9 (for the pyrimidine

bases it would be N1) with a torsion angleχ (O4’-C1’-N9-C4 or O4’-C1’-N1-C2). If the value

of χ ranges from -110◦ to -180◦ the conformation is called anti [34]. This is the most common

orientation found in nucleotides and within the double helix of DNA and RNA (see also section
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7.2). The example in figure 7.1.2.1 adopts an angle ofχ = -124◦. Upon addition of the sugar

moiety to the base the purine and pyrimidine ring systems stay planar. The most common sugar

conformation is the twist conformation where three atoms are in one plane (for ribofuranose the

C1’-O4’-C4’ plane is fixed) and two atoms (C2’ and C3’) are sticking out of plane. The sugar

pucker will also affect the shape of theα-helix of the DNA double strand as will be discussed in

section 7.2. In figure 7.1.2.1 C2’ is sticking out of the plane of the molecule on the same side as the

carbon atom C5’ (endo) and C3’ on the opposite side (exo). This is also the conformation found

in the common B-DNA. However, in single nucleoside and nucleotides the energy barrier between

the different conformations is quite low and therefore different sugar conformations are present

via a rapid equilibrium. Another important angle is the torsional angleγ around the C5’C4’

bond. In figure 7.1.2.1 it adoptsγ(O5′−C5′−C4′−C3′) = 52◦ which corresponds to a gauche (g+)

orientation. This orientation (γ = 30−90◦) is also common in helical nucleotides. To minimize

steric interactions the torsion angleβ(P−O5′−C5′−C4′) is found to be periplanar (β ∼ −170◦). The

bond length and bond angles of the nucleic acid base change only slightly upon N-linkage with

the sugar moiety. However, coupling of the vibrational modes occurs which affects the vibrational

spectra as will be discussed in the next section.

The sugar and the phosphate can also be attached in a different orientation to the nucleic acid

base. For example, the glycosidic linkage could be in syn conformation or the deoxyribose ring

could adopt another conformation (twist with other atoms out of the plane, or higher energy en-

velope conformations). Also the torsional angle along the C4’-C5’ or C5’-O5’ could vary. The

structure shown above is an energy minimum structure for nucleotides and also the configuration

adopted in the Z-DNA (see also section 7.2).

7.1.2.2 Raman spectra

The addition of the ribosyl and the phosphate moiety alters also the Raman spectra. Exemplarily,

the Raman spectra of guanine, guanosine and guanosine-5’-monophosphate (GMP) are shown in

figure 7.6. The Raman spectra of the other DNA bases in comparison with their nucleosides and

nucleotides are presented in the appendix (section B).

As was mentioned previously, most of the Raman bands arise from vibrations that are not lo-

calized at only one bond, but rather involve many atoms. Upon addition of the sugar moiety

coupling across the furanose ring and phosphate side chain occurs as can be seen in table B.1 in

the appendix where a vibrational band assignment is given for guanine, guanosine and guanosine-

5’-monophosphate. The broadening of the Raman lines in the nucleosides and nucleotides is most

likely due to overlapping bands of different sugar configurations that vary only slightly in energy.

The vibrational bands due to the furanose occur in the spectral region below 1500 cm−1 (see

also table B.1). Furthermore the Raman bands of the nucleic acid base ring system experience

slight changes in vibrational frequency and intensity due to the vibrational coupling. For example

the triene vibrational mode of the purine ring in guanine shifts from 1464 cm−1 to 1481 cm−1 in
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Figure 7.6: Raman spectra of guanine, guanosine and guanosine-5’-monophosphate.

guanosine and to 1492 cm−1 in GMP. Additionally, it gains markedly intensity due to the coupling

to the sugar vibrations. Due to the coupling the vibrational bands in the region between 1100 and

600 cm−1 are sensitive to the DNA conformation and can be used as marker bands [139, 70]. The

characteristic PO3 stretching vibrations are found at higher wavenumbers in the nucleotides than

in the DNA because the ester bond to the 3’hydroxyl group of the sugar of the next nucleotide is

missing.

7.1.2.3 IR absorption spectra

IR absorption spectra have been recorded of the individual bases, the nucleosides and the nu-

cleotides. IR absorption spectra of adenine, adenosine and adenosine-5’-monophosphate are

shown exemplarily in figure B.4 in the appendix (section B).

Due to the different selection rules of Raman and infrared spectroscopy the IR absorption spec-

tra look slightly different than the Raman spectra. High intensity is observed for those vibrational

bands in the IR spectrum with a strong change in the dipole moment. However, since the crystals

of the nucleic acid bases, nucleosides and nucleotides were found to have a non-centrosymmetric

symmetry group [133, 134, 136] all modes should be Raman and IR active. Therefore, tables 7.2

and B.1 can be used for band assignment. Additional bands arise in the IR spectrum from over-
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tones and combination tones, especially in the wavenumber region above 1000 cm−1, as was also

reported earlier by Florian [75] and Giese and McNaughton [84].

7.1.2.4 UV/vis absorption spectroscopy of the DNA building blocks

The nucleic acid bases (especially guanine) are only poorly soluble in the common solvents, so

it is difficult to prepare solutions with high enough concentrations to give a good Raman signal.

However, the scattering cross section can be increased by about 6 orders of magnitude when per-

forming resonance Raman spectroscopy and using an excitation wavelength within an absorption

band of the molecule of interest (see section 2.1.3.1 in the theoretical fundamentals). To select the

appropriate excitation wavelength it is necessary to know and understand the UV/vis absorption

spectra of the substances. The nucleic acid bases, nucleosides and nucleotides are white substances

and therefore they absorb only in the UV. The UV absorption spectra have been recorded of the

aqueous solutions and the spectra of the deoxynucleotides are shown in figure 7.7. In the spectral

region above 200 nm the absorption is almost exclusively due to electronic transitions located at

the heterocyclic rings of the nucleic acid bases. Therefore, the absorption spectra of the pure base,

the nucleosides and the nucleotides show the same features and only the absorption spectra of the

deoxy-nucleotides are depicted in figure 7.7. Major achievements in the assignment of the elec-

tronic transitions have been performed by Callis [46] and Fodor et al. [77] and will be summarized

briefly in the following.

The long-wavelength absorption maximum of deoxy-guanosine-triphosphate (dGTP) is com-

posed of two electronic transitions, one centered around 275 nm and one around 253 nm. The

electronic transition at 253 nm is centered at N7=C8 and shows a long axis polarization. The

longest wavelengths transition was assigned to the lowest energyπ − π∗ transition of the trien

C2=N3-C4=C5-N7=C8 with a polarization along the short axis. A second weak trien transition

is found at 218 nm. The strong absorption bands around 205 nm and 190 nm are due to aπ−π∗

transition involving both rings and ann−π∗ transition localized at the C6=O bond.

The second purine based nucleotide, deoxy-adenosine-triphosphate (dATP), shows similar elec-

tronic transitions, however the energy ordering of the first two lowest energy transitions is reversed

with respect to guanine: theπ−π∗ transition localized at N7=C8 occurs at 260 nm, and the (weak)

triene transition at 245 nm. A second (very weak) triene transition can be found at 230 nm. The

absorption band at low wavelength is composed of aπ−π∗ transition at 213 nm of the ring system

with long axis polarization and ann−π∗ transition at 200 nm with strong contributions from NH2.

The nucleotide of the pyrimidine base thymine (deoxy-thymidine-triphosphate, dTTP) shows

only two electronic transitions in the investigated spectral region: one at 265 nm associated with

theπ−π∗ transtion of the enone system (C6=C5-C4=O) and a second (perpendicular) transition

at 209 nm centered at the C2=O bond.

Deoxy-cytidine-triphosphate (dCTP) shows a more complex absorption spectrum with four

electronic transitions in the region of interest: around 270 nm an enamineπ−π∗ transition (C6=C5-
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Figure 7.7: UV absorption spectra of the deoxy-nucleotides:in the top the UV absorption spec-
tra of the pyrimidine based deoxy-thymidine-triphosphate (dTTP, dashed line) and
deoxy-cytidine-triphosphate (dCTP, solid line),in the bottom the two purine based
deoxy-adenosine-triphosphate (dATP, dashed line) and deoxy-guanosine-triphosphate
(dGTP, solid line) are shown.
The arrows above the spectra indicate the electronic transitions. The thin grey verti-
cal lines denote the two UV excitation wavelength 244 nm and 257 nm used for the
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C4=N3), at 235 nm another enamineπ−π∗ transition (C6=C5-C4=N3) with major contributions

of the exocyclic C4-NH2 bond. The transition at 215 nm involves also the enamineπ −π∗ tran-

sition (C6=C5-C4=N3) with major contributions from the C2=O bond, and finally, the electronic

transition around 205 nm is due to ann−π∗ transition located at NH2.

The wavelength chosen for recording the resonance Raman spectra of the nucleotides will have

a great influence on the enhancement pattern, due to the vibrational modes coupling to the chosen

electronic transition dominating the spectrum. In the following experiments 244 and 257 nm are

used for excitation as marked in the UV absorption spectra of the bases in figure 7.7. For complete-

ness the UV absorption spectra of aqueous solutions of all four nucleic acid bases, nucleosides and

nucleotides are shown in the appendix (figure B.6- B.9).
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Molar extinction coefficient The molar extinction coefficient of the nucleotides was deter-

mined to be 11800 L mol−1 cm−1 for AMP, 10000 L mol−1 cm−1 for GMP, and 7100 L mol−1 cm−1

for CMP.

7.1.3 UV-resonance Raman spectroscopy of the DNA building blocks

To assess also structural information of the DNA building blocks in solution resonance Raman

spectroscopy as a special Raman techniques was applied to overcome the low scattering efficiency

of normal Raman spectroscopy. As excitation wavelength the frequency doubled argon ion laser

lines at 244 nm and 257 nm were used. Both wavelengths lie within an electronicπ−π∗ transition

of the heterocyclic rings of the nucleic acid bases (see figure 7.7). The sugar and phosphate

moieties do not absorb in this spectral region (spectra not shown).

The UV-resonance Raman spectra of the aqueous solutions of the nucleic acid bases (A), the

nucleosides (B), the nucleotides (C) and the deoxy-triphosphate-nucleotides (D) with excitation at

244 nm are shown in figure 7.8. In the resonance Raman spectra only those vibrations that couple

to the excited electronic transition are enhanced. Therefore, only Raman bands of the nucleic

acid bases (the purine and the pyrimidine ring system) are detected and the spectra of all four

different substituted DNA building blocks (the base, the nucleoside, the nucleotide and the deoxy-

triphosphate) look quite similar (especially for adenine and thymine). Raman bands associated

with vibrations of the sugar or phosphate moiety do not show up in the spectra. However, they

exhibit a slight influence on the ring vibrations of the bases via vibrational coupling. Most of the

bands present in the UV-resonance Raman spectra have already been observed for visible Raman

excitation. However, the spectral intensities differ greatly from the ones of the off-resonance

Raman spectra excited with 532 nm (figure 7.6 and figure B.1-B.3 in the appendix). Nevertheless,

the vibrational assignment of the off-resonance Raman spectra can be used for an assignment of

the resonance Raman bands together with the knowledge of the involved electronic transitions

discussed in the previous section 7.1.2.4. A comparison of the experimental resonance Raman

bands and the assignment from the visible spectra together with several assignments from the

literature are given in table 7.4 for guanine and adenine. For some bands the different references

show slight discrepancies.

When using 244 nm to excite the resonance Raman spectra, the triene and N7=C8π − π∗

transitions of the purines and the enone C6=C5-C4=Oπ − π∗ transition of thymine as well as

the enamine C6=C5-C4=N3π−π∗ transition of cytosine are involved (see figure 7.7 and figures

B.1-B.3 in the appendix). Therefore, the band assignment taking those vibrations located at those

groups into account should be most reliable.

The visible Raman spectra appear much more crowded due to overlapping bands of the sugar

moieties. Selective enhancement with the UV light can simplify the spectra and overlapping bands

can be resolved. When changing the excitation wavelength so that different electronic transitions

are enhanced different vibrations can selectively be probed. However, when changing the exci-
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tation wavelength from 244 nm to 257 nm rather minor changes occur in the spectra as can be

seen in figure 7.8 when comparing the upper four spectra (λex= 244 nm) with the lower two (λex=

257 nm). This similarity is also expected from the UV absorption spectra shown in figures 7.7

and B.1-B.3. For adenine, guanine and thymine both lines, 244 nm and 257 nm, excite the same

electronic transition. For cytosine (and the related compounds) two different enamine transitions

are involved, one centered around 240 nm and the other one centered around 270 nm (for CMP).

This is also reflected in the UV-resonance Raman spectra as can be seen in figure 7.8 far right

panel.

The excitation at 257 nm is close to the absorption maximum of DNA (see section 7.4.2). At

this wavelength the adenine band at 1336 cm−1 will dominate the spectrum of a mixture of equally

concentrated nucleotides.

When exciting at 244 nm the vibrational band at 1485 cm−1 resulting from guanine will have

the highest intensity. Furthermore, the adenine band at 1336 cm−1 and 1483 cm−1 can be used as

marker bands. For thymine the vibrational bands at 1653 cm−1 and 1357 cm−1 are ideally suited

when exciting at 244 nm as well as when exciting at 257 nm. For cytosine the vibrational bands at

1289 cm−1 and 784 cm−1 are important when 257 nm is used as excitation wavelength and around

1530 cm−1 when exciting at 244 nm. Cross section of prominent resonance Raman bands have

been determined before and are reported in the literature [273]

7.1.4 Summary

This section made familiar with the characteristic features (structure and spectroscopy) of the in-

dividual nucleic acid bases nucleosides and nucleotides. Raman, IR absorption and resonance Ra-

man spectra have been used to comprehensively characterize the bases. DFT calculations assisted

in the assignment of the vibrational bands. The Raman and IR absorption spectra of the polynu-

cleotides (and also of the nucleic acids, as will be seen later) are complex due to the overlap of

many vibrational bands. Nevertheless it is possible to identify special marker bands for the differ-

ent nucleotides. The most prominent Raman bands of the solid nucleic acids are around 1330 cm−1

and 720 cm−1 in adenine, around 1230 cm−1 and 648 cm−1 for guanine, around 1670 cm−1 and

1366 cm−1 for thymine and 1290 cm−1 and 790 cm−1 for cytosine.

The vibrational signature can be simplified when using resonance Raman spectroscopy. Only

those vibrational bands will be enhanced in the Raman spectrum that couple to the excited elec-

tronic transition. UV absorption spectroscopy can be used to identify the electronic transitions

and explain the wavelength dependence of the UV-resonance Raman spectra. In these experi-

ments the lines 244 or 257 nm of an frequency doubled argon ion laser were used as excitation

wavelength. These two wavelength excite the vibrations of the purine and pyrimidine ring system

of the nucleic acid bases and the vibrational bands associated with these transitions will dominate

the spectrum. The most prominent Raman bands of the four nucleotides are the triene vibra-

tion around 1485 cm−1 for guanine with a high Raman cross section, the CN stretching vibration
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around 1483 cm−1 of adenine, also with a quite high Raman cross section. For the two pyrimidine

bases cytosine and thymine the CN stretching vibration around 1530 cm−1 (C) and the CC and

CN stretching vibrations around 1660 cm−1 (T) and 1370 cm−1 (T) will dominate the spectrum,

however, with a smaller Raman scattering cross section than for the Raman bands of the purine

bases.

Furthermore, it was shown that Raman spectroscopy can be applied to assess information about

the environment of the nucleic acid bases, such as hydrogen bonding interactions. Also the con-

figuration of the molecules such as the orientation of the sugar moiety showed influence on the

vibrational signature. This fact will be used in later sections when studying DNA configurations.

7.2 Primary and secondary structure of DNA

The DNA is a double stranded polymer made of the nucleotides of the four nucleic bases adenine

(A), guanine (G), thymine (T) and cytosine (C), that were investigated in detail in the previous

section. The primary structure, which is the sequence of the bases, encodes the genetic informa-

tion. The two strands which run in opposite directions are connected via hydrogen bonds between

the complementary purine and pyrimidine bases: A pairs with T via two hydrogen bonds, and G

pairs with C via three hydrogen bonds (see the Watson-Crick base pairs in figure 7.4 in section

7.1.1). This hydrogen-bonded double helical structure is called the secondary structure of the

DNA. According to the geometric parameters, such as helix diameter, rise per base pair, screw

sense and orientation of the glycosidic bond, the Watson-Crick double helix is classified into A-,

B- and Z-DNA (and further modifications of minor importance which should not be discussed

here). A-DNA with a helix diameter of 25.5 Å is the broadest of the three types, and 11 base pairs

are necessary to complete a turn in the right-handed double helix. A-DNA has a narrow and very

deep major groove and a very broad and shallow minor groove. B-DNA is also right-handed, with

10.4 base pairs per turn of the helix. It possesses wide and quite deep major grooves and narrow,

but quite deep minor grooves. The helix diameter is about 23.7 Å. Unlike A- and B-DNA, Z-DNA

is a left-handed helix with a diameter of only 18.4 Å and 12 base pairs are necessary to complete

one turn. The major groove is flat, the minor groove very narrow and deep. The geometric param-

eters (torsion angles) of the DNA-molecule are summarized in table 7.5 for A-, B- and Z-DNA.

For A-DNA the sugar pucker is C3’-endo, and in B-DNA it adopts C2’-endo configuration. A

more detailed discussion of the DNA structure and modifications of the ideal forms is provided by

Saenger [222]. Since B-DNA is the lowest energy configuration, it is the most common structure

encountered in vivo. Also the extracted plasmid pBR322 exists in this form as proved later in this

work.

The primary sequence of the DNA was also found to affect the flexibility of the DNA chain.

A:T sequences are more flexible than G:C sequences. This fact is called the secondary genetic

code because some proteins seem to bind based on structure and flexibility to DNA and not by

contacting DNA in sequence specific manner.
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Table 7.5:Torsional angles for A-, B- and Z-DNA [34]

structure torsion angles and atoms involved
type α β γ δ ε ζ χ

O3’(n−1)-P-O5’-C5’ P-O5’-C5’-C4’ O5’-C5’-C4’-C3’ C5’-C4’-C3’-O3’ C4’-C3’-O3’-P C3’-O3’-P-O5’(n+1) O4’-C1’-N1-C2 (pur)
O4’-C1’-N9-C4 (pyr)

A-DNA -50 172 41 79 -146 -78 -154
B-DNA -41 136 38 139 -133 -157 -102
Z-DNA -137 -139 56 138 -95 80 -159
(C-res.)
Z-DNA 47 179 -169 99 -104 -69 68
(G-res.)

7.3 The plasmid-DNA pBR322

Most of the experiments within this work were exemplarily performed with the plasmid pBR322.

The name pBR322 derives from p for plasmid, the letters B and R acknowledge the discoverer of

the plasmid F. Bolivar and R.L. Rodgrigues, and 322 is just a laboratory number. The molecular

weight was determined to be 2.9 MDa. This plasmid is the first widely used cloning vector from

E. coli. With a length of 4361 base pairs (bp) it is still small enough to separate the different

topoisomers (relaxed, superhelical und open circle) in an electrophoretic gel, which is of special

interest when investigating the action of the enzyme gyrase. At the same time it is also large

enough to provide a sufficient working surface for the gyrase and therefore act as a target for the

enzyme.

Its complete nucleotide sequence is known and shown in table 7.6. Within the first 1300 bp

and within the last 1000 bp, when starting the base pair count at the EcoRI site as done in table

7.6, the plasmid pBR322 carries the resistance genes to the antibiotics tetracycline and ampi-

cillin, respectively. This fact was used when cultivatingE.coli for the extraction of the plasmid

pBR322. Tetracycline and ampicilline were added to the culture during bacterial growth in order

to select only those bacteria that carry the plasmid (see section 3.2.2). Of special interest for fur-

ther binding experiments to the enzyme gyrase is the nucleotide sequence around the T990-site:

5′−AGGCTGGATGGCCTTCCCCAT−3′. Lockshon and Morris identified this region to prefer-

entially bind to the GyrA subunit [144]. The ester formation with the tyrosine moiety of the GyrA

involves the phosphate group of the central tyrosine marked with underline. For further details

about the gyrase-DNA interactions see section 8.1.2 and section 8.4.1.

7.4 Spectroscopic characterization of DNA

7.4.1 Micro-Raman spectroscopy

Figure 7.9 shows a micro-Raman spectrum of native plasmid DNA pBR322 in the solid state (pre-

cipitate after the phenol-chloroform purification (see experimental section 3.2.2). The spectrum

contains contributions from the purine and pyrimidine bases, the sugar and the phosphate moieties.

