
The Feature-Architecture Mapping Method

for Feature-Oriented Development of

Software Product Lines

Dissertationsschrift

zur Erlangung des akademischen Grades

Doktoringenieur (Dr.-Ing.)

VORGELEGT DER FAKULTÄT FÜR INFORMATIK UND AUTOMATISIERUNG

DER TECHNISCHEN UNIVERSITÄT ILMENAU

von MSc Periklis Sochos

geboren am 17. Dezember 1978 in Athen, Griechenland

vorgelegt am 20.9.2006

wissenschaftliche Aussprache am 25.04.2007

Gutachter:

1. PD Dr.-Ing. habil. Matthias Riebisch

2. Univ.-Prof. Dr.-Ing. habil. Wolfgang Fengler

3. Prof. Dr. rer. nat. Ralf H. Reussner

urn:nbn:de:gbv:ilm1-2007000087





The Feature-Architecture Mapping Method

for Feature-Oriented Development of

Software Product Lines

Dissertation

for the attainment of the academic degree of

Doktoringenieur (Dr.-Ing.)

SUBMITTED AT THE FACULTY OF INFORMATICS AND AUTOMATION

OF THE TECHNICAL UNIVERSITY OF ILMENAU

by MSc Periklis Sochos

born on the 17th of December 1978 in Athens, Greece

submitted on the 20.9.2006

convocation on the 25.04.2007

Examiners:

1. PD Dr.-Ing. habil. Matthias Riebisch

2. Univ.-Prof. Dr.-Ing. habil. Wolfgang Fengler

3. Prof. Dr. rer. nat. Ralf H. Reussner

urn:nbn:de:gbv:ilm1-2007000087



Abstract

Software product lines are the answer of software engineering to the increas-
ing complexity and shorter time-to-market of contemporary software systems.
Nonetheless, software product lines demand for advanced maintainability and
high flexibility. The latter can be achieved through the proper separation of
concerns. Features pose the main concerns in the context of software product
lines. Consequently, one feature should ideally be implemented into exactly one
architectural component. In practice, this is not always feasible. Therefore,
at least a strong mapping between features and the architecture must exist.
The state of the art product line development methodologies introduce signifi-
cant scattering and tangling of features. In this work, the Feature-Architecture
Mapping (FArM) method is developed, to provide a stronger mapping between
features and the product line architecture. FArM receives as input an initial
feature model created by a domain analysis method. The initial feature model
undergoes a series of transformations. The transformations strive to achieve a
balance between the customer and architectural perspectives. Feature interac-
tion is explicitly optimized during the feature model transformations. For each
feature of the transformed feature model, one architectural component is derived.
The architectural components implement the application logic of the respective
features. The component communication reflects the feature interaction. This
approach, compared to the state of the art product line methodologies, allows
a stronger feature-architecture mapping and for higher variability on the fea-
ture level. These attributes provide higher maintainability and an improved
generative approach to product instantiation, which in turn enhances product
line flexibility. FArM has been evaluated through its application in a number
of domains, e.g in the mobile phone domain and the Integrated Development
Environment (IDE) domain. This work will present FArM on the basis of a case
study in the domain of artificial Neural Networks.

ii



Kurzfassung

Software Produktlinien sind die Antwort von Software Engineering auf die zu-
nehmende Komplexität und kürzeren Produkteinführungszeiten von heutigen
Softwaresystemen. Nichtsdestotrotz erfordern Software Produktlinien eine fort-
geschrittene Wartbarkeit und hohe Flexibilität. Das kann durch die angemessene
Trennung der Belange erreicht werden. Merkmale stellen die Hauptbelange
im Kontext von Software Produktlinien dar. Demzufolge sollte ein Merkmal
idealerweise in genau einer Architekturkomponente implementiert werden. In
der Praxis ist das jedoch nicht immer machbar. Deshalb sollte zumindest ein
starkes Mapping zwischen Merkmalen und der Architektur bestehen. Die Meth-
oden zur Entwicklung von Software Produktlinien, die dem Stand der Tech-
nik entsprechen, führen zu bedeutender Verstreutheit und Vermischung von
Merkmalen. In dieser Arbeit wird die Feature-Architecture Mapping (FArM)
Methode entwickelt, um ein stärkeres Mapping zwischen Merkmalen und der
Produktlinien-Architektur zu erzielen. Der Input für FArM besteht in einem
initialen Merkmalmodell, das anhand einer Methode zur Domänenanalyse er-
stellt wurde. Dieses initiale Merkmalmodell wird einer Serie von Transforma-
tionen unterzogen. Die Transformationen streben danach, ein Gleichgewicht
zwischen der Sichtweise von Kunden und Softwarearchitekten einzustellen. Die
Merkmalinteraktionen werden während der Transformationen ausdrücklich op-
timiert. Von jedem Merkmal des transformierten Merkmalmodells wird eine Ar-
chitekturkomponente abgeleitet. Die Architekturkomponenten implementieren
die Applikationslogik der entsprechenden Merkmale. Die Kommunikation zwis-
chen den Komponenten spiegelt die Interaktion zwischen den Merkmalen wider.
Dieser Ansatz führt im Vergleich zu den Produktlinien-Entwicklungsmethoden
des Stands der Technik zu einem stärkeren Mapping zwischen Merkmalen und
der Architektur und zu einer höheren Variabilität auf Merkmalebene. Diese
Eigenschaften haben eine bessere Wartbarkeit und eine vereinfachte generative
Produktinstanzierung zur Folge, was wiederum die Flexibilität der Produktlin-
ien steigert. FArM wurde durch ihre Anwendung in einigen Domänen evaluiert,
z.B. in den Domänen von Mobiltelefonen und Integrierten Entwicklungsumge-
bungen (IDEs). Diese Arbeit wird FArM anhand einer Fallstudie in der Domäne
von Künstlichen Neuronalen Netzwerken präsentieren.

iii



Acknowledgements

I would like to thank my supervisors Prof. Dr.-Ing. habil. Ilka Philippow and Priv.-Doz. Dr.-
Ing. habil. Matthias Riebisch for their guidance throughout this work, as well as the federal
state of Thüringen for the financial support through the granting of the Landesgraduierten
scholarship. A big thank goes also to my professor and supervisor during my studies in
Greece Prof. Dr.-Ing. Basilios Spiropoulos.

Last but not least, I want to thank my family for their loving support that made this work
possible.

iv



Contents

1 Introduction 1

2 State of the Art 4

2.1 Software Product Lines . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Product Lines Methods . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Featured Reuse-Driven Software Engineering Business . . . . . . . . 12

2.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.2 Component Sources & Mapping . . . . . . . . . . . . . . . . . 14

2.3.3 Feature-Level Variability . . . . . . . . . . . . . . . . . . . . . 22

2.3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4 Functionality-based Architectural Design . . . . . . . . . . . . . . . . 31

2.4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4.2 Fire-Alarm PL Case Study . . . . . . . . . . . . . . . . . . . 32

2.4.3 FAD Phases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.4.4 Evaluation of Component Development . . . . . . . . . . . . 39

2.4.5 Object-Oriented Frameworks . . . . . . . . . . . . . . . . . . 43

2.4.6 Evaluation of Framework Component Models . . . . . . . . . 47

2.4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.5 Generative Programming Techniques . . . . . . . . . . . . . . . . . . 50

2.5.1 The Hyperspace Approach . . . . . . . . . . . . . . . . . . . . 51

2.5.2 Evaluation of the Hyperspace Approach . . . . . . . . . . . . 59

2.5.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.6 Motivation and Objectives . . . . . . . . . . . . . . . . . . . . . . . . 63

2.7 Used Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

v



vi CONTENTS

3 Case Study 68

3.1 Neural Network Theory . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.2 NN-Trainer PL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4 The Feature-Architecture Mapping Method 74

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.2 Elementary Transformations . . . . . . . . . . . . . . . . . . . . . . . 78

4.3 NAR & Quality Features . . . . . . . . . . . . . . . . . . . . . . . . 81

4.3.1 Non-Architecture-Related (NAR) Features . . . . . . . . . . . 81

4.3.2 Quality Features . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.4 Architectural Requirements . . . . . . . . . . . . . . . . . . . . . . . 93

4.5 Feature Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.5.1 Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.5.2 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.5.3 Interface Derivation . . . . . . . . . . . . . . . . . . . . . . . 123

4.6 Architecture Development . . . . . . . . . . . . . . . . . . . . . . . . 129

4.7 Tool Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5 Evaluation 139

5.1 Method Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.2 Feature-Architecture Mapping . . . . . . . . . . . . . . . . . . . . . . 142

5.3 Feature-Level Variability . . . . . . . . . . . . . . . . . . . . . . . . . 153

5.4 Product Instantiation . . . . . . . . . . . . . . . . . . . . . . . . . . 156

5.5 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

6 Conclusions 161

6.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

A NN-Trainer Feature Models 165

B NN-Trainer Features Specification 168

C NN-Trainer Software Architecture 171



List of Figures

2.1 A common development process of a PL . . . . . . . . . . . . . . . . 6

2.2 A basic FM of a mobile phone PL . . . . . . . . . . . . . . . . . . . 8

2.3 Historical evolution of PL methods . . . . . . . . . . . . . . . . . . . 9

2.4 An overview of the FeatuRSEB processes . . . . . . . . . . . . . . . 13

2.5 A typical FeatuRSEB layered architecture and its relation to the Fea-
tuRSEB processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.6 Relations and internals of application and component systems . . . . 15

2.7 The dimensions and types of the FeatuRSEB analysis model . . . . . 16

2.8 The Withdraw Money use case and the corresponding partial analysis
model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.9 Scattering and tangling of the Withdraw and Deposit features . . 19

2.10 An architecture based on the direct derivation from features . . . . . 20

2.11 Feature-architecture mapping in FeatuRSEB . . . . . . . . . . . . . 21

2.12 Binding times of PL product variants . . . . . . . . . . . . . . . . . . 22

2.13 UML diagram of the Strategy design pattern . . . . . . . . . . . . . 29

2.14 The Quality-oriented Software Architecture design (QASAR) method 32

2.15 Artifacts of the FAD method . . . . . . . . . . . . . . . . . . . . . . 33

2.16 Interfaces of the fire-alarm system . . . . . . . . . . . . . . . . . . . 34

2.17 Archetypes of the fire-alarm PL and their relations . . . . . . . . . . 36

2.18 FAD dimensions of decomposition with examples . . . . . . . . . . . 38

2.19 A partial view of the architectural components of the fire-alarm system 39

2.20 A partial view of the fire-alarm FM with the mapping between the
PL features (left) and FAD architectural components (right) . . . . . 41

2.21 A more direct mapping between the fire-alarm features (left) and the
architecture (right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

vii



viii LIST OF FIGURES

2.22 Product-specific extension model . . . . . . . . . . . . . . . . . . . . 46

2.23 Standard-specific extension model . . . . . . . . . . . . . . . . . . . 46

2.24 Fine-grained extension model . . . . . . . . . . . . . . . . . . . . . . 47

2.25 Generator-based model . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.26 A simple Software Engineering Environment architecture . . . . . . 52

2.27 A decomposition of the SEE architecture based on its features through
hyperslices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.1 A simplified view of a biological neuron . . . . . . . . . . . . . . . . 69

3.2 An artificial neuron and a layer of neurons . . . . . . . . . . . . . . . 70

3.3 An artificial Neural Network . . . . . . . . . . . . . . . . . . . . . . . 71

4.1 FArM phases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.2 Direct Elementary Transformation . . . . . . . . . . . . . . . . . . . 79

4.3 Merge Elementary Transformation . . . . . . . . . . . . . . . . . . . 80

4.4 Create Elementary Transformation . . . . . . . . . . . . . . . . . . . 80

4.5 The Hardware feature hierarchy is composed of Physical NAR features 83

4.6 The OS feature hierarchy as External NAR features . . . . . . . . . 85

4.7 The NN-Export feature hierarchy . . . . . . . . . . . . . . . . . . . 86

4.8 The Competitive Market Price feature . . . . . . . . . . . . . . . 86

4.9 The Recoverability quality feature . . . . . . . . . . . . . . . . . . 89

4.10 The Recoverability quality feature transformation with traceability
links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.11 The Efficiency quality feature . . . . . . . . . . . . . . . . . . . . . 91

4.12 Partial view of the features involved in the resolution of the Effi-
ciency quality feature . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.13 The License feature used for the resolution of the External License
Manager architectural requirement . . . . . . . . . . . . . . . . . . . 96

4.14 The Train-Mode feature hierarchy . . . . . . . . . . . . . . . . . . 98

4.15 NN-Trainer uses interacts relations . . . . . . . . . . . . . . . . . . . 103

4.16 NN-Trainer extends interacts relations . . . . . . . . . . . . . . . . . 104

4.17 Transformation of the extends interacts relations . . . . . . . . . . . 105

4.18 NN-Trainer runtime excludes interacts relation . . . . . . . . . . . . 105

4.19 Transformation of the runtime excludes interacts relation . . . . . . 106



LIST OF FIGURES ix

4.20 An aggregation hierarchy relation . . . . . . . . . . . . . . . . . . . . 109

4.21 A specialization hierarchy relation . . . . . . . . . . . . . . . . . . . 109

4.22 An invalid hierarchy relation . . . . . . . . . . . . . . . . . . . . . . 109

4.23 A broken invalid hierarchy relation . . . . . . . . . . . . . . . . . . . 110

4.24 Derivation of a specialization hierarchy relation . . . . . . . . . . . . 113

4.25 Derivation of an aggregation hierarchy relation . . . . . . . . . . . . 114

4.26 Hierarchy enhancement . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.27 Feature interaction exclusively through hierarchy relations . . . . . . 115

4.28 Interacts relation delegation . . . . . . . . . . . . . . . . . . . . . . . 116

4.29 Improper continuance of the interaction delegation process . . . . . . 117

4.30 Calculation of interacts relations . . . . . . . . . . . . . . . . . . . . 118

4.31 The Neural Network feature hierarchy . . . . . . . . . . . . . . . . 119

4.32 Normalization of the Neural Network feature’s interacts relations 120

4.33 Handling of FArM hierarchy relations during a direct resolution . . . 122

4.34 Handling of FArM interacts relations during a direct resolution . . . 122

4.35 Handling of FArM hierarchy relations during merging . . . . . . . . 122

4.36 Derivation of requires or provides interfaces . . . . . . . . . . . . . . 124

4.37 NN training related features after the third transformation phase . . 126

4.38 Microkernel architecture . . . . . . . . . . . . . . . . . . . . . . . . . 132

4.39 Mapping to the Microkernel architecture . . . . . . . . . . . . . . . . 134

4.40 Mapping to the Layers architecture . . . . . . . . . . . . . . . . . . . 135

4.41 Mapping to the Broker architecture . . . . . . . . . . . . . . . . . . . 136

5.1 Histogram of scattering in the NN-Trainer PL . . . . . . . . . . . . . 151

5.2 Histogram of tangling in the NN-Trainer PL . . . . . . . . . . . . . . 152

A.1 NN-Trainer Initial FM . . . . . . . . . . . . . . . . . . . . . . . . . . 166

A.2 NN-Trainer Final FM . . . . . . . . . . . . . . . . . . . . . . . . . . 167

C.1 A partial UML component diagram of the NN-Trainer software ar-
chitecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171



List of Tables

2.1 Variability Mechanisms in relation to binding time and the type of
variability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.1 FArM Elementary Transformations . . . . . . . . . . . . . . . . . . . 79

4.2 NAR feature categories . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.3 Transformation of the Recoverability quality feature . . . . . . . . 90

4.4 Scenarios for the Efficiency quality feature specification . . . . . . . 92

4.5 FArM Types of Interacts Relations . . . . . . . . . . . . . . . . . . . 100

4.6 FArM Types of Hierarchy Relations . . . . . . . . . . . . . . . . . . 101

4.7 Decision rules for the normalization of interacts relations . . . . . . . 118

B.1 Recoverabiliy feature FODA definition . . . . . . . . . . . . . . . . 168

B.2 Save the state of a NN training use-case . . . . . . . . . . . . . . . . 169

B.3 Resume a NN training use-case . . . . . . . . . . . . . . . . . . . . . 169

B.4 Licence feature FODA definition . . . . . . . . . . . . . . . . . . . . 169

B.5 Feature activation use-case . . . . . . . . . . . . . . . . . . . . . . . 170

B.6 Pattern feature FODA definition . . . . . . . . . . . . . . . . . . . 170

B.7 Pattern retrieval use-case . . . . . . . . . . . . . . . . . . . . . . . . 170

x



Chapter 1

Introduction

The ever growing demand for innovative products and the hard competition in the

industrial arena constantly increase the size and complexity of software, requiring

shorter times-to-market, which respectively raise the demand for higher flexibility.

This trend is evident in almost every domain in today’s software industry, e.g. in

the telecommunications, automotive or logistics domain. For instance, mobile phone

vendors must support many different protocol standards, a wide variety of functional

features and capabilities, different user interface designs and many platforms and

environments. Additionally, they must evolve their product palette in very short

periods of time to provide online gaming or photography capabilities, push-enabled

applications and UMTS technology.

Standard software development methodologies are not adequate for the construction

of such software systems. On one hand, the size and complexity of the software is

accompanied by significant variability that must be implemented, while on the other

hand, there exists a lot of commonality that must be exploited. Furthermore, the

one-product-at-a-time development model of standard methods is not compatible

with the constantly decreasing time-to-market and the need for flexible, customizable

products.

A solution to these issues is the prefabrication of software building blocks. More

precisely, the common functionality of a domain is prefabricated in a core-set of soft-

ware building blocks and the variable functionality in another set. The development

of products takes place through the combination of building blocks. This is the so

called software product line (PL) approach, where the building blocks are software

components and the developed software platform is the PL architecture.

Nonetheless, adopting a PL approach alone does not completely solve the aforemen-

1



2 CHAPTER 1. INTRODUCTION

tioned issues. Two crucial preconditions must be satisfied. The PL components must

be relatively stable with respect to changes and the product instantiation process

must take place efficiently.

The stability of the PL components plays a main role in the maintainability and

evolvability of the software system. Ideally, changes in one part of the software

should not propagate, rather, they must have a local impact. Stability can be

achieved if the PL architecture adheres to the principles of separation of concerns

[Par72], high cohesion and low coupling. In the context of PLs, features pose the

main concerns (sect. 2.1). Therefore, a higher stability in a PL can be achieved, if

the PL architecture adheres to the principles of high cohesion and low coupling on

the feature level.

The other precondition that must be satisfied is the efficient instantiation of PL

products. This has a direct influence on the time-to-market. In the context of PLs,

products are defined in terms of features. Therefore, the PL architecture must enable

the composition of products based on features with minimal effort. In other words,

the PL architecture must allow the efficient application of variability mechanisms

on the feature level.

Ideally, in order to achieve high cohesion, low coupling and variability, all on the

feature level, one PL feature should be implemented in exactly one architectural

component. This way, the stakeholder concerns would be perfectly encapsulated into

self-contained constructs, which could be arbitrarily combined for the instantiation

of a PL product.

Unfortunately, this is not feasible with today’s technology (chapter 2). Instead, a

stronger mapping between features and the architecture is needed. An architectural

component should at least encapsulate the application logic of one feature and pro-

vide an interface for the needed feature interaction. This way, changes will either

remain local within one architectural component or at most propagate to compo-

nents implementing interacting features. This would lead to higher system stability.

Additionally, variability mechanisms can be directly applied to components that im-

plement the PL features, thus allowing for efficient variability on the feature level.

PL product instantiation can then be reduced to the inclusion or exclusion of compo-

nents. These two factors would lead to higher flexibility and shorter time-to-market.

Goal of this work is to develop a methodology for the enhancement of the mapping

between PL features and the PL architecture. The methodology will provide an

iterative approach for the derivation of a software architecture based on customer-

specific features. An initial feature model developed during the domain analysis will



3

serve as input to the method and will be iteratively transformed. Throughout these

transformations, existing features are enhanced or merged with each other and new

features are added, so as to achieve a balance between the customer and architec-

tural perspectives. The final transformed feature model will hold only functional

features, who’s application logic can be directly implemented in exactly one archi-

tectural component. Furthermore, the feature interactions will also be reflected on

the component interfaces and their communication. Traceability links will be uti-

lized to connect the initial features to their transformed descendants, thus allowing

for a stronger mapping between customer features and the PL architecture, which

respectively leads to higher flexibility and shorter time-to-market.

Structure of the Work

Chapter 2 examines the state of art methods from the perspective of feature-archi-

tecture mapping, feature-level variability and PL product instantiation. It also lays

out a concrete plan for the enhancement of feature-architecture mapping. Other

works related to or used by the proposed solution are presented at the end of chapter

2. Chapter 3 gives insight to the case study used for the description and evalua-

tion of the methodology developed in this work. Chapter 4 delves into the details

of the proposed methodology. Finally, chapters 5 and 6 respectively validate the

achievement of a stronger feature-architecture mapping and conclude the work.



