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TRACKING WITH PRESCRIBED TRANSIENT PERFORMANCE
FOR HYSTERETIC SYSTEMS

ACHIM ILCHMANN∗, HARTMUT LOGEMANN† , AND EUGENE P. RYAN†

Abstract. Tracking of reference signals (assumed bounded with essentially bounded derivative)
is considered for a class of single-input, single-output, nonlinear systems, described by a functional
differential equation with a hysteresis nonlinearity in the input channel. The first control objective
is tracking, by the output, with prescribed accuracy: determine a feedback strategy which ensures
that, for every reference signal and every system of the underlying class, the tracking error ultimately
satisfies the prescribed accuracy requirements. The second objective is guaranteed output transient
performance: the graph of the tracking error should be contained in a prescribed set (performance
funnel). Under a weak sector boundedness assumption on the hysteresis operator, both objectives
are achieved by a memoryless feedback which is universal for the underlying class of systems.

Key words. disturbance rejection, functional differential equations, hysteresis, nonlinear sys-
tems, tracking, transient behaviour.

AMS subject classifications. 93D15, 34K20, 34C55, 47J40.

1. Introduction. We consider a class N of nonlinear, single-input, single-output
systems modelled by nonlinear functional differential equations of the form

ẏ(t) = f(p(t), T (y)(t)) + g v(t), y|[−h,0] = y0 ∈ C[−h, 0], (1.1)

with input u and output y. We assume that the continuous function f : R×R → R is
locally Lipschitz in its second argument, p ∈ L∞(R+) (R+ := [0,∞)) is a perturbation
or disturbance, T is a causal operator (of a class to be described in due course), g 6= 0 is
a real parameter, and h ≥ 0 quantifies the “memory” in the system. With reference to

u Φ
v

(f, p, T, g) ∈ N y

Fig. 1.1. System with input hysteresis.

Figure 1.1, the main concern is control of a cascade consisting of a hysteresis operator
Φ (with properties to be defined in Section 2) and a nonlinear system (f, p, T, g) ∈ N:

ẏ(t) = f(p(t), T (y)(t)) + g Φ(u)(t), y|[−h,0] = y0 ∈ C[−h, 0] . (1.2)

We remark that, in a systems and control context, hysteretic effects have received
increasing attention in recent years: applications include passivity-based control of
hysteresis in smart actuators [5], inverse compensation of hysteresis [12, 19, 20], inte-
gral control in the presence of hysteretic actuators [15], stability of hysteretic feedback
systems [16, 17], and positioning control problems using piezo electric actuators [4].

In the present paper, the primary control objective is tracking with prescribed ac-
curacy: given λ > 0 (arbitrarily small), determine a single feedback strategy which
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2 A. ILCHMANN, H. LOGEMANN & E.P. RYAN

ensures that, for every (f, p, T, g) ∈ N, every admissible Φ and every reference sig-
nal r ∈ W 1,∞(R+), the tracking error e = y − r is ultimately bounded by λ (that
is, |e(t)| < λ for all t sufficiently large or, equivalently, lim supt→∞ |e(t)| < λ). The
second objective is guaranteed output transient performance: for some prescribed
function β : [0,∞) → [0,∞), the tracking error e is required to satisfy β(t)|e(t)| < 1
for all t ≥ 0. Under mild assumptions on the operators T and Φ (including in par-
ticular a weak sector boundedness condition for Φ), both objectives are achieved by
a memoryless feedback of the form u(t) = ν(k(t))e(t), with k(t) = α(β(t)|e(t)|) (for
suitably chosen functions α and ν), whilst maintaining boundedness of the control u
and of the “gain” function k. If the parameter g in (1.2) is known to be positive, then
the control may take the simplified form u(t) = −k(t)e(t).

In an adaptive control context, the issue of tracking with prescribed transient be-
haviour dates back at least to the work of Miller & Davison [18]. The approach of the
present paper is intrinsically different, the essence of which centres on the concept of
a performance funnel, introduced in [8] (with extensions thereof in [9, 10, 11]),

Fβ :=
{

(t, e) ∈ R+ × R
∣

∣ β(t) |e| < 1
}

(1.3)

associated with the function β : R+ → R (the reciprocal of which determines the fun-
nel boundary). The memoryless feedback, alluded to above, ensures that, for every

Error evolution

Fβ

Fig. 1.2. Performance funnel Fβ .

reference signal r ∈ W 1,∞(R+), the tracking error e = y − r evolves within the fun-
nel Fβ and all signals are bounded. For example, if β ∈ W 1,∞(R+) is chosen so that
lim inft→∞ β(t) ≥ 1/λ > 0, then evolution within the funnel ensures that the first con-
trol objective is achieved: other properties may be imposed on β in order to “shape”
the transient behaviour; for example, if β is chosen as the function t 7→ min{t/τ, 1}/λ,
then evolution within the funnel ensures that the prescribed tracking accuracy λ > 0
is achieved within the prescribed time τ > 0.

The paper is structured as follows. Section 2 first makes precise the class N of non-
linear systems and the class of admissible hysteresis operators which constitute the
cascades of the form shown in Figure 1 underlying the paper: a prototype subclass of
linear retarded systems illustrates the former system class; explicit constructions of
backlash, Preisach and Prandtl operators serve to illustrate the latter hysteresis class.
Then, we proceed to elucidate the concept of a performance funnel and to formulate
the associated control problem. Section 2 terminates with a description of the pro-
posed memoryless feedback control. Section 3 addresses the fundamental question of
well posedness of the closed-loop system. This question is answered in the affirmative
in Theorem 3.1, a proof of which is provided in the Appendix. Theorem 4.1 in Sec-
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tion 4 establishes the main result of the paper, namely, that the proposed feedback
structure ensures attainment of the control objectives of asymptotic tracking with
prescribed accuracy and transient behaviour: Corollary 4.1 identifies an additional
assumption on the input hysteresis under which rejection of continuous and bounded
input disturbances is achieved; Corollary 4.2 highlights a simplified control structure
applicable to cases wherein the sign of the non-zero system parameter g is known
a priori. Finally, in Section 5, a problem of tracking with disturbance rejection is
considered – in a context of second-order hysteretic systems and reference signals of
class W 2,∞(R+) – and resolved via an application of Theorem 3.1 and Corollary 4.2.

2. Formulation of the control problem. The purpose of this section is to
give a precise formulation of the problem. We first assemble some notation and
terminology.

2.1. Notation and terminology. Set R+ := [0,∞) and C+ := {s ∈ C |Re s ≥
0} (the closed right-half real line and the closed right-half complex plane, respectively).
Let I ⊂ R+ be an interval. We denote the space of continuous functions I → R

n by
C(I, Rn): if I = [a, b] or I = [a, b) and n = 1, then we simply write C[a, b] or C[a, b).
Moreover, BV [a, b] denotes the space of real-valued functions of bounded variation
defined on [a, b]. For h, t ∈ R+, w ∈ C[−h, t], τ > t and δ > 0, define

C(w;h, t, τ, δ) :=
{

x ∈ C[−h, τ ]
∣

∣ x|[−h,t] = w, |x(s) − w(t)| ≤ δ ∀ s ∈ [t, τ ]
}

.

The space of essentially bounded (respectively, locally essentially bounded) measur-
able functions I → R is denoted by L∞(I) (respectively, L∞

loc(I)). The space of locally
absolutely continuous bounded functions I → R with essentially bounded derivative is
denoted by W 1,∞(I): the space of continuously differentiable bounded functions I →
R with locally absolutely continuous bounded first derivative and essentially bounded
second derivative is denoted by W 2,∞(I). An operator S : C[−h,∞) → L∞

loc(R+),
h ≥ 0, is causal if, and only if, for all x, y ∈ C[−h,∞) and all τ > 0,

x|[−h,τ ] = y|[−h,τ ] =⇒ S(x)(t) = S(y)(t) for a.a. t ∈ [0, τ ] .