Comparison with the micro-Raman spectra of the individual nucleotides discussed in the previous

section (section 7.1) can help assigning the vibrational bands. Slight changes in the position and
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Table 7.6:Complete nucleotide sequence of theEscherichia coliplasmid pBR322 [251]
(Origin of the base count at the EcoRI site).

base count sequence

1 ttctcatgtt tgacagctta tcatcgataa gctttaatgc ggtagtttat cacagttaaa
61 ttgctaacgc agtcaggcac cgtgtatgaa atctaacaat gcgctcatcg tcatcctcgg

121 caccgtcacc ctggatgctg taggcatagg cttggttatg ccggtactgc cgggcctctt
181 gcgggatatc gtccattccg acagcatcgc cagtcactat ggcgtgctgc tagcgctata
241 tgcgttgatg caatttctat gcgcacccgt tctcggagca ctgtccgacc gctttggccg
301 ccgcccagtc ctgctcgctt cgctacttgg agccactatc gactacgcga tcatggcgac
361 cacacccgtc ctgtggatcc tctacgccgg acgcatcgtg gccggcatca ccggcgccac
421 aggtgcggtt gctggcgcct atatcgccga catcaccgat ggggaagatc gggctcgcca
481 cttcgggctc atgagcgctt gtttcggcgt gggtatggtg gcaggccccg tggccggggg
541 actgttgggc gccatctcct tgcatgcacc attccttgcg gcggcggtgc tcaacggcct
601 caacctacta ctgggctgct tcctaatgca ggagtcgcat aagggagagc gtcgaccgat
661 gcccttgaga gccttcaacc cagtcagctc cttccggtgg gcgcggggca tgactatcgt
721 cgccgcactt atgactgtct tctttatcat gcaactcgta ggacaggtgc cggcagcgct
781 ctgggtcatt ttcggcgagg accgctttcg ctggagcgcg acgatgatcg gcctgtcgct
841 tgcggtattc ggaatcttgc acgccctcgc tcaagccttc gtcactggtc ccgccaccaa
901 acgtttcggc gagaagcagg ccattatcgc cggcatggcg gccgacgcgc tgggctacgt
961 cttgctggcg ttcgcgacgc gaggctggat ggccttcccc attatgattc ttctcgcttc

1021 cggcggcatc gggatgcccg cgttgcaggc catgctgtcc aggcaggtag atgacgacca
1081 tcagggacag cttcaaggat cgctcgcggc tcttaccagc ctaacttcga tcactggacc
1141 gctgatcgtc acggcgattt atgccgcctc ggcgagcaca tggaacgggt tggcatggat
1201 tgtaggcgcc gccctatacc ttgtctgcct ccccgcgttg cgtcgcggtg catggagccg
1261 ggccacctcg acctgaatgg aagccggcgg cacctcgcta acggattcac cactccaaga
1321 attggagcca atcaattctt gcggagaact gtgaatgcgc aaaccaaccc ttggcagaac
1381 atatccatcg cgtccgccat ctccagcagc cgcacgcggc gcatctcggg cagcgttggg
1441 tcctggccac gggtgcgcat gatcgtgctc ctgtcgttga ggacccggct aggctggcgg
1501 ggttgcctta ctggttagca gaatgaatca ccgatacgcg agcgaacgtg aagcgactgc
1561 tgctgcaaaa cgtctgcgac ctgagcaaca acatgaatgg tcttcggttt ccgtgtttcg
1621 taaagtctgg aaacgcggaa gtcagcgccc tgcaccatta tgttccggat ctgcatcgca
1681 ggatgctgct ggctaccctg tggaacacct acatctgtat taacgaagcg ctggcattga
1741 ccctgagtga tttttctctg gtcccgccgc atccataccg ccagttgttt accctcacaa
1801 cgttccagta accgggcatg ttcatcatca gtaacccgta tcgtgagcat cctctctcgt
1861 ttcatcggta tcattacccc catgaacaga aatccccctt acacggaggc atcagtgacc
1921 aaacaggaaa aaaccgccct taacatggcc cgctttatca gaagccagac attaacgctt
1981 ctggagaaac tcaacgagct ggacgcggat gaacaggcag acatctgtga atcgcttcac
2041 gaccacgctg atgagcttta ccgcagctgc ctcgcgcgtt tcggtgatga cggtgaaaac
2101 ctctgacaca tgcagctccc ggagacggtc acagcttgtc tgtaagcgga tgccgggagc
2161 agacaagccc gtcagggcgc gtcagcgggt gttggcgggt gtcggggcgc agccatgacc
2221 cagtcacgta gcgatagcgg agtgtatact ggcttaacta tgcggcatca gagcagattg
2281 tactgagagt gcaccatatg cggtgtgaaa taccgcacag atgcgtaagg agaaaatacc
2341 gcatcaggcg ctcttccgct tcctcgctca ctgactcgct gcgctcggtc gttcggctgc
2401 ggcgagcggt atcagctcac tcaaaggcgg taatacggtt atccacagaa tcaggggata
2461 acgcaggaaa gaacatgtga gcaaaaggcc agcaaaaggc caggaaccgt aaaaaggccg
2521 cgttgctggc gtttttccat aggctccgcc cccctgacga gcatcacaaa aatcgacgct
2581 caagtcagag gtggcgaaac ccgacaggac tataaagata ccaggcgttt ccccctggaa
2641 gctccctcgt gcgctctcct gttccgaccc tgccgcttac cggatacctg tccgcctttc
2701 tcccttcggg aagcgtggcg ctttctcata gctcacgctg taggtatctc agttcggtgt
2761 aggtcgttcg ctccaagctg ggctgtgtgc acgaaccccc cgttcagccc gaccgctgcg
2821 ccttatccgg taactatcgt cttgagtcca acccggtaag acacgactta tcgccactgg
2881 cagcagccac tggtaacagg attagcagag cgaggtatgt aggcggtgct acagagttct
2941 tgaagtggtg gcctaactac ggctacacta gaaggacagt atttggtatc tgcgctctgc
3001 tgaagccagt taccttcgga aaaagagttg gtagctcttg atccggcaaa caaaccaccg
3061 ctggtagcgg tggttttttt gtttgcaagc agcagattac gcgcagaaaa aaaggatctc
3121 aagaagatcc tttgatcttt tctacggggt ctgacgctca gtggaacgaa aactcacgtt
3181 aagggatttt ggtcatgaga ttatcaaaaa ggatcttcac ctagatcctt ttaaattaaa
3241 aatgaagttt taaatcaatc taaagtatat atgagtaaac ttggtctgac agttaccaat
3301 gcttaatcag tgaggcacct atctcagcga tctgtctatt tcgttcatcc atagttgcct
3361 gactccccgt cgtgtagata actacgatac gggagggctt accatctggc cccagtgctg
3421 caatgatacc gcgagaccca cgctcaccgg ctccagattt atcagcaata aaccagccag
3481 ccggaagggc cgagcgcaga agtggtcctg caactttatc cgcctccatc cagtctatta
3541 attgttgccg ggaagctaga gtaagtagtt cgccagttaa tagtttgcgc aacgttgttg
3601 ccattgctgc aggcatcgtg gtgtcacgct cgtcgtttgg tatggcttca ttcagctccg
3661 gttcccaacg atcaaggcga gttacatgat cccccatgtt gtgcaaaaaa gcggttagct
3721 ccttcggtcc tccgatcgtt gtcagaagta agttggccgc agtgttatca ctcatggtta
3781 tggcagcact gcataattct cttactgtca tgccatccgt aagatgcttt tctgtgactg
3841 gtgagtactc aaccaagtca ttctgagaat agtgtatgcg gcgaccgagt tgctcttgcc
3901 cggcgtcaac acgggataat accgcgccac atagcagaac tttaaaagtg ctcatcattg
3961 gaaaacgttc ttcggggcga aaactctcaa ggatcttacc gctgttgaga tccagttcga
4021 tgtaacccac tcgtgcaccc aactgatctt cagcatcttt tactttcacc agcgtttctg
4081 ggtgagcaaa aacaggaagg caaaatgccg caaaaaaggg aataagggcg acacggaaat
4141 gttgaatact catactcttc ctttttcaat attattgaag catttatcag ggttattgtc
4201 tcatgagcgg atacatattt gaatgtattt agaaaaataa acaaataggg gttccgcgca
4261 catttccccg aaaagtgcca cctgacgtct aagaaaccat tattatcatg acattaacct
4321 ataaaaatag gcgtatcacg aggccctttc gtcttcaaga a

a.. adenosine (983), c.. cytosine (1210), g.. guanosine (1134), t.. thymidine (1034)
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Figure 7.9: Raman spectrum of the plasmid DNA pBR322 (λex = 532 nm).

intensity can be attributed to base stacking interactions and different bonding angles due to the

formation of the double helix.

In the spectral region 1600-1750 cm−1 the carbonyl stretching modes of thymine (C2=O and

C4=O at 1672 cm−1 and 1652 cm−1), guanine (C6=O str at 1713 cm−1), and cytosine (C2=O

around 1680 cm−1) are found and form together the broad band around 1670 cm−1.

The in-plane ring vibrations of the bases can be seen in the vibrational region 1600-1150 cm−1

and the vibrational bands due to the sugar residues show up between 1050 and 600 cm−1. The

Raman bands between 900-600 cm−1 can be used to assign the deoxyribose (and phosphate) con-

formation and to draw conclusions about the secondary DNA structure. The spectrum of pBR322

shown in figure 7.9 presents the plasmid in the popular B-Form. All the B-form marker bands can

be identified in the Raman spectrum: the O-P-O vibrations at 795 ± 5 and 835± 7 cm−1. The latter

one is typically only found in B-DNA [25]. The A-DNA marker band of the C-O vibration at 706

cm−1 and the Z-DNA marker band at 745 cm−1 are both absent in the spectrum.

Another prominent vibrational band is the symmetric stretching vibration of the PO−
2 moiety at

1092 cm−1. It shows up in all DNA spectra and is sometimes used for normalization.

A more detailed vibrational band assignment is given in table 7.7.

The DNA investigated by micro-Raman spectroscopy was in the solid state as it was precipitated

(and washed) after the phenol-chloroform purification (see experimental section 3.2.2). Recording
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Table 7.7:Vibrational band assignment of the Raman spectrum (λex= 532 nm) of pBR322.

pBR322 ref assignment
cm−1 cm−1

500 499 dG+dT [269]
596 596 dG and/or dC [269]
682 681 dG with C2’-endo sugar pucker and anti glycosyl torsion [62], O4’-endo-anti [183]

682 G in B-form [264]
731 728 dA with C2’-endo sugar pucker and anti glycosyl torsion [62]
751 750 dT ring breathing [62, 23]

780/790 cytosine/thymine [62]
785 783 dC with C2’-endo sugar pucker and anti glycosyl torsion [62]
830 835±5 deoxyribose-linked phosphodiester network (5’C-O-P-O-C3) [62], (C2’-endo) [264]
893 895 deoxyribose moieties [62]
919 922 deoxyribose moieties [62]
1015 1015 C-O str [264]
1061 1053 deoxyribose moieties (C-O str) [62, 264]
1095 1092 sym str of O=P=O- [62, 264]

1094 B-conformation [264]
1178 1178 in-plane vib. of C-residues [62]
1212 1214 (H2O) T [264]
1242 1237-1239 dT
1304 1293 C [62]
1338 1339 ring mode (A, G), nucleoside conformation marker: dA in C2’-endo/anti [23]
1374 1376 dT [62]
1421 1420 deoxyribose (backbone) [62]
1446 1444 deoxyribose moieties
1462 1460 deoxyribose (backbone) [62]
1487 1489 in-plane ring vib. of G-residues [62]

1482 in-plane vib. of A-residues [62]
1510 1511 in-plane vib. of A-residues [62, 269]
1532 1531 in-plane vib. of C-residues [62]
1576 1578 in-plane vib. of G/A-residues [62]
1670 1672 T (C=O str) [62]

1672 hydrogen-bonded (base-paired) C=O of T [264]

spectra in solution with a reasonable signal-to-noise ratio would require high DNA concentrations

around 10 mg/ml, which are much higher concentrations than found within biological systems.

Therefore, the signal enhancement of resonance Raman spectroscopy was used and UV-resonance

Raman spectra were recorded from the aqueous DNA solutions and will be discussed in section

7.4.3.

7.4.2 UV absorption spectroscopy

The main advantage of resonance Raman spectroscopy is the enhanced scattering efficiency of

selected chromophores which allows the investigation of native DNA in (dilute) solution. The vi-

brational modes gain their enhancement by the coupling to an allowed electronic transition which

is in resonance with the excitation wavelength. In order to obtain the largest enhancement, the

excitation wavelength should be near an absorption maximum of the chromophore. Figure 7.10

shows the UV absorption spectrum of plasmid DNA pBR322 (solid line). It exhibits an absorption

maximum at 259 nm, which results from a superposition of theπ −π∗ transitions of the purine

and the pyrimidine ring systems of the nucleic acid bases. The absorption spectra of the indi-

vidual nucleotides are shown for comparison in figure 7.10 with dashed and pointed lines. Their

absorption spectra have been discussed in detail in section 7.1.2.4. The plasmid pBR322 contains

in each strand 983 adenosine, 1210 cytosine, 1134 guanosine, and 1034 thymidine, which makes

4361 basepairs (bp) in total. The vertical line marks the Raman excitation wavelength of 244 nm.

It hits the edges of theπ−π∗ absorption band of the two purine bases guanosine and adenosine.

The two pyrimidine bases thymidine and cytidine show only weaker extinction coefficients in this
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Figure 7.10:UV absorption spectra of plasmid DNA and the individual nucleotides. The concen-
tration of the nucleotide is chosen corresponding to their concentration within the
plasmid. The vertical line marks the 244 nm excitation wavelength of the resonance
Raman spectra.

spectral region. Therefore, the UV-resonance Raman spectrum with excitation at 244 nm will be

dominated by contributions from the vibrations of the purine bases. The phosphodiester confor-

mation marker bands of the DNA backbone will not show up, since those vibrations couple to

higher lying electronic transitions.

7.4.3 UV-resonance Raman spectroscopy

The UV-resonance Raman spectrum of the (native, superhelical) plasmid pBR322 is depicted as

solid line in figure 7.11. The UV RR spectra of the individual nucleotides scaled in the intensity ra-

tio, which correlates to the composition of pBR322, are shown for comparison in the same figure.

The dominant feature in the DNA spectrum is the strong vibrational band at 1487 cm−1 resulting

from a rarefaction along the long axis of the purines guanine (G) and adenine (A) [209] with spe-

cial involvement of the coupled vibration of the N7=C8 and C8-N9 stretching modes as well as

from C6=O in dG [256]. This vibrational band is associated with the electronic transition around

255 nm in guanine and around 260 nm in adenosine [77]. Guanine and adenine stretching motions

are also responsible for the weak band at 1419 cm−1 as well as for the band at 1577 cm−1 which is
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Figure 7.11:UV-resonance Raman spectra of plasmid pBR322 and the individual nucleotides.

due to adenosine C4C5 and C4N3 and guanosine C4N3+C5C4-N7C5 triene stretching vibrations

[209] with strong localization at N3 [256]. Due to the delocalized mode, also the hydrogen bond-

ing sites of the excocyclic amino group N6H2 and the in-plane bending of the C2-N1-H contribute

to this vibration [167, 124]. The band at 1535 cm−1 was assigned mainly to cytosine and also

partly to thymine moieties [78] like the weak band at 1253 cm−1 [78]. C=O stretching vibrations

of the carbonyl group show up at 1646 cm−1 which was assigned to the C2=O stretching vibration

in cytosine with minor contributions of the C4=O-C4C5 vibration in thymidine [209, 78]. The

band at 1605 cm−1 is due to NH bending vibrations, notably from adenine [78] and from the N1H

interbase H-bond in guanine [256, 124]. The bands around 1362 cm−1 and 1335 cm−1 result from

imidazol ring stretches of the adenine moiety, the latter also with contributions from the guanine

moiety [209, 256, 77, 78]. The band around 1320 cm−1 was assigned to the imidazol ring vibration

localized at N7 in guanosine which is coupled to the ribose ring puckering and therefore sensitive

to the orientation of the glycosidic bond [256, 124]. When investigating polynucleotides of the

type poly(dC-dG)·poly(dG-dC) the two bands centered at 1335 and 1319 cm−1 have been assigned

to a split band of the 1326 cm−1 band of dGMP [78]. Tsuboi and co-workers attribute a similar

effect seen in visible-excitation Raman spectra to sugar conformational variation, on the basis of

an analysis of ribose-sensitive modes of guanine [183]. A summary of the band assignment of the

plasmid DNA is given in table 7.8.
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Table 7.8:Assignment of the UV-resonance Raman bands of DNA (λex= 244 nm)

Wavenumber Assignment Reference
in cm−1

1708 C6=O str (G) [78, 256]
1646 C2=O str (C), C4=O-C4C5 (T) [78, 209]

N2H2 scissors (G) [256]
1605 N2H2 def (A) [78]

dG: N1H interbase H-bond; dG: C2, N1-H [124, 256]
1577 adenosine C4C5 and C4N3 str and guanosine C4N3+C5C4-N7C5 [209]

dG (pyrimidine ring vibration localized at N3) [256]
guanine ring vibration involving in-plane bending of the C2-N1-H linkages [124]

1535 N3=C4 (C), T [77, 78]
1487 rarefaction along the long axis of the purines (A, G) [209]

coupled vibration of the N7=C8 and C8-N9 stretching modes (G, A) [77]
1419 G. A (C4N9, C8H def) [78, 77]
1362 A [78]
1335 adenosine out-of-phase stretch (C5N7, C8N7) [77, 209]
1320 dG (C2’-endo/syn) [124]
1253 C (C6H def, C4N4), T [78, 77]
1237 dT [124]
785 C, dT, backbone OPO (g-/g-) [78, 124]

7.5 Tertiary structure of DNA: supercoiling

DNA supercoiling plays a fundamental role for many biological cell processes. It is the slightly

underwound tertiary structure of native DNA that enables the proper function of vital processes

such as replication, recombination and transcription. Also the high potential utility of plasmid

DNA for gene replacement therapy, therapeutic applications, and vaccines raise the demand of a

profound and detailed knowledge of the varieties of DNA structures [160, 259].

Supercoiling may be introduced into linear DNA when both ends are fixed so that the DNA

strands cannot rotate with respect to another. This is always the case in closed circular DNA be-

cause of the topological linkage of the two complementary strands. When the DNA double strand

of a covalently closed domain is twisted around itself it imposes strain. To accommodate this

strain the DNA adopts a more compact tertiary structure which is called supercoiled. Depending

on the direction of the twist with respect to the sense of the Watson-Crick-helix the DNA is either

under- or overwound. All naturally occurring DNA is underwound, i.e. the DNA is negatively

supercoiled. The degree of supercoiling is determined by the linking numberLk, which is the

number of times that one DNA strand crosses about the other when the DNA is made to lie flat on

a plane. In relaxed B-form DNA a turn of the double helix contains around 10.4 base pairs (bp),

i.e. there is a link each 10.4 bp. The linking number (Lk) is a topological invariant and can only be

changed by cutting and resealing one or both strands of the DNA. The deviation from the helical

chain of the relaxed double helix is expressed by the linking number difference,∆Lk, between

superhelical and relaxed form. In order to compare the superhelicity of DNAs of different size the

superhelical density parameter was introduced. It is the ratio of the differences in linking number

of supercoiled and relaxed DNA and the total linking number. For native DNA the superhelical
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density is between -0.05 and -0.07 (5-7% underwinding). The native supercoiled form of the plas-

mid pBR322 used in this experiment was found to have a superhelical density parameter ofσ =
-0.069 [236], corresponding to 29 negative superhelical turns [264]. The number of helical turns

in the DNA is called twist. It is a local phenomenon and may be altered by deformation. However,

in relaxed DNA the twist is equal to the linking number. The global contortion of circular DNA,

so to speak the supercoiling of the helix in space, is specified by the writhe. According to White’s

formula the abstract mathematical property "supercoiling" is represented as the sum of twist and

writhe [274]. That implies that a minimization of the writhe can be achieved by alteration of the

twist. This can be facilitated by a loss of base pairing [140]. The enzyme that introduces the nega-

tive coils into bacterial DNA is called gyrase, a topoisomerase II, and will be discussed in chapter

8.

7.5.1 Differentiation by gel electrophoresis

Superhelical and relaxed DNA fulfil different functions within the cell. The supercoiled topoiso-

mer is also the storage form of the DNA. Due to the supercoiling the DNA is compact and fits

into the cell. The easiest way to differentiate between the two forms of the DNA tertiary structure

is by gel electrophoresis using the different electrophoretic mobilities of the compact supercoiled

form and the more elongated relaxed form. Figure 7.12 shows the stained agarose gel after elec-

trophoresis of the two different topoisomers of the plasmid DNA pBR322. The supercoiled (S)

topoisomer in the left lane migrates farther in the same time than its relaxed (R) counterpart which

is due to the significantly greater electrophoretic mobility of the compact supercoiled form. The

very slow fractions present in both lanes (in the top of figure 7.12) were assigned to aggregated

plasmids. Again the aggregates of the supercoiled topoisomers show a higher mobility than their

relaxed analogs. It was also inevitable to have small amounts of open circle form of the plasmid

which migrates as fast as the relaxed DNA topoisomer.

7.5.2 Differentiation by UV-resonance Raman spectroscopy

Results The UV-resonance Raman spectra of supercoiled and relaxed DNA exhibit the same

spectral features as is expected from the identical primary structure of both topoisomers. However,

the change in topology is reflected in the resonance Raman spectrum by slight intensity changes

and wavenumber shifts of some vibrational bands as can be seen in figure 7.13. The difference

spectrum (bottom of figure 7.13) was calculated by subtracting the spectrum of the supercoiled

form from the spectrum of the relaxed from in order to visualize the differences between both

topoisomers. For a detailed spectral analysis curve fitting would be necessary, but for a first

estimate of the observed changes spectral subtraction seemed to be sufficient.

Changes are visible in the region of the exocyclic vibrations, i.e. for the C=O stretching and NH2

scissoring modes between 1600 and 1700 cm−1. The C=O stretching vibration around 1650 cm−1

is slightly more intense in the superhelical form than in the relaxed counterpart, while the band
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supercoiled aggregates relaxed aggregates
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Figure 7.12:Agarose gel of supercoiled (S, left lane) and relaxed (R, right lane) plasmid pBR322.
The compact supercoiled topoisomer migrates faster than the relaxed one.
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Figure 7.13:UV-resonance Raman spectra of plasmid pBR322 in the superhelical (black) and
relaxed (grey) form, and the calculated difference spectrum (relaxed-superhelical,
lower spectrum).
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around 1600 cm−1 exhibits a reduced intensity in the superhelical form. A slight, but reproducible

shift to higher wavenumbers in the spectrum of the superhelical plasmid DNA is observed for

the ring modes of adenine and guanine at 1578 cm−1 as well as for the strong triene stretching

vibration at 1486 cm−1. Both vibrations contain contributions from hydrogen bonding sites.

Further variations in the resonance Raman spectra due to the different tertiary structure of the

plasmid are observed in the wavenumber region between 1320 cm−1 and 1370 cm−1 where the

stretching vibrations of the pyrimidine and imidazole rings coupled to the ribose vibrations occur.