Chapter 2

State of the Art

Chapter 1 denoted the importance of a strong feature-architecture mapping. The

latter results in higher stability, more efficient feature-level variability and product

instantiation. This chapter will examine the state of the art approaches to the

aforementioned issues. In order to provide a solid basis for further discussion in the

context of PLs, an introduction to the main PL concepts is given. Following this, the

most representative PL methods will be selected and examined from the perspective

of feature-architecture mapping, feature-level variability and product instantiation.

Other related technologies that contribute to these issues are also examined. The

identified problems of the state of the art approaches will then serve as an input to

the conception of a plan for their resolution. Works used in the proposed solution

are discussed at the end of this chapter.

2.1 Software Product Lines

The concept of PLs has emerged during a long process towards large-scale reuse of

software. The vision of large-scale reuse has its roots in other engineering domains,

e.g. architecture of buildings or the automobile industry. In these domains, prod-

ucts are composed from a well predefined set of components in a clearly prescribed

way, thus leading to large-scale reuse. This allowed the partial, if not complete

standardization of the production process and thus to significant cost and quality

benefits.

Software development was initially performed on a one-product-at-a-time basis. A

customer was able to either build an individual product or buy a standardized prod-

uct, whereby both alternatives bared their own risks. On the one hand, projects

4



2.1. SOFTWARE PRODUCT LINES 5

for the development of an individual product carry a high risk of failure, extreme

costs and poor quality, while on the other hand, standardized products may only

partially cover the customer requirements, but provide high quality. From the reuse

point of view, individual software provided primarily low-level reuse, e.g. code reuse

or reuse of fine-grained library functions. In the majority of the projects for indi-

vidual products, a constant ”reinvention of the wheel” was required. Standardized

software per definition achieves large-scale reuse, i.e. the product is sold as is with

a few customization possibilities.

A big step to large-scale reuse was seen in the turn towards a domain-based approach

to software engineering. The concept of PLs was born. A definition is given in

[CN01]:

”A software product line is a set of software-intensive systems sharing a common,

managed set of features that satisfy the specific needs of a particular market segment

or mission and that are developed from a common set of core assets in a prescribed

way.”

PLs provide large-scale reuse, since they are build from a common set of core assets.

The core assets are developed for optimal reuse, based on the commonalities and

variabilities of the domain. A PL product has to either manually be constructed

from the set of core assets or it can be generated from the assets. In both cases,

the time-to-market of the product is relatively short. PLs require a high initial

investment, which increases the development costs. Nonetheless, the investment can

be compensated through the instantiation of a small number of PL products. From

the above it becomes clear that PLs provide, along with large-scale reuse, a flexible,

cost-effective solution, compared to traditional development approaches.

The success of PLs is evident in today’s software industry. Representative examples

can be found in the Software Engineering Institute [SEI05] Hall of Fame. Nominated

PLs are the Diesel engine PL, by Cummins Inc., which implements the software to

micro-control ignition in order to produce an optimum mix of power, economy and

emissions. Furthermore, the Bold Stroke avionics software family provides a wide

range of artifacts required to create Operational Flight Programs for a variety of

Boeing military fighters. Finally, another nominated PL is the Nokia Mobile Phones

PL.



6 CHAPTER 2. STATE OF THE ART

Development Process

The development process of PLs is shown in fig. 2.1. PL development is divided

into domain engineering and application engineering. The iterative nature of the

PL development processes is indicated through the arrowed circles. Domain engi-

neering is responsible for the creation of the core assets. Application engineering is

responsible for the development of the PL products from the core assets.

Figure 2.1: A common development process of a PL

PL engineering receives as input the system and product constraints, as well as pre-

existing assets, e.g. legacy code. During domain engineering, scoping is performed

for the definition of the PL limits, i.e. what should be implemented by the PL

and what is not covered. Then follows the domain modeling. In this stage, the

commonalities and variabilities of the domain are captured and documented. Af-

terwards begins the development of the common PL architecture. This includes the

development of components, sub-systems or reusable packages.

In application engineering, the PL engineering artifacts are reused for the devel-

opment of applications. This process covers customer requirement analysis and

comparison to the PL capabilities. If the customer requirements are not covered by

the PL, an instantiation of the core PL architecture is specialized and, depending

on the importance of these new requirements for the future versions of the PL, the

core PL architecture can also be extended.



2.1. SOFTWARE PRODUCT LINES 7

Role of Features

A very important concept in the development of PLs is that of features. Features

play a central role in the state of the art PL methods. This section briefly presents

and motivates the use of features. There exist a number of definitions for features.

This work adopts a combination of two representative definitions from [Bos00] and

[Rie03].

”Features are a logical unit of behavior that is specified by a set of functional and

quality requirements and represent an aspect valuable to the customer”.

Features are most commonly used for domain modeling. The modeling of a domain

requires concise terms for the expression of complex domain entities. On the one

hand, feature names consist of just a few keywords allowing a compact means of

expression. On the other hand, feature specifications may contain a complete de-

scription of the underlying concepts. This can be achieved in a variety of ways, e.g.

through free-text, use-case models, etc.

Additionally, the variability of a domain can be captured through the use of fea-

tures. During domain analysis, the common features of the domain products are

identified. Features belonging to individual products present the variability points

of the domain. Features may also model the binding-time of variability. That is the

point of time in which a feature is integrated into the product. This can range from

compile-time, load-time to run-time variability.

Because of their property to model domain entities and their variability, features can

also be used for the instantiation of PL products. A customer may select a number

of PL features to be included in his/her personal product. For this purpose, features

also model the various constraints of product composition. In the simplest case, a

feature may be optional or mandatory and it may require or exclude other features.

During domain modeling, the above information is captured in the so called feature

model (FM). The latter can have the form of a list of features, of a feature graph

or a combination of both. There exist numerous notations for FMs that include a

variety of information.

An example of a basic FM is shown fig. 2.2. The MobilePL feature is the root

feature of the FM representing the PL. Messages and Network are two mandatory

features of the PL. This means that they must be included in every PL product.

These features have the optional features MMS, WAP and HTTP as sub-features

respectively. The MMS feature has a requires relation to WAP. This indicates the



8 CHAPTER 2. STATE OF THE ART

fact that a customer selecting the MMS feature must also select the WAP feature.

In this implementation of the PL, MMS also excludes the HTTP feature. This

indicates that a customer selecting the MMS feature is not allowed to select the

HTTP feature.

Figure 2.2: A basic FM of a mobile phone PL

Features can also be effectively used to support the communication between the

system stakeholders. This is very important for a harmonious cooperation and for

the effectiveness of the works processes. Features provide a communication basis

between the various stakeholders of a system, from PL customers, to marketing per-

sonnel and designers, down to the system programmers. This is due to the intuitive

nature and compact description of features, accompanied with specific information

for each party. Based on features, one can perform future planning. That is, the

marketing department of a PL can identify trends in a market segment based on

customer wishes. The latter can be easily expressed in terms of features. This in-

formation can then flow into the FM and create a base on which the PL developers

can plan the future versions of the PL.

Occasionally, features also serve as a guide for the system design. Since features pose

the main market drivers for the PL, designing the PL based on features can lead to

benefits in the system’s maintainability and deployment. Additionally, a number of

useful design entities can be inspired from domain concepts.

2.2 Product Lines Methods

The PL methods examined in this work are selected based on a variety of criteria.

Namely, their chronological order, their acceptance in the software industry and the

volume of available documentation. Fig. 2.3 is originally composed from [Boe02]

and [Str03] and has been updated to show the historical evolution of PL methods.

The most recent PL methods are shown in the shaded boxes at the right part of

the figure. The arrows represent ”based on” relations. Taking into consideration



2.2. PRODUCT LINES METHODS 9

the aforementioned criteria, this work will examine the most recent PL methods of

fig. 2.3. These methods have also found broad acceptance in the software industry

and are well documented. The methods are briefly examined from the perspective

of the identified issues of feature-architecture mapping, feature-level variability and

product instantiation. A comparison of the various approaches regarding each of the

issues is made and the most representative methods are selected for more detailed

examination.

Figure 2.3: Historical evolution of PL methods

FeatuRSEB The featured RSEB method [GAd98] is based on a combination of the

Feature Oriented Domain Analysis (FODA) method [KCH+90] and the Reuse-

Driven Software Engineering Business (RSEB) method [JGJ97]. FeatuRSEB

combines the use-case models of RSEB with the feature modeling concepts of

FODA. FeatuRSEB architectural components are derived from use-cases. The

mapping between features and components is achieved through traces. Feature-

level variability is achieved through generalization and specialization techniques

and design patterns. FeatuRSEB takes a manual approach to application en-

gineering. PL products are individually developed through the extension and

combination of the PL architectural components.

KobrA The KobrA method [A+02] is a descendant of the Product-Line Software

Engineering Methodology (PuLSE) [B+99]. KobrA concretizes the develop-

ment phases of PuLSE and integrates them with UML. KobrA components



10 CHAPTER 2. STATE OF THE ART

are also derived through use-case modeling techniques. Mapping between fea-

tures and the architecture is supported through a decision model. The latter

is similar to the concept of traces. The incorporation of variability mecha-

nisms in KobrA products is done similar to FeatuRSEB. The KobrA product

instantiation is based on object-oriented frameworks.

FAD Functionality based Architectural Design (FAD) [Bos00] is a methodology de-

veloped by the RISE group at the university of Karlskrona/Ronneby Sweden.

The method has been applied to a variety of domains. FAD components are,

among others, instantiations of archetypes. Archetypes are the core abstrac-

tions based on which the system is structured. FAD provides no mapping

mechanism between features and the architecture. The feature-level variability

mechanisms of FAD are similar to those of FeatuRSEB and KobrA. FAD, like

KobrA, employs object-oriented frameworks for product instantiation.

FORM The Feature-Oriented Reuse Method (FORM) [KLD02] is a concretization

of the FODA method. It provides a more detailed description of the domain en-

gineering processes and incorporates a marketing and product plan aspect into

the method. FORM components are derived similar to those of FeatuRSEB.

FORM provides no extra mechanism for a mapping between features and com-

ponents. FORM’s variability mechanisms and product instantiation do not

differ from those of FeatuRSEB.

FAST Family-Oriented Abstraction, Specification and Translation (FAST) [WL99]

is based on the Synthesis method [SPC93]. Nonetheless, its processes and

artifacts are similar to those of PuLSE. FAST provides a very solid domain

analysis methodology, namely, the Commonality Analysis. Unfortunately, the

method’s processes are described on a rather abstract level, with no concrete

reference to an implementation technology. Because of this fact, FAST gives

no direct answers to the issues examined in this work.

FORE Family-Oriented Requirements Engineering (FORE) [Str03] is also based on

the Synthesis method [SPC93]. It is a methodology designed particularly for

modeling of large systems through the use of FMs. System requirements are

captured by means of an extended feature notation and are also represented in

form of a machine readable data model. FORE provides automatic tools for the

validation/selection of PL products. The mapping to the architecture in FORE

remains vague, since the focus of the method lays on product instantiation.

Nonetheless, some parts of the new extended notation are used in this work

(fig. 2.2).



2.2. PRODUCT LINES METHODS 11

P2APA The Product-driven Pattern-oriented Agile Product-Line development Ap-

proach [Mei06] is influenced from the FAST, KobrA and FODA methods, as

well as the UML. P2APA’s focus lays on the evolutionary, versatile development

of PLs suitable for companies with limited resources. Components are concep-

tualized in P2APA through the definition of PL-Archetypes, which are then

concretized with methodologies similar to those of KobrA. Non-functional re-

quirements are addressed through the use of architectural and design patterns.

P2APA provides an implicit mapping between features and the architectural

components through the use of feature graphs. The issue of feature-level vari-

ability is handled on an abstract basis through the introduction of the new

concepts of degree of freedom and orthogonal documentation. The product

instantiation of P2APA is similar to the one of KobrA.

Based on the brief description of each method, it is clear that FeatuRSEB provides

a solid approach to feature-architecture mapping. FORM’s processes are similar to

those of FeatuRSEB. Therefore, by addressing FeatuRSEB, one also handles the

issues of FORM. KobrA’s feature-architecture mapping approach is similar to that

of FeatuRSEB. Additionally, KobrA’s approach to application engineering resem-

bles the one of FAD, since both methods make use of object-oriented frameworks.

Furthermore, FAD archetypes present an interesting approach to component devel-

opment. Thus, by addressing FeatuRSEB and FAD’s component development pro-

cess and object-oriented frameworks, one also handles the main parts of the KobrA

method. As mentioned in the descriptions of FAST and FORE, the lack of con-

cretization for the FAST processes and the focus on product instantiation of FORE

provide no ideal ground for further analysis. The P2APA method provides a solid

abstract approach to feature level variability, but similarly to FAST, no concrete im-

plementation. Additionally, its lack of an explicit feature-architecture mapping, as

well as the use of a KobrA-similar product instantiation approach, allow the delega-

tion of its handling within the context of FAD. Finally, all aforementioned methods

follow the same approach to feature-level variability. This issue can therefore also

be addressed in the context of FeatuRSEB.

Concluding the above discussion, FeatuRSEB and FAD are mature PL methods that

provide a representative picture of the approaches taken today for the resolution of

the identified issues. Based on this, sections 2.3 and 2.4 will give insight into the pro-

cesses of these methods with respect to feature-architecture mapping, feature-level

variability and product instantiation. More precisely, feature-architecture mapping

and feature-level variability will be examined in the context of FeatuRSEB in section

2.3. Furthermore, feature-architecture mapping and product instantiation will be



12 CHAPTER 2. STATE OF THE ART

examined within the context of FAD in section 2.4. Finally, section 2.5 will evaluate

the approaches taken by the generative programming techniques for the resolution

of the aforementioned issues.

2.3 Featured Reuse-Driven Software Engineering Busi-

ness

The Featured Reuse-Driven Software Engineering Business (FeatuRSEB) method

is a concrete PL method, providing state of the art solutions to the issues on

feature-architecture mapping and feature-level variability. With respect to feature-

architecture mapping, section 2.3.2 will examine and evaluate the sources of the

FeatuRSEB components, as well as the mapping between PL features and compo-

nents. Feature-level variability will be explored from the perspective of the various

variability mechanisms and the way they are applied for implementing variability

on a PL feature in section 2.3.3.

2.3.1 Overview

FeatuRSEB is a result of the integration of FODA’s [KCH+90] domain analysis

process with the processes of RSEB [JGJ97]. The developers of FeatuRSEB placed

the FODA FM at a central position in relation to the other models of RSEB. The

FM in FeatuRSEB plays a unifying role, tying all RSEB models together.

Fig. 2.4 shows the processes, workers and products of FeatuRSEB. FeatuRSEB

is divided into Application Family Engineering (AFE), Component System

Engineering (CSE) and Application System Engineering (ASE). All processes

exchange information and proceed concurrently.

AFE is initiated by the lead architect who constructs the PL architecture. The

latter is always a layered architecture, consisting of a family use case model and a

family design model. From this layered architecture an initial FM is developed by

the domain analysts. The architecture also defines the interfaces between the CSE

and ASE processes, which are at that point concurrently started.

Through feedback from the customers and end users of the PL, the application use

case and sub-system engineers construct an application use case and design model

for the various applications covered by the PL. The component use case and sub-

system engineers take advantage of the commonalities and variabilities in the PL



2.3. FEATURED REUSE-DRIVEN SOFTWARE ENGINEERING BUSINESS 13

Figure 2.4: An overview of the FeatuRSEB processes

applications and construct component use case models and the respective compo-

nent design models. Through facades defined in the AFE process the application

engineers import and reuse use cases or design objects from the component system

of the CSE process. The application tester tests each application and gives feedback

to the application engineers. Possible additions or corrections are then performed

that may influence all artifacts of the FeatuRSEB processes.

Finally, a manufacturer receives an application system, composed of the artifacts

shown in the upper shaded part of fig. 2.4, namely, an application use case model,

a design model with implementation and a test model. The manufacturers are

responsible for making customizations to meet local needs and for distributing the

application. These activities are outside the scope of FeatuRSEB.

FeatuRSEB’s layered architecture and its relation to the FeatuRSEB processes is

shown in fig. 2.5. AFE is concerned with the construction of the architecture as a

whole and defines the interfaces between the various layers, e.g. between the appli-

cations and business-specific component systems. In CSE the component systems in

the lower layers of the architecture are developed through various processes for each

component system, as shown by the multiple eclipse symbols on the lower left part

of the figure. Similarly in ASE, the various applications of the PL are developed in

distinct processes.

The application systems offer a coherent set of use cases to some end users. The



14 CHAPTER 2. STATE OF THE ART

Figure 2.5: A typical FeatuRSEB layered architecture and its relation to
the FeatuRSEB processes

business-specific layer contains a number of component systems specific to the type

of business. The middleware layer offers component systems for utility classes and

platform-independent services, e.g. distributed object computing in heterogeneous

environments. Finally, the system software layer contains the software for the actual

infrastructure, such as operating systems, interfaces to specific hardware, etc..

The relation between application and component systems, as well as the internal

structure of a component system are shown in fig. 2.6. The figure shows application

systems for a banking software PL. The application systems import objects from the

various component systems through the facades provided by the component systems.

For instance, the application system on the upper right part of the figure imports

through the facade of the Account Management component system the Account’ and

Transaction’ design objects. As shown also from the figure, the internal structure

of a component system in FeatuRSEB is composed of a use case, a design and an

implementation model in separate packages of the respective type.

2.3.2 Component Sources & Mapping

In order to enhance stability, the PL architecture must illustrate high cohesion and

low coupling on the feature level. The latter imply a strong mapping between

features and the architecture. This section will examine and evaluate the different

factors that influence feature-architecture mapping, namely, the source from which

components are derived and the mechanism used for the actual mapping between

features and the architectural components.



2.3. FEATURED REUSE-DRIVEN SOFTWARE ENGINEERING BUSINESS 15

Figure 2.6: Relations and internals of application and component systems

Component Sources

Feature-architecture mapping depends on the sources used for the derivation of the

components of the PL architecture. The component sources have a direct influence

on the responsibilities of the architectural components. For instance, if one uses fea-

tures as a source for the architectural components, it is most likely that the derived

components implement the features partially or even as a whole. The use of the

solution domain for the derivation of components, e.g. the Blackboard architectural

style [Bus96], increases the likelihood of deriving components having little or no

relation to the PL features.

FeatuRSEB’s software architecture is constructed during the so called robustness

analysis. During this process, a high-level, static structure, which shows types, their

grouping and relationships with other types, is created. This is captured in the

FeatuRSEB’s analysis model. This is a model of the system design at a high level,

which ignores the specific low-level details of the target implementation environment,

i.e. the PL architecture.

The entities of the analysis model represent the components of the architecture.

They are later defined in more detail in the design model and are eventually im-

plemented. The analysis entities are derived from the use cases. The FeatuRSEB

analyst searches through the description of the requirements and use cases, looking

for the elements that can adhere to the FeatuRSEB analysis types. The analysis

types of FeatuRSEB are:



16 CHAPTER 2. STATE OF THE ART

Entity types are long-lived objects in the system. They outlast the use case in-

stances in which they participate. They are often used to model business ob-

jects that represent ”things”, such as accounts and loans, dealt with in many

use cases. Entity types are thus generic to many use cases.

Boundary types handle the communication between the system and its surround-

ings. They actually transform events and objects from the system’s represen-

tation to a representation suitable for its surrounding and vice versa. They

constitute the presentation-dependent part of the system, leaving the other

types surrounding-independent.

Control types perform use-case-specific behavior. They often control and coordi-

nate other objects. They offer behavior that does not belong to an entity or

boundary type.

Fig. 2.7 shows the various types across the FeatuRSEB’s analysis dimensions. Entity

types model information in the system that should be held for a long time. All

behavior naturally coupled to this information should also be placed in the entity

object. A boundary type models behavior and information that is dependent on the

interface of the system. The control type models functionality that is not naturally

tied to any other type. Typically, this is behavior consisting of operations on several

different entity objects, doing some computation and then returning the result to a

boundary object.

Figure 2.7: The dimensions and types of the FeatuRSEB analysis model

An example from the book on RSEB [JGJ97] is shown in fig. 2.8. The analyst has

used the Withdraw Money use case to derive the Cashier Interface, Dispenser,

Withdrawal and Account components. The original text for the Withdraw Money

use case is given below:



2.3. FEATURED REUSE-DRIVEN SOFTWARE ENGINEERING BUSINESS 17

Withdraw Money Use Case Description: Analysis model

The Bank Customer chooses to withdraw money. The Cashier Interface first

asks the Bank Customer to identify himself or herself.

If the identification is successful, the Cashier Interface asks the Bank Customer

to choose how much to withdraw and from which Account. The Cashier Interface

orders the Withdrawal object to confirm that the Bank Customer has the right

to withdraw that amount from the Account. The Withdrawal object validates the

request.

If the Bank Customer can withdraw that amount, the Withdrawal object asks

the Dispenser to dispense the amount and deducts the amount from the Account.