We will have occasion to give meaning to S(x), where x ∈ C(I) and I is a bounded
interval of the form [−h, a) or [−h, a] with 0 < a < ∞. This we do by showing that S
“localizes”, in a natural way, to an operator S̃ : C(I) → L∞

loc(J), where J := I\[−h, 0).
For each x ∈ C(I) and each σ ∈ J , define xσ ∈ C[−h,∞) by

xσ(t) :=

{

x(t), t ∈ [−h, σ]
x(σ), t > σ .

By causality, we may define S̃(x) ∈ L∞
loc(J) by the property

S̃(x)|[0,σ] = S(xσ)|[0,σ] ∀ σ ∈ J.

Henceforth, we will not distinguish notationally between an operator S and its “lo-
calisation” S̃, the correct interpretation being clear from the context.

2.2. Nonlinear system class. With reference to (1.1), we first define the class
of operators Oh, parameterized by h ≥ 0, to which T belongs.

Definition 2.1. (Operator class Oh)
An operator T is deemed to be of class Oh if, and only if, the following hold.

(i) T : C[−h,∞) → L∞
loc(R+) .
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(ii) T is a causal operator.

(iii) For all t ≥ 0 and all w ∈ C[−h, t], there exist τ > t, δ > 0 and c0 > 0 such that

ess-sups∈[t,τ ]|T (x)(s) − T (y)(s)| ≤ c0 sup
s∈[t,τ ]

|x(s) − y(s)| ∀ x, y ∈ C(w;h, t, τ, δ);

(iv) For all c1 > 0, there exists c2 > 0 such that, for all y ∈ C[−h,∞),

sup
t∈[−h,∞)

|y(t)| ≤ c1 =⇒ ess-supt∈R+
|T (y)(t)| ≤ c2 . 3

In interpreting property (iii) of the operator class Oh, recourse should be made to
the “localization” procedure outlined previously.

We are now in a position to define the class N of nonlinear systems.
Definition 2.2. (System class N)

The class N is comprised of single-input, single-output, nonlinear systems (f, p, T, g)
of the form (1.1), satisfying the following assumptions:

(i) f : R × R → R is continuous and f(z, ·) is locally Lipschitz for every z ∈ R;

(ii) g ∈ R is non-zero;

(iii) p ∈ L∞(R+);

(iv) T ∈ Oh, where h ≥ 0. 3

With reference to Figure 2.1, a system (1.1) of class N can be thought of as an
interconnection of two (sub) systems. The dynamical system Λ1, which can be influ-
enced directly by the system input v, is also driven by the output w from the system
Λ2, formulated as a causal operator mapping the system output y to w (an internal
quantity, unavailable for feedback purposes); for example, Λ2 can encompass infinite-
dimensional processes (e.g. delays and diffusions) or nonlinear, input-to-state stable
systems given by

ż(t) = a(z(t), y(t)), w(t) = c(z(t)), z(0) = z0 ∈ R
m,

with locally Lipschitz functions a : R
m × R → R

m and c : R
m → R (for details, see

[8]).

yΛ1 : ẏ = f(p,w) + gvv
p

w

Λ2 : w = T (y)

Fig. 2.1. System of class N.

By way of illustration, in the following we consider a class of linear retarded systems
and show that it is contained in N.

Example 2.3. Let h > 0, let A be an n×n-matrix with entries in BV [0, h] and
let b, cT ∈ R

n. Consider the retarded system

ẋ = dA ∗ x + bv , x|[−h,0] = x0 ∈ C([−h, 0], Rn) , (2.1a)

y = cx , (2.1b)



TRACKING FOR HYSTERETIC SYSTEMS 5

where (dA ∗ x)(t) :=
∫ h

0
dA(τ)x(t − τ) for all t ∈ R+. We assume that the system

(2.1) satisfies the following two conditions:
• minimum-phase condition, i.e.,

det

(

sI − Â(s) −b
c 0

)

6= 0 ∀ s ∈ C+ ,

where Â(s) :=
∫ h

0
exp(−sτ)dA(τ).

• relative degree one condition, i.e., cb 6= 0.
It is well-known that, under these assumptions, there exists a similarity tranformation
which takes the system into the form

ẏ = dA11 ∗ y + dA12 ∗ z + cbv , y|[−h,0] = y0 , (2.2a)

ż = dA21 ∗ y + dA22 ∗ z , z|[−h,0] = z0 , (2.2b)

where, by the minimum-phase condition, A22 has the property that

det(sI − Â22(s)) 6= 0 ∀ s ∈ C+ , (2.3)

see [7, 14] for details. For given z0 ∈ C([−h, 0], Rn−1) and given ξ ∈ C[−h,∞), let
z(·; z0, ξ) denote the unique solution of the initial-value problem

ż = dA22 ∗ z + dA21 ∗ ξ , z|[−h,0] = z0 .

Setting

T (ξ) := dA11 ∗ ξ + dA12 ∗ z(· ; 0, ξ) , p := dA12 ∗ z(· ; z0, 0) ,

equation (2.2a) can be expressed as

ẏ = p + T (y) + cbv , y0 = cx0 . (2.4)

By a standard result from the theory of retarded functional differential equations (see
[6, Corollary 6.1, p. 215]), (2.3) implies that the zero solution of the retarded equation
ż = dA22 ∗ z is exponentially stable, so that there exists K > 0 such that, for all
z0 ∈ C([−h, 0], Rn−1) and all ξ ∈ C[−h,∞),

sup
t∈[0,∞)

|z(t; z0, ξ)| ≤ K
(

sup
t∈[−h,0]

|z0(t)| + sup
t∈[−h,∞)

|ξ(t)|
)

.

We conclude that p is bounded and that T ∈ Oh. Consequently, the system given by
(2.4) is in the system class N. 3

2.3. Class of input nonlinearities. Causal operators Φ : C(R+) → C(R+)
satisfying some or all of the following conditions will be considered.

H1. There exists c0 > 0 such that, for all t ≥ 0 and all w ∈ C[0, t], there exist τ > t
and δ > 0 such that

sup
s∈[t,τ ]

|Φ(u1)(s) − Φ(u2)(s)| ≤ c0 sup
s∈C[t,τ ]

|u1(s) − u2(s)| ∀ u1, u2 ∈ C(w; 0, t, τ, δ) .

(2.5)
H2. For all ω > 0 and all u ∈ C[0, ω), there exists c1 > 0 such that

sup
s∈[0,t]

|Φ(u)(s)| ≤ c1

(

1 + sup
s∈[0,t]

|u(s)|
)

∀ t ∈ [0, ω) .
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H3. There exist c2 > 0 and c3 > 0 such that, for all u ∈ C(R+) and all t ∈ R+,

|u(t)| ≥ c2 =⇒ c3u
2(t) ≤ u(t)(Φ(u)(t)).

H4. For each bounded d ∈ C(R+), there exists cd > 0 such that,

|Φ(u + d)(t) − Φ(u)(t)| ≤ cd ∀u ∈ C(R+), ∀ t ∈ R+ .

Again, in interpreting H1 and H2, recourse should be made to the “localization”
procedure outlined at the beginning of this section. A sufficient condition for H1, H2
and H4 to be satisfied is that Φ is Lipschitz continuous in the sense that there exists
a Lipschitz constant L ≥ 0 such that

sup
t∈R+

|Φ(u1)(t) − Φ(u2)(t)| ≤ L sup
t∈R+

|u1(t) − u2(t)| ∀u1, u2 ∈ C(R+).

We emphasize that many hysteresis operators satisfy conditions H1–H4, where we say
that Φ : C(R+) → C(R+) is a hysteresis operator if, and only if, Φ is causal and
rate independent. Here rate independence means that Φ(u ◦ ζ) = (Φu) ◦ ζ for every
u ∈ C(R+) and every time transformation ζ, where ζ : R+ → R+ is said to be a time

transformation if, and only if, it is continuous, non-decreasing and surjective.