While in the supercoiled form the vibrational bands at 1362 cm−1 and 1335 cm−1 are more intense

than in the relaxed form, the opposite is true for the vibrational band at 1320 cm−1.

Discussion The resonance Raman spectra of superhelical and relaxed plasmid DNA reflect

small but clear differences between the two topoisomers. Especially the vibrational bands involv-

ing hydrogen bonding sites (1700-1450 cm−1) and coupled sugar vibrations (1400-1200 cm−1) are

affected. In the high wavenumber region between 1600 and 1700 cm−1 the vibrational bands of

the exocyclic vibrations (C=O stretching and NH2 scissoring) are found. Changes in this spec-

tral region indicate changes in the hydrogen bonding between the DNA strands. Vasmel [264]

used the intensity of the thymine band around 1650 cm−1 to determine the amount of free (non

hydrogen-bonded) C=O groups in the DNA double strand. The increased intensity of this band

in the superhelical form suggests a local denaturation of the DNA in the superhelical state. This

assumption is supported by the more intense band of the interbase hydrogen bond of the N1H of

guanine at 1605 cm−1. Locally melted states for superhelical plasmids were reported previously in

the literature and occur as a natural consequence of supercoiling. For a twist density of -0.069 as

found in pBR322 [236] about 3.5 % of the base pairs are assumed to appear in the locally melted

state [27].

Hydrogen bonding between the base pairs also affects the vibrational bands at 1578 cm−1 and

1486 cm−1 [166, 256]. A slight shift to higher wavenumbers in the superhelical DNA compared

to the relaxed plasmid is observed for the ring mode of adenine and guanine at 1578 cm−1 which

contains contributions from the exocyclic amino group (N6H2) and the ring nitrogen (N1H). Also

the position of the strong triene stretching vibration at 1486 cm−1 is slightly shifted to higher

wavenumbers in the superhelical form compared to the relaxed form indicating a change of the

hydrogen bonding at C6=O in dG. These effects are only small, but reproducible for various

measurements on different days with samples from different extraction series. A shift to higher

wavenumbers indicates tighter hydrogen bonds of the involved groups. The sensitivity of those

Raman bands for the hydrogen bonding state was shown by Fujimoto et al. [79] and Toyama et

al. [256] using isotope-edited Raman spectroscopy in several solvents with different hydrogen

bonding properties. Further support of the hydrogen bonding sensitivity of those two bands comes

from thermal DNA melting experiments and from quantum chemical calculations (DFT) of the

vibrational bands of the single bases and the interbase complexes (data not shown). The observa-

tion of stronger hydrogen bonds in the superhelical form is in contrast to the intensity variation of
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the C=O stretching and NH2 scissoring vibrations discussed before and also to the locally melted

states in supercoiled DNA. However, previous studies by Serban, Benevides and Thomas, Jr. using

Raman spectroscopy with excitation in the visible revealed also tighter hydrogen bonding at the

N7 acceptor site in small subsets of guanine from wavenumber shifts of the vibrational band at

1488 cm−1 [236].

Further variations in the resonance Raman spectra due to the different tertiary structure of the

plasmid are observed in the wavenumber region between 1320 cm−1 and 1370 cm−1 where the

stretching vibrations of the pyrimidine and imidazole rings coupled to the ribose vibrations oc-

cur. While in the supercoiled form of the plasmid DNA the vibrational bands at 1362 cm−1 and

1335 cm−1 are more intense than in the relaxed form, the opposite is true for the vibrational band

at 1320 cm−1. These changes in the ribose-sensitive modes of guanine and adenine indicate vari-

ations in the sugar conformation due to the twist. In order to accommodate the increased strain

in the superhelical coil slight alterations in the ribose C2’-endo pucker occur. In earlier studies

Brahms et al. report also changes in the sugar pucker vibrations when investigating pBR322 by

non-resonant Raman spectroscopy with excitation at 514 nm [38]. Those findings could not be

confirmed in the Raman study (532 nm excitation) of pUC19 by Serban et al. [236]. However, it

should be noted that all the previous vibrational spectroscopic results were obtained by using ex-

citation wavelength in the visible. Therefore, new results might be assessable when profiting from

the UV-resonance enhancement of Raman spectroscopy which especially focuses on the purine

and pyrimidine bases of the nucleic acid.

7.6 Intercalation of ethidium bromide

The superhelical stress within negative supercoiled DNA can also be reduced by the addition of

intercalators such as ethidium bromide [222, 129]. A consequence of the phenanthridinium inter-

calation is the lengthening of the DNA helix and a concomitant unwinding of the phosphodiester

backbone to accommodate a molecule of the intercalator. This changes∆Lk andσ to become less

negative [23, 289, 201, 59]. Intercalation is a phenomenon of widespread biological importance,

because those structural modifications can lead to functional changes, often to the inhibition of

transcription and replication processes, which make intercalators potent mutagens. Raman spec-

troscopy with its information rich vibrational signatures has great potential for probing structural

details of solution complexes. However, ethidium bromide and ethidium bromide-DNA complexes

show a very strong fluorescence in the spectral region between 400-600 nm and make the use of

excitation wavelength in the NIR [23, 25] or UV necessary.

Understanding DNA drug interactions is of greatest interest because it can provide useful in-

sights into mechanisms of inhibition of translation and transcription which is important for the

design of chemotherapy. It might further be extended to protein-DNA recognition processes. In

the following the focus is set on the changes in the DNA structure caused by the intercalation of
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Figure 7.14:UV-resonance Raman spectra of ethidium bromide (EthBr, c), supercoiled DNA (b)
and a mixture of both (a, 1 drug molecule per 30 bp). The bottom spectrum (d)
shows the calculated difference spectrum obtained by subtracting the spectral sum of
ethidium bromide + DNA from the complex spectrum. The inset shows the chemical
structure of the phenantridinium drug ethidium bromide.

the phenantridinium drug ethidium bromide. The structure of the drug is shown in the inset in

figure 7.14.

Results The superhelical form of DNA is treated with ethidium bromide (EthBr) and the ob-

served changes in the vibrational bands are compared with the differences in the spectra of the

supercoiled and the relaxed form of the plasmid (recall from previous section 7.5). Difficulties

arise because ethidium bromide itself shows also Raman bands in the spectral region of interest

as can be seen in figure 7.14c. An assignment of the vibrational bands of ethidium bromide is

given in table 7.9, based on the assignment of the vibrational bands from the NIR Raman spec-

trum (λex= 752 nm) by Benevides and Thomas [23]. The 2nd spectrum in figure 7.14 (b) shows

again the resonance Raman spectrum of supercoiled DNA and the upper spectrum (a) the mix-

ture of DNA and ethidium bromide with a DNA:ethidium bromide ratio of 30 base pairs per drug

molecule. At this ethidium bromide concentration almost all of the ethidium is bound to the DNA

[59]. Due to the overlapping vibrational bands of the individual components, a simple analysis
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Table 7.9:Assignment of the UV-resonance Raman bands of ethidium bromide (λex=244 nm).

wavenumber assignment [25]
in cm−1

1626 NH2 scissor, phenanthridinium ring
1603 phenyl ring
1579 phenanthridinium ring
1547
1504
1487 phenanthridinium ring
1468 CH3 def
1445 CH2 def
1414 phenanthridinium ring
1376 phenanthridinium ring/ CH3 def
1353 phenanthridinium ring
1285 CH def
1210 phenyl ring
1175 phenyl ring
1123 C-C, C-N str
1001 phenyl ring
837 phenanthridinium ring
699 phenanthridinium ring

of the spectra is not easily possible. For a first qualitative investigation the difference spectrum

was computed by subtracting the spectral sum of the two individual components supercoiled DNA

and ethidium bromide from the spectrum of the mixture. The (amplified) difference spectrum

shown in figure 7.14d displays contributions from ethidium bromide (1629, 1581, 1417, 1379 and

1179 cm−1) and DNA (peak and trough feature at 1499 and 1482 cm−1, 1581 and 1318 cm−1) in-

dicating that complex formation leads to perturbation of the vibrational modes of both interacting

species. A large perturbation is found around 1490 cm−1 where the purine stretching vibrations

occur. Other prominent features in the difference spectrum are located around 1575 cm−1 where

both DNA (purine ring vibration) and drug (phenanthridinium ring) exhibit vibrational bands. The

vibrational bands that were identified to change with the topology of the plasmid DNA are also

affected by ethidium bromide intercalation (mainly the bands around 1486, 1578 and 1318 cm−1).

However, they are superimposed by contributions from the ethidium bromide moiety. Therefore,

it would be desirable to separate the two contributions. An attempt was done by applying principal

component analysis on the orthogonolized spectra.

Discussion In order to separate the contributions of ethidium bromide interactions and changes

in the supercoiling in the DNA, principal component analysis was performed with the UV-resonance

Raman spectra of supercoiled DNA, relaxed DNA, and complexes of ethidium bromide and super-

helical DNA with three different ethidium bromide concentrations. Since ethidium bromide gives

rise to a Raman spectrum itself, the spectral contributions of the drug were removed by orthogo-

nalization before analyzing the data. Figure 7.15 shows the amount (portion) of ethidium bromide

subtracted from the spectra according to ˆw mentioned in the Material and Method section 3.4.5. It
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can be seen that the amount of the subtracted features correlates well with the increasing ethidium

bromide concentration. The spectra of supercoiled DNA and relaxed DNA, to which no ethidium

bromide was added, also show some accidental correlations with the ethidium bromide spectrum,

which are assumed to be negligible. After eliminating the spectral information of pure ethidium

bromide by orthogonalization, the PCA was performed on the basis of the orthogonalized matrix

of the UV-resonance Raman spectra. Figure 7.16A shows the 2D scores plot of the first two princi-

pal components. The Raman spectra of the different topoisomers and the DNA-ethidium bromide

complex form three well separated clusters. The first principal component which describes 30% of

the spectral variations was found to correlate negatively with the ethidium bromide concentration.

The spectra of the mere plasmid DNA cluster at positive values of PC1, while the spectra of su-

percoiled DNA + ethidium bromide are found at negative values of PC1. The higher the ethidium

bromide concentration in the DNA-EthBr complex the more negative are the PC1-values of those

spectra. The second principal component which describes 20% of the spectral variances correlates

in a first approximation to the degree of supercoiling of the plasmid DNA. At positive values of

PC2 the spectra of the supercoiled topoisomer are found, at negative values of PC2 the spectra of

the relaxed form arrange. The spectra of supercoiled DNA + EthBr are found in between the mere

topoisomers at PC2 values around 0. Increasing ethidium bromide concentrations (still below

saturation of the DNA double strand with the intercalating drug) result in a reduced degree of su-

percoiling. For the chosen ethidium bromide concentrations (60, 30 and 20 bp per drug molecule)

the change in supercoiling is relatively small, but detectable. Such results are in good agreement

with sedimentation experiments of plasmid DNA and intercalating ethidium bromide [289].

To identify the spectral bands that contribute the most to the spectral variances of PC1 and PC2

the loading plots of the two principal components were investigated and are shown in figure 7.16B.

The first principal component (lower spectrum in figure 7.16B) which correlates with the ethid-

ium bromide concentration gets its major contributions from the wavenumber around 1486 cm−1

and minor contributions from the wavenumbers around 1585, 1574 and 1313 cm−1. Since the

contributions from pure ethidium bromide have been subtracted prior to calculating the PCA the

loadings do not reflect wavenumbers directly related to the pure EthBr molecule as would be the

case when the PCA is performed with the spectra as measured without removing the contributions

of EthBr by orthogonalization (not shown). The high loadings around 1486 cm−1 most likely rep-

resent the changes in base stacking in the DNA upon ethidium bromide intercalation, as well as

changes in the phenanthridinium ring vibration of the drug upon interaction with the DNA.

The second principal component (PC2, upper spectrum in figure 7.16B) which was found to

account for the spectral variations due to the different tertiary structure of the plasmid DNA ob-

tains its major contributions from the CN stretching mode of guanine and adenine at 1487 cm−1

(high loadings around 1491 and 1477 cm−1) and the adenosine out-of-phase stretch (C5N7, C8N7)

around 1339 cm−1 as well as the conformation sensitive ribose-coupled mode of guanosine around

1320 cm−1. Those wavenumbers describing the largest spectral variations along PC2 are in good

agreement with the vibrational bands that were found to be affected by the change in topology be-
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tween superhelical and relaxed DNA. Therefore, UV-resonance Raman spectroscopy can indeed

be used to investigate the perturbations of localized vibrational modes due to complex formation

of the interacting drug and the DNA molecules.

7.7 Summary and outlook

In this chapter DNA has been characterized by means of vibrational spectroscopy. The band

assignment was supported by extensive studies of the DNA building blocks. Rich vibrational

fingerprints of the DNA molecule give insights into the composition and the conformation of the

DNA double strand. With the help of resonance Raman spectroscopy it is possible to investigate

DNA in aqueous solutions at biological low concentrations. Especially the vibrational modes

associated with the purines and pyrimidine ring systems are enhanced when using 244 and 257

nm excitation wavelength. Structural differences between different DNA topoisomers (supercoiled

and relaxed) can be assessed by resonance Raman spectroscopy. This marks an important step on

the way to monitor the gyrase activity because "educt" and "product" of the enzyme gyrase can be

distinguished. This suggests that this easy and non-destructive technique can further be used for

the investigation of the mode of action of the fluoroquinolone drugs in dilute aqueous solutions.

Even though no information can be attained about the DNA backbone, insight can be gained into

changes at the hydrogen bonding sites of the purine and pyrimidine bases of the nucleic acids as

well as on sugar orientations.

The technique holds also high power for the investigation of DNA-drug interactions in solution

as was shown for the example of ethidium bromide intercalation into superhelical DNA. The in-

terpretation of the UV-resonance Raman spectra of the DNA - ethidium bromide - intercalation

complex is not straightforward because vibrational contributions from ethidium bromide over-

lap with DNA vibrational signatures. However, statistical methods such as principal component

analysis help to identify the vibrational bands that experience the largest variations which can be

correlated with the ethidium bromide concentration and also with the change in topology of the

DNA.

150



8 The biological target: DNA-gyrase

8.1 Structure and biological function of the enzyme gyrase

As discussed in the previous chapter (DNA, chapter 7) the topological state of the DNA is crucial

for many vital cell processes such as transcription, recombination and replication. The transfor-

mation between the different topological states of the DNA is catalyzed by the action of special

enzymes called topoisomerases [48, 268, 55]. According to the mechanism of action the topoiso-

merases are divided into two types. Topoisomerases of type I which are monomers, cut a single

DNA strand and cause a change in linking number (see section 7.5) by∆LK=1. Topoisomerases of

type II are dimers, cut both of the DNA double strands and change the linking number by∆LK=2.

Supercoiling is required for the DNA to reach the compact state in order to fit into the bacterium.

Furthermore, the correct function of the DNA replication process depends on the effective function

of the topoisomerases. Due to their essential function topoisomerases evolved to important targets

of many drugs, such as chemotherapeutics against cancer or antibiotics [55, 69, 90, 156, 200].

Many of those drugs attack the enzyme-DNA complex and cause cell death. An important group

of those drugs, the fluoroquinolones, have already been discussed in chapter 6.

A popular type II topoisomerase is the enzyme gyrase. It is a vital enzyme in all bacteria,

but does not exists in the same structure in eucaryotes. Therefore, it is a very popular target for

antibiotics. Nowadays there are two important groups of gyrase inhibitors, first the coumarins

(e.g. novobiocin) which attack the ATP binding site on GyrB, and second, the quinolones which

interfere with the action of the GyrA subunit when resealing the DNA double strand [168]. The

latter are of special interest for this work and have been characterized spectroscopically in chapter

6.

8.1.1 Structure of the bacterial enzyme gyrase

The enzyme gyrase consists of two subunits GyrA and GyrB that form together a heterotetramer

A2B2 the active enzyme. The GyrB-subunit which is forE.coli 90 kDa in size can be divided into

two domains: the N-terminal domain (NTD, 47 kDa) with the ATP binding site and the carboxyl

terminal domain which forms the connection to the GyrA subunit and binds the DNA. The GyrA

subunit (97 kDa forE. coli) is also composed by two domains: the 59 kDa N-terminal domain

(NTD, GyrA59) and the 38 kDa carboxyl terminal domain. The GyrA59 domains of both GyrA

subunits form together a saddle like structure with a positively charged surface. The electrostatic

surface potential of the GyrA59 domain is depicted in figure 8.1 and discussed in more detail by
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A B

Figure 8.1: Graphical representation of the electrostatic surface potential of the GyrA59 dimer
(DNA breakage reunion domain) calculated with GRASP [181].A) side view,B)
topview; Negatively charged surfaces are depicted in red, positively charged surfaces
in blue. The DNA backbone is shown as a green and red ribbon; the active site ty-
rosines in the binding region are indicated as yellow stars, and the target phosphoryl
groups as yellow dots. (reproduced from Morais Cabral et al. [45]).

Morais Cabral et al. [45]. Figure 8.1 nicely indicates the active site tyrosines by yellow stars. They

are responsible for opening and resealing the DNA double strand by transesterification between

the tyrosine moiety and a phosphate moiety of the DNA. The C terminal domain (CTD) of the

GyrA subunit binds the DNA double strand and wraps it around itself so that one end of the DNA

strand can be moved through the opened double strand at the GyrA59 domain under introduction

of negative supercoils [54, 55, 99, 112].

The gyrase holoenzyme is quite large and so far it was impossible to asses the complete structure

by X-ray crystallography. However, individual parts of the GyrB or GyrA subunit have success-

fully been crystallized and characterized [275, 45, 55]. Also homologous structures are available

for structure elucidation [55].

8.1.2 Mode of action of the bacterial enzyme gyrase

The function of the bacterial enzyme DNA-gyrase is to introduce negative supercoils into the

closed circular DNA. This involves hydrolysis of ATP. The mechanism is presented in figure 8.2.

The DNA strand (the "line" in the top of figure 8.2) is bound with the gate segment (G, in

red) by the DNA cleavage domain of GyrA59 (depicted in blue) by the positively charged surface

extending over about 30 base pairs (bp). Preferential binding occurs at the nucleotide sequence

5’RNNNRNNRTGRYCTYNYNGNY-3’, with R being a purine base, N a nucleotide, Y a pyrimi-

dine base and T thymine [144]. In the plasmid pBR322 which was used in these experiments such
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GyrB

GyrA

G T

1 2

34

- 2 ADP, 2Pi

* *
+2 ATP

Figure 8.2: Schematic view of supercoiling by DNA gyrase (reproduced from Costenaro et al.
[55].) Explanation is given in the text.

a sequence is found around the T990-site: 5′−AGGCTGGATGGCCTTCCCCAT−3′ (see section

7.3). Formation of an ester bond between the hydroxyl group of a tyrosine moiety and a phosphate

group of the DNA backbone facilitates opening of the DNA double strand. The other ends of the

DNA, which have to be at least 130 bp in length, get wrapped around the enzyme (stage 2 in figure

8.2) in a right handed manner [143, 188, 55] by interacting with the carbonyl-terminated domain

(CTD) of GyrA (depicted in orange) [54, 208]. This forces the GyrA to obtain an extend confor-

mation, the flexible linkers (black lines in figure 8.2) between the cleavage domain GyrA59 and

the CTD are outstretched so that one of the DNA strands, the transported segment (T, in purple),

is presented above the G segment in the DNA cleavage domain. The gate segment is transiently

opened by the reversible formation of a covalent linkage between its 5’P and the Tyr-122 residue

of GyrA. The T segment is moved though this opening in the DNA double stand introducing two

negative supercoils into the DNA (stage 3) [42, 99]. The energy needed for the T segment to

slide through the opening is gained by consumption of ATP (black stars in figure 8.2) by the GyrB

subunit (ATPase domain in green, and the CTD of GyrB is depicted in yellow in figure 8.2). ATP-

binding to the GyrB subunit promotes the closure of the GyrB N-terminal side and this structural
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transition allows the T segment to move [41]. The energy used for religation of the G segment of

the DNA is gained from the hydrolysis of the tyrosine-phosphate-ester (stage 4) [168].

The quinolones interfere with this supercoiling mechanism by attacking the gyrase-DNA com-

plex. The detailed mechanism on a molecular level is not yet completely elucidated but of greatest

interest in order to fight growing resistances and to advance in the development of new drugs.

However, it seems difficult to assess because of the high complexity and the large size of the

enzyme-DNA complex. Most of the high-resolution structural methods such as NMR or X-ray

crystallography are difficult to apply. Up to now, there is no complete X-ray structure of the full

length enzyme. Also ab initio modelling reaches its limits when it comes to the gyrase holoen-

zyme, not to speak about the complex with DNA or even the drug. Raman spectroscopy and its

variations are not limited by the size of the investigated particle and therefore, could provide a way

to access useful information. However, before investigation the ternary gyrase-DNA-drug com-

plex, the vibrational spectra of the individual components need to be understood. The results for

the active agents, the fluoroquinolones, and the DNA have already been discussed in the previous

chapters (chapters 6 and 7). This section now deals with the enzyme gyrase.

8.2 The protein building blocks: the amino acids

As was done for the DNA in the previous chapter, the protein building blocks, the amino acids,

should be investigated briefly before discussing the spectral signature of the whole enzyme gyrase.

8.2.1 UV absorption spectra of the amino acids

According to their structure the amino acids can be divided into aliphatic amino acids, aromatic

amino acids and heterocyclic amino acids. Exemplary the UV absorption spectrum of one rep-

resentative of each group is shown in figure 8.3. The aliphatic amino acids do not show any

significant absorption at longer wavelength than 240 nm. As an example lysine is shown which

is present with 23 molecules in the GyrA subunit of the enzyme gyrase. The aromatic and the

heterocyclic amino acids possess low energyπ−π∗ andn−π∗ transitions and therefore, absorb

light of longer wavelength. As an example the UV absorption spectra of tyrosine and tryptophane

are shown in figure 8.3. In total there are 15 tyrosine molecules present in the GyrA subunit. Two

of them are found close to the DNA breakage-reunion region and are involved in the DNA binding

by forming an ester bridge to the phosphate of the DNA backbone (see section 8.1).