Figure 2.8: The Withdraw Money use case and the corresponding partial
analysis model

Evaluation of Component Sources

The utilization of use cases for the derivation of components in PLs does not in-

herently enhance feature-architecture mapping. Features are derived from a variety

of sources, e.g. existing systems, literature, domain experts and requirement spec-

ifications. FMs provide the ”which” of the domain, i.e. which functionality can

be selected when engineering new systems in the domain. Thus, FMs capture the

commonality and variability of the domain. Use cases models provide the ”what” of

the domain, i.e. a complete description of what systems in the domain should do.

This fundamental difference prevents the derivation of components having a strong

mapping to features.

FeatuRSEB derives components based on use cases and orders them within the

three dimensions of presentation, information and behavior respectively deriving

boundary, entity and control types of components (fig. 2.7). One can say that

components of boundary type tend to support feature-architecture mapping. This



18 CHAPTER 2. STATE OF THE ART

is because features are primarily visible from the customer point of view. Boundary

types are visible to the actors of the use cases. Although there exists no exact

overlap of the concerns of customers and actors, boundary components may in some

cases provide components with a strong mapping to features.

Entity components model under certain circumstances objects of the problem do-

main. In these cases, entity components do have a strong mapping to features. In

any other case, entity objects represent objects based on an ”artificial” domain,

which in fact promotes feature scattering and tangling.

Control components capture behavior not belonging to the previous two types. This

fact alone is an indicator of functionality coming from the solution domain. The

solution domain is not visible to the customer, rather to the software engineer.

Thus, control components do not naturally support feature-architecture mapping.

Nevertheless, control type components may be required for the solution of an imple-

mentation or architectural problem. In some cases they also serve the changeability

and stability of the PL architecture.

An example supporting the above argumentation is taken from the book on RSEB

[JGJ97]. Fig. 2.9 shows the relation between the Withdraw and Deposit features,

their respective use cases and architectural components.

In this example it is assumed that there exists a one to one relation between features

and use cases. This is not always the case, rather the exception, but it will be used

for simplicity reasons. As shown in the figure, the Withdraw feature is expressed in

the Withdraw Money use case. The latter is implemented in the Dispenser, Cashier

Interface, Withdrawal and Account components, indicated by the respective shad-

ing of the analysis types. Respectively, the Deposit feature is expressed with the

Deposit Money use case, which is implemented in the Money Receptor, Cashier

Interface, Deposit and Account analysis types.

It is obvious that both features are scattered and tangled throughout the system.

The Withdraw feature is scattered throughout all white-colored components and

the Deposit feature throughout all shaded components. Additionally, both features

are tangled within the Cashier Interface and Account components.

As shown from this example, the use of use cases and the FeatuRSEB’s analysis

dimensions have not prevented the effect of scattering and tangling. The direct use

of features for the derivation of components could lead to the architecture of fig.

2.10. In this architecture, one component for each feature is derived, containing

the respective sub-components, as in the FeatuRSEB architecture. For example,



2.3. FEATURED REUSE-DRIVEN SOFTWARE ENGINEERING BUSINESS 19

Figure 2.9: Scattering and tangling of the Withdraw and Deposit fea-
tures

the Withdraw component is derived from the Withdraw feature and has the sub-

components Dispenser, Withdraw and Cashier Interface.

The main difference from the FeatuRSEB architecture (fig. 2.9) is that the Cashier

Interface sub-components now implement only the specific functionality of the

respective feature. A possible implementation of this could be the utilization of

a common interface platform, providing a plug-in functionality for the addition of

menus and dialogs. This would then allow the Cashier Interface sub-components

to add their interface controls on the common system interface and directly handle

the events triggered on these controls. This architectural division resolves feature

scattering and tangling on the system’s interface.

Nonetheless, the presented architecture does not resolve feature scattering and tan-

gling in the Account component. This is an example of how a FeatuRSEB control

type may serve the system changeability and stability. The functionality provided

by the Account component is needed from various other components of the system.

Therefore, the Account component represents a strong concern from the architec-

tural perspective and needs to be implemented as a separate component.

The architecture of fig. 2.10 has provided a compromise between features and ar-

chitectural concerns. In the FeatuRSEB architecture (fig. 2.9), the tangling of

the interface implementations of the Withdraw and Deposit features does not

guaranty that a change in the interface of one feature does not impose changes on

the interface of the other feature. This depends alone on the implementation of the

Cashier Interface component. In the architecture of fig. 2.10, the developers may

use e.g. the capabilities provided by the common interface platform, to incorporate

changes on the feature interfaces with minimal influence on other features.



20 CHAPTER 2. STATE OF THE ART

Figure 2.10: An architecture based on the direct derivation from features

Mapping Mechanism

Another crucial point for a strong mapping between features and the architecture

is how efficiently do derived components map to the PL features. For instance,

when derived components have a weak mapping to features, the implementation of

a mapping mechanism can prove to be extremely inefficient. This is due to the fact

that the feature implementation is spread throughout the components of the software

architecture. In the case where feature scattering and tangling is limited, the actual

mapping between features and their implementation is significantly simplified and

thus more efficient.

The different models of FeatuRSEB and the elements defined in the different models

are connected with each other by ¿traceÀ dependencies. Fig. 2.11 shows the traces

between the various models of FeatuRSEB. Features are mapped to the respective

parts of use cases. The use cases are then mapped to the components of the analysis

model. The components of the analysis model are mapped to the concrete design

model entities. Finally, the design model entities are mapped to the system imple-

mentation. FeatuRSEB traces are shown by the dashed arrows. In order to reduce

the complexity of the figure, the white and shaded parts of the figure indicate the

traces between the elements of the different models.



2.3. FEATURED REUSE-DRIVEN SOFTWARE ENGINEERING BUSINESS 21

Figure 2.11: Feature-architecture mapping in FeatuRSEB

Evaluation of the Mapping Mechanism

Because of feature scattering and tangling, the number of traces needed to map a

feature to the architecture and eventually to its implementation is extremely large.

This becomes even more evident in software intensive PLs, consisting of hundreds

of KLOC (1000 Lines Of Code). High effort is required for the creation and main-

tenance of the traces, even for small-sized PLs. The reduction of the effort for this

task could of course be supported from special purpose tools. Works in this field

can be found in [MR02] and [JZ05]. Respectively, the work in [MR02] identify the

problems denoted earlier and stresses the importance of traceability in the context of

PLs. [JZ05] attempt to provide a rule-based approach for the automatic generation

of traceability links. [MR02]. Nonetheless, tool support does not reduce the inherit

complexity of the task.

The use of traces in FeatuRSEB is highly inefficient for the achievement of a strong

mapping to the architecture. Traces are used to compensate for the effect of feature

scattering and tangling, which is caused during the architecture development. Traces

treat the symptoms of feature scattering and tangling, while failing to address the

root of the problem.



22 CHAPTER 2. STATE OF THE ART

2.3.3 Feature-Level Variability

One of the two preconditions identified for the success of a PL approach is the effi-

cient instantiation of PL products. Since PL products are defined as a set of features,

ideally, a product should be automatically generated based on these features. For

this reason, the PL architecture should enable variability on the feature level. More

precisely, it should at least enable the inclusion of a feature in a PL product at

compile-time. For PLs having higher flexibility requirements, the PL architecture

should also enable adding or removing features of a product on start-up-time or even

runtime and dynamically switching between features at runtime.

Variability in Software Product Lines

In a PL, the common software architecture developed during PL engineering needs

to be bound to a set of variants for the instantiation of a PL product. These variants

must implement the desired set of features that the product should possess, as well

as the needed variability for these features.

In order to enable the aforementioned variability on the feature level, a number of

variability mechanisms must be applied on the set of variants in the PL architecture.

Which variability mechanism to use for each of the above cases depends on two

factors: the point in time in which the variant is bound to the architecture, referred

to as binding time and the type of the variation at hand [GBS01], [BB01].

Figure 2.12: Binding times of PL product variants

The binding times of a variant are shown in fig. 2.12 and are explained below:

• Pre-Delivery

– Product Architecture Derivation The binding of the open variation points

of the PL architecture is done early on the level of architectural design.

Typically, configuration management tools are involved in this process.

– Compilation The finalization of the source code of the PL product is done

during the compilation process. This includes pruning the code according



2.3. FEATURED REUSE-DRIVEN SOFTWARE ENGINEERING BUSINESS 23

to compiler directives in the source code, but also extending the code to

superimpose additional behavior (e.g. macros and aspects).

– Static Linking Variants can be added to a PL product through linking

of library files. Linking is performed at this stage irrevocably right after

compilation.

• Post-Delivery

– Start-up Some decisions for the inclusion of a variant in the running prod-

uct must be taken at the customer’s site. These decisions can be made

just before the system starts, i.e. at start-up-time. This can be achieved

through the use of configuration files dictating the system which modules

to load. For example, dictating which dynamic libraries should be linked

to the system.

– Runtime An application is rendered interactively at runtime. For example,

the PL product may have the ability to communicate with the outside

world by using different communication protocols in parallel. New variants

can be added to the system through the use of object-oriented techniques.

A number of design patterns can be used for this purpose e.g. the Strategy

design pattern [BJM+95].

The types of variability that may occur on a variation point in the architecture are:

• Optional A variant is either included in the architecture or not. When the

optional variant is used by other parts of the architecture, variability mecha-

nisms must be applied to deal with the case when the variant has not been

included in the architecture.

• Alternative One variant from a set of alternative variants can be included into

the architecture. In this case the architecture provides a placeholder in which

one of several alternatives can be inserted. Other parts of the architecture that

depend on this variation point must be able to communicate with the different

alternative variants.

• Set of Alternatives Multiple instances of different alternative variants can

be included into the architecture. In this case, the variability mechanism must

support several instances of alternate variants running in parallel in the system.

This type of variability occurs only during runtime. The variability mechanisms

for this type of variability are design patterns, e.g. Strategy and condition on

variable.



24 CHAPTER 2. STATE OF THE ART

Variability Mechanisms

Type of Variability
Binding Time Optional Alternative

Product Architecture - ”Null” Component - Configuration Management
Derivation - ADLs
Compilation - Condition on Constant - Code Fragment Superimposition

- Condition on Constant
Static Linking - Explicit Linking - Explicit Linking

Start-up - Dynamic Linking - Dynamic Linking

Runtime - Condition on Variable - Infrastructure-Centered Architecture
- Condition on Variable

Table 2.1: Variability Mechanisms in relation to binding time and the type
of variability

Depending on the binding time and the type of variability to be supported, numerous

variability mechanisms exist. For the discussion of the feature-level variability issue,

a representative set of variability mechanisms for the possible combinations suffices.

Table 2.1 shows the set of variability mechanisms for optional and alternative types

of variability. Note that the variability mechanisms for the set of alternatives type of

variability refer only to the runtime binding time and are listed above. The following

sections will explore the variability mechanisms in more detail.

Optional Type of Variability

Optional variants of PL products must be bound during the product’s architec-

ture derivation. A common variability mechanism is ”Null” Component. A dummy

component is developed supporting the same interface as the functional optional

component. The dummy component returns dummy values to other parts of the

architecture needing the optional variant. This mechanism ensures the proper op-

eration of the system even in the absence of the optional component.

During compilation, the dummy or the functional component implementation can

be selected. This can be achieved through the use of pre-processor directives, e.g.

C++ ifdef statements. These opt out the code related to the dummy or functional

component respectively.

In static linking, the dummy or functional components can be implemented as library

files, which are properly included in the PL product through linker directives. The

same principle can be applied during start-up, although this time the components

must be built into dynamic libraries, e.g. Windows DLLs.



2.3. FEATURED REUSE-DRIVEN SOFTWARE ENGINEERING BUSINESS 25

During runtime, a condition on a variable can be used to select between the dummy

and functional implementation of the variant. These are the common decision struc-

tures in programming languages, e.g. if-statements or case structures.

Alternative Type of Variability

Early binding of exactly one variant from a set of alternatives can be achieved

through configuration management tools or Architecture Description Languages

(ADLs). The former approach utilizes a tool to select one variant from a set of

alternatives for inclusion in the PL product. The latter uses an ADL to produce a

definition for the selected variant, whose implementation is then generated from the

ADL platform.

This type of variability can also be dealt with through code fragment superimposi-

tion during compilation. The software architecture is developed in a generic way and

product-specific concerns are superimposed on the completed source code. There

exist a number of generative programming techniques, e.g. Aspect-Oriented Pro-

gramming [Kic97] or the Hyperspace approach [OT01]. The details and evaluation

of these techniques are discussed in section 2.5.

In order to be able to select a variant from a set of alternatives at runtime, an

infrastructure-centered architecture can be used. This approach makes the connec-

tions between components in the architecture a first class entity. The components

are no longer connected directly to each other, rather to the infrastructure. The

latter is then responsible for matching the required interface of a component with a

provided interface of one or more components. The infrastructure can be an existing

standard, e.g. COM or CORBA, or it can be an in-house developed standard. It

may also be a scripting language that ”glues” components together [Ous98].

The condition on constant, condition on variable and the explicit and dynamic

linking mechanisms can also be used as described for the optional type of variability.

Set of Alternatives Type of Variability

The last type of variability refers to variants running in parallel in the system. For

this reason, it is only meaningful to discuss this type of variability after the product

has been instantiated and is already running. A number of design patterns [BJM+95]

exist that allow the runtime selection between numerous alternatives running in par-

allel. Basically, they implement several component implementations adhering to the

same interface and make these component implementations tangible entities in the



26 CHAPTER 2. STATE OF THE ART

system architecture. An example is the Strategy design pattern that allows having

several implementations present simultaneously. The patterns Abstract Factory and

Builder provide ways of making sure the correct implementation gets the data.

The use of the condition on variable variability mechanisms is applied in the same

way as described in the optional type of variability.

Evaluation of Feature-Level Variability

The presented set of variability mechanisms is used by the state of the art PL

methods to enable variability on a PL feature for the instantiation of PL products.

The effect of feature scattering and tangling though does not allow the efficient

application of these variability mechanisms. The following sections will evaluate

the efficiency with which the various variability mechanisms can be applied on the

feature level in the presence of feature scattering and tangling.

”Null” Component

It is first assumed that a feature’s implementation is only scattered throughout a

number of components and that these components implement no other features, i.e.

there is no tangling. In order to apply the ”null” component variability mechanism,

for each of the aforementioned components a ”null” component must be created.

When the feature is selected, the functional versions of the components must be

included into the architecture and when the feature is not selected, all dummy

versions of the components must be included into the architecture.

In the presence of both scattering and tangling there exist two possibilities for the

application of this variability mechanism. The first one is the extraction of the

feature-specific functionality into new components illustrating no tangling. Then

the previously mentioned scenario can be applied.

Another possibility is the isolation of the feature-specific functionality within the

original component and the creation of feature-specific interfaces for that function-

ality. Then a ”null” component can be developed that replaces the entire original

component, providing dummy implementations for the feature-specific interfaces.

The effort to apply this variability mechanism in the presence only of scattering can

be characterized as medium. The effort is directly dependent on the number of com-

ponents within which the feature is implemented and the number of interfaces they

support. In the presence of both scattering and tangling, the effort needed increases



2.3. FEATURED REUSE-DRIVEN SOFTWARE ENGINEERING BUSINESS 27

dramatically and is unpredictable. In this case, both aforementioned possibilities

require either the extraction or the isolation of the feature-specific functionality in

the original component. If this is feasible or not depends on the intensity of the

tangling, i.e. how many features are tangled within the original component and in

what ways. It is very likely that high effort is needed for a developer to understand

these implications and resolve them. Nonetheless, the effort needed depends on the

case at hand and cannot be foreseen.

Condition on Constant & Condition on Variable

The condition on constant and condition on variable mechanisms are rather similar

with respect to their application and will be examined together. Both variability

mechanisms work on the code level. This makes them very flexible to apply in

the case of feature scattering and tangling. More precisely, each part of a feature’s

implementation can be surrounded either from a compiler directive (condition on

constant) or an if-statement (condition on variable) and can be varied at compile

or runtime respectively. Since these variability mechanisms are so fine grained and

can be applied on the code level, a feature’s implementation can be isolated almost

in every case.

Unfortunately, this variability mechanisms require high effort to apply and deteri-

orate the system’s conceptual integrity. For large scale systems, like in the case of

PLs, the number of source code lines for a single feature can be significantly high.

Finding and isolating a feature’s source code can be consequently extremely time

consuming. Even in the case where such a task is completed, the quality of the

source code would have considerably deteriorated. This is due to the fact that extra

constructs must be added, e.g. ifdefs, if-else-statements, case structures, etc., that

jeopardize the system’s understandability.

Explicit & Dynamic Linking

The application of explicit and dynamic linking as variability mechanisms requires

that a feature is implemented in distinct library files. The latter should illustrate

no tangling, i.e. no other features’ implementations must be included in the library

files.

As in the case of the ”null” component variability mechanism, the effort needed for

such division is unpredictable. A feature whose implementation is scattered and

intermingled throughout a number of components may prove very difficult or even



28 CHAPTER 2. STATE OF THE ART

impossible to isolate.

Configuration Management & ADLs

Using configuration management for enabling variability on a feature is certainly

very efficient, after it has been implemented. A tool is then able to receive e.g. the

name of the feature and it can include or exclude the components implementing the

feature. Like in the previous cases of the linking and ”null” component variability

mechanisms, this variability mechanism assumes a strong mapping of the feature to

the architecture, i.e. no tangling should exist. The argumentation is thus identical

to the previous cases.

The use of an Architecture Description Language (ADL) for achieving variability

on an alternative feature is comparably efficient to configuration management. The

definitions of the various components realizing the feature are given as input to the

ADL tool, which then generates them.

The issues that arise with this variability mechanism are on the one hand that it

cannot be applied to pre-existing features and their components and on the other

hand, the actual implementation of the ADL. The former issue sets as a precondition

that the entire PL architecture should have been developed with the ADL. This

excludes the use of this variability mechanism with existing PLs, which are not based

on an ADL. The latter issue has to do with the effort required for the definition of

the ADL constructs and their implementation and maintenance.

Infrastructure Centered Architecture

This variability mechanism requires an infrastructure based architecture that trans-

forms the component connections to first class entities. This precondition can be

restrictive, e.g. in the case of systems with high performance requirements or ar-

chitectural requirements that exclude an architectural structure such as COM or

CORBA.

Using a scripting language to achieve a similar effect does not have such a large

impact on the software architecture. This mechanism is very flexible and may prove

to be sufficient for a variety of domains with less strict performance requirements.

Nonetheless, using a scripting language for the implementation of variability on a

feature may have a negative impact on the system’s conceptual integrity. The ”glue”

code introduced to decide if the feature’s code is activated or not, adds extra in-

homogeneous entities in the PL architecture, thus diminishing its understandability



2.3. FEATURED REUSE-DRIVEN SOFTWARE ENGINEERING BUSINESS 29

and maintainability.

Design Patterns

The use of design patterns for the implementation of variability on a feature can

be discussed in the context of the Strategy design pattern [BJM+95], shown in fig.

2.13. The Strategy design pattern enables the selection of one variant from a set of

alternatives running in parallel.

A Context object provides an interface to other client objects in the system, allow-

ing runtime variability between different strategies (variants). The abstract Strat-

egy class defines an AlgorithmInterface() method. The latter is implemented in

each of the ConcreteStrategy objects for every alternative variant. The Context

object is set to use one of the concrete strategies through its ContextInterface().

The Context object will now use one of the given variants, depending on which

concrete Strategy has been set.

Figure 2.13: UML diagram of the Strategy design pattern

It can be seen from this example that design patterns in general operate on the

detailed design level. In order to use the pattern, an alternate feature’s implemen-

tation must be simple enough, so as to allow its complete encapsulation within a

simple interface. If this is not the case, then the design pattern must be applied

throughout the software system where the parts of the feature’s implementation are

scattered. This introduces numerous inhomogeneous entities. For instance, in the

case of the Strategy pattern this would cause the addition of an abstract Strat-

egy class, along with the ConcreteStrategy classes for each different part of the

feature’s implementation throughout the system.

From the above discussion it can be concluded, that the use of design patterns

for the implementation of variability on a feature is quite efficient for simple, low

level features. In the case of feature scattering and tangling, design patterns tend

to introduce architectural entities having little or no relation to their environment.



30 CHAPTER 2. STATE OF THE ART

This has a negative impact on the system’s conceptual integrity.

Furthermore, as in the previous variability mechanisms, the effort needed to ”un-

tangle” a feature for the direct application of a design pattern is unpredictable.

2.3.4 Conclusions

This section on FeatuRSEB has provided an overview of the method and an evalua-

tion of its feature-architecture mapping and efficiency of variability mechanisms. The

feature-architecture mapping has been examined based on the component sources

and the actual mapping mechanism between features and the architecture. The ef-

ficiency of the variability mechanisms has been evaluated based on a representative

set of the available variability mechanism.