We briefly digress to state the following lemma (which will play a role in Corollary
4.1 below). The proof is routine and is therefore omitted.

Lemma 2.4. Let Φ : C(R+) → C(R+) be causal, let d ∈ C(R+) be bounded

and define the causal operator Φd : C(R+) → C(R+) by Φd(u) = Φ(u + d) for all

u ∈ C(R+). Then the following statements hold:

(i) If Φ satisfies any of the assumptions H1 or H2, then so does Φd.

(ii) If Φ satisfies H3 and H4, then H3 holds for Φd.

In the following, we give examples of hysteresis operators satisfying H1–H4.

Backlash hysteresis. A discussion of the backlash operator (also called play oper-
ator) can be found in a number of references, see for example [2], [3], [13] and [15].
Let σ ∈ R+ and introduce the function bσ : R

2 → R given by

bσ(v1, v2) := max{v1 − σ , min{v1 + σ, v2}} =











v1 − σ, if v2 < v1 − σ

v2, if v2 ∈ [v1 − σ, v1 + σ]

v1 + σ, if v2 > v1 + σ .

Let Cpm(R+) denote the space of continuous piecewise monotone functions defined on
R+. For all σ ∈ R+ and all ξ ∈ R, we define the operator Bσ, ξ : Cpm(R+) → C(R+)
by

Bσ, ξ(u)(t) =

{

bσ(u(0), ξ) for t = 0 ,
bσ(u(t), (Bσ, ξ(u))(ti)) for ti < t ≤ ti+1, i = 0, 1, 2, . . . ,

where 0 = t0 < t1 < t2 < . . ., limn→∞ tn = ∞ and u is monotone on each interval
[ti, ti+1]. We remark that ξ plays the role of an “initial state”. It is not difficult to
show that the definition is independent of the choice of the partition (ti). Figure 2.2
illustrates how Bσ, ξ acts. It is well-known that Bσ, ξ extends to a Lipschitz continuous
operator on C(R+) (with Lipschitz constant L = 1), the so-called backlash operator,
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u

Bσ,ξ(u)

−σ

σ

Fig. 2.2. Backlash hysteresis

which we shall denote by the same symbol Bσ, ξ. It is well-known (and easy to check)
that Bσ, ξ is a hysteresis operator. By Lipschitz continuity, Bσ, ξ satisfies H1, H2 and
H4. It is trivial that Bσ, ξ also enjoys property H3. We also remark that the operator
Bσ, ξ is in the class O0.

Preisach and Prandtl hysteresis. The Preisach operator described below encom-
passes both backlash and Prandtl operators. It can model complex hysteresis effects:
for example, nested loops in input-output characteristics. Let ξ : R+ → R be a com-
pactly supported and globally Lipschitz function with Lipschitz constant 1. Let µ be
a signed Borel measure on R+ such that |µ|(K) < ∞ for all compact sets K ⊂ R+,
where |µ| denotes the total variation of µ. Denoting the Lebesgue measure on R by
µL, let w : R×R+ → R be a locally (µL ⊗µ)-integrable function and let w0 ∈ R. The
operator Pξ : C(R+) → C(R+) defined by

(Pξ(u))(t) =

∫ ∞

0

∫ (Bσ, ξ(σ)(u))(t)

0

w(s, σ)µL(ds)µ(dσ) + w0 ,

∀u ∈ C(R+) , ∀ t ∈ R+ , (2.6)

is called a Preisach operator, cf. [3, p. 55]. It is well-known that Pξ is a hysteresis
operator (this follows from the fact that Bσ, ξ(σ) is a hysteresis operator for every σ ≥
0). Under the assumption that the measure µ is finite and w is essentially bounded,
the operator Pξ is Lipschitz continuous with Lipschitz constant |µ|(R0)‖w‖∞, see [15],
and thus, Pξ satisfies H1, H2 and H4. If, in addition, µ and w are non-negative and
the following hold

µ 6= 0,

∫ ∞

0

σµ(dσ) < ∞, 0 < ess inf(s,σ)∈R×R+
w(s, σ) ,

then H3 is also satisfied (a proof of this fact is provided in Appendix 1). As in the
case of backlash, we remark that the operator Pξ is also in the class O0.

Setting w(·, ·) = 1 and w0 = 0 in (2.6), we obtain the Prandtl operator Pξ : C(R+) →
C(R+) defined by

Pξ(u)(t) =

∫ ∞

0

(Bσ, ξ(σ)(u))(t)µ(dσ) ∀u ∈ C(R+) , ∀ t ∈ R+ . (2.7)

For ξ ≡ 0 and µ given by µ(E) =
∫

E
χ[0,5](σ)dσ (where χ[0,5] denotes the indicator

function of the interval [0, 5]), the Prandtl operator is illustrated in Figure 2.3.
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Fig. 2.3. Example of Prandtl hysteresis

2.4. Control objectives and the performance funnel. The first control
objective is approximate tracking, by the output y of system (1.2) (illustrated in
Figure 1.1), of reference signals r ∈ W 1,∞(R+). In particular, for arbitrary γ ≥
0 and λ > 0, we seek an output feedback strategy which ensures that, for every
r ∈ W 1,∞(R+) and y0 ∈ C[−h, 0] with γ|y0(0) − r(0)| < 1, the unique solution of
closed-loop system is bounded and the tracking error e(t) = y(t) − r(t) is ultimately
bounded by λ (that is, |e(t)| < λ for all t sufficiently large). The second control
objective is prescribed transient behaviour of the tracking error signal. We capture
both objectives in the concept of a performance funnel, introduced in [8] and defined
in (1.3), associated with a function β : R+ → R (the reciprocal of which determines
the funnel boundary) belonging to

Wγ,λ :=
{

β ∈ W 1,∞(R+)
∣

∣ β(0) = γ, β(s) > 0 ∀ s > 0, lim inf
s→∞

β(s) ≥ 1/λ
}

,

with γ ≥ 0 and λ > 0. The aim is an output feedback strategy ensuring that, for every
reference signal r ∈ W 1,∞(R+) and every y0 ∈ C[−h, 0] with γ|y0(0) − r(0)| < 1, the
tracking error e = y− r evolves within the funnel Fβ and all signals are bounded. For
every γ ≥ 0, λ > 0 and β ∈ Wγ,λ, evolution within the funnel ensures that the first
control objective is achieved: moreover, β can be chosen to influence the transient
behaviour; for example, reiterating comments in the Introduction, if τ > 0, γ = 0
and β is chosen as the function t 7→ min{t/τ, 1}/λ, then evolution within the funnel
ensures that the prescribed tracking accuracy λ > 0 is achieved within the prescribed
time τ > 0 for all y0 ∈ C[−h, 0] and all r ∈ W 1,∞(R+).

Remark 2.5. Some elucidation on the role of the parameter γ ≥ 0 is warranted.
In the absence of a priori information on the initial function y0 ∈ C[−h, 0], we simply
set γ = 0. On the other hand, if sufficient a priori information is available to compute
an upper bound δ > 0 for the quantity |y0(0) − r(0)|, then any γ ∈ [0, 1/δ) may
be chosen: in particular, the choice 0 < γ < 1/δ, yields a uniform bound, viz.
supt∈R+

|y(t) − r(t)| ≤ 1/β∗, β∗ := inft∈R+
β(t) > 0, on the tracking error associated

with the solution y corresponding to any initial function y0 and reference signal r
with the property γ|y0(0) − r(0)| < 1. This observation will play a role in Section 5
below. In many situations, a non-decreasing function β is a natural choice, in which
case β∗ = γ.