8.2.2 Raman spectroscopic characterization of the amino acids

From biological experiments it is known that the amino acid tyrosine exerts a special function

within the DNA binding process. Therefore, the Raman spectroscopic characterization of the

amino acids will be exemplarily shown for tyrosine. Further Raman and resonance Raman spectra

of other amino acids will be presented in the appendix (section B).
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Figure 8.3: Left panel: UV absorption spectra of amino acids,A) the aliphatic amino acid lysine,
B) the aromatic amino acid tyrosine,C) the heterocyclic amino acid tryptophan. The
inset above the spectrum shows the structure of the amino acid.
Right panel: top) simulated Raman spectrum of the aromatic amino acid tyrosine
from DFT calculations (B3PW91/6-31+G(d,p)),middle) Raman spectrum of tyrosine
in the crystalline state;bottom) UV-resonance Raman spectrum of tyrosine in aqueous
solutions, pH 13.

The middle spectrum in the right panel of figure 8.3 shows the Raman spectrum of tyrosine

excited with visible light (532 nm) in comparison with the calculated Raman spectrum as ob-

tained from DFT calculations (top spectrum). Even though the calculations were performed for

molecules in the gas phase and the experiment was performed in the crystalline state, the simu-

lated Raman spectrum using DFT calculations (B3PW91/6-31+G(d,p)) resembles the experimen-

tal spectrum quite well and can be used for an assignment of the vibrational bands (see table 8.1).

The Raman spectrum excited with visible light is dominated by a vibrational band around

830 cm−1. When just referring to the DFT calculations the intense band around 830 cm−1 would

be assigned to a combination vibration of a NH2 out-of-plane vibration and ring breathing. The

band around 850 cm−1 would be due to an NH2 out-of-plane vibration, together with CH2 rocking

and ring breathing vibrations. However, this vibrational region (850 and 830 cm−1) has already

been investigated carefully by Siamwaza et al. [241]. Protonation and polarization experiments as

well as symmetry considerations for several para-substituted benzenes including tyrosine resulted
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8 The biological target: DNA-gyrase

Table 8.1:Assignment of the vibrational Raman bands of tyrosine. (Calculations were performed
by DFT-calculations (B3PW91/6-31+G(d,p)),λex = 532 nm, the numbers in brackets
behind the mode assignment denote the percentage of potential energy localized in that
particular involved bond. Only contributions over 5% are shown

calc. calc. scal. exp. assignment
cm−1 cm−1 cm−1

32 31 CC tors (39) + CC tors2 (30) - CC tors3 (19)
41 40 CC tors3 (55) + CC tors2 (15) - CN tors (5) - CH2 bend (5)
74 71 CC tors (27) + CC tors3 (26) - CC tors2 (17) + ring tors (10)
78 75 CC tors (23) - CC out (15) - CH2 bend (14) - CC tors3 (13) - ring tors (10) - CN bend1 (6)
160 154 ring tors (32) - CCC bend aliph (22) - CH2 bend (12) - CN bend1 (7) + CC bend (5)
224 216 CCC bend aliph (24) + CCOO bend (16) + ring tors (16) - CC bend (9) - CH2 bend (7) + CCO bend (6) - CC out (6)
264 254 CN tors (78) - CN bend1 (6)
275 264 CHN bend3 (31) - CHN bend2 (15) - COOH out (13) - CC bend (8) - CN bend1 (6)
328 316 CC bend (23) + CCC bend aliph (11) - CC tors (9) + CO bend (ring)(9) + CN bend1 (7) + ring def (6)
330 317 COH tors (ring)(57) + CN bend1 (8) - CCOO bend (6)
334 321 335 COH tors (ring)(37) - CN bend1 (13) + CCOO bend (6) + CC bend (6) - COOH out (5)
353 340 ring tors2 (20) + CC out (11) + CO out (ring)(9) + ring def (9) + CCO bend (7) - CC str (6)
422 406 379 ring out (63) + CO bend (ring)(13)
426 409 429 ring out (39) - CO bend (ring)(28) - ring def2 (10) + CC bend (8)
493 474 CO out (ring)(23) + ring tors (20) - CCO bend (17) + ring tors2 (9) + CCC bend aliph (5)
525 504 526 ring def (31) - CCO bend (12) + CC out (8) - CO out (ring)(8) - ring tors (7) - CHN bend3 (7)
562 541 CO out (ring)(22) + ring tors (17) - CC out (11) + ring def (9) + CH2 bend (9) + CCO bend (5)
584 562 CCOO bend (28) - CCC bend aliph (15) + COH tors (11) + CC(OOH)str (7) - CH2 rock (7)
623 599 COH tors (66) - COO bend (8) + CCO bend (5)
653 627 644 ring def2 (78) - CO bend (ring)(6)
719 692 ring tors2 (64) - CO out (ring)(13) - CC out (10)
756 726 714 COOH out (36) - COH tors (11) + CC(OOH)str (8) + CCO bend (6) - ring tors2 (6) + CN str (5)
787 756 NH2 out (18) - ring def3 (12) - ring tors2 (10) + CringC str (6) - CN str (6) - CO str (ring)(6) - CH2 bend (5)
794 764 CC(OOH)str (23) - CH2 rock (9) + ring def3 (9) + NH2 out (8) + CO str (8) + CCO bend (6) + CC str (5)
816 784 CH out (ring) (56) + CH out (ring2)(21)
850 817 798 CH out (ring3) (45) + CH out (ring4) (21) - CO out (ring)(9) - ring tors (8)
861 827 829 NH2 out (17) + ring breath (13) + CO str (ring)(10) + CC str (ring)(8) + CC str (ring2)(8) + CC str (ring3)(8) + CringC str (6) + CH2 rock (6)
885 851 846 NH2 out (33) + CH2 rock (18) - CC str (ring4, breath)(6)
940 904 CH out (ring2) ((53) - CH out (ring)(22) - ring tors2 (14)
965 928 CH2 rock (30) + CC(OOH)str (12) - CC str (9) + NH2 twist (8) - NH2 out (6)
979 942 CH out (ring4)(54) - CH out (ring3) (27) + ring tors3 (6)
1028 988 986 CC str (19) + ring def3 (19) + CN str (9) - NH2 twist (7) - CH2 bend (6) + CN bend1 (6)
1031 991 ring def3 (26) - CC str (14) + CC str (ring4)(7) - CC str (ring)(7) - CN str (7)
1104 1062 1044 CN str (54) - CC str (8) + CCC bend aliph (6) - CH2 twist (6)
1128 1084 CH bend (ring3)(14) - CH bend (ring4)(11) + CC str (ring5)(9) + CH bend (ring)(9) - CH bend (ring2)(9) - CH str (ring)(9) - CN str (6)
1157 1112 1181 CO str (37) - COH bend (27) + CH2 twist (7)
1187 1141 1201 CO bend (ring)(55) - CC str (ring2)(10) + CH bend (ring)(8) + CC str (ring)(6) + CH bend (ring3)(6)
1197 1151 CH bend (ring)21) - CH bend (ring3)(18) + CH bend (ring4)(17) - CH bend (ring2)(16)
1202 1155 CH2 twist (24) + CHN bend3 (13) + NH2 twist (12) + CHN bend2 (12) - CH bend (ring2)(6) - CO str (5)
1232 1185 CringC str (33) + ring def3 (12) + CH2 wag (8) - CH bend (ring4)(7) - CC str (ring3)(5) - CC str (ring4)(5)
1248 1200 NH2 twist (27) - CH2 twist (22) + CHN bend3 (10) + CC str (9)
1301 1250 1247 CO str (ring)(38) - CHN bend (10) - COH bend (7) - ring def3 (6) - CH bend (ring)(5)
1304 1253 CHN bend (26) + CO str (ring)(17) + COH bend (13) + CO str (5)
1321 1270 1267 CH2 wag (24) - CHN bend (21) + COH bend (15) - NH2 twist (7) + CO str (7)
1349 1297 CH bend (ring4)(25) + CH bend (ring2)(19) + CH bend (ring)14) + CH bend (ring3)(14) + CH2 twist (8) - CO bend (ring)(6)
1377 1324 CH2 wag (39)+CHN bend (22)+CC str (8) -CN bend1 (8) -CringC str (7)
1387 1333 1329 CC str (ring4)(16) -CC str (ring3)(15) -CC str (ring)(13)+CH str (ring)(13)+CC str (ring2)(12) -CC str (ring5)(11)+CO bend (ring)(7)
1441 1385 1365 CHN bend2 (34) + CC(OOH)str (16) - NH2 twist (11) + CHN bend3 (8) - CO str (7)
1475 1418 CH2 scis (36) + CC str (ring5)(13) - CH str (ring)(11) - CH bend (ring3)(8) - CH bend (ring)(6)
1479 1422 CH2 scis (60) - CC str (ring5)(6) + CH str (ring)(5)
1558 1498 1436 CH bend (ring)(13) - CH bend (ring4)(12) + CH bend (ring2)(12) + CC str (ring3)(11) - CC str (ring)(11) + CO str (ring)(10) - CC str (ring2)(9)

- CH bend (ring3)(9) + CC str (ring4)(7) - CringC str (6)
1650 1586 CC str (ring)(21) + CC str (ring4)(17) - CC str (ring2)(17) - CC str (ring3)(9) + NH2 scis (8) - ring def2 (8)
1656 1592 NH2 scis (86)
1678 1614 1615 CC str (ring5)(20) + CH str (ring)(20) + ring def (11) - CC str (ring2)(10) - CC str (ring3)(9) - CH bend (ring2)(6)
1848 1777 C=O str (80) - CCO bend (6) - CC(OOH)str (5)
2979 2864 CH str aliph (99)
3055 2937 CH str (CH2)(86) + CH str2 (CH2)(14)
3129 3008 CH str2 (CH2)(85) - CH str (CH2)(14)
3171 3048 CH str (ring)(58) - CH str (ring3)(41)
3188 3065 CH str (ring3)(58) + CH str (ring)(41)
3213 3089 CH str (ring5)(53) - CH str (ring2)(47)
3227 3102 CH str (ring2)(53) + CH str (ring5)(46)
3531 3395 NH str (51) + NH str2 (49)
3627 3487 NH str2 (51) - NH str (48)
3783 3637 OH str (100)
3862 3713 OH str (ring)(97)
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in an convincing assignment of those two bands to a Fermi doublet arising from Fermi resonance

involving a ring breathing mode (expected near 840 cm−1) and the first overtone of an out-of-plane

ring bending vibration near 420 cm−1 [241, 155]. Using the results of the DFT-calculations could

correlate the vibrations of the Fermi doublet to the ring breathing vibration calculated at 861 cm−1

(scaled 827 cm−1) and the out-of-plane vibration calculated to occur at 422 cm−1 and 426 cm−1

(scaled 406 and 409 cm−1, respectively). Siamwiza et al. report an intensity ratio of 3:10 for

the Fermi doublet (845 cm−1 : 803 cm−1) of tyrosine in the solid state [241]. This is in good

agreement with an ratio of 0.26 (area under the curve) determined from the experimental spectra

recorded within the frame of this work.

When using laser light with a wavelength of 257 nm to record the (resonance) Raman spectra

especially the vibrational bands coupling to the Lb electronic transition with polarization per-

pendicular to the the twofold axis of the phenolic ring [155] are enhanced. Due to the selective

enhancement the spectrum simplifies and the vibrational bands around 1610 cm−1 (Y8a, [92])

and at 1182 cm−1 (Y9a, [92]) exhibit the highest intensities. The vibrational bands at 1216 cm−1

(Y7a, [92]) and around 850 cm−1 show up with medium intensity. The doublet around 850 cm−1

appears with different intensity with ultraviolet excitation than with visible excitation. Rava and

Spiro attributed this effect to the selective enhancement of the polarizability associated with the

ring-breathing mode [207].

8.2.3 Peptide structure

Proteins, as e.g. the enzyme gyrase, are linear polymers which are condensation products of amino

acids. The monomers (the amino acids) are linked via a peptide bond (-C=ONH-R). The linear

sequence, that is the order of the amino acids determines the primary structure of the peptide or

protein. The local arrangement in space which is determined by the torsion and dihedral angles

of the peptide bond is described by the secondary structure. The most popular areα-helix, β -

sheet and random coil. Within a protein several regions of a different secondary structure may

be present. The overall three dimensional structure of the protein is called tertiary structure. The

arrangement of several proteins to an active complex is referred to as quaternary structure.

Characteristic vibrational bands A peptide bond gives rise to several vibrational modes. The

in-plane amide I, amide II and amide III vibrational modes are depicted in figure 8.4.

The amide I is found in the Raman spectrum (and very prominent in the IR spectrum) around

1650 cm−1. It arises mainly from the peptide carbonyl stretching vibration with small contribu-

tions from the N-H in-plane bending and CN stretching vibration. The amide II (around 1550 cm−1)

is due to the out of phase combination of CN stretching and NH bending vibrations. The amide III

band originates mainly from the NH vibration and is found in the spectral region between 1200 and

1300 cm−1. The vibrational frequency of this band was found to correlate with the Ramachandran

angle of the single peptide bonds and therefore the amide III band can be used as peptide confor-

mation marker. Also the vibrational frequencies of the other amide bonds are dependent on the
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Figure 8.4: In plane vibrational modes of the peptide bond (figure adopted from Tu [258]).

Table 8.2:Structure dependence of the amide vibration [50].

secondary structure α-helix β -sheet unordered
vibration in cm−1 in cm−1 in cm−1

amide I 1648 1654 1665
amide II 1545 1551 1560
amide III 1299 1235 1267

secondary structure of the peptide, even though their effect is not as strong as can be seen in table

8.2.

8.3 Spectroscopic characterization of the enzyme

8.3.1 Micro-Raman spectroscopy

The obtained aqueous solutions of the enzyme were too dilute to record valuable micro-Raman

spectra. Therefore the enzyme was investigated in the lyophilized state for an excitation of 532

nm.

The Raman spectrum shown in figure 8.5A exhibits characteristic protein features, such as the

amide I band around 1655 cm−1, the amide II band around 1551 cm−1 and the amide III band

around 1250 cm−1. From the position of the amide vibrational bands it can be concluded that a

significant portion of the protein adoptsβ -sheet structure. The sharp band around 1004 cm−1 can

be assigned to the CC aromatic ring stretches of phenylalanine and tryptophan [151, 152, 283].

The CH stretching band around 2930 cm−1 is the dominating Raman band in the spectrum. The

contributions of the aromatic CH stretching vibrations around 3055 cm−1 are smaller, but still

significant (in the GyrA subunit the aromatic amino acids represent slightly more than 8% of the

total number of amino acids). Other resolved features are the CH2 deformation vibration around

1446 cm−1 and the C-O stretching vibration around 1085 cm−1 [152].

However, the structures in the spectrum are broad, many bands overlap and are only poorly

resolved. It would be very hard or impossible to distinguish very small changes in the vibra-
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Figure 8.5: A) Raman spectrum of the enzyme gyrase (λex=532 nm);B) resonance Raman spec-
trum of the GyrA subunit (λex= 244 nm). The inset shows the UV absorption spectrum
of the protein in aqueous solution.

tional signature due to the interaction with DNA and/or the drug. Therefore, resonance Raman

spectroscopy was applied.

8.3.2 UV-resonance Raman spectroscopy

Fresh extract Figure 8.5B shows the resonance Raman spectrum of the fresh extract (aqueous

solution) of the GyrA subunit of gyrase excited at 244 nm. The UV absorption spectrum of the

protein is shown as an inset in the right corner and the arrow indicates where the excitation wave-

length hits the electronic transitions. In the Raman spectrum in particular the vibrational modes

of the aromatic amino acids that absorb in this spectral region are enhanced with hight selec-

tivity and high specificity. The most prominent band at 1616 cm−1 contains contributions from

tyrosine (Y8a) and tryptophan. Tryptophan also accounts for the vibrational bands at 1576 cm−1,

1009 cm−1 (W16) and 757 cm−1 and contributes to the bands around 1555 cm−1 (W3), 1458 cm−1

as well as the two bands around 1357 (W7) and 1340 cm−1 (for comparison see the resonance Ra-

man spectrum of tryptophan in the appendix B figure B.11). The tyrosine Fermi doublet is only

weak in the spectrum of the gyrase subunit GyrA. The vibrational band around 850 cm−1 is slightly

higher in intensity than the band around 830 cm−1. This intensity ratio is in good agreement with
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8 The biological target: DNA-gyrase

"exposed" tyrosines [241] as they are expected on the surface of the DNA-breakage-reunion region

(see figure 8.1) when the phenolic OH is simultaneous acceptor and donor of moderately to weak

hydrogen bonds from and to the solvent.

Redissolved lyophilisate The tertiary structure of proteins can be disrupted very easily and

as a consequence the protein will loose its biological activity. Therefore, the experiments with

the gyrase have been performed shortly after the extraction of the protein and all handling of the

protein was done at 4◦C. However, it is desirable to keep the the protein over a longer period

of time. Several ways to do that are known from biology. Most of them involve the addition

of adequate stabilizers, such as glycerol before freezing. These methods are inappropriate since

in most cases the added substance shows a strong Raman spectrum which will complicate the

spectral analysis. Freeze-drying (lyophilisation) seems to be the method of choice. Care must

be exercised especially during the freezing process, it should be very rapidly to shock-freeze the

protein in its native structure, so that it will survive the extreme pH and salt concentrations arising

during the freezing process. Furthermore the salts present in the solution and buffer can become

important for conservation of the structure. In this experiment the GyrA extract was lyophilized

after removing the imidazol by dialysis against KCl (see section 3.2.3).

The resonance Raman spectrum of the redissolved lyophilisate of GyrA looks very similar to the

resonance Raman spectrum of the fresh extract (see the GyrA spectra in figure 8.7), however slight

differences are detected in the spectra. The most significant difference is the higher intensity of the

vibrational band around 1630 cm−1 (long wavelength shoulder of the Tyr/Trp band at 1616 cm−1).

Minor (unstructured) deviations arise in the spectral region between 800 and 570 cm−1. The tryp-

tophan W16 band occurs also with slightly higher intensity in the spectrum of the redissolved

lyophilisate. Experiments assessing the biological activity of the redissolved lyophilisate and the

fresh extract will be performed in the next section.

8.4 Interactions with DNA and the drug

8.4.1 Interactions with DNA

The GyrA subunit of the gyrase was used for investigating the specific interactions between the

DNA double strand of different topology and the enzyme. As was explained above (section 8.1)

DNA binding occurs in the DNA cleavage region GyrA59. In the absence of GyrB and ATP the

DNA supercoiling process will stop after opening the G segment of the DNA double strand.

Figure 8.6A shows again the resonance Raman spectra of the fresh extract of GyrA (c) and

the relaxed plasmid DNA pBR322 (a). In the middle (b) the resonance Raman spectrum of the

complex formed upon mixing both components in a ratio 2:1 (volume of solution of GyrA : DNA

solution (1.2 mg/ml)) is depicted. The spectrum is dominated by the Raman signatures of the

plasmid pBR322. In order to find out if any spectral changes occur upon binding, the experi-
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Figure 8.6: A) UV-resonance Raman spectra of fresh GyrA (c), relaxed pBR322 (a) and the mix-
ture of both (b). B) Comparison of the experimental spectrum of the gyrA-relaxed
DNA-complex (black) with the sum spectrum (red) from the individual components
gyrA and relaxed pBR322 the green spectrum at the bottom is the computed differ-
ence between the experimental spectrum and the sum spectrumC) Comparison of the
experimental spectrum of the gyrA-relaxed DNA-complex (black) with the sum spec-
trum (red) from gyrA and supercoiled pBR322 the green spectrum at the bottom is the
computed difference between the experimental spectrum and the sum spectrum.

mental spectrum of the GyrA-DNA-complex (black) is compared to the calculated sum spectrum

(red) in figure 8.6B. The sum spectrum (red) was obtained by adding the spectra of the indi-

vidual components (GyrA and relaxed pBR322) in the appropriate ratio. The green spectrum in

figure 8.6B depicts the differences between the experimental and the calculated spectrum, which

is free of any specific interactions: significant spectral variations are detected in the spectral re-

gion around 1340 cm−1 and with a peak-trough feature around 1490 cm−1. A smaller trough-peak

feature occurs around 1600 cm−1. This suggests structural changes involving the ribose sensi-

tive modes of the purine (and pyrimidine) rings as well as changes in the hydrogen bonding sites

of the DNA double strand. The pattern of the difference spectrum strongly resembles the one

obtained when calculating the spectral difference between the resonance Raman spectra of super-

coiled and relaxed DNA (see figure 7.13 in section 7.5). Therefore, the experimental spectrum

of the complex formed by mixing GyrA with relaxed pBR322 was compared to a sum spectrum

calculated by adding the spectral contributions from GyrA and supercoiled pBR322 (instead of
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Figure 8.7: A) UV-resonance Raman spectra of fresh GyrA (c), superhelical pBR322 (a) and the
mixture of both (b), the red spectrum in the middle (b) was obtained by calculating
the sum of the individual components GyrA and supercoiled pBR322. The green
spectrum at the bottom (d) is the computed difference between the experimental spec-
trum and the sum spectrum.B) UV-resonance Raman spectra of GyrA (redissolved
from lyophilized GyrA) (c), relaxed pBR322 (a) and the mixture of both (b), the red
spectrum in the middle (b) was obtained by calculating the sum of the individual
components GyrA and relaxed pBR322. The green spectrum at the bottom (d) is the
computed difference between the experimental spectrum and the sum spectrum.

relaxed pBR322). The result is depicted in figure 8.6C. The difference between the experimen-

tal and calculated spectrum is very small (the green spectrum in figure 8.6C is amplified 2fold)

and the only significant structures are a peak-trough feature around 1490 cm−1 and a small peak

around 1585 cm−1. These vibrational bands are assumed to result from the binding of the DNA to

the GyrA surface. In the absence of the GyrB subunit and ATP the DNA will not be released from

the enzyme.