The feature-architecture mapping in FeatuRSEB can be generally characterized as

insufficient, although it does illustrate a few positive aspects. More precisely, the

utilization of use cases for component derivation is rather inappropriate for a strong

mapping between features and the architecture. The use of the boundary, entity

and control analysis types for the derivation of the architectural components has

both positive and negative effects on feature-architecture mapping. Boundary and

entity types support feature-architecture mapping when representing concerns closer

to the costumer perspective, while control types do not normally support feature-

architecture mapping, although there may exist situations where their presence sup-

ports the system’s maintainability and flexibility. Furthermore, the actual mapping

mechanism used in FeatuRSEB, i.e. ¿traceÀ dependencies, is very inefficient for

large scale PLs. A large number of traces can very quickly become unmanageable.

Tool support can help in this respect, but it does not solve the actual problem of

feature scattering and tangling.

The variability mechanisms have been presented and evaluated in this section of

FeatuRSEB, but they are also common to the rest of the state of the art PL methods.

It has been shown that in certain cases the available variability mechanisms can be

efficiently applied on the feature level in the absence of feature tangling. Examples

are the ”null” component, linking and configuration management. Other variability

mechanisms set significant preconditions, e.g. the use of CORBA or COM, as an

infrastructure for the PL or the use of an ADL. Yet other variability mechanisms can

be efficient only in the case of small features, e.g. condition on constant, condition

on variable and design patterns.

All variability mechanisms may introduce a large number of inhomogeneous entities



2.4. FUNCTIONALITY-BASED ARCHITECTURAL DESIGN 31

in the PL architecture, jeopardizing the system’s conceptual integrity [Bro95] and

thus its understandability and maintainability. Finally, all variability mechanisms

may cause unpredictable amounts of effort for their application depending on the

degree of feature tangling.

Goal of this work is to achieve a stronger mapping between features and the archi-

tecture and to efficiently apply the available variability mechanisms.

2.4 Functionality-based Architectural Design

The Functionality-based Architectural Design (FAD) method [Bos00] will be exam-

ined from the perspective of feature-architecture mapping and product instantiation.

FAD provides no explicit mechanism for the mapping between features and the archi-

tectural components. Nonetheless, FAD components illustrate high maintainability

and promote the system’s conceptual integrity [Bos00]. Section 2.4.4 will discuss the

pros and cons of the FAD component development process from the point of view of

feature-architecture mapping. Goal of this work is to enable an efficient generative

approach to product instantiation. FAD’s product instantiation takes place in the

context of object-oriented frameworks. A description of this approach, along with

an evaluation of its advantages and disadvantages is given in section 2.4.5. Before

delving into the details of FAD, section 2.4.1 will provide an overview of the method.

2.4.1 Overview

FAD is part of the quality-oriented software architecture design (QASAR) method

(fig. 2.14). This is an iterative method consisting of three phases, i.e. functionality-

based architectural design (FAD), architecture evaluation and architecture trans-

formation. QASAR provides support for an objective, rational design process, bal-

ancing and optimizing especially the quality requirements. The method iteratively

assesses the degree up to which the architecture supports each quality requirement

and improves the architecture using transformations, until all quality requirements

are fulfilled.

The QASAR method performs architectural design focusing on the explicit evalu-

ation of an design for quality requirements. Before the optimization of the archi-

tecture regarding quality requirements, a first version of the architecture based on

functional requirements is constructed using the FAD method.

The FAD method consists of the following phases:



32 CHAPTER 2. STATE OF THE ART

Figure 2.14: The Quality-oriented Software Architecture design (QASAR)
method

• Defining the system context

• Identifying the archetypes

• Decomposing the architecture into components

• Describing system instantiations

The artifacts produced during the FAD phases are shown schematically in fig. 2.15.

Section 2.4.3 will provide a more detailed description of the first three FAD phases.

The last FAD phase is merely a test to verify the scaleability of the developed

architecture and does not directly influence the mapping between features and the

architecture. Before proceeding with the description of the FAD phases, section

2.4.2 will present the case study used for the method’s description.

2.4.2 Fire-Alarm PL Case Study

The FAD method has been applied in a variety of domains, e.g. the safety and

security domain, the fire-alarm domain, the hemodialysis domain and the domain



2.4. FUNCTIONALITY-BASED ARCHITECTURAL DESIGN 33

Figure 2.15: Artifacts of the FAD method

of operating systems for wireless devices. For the presentation and evaluation of

the method, the fire-alarm PL case study has been selected from the book on FAD

[Bos00]. This choice has been made to guaranty an unbiased evaluation context for

the FAD method.

The main function of the fire-alarm system is to monitor a large number of detec-

tors and upon the detection of a potential fire, to activate a number of outputs.

Fire-alarm systems range from a few conventional smoke sensors with a three-led

output, to high-end systems with sophisticated high-speed extinguisher control and

a complex GUI. Finally, fire-alarm systems are highly distributed, i.e. detectors and

outputs are distributed throughout a building or in the case of high-end systems,

over several buildings.

2.4.3 FAD Phases

As shown in fig. 2.15, FAD produces an application architecture progressively,

through a number of phases. During these phases the PL architectural compo-

nents are developed. In order to be able to estimate the FAD’s feature-architecture

mapping, these phases are described in detail in the following sections. Eventually,

section 2.4.4 will provide an evaluation of FAD’s component development process

with respect to feature-architecture mapping.



34 CHAPTER 2. STATE OF THE ART

System Context

The first step of FAD performs an analysis of the context in which the system is

to operate. From this perspective the externally visible behavior of the system is

modeled. This is done through the definition of interfaces to external systems with

which the PL software system has to interact.

The interfaces of the fire-alarm system to its context are shown in fig. 2.16. In-

terfaces are created between the software system and the physical detectors and

outputs. Furthermore, an interface is created between the fire-alarm system and its

operator. This enables e.g. the activation or deactivation of various parts of the

system, monitoring of its behavior, etc. Finally, an interface between the building

automation system and the fire-alarm system is added. This interface refers to oper-

ations needed to be performed, e.g. in the case of an alarm when a passage-control

system is ordered to unlock all doors in a specific area.

Figure 2.16: Interfaces of the fire-alarm system

Archetypes

After the definition of the system’s context and the creation of the respective inter-

faces between the system and external entities, FAD performs the identification of

archetypes and adds the relations between them.

Archetypes are the core abstractions of the system. They represent reoccurring,

stable units of abstract functionality. The major parts of the system can be described

with a small number of archetypes. These entities form the most stable part of the

system and are seldom changed. Archetypes are instantiated in a large variety of

ways to populate the system. By using the same fundamental concepts as a basis,



2.4. FUNCTIONALITY-BASED ARCHITECTURAL DESIGN 35

archetypes promote the system’s conceptual integrity [Bro95].

Identification of Archetypes

The identification of archetypes largely depends on the creativity and experience of

the system architects. Therefore, FAD provides no concrete recipe for the identi-

fication of archetypes, but it does give some guidance. A starting point is a good

understanding of the domain. Archetype identification should also not build up

from concrete instances of the domain, like in the traditional object-oriented design

methods, rather it should proceed in a top-down manner. That is, a holistic view

of the whole system should be initially created upon which the archetypes are to

be extracted. As the understanding of the domain increases, the architects often

identify common characteristics between entities in disparate parts of the system.

These entities may be a small structure or consist of a few entities. The reoccurring

patterns are placed in a set of candidate archetypes.

Afterwards, an analysis of the potential archetypes is performed to filter out the

system archetypes. Synonymous or largely overlapping structures are merged. Can-

didates with fundamentally different perspectives on the system should cause the

removal of one of the two alternatives. Archetypes may also exist in different levels of

abstraction, but the actual goal of the identification process is to achieve conceptual

integrity.

Another important characteristic of archetypes is their relation to domain objects,

i.e. features. Although archetypes can be modeled as domain objects, they are not

found directly in the application domain. Instead, they are the result of a creative

design process, that after analyzing the various domain entities, abstracts the most

relevant properties and models them as architectural entities.

Relations between Archetypes

After the reduction of the set of potential archetypes, the relations between the

archetypes are identified and defined. Relations between archetypes are generally

domain specific and describe control and/or data flow. Relations often found in

object-oriented modeling like generalization or aggregation should be avoided and

lead to the reconsidering of the identified archetypes. For instance, a generalization

relation should probably lead to the merging of the related archetypes. Nonetheless,

such relations are not altogether excluded if necessary for the representation of

semantically rich entities.



36 CHAPTER 2. STATE OF THE ART

Fire-Alarm Archetypes

The archetypes for the fire-alarm system and their relations are shown in fig. 2.17.

• Point This is the highest abstraction modeling the fire-alarm domain function-

ality and presents the base abstraction for two subsequent archetypes.

• Detector This archetypes captures the functionality of the fire-detection de-

vices, e.g. smoke and temperature sensors.

• Output This archetype represents the generic functionality for the various out-

puts of the fire-alarm system, e.g. extinguishing mechanisms, operator inter-

faces and fire notifications, e.g. to a fire-station.

• Control Unit Due to the distributed nature of the fire-alarm system, numerous

groups of points control certain areas. Various groups need also to communicate

with other groups in order to activate them, e.g. in the case of an alarm. The

reoccurring abstraction capturing this crucial functionality, is a control unit

interacting with the detectors and outputs of a group and also with other

control units and their points.

Figure 2.17: Archetypes of the fire-alarm PL and their relations

Component Decomposition

After the identification of archetypes, FAD decomposes the architecture into the

actual architectural components and adds the relations between them. FAD iden-

tifies five sources of architectural component, along with two dimensions of system

decomposition.

Component Identification & Specification

The sources for the architectural components are listed below:



2.4. FUNCTIONALITY-BASED ARCHITECTURAL DESIGN 37

1. Interfaces Based on this source, architectural components are identified based

on the external interfaces of the system, e.g. for the fire-alarm system compo-

nents should be identified to receive the interfaces for the interaction with the

detector and output devices.

2. Domains Another source of components is the association of domains covered

by the system with architectural components. Two types of domains are typ-

ically used, namely, application and computer science domains. The former

relates to the problem domain covered by a system, e.g. for the fire-alarm

system, components would be identified to model the fire-extinguisher domain,

the sensor domain, etc. The latter domains refer to solutions needed to solve

a problem from the perspective of the computer scientist, e.g. the fire-alarm

system would be populated with components for the network communication

protocols, user-interfaces, etc..

3. Abstraction Layers A third approach used in FAD is the decomposition of the

system along horizontal layers implementing relevant functionality on differ-

ent abstraction levels, e.g. components should be identified for the fire-alarm

system within an application layer containing the alarm-signaling logic and

communication logic and a hardware abstraction layer containing components

for the lower level control of the output devices and network device drivers.

4. Domain Entities Yet another source of architectural components can be found

in the domain knowledge of experts, reference literature, similar systems or

existing standards in a domain. In this case, domain entities from the problem

domain serve as a source for components, e.g. a distinguisher component or a

smoke detector component would be created for the fire-alarm system.

5. Archetype Instantiations Since archetypes present recurring patterns in the

system, they can also serve as input for the selection of components. For

this purpose, they must be instantiated to concrete architectural components.

The components of the fire-alarm system based on archetype instantiations are

presented later in this section.

The dimensions along which the system decomposition in FAD takes place are

functional versus entity-based decomposition and problem-domain versus solution-

domain-based decomposition. Functional decomposition is concerned with the func-

tions the system is to perform. A typical analogy are programs build with the C

or Pascal programming languages. Entity-based decomposition refers to systems

composed of the primary concepts defining a system. For instance, programs based



38 CHAPTER 2. STATE OF THE ART

on the C++ or Java programming languages use this approach or systems based on

the component models of COM, CORBA and JavaBeans.

Along the second dimension of problem-domain versus solution-domain-based de-

composition, systems can be decomposed according to the main functions or the

entities of the domain. Architectural components from the problem domain are

identified e.g. with the help of domain experts. Architectural components from the

solution domain are identified, e.g. based on the experience of the system architects

proposing specific software solutions.

Fig. 2.18 shows both decomposition dimensions with examples in each quadrant.

For instance, a control theory architecture has architectural components representing

the main concepts of the problem domain, e.g. feed-back and feed-forward control

structures and entities based on mathematical concepts, like P, PI and PD con-

trollers. Another example is the three-tire architecture for information systems on

the lower-left quadrant. This architecture consists of components within layer from

the solution domain, containing the main functions of the system, e.g. a graphical

user interface layer, a application logic layer and a data storage layer.

Figure 2.18: FAD dimensions of decomposition with examples

Component-Relation Identification & Specification

After the identification and specification of the architectural components, FAD pro-

gresses with the identification and specification of the component relations. Since

the relations of the components are completely dependent on the specific software

system at hand and its components, FAD provides a few guidelines and hints for

the identification and specification of these relations.

According to FAD, relations can be identified on the basis of the component origin.

The method gives two examples for the case of components defined in abstraction



2.4. FUNCTIONALITY-BASED ARCHITECTURAL DESIGN 39

layers and components representing domain entities. Relations between components

within abstraction layers can be identified depending on the abstraction levels to

which they belong. Relations for components representing domain entities can be

found in the domain models.

Furthermore, FAD suggests the scripting of usage scenarios for the identification of

relations. During this process, the logical sequence of execution in the architecture

is examined to identify possible communication between components.

Finally, FAD notes that relations at this stage of design should be kept at a minimum

and should not be mapped to solution domain concepts, e.g. message send or pipe

mechanisms, etc.. This clatters the design and is an indicator for low cohesion and

high coupling in the software architecture.

Fire-Alarm Components

A few of the architectural components identified for the fire-alarm system are shown

in fig. 2.19. The Physical Point components are instantiations of the Point

archetype. The Communication component is a typical solution-domain entity. The

Section components stem from the domain entity of the fire-alarm system domain.

A Section component represents a controller along with the physical points mon-

itored by it. The Section component is responsible for the detection and acting

upon an alarm situation in a specific geographic area. The decomposition selected

for the fire-alarm system is entity-based, with entities taken from both the problem

and solution domains.

Figure 2.19: A partial view of the architectural components of the fire-
alarm system

2.4.4 Evaluation of Component Development

As already mentioned, in order to achieve short times to market, the changeability

and stability of the PL architecture is of primary importance. Since changes in PLs

occur on the feature level, changeability and stability can be achieved if a strong

mapping between the features and the architectural components exists. In the fol-



40 CHAPTER 2. STATE OF THE ART

lowing sections, the FAD component development is examined from the perspective

of feature-architecture mapping.

Sources of FAD Components

Section 2.4.3 presented the various sources of FAD components. These are inter-

faces, domains, abstraction layers, domain entities and archetype instantiations. The

components identified from these sources can also be ordered across two dimensions:

functional versus entity and problem domain versus solution domain.

Based on the definition of features presented in section 2.1, features ”represent an

aspect valuable to the costumer”. This part of the definition denotes the fact that

features are defined from the perspective of the PL costumers. Consequently, in

order to achieve a stronger mapping between features and the architecture, the

identified architectural components should also relate to the costumer’s perspective.

The above considerations suggest that some of FAD’s sources of components con-

vey feature-architecture mapping, while others do not. More precisely, components

based on the external interfaces of a system do support feature-architecture map-

ping. The interfaces that a system provides or requires for the communication with

external systems originate from the externally visible properties of the system. The

latter are also tightly related to the customer’s perspective.

The exploitation of domains for the identification of architectural components can

be further divided into problem and solution domains. Problem domains assist the

development of components based on application concepts. These are conceived

primarily from system experts, available literature or standards applied in the do-

main. Since system experts play an active role in the requirements specification

of a PL, they also express the features of the system from the customer’s point

of view. Thus, component identification based on the problem domain enhances

feature-architecture mapping. Components originating from the solution domain

stem from the computer scientists building the PL. These components relate to con-

crete solutions understood by a software engineer, but they have little or no relation

to the system features. Therefore, components based on the solution domain do not

directly promote feature-architecture mapping.

The use of abstraction layers for the identification of architectural components is

neutral with respect to feature-architecture mapping. That is because layers do not

impose the nature of the architectural components within them. It may well be the

case that architectural components within the various layers of the system still have



2.4. FUNCTIONALITY-BASED ARCHITECTURAL DESIGN 41

a strong relation to features. Therefore, the critical issue in the use of abstraction

layers is the actual nature of the system components and their distribution to the

system layers.

Domain entities are ideal for a stronger mapping between features and the architec-

ture. Since domain entities stem from the problem domain, the argumentation laid

out above applies also here.

The last source of FAD’s architectural components is the instantiation of archetypes.

During the description of archetypes in section 2.4.3 it becomes clear that archetypes

are not found directly in the domain. That is, archetypes have no direct relation to

features, rather, they are abstractions of the common, recurring patterns through-

out all domain entities. Nonetheless, archetypes instantiations may also produce

components relating to the problem or the solution domain. In the former case, the

derived components have a strong relation to features. In the latter case, the derived

components increase the likelihood of feature scattering and tangling.

Fire-Alarm PL Example

For the fire-alarm PL case study, FAD identified the components shown in fig. 2.19.

Fig. 2.20 shows a partial view of a possible structure for the fire-alarm PL FM, along

with the mapping between the PL features and the FAD architectural components.

Figure 2.20: A partial view of the fire-alarm FM with the mapping between
the PL features (left) and FAD architectural components (right)

The Section components directly implement the Section feature as shown by the

arrow between the FM and the architecture. In this case there is no feature scattering

or tangling, since the FAD components are derived from a problem domain entity.

The Physical Point components are direct instantiations of the Point archetype.

The Communication component stems from the solution domain. It enables the



42 CHAPTER 2. STATE OF THE ART

communication between the Physical Point and Communication components.

As shown in fig. 2.20, the Smoke alarm and Temp alarm features are scattered

and tangled within these two components. More precisely, the Communication com-

ponent is responsible for both the exchange of smoke and temperature data. For

instance, it has to have knowledge of and be able to handle both particle-density

data, as well as degrees Celsius data. This indicates the tangling of the afore-

mentioned features. The Physical Point components respectively can detect both

smoke and temperature alarms. They have for example the proper device drivers

and algorithms for both smoke and temperature alarm detection. This indicates the

tangling of the Smoke alarm and Temp alarm features within the Physical Point

component.

The phenomenon of feature scattering becomes also evident, since parts of the fea-

tures are implemented within two different components. For example, a smoke alarm

is first identified in a Physical Point component and is then propagated through

the Communication component to the proper Section component. The same holds

for a temperature alarm.

The scattering and tangling of the Smoke alarm and Temp alarm features deteri-

orates the changeability and stability of the PL software architecture. For instance,

a change on the data transmission protocol of particle-density data from a hard-

ware sensor would trigger unpredicted changes on the Communication component.

These in turn could trigger changes in the implementation of data transmission for

a temperature alarm. Since one component is used for both kinds of alarm, one

must depend alone on the good design and programming of the internals of the

Communication component. Nonetheless, a clear separation of the implementation

of both the smoke and temperature alarm is not guarantied.

A possible architecture that would enable a stronger mapping between the features

and the architecture is shown in fig. 2.21. The Smoke feature is implemented in

each of the Smoke Alarm components. The latter are responsible for controlling the

sensor hardware and implementing the algorithm for signaling an alarm. A Smoke

Alarm component is also responsible for transmitting particle-density and alarm

data to the right section. The Temp Alarm components respectively implement the

Temp feature.

The architecture shown in fig. 2.21 causes no feature scattering or tangling. The

alarm detection functionality, the communication functionality and the knowledge

of the proper section to notify, all belong respectively to the specification of the

Smoke and Temp features. Exactly this functionality is placed within separate



2.4. FUNCTIONALITY-BASED ARCHITECTURAL DESIGN 43

Figure 2.21: A more direct mapping between the fire-alarm features (left)
and the architecture (right)

components for each of the features. The FAD architecture (fig. 2.20) on the other

hand, scatters and tangles the smoke and temperature alarm detection functionality

to each of the Physical Point components and the communication functionality

and knowledge of the proper section to the Communication component.

A change in one of the alarm features for the FAD architecture (fig. 2.20) would cause

unpredictable, cascading changes to the FAD architectural components. The archi-

tecture allowing a stronger mapping is more resistent to feature-level changes. For

instance, the particle-density communication protocol is now implemented within

the Smoke Alarm component. Since the communication protocol for the Smoke

feature is separated from the communication protocol for the Temp feature, the

change would not propagate to the other components.

2.4.5 Object-Oriented Frameworks

As already mentioned, minimal effort should be required for the development of the

PL products, i.e. products should be directly generated from the PL assets. FAD

suggests the use of object-oriented frameworks for product instantiation. The same

practice is also followed by the KobrA [A+02] PL method. The following sections

will provide a detailed description and an evaluation of this approach regarding the

generative product instantiation.

Framework Concepts

The most often referenced definition for object-oriented frameworks is found in

[JF98]:

”A framework is a set of classes that embodies an abstract design for solutions to a

family of related problems.”.