2.5. Output feedback. Let ν : R → R be locally Lipschitz and let α : [0, 1) →
R+ be a locally Lipschitz unbounded injection (for example, α : s 7→ 1/(1 − s)). For
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r ∈ W 1,∞(R+), λ > 0 and β ∈ Wγ,λ, consider the control strategy

u(t) = ν(k(t))
(

y(t) − r(t)
)

, k(t) = α
(

β(t) |y(t) − r(t)|
)

. (2.8)

The main contribution of the paper is to show that the feedback (2.8) applied to any
cascade (as in Figure 1), given by (1.2), achieves the control objectives provided that
the function ν has the following properties

lim sup
k→∞

ν(k) = +∞ and lim inf
k→∞

ν(k) = −∞ . (2.9)

A simple example of a function satisfying (2.9) is ν : k 7→ k cos k. In view of the nature
of the function α, care must be exercised in interpreting the closed-loop system. This
we do in the next section, wherein we show that the closed-loop initial-value problem
is well posed.

3. The closed-loop system. Let (f, p, T, g) ∈ N and let Φ : C(R+) → C(R+)
be a causal operator satisfying H1. Let r ∈ W 1,∞(R+), λ > 0 and β ∈ Wγ,λ. Let
ν : R → R be locally Lipschitz and let α : [0, 1) → R+ be a locally Lipschitz unbounded
injection. The conjunction of the system (1.2) and control (2.8) yields the closed-loop
initial-value problem

ẏ(t) = f(p(t), T (y)(t)) + g Φ(u)(t), y|[−h,0] = y0 ∈ C[−h, 0],
u(t) = ν(k(t))

(

y(t) − r(t)
)

,
k(t) = α

(

β(t)|y(t) − r(t)|
)

.







(3.1)

Writing

D := {(t, z) ∈ R+ × R | β(t)|z − r(t)| < 1}, (3.2)

then, by a solution of (3.1), we mean a continuous function y : I → R on some interval
I of the form [−h, ρ], with 0 < ρ < ∞, or of the form [−h, ω), with 0 < ω ≤ ∞, such
that (a) y|[−h,0] = y0 and (b) y|J , J := I \ [−h, 0), has graph in D, is locally absolutely
continuous and satisfies the differential equation in (3.1) almost everywhere on J . A
solution is maximal if, and only if, it has no right extension that is also a solution.

Theorem 3.1. Let (f, p, T, g) ∈ N and let Φ : C(R+) → C(R+) be a causal

operator satisfying H1 and H2. Let r ∈ W 1,∞(R+), γ ≥ 0, λ > 0 and β ∈ Wγ,λ. Let

ν : R → R be locally Lipschitz and let α : [0, 1) → R+ be a locally Lipschitz unbounded

injection. Then, for each y0 ∈ C[−h, 0] with γ|y0(0) − r(0)| < 1, the initial-value

problem (3.1) has a unique maximal solution y ∈ C[−h, ω). Moreover, if ω < ∞,

then lim supt↑ω β(t)|y(t) − r(t)| = 1 (or, equivalently, lim supt↑ω k(t) = ∞).

A proof of this theorem is contained in the Appendix. We emphasize that, in Theo-
rem 3.1, the causal operator Φ is required only to satisfy H1 and H2 and the function
ν is assumed only to be locally Lipschitz. These assumptions are not sufficient to
ensure that, for each y0 ∈ C[−h, 0], the unique maximal solution y ∈ C[−h, ω) is such
that ω = ∞; however, if Φ is such that H3 also holds and ν has properties (2.9), then
ω = ∞. The latter is the essence of Theorem 4.1 below.

4. The main result. We are now in a position to state and prove the main
result of the paper, part (ii) of which asserts that the tracking error evolves within
the performance funnel (and so the control objectives are achieved) and, moreover, is
bounded away from the funnel boundary.
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Theorem 4.1. Let (f, p, T, g) ∈ N and let Φ : C(R+) → C(R+) be causal and

such that H1–H3 are satisfied. Let γ ≥ 0, λ > 0 and β ∈ Wγ,λ. Let ν : R → R be

a locally Lipschitz function with properties (2.9) and let α : [0, 1) → R+ be a locally

Lipschitz unbounded injection. For each r ∈ W 1,∞(R+) and y0 ∈ C[−h, 0] with

γ|y0(0) − r(0)| < 1, the unique maximal solution y : [−h, ω) → R of the closed-loop

initial-value problem (3.1) is such that:

(i) ω = ∞;

(ii) there exists ε ∈ (0, 1) such that β(t) |y(t) − r(t)| ≤ 1 − ε for all t ∈ R+ ;

(iii) the continuous functions u, Φu : R+ → R and k : R+ → R+ are bounded.

Proof. Let r ∈ W 1,∞(R+) and y0 ∈ C[−h, 0] be such that γ|y0(0) − r(0)| < 1. An
application of Theorem 3.1 establishes the existence of a unique maximal solution
y ∈ C[0, ω) of (3.1), with 0 < ω ≤ ∞. Since (t, y(t)) ∈ D for all t ∈ [0, ω) and r is
bounded, it follows from (3.2) that y is bounded; moreover, by property (iv) of the
operator class Oh (see Definition 2.1), the function Ty is bounded. Writing

e(t) = y(t) − r(t), k(t) = α(β(t)|e(t)|), u(t) = ν(k(t))e(t) ∀ t ∈ [0, ω),

we have β(t)|e(t)| < 1 for all t ∈ [0, ω) and, since y and r are bounded, the function
e = y − r is bounded. Moreover,

ė(t) = f(p(t), T (y)(t)) + g Φ(u)(t) − ṙ(t) for a.a. t ∈ [0, ω).

By continuity of f , boundedness of T (y) and e, and essential boundedness of p and ṙ,
there exists c0 > 0 such that

e(t)ė(t) ≤ c0 + g e(t)Φ(u)(t) for a.a. t ∈ [0, ω). (4.1)

Observe that, by boundedness of β and e, essential boundedness of β̇ and inequality
(4.1), there exists c1 > 0 such that

d

dt

(

β(t)e(t)
)2

= 2β(t)β̇(t)e2(t) + 2β2(t)e(t)ė(t)

≤ c1

(

1 + g e(t)Φ(u)(t)
)

for a.a. t ∈ [0, ω). (4.2)

Next, we show that k is bounded. By properties (2.9) of ν, there exists a strictly
increasing unbounded sequence (kn)n∈N, with kn > α(1/2) for all n ∈ N, such that
(

g ν(kn)
)

is a strictly decreasing unbounded sequence, with g ν(kn) < 0 for all n ∈ N.
Seeking a contradiction, suppose that k is unbounded. For each n ∈ N, define

τn := inf{t ∈ [0, ω)| k(t) = kn+1}, σn := sup{t ∈ [0, τn]| ν(k(t)) = ν(kn)} < τn ,

wherein the latter inequality holds since |ν(k(τn))| = |ν(kn+1)| > |ν(kn)|. Then, the
following inequalities hold:

kn ≤ k(t) and |ν(kn)| ≤ |ν(k(t))|

β(t)|e(t)| = α−1(k(t)) ≥ α−1(kn) > 1/2

|e(t)| ≥ 1/
(

2 sups≥0 β(s)
)

=: c2















∀ t ∈ [σn, τn], ∀n ∈ N (4.3)

wherein α−1 denotes the inverse of the bijection α : [0, 1) → [α(0),∞). By property
H3 of Φ, there exist ∆, δ > 0 such that

|u(t)| ≥ ∆ =⇒ δu2(t) ≤ u(t)Φ(u)(t).
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Choose N ∈ N sufficiently large so that c2|ν(kN )| ≥ ∆. By (4.3), it follows that

|u(t)| = |ν(k(t))e(t)| ≥ c2|ν(kN )| ≥ ∆ ∀ t ∈ [σn, τn], ∀ n > N ,

and so

ν(k(t))e(t)Φ(u)(t) = u(t)Φ(u)(t)

≥ δu2(t) = δ(ν(k(t))e(t))2 ∀ t ∈ [σn, τn], ∀ n > N. (4.4)

Since gν(k(t)) ≤ gν(kn) < 0 for all t ∈ [σn, τn] and all n ∈ N, we may conclude, from
(4.3) and (4.4), that

g e(t)(Φu)(t) ≤ δg ν(k(t))e2(t)

= −δ|g ν(k(t))|e2(t) ≤ −δc2
2|g ν(kn)| ∀ t ∈ [σn, τn], ∀ n > N ,

which, in conjunction with (4.2), yields

d

dt

(

β(t)e(t)
)2

≤ c1

(

1 − δc2
2|g ν(kn)|

)

∀ t ∈ [σn, τn], ∀ n > N (4.5)

Now fix m > N sufficiently large so that

δ c2
2 |g ν(km)| > 1.