Figure 8.7A shows the results when the same mixing experiment is performed with GyrA and

supercoiled DNA. Again the experimental spectrum of the mixture is shown in black (graph b)

and the calculated sum spectrum from the individual components (GyrA and supercoiled pBR322,

graph a and c, respectively) is depicted in red in the same diagram (graph b). The calculated dif-

ference spectrum between the experimental and the sum spectrum, that allows conclusions about

the specific interactions in the complex, is shown in green in the bottom (d). The observed devi-

162



8 The biological target: DNA-gyrase

ations are not as striking as the ones for the relaxed DNA in figure 8.6B, but rather resemble the

difference pattern shown in figure 8.6C. However the magnitude of the peak-and-trough features

is slightly higher. This suggests that the DNA is bound to the enzyme causing the changes in

the vibrational spectrum around 1490 cm−1, 1580 cm−1 and 1340 cm−1, but the changes in DNA

topology are only minimal. This seems plausible as native supercoiled plasmid pBR322 as used

in the experiment exists already in the state of maximum twist that is achieved by the action of

gyrase fromE. coli.

The same experiment was also performed using the redissolved lyophilized GyrA and the re-

laxed plasmid DNA pBR322. The corresponding spectra are shown in figure 8.7B. The difference

spectrum (in green, graph d) calculated from the experimental spectrum of the mixture (black,

graph b) and the sum spectrum (red, b) does not exhibit the large deviations as observed for the

complex between the fresh extract of GyrA and relaxed DNA. The spectral signature rather sug-

gests a specific binding as was recorded for the complex of the fresh GyrA extract and supercoiled

DNA. This suggests a (partial) loss of the biological activity of the enzyme upon lyophilization

and resolving. Since there are still interactions between the enzyme, the distortion of the tertiary

structure might be either small or rather affect the CTD of GyrA which wraps the DNA double

strand around the enzyme under strong bending of the DNA strand.

These experiments showed that the fresh extract of the GyrA subunit of the enzyme gyrase ex-

hibits full biological activity and is capable of introducing structural changes in relaxed pBR322

that vary its topology towards the one of superhelical DNA. The lyophilized and redissolved frac-

tion of the enzyme did not show such a high biological activity and only vibrational changes due

to the binding of the DNA to the enzyme have been observed. When using supercoiled pBR322

as a target for GyrA only minor changes in topology are detectable. This can be explained by the

fact that the native supercoiled pBR322 is already in the maximal state of supercoiling achievable

by the action of GyrA fromE. coli.

A concentration series with different mixing ratios of GyrA and plasmid DNA could provide

further insights into the binding and supercoiling mechanism. In the next step the binary mixture

of enzyme and drug is investigated.

8.4.2 Interactions with the drug

To investigate the effect of the fluoroquinole drugs alone on the enzyme, resonance Raman spectra

have been recorded from the GyrA subunit, moxifloxacin and the mixture of both (figure 8.8A).

The spectral deviation between the experimental spectrum of the mixture (black) and the sum

spectrum (red) obtained by adding the spectra of the two components is depicted in green in figure

8.8B. The difference spectrum is relatively noisy and suggests some variances in the spectral

region of the most intense bands (1650-1250 cm−1). In the literature it is reported that there are

neither specific interactions between the enzyme and the drug nor between the drug and the DNA.

However, the spectra suggest some minor structural changes but for a detailed analysis more data
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Figure 8.8: A) UV-resonance Raman spectra of GyrA (bottom), moxifloxacin (top) and the mix-
ture of both (middle).B) Comparison of the experimental spectrum of the GyrA-
moxifloxacin-complex (black) with the sum spectrum (red) from the individual com-
ponents gyrase and moxifloxacin, the green spectrum at the bottom is the computed
difference between the experimental spectrum and the sum spectrum.

points are necessary to allow the use of statistical analysis methods and a profound interpretation

of the data.

8.5 Summary

Different amino acids have been characterized by means of vibrational spectroscopy and marker

bands could be identified which could be also found in the Raman spectrum of extracted gyrase.

While the micro-Raman spectrum of the enzyme gyrase excited at 532 nm exhibits rather broad

and poorly resolved features the UV-resonance Raman spectrum excited at 244 nm shows sharp

vibrational bands originating mainly from the aromatic amino acids. The fresh extract of the GyrA

subunit of the enzyme displays biological activity and is able to change the topology of relaxed

DNA. Care has to be taken when the enzyme is subjected to lyophilization, because it can cause a

loss of activity.
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9 Influence of fluoroquinolone drugs on

bacterial growth

Many bacteria are cause of infectious diseases. In order to fight those diseases a large variety of an-

tibiotics exists. They interfere with different vital processes of the bacteria. The fluoroquinolones

are important broad band antibiotics which are bactericidal by attacking the gyrase-DNA com-

plex and interfering with the action of the vital enzyme gyrase. The individual components of

the ternary drug-target complex have been characterized by means of vibrational spectroscopy

in the previous chapters: the fluoroquinolone drugs in chapter 6, the biological target DNA in

chapter 7 and the enzyme gyrase in chapter 8. Also the unperturbed bacteria and their metabolic

changes during bacterial growth have been discussed in chapter 4. In this chapter now, everything

will be put together and the effect of fluoroquinolone drugs on the bacterial growth will be mon-

itored by means of vibrational spectroscopic methods such as IR absorption, micro-Raman and

UV-resonance Raman spectroscopy. Multivariate statistical analysis methods will help to extract

the traits of interest from the complex bacterial spectra.

9.1 Minimal inhibition concentration

The minimal inhibition concentration (MIC) denotes the lowest antibiotic concentration at which

no bacterial growth is observed after overnight incubation. Minimum inhibitory concentrations

are used as characteristic in diagnostic laboratories to confirm resistance of microorganisms to

an antimicrobial agent and also to monitor the activity of new antimicrobial agents. The MIC of

four different drugs forBacillus pumilusDSM 361Staphylococcus epidermidisATCC 35984 and

Escherichia coli DSM 423 are shown in table 9.1.

Table 9.1:Minimal inhibition concentration of norfloxacin, ciprofloxacin, moxifloxacin and van-
comycin onB. pumilusDSM 361S. epidermidisATCC 35984 andE.coli DSM 423.

drug norfloxacin ciprofloxacin moxifloxacin vancomycin
bacterial strain µg/ml µg/ml µg/ml µg/ml

B. pumilusDSM 361 < 12 < 0.7 0.05
S. epidermidisATCC 35984 < 0.3 <1 < 0.06 4
E.coli DSM 423 < 0.6 < 0.07
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9 Influence of fluoroquinolone drugs on bacterial growth

A clear increase in the activity can be seen in the fluoroquinolone series norfloxacin – ciproflo-

xacin – moxifloxacin. The newest, third generation drug, moxifloxacin exhibits a clearly enhanced

activity against Gram-positive bacteria compared to the older, second generation drugs. Increasing

resistances of various bacteria against antibiotics make the development and design of new pow-

erful drugs necessary. Therefore, it is of great interest to understand the action of antibiotics also

on a molecular level. In this work the focus is set on the fluoroquinolones drugs, which are impor-

tant and effective broad spectrum antibiotics [15, 102, 9, 69, 227] (see also chapter 6). Despite of

many microbiological, chemical and spectroscopic investigations the exact impact mechanism on

a molecular level is not yet fully understood [18, 98]. Exemplarily the influence of two different

fluoroquinolones drugs (moxifloxacin and ciprofloxacin) applied in various concentrations on the

growth of two different bacterial strains (S. epidermidisandB. pumilus) is studied in the following.

It was found that for the full activity of the fluoroquinone drugs a free carboxyl acid group is

necessary in position 3 of the quinolone ring. The three precurser structures A, B and C shown

in figure 6.2 in section 6.2 where the carboxyl group is blocked by ester formation exhibit no

antibacterial activity while the analogous structures D and E (see figure 6.2) with free acids are

highly active.

For comparison the MIC of vancomycin, a drug of the group of the glycopeptides which in-

hibit cell wall synthesis by blocking the murein synthesis, is shown in the last column of table

9.1. While glycopeptides had been one of the last effective weapons against multiresistant germs

like methicillin resistant staphylococci (MRS), growing resistances of the bacteria seem to evolve

[168], as is also seen in the example ofS. epidermidisATCC 35984. In the development of new

and effective drugs and for the elucidation of the mechanisms of action of the drugs high resolution

techniques that provide rich information in short times are required. In chapter 5 such a technique

was introduced.

Increasing resistances of various bacteria against antibiotics make the development and design

of new powerful drugs necessary. Therefore, it is of great interest to understand the action of

antibiotics also on a molecular level. In this work the focus is set on the the fluoroquinolones

drugs, which are important and effective broad spectrum antibiotics [15, 102, 9, 69, 227]. Despite

of many microbiological, chemical and spectroscopic investigations the exact impact mechanism

on a molecular level is not yet fully understood [18, 98]. Exemplarily the influence of two different

fluoroquinolones drugs (moxifloxacin and ciprofloxacin) applied in various concentrations on the

growth of two different bacterial strains (S. epidermidisandB. pumilus) is studied in the following.

9.2 Effect of moxifloxacin on Staphylococcus epidermidis

Moxifloxacin (see chapter 6) is one of the newer fluoroquinolone drugs which reached the (UK)

market in 2000 as a powerful respiratory agent. The addition of an azabicyclo group in position

7 improves the activity against Gram-positive bacteria, and brings also a marked lipophilicity and

half-lives of more than 10 hours [9]. Moxifloxacin retains activity against many staphylococcal
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9 Influence of fluoroquinolone drugs on bacterial growth

isolates that developed resistance to the older fluoroquinolone drug ciprofloxacin [142]. This testi-

fies the recognized fact in pharmaceutical and medical research that the only solution to overcome

the threat of growing resistances is to continuously develop new drugs [138]. In order to facilitate

target-oriented research new techniques that provide a fast and reliable insight into the mode of

action of antibiotics are in high demand.

Within this chapter different vibrational spectroscopic techniques will be used to gain a deeper

insight into the mechanism of antibiotic action. IR absorption and micro-Raman spectroscopy with

excitation at 532 nm, as well as UV-resonance Raman spectroscopy with excitation at 244 nm are

applied as optical analytical tools to investigate the effect of the fluoroquinolone drug moxifloxacin

on Staphylococcus epidermidisas an example of Gram-positive bacteria. Spectra are recorded of

unperturbed bacteria and of bacteria that experienced varying antibiotic concentrations. With the

help of statistical methods the spectral changes due to the action of the drug are pointed out and

assigned to biological features within the cell. That way the actual model for the mode of action

of the fluoroquinolone drugs can be supported, demonstrating once again the power of vibrational

spectroscopy for biomedical and pharmaceutical problems.

The minimal inhibition concentration (MIC) of moxifloxacin onS. epidermidisATCC 35984

was determined to be less than 0.06 µg/ml. This value is in good agreement with the MICs of

moxifloxacin on other staphylococcus strains as reported in the literature [9]. When the drug is

applied target peak serum concentrations of 2.5 µg/ml in the body have been reported [147]. We

chose four different drug concentrations within this pharmaceutical relevant range to study the

influence of moxifloxacin on the bacteria in order to learn more about the mode of action of this

fluoroquinolone drug.

9.2.1 Growth curve under the influence of drug

Figure 9.1 shows the growth curves ofS. epidermidisATCC 35984 under batch conditions (CASO,

37◦C) in the semi-logarithmic representation for bacterial cultures without (F) and with the ad-

dition of different moxifloxacin concentrations (• 0.8 µg/ml,N 0.16 µg/ml,H 0.27 µg/ml, and�

0.63 µg/ml). The growth curve of the unperturbed culture (F) features the typical growth phases

as was described in more detail before (chapter 4.3): In the lag phase (< 100 min) the bacteria pre-

pare their metabolism for the upcoming growth phase and no net-increase of biomass is observed.

It follows the acceleration phase in which the growth rate increases until it reaches a constant value

of µ = 0.789 h−1 (37◦C in CASO) in the exponential growth phase (> 180 min). Finally, the growth

rate decreases again in the retardation phase and is zero in the stationary phase (> 600 min, not

shown). At the beginning of the exponential growth phase bacteria are most susceptible to changes

in their environment. Therefore, moxifloxacin was added in different concentrations to the grow-

ing bacterial culture at this time (200 minutes after inoculation of the culture; marked by an arrow

in figure 9.1). This causes a reduction of the overall biomass increase and finally results in a com-

plete inhibition of the bacterial growth due to cell death, as can be seen in the growth curve at later
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Figure 9.1: Growth curves ofS. epidermidisATCC 35984 under batch conditions (CASO, 37◦C)
in the semi-logarithmic representation for bacterial cultures without (F) and with
the addition of different moxifloxacin concentration (• 0.8 µg/ml,N 0.16 µg/ml,H
0.27 µg/ml, and� 0.63 µg/ml). An arrow marks the time of the addition of the drug
and the ellipse highlights the time at which the following vibrational spectra have been
recorded.

growth times. The effect is more pronounced at higher moxifloxacin concentrations meaning that

the extent of bacterial killing increases as drug concentrations increase. Several times after the

addition of the drug, IR absorption, micro-Raman and resonance Raman spectra were recorded of

the bacteria without and with drug addition. In the following the results are represented for a resi-

dence time of the drug of 80 minutes. This is enough time for the drug to diffuse into the bacterial

cells, interact with its biological targets and cause cell death. From pharmacodynamic studies of

moxifloxacin the time to kill 99.9% ofS. epidermidiscells was determined to be between 90 and

180 minutes [142].

9.2.2 IR absorption spectra

Figure 9.2A shows representative IR absorption spectra for the different drug concentrations after

an incubation time of 80 minutes (280 minutes of total growth time, marked with an ellipse in

figure 9.1). On a first view all spectra look very similar. They are dominated by the strong amide

I band at 1654 cm−1 and the amide II band at 1547 cm−1. Other prominent features are the broad
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Figure 9.2: A) IR absorption spectra ofS. epidermidiswith different drug concentrations,
recorded 80 minutes after drug addition.B) Hierarchical cluster analysis (HCA) of
the vector normalized spectra shown in A). The numbers above the clusters name the
added moxifloxacin concentration in µg/ml.

NH stretching band around 3293 cm−1 and the various CH stretches of medium intensity around

2930 cm−1. The CH deformation mode is found at 1242 cm−1 and the band at 1087 cm−1 is due to

the symmetric P=O stretching vibration. A more detailed discussion of the spectra of unperturbed

S. epidermidisis given in chapter 4.1.

Even though, the spectra appear qualitatively very similar, quantitative differences according to

the drug concentration can be found. Statistical methods help to point out the spectral traits of

interest. In the hierarchical cluster analysis (HCA) shown in figure 9.2B the vector normalized

spectra of bacteria without and with drug separate very well into two different clusters. The

cluster of spectra of bacteria that were exposed to the antibiotics further splits according to the

drug concentration. The two lowest moxifloxacin concentrations (0.08 µg/ml and 0.16 µg/ml) form

each separate sub-clusters with a relatively small inner-cluster heterogeneity and are distinct from

the spectra of bacteria which were treated with higher moxifloxacin concentrations (0.27 µg/ml

and 0.63 µg/ml). The similarity of the spectra of the two highest drug concentrations is also in

good agreement with a coinciding amount of biomass present in the culture at this growth time

(figure 9.1).
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Figure 9.3: A) Scores plot of the first two principal components (PCs) of the IR absorption spectra
of S. epidermidiswith different drug concentrations, recorded 80 minutes after drug
addition. B) Loading Plot for the first principal component (from A).C) Important
wavenumbers determined by variable selection (REM-TS and LDA) plotted into an
IR absorption spectrum ofS. epidermidisgrown in the presence of 0.16 µg/ml moxi-
floxacin, recorded 80 minutes after drug addition.

The same vibrational spectra were used to perform a principal component analysis (PCA). The

scores plot of the first two principal components (PC) which describe together 88% of the ex-

plained variance is shown in figure 9.3A. According to the drug concentration the bacterial spectra

arrange along the first PC, with the bacteria with no moxifloxacin and with 0.08 µg moxifloxacin

/ml displaced also along the second PC. As in the HCA no separation of the two highest moxi-

floxacin concentrations 0.27 µg/ml and 0.63 µg/ml is achieved.

Since the first principal component correlates to the drug concentration the loading of PC1 gives

the wavenumbers that show the largest variation associated with the action of the drug (figure

9.3B). The largest spectral changes occur in the wavenumber region around 1624 cm−1. But also

the wavenumbers around 1710 cm−1, 1660 cm−1, 1248 cm−1, 1087 cm−1, 965 cm−1 and 860

cm−1 contribute with markedly weight to PC1 (table 9.2).

Employing REM-TS with LDA for variable selection (see section 3.4) gives information about

wavenumbers with high discriminative power. It turned out that a couple of variable subsets

achieved extremely good classification results with LDA. As a consequence the search did not
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9 Influence of fluoroquinolone drugs on bacterial growth

yield a definite result concerning which wavenumbers are most relevant for the discrimination.

One out of many equally good variable subsets is: 1742 cm−1 (C=O str), 1239 cm−1 (P=O str

(asym), amide III), 1085 cm−1 (P=O str (sym)) and 720 cm−1 (CH rock) (figure 9.3C). Using these

variables for classification achieved an internal predictivity of 98% correctly classified spectra in

LMO-CV. The external predictivity of the test set spectra obtained by major voting was 93%.

This indicates that in the interaction of moxifloxacin with its biological targets and the subse-

quent reactions mainly changes at the DNA (symmetric and asymmetric P=O stretch in the DNA

backbone), but also in protein (amide III and amide I) are involved.

The contributions of the asymmetric and symmetric PO−
2 stretching vibration at 1248 cm−1 and

1087 cm−1, to the loading of PC1 and the selection of those wavenumbers by the tabu search

method indicate structural changes in the DNA backbone, which might be a reorientation of the

phosphate groups due to DNA interactions. The negative correlation of this wavenumbers in the

PCA suggests a decrease of phosphate binding which is in good agreement with the observation of

DNA fragments after the incubation with fluoroquinolone drugs reported in earlier studies [162].

The principal component analysis reveals a positive correlation of the wavenumber region

around 1624 cm−1 to the loading of PC1 which indicates the increase of intermolecular aggre-

gatedβ -sheet as they are found in denatured protein [255]. The concomitant negative correlation

of PC1 with a broad region around 1660 cm−1 marks the decrease of orderedα-helical andβ -sheet

structures. The observed changes might not only be due to the pure action of the drug with its bi-

ological target, but also caused by successive reactions (in pharmacokinetic studies moxifloxacin

was found to have a protein binding of 50% [9]).

9.2.3 Micro-Raman spectra with excitation at 532 nm

Figure 9.4A shows the micro-Raman spectra of the bacteria with and without drug addition in

a spectral region between 1900 cm−1 and 600 cm−1. As for the IR spectra no significant differ-

ences are visible on first sight and make a statistical analysis necessary. Due to different selection

rules different vibrational bands are prominent in the Raman spectra compared to the IR spec-

tra. Protein contributions are found around 1660 cm−1 with the amide I band [151, 152], in the

spectral region between 1220-1300 cm−1 contribution from the amide III band [151, 152], and

around 1000 cm−1 with the aromatic ring stretching mode of phenylalanine [152]. The vibrational

bands at 1450 cm−1 and 1333 cm−1 are assigned to CH2 and CH deformation modes, respectively

[151, 152, 283, 276]. Nucleic acid vibrations are present with the guanine and adenine ring stretch

at 1574 cm−1 [152].

In order to keep the influence of the fluorescence background low the first derivative of the

Raman spectra was used for the hierarchical cluster analysis (HCA) shown in figure 9.4B. Like for

the IR spectra the HCA allows a clear discrimination between the spectra of untreated bacteria and

the spectra of bacteria that have been exposed to moxifloxacin. The bacterial spectra of different
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9 Influence of fluoroquinolone drugs on bacterial growth
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Figure 9.4: A) Micro-Raman spectra with excitation at 532 nm ofS. epidermidiswith different
moxifloxacin concentrations, recorded 80 minutes after drug addition.B) Hierarchi-
cal cluster analysis (HCA) of the first derivative from the spectra shown in A). The
numbers above the clusters name the added moxifloxacin concentration in µg/ml.

drug concentration form individual sub-clusters within the moxifloxacin-cluster, but the inner-

class variance is quite high.

For performing the principal component analysis (PCA) and the REM-TS/LDA the markedly

fluorescence background of the Raman spectra was removed by baseline correction rather than by

using the first derivative, because information about exact peak position and intensity are desirable

when assigning the loadings for the principal components. The scores plot of the first two principal

components of the PCA is shown in figure 9.5A. No clean separation of the individual antibiotic

concentrations is achieved when using only two PCs. However, as for the IR spectra it is again

the first principal component that correlates with the addition of the drug. Figure 9.5B indicates

strong contributions of the wavenumbers due to DNA to the loading of PC1. The strong positive

loadings at 1581 cm−1, 1123 cm−1 and 741 cm−1 can be assigned to ring stretching vibrations

in guanine and adenine [152], to C-N and C-C stretching vibrations [151, 152], and to stacking

sensitive vibrations of adenosine and thymidine [151, 24], respectively. Further DNA contributions

are present with the band at 1088 cm−1 from glycosidic linkages and symmetric PO−2 stretching

vibrations of the DNA backbone. Changes in the protein structure are indicated by the loadings

of the amide I band around 1660 cm−1 and the amide III band around 1263 cm−1. The negative
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9 Influence of fluoroquinolone drugs on bacterial growth
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Figure 9.5: A) Scores plot of the first two principal components (PCs) when using base-line cor-
rected micro-Raman spectra with excitation at 532 nm ofS. epidermidiswith different
drug concentrations, recorded 80 minutes after drug addition.B) Loading Plot for the
first principal component (from A)C) Important wavenumbers determined by variable
selection (REM-TS and LDA) plotted into a micro-Raman spectrum ofS. epidermidis
grown in the presence of 0.08 µg/ml Moxifloxacin, recorded 80 minutes after drug
addition.

correlation of these bands denotes an increase of random coil structure [49] upon the addition of

the drug. This is in good agreement with the results from the IR absorption measurements. The

loadings around 1462 cm−1 are due to molecular changes affecting CH-deformation modes.