44 CHAPTER 2. STATE OF THE ART

Based on the above definition, a framework is a partial design and implementa-

tion for an application in a given domain. Applications are constructed by using

the framework as a basis and extending it with application-specific functionality.

Moreover, a framework consists of a framework architecture, specifying a number of

abstract classes and possibly concrete classes inheriting from these abstract classes

that provide reusable implementations.

The notion of object-oriented frameworks was originally tightly related to a single

framework used for the construction of applications. Nowadays, multiple object-

oriented frameworks are used in the construction of software systems. Each frame-

work covers a domain and since systems tend to cover multiple domains, multiple

frameworks are needed to cover the required system functionality. The ability of

object-oriented frameworks to cover the functionality of a domain also makes them

suitable for use with software PLs.

In order to better argue on object-oriented frameworks, a number of concepts must

be introduced. Namely, the concepts of core framework design, framework internal

increment and application-specific increment.

Core Framework Design The core framework design comprises both abstract

and concrete classes in the domain. The concrete classes are transparent to

the framework user, e.g. basic storage classes. Abstract classes are either

transparent or are intended to be sub-classed by the framework user. The core

framework design describes the typical software architecture for applications

in the domain.

Framework Internal Increment These are additional classes in the form of li-

braries. They capture the common implementation of the core framework

design and intend to make it more usable. The common categories of internal

increments are:

• sub-classes representing common realizations of the concepts captured

by the super-classes, e.g. for an abstract Device class there may exist a

number of concrete sub-classes for each commonly used real-world device.

• a collection of sub-classes representing the specifications for a complete

instantiation of the framework in a particular context.

Application-specific Increment As mentioned above, an application is composed

of multiple frameworks, i.e. an application is composed of one or more core

framework designs, each framework’s internal increments and application-specific

classes and objects. The latter comprise the application-specific increment.



2.4. FUNCTIONALITY-BASED ARCHITECTURAL DESIGN 45

Object-oriented frameworks can be categorized into white-box and black-box frame-

works or calling and called frameworks. White-box (inheritance-based) frameworks

are customized through sub-classing of the framework classes. Black-box (param-

eterized) frameworks are customized by using different combinations of the frame-

work classes. Black-box frameworks require a deeper understanding of the variable

aspects of the domain compared to white-box frameworks. Due to this predefined

flexibility, black-box frameworks are more rigid in the domain they implement. A

calling framework is an active entity invoking parts of the applications created by

it. Called frameworks on the other hand, are passive entities that can be invoked

by its applications.

In practice, frameworks cannot be definitely categorized as pure white-box or black-

box frameworks or as calling and called frameworks. Parts of a framework are

extendable through sub-classing, others can be parameterized, while some parts of

the framework call an application and other parts are called by an application.

FAD utilized object-oriented frameworks for the instantiation of PL products. It

identifies four different framework component models for this purpose. The criteria

used for the distinction between these models are:

1. the amount of application-specific functionality required by a framework

2. the organization of the framework with respect to the number of independent

variation points

Each of the models is examined in the following sections.

Product-specific extension model

This framework component model covers only the common behavior for all products

in the PL. Each product is instantiated by extending the framework with product-

specific extensions. Fig. 2.22 shows a graphical illustration of such a framework.

The core framework design comprises of a set of operations, o1, o2, ...., on and a set

of interface types, i.e. i1, i2, ...., in. The operations may return references to ob-

jects of the specified interface types that are then used for the continued operation.

Ideally, the framework interface is not affected by product-specific extensions. How-

ever, extending or changing the framework interface cannot be avoided for specific

problems.



46 CHAPTER 2. STATE OF THE ART

Figure 2.22: Product-specific extension model

Standard-specific extension model

In this model, each standard, e.g. a file-system or communication protocol is imple-

mented as an extension to the framework. Each product incorporates one or more

framework implementations, either as product variants or as configurable parts of

the product. The common part of the framework only defines the framework inter-

face and no or very little common behavior between the framework implementations.

Fig. 2.23 shows a schematic illustration of a standard-specific extension framework.

Figure 2.23: Standard-specific extension model

Fine-grained extension model

The two previous component models extend the object-oriented framework with a

single extension that covers all variation points of the framework. The fine-grained

extension model takes the opposite approach. It provides small modules that only

cover one or a few variation points and that are themselves configurable. In this case,

the common framework consists of an interface and an implementation common to

all instantiations. For each variation there exists a set of generic extensions, which

can be configured with product-specific extensions. Fig. 2.24 presents a fine-grained



2.4. FUNCTIONALITY-BASED ARCHITECTURAL DESIGN 47

framework graphically.

Figure 2.24: Fine-grained extension model

Generator-based model

The generator-based model is practically an extension of the fine-grained extension

model. Once the suitable variation points and the useful extension of a framework

have been identified, this model makes use of a generator for product instantia-

tion. The latter can be either a graphical configuration tool in which components

are configured with available extension components or a domain specific language

(DSL) in which a configuration is specified and afterwards a matching component

is generated. Fig. 2.25 shows the generation process for this model.

Figure 2.25: Generator-based model

2.4.6 Evaluation of Framework Component Models

This section provides a general evaluation of the various framework component mod-

els supported in FAD, from the perspective of the effort needed for product instan-

tiation.

Product-specific extension model The primary advantage of this approach is

its simplicity. Since each product is an independent extension of the frame-

work, a relatively simple organization is needed for the development and main-



48 CHAPTER 2. STATE OF THE ART

tenance of the products. The main disadvantages of the component model

is its lack of reuse between product-specific instantiations and its inflexibility.

More precisely, there may exist common requirements for a number of product

instantiations. Because each product is an independent module, the common

parts of the products cannot be reused. Finally, this framework model is rather

inflexible, since a change occurring in the framework has a direct impact on all

products.

Standard-specific extension model One advantage of this model is the unifor-

mity of the provided interface. This allows all framework components to be

readily able to communicate with every other component of the framework.

Another advantage of this model is the evolvability of the various framework

implementations. Namely, as long as each framework implementation adheres

to the same framework interface it can evolve independently from the others.

One disadvantage of the model is lack of reuse of the commonalities between

the various framework implementations. Furthermore, the model does not al-

low for product-specific extensions and it illustrates decreased maintainability,

since changes to the component interface are propagated to each other imple-

mentation of the framework.

Fine-grained extension model One advantage of this model is its configurability.

The framework user is free to compose arbitrary sets of extension components

for its specific product. Another advantage is the reusability of the framework

extensions. This is due to the relative atomicity of the extensions. Unfor-

tunately, this model illustrates high complexity, depending on the number of

variation points, extension components and the relations between them. An-

other issue is the difficulty of achieving the proper granularity for the extension

components and thus avoiding e.g. the creation of too fine-grained components.

Generator-based model This model has the same advantages as the fine-grained

extension model. Namely, flexibility and configurability. Additionally, this

model also manages the complex use of the fine-grained extensions of the frame-

work. The latter automates the product instantiation process and reduces their

time-to-market. The disadvantages of this model are listed below:

• In order to define the right fine-grained extension components and identify

the required variation points, the generator-based model requires a mature

domain. In many cases developers are confronted with immature domains

for which the generator-based model is unsuitable.



2.4. FUNCTIONALITY-BASED ARCHITECTURAL DESIGN 49

• The generator-based model illustrates decreased evolvability. More pre-

cisely, the framework is more expensive to evolve since every change to

the framework requires respective changes to the configuration tool or

DSL.

• The use of the generator-based model limits the number of possible prod-

ucts to be combined. This is due to the fact that the tool or DSL can

only generate the combinations imagined and intended by its designer.

Extending the tool or DSL is again related to additional cost and effort.

• Finally, because of feature scattering and tangling, the generator-based

model may not enable the mapping of a feature to the extension compo-

nents or the mapping may be inefficient and introduce a lot of unwanted

functionality. This may in turn influence the product’s performance, price,

etc..

To summarize, the product-specific and standard-specific models are simple to use

in contrast to the fine-grained extension model, but suffer from decreased maintain-

ability and lack of reuse. The fine-grained extension and generator-based models

are much more flexible than the first two models. The generator-based model also

partially solves the complexity of the fine-grained extension model.

The primary advantage though of the generator-based model is enabling a generative

approach to application engineering, something that is not supported by the other

models. This is a vital precondition for the minimization of product instantiation

effort. Providing solutions to the disadvantages of the generator-based model is the

goal of this work.

2.4.7 Conclusions

This section has evaluated the FAD PL method from the perspective of the identified

open issues of feature-architecture mapping and product instantiation.

Concluding the evaluation of the FAD component development, one can say that

the use of the system’s external interfaces and problem domain entities as source

for components does promote feature-architecture mapping. This is also true for

archetype instantiations that produce components closely related to problem domain

entities. The use of abstraction layers has been found to be neutral with respect to

feature-architecture mapping. Solution domain entities and direct instantiations of

archetypes have a rather negative influence to the mapping between features and

the architecture.



50 CHAPTER 2. STATE OF THE ART

Nonetheless, the use of solution domain entities may be unavoidable in certain oc-

casions. For instance, there may exist hard architectural requirements that are not

visible to the customer and therefore not present in the FM. In such cases, compo-

nents must be developed that have little or no relations to customer-visible features.

Additionally, implementation issues may require components from the solution do-

main.

As mentioned above, the direct instantiation of archetypes does not directly sup-

port feature-architecture mapping. Nevertheless, the consistent use of archetypes

throughout the software system assures another valuable system property, namely,

conceptual integrity [Bro95]. The latter promotes the system’s understandability

and maintainability.

With respect to product instantiation, FAD’s generator-based model stands out

among the four different framework component models. On the one hand, the

generator-based model allows for a generative approach to application engineering

in contrast to the other three models. On the other hand, it suffers from a number

of problems (sect. 2.4.6), which need to be solved in order to achieve an efficient

product generation. Solving the open issues of the generator-based model is one of

the goals of this work.

2.5 Generative Programming Techniques

Generative programming techniques can also be utilized as alternative solutions to

feature-architecture mapping and feature-level variability, which are both identified

as open issues in the general state of the art analysis (sect. 2.2). At first, a brief

presentation of the most established generative programming techniques, along with

their integration in PL methods will be given. Based on this, a representative method

will be selected for more detailed examination.

Aspect-Oriented Programming Aspect-oriented programming (AOP) is a broadly

accepted generative programming technique. AOP aspects are concerns, e.g.

concurrency, distribution or persistence and are expressed with a special pur-

pose programming language. During compilation, the aspect code is weaved

into the source code of the existing system, thus extending it to support new

concerns. AOP offers an implementation for Java, namely, the AspectJ tool

[Kic01] and has been extended to support the UML [SY99]. Up to this point

there exists no explicit integration of AOP with a PL method.



2.5. GENERATIVE PROGRAMMING TECHNIQUES 51

Hyperspace The Hyperspace approach [OT01] maps any kind of artifact, e.g. re-

quirements specifications, architectural entities or source code, to any concern

that a system stakeholder may have, e.g. to functional or quality features.

This is implemented through a specifically developed language that maps e.g.

a feature to the various classes and their members in a software system. The

Hyperspace approach has an implementation for the Java programming lan-

guage, namely, the HyperJ tool [TO01] and has been extended to map to

UML design artifacts, e.g. use case diagrams, collaboration diagrams, etc. It

has been successfully integrated in the FeatuRSEB method, yielding Hyper-

FeatuRSEB [Boe02]. Another well established PL development methodology

based on similar principles is the GenVoca method [BG97].

As shown from this brief description of the most important generative programming

techniques, the Hyperspace approach has a wider spectrum of application compared

to AOP. Furthermore, it has been explicitly integrated into the FeatuRSEB PL

method. The basic principles of the Hyperspace approach are shared by the other

generative programming techniques. Because of these reasons, this work will exam-

ine the Hyperspace approach in more detail and will evaluate it from the perspective

of feature-architecture mapping and feature-level variability.

2.5.1 The Hyperspace Approach

The Hyperspace approach has been developed in the IBM research center. It is

geared towards multi-dimensional separation of concerns. The concept of separa-

tion of concerns [Par72] has been first introduced by Parnas in his work on the

decomposition of software systems. A software keeping concerns separate from each

other can achieve high changeability and reusability. In the Hyperspace approach,

the ”tyranny of the dominant dimension” is introduced. This relates to the fact that

software systems are built to comply to one single dimension. For example, functions

in procedural-oriented programming, like Pascal and C or classes in object-oriented

programming, like Java and C++. The Hyperspace approach strives the encapsu-

lation and thus the separation of all possible concerns in a software system. For

instance, a system in the Hyperspace approach can be decomposed based on its

requirements specification, its features or any other concern a stakeholder of the

system may have.



52 CHAPTER 2. STATE OF THE ART

A Simple Software Engineering Environment

The concepts of the Hyperspace approach can be explained more easily in the con-

text of an example. The example used is a simple Software Engineering Environment

(SEE) adapted from a publication on the Hyperspace method [OT01]. The source

code and the Hyperspace artifacts can be downloaded from the Hyperspace home-

page [Tar05]. The SEE requirements specification are as follows:

• The SEE shall allow the definition of a mathematical expression

• The SEE shall allow the evaluation of a mathematical expression

• The SEE shall allow the textual display of a mathematical expression

Figure 2.26: A simple Software Engineering Environment architecture

The architecture of the SEE (fig. 2.26) is based on an Abstract Syntax Tree (AST)

representation and defines a class for each kind of AST node. The function of the

SEE can be understood by following the creation, evaluation and display of a simple

expression. Consider the expression (1 + 1):

The Driver object is instantiated by the Java virtual machine and the main()

method is called, as shown in listing 2.1. The expression created consists of the

concrete Plus binary operator object and two instances of the Number class instan-

tiated with the value 1. The constructors of the classes involved and the process()

method are shown in listing 2.2.

At first, because of the class hierarchy, the constructor of the Expression class is

called twice, followed by subsequent calls to the constructor of the Number class



2.5. GENERATIVE PROGRAMMING TECHNIQUES 53

with the value 1. In the Number class constructor the value instance variable

is set to 1. Then again the Expression constructor is called, followed by a call

to the constructor of the BinaryOperator class, which sets the inherited instance

variables, leftOperand and rightOperand to the new Number objects. Note, that

the BinaryOperator constructor takes Expression objects as parameters. It is

possible to use instances of the Number class with the constructor because Number is

also a subclass of Expression. Immediately after the call to the BinaryOperator

constructor, the constructor of the Plus object is called which takes no further

actions.

Listing 2.1: The main() method

1 public stat ic void main ( St r ing [ ] a rgs ) {
Express ion expr = new Plus (new Number ( 1 ) ,

3 new Number ( 1 ) ) ;

5 expr . p roc e s s ( ) ;

}

After the expression has been created, the process() method is called. The latter is

implemented in the Expression class and it evaluates and displays the expression.

Note that the System.out is a Java output stream.

Listing 2.2: Methods involved in the creation of an expression

public class Express ion {
2 public Express ion ( ) { }

public void proce s s ( ) {
4 eva l ( ) ;

d i sp l ay ( System . out ) ;

6 }
}

8 public Number( f loat value ) {
va lue = value ;

10 }
public BinaryOperator ( Express ion l e f t ,

12 Express ion r i gh t ) {
l e f tOperand = l e f t ;

14 r ightOperand = r i gh t ;

}
16 public Plus ( Express ion l e f t ,



54 CHAPTER 2. STATE OF THE ART

Express ion r i g h t ) {
18 super ( l e f t , r i g h t ) ;

}

The classes and methods taking part in the evaluation of the expression are shown in

listing 2.3. Due to polymorphism, when the eval() method within the Expression

class is called (listing 2.2, line 4), actually, the eval() method of the Plus ob-

ject is called (listing 2.3, line 2). In this method, the getLeftOperand() and

getRightOperand() methods of the BinaryOperator class are called. These re-

turn objects of the class Expression, which are actually the Number objects set in

the private instance variables leftOperand and rightOperand, during the cre-

ation of the expression. Upon these objects the eval() method is called. Again

because of polymorphism, the eval() methods of the Number objects are actually

called. These return the value stored in the value instance variables of the objects,

which is 1. The return values are added, yielding the right result, i.e. 2, which is

then returned as the result of the evaluation.

Listing 2.3: Methods involved in the evaluation of an expression

1 public class Plus {
public f loat eva l ( ) {

3 return ( getLeftOperand ( ) . eva l ( ) +

getRightOperand ( ) . eva l ( ) ) ;

5 }
}

7 public class BinaryOperator {
public Express ion getLeftOperand ( ) {

9 return l e f tOperand ;

}
11 public Express ion getRightOperand ( ) {

return r ightOperand ;

13 }
}

15 public class Number {
public f loat eva l ( ) {

17 return ( va lue ) ;

}
19 }



2.5. GENERATIVE PROGRAMMING TECHNIQUES 55

After the expression has been evaluated, the display(System.out) method within

the process() method of the Expression class is called (listing 2.2, line 5). The

class and methods involved in displaying the expression are shown in listing 2.4.

The polymorphic method display(PrintStream displayDevice), defined in the

BinaryOperator class, is initially called (line 2). It displays a left bracket ”(” and

then calls the polymorphic display(...) method of the Number class. This prints

the context of the value instance variable, which has been set to 1. Following this,

a call to the name() method of the Plus object is made. This returns the symbol

”+” for the addition operator, which is printed within the display(...) method of

the BinaryOperator class. Finally, the display(...) method of the right operand

is called, i.e. the Number object and the left bracket is displayed. The result of the

whole display process is as expected: (1 + 1).

Listing 2.4: Methods involved in displaying an expression

1 public class BinaryOperator {
public void d i sp l ay ( PrintStream di sp layDev i ce ) {

3 d i sp layDev i ce . p r i n t ( ” ( ” ) ;

getLeftOperand ( ) . d i sp l ay ( d i sp layDev i ce ) ;

5 d i sp layDev i ce . p r i n t ( ” ” + name ( ) + ” ” ) ;

getRightOperand ( ) . d i sp l ay ( d i sp layDev i ce ) ;

7 d i sp layDev i ce . p r i n t ( ” ) ” ) ;

}
9 }

public class Number {
11 public public void d i sp l ay ( PrintStream di sp layDev i ce ) {

d i sp layDev i ce . p r i n t ( va lue ) ;

13 }
}

15 public class Plus {
public St r ing name ( ) {

17 return ”+” ;

}
19 }

Hyperspace Concepts

The SEE is a typical example to illustrate the effect of multiple concerns within

a software system. The SEE architecture is decomposed based on classes, i.e.



56 CHAPTER 2. STATE OF THE ART

Expression, Number, etc., while the requirements specification have defined the

system based on features, i.e. creation, evaluation and display of a mathematical

expression. The latter are implemented throughout the entire class hierarchy. This

illustrates the effect of feature scattering and tangling.

The Hyperspace approach attempts to resolve feature scattering and tangling by

encapsulating the various methods and instance variables in a so called hyperslice.

A hyperslice should encapsulate exactly one concern. Figure 2.27 shows the decom-

position of the SEE architecture based on its features, through hyperslices.

Figure 2.27: A decomposition of the SEE architecture based on its features
through hyperslices

The evaluation feature of the SEE is encapsulated in the Evaluation hyperslice.

This contains all parts of the system related to the evaluation of an expression.

These would normally be all eval() methods in the class hierarchy. Nonetheless,

the hyperslice contains also the getLeftOperand() and getRightOperand() meth-

ods of the BinaryOperator class, the getValue() method of the Number class, as

well as the process() method of the Expression class. Additionally, as the UML

notes imply, these methods are unimplemented. Only the definition, not the im-

plementation of these methods is added to the hyperslice to assure its declarative

completeness.

Declarative completeness is a special concept in the Hyperspace approach. It means

that a hyperslice must at minimum include a declaration for every function that any



2.5. GENERATIVE PROGRAMMING TECHNIQUES 57

of its members invokes or any variable its members use. The hyperslice need not

provide an implementation for these declarations. The Hyperspace approach sug-

gests that declarative completeness eliminates coupling between hyperslices. Instead

of one hyperslice referring to another, thereby depending upon the other specific hy-

perslice, each hyperslice states what it needs by means of the abstract declarations,

thereby remaining self-contained. The implementation of these abstract declarations

can be provided by any appropriate hyperslice(s) through integration.

The Display hyperslice decomposes the system in a similar way as the Evaluation

hyperslice. In the SEE example, the implementation for the accessor methods in

the hyperslices is provided by the Kernel hyperslice. The latter contains all parts

of the system that are responsible for the creation of an expression, as well as those

parts of the system implementing its basic capabilities. The constructor, accessor

and modifier methods, along with the instance variables, allow the creation of an

expression. The Driver class with the main() method, along with the process()

provide the system basic capabilities.

Note that the process() method in the Kernel hyperslice remains unimplemented.

This special handling of the process() method is typical in the Hyperspace ap-

proach. As shown in listing 2.2, the process() method drives both the evaluation

(line 4) and the displaying (line 5) of an expression. In order to achieve a clear

separation of concerns, line 4 should be included in the process() method of the

Evaluation hyperslice and line 5 in the process method of the Display hyperslice.