By (4.5), we have

(

β(τm)e(τm)
)2

−
(

β(σm)e(σm)
)2

< 0,

and so β(τm)|e(τm)| < β(σm)|e(σm)|, whence the contradiction

0 > α
(

β(τm)|e(τm)|
)

− α
(

β(σm)|e(σm)|
)

= k(τm) − k(σm) ≥ 0.

This proves boundedness of k.

We may now infer that there exists ε > 0 such that β(t)|e(t)| ≤ 1 − ε for all t ∈
[0, ω). By the second assertion of Theorem 3.1, it follows that ω = ∞. Finally,
boundedness of e and k implies boundedness of u = ν(k)e whence, by property H2 of
Φ, boundedness of Φu. This completes the proof. 2

Finally, let us consider the closed-loop system (3.1) in the presence of a bounded
continuous input disturbance d, that is, we replace (3.1) by

ẏ(t) = f(p(t), T (y)(t)) + g Φ(u + d)(t), y|[−h,0] = y0 ∈ C[−h, 0],
u(t) = ν(k(t))

(

y(t) − r(t)
)

,
k(t) = α

(

β(t)|y(t) − r(t)|
)

.







(4.6)

The following result shows that, if Φ satisfies H1–H4, then the conclusions of Theo-
rem 4.1 remain valid in the presence of bounded continuous input disturbances d.

Corollary 4.1. Let (f, p, T, g) ∈ N and let Φ : C(R+) → C(R+) be causal

and such that H1–H4 are satisfied. Let γ ≥ 0, λ > 0 and β ∈ Wγ,λ. Let ν : R → R

be a locally Lipschitz function with properties (2.9) and let α : [0, 1) → R+ be a lo-

cally Lipschitz unbounded injection. Then, for each bounded d ∈ C(R+), and each

r ∈ W 1,∞(R+) and y0 ∈ C[−h, 0] with γ|y0(0) − r(0)| < 1, the unique maximal

solution y : [−h, ω) → R of the closed-loop initial-value problem (4.6) is such that
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statements (i)-(iii) of Theorem 4.1 hold.

The proof of Corollary 4.1 is a straightforward application of Lemma 2.4 and Theo-
rem 4.1.

Inspection of the proof of Theorem 4.1 reveals that the role of properties (2.9) of ν is
simply to ensure the existence of a strictly increasing unbounded sequence (kn), with
kn > α(1/2) for all n, such that

(

g ν(kn)
)

is a strictly decreasing unbounded sequence
with g ν(kn) < 0 for all n. If (f, p, T, g) ∈ N is such that the sign of g is known
a priori, then the latter property is assured if ν is chosen to be the linear function
k 7→ −k sgn(g). This observation leads immediately to the following result.

Corollary 4.2. Let (f, p, T, g) ∈ N be such that g > 0. Let Φ : C(R+) → C(R+)
be causal and such that H1–H4 are satisfied. Let γ ≥ 0, λ > 0 and β ∈ Wγ,λ. Let

ν : R → R, k 7→ −k and let α : [0, 1) → R+ be a locally Lipschitz unbounded injection.

Then, for each bounded d ∈ C(R+), and each r ∈ W 1,∞(R+) and y0 ∈ C[−h, 0] with

γ|y0(0) − r(0)| < 1, the unique maximal solution y : [−h, ω) → R of the closed-loop

initial-value problem (4.6) is such that statements (i)-(iii) of Theorem 4.1 hold.

5. Tracking and disturbance rejection for second-order hysteretic sys-
tems. Consider the problem of tracking a reference signal ρ ∈ W 2,∞(R+) for single-
input systems of the following form:

mẍ + cẋ + Ψ(x) = Φ(u + d) + q, x(0) = x0, ẋ(0) = x1, m > 0, (5.1)

with control input t 7→ u(t) ∈ R, bounded disturbances d ∈ C(R+) and q ∈ L∞(R+),
and causal operators Ψ and Φ. In a mechanical context, x(t) represents displacement
at time t ∈ R+, and m, c ∈ R are the mass and damping constants. The opera-
tor Ψ models a restoring force which may exhibit hysteresis phenomena, a particular
example of which is the “hysteric spring” model discussed in, for example, [1]; the
operator Φ may model hysteretic actuation as in, for example, micro-positioning con-
trol problems using piezo-electric actuators or smart actuators investigated in, inter

alia, [4, 5, 12, 19, 20]. Without loss of generality, we may assume that m = 1. We
also assume that both the displacement x(t) and velocity ẋ(t) are available for feed-
back purposes. Finally, we assume that the vector of initial data (x0, x1) belongs to
a known compactum and, moreover, the vector (ρ(0), ρ̇(0)) also belongs to a known
compactum, viz. there exist compact X,Y ⊂ R

2 such that

(x0, x1) ∈ X, (ρ(0), ρ̇(0)) ∈ Y.

Fix λ > 0 and η > 0. The control objective is formulated as follows: determine a
(time-dependent) feedback strategy which ensures the existence of a constant M > 0
such that, for every ρ ∈ W 2,∞(R+) with (ρ(0), ρ̇(0)) ∈ Y , for all initial data (x0, x1) ∈
X and all bounded disturbances d ∈ C(R+) and q ∈ L∞(R+), the closed-loop initial-
value problem has unique solution x on R+ and there exists δ ∈ (0, 1) such that the
tracking error x − ρ approaches the interval [−δλ , δλ] η-exponentially fast, in the
following sense:

|x(t) − ρ(t)| ≤ Me−ηt + δλ ∀ t ∈ R+.

We proceed to construct a feedback which achieves this objective. Define

y∗ := max
{

|x0 − ρ0 + (x1 − ρ1)/η|
∣

∣ (x0, x1) ∈ X, (ρ0, ρ1) ∈ Y
}

. (5.2)
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Let γ > 0 be such that γ < min{1/λ , 1/y∗}. Let τ > 0 be arbitrary and define
β ∈ Wγ,λ by

β(t) := min{max{γλ , t/τ} , 1}/λ. (5.3)

Observe that β is non-decreasing with mint∈R+
β(t) = β(0) = γ and maxt∈R+

β(t) =
β(τ) = 1/λ. Let α : [0, 1) → R be a locally Lipschitz unbounded injection. Introducing
the feedback strategy

u(t) = −k(t)
(

x(t) − ρ(t) + ((ẋ(t) − ρ̇(t))/η)
)

,

k(t) = α
(

β(t)|x(t) − ρ(t) + ((ẋ(t) − ρ̇(t))/η)|
)

,

we arrive at the closed-loop initial-value problem

ẍ(t) + cẋ(t) + Ψ(x)(t) = Φ(u + d)(t) + q(t), c ∈ R ,

(x(0), ẋ(0)) = (x0, v0) ∈ X,

u(t) = −k(t)(y(t) − r(t)), k(t) = α(β(t)|y(t) − r(t)|),

y(t) = x(t) + (ẋ(t)/η), r(t) := ρ(t) + (ρ̇(t)/η, ), (ρ(0), ρ̇(0)) ∈ Y.