As for the IR absorption spectra REM-TS coupled to LDA was employed to reveal important

spectral regions in the micro-Raman spectra. Especially wavenumbers that are associated with

changes in the DNA have selected in that procedure. The wavenumber at 782 cm−1 can be as-

signed to the ring breathing mode in cytosine (and also uracil) [151, 152, 283, 276], the wavenum-

ber 1242 cm−1 can be assigned to stacking sensitive vibrations of thymine. The wavenumbers at

1314 cm−1 and 1450 cm−1 could be due to CH vibrations of the sugar moiety of the DNA (figure

9.5C, table 9.2). However, a definite ranking concerning the importance of the wavenumbers could

not be obtained as the classification by LDA showed an equally good performance for many sub-

sets. The chosen variable subset (1242 cm−1 and 782 cm−1 as well as 1450 cm−1 and 1314 cm−1,

figure 9.5C) showed very good recognition rates and 100% of the spectra could be classified cor-
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9 Influence of fluoroquinolone drugs on bacterial growth

rectly in LMO-CV (internal predictivity). The test set recognition rate obtained by major voting

was 96% (external predictivity).

The selected wavenumbers that experience changes upon addition of moxifloxacin support the

proposed mechanism of action of the fluoroquinolone drugs. The drug, in our case moxifloxacin,

interacts simultaneously with the DNA double strand while binding to the protein gyrase. There-

fore, vibrational bands due to DNA and protein should be affected by the addition of the drug.

However, it should be noted that 80 minutes after drug addition further reactions might have oc-

curred. Contributions of the drug itself to the Raman spectra of the bacteria can be neglected,

since moxifloxacin is so effective against staphylococci (MIC< 0.06 µg/ml) that only low antibi-

otic concentrations are required in the cultivation flasks to kill the bacteria. Aqueous solutions of

moxifloxacin at concentrations below 1.5 µg/µl did not result in any Raman spectra with notice-

able signal. Therefore, the direct influence of the pure presence of the drug on the variance of

the bacterial spectra with different drug concentration can be neglected. The observed variances

within the spectra must be due to changes within the bacteria that are caused by the action of the

drug.

9.2.4 UV-resonance Raman spectra with excitation at 244 nm

In the proposed mechanisms of action of the fluoroquinolone drugs the DNA and the enzyme

gyrase are involved. It was shown above, that indeed changes in the protein and DNA moieties of

the bacteria can be found in the spectra upon drug addition. UV-resonance Raman spectroscopy

with an excitation wavelength of 244 nm allows especially focusing on the purine and pyrimidine

bases of the nucleic acids and on the aromatic amino acids in the proteins (see also sections 7.1.3,

7.4.3 and 8.3.2).

The UV-resonance Raman spectra of the bacteria without and with different drug concentration

shown in figure 9.6A are dominated by contributions from the purine and to a lesser extend the

pyrimidine bases of the nucleic acids. Guanine and adenine moieties account for the vibrational

bands at 1479 cm−1 and 1566 cm−1. Cytosine is responsible for the week band at 1525 cm−1 and

thymine and adenine contribute to the band at 1365 cm−1. Amino acid vibrations are present with

the aromatic amino acids tyrosine and tryptophan which show up at 1612 cm−1 and 1167 cm−1.

The band at 1324 cm−1 results from vibrations in the adenine, guanine and tyrosine moieties.

Unlike for the IR and non-resonance Raman spectra the hierarchical cluster analysis of the UV-

resonance Raman spectra (figure 9.6B) reveals a high heterogeneity of the bacteria which were

exposed to high moxifloxacin concentrations (0.63 and 0.27 µg/ml) and those which experienced

no or a lower moxifloxacin concentration. Within the low-moxifloxacin concentration cluster

the bacterial spectra of the reference culture (no drug) are very well separated from those which

were treated with the drug. The two lowest drug concentrations (0.08 and 0.16 µg/ml) form sub-

clusters which contain also one spectrum of the other drug concentration. Within the cluster of the

high moxifloxacin concentrations no clear sub-cluster formation according to the concentration
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1800 1500 1200 900 600

1
6
1
2

1
5
6
6

1
5
2
5

1
4
7
9

1
3
6
5

1
3
2
4

1
2
2
6

1
1
6
7

R
a
m

a
n
 I
n
te

n
s
it
y

Wavenumber / cm-1

0.0

0.5

1

1.5

2

2.5

3

H
e
te

ro
g
e
n
e
it
y

0.00
&

0.08
0.16 0.27 & 0.63 

&

0.16 & 0.63
A B

Figure 9.6: A) UV-resonance Raman spectra with excitation at 244 nm ofS. epidermidiswith
different drug concentrations recorded 80 minutes after drug addition.B) Hierarchical
cluster analysis (HCA) of the vector normalized spectra shown in A). The numbers
above the clusters name the added moxifloxacin concentration in µg/ml.

is observed. This suggests that the changes within the bacteria due to the drug are the same for

the two highest drug concentrations of 0.27 µg/ml and 0.63 µg/ml as was already observed for

the IR absorption spectra. Those concentrations are well above the MIC of moxifloxacin forS.

epidermidiswhile 0.08 µg/ml and 0.16 µg/ml are in the order of magnitude of the MIC (0.06 µg

moxifloxacin/ml bacterial culture).

The scores plot of the first two principal components of the PCA shown in figure 9.7A features

the same classification pattern as the HCA: the spectra of the bacteria without drug and with low

drug concentration are found on the positive side of the first principal component while the spectra

of bacteria with high drug concentrations form a mixed cluster on the negative end of PC1. Even

though no clear, well separated clusters are formed, the variation within the spectra due presence

and action of the drug can be correlated with the first principal component. In particular the

vibrational bands around 1650 cm−1 and 1601 cm−1 (negatively correlated) as well as the bands

at 1570 cm−1 and 1477 cm−1 (positively correlated) contribute to this principal component as can

be seen from the loading plot in figure 9.7B.

The importance of the wavenumbers around 1609 cm−1 and 1475 cm−1 for the classification

of the data is also reproduced by subset selection by REM-TS and LDA. The wavenumbers
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nent (from A).C) Important wavenumbers determined by variable selection (REM-TS
and LDA) plotted into a UV-resonance Raman spectrum ofS. epidermidisgrown in
the presence of 0.08 µg/ml moxifloxacin, recorded 80 minutes after drug addition.

1609 cm−1 and 1229 cm−1 were selected most often during the search procedure with an occur-

rence of> 80 out of the 100 runs with different splits into training set and test set. Moreover, the

spectral regions at 1639 cm−1, 1475 cm−1 and 1307 cm−1 were selected more than 30 times out of

the 100 runs (figure 9.7C). A combination of the five strongest regions of wavenumbers with an

occurrence of more than 30 times out of the 100 runs achieved a recognition rate of 74% by LMO-

CV and LDA (internal predictivity). By major voting 69% of the spectra were classified correctly

(external predictivity). This relative low internal predictivity is in line with the mixed clusters

in the HCA and PCA. Nevertheless, the selection of the relevant wavenumbers is quite clear and

supports the proposed mechanism by putting special focus on the DNA (especially adenine and

guanine) and protein moieties (especially amide I and the aromatic amino acids tryptophan and

tyrosine). It should be noted that the binding of the DNA double strand to the gyrase occurs via an

ester linkage to tyrosine Tyr122 of the enzyme (see also section 8.1.2). The presence of different

moxifloxacin concentrations within the bacterial cells does not seem to influence the classification

since the wavenumbers of the two strongest vibrational bands of the resonance Raman spectrum
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9 Influence of fluoroquinolone drugs on bacterial growth
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was added.B) Hierarchical cluster analysis (HCA) of the spectra of the bacteria after
190 min growth time, marked in A with an ellipseC) 2D plot of the scores of the prin-
ciple component analysis (PCA) of the bacterial spectra after 190 min of growth time.
D) UV-resonance Raman spectra (λex= 244 nm) ofB. pumilusused for the shown
chemometrical analysis.

of moxifloxacin (1619 cm−1 and 1548 cm−1) have neither been selected by REM-TS/LDA nor

showed markedly contributions to the loadings of PC1 from the PCA.

9.3 Effect of ciprofloxacin on Bacillus pumilus

In analogy to the experiments with moxifloxacin andS. epidermidis, the influence of another

fluoroquinolone drug (ciprofloxacin) on another Gram-positive bacteriumBacillus pumilusis in-

vestigated by means of UV-resonance Raman spectroscopy in this section.

In order to observe the largest effects the drug ciprofloxacin is added to a batch culture ofBacil-

lus pumilusDSM 361 at the beginning of the exponential growth phase when the cells are most

susceptible to changes in the environment. Two different ciprofloxacin concentrations are added

ca. 60 min after inoculation. The growth curves of the bacteria with and without addition of the

drug are shown in figure 9.8A, the arrow indicates the time when the drug was added. Without
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9 Influence of fluoroquinolone drugs on bacterial growth

any drug (F) the batch culture follows the typical growth curve of an unperturbed cell culture

(for a detailed discussion of the growth phases see section 4.3) with the cell mass increasing ex-

ponentially in the logarithmic growth phase. In the presence of the drug the bacterial growth is

inhibited. The effect is more pronounced at the higher ciprofloxacin concentration (5.0 µg/ml,•)
than with a concentration of only 0.9 µg/ml of ciprofloxacin (N) which is just above the minimal

inhibition concentration (MIC). Raman spectra were taken after different growth times and unsu-

pervised multivariate statistical analysis was carried out to visualize the spectral differences. As an

example, the UV-resonance Raman spectra ofBacillus pumiluswith three different ciprofloxacin

concentrations after a growth time of 190 min, which is 130 min after the addition of the drug, are

shown in figure 9.8D. Spectral changes are visible especially in the wavenumber regions around

1620 and 1480 cm−1. To confirm this observation, statistical data analysis was carried out. Figure

9.8B shows the dendrogram generated by a hierarchical cluster analysis (HCA) of these Raman

spectra. The spectra ofB. pumiluswith and without drug are well separated into two clusters

with a relatively large spectral distance, while the two different drug concentrations also form

two well separated sub-clusters within the cluster of the spectra with drug. Within the clusters

the heterogeneity is much smaller than between different clusters and these spectral distances

within one cluster are caused by inhomogeneities of the sample (bulk measurement). By calcu-

lating the B/W ratio (see section 3.4) the wavenumbers having the most significant discriminative

power were determined to be 1607 cm−1, 1606 cm−1, 1477 cm−1 and 1476 cm−1 (B/W ratio >

40). These wavenumbers have also been selected by REM-TS from the UV-resonance Raman

spectra ofS. epidermidisunder the influence of different moxifloxacin concentrations (see table

9.2 last 3 columns). The increased relative band intensity of the Raman band at 1607 cm−1 in the

spectra of bacteria with addition of drug can tentatively be assigned to the CC-stretching vibration

of the drug ciprofloxacin itself (1617 cm−1 see chapter 6), which is accumulated within the cell.

The spectral changes observed around 1480 cm−1 are due to changes at the DNA within the bac-

teria caused by the drug. Principle component analysis (PCA) was performed for the same data

set as for the cluster analysis. The first principle component (PC) describes already 99% of the

data set, the following four PCs also contain valuable information about the data set, even though

only to a vanishing amount as can be seen from the loading (not shown). Figure 9.8C shows a

two-dimensional scores plot in which the second PC is plotted against the first PC. The individ-

ual concentrations form separated clusters with increasing drug concentration along the negative

PC1-axis.

9.4 Summary and Conclusion

IR absorption, micro-Raman and UV-resonance Raman spectra were recorded to monitor the ef-

fect of the gyrase-inhibitors moxifloxacin and ciprofloxacin onStaphylococcus epidermidisand

Bacillus pumilus, respectively. With the help of multivariate statistical methods it was possible

to distinguish between bacterial cells that grew under unperturbed conditions and those cells that
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9 Influence of fluoroquinolone drugs on bacterial growth

were exposed to different concentrations of the antibiotics. It was even possible to classify the bac-

terial spectra according to the added drug concentrations. In the experiments with moxifloxacin

andS. epidermidisthe two highest drug concentrations (0.27 µg/ml and 0.63 µg/ml) could hardly

be distinguished and their spectra mix in the statistical analysis. This suggests that the same bi-

ological processes occur within the cell upon drug addition when the drug concentration is well

above the MIC. This assumption is in agreement with the very similar biomass concentrations of

the bacterial suspensions of those two antibiotic concentrations at the sampling time as can be seen

in the growth curve (figure 9.1). The wavenumbers that are responsible for the classification of

the spectra could be determined by the data-driven selection procedure of reverse elimination tabu

search coupled to Fisher’s discriminant analysis (REM-TS/LDA) for theS. epidermidis- moxi-

floxacin data set and from the B/W ratio for theB. pumilus- ciprofloxacin data set. Furthermore, it

was possible to find a correlation between the first principal component and the drug concentration

in the bacterial suspension when using principal component analysis to identify the wavenumbers

that experience the largest variations upon drug addition. Even though, the different spectroscopic

techniques focus on different aspects of the cells, they all agree that the drug causes changes within

the cell being mainly associated with changes in the DNA and protein moieties (table 9.2). The

two different fluoroquinolone drugs moxifloxacin and ciprofloxacin cause similar spectral changes

in the UV-resonance Raman spectra of the affected bacteria. This supports the proposed mecha-

nism of the action of the drugs of the fluroquinolone type: they attack the gyrase-DNA complex

which causes subsequent reactions that affect the DNA and protein structure.

This chapter clearly demonstrates that vibrational spectroscopy, namely IR absorption, micro-

Raman spectroscopy with excitation in the visible, as well as UV-resonance Raman spectroscopy

can be used in combination with advanced statistical data analysis to study the influence of drugs

on microorganisms. Furthermore, resonance Raman spectroscopy allows the selective enhance-

ment of the Raman signals of certain chromophoric segments within the bacterial cell. Valuable

information corresponding to the molecular interactions of the drug and its following metabolic

changes can be extracted from the multidimensional spectra by means of multivariate statistical

methods. These techniques bear high potential for the characterization of the mode of action of

various drugs in a fast and reliable manner, and therefore could assist on the way to develop new

and powerful drugs.
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Summary

In this work it was shown how vibrational spectroscopy can be applied to fully characterize bac-

teria. This was done exemplarily forS. epidermidisin great detail and forB. pumilusin a basic

approach utilizing the different vibrational spectroscopic methods such as IR absorption, micro-

Raman, UV-resonance Raman and tip-enhanced Raman spectroscopy. The scheme in figure 10.1

summarizes the different techniques used in this work and how they contribute to a deepened

insight and increased knowledge about special phenotypic characteristics and the chemical com-

position of bacteria, the bacterial metabolism and the interaction with its environment, including

the influence of antibiotics.

IR absorption spectroscopy reveals the overall chemical composition of the bacteria, with spe-

cial focus on the protein components (especially due to intense peptide bond vibrations). It was
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Figure 10.1:Characterization of bacteria by means of different vibrational spectroscopic tech-
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found that during the exponential growth phase the protein content within the bacterial cells is

increasing due to an augmented synthesis of ribosomes for the translation and later due to an

augmented synthesis of enzymes and other functional proteins. In the stationary phase the total

amount of proteins reaches a relative constant level, even though the type of proteins might vary

according to the special function of the cell. This is reflected by a relative increase of the amide I

band within the bacterial spectrum during the exponential growth phase and a constant amide band

intensity in the stationary phase. IR absorption spectroscopy is also suited to monitor RNA and

DNA backbone vibrations via the prominent P=O vibrations. A decrease of the relative intensity

of these vibrations during the logarithmic growth phase points out an increased RNA content at the

beginning of the exponential growth phase. This is produced during the lag phase and necessary

for a quick and efficient translation prior to cell division. These characteristic metabolic activities

are reflected in the chemical composition of the bacteria and allow a classification of the bacterial

spectra according to the growth phase.

These findings were supported by micro-Raman spectroscopy, where also the overall chemical

composition of the bacterial cells is probed. Furthermore, with micro-Raman spectroscopy it was

also possible to investigate bacteria at the single cell level. This introduced a slightly increased

variability between the individual spectra of the bacterial cells in the logarithmic growth phase,

because the cell culture was not synchronous, i.e. some cells were dividing while others had just

finished this process and were preparing for the next dividing process.

Deep UV-resonance Raman spectroscopy with excitation at 244 nm proved to be especially

suited to monitor the vibrational modes of the nucleic acid bases and the aromatic amino acids.

Clearly the effect of a high nucleic acid content (especially RNA) at the beginning of the exponen-

tial growth phase and the increased relativ protein content in the stationary phase were observed

as was already deduced from the IR absorption spectra.

Even though the vibrational spectra of different bacteria from different strains often look very

similar by eye, they contain characteristic information that allow the differentiation and classifica-

tion of bacteria with the help of multivariate statistical analysis methods.

Using tip-enhanced Raman spectroscopy (TERS) detailed information from the bacterial sur-

face are assessable. With a high spatial resolution below the diffraction limit (<50 nm) rich chem-

ical information about the chemical composition and the dynamics taking place on the outermost

bacterial surface can be gained. It was found that protein and sugar moieties dominate the bac-

terial surface of the Gram-positive bacteriumS. epidermidis. In a variety of TERS spectra the

spectral signature of N-acetylglucosamine (NAG) was recognized. NAG is known to be a major

building block of the cell wall, the extracellular teichoic acids and the polysaccharide intercellular

adhesin (PIA) which is supposed to be responsible for biofilm formation ofS. epidermidis. Using

silver-coated tips and an excitation wavelength of 568 nm enhancement factors up to 106-108 com-

pared to normal Raman spectroscopy have been achieved which allows integration times as short

as 1s. At this time scale fluctuations within the TERS spectra recorded on one spot of the bacterial

surface have been detected and it is very likely that a glimpse of the molecular motions on the
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bacterial surface is caught. Since only small volume elements (ca. 50×50×10 nm3) experience

the strong (oriented) field enhancement, already a change of orientation of the probed molecule

effects the TERS spectrum. This quite new approach of investigating complex biological surfaces,

such as bacterial cells, opens new ways for a direct investigation of surface processes as bacterial

adhesion, biofilm formation or bacterial communication, which are all of utmost interest and also

not completely understood. It is also imaginable to use the TERS technique for the study of the

mode of action of cell wall attacking drugs such as vancomycin.

Within the frame of this work the focus was set on a different type of antibiotics: the gyrase

inhibitors of the fluoroquinolone type. Several structural variations of the drugs have been char-

acterized by IR absorption, micro-Raman, UV-resonance Raman and surface-enhanced Raman

spectroscopy. The spectra revealed the similarities in the framework of the quinolone drugs, but

also the special structural characteristics of each drug. The band assignment was assisted by DFT

calculations. Vibrational spectroscopy proofed to be capable to detect small changes in the chem-

ical environments of the drugs inin vitro experiments, such as hydrogen bonding interactions.

Furthermore, the carbonyl group in 3 position on the quinolone skeleton was shown to be essential

for the in-vivo action of the drug. The different substituents on the quinolone skeleton caused a

changed activity against different bacterial strains as was determining by antibiotic susceptibility

tests.

The biological target of the fluoroquinolone drugs is the gyrase-DNA complex. The antibiotics

interfere with the introduction of negative supercoils into the DNA by the enzyme gyrase which

finally causes cell death. To performin vitro experiments DNA and the enzyme gyrase have been

extracted from bacteria. When using resonance Raman spectroscopy with excitation in the UV

(244 and 257 nm) aqueous solution at biological low concentrations of DNA and gyrase could be

investigated. The spectra contained the vibrational bands of aromatic amino acids and the nucleic

acid bases. In the UV-resonance Raman spectra of plasmid DNA characteristic marker bands of the

DNA tertiary structure could be identified that allow a distinction of the DNA before and after the

action of the gyrase (relaxed and supercoiled form). In the presence of the DNA-binding subunit

GyrA of the enzyme gyrase relaxed DNA could be converted into supercoiled DNA, however, in

the absence of GyrB and ATP the process stopped in a stage where the DNA is still bound to the

enzyme. Already supercoiled DNA could also bind to the GyrA-subunit of the enzyme, but no

further increase in superhelicity could be detected.

The detailed knowledge about the bacterial composition and growth phenomena gained ear-

lier in this work was used when analyzing the metabolic changes within bacterial cells caused

by the action of the fluoroquinolone drugs added at varying concentrations. The pronounced ef-

fects on living bacterial cells was observed when the drug was added to the bacterial culture in

the beginning of the exponential growth phase. The antibiotics caused a reduced growth and high

enough drug concentrations (above the MIC (minimal inhibition concentration)) completely killed

the cells. Multivariate statistical analysis methods (PCA and REM-TS with LDA) helped to iden-

tify the vibrational bands that are most affected by the action of the drug. In agreement with
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the proposed mechanism of action of the fluoroquinolones vibrational bands involving protein

and DNA moieties showed the highest discriminative power when comparing the IR absorption,

micro-Raman and also the UV-resonance Raman spectra of untreated bacteria and bacteria under

the influence of drug. At drug concentrations around the MIC the bacterial spectra can be classified

according to the added drug concentration. If the antibiotic concentration is well above the MIC

no distinction between the bacterial spectra of different drug concentration is possible, indicating

that the same biological processes occur and the maximum effect of the drug is reached.

The experiments performed in this work showed how different vibrational spectroscopic tech-

niques (IR absorption, micro-Raman, UV-resonance Raman spectroscopy) can be used in combi-

nation with multivariate statistical analysis methods to characterize and classify bacteria and to

gain insights into their metabolism during unperturbed growth and under the influence of drugs.