However, the current implementation of the Hyperspace approach treats methods

as primitive units, which means that it does not support the mapping of individual

statements to concerns. Since the method can not be ”torn apart”, it is entirely

excluded from all features.

As mentioned earlier, an implementation of the Hyperspace approach is provided

for Java, namely, the HyperJ tool [TO01]. HyperJ defines a special language to

decompose the architecture into concerns. Initially, a definition of the Hyperspace

must be provided. Listing 2.5 shows the Hyperspace definition for the SEE. This

simple definition specifies that all classes within the package tu.ilmenau.SEE should

be included in the Hyperspace. When HyperJ runs, it will automatically create one

dimension, i.e. the ClassFile dimension and one concern in that dimension for each

class. The contents of those concerns are the units (interfaces, classes, methods, and

member variables) in the corresponding classes.

Listing 2.5: The SEE Hyperspace

1 hyperspace HyperspaceSEE



58 CHAPTER 2. STATE OF THE ART

composable c l a s s tu . i lmenau .SEE . ∗ ;

In order to map the concerns, i.e. the features of the SEE system to its architecture,

i.e. its classes, HyperJ uses a concerns mapping shown in listing 2.6. The concerns

mapping starts with assigning the entire system to the Feature.Kernel hyperslice.

The package statement indicates that all classes, along with their methods and

instance variables are to be included in the Kernel feature of the Feature dimension.

Exceptions to this main rule are provided in the following lines. For instance, in line

2, all eval() methods in the system are included in the Evaluation hyperslice. The

HyperJ tool then automatically adds abstract declarations to all methods referenced,

but not declared within the hyperslice, as shown in figure 2.27. As mentioned above,

the process() method drives both the evaluation and displaying of an expression.

Because it can not be taken apart, it is assigned to the Feature.None concern.

The latter is a Hyperspace-specific concern used in situation where concerns are

intermingled within a primary unit, e.g. a class method.

Listing 2.6: The SEE concerns mapping

package tu . i lmenau .SEE : Feature . Kernel

2 operat i on eva l : Feature . Evaluat ion

operat i on d i sp l ay : Feature . Display

4 operat i on name : Feature . Display

operat i on proce s s : Feature . None

6

A final product can now be composed through a mix-and-match of features. Such

a product is referred to as a hypermodule. A hypermodule is created through the

composition of hyperslices by means of composition rules. There exist a large number

of composition rules for hyperslices. A complete list can be found in the HyperJ

manual [TO01]. Two representative examples of composition rules are illustrated

below. Listing 2.7 shows a hypermodule definition that includes only the evaluation

feature of the SEE system.

Listing 2.7: The SEE Evaluation hypermodule

hypermodule EvaluationSEE

2 hyp e r s l i c e s :

Feature . Kernel ,

4 Feature . Evaluat ion ;

r e l a t i o n s h i p s :

6 mergeByName ;



2.5. GENERATIVE PROGRAMMING TECHNIQUES 59

equate operat i on Feature . Kernel . process ,

8 Feature . Evaluat ion . eva l ;

end hypermodule ;

In this hypermodule, the Kernel and Evaluation concerns are related by a

mergeByName composition rule, referred to as an integration relationship. The ”By-

Name” indicates that units in the different concerns are considered to correspond

if they have the same names and signatures, where appropriate. The ”merge” in-

dicates that corresponding entities are to be combined so as to include all their

details. For example, the getLeftOperand() and getRightOperand() methods in

the Evaluation hyperslice (fig. 2.27), which have no implementation, will be merged

with the implemented methods of the Kernel hyperslice, thus providing the proper

functionality in the final product.

The second integration relationship, equate, accomplishes the special handling of

the process() method. As discussed earlier, the process() method was excluded

from the hypermodule by delegating it to the Feature.None concern (listing 2.6,

line 6). However, the Driver calls it (listing 2.1, line 5) within the Feature.Kernel

concern (fig. 2.27). During declaration completion, to make Feature.Kernel a

valid hyperslice, HyperJ inserts an abstract declaration of process(). In this hy-

permodule, it is specified that the abstract declaration must be bound to the eval()

method of the evaluation feature. The equate relationship does just that. It assures

that when the Driver calls process() at runtime in the composed hyperslice, only

the eval() method is called.

This hypermodule definition yields an executable version of the SEE system that

contains only the evaluation feature. Respectively, it is possible to define a hyper-

module having only the display feature of the SEE.

2.5.2 Evaluation of the Hyperspace Approach

From the description of the Hyperspace approach, one can conclude that the method

provides concrete mechanisms for the mapping between features and the architec-

ture. Its integration with the FeatuRSEB method, yielding the HyperFeatuRSEB

[Boe02], indicates also its applicability in the instantiation of PL products and thus

its contribution to the variability on the feature level. These two aspects of feature-

architecture mapping and feature-level variability will be evaluated in this section.



60 CHAPTER 2. STATE OF THE ART

Feature-Architecture Mapping

The problems of the Hyperspace approach, from the perspective of feature-architec-

ture mapping, lay mainly on the introduction of extra artifacts and the effort needed

for their development and maintenance, as well as on the interaction between hy-

perslices.

As shown in the SEE example, various artifacts were required for the achievement

of a decomposition based on features. At first, one needs to define a Hyperspace

that contains all architectural entities in the system. Afterwards, the system must

be decomposed through the definition of hyperslices. Finally, an executable version

of the system must be created through the definition of hypermodules. The develop-

ment of these artifacts for the SEE was rather simple. Nonetheless, as shown in the

case of the process() method, intermingled features within a class method cannot

easily be separated. More precisely, the process() method was not implemented

within the hyperslices, rather it was assigned to the Feature.None concern and the

equate integration relationship had to be used to allow a mapping to the desired

feature at compile time.

What was actually required, was the placement of the calls eval() and

display(System.out) of the process method (listing 2.2, lines 4 and 5) into the

process() methods of the Evaluation and Display hyperslices (fig. 2.27) respec-

tively. However, assigning source code lines to features, despite the fact that it is

rather cumbersome, it would also dramatically deteriorate the maintenance of both

the system and the hyperslices. The solution provided by the Hyperspace approach

might have been sufficient for the SEE example, but it is doubtable if it would suffice

for large industrial PLs.

Another open issue with respect to feature-architecture mapping is the hyperslice

interaction. The authors of the Hyperspace approach suggest that by making hy-

perslices declarative complete, a decoupling of the hyperslices is also achieved (sect.

2.5.1). Nevertheless, hyperslices are in fact as decoupled as the architecture of the

system itself. For instance, one cannot treat the Evaluation hyperslice indepen-

dently from the other hyperslices. A change, e.g. in the implementation of the

getLeftOperand() method, would propagate to all other hyperslices of the sys-

tem, since their proper operation depends on that method. In order to guarantee

the proper integration of the changed hyperslice with other hyperslices, a devel-

oper should take into consideration all points in the system where this method is

needed. In an actually decoupled system, as long as the interface of the method

does not change, i.e. both syntactically and semantically, changing the method’s



2.5. GENERATIVE PROGRAMMING TECHNIQUES 61

implementation should have no effect on the rest of the system. This is not true in

a ”hypersliced” system.

In the SEE example, a change of the internal implementation, e.g. of the

getLeftOperand() method in the Evaluation hyperslice would cause the change

of the two other hyperslices, i.e. the Kernel and Display hyperslices. In other

words, a change in one feature would cause the change in two out of two features

in the SEE system. An analysis on the source code of a PL developed with the

HyperFeatuRSEB method [Boe02] has been performed in the context of this work

[SRP04]. The analysis was based on the number of unimplemented methods found

in the system’s source code. This is possible because of a special exception thrown

in methods implemented within other hyperslices:

1 throw new com . ibm . hyper j . UnimplementedError ( ) ;

This exception is an indicator for hyperslice interaction. The results of the source

code analysis showed that the PL had 1243 such unimplemented methods from

overall 4197, shared between various combinable features. More precisely, 1 out of

3 method changes would cause at least 2, at most 19 and on average 4 features to

change.

Feature-Level Variability

Regarding feature-level variability, the generative programming techniques fall in

the category of the code fragment superimposition variability mechanisms. These

mechanisms are primarily applicable for the selection of one variant from a number

of alternatives at compile time.

As shown in the SEE examples, a feature can be selected from a number of alter-

natives through the integration of one or more hyperslices. The latter takes place

upon product compilation. The various methods in the classes of hyperslices are

merged together to form the final product. Apart from merge, there exist also other

integration relationships, e.g. override.

From the perspective of feature-level variability, the Hyperspace approach incor-

porates extra artifacts for the isolation of the variants. The main problem of this

approach has already been discussed in the context of feature-architecture mapping.

Namely, high effort may be required for the isolation of the variants in a system

where a high degree of feature tangling is present. In some cases, it may not be

possible to isolate the variants at all.



62 CHAPTER 2. STATE OF THE ART

In the example of the process() method of the SEE system, if the tangling of the

features was more intensive, namely, within one code line, then it would have been

impossible to separate one feature from the other. In large systems, the probabil-

ity of such scenarios is quite high. Nevertheless, the maintainability of the Hyper-

space artifacts is more advanced compared to the other variability mechanisms (sect.

2.3.3).

2.5.3 Conclusions

The generative programming techniques provide concrete approaches for the res-

olution of the issues of feature-architecture mapping and feature-level variability.

They have been integrated into established PL methods to enhance variability on

the feature level and thus, to reduce the time-to-market of the PL products. This

work provided a detailed examination of a representative generative programming

technique, namely, the Hyperspace approach.

With respect to feature-architecture mapping, the Hyperspace approach does not

provide a unambiguous separation of concerns. The hyperslice interaction remains

unresolved and is treated rather on a syntactical level. The extra artifacts introduced

also add extra effort for their creation and maintenance.

Regarding feature-level variability, the Hyperspace approach shares more or less the

same problems with variability mechanisms of the same level (sect. 2.3.3). It needs

the introduction of extra artifacts, whose development effort is highly dependent on

the degree of feature scattering and tangling. As shown in the SEE examples, for

small-sized variants illustrating low tangling, e.g. within a class, the Hyperspace

approach can be quite efficient. For large features, where the probability of tangling

increases, isolating a specific variant is at least proportional to the effort needed to

resolve feature tangling.



2.6. MOTIVATION AND OBJECTIVES 63

Nonetheless, if a certain degree of decoupling is present in the architecture, the Hy-

perspace approach can be an efficient way to provide a mix-and-match of features.

Additionally, in the case of monolithic systems, were the resources for redesign are

not available, the Hyperspace approach can be applied to ease the evolution of the

system. Finally, one of the strengths of the Hyperspace approach is its enormous

flexibility to provide a mapping between the architecture and any conceivable con-

cern of any system stakeholder simultaneously.

2.6 Motivation and Objectives

The primer motivation for this work is the enhancement of feature-architecture map-

ping in the context of PLs. The FeatuRSEB, FAD and the Hyperspace approach

were selected as mature and representative state of the art solutions to feature-

architecture mapping. Feature-level variability was examined in section 2.3.3 for all

PL methods, as well as in the context of the generative programming techniques.

The various approaches used today for product instantiation were examined in the

context of FAD. Based on the conclusions drawn throughout the state of the art

analysis, this section will define a plan for the achievement of a stronger feature-

architecture mapping and consequently a more efficient feature-level variability and

an improved generative product instantiation.

A Method for...

From the state of the art analysis, it became clear that a methodical approach is

needed for the achievement of the aforementioned goals. This can well be served in

the form of a method. The method must also seamlessly integrate with the estab-

lished PL methodologies. In order for the method to be readily applicable, it must

also support the technologies available at present, e.g. object-oriented programming

languages, operating systems, development environments and tools.



64 CHAPTER 2. STATE OF THE ART

The concrete characteristics of the method should be drawn from the positive aspects

of the state of art approaches for the resolution of the feature-architecture mapping,

feature-level variability and product instantiation. The method should also provide

solutions to the problems identified in the state of the art methods regarding these

issues.

...Stronger Feature-Architecture Mapping,...

From the conclusions on the methods addressing feature-architecture mapping it

became clear that the derivation of architectural components cannot be efficiently

based on use cases, like in FeatuRSEB. The examination of FAD has also shown

that the utilization of the system external interfaces, problem domain entities and

archetype instantiations based on the problem domain for the derivation of compo-

nents has a positive effect on feature-architecture mapping. Nonetheless, FAD does

not provide a consistent approach to enhance the mapping between features and the

architecture. Finally, the use of solution domain entities for the creation of architec-

tural components, e.g. FeatuRSEB control types and FAD archetype instantiations

based on the solution domain illustrated that they are sometimes invaluable for the

realization of a robust, maintainable system.

Consequently, in order to methodically enhance feature-architecture mapping, the

components of the PL architecture must originate from the features themselves and

the relations between them. Ideally, the application logic of one feature should

be implemented in exactly one architectural component and the interface of that

component should reflect the interaction of the feature with the other features of

the PL. Nevertheless, this is not always possible. Solution domain entities conceived

by the software architects of the system must also take part in the construction of

the PL architecture. These conclusions should form the basis for the new method

developed in this work.

Another important issue related to feature-architecture mapping is the actual mech-

anism that maps features to architectural components. FeatuRSEB makes excessive

use of traces. This does not provide a strong mapping between features and the

architecture, rather it adds extra effort for their creation and maintenance. Gen-

erative programming techniques utilize special constructs to achieve a mapping of

features to the architecture. Again, this approach cannot be applied in all cases or

for large systems and it also adds extra effort for the creation and maintenance of

the introduced artifacts. Unfortunately, as mentioned above, it is not always possi-

ble to achieve a one to one relation between features and architectural components.



2.6. MOTIVATION AND OBJECTIVES 65

Therefore, the new method that is to support a stronger feature-architecture map-

ping must adopt some kind of traceability mechanism, which does not suffer from

the identified state of the art problems.

...Efficient Feature-Level Variability...

The method developed in this work must also support the efficient application of

variability mechanisms on the feature level. It has been shown that the contemporary

variability mechanisms can be efficiently applied on the feature level only under

certain circumstances. Some variability mechanisms can only be efficiently applied in

the absence of feature tangling, while others are suitable only for small features. Yet

other variability mechanisms require the adherence to certain architectures, which

may not always suit the PL domain. Furthermore, every variability mechanism may

jeopardize the system’s conceptual integrity or require a large amount of effort for its

application, depending on the degree of feature tangling. Generative programming

techniques, as already discussed, can also be efficiently applied in a small scale and

require the creation and maintenance of new artifacts. These issues must also flow

into the new method.

Because the method should also support the use of contemporary technologies, it

must make use of the available variability mechanisms. No extra constructs should

be required for the application of the variability mechanisms, like e.g. hyperslices

in the Hyperspace approach. Additionally, no extra architectural entities should

be included into the system through the application of the variability mechanisms.

This will ensure the preservation of the system’s conceptual integrity.

...and Improved Generative Product Instantiation

The developed methodology must also resolve the issues identified in today’s ap-

proach to product instantiation. From the various product instantiation models,

the generator-based model was identified as the most efficient model for the genera-

tive development of PL products. Nonetheless, a number of disadvantages have also

been identified, namely, the need for a mature domain, decreased evolvability due

to the required evolution of configuration tools or DSL, limited number of products

possible to be developed from the PL core, as well as an inefficient mapping of PL

features to the final products.

The method developed in this work must provide solutions to the open issues of the

generator-based model. It must be applicable to all domains, regardless the degree



66 CHAPTER 2. STATE OF THE ART

of experience already available in constructing systems in the domain. Extra tools

used for the instantiation of the PL products must be insensitive to the evolution of

the PL. The method should also exhaust the possibilities of the PL to produce valid

products. Finally, the PL products must efficiently implement only the features

selected by the PL customer.

The realization of the precise goals defined in this section will be presented in chapter

4, where the description of the methodology developed in this work is provided.

Chapter 5 will evaluate the extend up to which the aforementioned goals are actually

achieved.

2.7 Used Works

This section will present the works used in the developed methodology. This is done

at this point to allow a fluent reading of the actual method sections, reducing the

number of context switches for the reader. There are two works used in the developed

methodology. These are the profiles method for the quantification of quality features

and the use of search techniques for feature interactions.

The profiles method is developed in the QASAR method (sect. 2.4.1) to provide

a quantitative definition of quality attributes for software systems. This method

allows, through the definition of a set of usage scenarios, the functional assessment

of quality attributes. A set of usage scenarios makes a profile. An example is the

definition of a set of change scenarios for the maintainability of a system. The

change scenarios describe concrete requirement changes that lead to changes in the

software. These are measured with the line of codes that are affected by a change, in

relation to the overall lines of code of the component that is affected by the change.

The profiles method is utilized in the method developed in this work for the quan-

titative specification of quality features. Similarly, for a quality feature like per-

formance, a set of change scenarios is defined. These scenarios are then delegated

to other functional features, which must satisfy them in a certain amount of time.

Through this approach, the throughput or response time of a system can be assessed

during development.

This work makes additionally use of interacts relations for the optimization of the

system’s architecture in terms of maintainability, variability and performance. Pre-

vious works on feature interaction, e.g. [CKM+03] and [Gib97], define a feature

interaction as a situation in which system behavior does not as a whole satisfy each



2.7. USED WORKS 67

of its component features individually. These works focus mainly on the telecommu-

nications domain, where features have no knowledge of the existence of the features

with which they interact. Although feature interaction is treated as a uses feature

interaction in this work, where features do have knowledge of each other, previous

works on feature interaction can be utilized for the identification of interactions

between features.

The developed method makes use of such techniques for the identification of feature

interactions, but provides other resolution approaches (sect. 4.5). An example of

the techniques that can be used for the identification of feature interaction is the use

of formal models [Gib97]. With this approach, an executable model of the system

is developed to capture its dynamic behavior and a logical model, which defines the

properties of the system that can be verified statically. The formal verification of

the executable model is examined to assure that it fulfills the requirements of the

static model. Although this approach might require a lot of project resources for its

implementation, it may prove to be financially viable, e.g. in safety-critical domains.



Chapter 3

Case Study

This chapter’s purpose is to provide an insight to the case study used in this work

for the presentation of the proposed methodology for the enhancement of feature-

architecture mapping. In fact, the method has been applied in a number of appli-

cation domains, namely, in the domain of Integrated Development Environments

(IDEs) [SRP04] and the Mobile Telecommunications domain [SRP06]. The IDEs

domain provides an information-centric context, illustrating features like Diagram

Designer and Model-Code Synchronization. The mobile domain on the other

hand, covers a more limited, deterministic operating environment, with features like

MMS and Push. The diversity of application domains is geared towards the matu-

ration of the method itself, as well as towards a thorough evaluation of the method’s

attributes.

In this work, the method is applied to yet another application domain, namely, the

artificial Neural Network (NN) domain. The NN domain is a computation-intensive

domain, needing extensive algorithmic support and a well organized software archi-

tecture for large information processing tasks. This combination of characteristics

makes it a challenging domain for the application of the proposed method.

In order to provide a background for further discussion of the key features of the

system developed for this domain, section 3.1 will provide a basic introduction to

the theory of NNs, while section 3.2 will discuss the actual case study in more detail.

3.1 Neural Network Theory

NNs have emerged from the effort to mimic the structure and operation of the human

brain. The basic computational unit in the brain is the nerve cell or neuron (fig.

68



3.1. NEURAL NETWORK THEORY 69

3.1). A neuron has:

• Dendrites (inputs)

• Cell body

• Axon (output)

A neuron receives input from other neurons, typically many thousands. Inputs are

approximately summed. Once input exceeds a critical level, the neuron discharges

an electrical pulse that travels from the body down the axon to the next neurons.

The neuron is then said to have fired. The axon endings almost touch the dendrites

or cell body of the next neuron. Transmission of an electrical signal from one neuron

to the next is effected by neurotransmitters, chemicals which are released from the

first neuron and which bind to receptors in the second. This link is called a synapse.

The extent to which the signal from one neuron is passed on to the next depends

on many factors, e.g. the amount of neurotransmitter available, the number and

arrangement of receptors, the amount of neurotransmitter reabsorbed, etc..

One way brains learn is by altering the strengths of connections between neurons

and by adding or deleting connections between neurons. Furthermore, they learn

based on experience. The efficacy of a synapse can change as a result of experience,

providing both memory and learning through long-term potentiation. One way this

happens is through the release of more neurotransmitter.

Figure 3.1: A simplified view of a biological neuron

An artificial neuron is a simplified model of the biological neuron (fig. 3.2). In an

artificial neuron, the scalar input p is the analogy of the dendrites. The analogy of

the axon is the neuron output a . The cell body is again the computational unit of

an artificial neuron. As in the biological neuron, all inputs are weighted through the

w scalar value and are added together. This sum of products is called the weight

function of the neuron. Another scalar value, b , the so called bias is also added



70 CHAPTER 3. CASE STUDY

to the result. The output of the neuron is controlled by a function f , which is

applied on the final result. This is the so called transfer function of the neuron and

it simulates the firing of the biological neuron if a threshold is reached, e.g. if f was

the hard-limit function giving 0 for n < 0 and 1 for n ≥ 0, then an artificial neuron

would have said to have fired if its output becomes 1. Many artificial neurons may

also be combined in a layer, as shown at the right part of fig. 3.2. This layer has

R inputs, each one connected to each of the S neurons of the layer. This technique

allows for example the parallel processing of information by each neuron.