(5.4)

Theorem 5.1. Let Ψ be a causal operator of class O0 and let Φ : C(R+) → C(R+)
be a causal operator satisfying (H1)-(H4). Define

M := (x∗ + 1/γ)eητ , where x∗ := max
{

|x0 − ρ0|
∣

∣ (x0, v0) ∈ X, (ρ0, ρ1) ∈ Y
}

.

For every ρ ∈ W 2,∞(R+) with (ρ(0), ρ̇(0)) ∈ Y , (x0, v0) ∈ X, q ∈ L∞(R+) and

bounded d ∈ C(R+), the closed-loop initial-value problem (5.4) has a unique maximal

solution x : [0, ω) → R. Moreover,

(i) ω = ∞;

(ii) there exists δ ∈ (0, 1) such that |x(t) − ρ(t)| ≤ Me−ηt + δλ for all t ∈ R+;

(iii) the continuous function ẋ is bounded and lim supt→∞ |ẋ(t) − ρ̇(t)| < 2ηλ;

(iv) the continuous functions u, Φ(u + d) and k are bounded.

Proof. Let ρ ∈ W 2,∞(R+) with (ρ(0), ρ̇(0)) = (ρ0, ρ1) ∈ Y , let (x0, v0) ∈ X, q ∈
L∞(R+) and let d ∈ C(R+) be bounded. Define the causal operator T̃ : C(R+) →
C(R+) by

(T̃ y)(t) := e−ηtx0 + η

∫ t

0

e−η(t−s)y(s)ds, ∀ t ∈ R+, ∀ y ∈ C(R+).

It is clear that T̃ is of class O0; moreover, since Ψ ∈ O0, the operator T given by

(Ty)(t) := (η − c)
(

y(t) − (T̃ y)(t)
)

− (1/η)(Ψ(T̃ y))(t) ∀ t ∈ R+, ∀ y ∈ C(R+),

is also of class O0. Defining

f : R × R → R, (w, z) 7→ w + z, p(·) :=
q(·)

η
, g :=

1

η
,

(in which case (f, p, T, g) ∈ N, with g > 0, and r ∈ W 1,∞(R+)), consider the initial-
value problem

ẏ(t) = f(p(t), (Ty)(t)) + g (Φ(u + d))(t), y(0) = y0 := x0 + (v0/η)

u(t) = −k(t)(y(t) − r(t)), k(t) = α(β(t)|y(t) − r(t)|)

}

. (5.5)
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Observe that γ|y0−r(0)| ≤ γy∗ < 1 and, in the context of problem (5.5), all hypothe-
ses of Theorem 3.1 and Corollary 4.2 are in place.

The initial-value problems (5.4) and (5.5) are equivalent in the sense that, if y :
[0, ω) → R is a (maximal) solution of (5.5), then x : [0, ω) → R, t 7→ (T̃ y)(t), is a
(maximal) solution of (5.4) and, conversely, if x : [0, ω) → R is a (maximal) solution
of (5.4), then y : [0, ω) → R, t 7→ x(t) + (ẋ(t)/η), is a (maximal) solution of (5.5).

By Theorem 3.1, (5.5) has unique maximal solution y : [0, ω) → R, and so x : [0, ω) →
R, t 7→ (T̃ y)(t) is the unique maximal solution of (5.4). By Corollary 4.2, ω = ∞ and
the functions u, Φ(u + d) and k are bounded, thereby establishing assertions (i) and
(iv). It remains only to prove assertions (ii) and (iii). By Corollary 4.2, there exists
ε > 0 such that β(t)|y(t) − r(t)| ≤ 1 − ε =: δ for all t ∈ R+. Recalling the definition
of β, it follows that γ|y(t) − r(t)| ≤ δ for all t ∈ R+. Since

ẋ(t) = −ηx(t) + ηy(t) and ρ̇(t) = −ηρ(t) + ηr(t) ∀ t ∈ R+,

we may infer that

|x(t) − ρ(t)| ≤ e−ηt|x0 − ρ(0)| +
δη

γ

∫ t

0

e−η(t−s)ds < x∗ +
1

γ
= Me−ητ ∀ t ∈ R+,

and so, a fortiori, |x(t) − ρ(t)| ≤ Me−ηt for all t ∈ [0, τ ]. Furthermore, since |y(t) −
r(t)| ≤ δλ for all t ≥ τ , we conclude that

|x(t) − ρ(t)| ≤ e−η(t−τ)|x(τ) − ρ(τ)| + δηλ

∫ t

τ

e−η(t−s)ds ≤ Me−ηt + δλ ∀ t ≥ τ.

Assertion (ii) now follows. Finally, |ẋ(t) − ρ̇(t)| ≤ η|x(t) − ρ(t)| + η|y(t) − r(t)| ≤
ηMe−ηt + 2δηλ for all t ≥ τ , whence assertion (iii). 2

Remark 5.1. The essence of the above proof is first to define the variable y(t)
as an appropriate linear combination, viz. x(t)+ ẋ(t)/η, of the variables x(t) and ẋ(t)
(assumed available for feedback) and then recast the closed-loop initial value problem
in the form of (5.5) to which Theorem 3.1 and Corollary 4.2 may be applied. In
particular, given ρ ∈ W 2,∞(R+) and defining r := ρ + ρ̇/η ∈ W 1,∞, the following
relation holds: y−r = H(D)(x−ρ), where D is the differential operator and H is the
Hurwitz polynomial s 7→ 1+s/η. The approach extends to tracking, with disturbance
rejection, of signals ρ ∈ Wn,∞(R+) for higher-order hysteretic systems in the obvious
manner. Consider a generalization of (5.1) of the form P (D)x+Ψ(x) = Φ(u+ d)+ q,
where P is a monic real polynomial of degree n and (x(0), ẋ(0), ... , x(n−1)(0)) ∈ X ⊂
R

n. Assume that x(t) and the derivatives ẋ(t), ... ,x(n−1)(t) are available for feedback
and define y(t) as a linear combination, viz. y(t) = x(t) + c1ẋ(t) + · · · + cnx(n−1)(t),
with the property that H : s 7→ 1+c1s+· · ·+cnsn−1 is a Hurwitz polynomial of degree
n − 1. Given ρ ∈ Wn,∞(R+) with (ρ(0), ρ̇(0), ... , ρ(n−1)(0)) ∈ Y ⊂ R

n and defining
r := H(D)ρ, we have the relation y−r = H(D)(x−ρ). If η > 0 is such that every root
of H has real part less than −η, then the arguments used in establishing Theorem 5.1
apply mutatis mutandis to conclude that, under the feedback u(t) = −k(t)(y(t)−r(t)),
k(t) = α(β(t)|y(t)−r(t)|) and for suitably defined M > 0, we achieve the performance
objective |x(t)−ρ(t)| ≤ Me−ηt +δλ for all t ∈ R+ (whilst maintaining boundedness of
all signals). The proof of this intuitively clear generalization is routine and is therefore
omitted.
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Example 5.2. For purposes of illustration, consider system (5.4) with

m = 1, c = 0, d =
sin

2
, q =

cos

2
, Ψ = B 1

2 ,0, Φ = P0,

where B 1
2 ,0 is the backlash operator (with σ = 1/2 and ξ = 0) illustrated in Figure 2.2,

and P0 is the Prandtl operator, given by (2.7) with ξ = 0 and µ(E) :=
∫

E
χ[0,5](ρ)dρ,

illustrated in Figure 2.3. Assume that X = Y = [−1, 1] × [−1, 1]. For the function
α, we take s 7→ 1/(1 − s). Adopting the performance parameter values λ = 0.02 and
η = 1, we have x∗ = 2 and y∗ = 4. Choosing γ = 1/4, yields M = 6eτ and so, by
Theorem 5.1, for all (x0, v0) ∈ X and ρ ∈ W 2,∞(R+) with (ρ(0), ρ̇(0)) ∈ Y , the unique
global solution of the closed-loop system has the property that dλ(x(t)−ρ(t)) ≤ Me−t.
Figure 5.1 depicts the (MATLAB generated) solution x (solid line) for τ = 1, ρ : t 7→
1 +

(

sin(t/2)
)

/2 (dashed line) and initial data x0 = 0 = v0.