The results encourage the continuation of the research in this field and some possible future ex-

periments will be presented in the next paragraph.

Outlook: Further experiments

The results presented in this work give an insight into the bacterial metabolism during bacterial

growth and analyze drug-target interactions involving gyrase inhibitors of the fluoroquinolone

type. The experiments could reproduce the information that were gained previously by tedious

and time consuming biological experiments and therefore established vibrational spectroscopy as

useful methods in the search for new and effective antibiotics.

It was shown that the effect of drugs can be detected via vibrational spectroscopy (IR absorption,

Raman spectroscopy and UV-resonance Raman spectroscopy). This was shown for three different

fluoroquinolones at different concentrations around and above the MIC. In future experiments

also concentrations well below the MIC should be incorporated to detect early stage effects that

are very specific to that special drug and that arise before population effects (i.e. a reduction in

cell growth) can be detected.

Further insights into the mode of action of the gyrase inhibors of the fluoroquinole type can

be gained when continuing thein vitro-experiments started in this work. A concentration series

with different mixing ratios of GyrA and plasmid DNA could provide further insights into the

binding and supercoiling mechanism. In order to find out more about the mechanism of action

on a molecular level of the fluoroquinolones, the drug should be added to the binary mixture

GyrA and pBR322 in varying concentraions. It is known that the fluoroquinolone drugs interfere

with the supercoiling process close to the GyrA59 binding region. This should be detectable in

the vibrational spectra. In the absence of GyrB and ATP the supercoiling reaction stops after

the second stage (recall from section 8.1) which provides an unique opportunity to investigate

the individual reactions in a stepwise manner. Later on, the experiment could be repeated in the

presence of GyrB and ATP in order to show whether further interference is caused by the drug
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(e.g. when adding GyrB, ATP and the drug successively and in different order to the mixture of

GyrA and relaxed DNA).

So far, the enzymes gyrase was only extracted fromE. coli. However, the extraction protocol

could be used to extract the enzyme also from different bacteria, including those that developed

resistances against the fluoroquinolone drugs. Gyrase fromStreptomyces noursei, for example,

exhibits 10fold more resistance to quinolones than the enzyme fromE. coli [248]. Those exper-

iments could help to identify whether the resistance is due pharmacokinetic processes or due to

changes in the enzyme.

Furthermore, the drug-target research by means of vibrational spectroscopic techniques could

be extended to other types of drugs following a different mode of of action, e.g. to those that

inhibit the protein synthesis. Comparing those results to the results obtained with the gyrase in-

hibitors should allow a separation of the characteristic wavenumbers (vibrational bands) associated

specifically with the action of the drug and those which indicate the following cell death.

Great potential for further experiment is offered also by tip-enhanced Raman spectroscopy. The

non-invasive characterization of the bacterial surfaces with a high spatial resolution opens the

way for a direct and in-vivo investigation of the chemical composition and spatial arrangement

of the bacterial surface. This should provide useful information towards the understanding of

bacterial "communication", biofilm formation or bacterial adhesion. Of utmost interest are also

the investigation of the mode of action of cell wall synthesis inhibition drugs such as vancomycin

on a molecular level.
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Zusammenfassung

In dieser Arbeit wurde gezeigt, wie die Schwingungsspektroskopie mit all ihren Unterarten zur

umfassenden Charakterisierung von Bakterien verwendet werden kann. Beispielhaft wurden für

Staphylococcus epidermidisund zum Teil fürBacillus pumilusIR-Absorptionsspektren, Raman-

Spektren, Resonanz-Raman-Spektren und spitzenverstärkte Raman-Spektren aufgenommen, um

einen tieferen Einblick in die phenotypischen Merkmale und die chemische Zusammensetzung

der Bakterien zu erlangen, sowie umfassendere Kenntnisse über den Bakterienstoffwechsel und

die Wechselwirkung der Bakterien mit ihrer Umgebung, einschließlich der Wirkung von Antibio-

tika, zu gewinnen. Spezielles Augenmerk lag dabei auf den Gyrasehemmstoffen aus der Gruppe

der Fluorochinolone. Die Wirkstoffe und die extrahierten biologischen Zielstrukturen DNA und

Gyrase wurden inin-vitro-Experimenten charakterisiert, und die so identifizierten Markerbanden

halfen bei der Interpretation derin-vivo-Experimente mit Bakterien und Antibiotika. Das Sche-

ma in Abbildung 11.1 fasst die verschiedenen angewandten spektroskopischen Techniken und die

spezifischen Informationen, die durch diese zugänglich sind, zusammen.

Mit Hilfe der IR-Absorptionsspektroskopie können Informationen über die chemische Zusam-

mensetzung der Bakterien gewonnen werden. Spezieller Fokus liegt dabei auf den Proteinkom-

ponenten, da die Peptidschwingungen mit intensiven Schwingungsbanden im Spektrum vertreten

sind. Es wurde herausgefunden, dass während der exponentiellen Phase des Bakterienwachstums

der relative Proteingehalt innerhalb der Bakterien leicht ansteigt. Dies ist zunächst auf eine er-

höhte Synthese von Ribosomen für die Translation und später auf eine verstärkte Synthese von

Enzymen und anderen funktionalen Proteinen zurückzuführen. In der stationären Phase des Bak-

terienwachstums erreicht der Proteingehalt ein konstantes Level, das von wechselnden Proteinen

aufrecht erhalten wird. Im IR-Absorptionspektrum der Bakterien zeigen sich diese Veränderungen

in einem Anstieg der relativen Intensität der Amid I-Bande während der exponentiellen Wachs-

tumsphase und einer konstanten Intensität in der stationären Phase.

Intensive IR-Banden resultieren auch von der P=O-Schwingung im Rückgrat der Nukleinsäu-

ren. IR-Absorptionsspektroskopie ist daher auch gut geeignet, um Veränderungen der RNA und

DNA zu verfolgen. Während des Bakterienwachstums (exponentielle Phase) wurde eine Abnahme

dieser Bande und damit des Nukleinsäuregehaltes beobachtet. Das Maximum des RNA-Gehalts zu

Beginn der exponentiellen Wachstumsphase wird durch eine verstärkte Transkription in der Lag-

Phase erzeugt und ist für eine schnelle und effiziente Translation vor der Zellteilung nötig. Diese
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Abbildung 11.1: Charakterisierung von Bakterien mit Hilfe verschiedener schwingungsspektros-
kopischer Methoden.

Stoffwechselaktivitäten ändern die chemische Zusammensetzung der Bakterienzelle, was sich in

den Spektren niederschlägt und eine Klassifizierung der Spektren anhand ihrer Wachstumsphasen

ermöglicht.

Ähnliche Ergebnisse wurden mittels der Raman-Spektroskopie erhalten. Bei Verwendung der

Mikro-Raman-Spektroskopie ist es zudem möglich einzelne Bakterienzellen zu untersuchen. Zeit-

und arbeitsaufwendige Kultivierungsschritte sind nicht nötig, um Informationen über die allge-

meine chemische Zusammensetzung der Bakterien zu gewinnen. Es wurde jedoch eine erhöhte

Variabilität zwischen den Einzelzellspektren der Bakterien in der exponentiellen Wachstumsphase

beobachtet. Dies kann mit der Nicht-Synchronität der Bakterienkultur erklärt werden, d.h. wäh-

rend sich einzelne Zelle gerade teilen, befinden sich andere Zellen gerade im Größenwachstum

zwischen zwei Teilungsschritten.

Mit Hilfe der UV-Resonanz-Raman-Spektroskopie mit Anregung im Tief-UV bei 244 nm wer-

den fast ausschließlich die Schwingungsmoden der Nukleinsäurebasen und der aromatischen Ami-

nosäuren verstärkt. In den wachstumsphasenabhängigen Bakterienspektren wird deutlich ein er-

höhter Nukleinsäure-Gehalt (RNA) zu Beginn der exponentiellen Wachstumsphase, sowie ein stei-

gender und schließlich konstanter Proteingehalt widergegeben. Dies ist in guter Übereinstimmung

mit den Ergebnissen, die aus den IR-Absorptionsspektren gewonnen wurden.

Obwohl die Schwingungsspektren von verschiedenen Bakterienstämmen zunächst auf den er-

sten Blick sehr ähnlich erscheinen, so enthalten sie doch charakteristische Informationen, die eine

Klassifizierung mit Hilfe multivariater statistischer Analysenmethoden, wie z. B. der hierarchi-
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schen Clusterananlyse (HCA), der Hauptkomponentenanalyse (PCA) oder REM-TS (engl.reverse

elimination tabu-search) in Kombination mit linearer Diskriminanzanalyse ermöglichen.

Ein neuer Ansatz, der in dieser Arbeit verfolgt wurde, ist die Untersuchung der Oberfläche

von Bakterien mit Hilfe der spitzenverstärkten Raman-Spektroskopie (TERS, engl.tip-enhanced

Raman spectroscopy). Detaillierte Informationen über die äußerste Bakterienschicht sind notwen-

dig, um wichtige biologische Prozesse, wie die Zellanhaftung an Oberflächen, die Biofilmbildung,

oder auch die Wirkungsweise von zellwandangreifenden Antibiotika auf molekularer Ebene zu

verstehen. Mit TERS können reichhaltige chemische Informationen aus Schwingungsspektren mit

einer Ortsauflösung im Nanometerbereich (ca. 50 nm) erhalten werden. Es wurde gefunden, dass

die Zelloberfläche des Gram-positiven BakteriumsS. epidermidisvon Protein- und Zuckerstruk-

turen dominiert wird. Sehr häufig war in den TERS-Spektren die Schwingungsstruktur des N-

Acetylglucosamins (NAG) enthalten. NAG ist ein wichtiger Baustein der Zellwand, der extrazel-

lulären Teichonsäuren, sowie des Polysaccharids PIA (engl.polysaccharide intercellular adhesin),

das zu einem entscheidenen Teil an der Biofilmbildung beteiligt sein soll. Mit silberbeschichteten

Spitzen und einer Anregungswellenlänge von 568 nm wurden Verstärkungsfaktoren von 106-108

im Vergleich zur normalen Raman-Streuung beobachtet. Dies gestattet kurze Integrationszeiten

von nur 1 s. Auf dieser Zeitskala wurden Fluktuationen des TERS-Signals in einem Punkt auf

der Bakterienoberfläche beobachtet und es scheint sehr wahrscheinlich, dass diese Fluktuationen

die Moleküldynamik auf der Bakterienoberfläche widerspiegeln. Da mit Hilfe der spitzenverstärk-

ten Raman-Spektroskopie nur ein kleines Volumenelement (ca. 50×50×10 nm3) auf der Bakte-

rienoberfläche das verstärkte (evaneszente) elektromagnetische Feld verspürt, bewirkt schon eine

Änderung der Orientierung der Moleküle auf der Zelle eine Änderung im Spektrum. Dieser neu-

artige Ansatz zur Untersuchung komplexer biologischer Oberflächen eröffnet eine Vielzahl von

Möglichkeiten zur direkten Untersuchung von biologischen Prozessen, die bis heute noch nicht

vollständig verstanden sind (z. B. Bakterienkommunikation, Biofilmbildung). Des weiteren sind

auch zahlreiche Anwendungen in der Wirkstoffforschung zur Aufklärung von Wirkmechanismen

von Zellwand-angreifenden Antibiotika, wie z. B. Vancomycin oder auch bei der Suche von neu-

artigen Wirkstoffen denkbar.

Im Rahmen dieser Arbeit lag der Fokus auf einer anderen Wirkstoffklasse, auf den Gyrase-

hemmstoffen aus der Gruppe der Fluorochinolone. Verschiedene Vertreter mit modifizierter che-

mischer Struktur wurden mit Hilfe der IR-Absorptions-, Mikro-Raman-, UV-Resonanz-Raman-

sowie der oberflächenverstärkten Raman-Spektroskopie (SERS, engl.surface enhance Raman

spectroscopy) untersucht. Die Spektren spiegelten die Ähnlichkeiten im Grundgerüst, aber auch

die strukturellen Eigenheiten wider. Eine detaillierte Zuordnung der einzelnen Schwingungsban-

den wurde durch DFT-Rechnungen (engl.density functional theory) unterstützt. Mit Hilfe der

Schwingungsspektroskopie war es möglich, kleine Änderungen in der chemischen Umgebung der

Wirkstoffe, wie z. B. veränderte Wasserstoffbrückenbindungen, inIn-vitro-Experimenten nach-

zuweisen. Außerdem wurde inIn-vivo-Experimenten mit Bakterien nachgewiesen, dass die Car-

bonylgruppe in 3-Stellung am Chinolonring (benachbart zur Ketogruppe) essentiell für die Wirk-
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samkeit der Gyrasehemmstoffe ist. Die verschiedenen Substituenten am Chinolongrundgerüst be-

wirken eine Modifizierung der Aktivität gegenüber verschiedenen Bakterienstämmen.

Die biologische Zielstruktur der Fluorochinolone ist der Gyrase-DNA-Komplex innerhalb der

Bakterie. Das Antibiotikum stört die Funktion des Enzyms Gyrase und verhindert damit die Ein-

führung von negativen Verdrillungen in die Bakterien-DNA, was schließlich zum Zelltod führt.

Für In-vitro-Experimente wurden DNA und Enzym aus den Bakterien extrahiert. Vorversuche

mit den DNA- und Proteinbausteinen, den Nukleinsäurebasen und den Aminosäuren, bildeten die

Grundlage für die Zuordnung der Schwingungsbanden der polymeren Strukturen. Die wässrigen

Lösungen der beiden Zielstrukturen wurden in biologisch niedrigen Konzentrationen mit Hilfe der

Resonanz-Raman-Spektroskopie mit Anregung im Tief-UV (244 und 257 nm) untersucht. Bei die-

sen Anregungswellenlängen dominieren die Schwingungsbanden der Nukleinsäurebasen bzw. der

aromatischen Aminosäuren die Raman-Spektren. Im UV-Resonanz-Raman-Spektrum der DNA

konnten Markerbanden für die beiden verschiedenen Tertiärstrukturen „entspannt” und „superhe-

likal” identifiziert werden, die vor und nach dem Einfluss der Gyrase vorliegen. Durch Zusatz

von GyrA, der DNA-bindenden Untereinheit der Gyrase, kann entspannte DNA in den superheli-

kalen Zustand überführt werden. Jedoch erfolgt die Änderung des Topologiezustandes der DNA

in Abwesenheit der GyrB-Untereinheit und von ATP nicht vollständig, sondern stoppt in einem

Zwischenstadium, in dem die DNA noch an das Enzym gebunden ist. Superhelikale DNA kann

ebenfalls an die GyrA-Untereinheit des Enzyms binden, jedoch findet keine weitere Erhöhung der

Superhelizität statt.

Diese Vorexperimente und die Kenntnisse über die Zusammensetzung und das Wachstums-

verhalten der Bakterien wurden bei der Analyse derIn-vivo-Experimente genutzt, bei denen der

Einfluss der Fluorochinolone in verschiedenen Konzentrationen auf das Bakterienwachstum un-

tersucht wurde. Den größten Einfluss auf das Wachstum hat das Antibiotikum, wenn es zu Beginn

der exponentiellen Phase zur Bakterienkultur gegeben wird. Es bewirkt eine Reduzierung des Bak-

terienwachstums und Konzentrationen oberhalb der minimalen Hemmkonzentration (MHK) ver-

ursachen vollständigen Zelltod. Mit Hilfe von statischen Analysenmethoden (HCA, PCA) können

die Bakterienspektren entsprechend der zugesetzten Antibiotikakonzentration klassifiziert werden.

Dies ist jedoch nur bei Wirkstoffkonzentrationen um die MHK möglich; bei Konzentrationen weit

über der MHK tritt eine Sättigung im erreichbaren Effekt auf, die keine weitere Unterscheidung der

Bakterienspektren mit Antibiotikum ermöglicht. Multivariate statische Auswertemethoden (PCA,

REM-TS) dienen außerdem zur Identifizierung der Schwingungsbanden in den komplexen Bak-

terienspektren, die unter dem Einfluss des Fluorochinolons eine Veränderung erfahren. Sowohl

in den IR-Absorptions-, den Mikro-Raman- als auch in den UV-Resonanz-Raman-Spektren sind

Schwinungsmoden von Protein- und DNA-Bausteinen für eine Klassifizierung der Bakterienspek-

tren (unbehandelte Bakterien vs. Bakterien unter dem Einfluss verschiedener Antibiotikakonzen-

trationen) verantwortlich. Ein solches Verhalten wird auch aus dem angenommen Wirkmechanis-

mus (Angriff des Gyrase-DNA-Komplexes) der Fluorochinolone erwartet.
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Die Ergebnisse dieser Arbeit zeigen, wie verschiedene schwingungsspektroskopische Techni-

ken in Verbindung mit multivariaten statistischen Analysenmethoden zur Charakterisierung und

Klassifizierung von Bakterien verwendet werden können. Des weiteren konnte ein Einblick in die

Stoffwechselvorgänge während des ungestörten Bakterienwachstums sowie unter dem Einfluss

von Antibiotika gewonnen werden. Die Ergebnisse eröffnen zahlreiche weiterführende Experi-

mente und einige davon sollen im nächsten Abschnitt vorgestellt werden.

Ausblick

Die Ergebnisse dieser Arbeit geben einen Einblick in den Bakterienstoffwechsel und analysieren

die Wirkstoff-Zielstruktur-Wechselwirkungen der Gyrasehemmstoffe aus der Gruppe der Fluoro-

chinolonklasse mit ihren biologischen Targets. Die Schwingungsspektroskopie ermöglicht es, in-

nerhalb relativ kurzer Mess- und Präparationszeiten Ergebnisse zu gewinnen, die sonst nur in zeit-

und arbeitsaufwendigen (biologischen) Experimenten zugänglich sind. Dies macht die Schwin-

gungsspektroskopie zu einer geeigneten Methode für die Beantwortung zahlreicher biologischer

und biomedizinischer Fragestellungen, u. a. bei der Suche nach neuen und effektiven Wirkstoffen.

Der Einfluss von drei verschiedenen Fluorochinolonen in verschiedenen Konzentrationen auf

das Bakterienwachstum konnte mit Hilfe der Schwingungsspektroskopie nachgewiesen und ana-

lysiert werden. In dieser Arbeit wurden hauptsächlich Antibiotikakonzentrationen um und ober-

halb der MHK angewendet. In zukünftigen Experimenten sollten auch Konzentrationen weit un-

terhalb der MHK angewendet werden, um frühzeitige Effekte, die spezifisch für das verwendete

Antibiotikum sind und vor äußerlich sichtbaren Populationseffekten (z. B. Reduzierung des Bak-

terienwachstums und Absterben der Kultur) auftreten, zu detektieren.

Weitere detaillierte Einblicke in den Wirkmechanismus der Fluorochinolone auf molekularer

Ebene können in einer Fortsetzung derin-vitro-Experimente mit extrahierter Gyrase, DNA und

Wirkstoff gewonnen werden. Werden nur GyrA und DNA verwendet, und keine GyrB und ATP

zugesetzt, so stoppt der Verdrillungsprozess der DNA auf der 2. Stufe (siehe Abschnitt 8.1). Dies

eröffnet die Möglichkeit den Hemmprozess durch die Fluorochinolone in verschiedenen Etappen

zu untersuchen, zunächst in Konzentrationsserien mit ausschließlich GyrA und relaxierter DNA,

und später mit GyrA, DNA, GyrB und ATP.

In den bisherigen Experimenten wurde die Gyrase ausschließlich ausE. coligewonnen. Das Ex-

traktionsprotokoll kann jedoch auch auf andere Bakterien übertragen werden, einschließlich derer

die eine Resistenz gegenüber einzelnen Fluorochinolonen entwickelt haben (bei Gram-positiven

Bakterien müßte evtl. der Lysis-Schritt zu Beginn des Extraktionsprozesses ausgeweitet werden,

um die stabilere Zellwand vollständig zu zerstören). Solche Experimente könnten bei der Fest-

stellung behilflich sein, ob die Resistenzen pharmakokinetisch bedingt sind oder tatsächlich durch

Veränderungen am Enzym hervorgerufen werden.

Weiterhin könnte schwingungsspektroskopische Untersuchung von Wirkstoff-Zielstruktur-Wech-

selwirkungen auch auf andere Antibiotika mit anderen Wirkmechanismen (z. B. Hemmung der
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Proteinsynthese) ausgeweitet werden. Der Vergleich dieser Ergebnisse mit denen von den Gyrase-

hemmstoffen sollte zusätzliche Informationen liefern, welche Wellenzahlen in den Schwingungs-

spektren spezifisch für die Wirkungsweise des Antibiotikums sind und welche durch unspezifi-

schere Folgereaktionen bis hin zum Zelltod hervorgerufen werden.

Sehr großes Potential für weiterführende Experimente bietet die spitzenverstärkte Raman-Spek-

troskopie (TERS). Diese nicht-invasive Charakterisierungsmöglichkeit der Oberfläche von leben-

den Zellen mit einer sehr hohen Ortsauflösung unterhalb des Beugungslimits eröffnet den Weg für

die direktein-vivo-Untersuchung der chemischen Zusammensetzung sowie der räumlichen Ver-

teilung der einzelnen Komponenten. So können wertvolle Informationen gewonnen werden, die

zum Verständnis von Bakterienkommunikation, Biofilmbildung oder Bakterienanhaftung beitra-

gen. Von äußerstem Interesse ist auch die Erforschung von Wirkmechanismen von Antibiotika,

die die Zellwandsynthese hemmen, wie z. B. Vancomycin.
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A.1 Antibiotics

A.1.0.1 Gyrase Inhibitors of the Group of the Fluoroquinolones

The quinolones nalidixic acid (NAL), oxolinic acid (OXO), cinoxacin (CIN), flumequine (FLU),

norfloxacin (NOR), ciprofloxacin (CIPRO), lomefloxacin (LOM), ofloxacin (OFL) and enoxacin

(ENO) were purchased from Sigma and Aldrich. Sarafloxacin (SARA) and Moxifloxacin (MOXI)

are kind gifts of the group of Prof. U. Holzgrabe from the university of Würzburg where they

have been synthesized. Also 5 different precursor of moxifloxacin have been obtained from the

Holzgrabe-group (see figure 6.2 in section 6.2).