Figure 3.2: An artificial neuron and a layer of neurons

A NN is built from a large number of interconnected neurons, like in the human

brain. A typical NN is shown in fig. 3.3. The NN consists of a series of neuron

layers, where the output of the first layer serves as the input to the next layer. The

output is the rightmost layer and it provides a vector of values, which depend on

the previous layers’ weights and transfer functions.

The central idea of NNs is to adjust the weights and biases, so that the NN exhibits

some desired or interesting behavior. For this purpose, numerous training algorithms

have been developed over the years. One family of training algorithms is the family

of supervised learning algorithms. These algorithms receive a set of inputs, along

with a set of corresponding outputs. These are the training patterns. Each input

is successively applied to the NN and the NN output is supplied to a performance

function, e.g. the mean square error (MSE) is calculated based on the given outputs.

One such pass through the NN of all training patterns is called an epoch. After each

epoch, the MSE is used in an algorithm to alter the weights and biases of the NN,

so as to minimize the errors. Ideally, the MSE should reach zero, which indicates

that the NN has ”learned” for each input to provide the given output.



3.2. NN-TRAINER PL 71

The structure of the neurons and the way they are connected define the network

architecture. There exists a large number of network architectures and training

algorithms for each architecture. A few examples are linear filters, backpropagation,

radial basis and self-organizing maps. The provided information in this section have

provided an overview of the key concepts of NNs for following the case study used

in this work. For a more detailed discussion on NN theory, see [HDB96].

Figure 3.3: An artificial Neural Network

3.2 NN-Trainer PL

The case study used in this work involves the development of a Neural-Network

Trainer Product Line (NN-Trainer PL). The NN-Trainer is a software for the in-

stantiation and training of NNs. From the brief background information on NN

theory it should have become clear that there exist many hard requirements for a

NN-Trainer PL.

For the design of a NN, one needs to define a large amount of parameters for each

network architecture (network topology, neuron distance, transfer function, etc.).

Depending on these parameters, the NN must also be initialized, which again can be

performed in a variety of ways. Furthermore, there exist a large number of training

algorithms (Levenberg-Marquardt, Gradient Decent, Bayesian Regularization, etc.).

Additionally, suitable performance functions must be available (Mean Square Error,

Mean Average Error, etc.).

For certain network architectures, a training needs at least a set of training patterns.

The latter must be somehow imported into the system in order to be used in the

training process. In most cases, some kind of pre-processing of the training patterns

is required. Depending on the size of the NN, the training may require very large

amounts of computer memory, thus needing to be done in parallel, in a computer

network. There is also need for the trained NN to be exported, so as to be integrated

in other software applications.



72 CHAPTER 3. CASE STUDY

In addition to all the above requirements, a NN-Trainer must also be efficient, robust

and it must be easy to operate by providing visual aids and templates for the design

of NNs, as well as feedback of the NN performance during training.

The author has been professionally involved with the development and extension of

NN-Trainer systems in the Department of Modeling and Simulation of the University

of Jena, Thueringen. The projects in which the author took part involved, among

others, the use and extension of industrial NN tools, e.g. the MATLAB Neural

Network Toolbox [TM06], as well as open source tools, like the Stuttgart Neural

Network Simulator (SNNS) [oS06] and in-house developed NN-Trainer systems.

The NN-Trainer PL case study presented in this work models a complete environ-

ment for the design and training of NNs. The PL possesses more than 85 distinct

features. Appendix A shows the initial FM of the NN-Trainer PL. The NNs devel-

oped with the resulting PL products can be applied to diverse problems, both in

the research and industrial field. The development of the NN-Trainer PL has been

exclusively performed with the method developed in this work. The implementation

of the PL is based on the MATLAB Neural Network Toolbox. The basic functional-

ity of MATLAB and the Neural Network Toolbox have been utilized as a platform

for the implementation of various components for the NN-Trainer PL. The features

developed in this case study are listed below.

• Train-Start

• Train-Restart & sub-features

• Train-Stop & sub-features

• Train-Resume

• NN Periodic Save & sub-features

• NN-Activation

• Train-Statistic - Resources & sub-features

• Algorithm - Levenberg-Marquardt

• Train-Mode - Network

• NN-Export - Compiler - C++

The developed components are written partially in the MATLAB programming lan-

guage, but mainly in C++ in the Microsoft Visual Studio development environment.



3.2. NN-TRAINER PL 73

The overall size of the components reaches approximately 12KLOC. The develop-

ment effort was approximately 1 man-year.

Products of the NN-Trainer software are currently used in the University of Jena for

the parallel training of very large feedforward backpropagation NNs for the solution

of diverse problems. More precisely, one of the PL products for the training of large

NNs in a computer network is used for the resolution of an inverse electromagnetic

problem for the medical domain [Inn06].

It can be concluded that the NN-Trainer PL case study is suitable for the application

of the proposed method. The system illustrates significant variability, both in the

design and training process of a NN. The NN-Trainer case study reaches a level of

complexity so as to be challenging, but does not grow over the available resources of

this work. The case study has been driven by the quality requirements posed in an

industrial environment, e.g. for the medical domain. Products of the NN-Trainer

PL have been tested in a real-world context. This fact provided very useful feedback

during the development of the proposed method and contributed significantly to its

maturation.



Chapter 4

The Feature-Architecture

Mapping Method

The solution for a stronger feature-architecture mapping is provided by means of the

new Feature-Architecture Mapping (FArM) method. As identified in section 2.6,

features should pose the driving force for the development of a PL. Therefore, the

new method must set as its primary goal the derivation of architectural components

from the PL features. Ideally, a one to one relation should exist between features

and components. In real life though, this is not always feasible. This is mainly

due to feature scattering and tangling. More precisely, the implementation of a fea-

ture’s application logic is scattered throughout numerous architectural components.

Moreover, the implementation of many features can be tangled within one architec-

tural component. This phenomenon may occur due to the inherent complexity of

features or their mere scattered nature, e.g. in the case of quality features. Nonethe-

less, the phenomenon of feature scattering and tangling mainly has its roots in the

non-feature-centric approach to system design. A solution to this problem would

consequently be a balanced mix between components relating directly to customer

features and components that are derived from a pure architectural perspective.

This set of components does indeed allow a one to one mapping to a PL FM. More

precisely, to a transformed FM.

4.1 Overview

FArM receives as input an initial FM and produces as output the system’s software

architecture. More precisely, a transformed FM is developed as well as one architec-

74



4.1. OVERVIEW 75

tural component for each feature of the transformed FM. These components are also

mapped to a concrete software architecture, e.g. through the use of architectural

styles (sect. 4.6). Each of the produced components implements the application

logic of one feature and their communication reflects the feature interaction. The

features of the initial FM are linked to components through a finite number of trace-

ability links. Traceability links contain the rationale for any transformations that

occurred to a feature. Consequently, one can select an initial feature and trace it

down to one component or at most to a few components. Goal of FArM is to achieve

a one to one relation between features of the initial FM and an architectural compo-

nent. Although this is not always feasible, in order for FArM to approach this goal

as much as possible, only the absolutely necessary transformations are performed on

a feature. That is, features are only transformed, if the transformation considerably

improves the system’s maintainability and does not break the system’s conceptual

integrity. Nonetheless, the features of the transformed FM have a one to one relation

to the architectural components. Therefore, FArM achieves a direct mapping for all

features of the transformed FM and also a direct mapping for a large number of the

initial features. In general, a stronger mapping is achieved between features and the

architecture in comparison to the state of the art methods.

Prerequisites

The initial FM may be constructed with any domain analysis method available

to the developers, as long as it is confined to the scoped PL domain and defines

the requires and excludes relations between the features. Note that the method

makes no assumptions of the features’ nature or their hierarchy relations. The

initial features may be of any kind, e.g. quality or functional features or they may

represent special characteristics of the system, e.g. supported hardware or operating

systems. Additionally, the hierarchy of the initial FM does not need to conform to

any norms, i.e. features may have super-feature o sub-feature relations or they may

have no hierarchy at all, e.g. can be provided simply as a list. For representative

examples of the specification of a few features identified in the NN-Trainer case-study

refer to Appendix B.

A FArM prerequisite is the requires and excludes relations between the features.

As mentioned in section 2.1, these relations are used during the instantiation of PL

products for the selection of features. Because the ultimate goal is to define archi-

tectural components that also reflect feature interactions, it is of vital importance

to know which features require others and which features may not coexist in a prod-



76 CHAPTER 4. THE FEATURE-ARCHITECTURE MAPPING METHOD

uct. These relations have a direct influence on the component interfaces. These

minimal requirements placed upon the initial FM give great versatility to the users

of FArM regarding the selection of the domain analysis method and thus, broaden

the applicability of the FArM method itself.

Phases

The transition from the initial FM to the final transformed FM is an iterative process

consisting of four phases, where the first three phases are distinct transformations

as shown in fig. 4.1. The developers begin with transformation 1 (Trans. 1) and

iteratively progress to the next transformations building a small part of the sys-

tem’s architecture in each iteration. If during a later transformation an omission

or inconsistency in a previous transformation is detected, the developers return to

that transformation, fix the problem and again work their way through the rest of

the transformations to the point where they were before. This iterative approach

of FArM is consistent to the state of the art development methodologies, e.g. to

the Rational Unified Process or to spiral models of development, which combine the

benefits of a waterfall and a pure iterative approach.

The first FArM transformation handles Non-Architecture-Related (NAR) and Qual-

ity features. Goal of this transformation is to resolve any non-functional features,

thus producing a FM with features whose responsibilities can be expressed as some

sort of function and are thus implementable.

The second transformation handles Architectural Requirements. Goal of this trans-

formation is to add new functional features or extend existing features to satisfy

requirements not visible from the customer perspective, rather from the architect’s

point of view. This allows the enhancement of the FM to include aspects of the sys-

tem important to the system architects. This transformation also contributes to the

aforementioned balanced mix between the customer and architectural perspectives.

These first two transformations deal with the identification of most of the features

needed to implement an architecture that tightly maps to the PL features. For each

of these features a respective architectural component has been developed, whose

specification matches the one of the feature it is implementing. The next transfor-

mation builds upon these components by defining and optimizing their interfaces.

The third transformation identifies and resolves feature interactions. The identifica-

tion of feature interactions is based both on the domain specific feature communica-

tion needs, as well as the FM hierarchy structure. The identified feature interactions



4.1. OVERVIEW 77

Figure 4.1: FArM phases

are then resolved and optimized. This transformation effectively contributes to the

decoupling of the respective architectural components and the enhancement of the

system maintainability. The optimization of the feature interactions has also a posi-

tive impact on the communication between the respective architectural components.

It contributes to the encapsulation of components and the enhancement of the sys-

tem’s variability. Based on the various feature interactions, interfaces are derived

for the respective architectural components.

When the developers reach the architecture development phase, the system compo-

nents have been derived along with their interfaces. The developers, if they haven’t

already done so in previous iterations, should decide for a specific PL architecture.

For example, they may decide to make use of either the Layers, Microkernel or

Blackboard architectural style for the PL and place each of the derived components

within this architectural context. This process will effectively add more architecture

related interfaces to some of the components, e.g. if the Microkernel architectural

style is chosen, the components should receive methods for dynamic loading and

termination. Finally, during the implementation of the components new interfaces

may be added or omissions may be identified, which in turn lead back to one of the

transformations.

Note that the FMs produced after each transformation are not discarded after the

completion of the FArM development process. On the contrary, they are preserved as

a documentation of the various transformations of the initial FM and as a mapping

between features of the initial FM and the software architecture. This is achieved

through the various traceability links created through the application of the elemen-

tary transformations on features as shown e.g. in fig. 4.2.



78 CHAPTER 4. THE FEATURE-ARCHITECTURE MAPPING METHOD

Organization

The application of the FArM method is facilitated within an organizational context.

More precisely, the aforementioned ”FArM developers” must be a compound team

of feature analysts and system architects. The former have profound knowledge of

the domain analysis techniques and preferably also of the domain itself. Their re-

sponsibilities are the creation of the initial FM and their collaboration throughout

the transformations in the FArM phases, mainly on the more abstract feature level.

The system architects on the other hand are concerned with the component devel-

opment and the PL architecture. They work primarily on the architecture level.

Nonetheless, the cooperation of these professionals is of great importance. They

must be able to communicate the information gained from the feature or architec-

tural level to the other party. This collaboration will provide vital feedback for the

decision-making process regarding system maintainability, variability and the sys-

tem’s conceptual integrity. The roles of each party will be noted where appropriate

during the detailed discussion of the intricacies of the FArM phases in the upcoming

sections.

4.2 Elementary Transformations

Before delving into the details of the FArM transformation phases, a discussion of

the transformations that may be directly performed on a feature that is provided. In

each of the FArM transformations, only a small number of elementary transforma-

tions is allowed to be performed on any feature. These are shown in table 4.1. The

FArM elementary transformations are an instrument in the hands of the develop-

ers to promote a structured development approach throughout the transformation

phases. In each phase, the elementary transformations are allowed to be performed

only to features of specific nature and always in the same manner. This assists the

developers significantly in the decision-making process during the transformation

phases. It enforces the proper handling of features, protecting them from erroneous

transformations that may, e.g. completely remove a feature, which is valuable to a

system stakeholder.

The simplest of all elementary transformations that may be performed on a feature

is the Direct transformation. If a feature needs to be transformed and that feature

has no influence on other features, then it is directly removed from the FM and

instead, a traceability link is added between that feature and the root feature of

the transformed FM, as shown in fig. 4.2. Examples of such features are hardware-



4.2. ELEMENTARY TRANSFORMATIONS 79

Elementary Transformations

Transformation Description
A feature is directly removed from the FM

Direct without influencing other features and a traceability
link is created between the feature and the root feature
of the transformed FM
A feature’s specification is merged with the specification

Merge of another feature and a traceability link is created between
the two features in the transformed FM
A feature is transformed through the creation of new

Create features to implement the feature’s specification.
Traceability links are created between the feature and
each of the newly created features in the transformed FM

Table 4.1: FArM Elementary Transformations

related features that have no influence on the software architecture. This elementary

transformation guards against the complete removal of a feature without leaving any

trace in the system. Each feature in the initial FM is important to a PL stakeholder

and therefore, its removal from the system must be treated with caution. The

addition of the traceability link in this elementary transformation saves at least the

rationale behind the removal of the feature and thus allows the indirect involvement

of the feature in the system development process.

Figure 4.2: Direct Elementary Transformation

The Merge elementary transformation is applied to features that cannot be imple-

mented as is and could or must be integrated with other features. Representative

examples are quality features. In such cases, the feature specification is merged

with the specification of other features and traceability links are added to each one

in the transformed FM (fig. 4.3). This elementary transformation guards against

redundancy during component derivation. If a feature cannot be implemented di-

rectly or it influences a large part of the system, then it is initially checked if it can

be merged with other functional features that perform similar operations and could

logically be extended to support some other operation. This limits the number of

components effectively derived and thus guards against an explosion of the number

of features/components in the system. Of course, such transformation must also be

used with caution, so as not to break the system’s conceptual integrity, e.g. a feature



80 CHAPTER 4. THE FEATURE-ARCHITECTURE MAPPING METHOD

should not be merged with another if this means that the other feature would need

to perform an operation unrelated to its current functionality.

Figure 4.3: Merge Elementary Transformation

The Create elementary transformation handles the instantiation of new features

based on the transformed feature. This transformation may be triggered for a num-

ber of reasons. It may be applied when a feature is identified to have unrelated or

too many responsibilities. Additionally, there may exist other requirements on the

system, not identified during the domain analysis, which need to be added to the

system in the from of features, e.g. architectural requirements. Finally, it may be

the case, that the aforementioned transformations do not suffice for a feature’s com-

plete transformation. In each of these circumstances, new features are created to

satisfy the specification of the transformed feature and traceability links are added

between them (fig. 4.4). When applied properly, this transformation contributes to

the enhancement of the system’s maintainability, since it handles inconsistencies in

the derived component responsibilities, thus enhancing their encapsulation. It also

allows the integration of non-customer related system requirements into the system

design and handles them on the feature level. This contributes additionally to a

balanced mix of customer and architectural features.

Figure 4.4: Create Elementary Transformation

There exist a few general rules for the applications of the elementary transforma-

tions. At first, one or more of the elementary transformations can be applied for

the transformation of a feature, i.e. the specification of a feature may be divided

into parts and each of these parts is then transformed using a different elementary

transformation. Furthermore, a feature specification must be considered for trans-

formation with each of the elementary transformations in the aforementioned order,

i.e. the specification should be initially examined if it can be directly transformed,



4.3. NAR & QUALITY FEATURES 81

then merged in other features and finally, if new features can be created. Note, that

these three transformations together cover all possible scenarios for the transfor-

mation of a feature. Detailed examples of each of the elementary transformations

and their application on specific features are given throughout the discussion of the

FArM phases in the following sections.

4.3 NAR & Quality Features

This first transformation is concerned with the resolution of all Non-Architecture-

Related (NAR) and Quality features. Goal of this transformation is to create a FM

where only functional features are present. This will increase the likelihood of a

direct implementation of each transformed feature in an architectural component,

since they would then represent functional attributes of the system.

4.3.1 Non-Architecture-Related (NAR) Features

FArM strives to remain independent of the domain analysis method used. This

broadens the applicability of the FArM method. For this reason, no assumptions

are made regarding the nature of the features present in the initial FM. Therefore,

it may be the case that features having no impact on the software architecture of

the system are present in the initial FM. These features are referred to in FArM as

Non-Architecture-Related or for short, NAR features. Goal of this transformation is

to identify such features and ”resolve” them. With the term ”resolve” it is meant

that these features are transformed in FArM in order to be satisfied and effectively

removed from the FM.

NAR features, as mentioned earlier, are features having no direct impact on the

software architecture of the PL. Arguably, every feature has some effect on the

architecture of a system regardless if it is e.g. a purely hardware-related feature.

FArM though is concerned with the software architecture of the PL. Therefore, a

NAR feature is such a feature that has a minimal impact on the software of the PL

system, although it might have a larger impact on another aspect of the system.

A rule of thumb to determine if a feature has a direct influence on the software archi-

tecture is to ask the question: ”If a component was to implement that feature, which

responsibilities would this component have?”. If the answer to this question cannot

be unambiguously given, then it is most likely that this feature is a NAR feature.

Because of the minimal effect that NAR features have on the software architecture



82 CHAPTER 4. THE FEATURE-ARCHITECTURE MAPPING METHOD

of the PL, they are entirely transformed with the direct elementary transformation

(sect. 4.2). NAR features are thus removed from the FM and traceability links are

added between the features and the root feature of the transformed FM to hold the

transformation decisions and rationale.

In addition to the above rule of thumb, FArM identifies three categories of NAR

features as shown in table 4.2. The categories physical, external and business cover

practically all NAR features encountered throughout the various case studies where

FArM has been applied. The following sections will take a closer look at each of

these categories.

Non-Architecture-Related Categories

Category Description
Physical Features related to hardware aspects of the system

External Features related to services or resources used by the PL software

Business Features related to business aspects of the system

Table 4.2: NAR feature categories

Physical NAR Features

Physical NAR features are the features that represent a hardware part of the system.

Such features are often important to PL customers and are encountered frequently

in the domain analysis process and thus in the initial FM. Physical NAR features

are identified depending on their relation to hardware and the impact this hardware

has on the software architecture of the system. Physical NAR features should be

completely transformed with the direct elementary transformation (sect. 4.2) alone.

If this is not possible, then the developers should reconsider the nature of the feature

at hand, since this is an indicator that the feature may belong to another NAR

category or even not be a NAR feature at all.

For the NN-Trainer case study (chapter 3), physical features were encountered in the

Hardware - CPU, RAM, Network Adapter feature hierarchy (fig. 4.5). These

features indicate the hardware needs a NN-Trainer system has. The CPU and

RAM feature specifications contain the minimal CPU performance and amount

of RAM needed, e.g. during the training of a NN. These two features are also

mandatory, i.e. they must always be selected from the PL customer. During product

instantiation, the available CPU and RAM of the customer’s hardware platform,

where the NN-Trainer system is to run, is checked against the minimal requirements



4.3. NAR & QUALITY FEATURES 83

defined by the CPU and RAM features respectively.

The optional Network Adapter feature indicates that the NN-Trainer system

may need to have a network connection in order to operate properly. The feature

also provides the requirements placed upon the network connection. The Network

Adapter feature is present, because a NN-Trainer product may be licensed for use

in a network environment. In this case, a network connection must be present for

the product to boot and operate. For this scenario, the Network Adapter feature

also defines the minimum speed the network connection should have, e.g. proper

operation of the software is guarantied with a 56Kbps modem connection.