10 t 20 30
0

0

x(·)

ρ(·)

1

1.6

Fig. 5.1. Example: solution x (solid line) and reference ρ (dashed line)

6. Appendix 1: property H3 of the Preisach operator.

Proposition 6.1. Let Pξ be the Preisach operator defined in (2.6). Assume that

the measure µ is non-negative, with

0 < α1 := µ(R+) < ∞ and 0 < α2 :=

∫ ∞

0

σµ(dσ) < ∞.

Assume further that

0 < β1 := ess inf(s,σ)∈R×R+
w(s, σ) and β2 := ess sup(s,σ)∈R×R+

w(s, σ) < ∞ .

Then, for every 0 < ε < α1β1,

|u(t)| ≥ (α2β2)/ε =⇒

(α1β1 − ε)u2(t) ≤ (Pξ(u))(t)u(t) , ∀u ∈ C(R+), ∀ t ∈ R+ . (6.1)

Proof. Note initially that, by the definition of the backlash operator, we have

(Bσ, ξ(σ)(u))(t) ∈ [u(t) − σ, u(t) + σ] ∀u ∈ C(R+), ∀ t ∈ R+, ∀σ ∈ R+ .

Let ε ∈ (0, α1β1), u ∈ C(R+) and t ∈ R+.
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Case 1. Assume that u(t) ≥ (α2β2)/ε. Writing E1 = [0, u(t)] and E2 = (u(t),∞), it
follows that

(Pξu)(t) ≥

(
∫

E1

+

∫

E2

)
∫ u(t)−σ

0

w(s, σ)µL(ds)µ(dσ)

≥ β1

∫

E1

(u(t) − σ)µ(dσ) + β2

∫

E2

(u(t) − σ)µ(dσ)

=
(

β1µ(E1) + β2µ(E2)
)

u(t) − β1

∫

E1

σ µ(dσ) − β2

∫

E2

σ µ(dσ)

≥ α1β1u(t) − α2β2 ,

and so we may conclude that

u(t) ≥ (α2β2)/ε =⇒ (Pξu)(t) ≥ (α1β1 − ε)u(t). (6.2)

Case 2. Now assume that u(t) ≤ −(α2β2)/ε. Writing E1 = [0,−u(t)] and E2 =
(−u(t),∞), we have

(Pξu)(t) ≤

(
∫

E1

+

∫

E2

)
∫ u(t)+σ

0

w(s, σ)µL(ds)µ(dσ)

≤ β1

∫

E1

(u(t) + σ)µ(dσ) + β2

∫

E2

(u(t) + σ)µ(dσ)

≤ α1β1u(t) + α2β2 ,

from which we may infer that

u(t) ≤ −(α2β2)/ε =⇒ (Pξu)(t) ≤ (α1β1 − ε)u(t). (6.3)

Since u ∈ C(R+) and t ∈ R+ are arbitrary, the conjunction of (6.2) and (6.3) yields
(6.1). 2

7. Appendix 2: proof of Theorem 3.1. To facilitate the proof, we first
consider, with notation and assumptions as in Section 3, the following family of initial-
value problems, parameterized by t0 ∈ R+,

ẏ(t) = f(p(t), ((y)(t)) + g Φ(u)(t), y|[−h,0] = y0 ∈ C[−h, t0],

u(t) = ν(k(t))
(

y(t) − r(t)
)

,

k(t) = α
(

β(t)|y(t) − r(t)|
)

.















(7.1)

We will prove the following theorem, of which Theorem 3.1 is a special case (t0 = 0).
Theorem 7.1. Under the assumptions of Theorem 3.1, for every t0 ∈ R+ and

every y0 ∈ C[−h, t0] with (t, y0(t)) ∈ D for all t ∈ [0, t0], the initial-value prob-

lem (7.1) has a unique maximal solution y ∈ C[−h, ω). Moreover, if ω < ∞, then

lim supt↑ω β(t)|y(t)− r(t)| = 1 (or, equivalently, lim supt↑ω k(t) = ∞). By a solution
of (7.1) we mean the obvious generalization of the earlier concept: a continuous func-
tion y : I → R on an interval of the form [−h, ρ], with t0 < ρ < ∞, or of the form
[−h, ω), with t0 < ω ≤ ∞, such that (a) y|[−h,t0] = y0 and (b) y|J , J := I \ [−h, t0),
is a locally absolutely continuous function, with graph in D and satisfying the differ-
ential equation in (7.1) almost everywhere on J .
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Proof of Theorem 7.1. Let t0 ∈ R+ and y0 ∈ C[−h, t0] be such that (t, y0(t)) ∈ D

for all t ∈ [0, t0].

Step 1. First, we establish the existence of a unique solution on an interval [−h, ρ]
with ρ > t0 sufficiently close to t0. By property (iii) of the operator class Oh, there
exist τ0 > t0, δ0 > 0 and c0 > 0 such that

ess-supt∈[t0,τ0]|T (y1)(t) − T (y2)(t)|

≤ c0 max
t∈[t0,τ0]

|y1(t) − y2(t)| ∀ y1, y2 ∈ C(y0;h, t0, τ0, δ0).

We may assume that δ0 ∈ (0, 1) and τ0 − t0 > 0 are sufficiently small so that

D0 := [t0, τ0] × [y0(t0) − δ0 , y0(t0) + δ0] ⊂ D.

Next, consider the map

U : D → R, (t, z) 7→ ν(α(β(t)|z − r(t)|))(z − r(t)).

Since α and ν are locally Lipschitz and β and r are bounded, it follows that there
exists c1 > 0 such that

|U(t, z1) − U(t, z2)| ≤ c1|z1 − z2| ∀ (t, z1), (t, z2) ∈ D0.

For each ρ ∈ (t0, τ0], define C0
ρ := C(y0;h, t0, ρ, δ0). Observe that, if y ∈ C0

ρ, then
(t, y(t)) ∈ D0 for all t such that t0 ≤ t ≤ ρ ≤ τ0. Therefore, for each ρ ∈ [t0, τ0], we
may define an operator Uρ : C0

ρ → C[0, ρ] by

(Uρy)(t) := U(t, y(t)) ∀ t ∈ [0, ρ],

and record the following fact:

|(Uρy1)(t) − (Uρy2)(t)| ≤ c1|y1(t) − y2(t)| ∀ t ∈ [0, ρ], ∀ y1, y2 ∈ C
0
ρ . (7.2)

Defining w ∈ C[0, t0] by w(t) := U(t, y0(t)) for all t ∈ [0, t0], we have in particular,

(Uρy)(t) = w(t) ∀ t ∈ [0, t0], ∀ y ∈ C
0
ρ .