The hydrated compounds were prepared by mixing the anhydrous fluoroquinolones (FQ) with

water in a ratio of FQ:6H2O. A chemical structure of the investigated quinolones is shown in

chapter 6.

A.1.0.2 Glycopeptides

Vancomycin is a kind gift of the group of PD. Dr. Wilma Ziebuhr from the University of Würzburg.

A.2 Cellular Components

A.2.1 Nucleic acids

A.2.1.1 Nucleic acid bases, nucleosides and nucleotides

Thenucleic acid baseshave been obtained commercially.

nucleotide company sum formula molecular weight

in g/mol

adenine (9H-purin-6-amine, 6-aminopurin) FlukaC5H5N5 135.1

β -(-)-adenosine Aldich C10H13N5O4 267.2

adenosine-5’-monophosphate disodium salt FlukaC10H12N5Na2O7P 391.1

guanine Fluka C5H5N5O 151.1

guanosine Sigma C10H13N5O5 283.2

guanosine-5’-monophosphate disodium salt FlukaC10H12N5Na2O8P 407.2

cytosine Fluka C4H5N3O 111.1
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cytidine Aldrich C9H13N3O5 243.2

cytidine-5’-monophosphate SigmaC9H14N3O8P 323.2

thymine Sigma C5H6N2O2 126.1

thymidine Fluka C10H14N2O5 242.2

thymidine-5’-monophosphate disodium salt (hyd) C10H13N2Na2O8P·aq366.2 aq

Thedeoxynucleotideshave been obtained as aqueous solutions from Fermentas GmbH. (pH7,

25 µl of aqueous solution of dATP, dCTP, dGTP and dTTP; 100 mM).

A.2.1.2 Polynucleotides

The polynucleotides have commercially obtained from Sigma as lyophilized sodium salts:

Poly(deoxyadenylic-thymidylic) acid sodium salt

p(dA-dT)·p(dA-dT), P0883, LOT124K16461

22 A260 units/mg (one unit will yield an A260 OF 1.0 in 1 ml of water)

average length 8778 bp

Poly(deoxyguanylic-deoxycytidylic) acid sodium salt

Poly(dG-dC)·Poly(dG-dC), P9389, LOT124K16841

19 A260 units/mg, length ca. 1014 bp

Polydeoxyguanylic acid·Polydeoxycytidylic acid sodium salt

Poly(dG)·Poly(dC), P3136, LOT064K14911

14.5 A260 units/mg, appr. length 7168 bp

Poly(deoxyadenylic-deoxycytidylic) acid·Poly(deoxyguanylic-thymidylic) acid sodium salt

Poly(dA-dC)·Poly(dG-dT) sodium salt, P0307, LOT045K1483

12 A260 units/mg, MW 2.9·106 g/mol.

A.3 Bacteria

A.3.1 Bacterial strains

For the spectroscopic investigations following bacterial strains have been used (the location in

brackets assigns the source):

Bacillus pumilusDSM 27 (DSMZ, Braunschweig)

Bacillus pumilusDSM 361 (DSMZ, Braunschweig)

Bacillus subtilisDSM 10 (DSMZ, Braunschweig)

Bacillus subtilisDSM 347 (DSMZ, Braunschweig)

Escherichia coliDSM 423 (DSMZ, Braunschweig)

Staphylococcus epidermidisRP62A (ATCC 35984) (Universität Würzburg)
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In addition the followingE. colistrains have been cultivated for the extraction of plasmid DNA and

the enzyme gyrase. The strains were obtained from the Lehrstuhl für Genetik at the Universität

Jena.

Escherichia coliK12 andEscherichia coliJM109 for the extraction of the plasmid pBR322,

Escherichia coliDSM 436 for the gyrase extraction,

Escherichia coliM15 (pQE30/GyrAliv, pQE30/GyrAnou, pREP4) for the extraction of 6xHis

tagged GyrA.

A.3.2 Media for the bacterial cultivation

LB (lysogeny broth, or sometimes called Luria-Bertani medium) is a common used complex

medium for the cultivation of bacteria, especiallyEscherichia coli. The recipe was first

published by Giuseppe Bertani in 1951.

In 1 L distilled water the following ingredients are dissolved:

10 g tryptone

5 g yeast extract

10 g NaCl

The pH is adjusted with NaOH to pH7, and the medium is autoclaved at 121◦C prior to use.

CASO tryptic soy broth (casein-peptone soymeal-peptone)

30 g CASO (Merck) in 1 L distilled water, pH 7.3 ± 0.2

NA nutrient broth

25 nutrient broth (Merck) in 1 L of distilled water, pH 7.5 ± 0.2

Agar plates To prepare agar plates of the respective media 15 g/L agar are added prior to auto-

clavation. The still hot and liquid medium is poured into petri dishes where it cools and

hardens.

A.4 Buffer

PBS (10xbuffer, 0.1M PBS, pH 7.2)
10.9 g Na2HPO4 (water free)
3.2 g Na2HPO4 (water free)
90 g NaCl
fill up to 1000 ml with distilled water
adjust pH.

TAE is a buffer solution used in agarose electrophoresis, typically for the separation of nucleic
acids such as DNA and RNA. It is made up of Tris-acetate buffer, usually at pH 8.0, and
EDTA, which sequesters divalent cations.

TAE (Beutenberg) pH 8.5
50 mM Tris
20 mM Na-Acetate
18 mM NaCl
2 mM EDTA
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TNE buffer used in the DNA relaxation
Tris-HCl
NaCl
EDTA

A.4.1 Buffer for the DNA extraction (pBR322)

The DNA extraction was performed using the Nucleobond AX-Set by Macherey-Nagel. The

following buffers were included in this set:

buffer S1 , pH 8.0:
50 mM Tris/HCl
10 mM EDTA
100 ml RNAse, A/ml

buffer S2 :
200 mM NaOH
1% SDS

buffer S3 :
2.80 M KAc, pH 5.1

buffer N1 , pH 6.3:
100 mM Tris/H3PO4
15% EtOH
400 mM KCl

buffer N2 , pH 6.3:
100 mM Tris/H3PO4
15% EtOH
900 mM KCl
0.15% Triton X-100

buffer N3 , pH 6.3:
100 mM Tris/H3PO4
15% EtOH
1150 mM KCl

buffer N5 , pH 8.5:
100 mM Tris/H3PO4
15% EtOH
1000 mM KCl

A.4.2 Buffer for the gyrase extraction

digestion buffer , total volume 150 ml:
15 ml 0.5M potassium phosphate buffer (pH 7.4)
15 g saccharose
150 ml 0.1M DTT (0.077 g in 5 ml)
6.5 ml 2M KCl (Mr 74.56; 7.46 g in 50 ml aq. dest)
127 ml aqua dest.
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0.5M potassium phosphate buffer pH7.4
1.141 g K2HPO4*3H2O in 10 ml aq. dest
0.6805 g KH2PO4 in 10 ml distilled water
start with K2HPO4*3H2O, adjust pH with KH2PO4

10-fold storage buffer :
500 mM KH2PO4 (68.05 g)
2 mM EDTA (8 ml 0.25M EDTA)
10 mM DTT (1.54 g)
adjust pH with KOH to pH 7.5, fill up to 1000 ml

storage buffer 10% glycerin , pH7.5
100 ml storage buffer 10fold
112 ml glycerin
adjust pH with KOH
fill up to with 1000 ml with aq. dest.

storage buffer 50% glycerin pH 7.6
100 ml storage buffer 10fold
500 ml glycerin
adjust pH with KOH
fill up with aq.dest to 1000ml

TKK, 10x , pH7.5 (Tris potassium chloride - potassium phosphate)
400 mM Tris (4.84 g)
190 mM KH2PO4 (2.58 g)
340 mM KCl (2.53 g)
100 ml aq.dest. (decoct, or autoclave buffer)
adjust pH with HCl

A.4.3 Buffer for the affinity chromatography of GyrA with Ni 2+-NTA agarose

lysis buffer (native)
50 mM KH2PO4, pH 8.0
300 mM KCl
10 mM imidazol
10% glycerin
1 mg/ml lysozyme

washing buffer (native)
as lysis buffer, but with 20 mM imidazol

elution buffer (native)
as lysis buffer, but with 250 mM imidazol

0.8

Ni2+-NTA agarose was obtained from QIAGEN and is composed of Ni-nitrolo tri acetic acid

(NTA) coupled to Sepharose CL-6B. The nickel atom is fourfold complexed by NTA and has two

open binding positions for the imidazol nitrogen of the histidine moieties. The surface concen-

tration of the NTA ligand in the Ni2+-NTA agarose from QIAGEN is sufficient for the binding of

approximately 5-10 mg of 6xHis-tagged protein per ml of resin.
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A.4.4 Coupling Novobiocin-Sepharose

procedure :
let 4.67 g epoxiactivated sepharose swell in
500 ml aq.dest. for 2 h
filtrate the white gel
wash with 500 ml 0.3 M Na2CO3 (31.977 g Na2CO3 in 1.1 L aq.dest.)
add Novobiocin solution (470 mg in 14.7 ml 0.3 M Na2CO3)
add 0.9162 g (0.905 ml) Ethanolamin to the pale red-yellow solution, cend=1M)
shake for 5 h at 37◦C
wash with 500 ml 0.5 M NaCl in buffer A (14.61 g NaCl in 500 ml buffer A)
wash with 500 ml aq.dest
wash with 500 ml 0.5 M NaCl in 0.1M Naac (pH4) (6.804 g Naac*3H2O in 500 ml aq.dest.)
gel turns slowly into white again, but keeps it reddish touch) wash with 500 ml aq.dest.

0.3M Na2CO3 pH 9.5
15.899 g in 500 ml
31.797 g in 1000 ml
34.977 g in 1100 ml

buffer A 0.3M Na2CO3, pH 9.5

1M ethanolamin 0.9162 g (0.905 ml) in 15 ml

0.5M NaCl 14.61 g in 500 ml

0.1M NaAc 6.804 g NaAc*3H2O in 500 ml

ATP-buffer 0.1102 g ATP (Mr 551.1) (0.02M)
0.0536 g Mg-acetat (0.025M)
0.149 g KCl (0.2M)
in 10 ml

buffer B 0.8 M KCl (14.912 g KCl in 250 ml distilled water)

5M urea (Carbamid) Mr 60.06, d=1.335, R36/37/38, S26-36
15.015 g in 50 ml

5xTNE II pH7.8
2.5ml Tris 1M, pH 8
100 ml EDTA 0.5M, pH8
5 ml NaCl 1M
adjust pH with HCl to pH7.8
fill up to 10 ml

A.5 Gel electrophoreses

A.5.1 Agarose gel

Agarose gels are used for the electropherographic separation of nucleic acids. The concentration

of the agarose depends on the size of the applied particles. For the small PCR products a 2%

agarose gel was used and for the plasmid pBR322 a 1% agarose gel.
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1% agarose gel for the analysis of the DNA topology
0.4 g agarose
fill up to 40 ml with TAE (Beutenberg) buffer
heat in microwave till everything is dissolved
fill into a gel rack
load DNA when gel is dried.
Run gel for 8 hours at 20 Volt.

A.5.2 SDS-PAGE

SDS-PAGE (sodium dodecylsulfate polyacrylamide gel electrophoresis) is a common form of gel

electrophoreses, which is used for the analysis of proteins (here: gyrase).

10%T, 2.7%C 4%T, 2.7%C
separation gel collection gel

30%T, 2.7%C (1) 3.33 ml 0.67 ml
buffer (3) 2.50 ml -
buffer (4) - 1.25 ml
10% SDS (5) 0.10 ml 50 ml
H2O 4.0 ml 3.0 ml
APS 10% (6) 50 ml 25 ml
TEMED 10 ml 7 ml
total volume 10 ml 5 ml

TEMED needs to be added at the end, because it starts the polymerization.

The separation gel is put between two clean glass plates, which are separated by a spacer. In order

to seal the reaction mixture (the polymerization occurs only under O2-exclusion) it is covered with

a layer of water. After about 45 minutes the water is removed and the separation gel is added. A

special comb is used to obtain the pockets for loading the protein.

Following buffers were used for the gel preparation:

(1) monomer solution 30%T, 2.7%Bis, stock solution:

Acrylamid 58.4 g 73 g
Bis 1.6 g 2 g
H2O to 200 ml to 250 ml
keep at 4◦C in the dark

(3) resolving gel buffer 1.5M TrisHCl, pH 8.8, separation gel buffer

Tris 36.3 g adjust with HCl to pH8.8
H2O to 200 ml

(4) stacking gel buffer 0.5 M Tris-HCl, pH 6.8, collection gel buffer

(5) 10% SDS :

SDS 50 g
H2 to 50 ml
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(6) Initiator 10% ammonium persulfate

ammonium persulfat 100 mg
H2O to 1 ml

(8) 2x treatment buffer (stock solution)

Tris-HCl, pH 6.8 (solution (4)) 2.5 ml 0.125M
SDS (solution (5)) 4 ml 4%
Glycerol 2.0 ml 20%
2-mercapto-ethanol 1.0 ml 10%
H2O to 10 ml
divide into aliquots and freeze
use for the samples by diluting 1:1

(9) tank buffer :

Tris 12 g 0.025 M
Glycine 57.6 g 0.192 M
SDS 40 ml 0.1%
H2O to 4 L

The gel is run at 130 V and about 40 mW for circa 1 hour.

A.6 Further biological assays

A.6.1 Bradford protein test

Bradford reagent ,

100 mg Coomassie Brilliant Blue G-250

50 ml 96% ethanol

100 ml 85% phosphoric acid

fill up to 1 L with distilled water, filtrate and store in the dark.

Bradford protein test :

100 ml sample solution

1 ml Bradford reagent

after 2-15 min changed absorbance at 630 nm (red in alcoholic-acidic media, changes to

blue upon binding to proteins).

A.6.2 Gyrase activity test

2 ml 10x TKK
2 ml 50 mM MgCl2
2 ml Spermidin (20 mg/ml) to accelerate reaction
2 ml RSA (20 mg/ml)
2 ml ATP (20 mg/ml)
DNA
enzyme (DNA:Gyrase 1:1, 2-4 mg/ml)
fill up with H2O to 20 ml
1h, 30◦C
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B.1 DNA and DNA building blocks
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Figure B.1: Micro-Raman spectra of adenine, adenosine and AMP (λex= 532 nm).
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Figure B.2: Micro-Raman spectra of thymine, thymidine and TMP (λex= 532 nm).
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Figure B.3: Micro-Raman spectra of cytosine, cytidine and CMP (λex= 532 nm).
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B.1.0.1 IR absorption spectra
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Figure B.4: IR absorption spectra of adenine, adenosine and adenosine-5’-monophosphate (AMP)
(IR microscope).
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Figure B.5: IR absorption spectra of cytosine, cytidine and cytidine-5’-monophosphate (CMP)
(IR microscope).
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B.1.1 UV absorption spectra

Wavelength / nm

200 250 300 350

0.0

0.1

0.2

adenine

adenosine

AMP

A
b
s
o
rb

a
n
c
e

Figure B.6: UV absorption spectra of adenine, adenosine and AMP in aqueous solution.
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Figure B.7: UV absorption spectra of adenine, adenosine and AMP in aqueous solution .
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Figure B.8: UV absorption spectra of thymine, thymidine and TMP in aqueous solution.
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Figure B.9: UV absorption spectra of cytosine, cytidine and CMP in aqueous solution.
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B.2 Gyrase and amino acids
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Figure B.10: Raman (A,λex= 633 nm) and UV-resonance Raman (B,λex= 244 nm) spectra of
some aliphatic amino acids: from bottom to top glycine (GLY), alanine (ALA),
aspartic acid (ASP) and glutamic acid (GLU).
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Figure B.11: Raman (A,λex= 532 nm) and UV-resonance Raman (B,λex= 244 nm) spectra of the
aromatic and heterocyclic amino acids: from bottom to top phenylalanine (PHE),
tryptophan (TRP), histidine (HIS) and proline (PRO).
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Abbreviations

ADP adenosine diphosphate

ATCC American Type Culture Collection

ATP adenosine triphosphate

bp base pair

CASO casein-peptone - soy meal-peptone, common media for staphy-

locci

CTD carboxyl-terminal domain (in proteins)

DFT calculations density functional theoretical calculations

DSMZ Deutsche Sammlung von Mikroorganismen und Zellkulturen

GmbH (German Collection of Microorganisms and Cell Cultures)

Fig. figure

FRET fluorescence resonance energy transfer

GC content the proportion of guanine-cytosine base pairs in the DNA/RNA

molecule or a genome sequence, usually expressed as a percent-

age, it is a characteristic of the genome of any given organism or

any other piece of DNA or RNA

HCA hierarchical cluster analysis

im imidazole

IR infrared

λex excitation wavelength

LDA linear discriminant analysis

Lk linking number

LMO-CV leave multiple out cross-validation

MIC minimal inhibition concentration

MRS methicillin resistant staphylococci

NIR near infrared

NMR nuclear magnetic resonance

NTD amino-terminal domain (in proteins)

pH negative decade logarithm of the H+ concentration

PC principal component

PCA principal component analysis
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Abbreviations

PCR Polymerase Chain Reaction, used for amplification of DNA se-

quences

ped potential energy distribution

PIA polysaccharide intercellular adhesin

pur purine

pyr pyrimidine

rcf relative centrifugal force (measurement of the force applied to

a sample within a centrifuge. Can be calculated from the rmp

and the rotational radius r in cm using the following equation:

rc f = 0.00001118r(rpm)2

Ref. reference

REM-TS reverse elimination method tabu search

rpm revolutions per minute

RR resonance Raman

σ superhelical density parameter

SDS-PAGE sodium dodecylsulfate polyacrylamide gel electrophoresis

SEM scanning electron microscopy

SERS surface enhanced Raman spectroscopy

SNR signal-to-noise ratio

TERS tip-enhanced Raman spectroscopy

UV ultraviolet

Assignment of vibrational modes
str stretching vibration
def deformation vibration
rock rocking vibration
sciss scissoring vibration
wag wagging vibration
out out of plane

Nucleic acids and nucleic acid bases
A adenine
C cytosine
DNA deoxyribo nucleic acid
G guanine
RNA ribo nucleic acid
T thymine
U uracil
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Abbreviations

Amino acids
one letter code three letter code full name

A Ala alanine
C Cys cystein
D Asp asparaginic acid
E Glu glutamic acid
F Phe phenylalanine
G Gly glycin
H His histidine
I Ile isoleucin
K Lys lysin
L Leu leucin
M Met methionin
N Asn asparagin
P Pro prolin
Q Gln glutamin
R Arg arginin
S Ser serin
T Thr threonin
V Val valin
W Trp tryptophan
Y Tyr tyrosin

Fluoroquinolone drugs
CIN cinoxacin
CIPRO ciprofloxacin
ENO enoxacin
FLU flumequine
LOM lomefloxacin
MOXI moxifloxacin
NAL nalidixic acid
NOR norfloxacin
OFL ofloxacin
OXO oxolinic acid
SARA sarafloxacin
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Abbreviations

Chemicals
EDTA ethylenediaminetetraacetic acid
EthBr ethidium bromide
Glc glucose
GlcN glucosamine
IPTG isopropyl-β -D-thiogalactopyranoside, an artificial inductor for

the lac operon inEscherichia coli.
KAc potassium acetate
LB medium lysogeny broth, sometimes called Luria-Bertani media (complex

media for the growth of bacteria, especially E. coli)
NAM N-Acetyl muramic acid
NAG N-acetylglucosamine
PIA polysaccharide intercellular adhesin
PBS Phosphat buffered saline, popular phosphate buffer
SDS sodium dodecylsulfate, added to compansate the negative charges

of the protein and facilitate gel electrophoreses
TA teichoic acid
TAE buffer typical buffer solution for agarose electrophoresis of DNA and

RNA, made up of Tris-acetate buffer, usually at pH 8.0, and
EDTA

TEMED tetramethylethylendiamin (polymerization catalyst)
TNE buffer
Tris tris(hydroxy methyl)aminomethane
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Abbreviations

Units
quantity unit conversion
energy J Joule 4.18 J = 1 cal

kJ kilo Joule 1 kJ = 103 J
eV electron Volt 1 eV = 1.6·10−18 J
cm−1 reciprocal centimeter 1 eV = 8065.5 cm−1

Ha Hartree 1 Ha = 4.3597·10−18 J
force constant N/m Newton/metre
frequency Hz Hertz 1 Hz =1/s
concentration M molar mol L−1

mM millimolar 1 mM = 10−3 M
length nm nanometer 1 nm = 10−9 m

µm micrometer 1 µm = 10−6 m
amount of substance mol
temperature ◦C degree Celsius

K Kelvin
volume L liter 1 L = 10−3 m3 = 1024 nm3

mL milliliter 1 mL = 10−3 L
nm3 cubic nanometer 1 nm3 = 10−27 m3

Vol% volume percent
time s second

min minute 1 min = 60 s
molecular weight kDa kilo-Dalton 1 kDa = 1.66054·10−24 kg
wavenumber cm−1 reciprocal centimeter 1 eV = 8065.5 cm−1

Constants
constant value meaning
c 2.99792458·108 ms−1 speed of light
g 9.80665 ms−2 acceleration of gravity
h 6.6260755·10−34 Js Planck’s constant
h̄ 1.05457·10−34 Js h̄=h/2π

k 1.38066·10−23 JK−1 Boltzmann’s constang
NA 6.0221367·10−23 mol−1 Avogadro’s number
R 8.31451 JK−1mol−1 gas constant
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