By hypothesis H1 on Φ, there exist τ1 ∈ (t0, τ0], δ1 ∈ (0, δ0] and c2 > 0 such that

max
t∈[0,τ1]

|Φ(v1)(t) − Φ(v2)(t)|

≤ c2 max
t∈[0,τ1]

|v1(t) − v2(t)| ∀ v1, v2 ∈ C(w; 0, t0, τ1, δ1) . (7.3)

Furthermore, by continuity of U , there exist τ2 ∈ (t0, τ1] and δ2 ∈ (0, δ0] such that, if
ρ ∈ (t0, τ2], then

Uρy ∈ C(w; 0, t0, ρ, δ1) ∀ y ∈ C(y0;h, t0, ρ, δ2) ⊂ C
0
ρ . (7.4)

For each ρ ∈ (t0, τ2], we define Cρ := C(y0;h, t0, ρ, δ2). Invoking (7.2)–(7.4), we may
conclude that there exists c3 > 0 such that, for every ρ ∈ (t0, τ2],

max
t∈[0,ρ]

|Φ(Uρy1)(t) − Φ(Uρy2)(t)| ≤ c3 max
t∈[0,ρ]

|y1(t) − y2(t)| ∀ y1, y2 ∈ Cρ . (7.5)
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Furthermore, as a consequence of (7.5), there exists c4 > 0 such that, for every
ρ ∈ (t0, τ2],

|Φ(Uρy)(t)| ≤ c4 ∀ t ∈ [0, ρ], ∀ y ∈ Cρ .

Equipped with the metric

(y1, y2) 7→ µρ(y1, y2) := max
t∈[−h,ρ]

|y1(t) − y2(t)| ,

Cρ is a complete metric space. For each ρ ∈ (t0, τ2], define the operator Cρ on Cρ by

Cρ(y)(t) :=

{

y0(t), t ∈ [−h, t0]

y0(t0) +
∫ t

t0

(

f(p(s), T (y)(s)) + g Φ(Uρy)(s)
)

ds, t ∈ (t0, ρ]

We proceed to show that there exists ρ∗ ∈ (t0, τ2] such that, for all ρ ∈ (t0, ρ
∗],

Cρ(Cρ) ⊂ Cρ and Cρ is a contraction (and, consequently, for each such ρ, Cρ has a
unique fixed point). By property (iv) of the operator class Oh, there exists c5 > 0
such that, for every ρ ∈ (t0, ρ

∗],

|T (y)(t)| ≤ c5 for a.a. t ∈ [t0, ρ], ∀ y ∈ Cρ .

By the local Lipschitz property of f , together with essential boundedness of p, there
exists c6 > 0 such that

|f(p(t), x1) − f(p(t), x2)| ≤ c6|x1 − x2|

for a.a. t ∈ [t0, τ2] and all x1, x2 ∈ R with |x1|, |x2| ≤ c5.

Set c7 := max
{

|f(q, x)|
∣

∣ |q| ≤ ‖p‖L∞ , |x| ≤ c5

}

and fix ρ∗ ∈ (t0, τ2] sufficiently close
to t0 so that

(ρ∗ − t0)
(

c7 + c0c6 + c3|g| + c4|g|
)

≤ δ2.

Let ρ ∈ (t0, ρ
∗] and y ∈ Cρ. By definition, (Cρy)|[−h,t0] = y0 and, moreover,

|Cρ(y)(t) − y0(t0)| ≤

∫ ρ

t0

|f(p(s), T (y)(s)) + g Φ(Uρy)(s)|ds

≤ (ρ − t0)(c7 + c4|g|) ≤ δ2 ∀ t ∈ [t0, ρ] .

Therefore, Cρ(y) ∈ Cρ, establishing that Cρ(Cρ) ⊂ Cρ for all ρ ∈ (t0, ρ
∗]. Further-

more, for ρ ∈ (t0, ρ
∗] and y1, y2 ∈ Cρ,

µρ(Cρ(y1) , Cρ(y2)) = sup
t∈[t0,ρ]

∣

∣

∣

∫ t

t0

(

f(p(s), T (y1)(s)) − f(p(s), T (y2)(s))

+ g Φ(Uρy1)(s) − g Φ(Uρy2)(s)
)

ds
∣

∣

∣

≤ (ρ − t0)
(

sup
t∈[t0,ρ]

|f(p(t), T (y1)(t)) − f(p(t), T (y2)(t))|

+ |g| sup
t∈[t0,ρ]

|Φ(Uρy1)(t) − Φ(Uy2)(t)|
)

≤ (ρ − t0) (c0c6 + c3|g|)µρ(y1, y2).
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Since (ρ − t0)(c0c6 + c3|g|) ≤ δ2 < 1, it follows that Cρ : Cρ → Cρ is a contraction.
Therefore, for each ρ ∈ (0, ρ∗], Cρ has a unique fixed point y ∈ Cρ and so (7.1)
has a unique solution in Cρ. We emphasize that the uniqueness property is specific
to solutions of class Cρ: there may exist other solutions on [−h, ρ] which are not of
class Cρ. However, the following argument establishes the existence of precisely one
solution for ρ ∈ (t0, ρ

∗] with ρ − t0 sufficiently small. Let ỹ be a solution on [−h, ρ̃]
(not necessarily of class Cρ̃) for some ρ̃ ∈ (0, ρ∗]. Define

∆ :=
{

t ∈ [t0, ρ̃]
∣

∣ |ỹ(t) − y0(t0)| = δ
}

, ρ :=

{

inf ∆, ∆ 6= ∅,
ρ̃, ∆ = ∅.

Clearly, ρ > t0 and ỹ|−h,ρ] is in Cρ. Therefore, ỹ|−h,ρ] is the unique solution of (7.1)
on [−h, ρ].

Step 2. Next, we show that any two solutions must coincide on the intersection of
their domains. Let y1 ∈ C(I1) and y2 ∈ C(I2) be solutions of (7.1). For contradiction,
suppose that there exists t ∈ J := I1 ∩ I2 such that y1(t) 6= y2(t). Let t∗ := inf{t ∈
J | y1(t) 6= y2(t)}. Evidently, t∗ < supJ . By the result in Step 1 above, t∗ > t0. An
application of the result of Step 1 in the context of an initial-value problem of the form
(7.1), with t∗ replacing t0 and with the function y1|[−h,t∗] ∈ C[−h, t∗] replacing y0,
yields the existence of a unique solution y ∈ C[−h, ρ] for some ρ > t∗. It follows that
y1(t) = y2(t) = y(t) for all t ∈ [−h, ρ]∩J and so there exists t > t∗ with y1(t) = y2(t).
This contradicts the definition of t∗.

Step 3. We now establish the existence of a unique maximal solution. Let R be the
set of all ρ > t0 such that there exists a solution yρ ∈ C[−h, ρ] of (7.1). By Step 1,
we know that R 6= ∅. Let ω := supR (ω = ∞ is possible) and define y ∈ C[−h, ω) by
the property

y|[−h,ρ] = yρ for all ρ ∈ R.

The function y is well defined since, by Step 2, we have

(

ρ1, ρ2 ∈ R ∧ ρ2 ≤ ρ1

)

=⇒ yρ2
= yρ1

|[−h,ρ2].

Clearly, y is a maximal solution of (7.1) and uniqueness follows by Step 2.

Step 4. Assume that ω < ∞. We have to show that lim supt↑ω β(t)|y(t) − r(t)| =
1. Seeking a contradiction, suppose that the latter does not hold, in which case
lim supt↑ω β(t)|y(t)− r(t)| < 1. Then k is bounded and therefore, since y is bounded,
the function u is also bounded. By property (iv) of the operator class Oh, Ty is essen-
tially bounded and, by property H2, Φu is bounded. From the differential equation in
(7.1), it now follows that ẏ is essentially bounded on [0, ω). Therefore, y is uniformly
continuous on [−h, ω) and so extends to y∗ ∈ C[−h, ω]. Furthermore,

β(ω)|y∗(ω) − r(ω)| = lim
t↑ω

β(t)|y∗(t) − r(t)| = lim sup
t↑ω

β(t)|y(t) − r(t)| < 1

showing that (ω, y∗(ω)) ∈ D. An application of the result in Step 1 in the context
of an initial-value problem of the form (7.1), with ω replacing t0 and y∗ replacing
y0, yields the existence of a unique solution ye ∈ C[−h, ρ] for some ρ > ω, with
ye|[−h,ω) = y. This contradicts maximality of the solution y. 2
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