Figure 4.5: The Hardware feature hierarchy is composed of Physical NAR
features

It is clear that these features are purely hardware related. In the NN-Trainer case

study, the CPU and RAM features refer merely to the minimal requirements of

the computer system upon the NN-Trainer is to run. The NN-Trainer system is

designed to run on powerful PCs and therefore, CPU and RAM considerations have

a small influence on the system’s software architecture.

The identification of features as being physical NAR features may at first glance

seem to be a simple process of just identifying if a feature represents hardware

rather than software. In practice though, caution is required. As already men-

tioned, NAR features should have minimal or ideally, no impact on the software

architecture. In practice, many physical aspects of a system may have enormous

impact on the software architecture. This is especially true for embedded systems,

where limited resources are available. This fact denotes the importance of a precise

feature specification. The latter is a vital precondition for the identification of the

proper nature of a feature by the PL developers.

For the NN-Trainer case study, the fact that the system is to operate on powerful

PCs with the minimal requirement of a modem connection limits the impact that the

available CPU, RAM and network adapter have on the system’s software architec-

ture. A counter-example that denotes the importance of hardware related features

can be found in the application of FArM on the domain of mobile phones [SRP06].

In this case study, the Battery feature was examined. In the context of mobile



84 CHAPTER 4. THE FEATURE-ARCHITECTURE MAPPING METHOD

phones, the Battery feature refers to the characteristics of the battery performance

of the mobile phone product. Among others, the required battery-life duration is

specified in this feature. During the NAR FArM transformation phase, one could

identify the Battery feature at a first glance as being a physical NAR feature. This

is false. The Battery feature in the context of mobile phones is a functional feature

that needs to be partially implemented in an architectural component.

Mobile phones are embedded systems built to operate for long periods of time. Data

transmission in a wireless network requires battery power, especially in case of a

”weak” network connection. Additionally, battery duration is an important purchase

criterion for many mobiles phone users. Therefore, the Battery feature specification

imposes the application of hard algorithms on the entire software system for the

optimization of battery performance. For example, unnecessary network traffic must

be minimized, while connection policies and server-side software must contribute

to the optimal management of bandwidth. In the mobile phone PL a Battery

component is needed to manage network traffic, while parts of the Battery feature

specification must also be implemented as server-side software components.

External Features

It is not seldom that features in an initial FM relate to services or resources that are

not provided by the PL, rather by a third party. Such features are present because of

completeness purposes or because of their influence on other features and the PL in

general. These features are referred to as External features in FArM. Like in the case

of physical NAR features, external features may have some influence on the overall

system architecture, but still have no direct influence on its software architecture, i.e.

they have no direct influence on the major software components and their interfaces.

External features are primarily identified by the fact that they are not implemented

in the PL itself, although they are present in the FM. External features must be

completely transformed with the FArM direct elementary transformation.

In the NN-Trainer case study, the mandatory OS - Windows feature hierarchy (fig.

4.6) is identified to be composed of external features. The OS (Operating System)

feature represents the software platform upon which the NN-Trainer is to operate.

The NN-Trainer PL developers, in collaboration with the application engineers of

the NN-Trainer system have early made the decision to support only the Windows

platform. This decision is based on the fact that a stable API is provided for the

various windows versions, as well as on the market segment covered by this operating

system. The development costs for supporting other OS platforms and at the same



4.3. NAR & QUALITY FEATURES 85

time providing satisfying performance, e.g. for the UNIX, Linux and Macs OSs,

would exceed the project’s budget.

Figure 4.6: The OS feature hierarchy as External NAR features

The OS - Windows feature hierarchy is present in the initial FM to indicate the

fact that the NN-Trainer system is available only for the Windows platform, i.e.

for completeness purposes. Additionally, these features do indeed influence the gen-

eral system architecture, but not directly its software architecture. The features

are transformed with the use of managerial solutions, i.e. the decision to use the

C++ .NET framework and partially the Windows API. Note that the use of these

technologies does influence the software components, but on a lower implementation

level. These technologies have neither a direct influence on the PL components’

application logic, nor the interfaces derived from this logic.

The identification and transformation of external features also needs consideration.

One should not confuse external features with features related to external systems.

An example is the NN-Trainer PL feature hierarchy NN-Export - Compiler -

Java, C++, etc. (fig. 4.7). This feature hierarchy indicates that the NN-Trainer

system provides a function to export trained NNs. This is achieved through the

generation of C++ or Java source code, which can be compiled by the respective

compilers. These features allow the integration of trained NNs into C++ and Java

applications.

The NN-Export feature hierarchy obviously depends on external services and re-

sources provided by the C++ and Java compilers. Nonetheless, the source code for

these compilers must be generated by the PL system. This is the responsibility of

the aforementioned features. Therefore, these features might at first glance seem to

be external features, but in reality they are functional features, each requiring an

architectural component for its implementation.

Business Features

In the initial FM there may also be the case that a number of business-related fea-

tures are present. These are primarily features that are of vital importance for the



86 CHAPTER 4. THE FEATURE-ARCHITECTURE MAPPING METHOD

Figure 4.7: The NN-Export feature hierarchy

marketing and management stakeholders of the PL. Such features are referred to as

Business features in FArM. As in the previous NAR categories, business features are

directly transformed, since they have no direct influence on the PL software archi-

tecture. The primary transformations applied to business features are of managerial

nature.

In the NN-Trainer case study the Competitive Market Price feature was present

in the initial FM (fig. 4.8). This feature indicates the fact that the NN-Trainer

products must provide a better performance to cost ratio, compared with other sim-

ilar products of the competitors. This is a critical feature for the financial viability

of the PL. This feature has been added from the marketing department of the PL.

Such a feature has a wide impact on the overall PL system. It influences the size

of the investment made and the amount of available resources, ranging from the

number and qualifications of the developer team, up to the tools that may be used

for system development. Nonetheless, for the NN-Trainer PL the system software

architecture is not directly influenced by the Competitive Market Price feature.

Figure 4.8: The Competitive Market Price feature

As already mentioned, business features are transformed mainly through the use

of managerial solutions. For the NN-Trainer Competitive Market Price feature,

the decisions are made to perform periodical risk analysis and to add a small number

of experienced developers to the NN developer team. The periodical risk analysis

will have the effect of the early identification of erroneous development decisions

and their timely resolution. This practice guards against problems occurring at the

beginning of development, when the cost of correction is still small compared to a

later point in time. Acquiring experienced developers saves a large amount of devel-

opment time, since they contribute to the efficient resolution of problems early in the

development cycle. The latter also reduces the development costs and consequently



4.3. NAR & QUALITY FEATURES 87

the final market price of the PL product. These actions effectively allow the direct

transformation of the Competitive Market Price feature and its removal from

the FM after the first transformation phase. As already described in sect. 4.2, a

traceability link between the feature and the root feature of the transformed FM is

added, which also contains the previously mentioned actions taken for the feature

transformation, as well as the underlying rationale of the transformation.

4.3.2 Quality Features

The quality attributes of a software system are of great importance for its stakehold-

ers. If a system satisfies the functional requirements placed upon it, but does not also

satisfy the quality requirements related to this functionality, then it is considered

to have failed its purpose. Additionally, the quality attributes of a system can be

easily understood by most of the system stakeholders, e.g. by customers, managers

or the marketing department. Because of these two characteristics, quality features

are almost certainly present in initial FMs.

Quality features have normally a broad impact on the software system. Therefore,

they cannot be implemented directly in an architectural component. In order to

achieve a direct mapping between features and the architecture, quality features

should be appropriately handled. In FArM, quality features are identified and re-

solved. Like in the case of NAR features, the resolution of quality features involves

the satisfaction of their specification and their removal from the initial FM.

The versatility of FArM regarding the preconditions placed upon the initial FM is

also evident in the identification of quality features. FArM does not impose any lim-

itations on the identification of quality features. This can be based on any standard

available to the PL developers. For example, the quality views and models defined in

the ISO 9126 standard [ISO01] can be readily used with FArM. Nonetheless, quality

features must be quantitatively defined, i.e. their specification must clearly indicate

in what ways quality features influence the functionality of the software. This does

not mean that the quality features’ specification must also provide a functional so-

lution for their application, rather the constraints placed upon the functionality of

the system. If no such quantitative specifications are provided for quality features,

then they must be created at this point. The FArM developers may use the profiles

method, as described in the QASAR method (sect. 2.7).

The resolution of quality features must take place through the combination of the

FArM elementary transformations (sect. 4.2). More precisely, the specification of



88 CHAPTER 4. THE FEATURE-ARCHITECTURE MAPPING METHOD

each quality feature is broken down into parts, upon which the elementary transfor-

mations can be applied. The FArM elementary transformations are applied in the

order given in table 4.1. A part of the specification of a quality feature is initially

considered for direct transformation. If this is not possible, then the developers

consider the possibility of merging this part of the specification into pre-existing

functional features. If these transformations fail, then new features should be cre-

ated to satisfy this part of the quality feature’s specification.

This iterative process for the transformation of quality features allows the resolution

of quality features on the feature level. The consistent work on the feature level

enhances the system’s conceptual integrity, since all derived components originate

from the FM. For instance, the utilization of design patterns for the resolution of

quality features does provide adequate solutions, but also causes the addition of

architectural components, which may not directly relate to features. This in turn

diminishes the conceptual integrity of the software system.

There is actually a resemblance between the utilization of design patterns and the

FArM create elementary transformation, which is used to create new functional

features. Both approaches introduce new architectural components in the system

originating from a quality feature. The difference between the two approaches lays

on the fact that the FArM created components directly relate to features that are

important to the system architects and have been approved by the feature analysts.

In the case of design patterns, the new architectural components are exclusively

related to the architectural perspective and have no relation to any comprehensible

feature. This deteriorates the conceptual integrity of the system.

Recoverability

In the NN-Trainer case study the developers utilized the ISO 9126 standard for the

identification of quality features. Consequently, the system was examined from the

perspective of reliability. This refers to the probability with which software will not

cause the failure of a system for a specified time under specified conditions. This

probability is a function of the inputs to and use of the system, as well as a function

of the existence of faults in the software. From the reliability quality view the

developers concluded that the capability of the NN-Trainer system to re-establish a

specified level of performance and recover the data directly affected in the case of a

failure, is of vital importance. This is especially the case during the training of large

NNs for long periods of time, where a failure of the software and inability to recover

from the failure would lead to very high costs. For this reason, the developers added



4.3. NAR & QUALITY FEATURES 89

the Recoverability feature in the initial FM (fig. 4.9).

Figure 4.9: The Recoverability quality feature

The specification of the Recoverability feature is given below (see also Appendix

B):

”The NN-Trainer system shall periodically save the state of a NN during its train-

ing. The amount of time between the saving process shall be flexible and shall be

determined by the user upon the initialization of the training. A NN training shall

be able to be resumed from the saved training state...”

It is clear that the feature’s specification is indeed quantitatively defined, as required

by the FArM method. The specification clearly states the influence of the Recover-

ability feature on the functional aspects of the system, namely, the saving of a NN’s

state during training and the ability to resume a training from that state. Note also

that the feature’s specification does not provide any concrete functional solutions for

the implementation of the feature, rather it merely defines the influence this quality

feature has on the NN training process. Since the Recoverability feature satisfies

the FArM requirement of being quantitatively defined, the developers may proceed

with its resolution.

The aforementioned feature specification is broken down into parts upon which the

FArM elementary transformations are applicable. The specification parts, the ele-

mentary transformations used and the related features are shown in table 4.3. The

Recoverability feature specification is broken down into two parts, the one refer-

ring to the saving of a NN’s training state and the one referring to the ability to

resume a NN training. For the first part of the specification referring to the saving of

a NN’s training state, both the merge and create FArM elementary transformations

are applied. The merge transformation affects the Train Start feature and the cre-

ate transformation causes the addition of the new NN Periodic Save feature. For

the part of the specification relating to resuming a NN training from a saved state

the create elementary transformation is used and the new Train Resume feature

is added to the FM.

The Train Start feature has already been identified during the domain analysis

process and is therefore present in the initial FM (left part of fig. 4.10). The

feature indicates the basic ability of the user to start the training of a NN. This



90 CHAPTER 4. THE FEATURE-ARCHITECTURE MAPPING METHOD

Recoverability Transformation

Transformation Feature Specification Part
”The NN-Trainer system shall periodically

merge Train Start save the state of a NN during its training.
The amount of time between the saving process

create NN Periodic shall be flexible and shall be determined by the
Save user upon the initialization of the training”

create Train Resume ”A NN training shall be able to be resumed
from the saved training state”

Table 4.3: Transformation of the Recoverability quality feature

feature is directly affected by the first part of the Recoverability quality feature’s

specification referring to resuming a NN training. The Train Start feature handles

the initialization of a NN training and consequently also takes part in resuming a

NN training. The specification of the feature is extended to indicate also that the

transformed Train Start feature must be able to start a training for a new NN and

for a partially trained NN, effectively resuming its training. A traceability link is

added between the initial FM and the transformed FM to hold the aforementioned

rationale. Eventually, the resulting Train Start architectural component will be

responsible for starting the training of a new NN and triggering the resuming a NN

training.

Figure 4.10: The Recoverability quality feature transformation with
traceability links

The Train Start feature has a clear responsibility and is important to the PL

stakeholders. It is therefore not possible to extend it in such a way that it can

completely satisfy the first part of the Recoverability feature’s specification. This

would lead practically to a considerably altered feature, compared to the Train

Start feature of the initial FM. This guided the developers to create a new functional

feature. The new feature is given the name NN Periodic Save. The specification of

this new feature is identical to the part of the Recoverability feature’s specification.

A traceability link is added between the two FMs (fig. 4.10) and a new architectural

component is created for the implementation of the NN Periodic Save feature.



4.3. NAR & QUALITY FEATURES 91

The second part of the Recoverability feature’s specification shown in table 4.3 is

resolved through the creation of a new functional feature. The newly created Train

Resume feature is responsible for taking the proper steps and actually resuming a

NN training from a previously saved state. It is clear that the respective component

must communicate with the NN Periodic Save component to achieve this task. The

whole process will be initiated from the Train Start component. The combination

of these features completely satisfies the Recoverability feature, which is no longer

present in the transformed FM.

Efficiency

Based on the ISO 9126 standard, the Efficiency quality feature was identified during

the domain analysis process for the NN-Trainer PL (fig. 4.11). The Efficiency

quality feature refers to the capability of the software product to provide appropriate

performance, relative to the amount of resources used under stated conditions. This

feature’s specification is given as follows:

”The NN-Trainer PL shall provide appropriate response, processing times and through-

put rates, while using certain amounts and types of resources for each of its functions

under stated conditions...”

Figure 4.11: The Efficiency quality feature

It is clear from the above definition that this feature is not quantitatively defined,

which is a vital precondition for its transformation in FArM. For this reason, the

QASAR profiles method can be used as described in section 2.7. For this purpose,

the Efficiency quality feature’s specification is broken down into two parts. The

first part refers to the time behavior of the NN-Trainer system and the second part

to its resource utilization. For these parts, the developers define a set of usage

scenarios with concrete values in each case. A sample of the usage scenarios for the

Efficiency feature’s specification is shown in table 4.4.

After the feature is quantitatively defined, the developers must apply the FArM

elementary transformations in the order given, namely, first examine if the parts

of the feature’s specification can be directly resolved, if they can be merged with

existing functional features and finally, if new functional features must be created to

satisfy the specification. In the Efficiency feature’s specification, the time behavior



92 CHAPTER 4. THE FEATURE-ARCHITECTURE MAPPING METHOD

Efficiency Scenarios

Specification Scenario
”The instantiation of a NN with less than 10000
parameters shall not last more than 5ms”

Time Behavior ”The time required for one training epoch of a NN with
less than 10000 parameters with the Levenberg-Marquardt
algorithm shall not last mor than 5s”
”The size of a NN with 10000 parameters shall not

Resource Utilization exceed 15KB”
”The training of a NN with less than 10000 parameters
shall not require more than 50MB of memory”

Table 4.4: Scenarios for the Efficiency quality feature specification

part can be directly resolved through the use of a compiled programming language,

instead of an interpreted language. The developers decide to use the C++ compiler

for the development of the system, rather than the Java programming language.

This solution does not directly affect the high level software architecture of the

system and also none of the features of the initial FM, although this decision has a

large impact on the implementation details of the PL.

The direct resolution for the time behavior part of the feature’s specification does

not provide its complete resolution. The Efficiency scenarios are then examined

individually for their resolution with the merge and create FArM elementary trans-

formations.

The first scenario is satisfied with the merge elementary transformation. The speci-

fication of each feature taking part in the instantiation process of a NN is extended

to include the limitations posed by the efficiency scenario. For example, the Ini-

tialization feature (fig. 4.12), which is responsible for providing initial values to

the weights and biases of a NN is extended, so as to operate within the given time

limits. The resulting Initialization component must perform the initialization of

a NN with less than 10000 parameters (weights+biases) within 1ms. This limitation

has an impact on the algorithms used for the initialization and their implementation

within the component.

The second scenario is resolved with the merge elementary transformation. In this

case, all features taking part in the training of a NN are affected. For instance,

the Levenberg-Marquardt (fig. 4.12) feature’s specification is extended so as to

impose the training of a NN within 5ms per epoch.

The third scenario refers to the resource utilization required of the NN-Trainer PL.

Again each feature related to the instantiation of a NN must be adapted to the

needed size limits. An example can be found in the Topology feature (fig. 4.12).



4.4. ARCHITECTURAL REQUIREMENTS 93

Figure 4.12: Partial view of the features involved in the resolution of the
Efficiency quality feature

This feature defines the position of each neuron of a NN, as well as the overall NN

architecture. This information in the resulting component must not exceed, e.g.

5% of the allowed 15KB. For instance, a proprietary binary format for saving this

information could be used within the component.

The last scenario is also satisfied with the merge elementary transformation. More

precisely, the features related to the training of a NN are extended, this time to

retain the amount of memory under the 50MB limit. One of the features affected

is the Transfer Function feature (fig. 4.12). This feature is responsible for the

algorithms used during the activation and training of a NN (capt. 3). The feature’s

specification is extended to illustrate the fact that the feature will not use more than

5MB of memory for the various variables needed for the application of the transfer

function.

Note that no new functional features were needed for the Efficiency feature’s trans-

formation. The direct and merge elementary transformations suffice for its complete

resolution. The feature’s specification is partially directly transformed and the rest

of its specification, namely, the usage scenarios, are merged with the related PL

functional features.

4.4 Architectural Requirements

Ideally, at this point of the overall FArM method all quality and non-architecture-

related feature should have been effectively resolved. This implies that the trans-

formed FM after the first transformation phase contains only functional features.

Furthermore, for each of these functional features an architectural component has

been derived having a specification identical to the one of the feature whose appli-

cation logic it is implementing.



94 CHAPTER 4. THE FEATURE-ARCHITECTURE MAPPING METHOD

In order to obtain a strong mapping between features and the architecture, ideally,

all components derived at this stage of FArM should also compose the final PL ar-

chitecture. Unfortunately, in practice this is not always feasible. There may exist

pure architectural aspects of the system that need to be taken into consideration

for the development of a robust and maintainable architecture. This thesis is also

supported by most of the state of the art PL methods, e.g. in the case of the FAD

solution domain entities (sect. 2.4.7). More precisely, it is sometimes unavoidable

to introduce entities in a software architecture that are related directly to the archi-

tectural requirements of a system. These entities play in most cases a crucial role

in the maintainability and flexibility of the system.

Therefore, a compromise between a purely feature-oriented and a solution-domain-

oriented architecture must be achieved. FArM strives to achieve a balance between

these two views in this second transformation phase based on Architectural Require-

ments.

In the second FArM transformation phase (fig. 4.1) the architectural requirements

of the PL system are handled. Like in the case of the quality features’ resolu-

tion, the architectural requirements of the PL system are gathered from the PL

developers and their specification is examined based on the elementary FArM trans-

formations. Consequently, some parts of the specifications are directly resolved,

others are merged with the specifications of pre-existing functional features, while

others are satisfied through the creation of new functional features. It may also be

the case that a combination of elementary transformations is applied to the same

specification part, as was the case for the Efficiency quality feature (sect. 4.3.2).

This similar methodical approach promotes the consistency of the FArM method.

Furthermore, FArM supports the resolution of architectural requirements either in

pre-existing or in new functional features. In the former case, the architectural

requirements become an integral part of a feature, without considerably changing

its original purpose. In the latter case, new functional features are created, which

are comprehensible from the system architects, but have also been approved from

the feature analysts and should therefore be also comprehensible by most of the PL

stakeholders. This fact enhances the mapping between features and the architecture,

since the derived architectural components are tightly related to aspects valuable to

the system stakeholders, while at the same time they satisfy important architectural

aspects of the system.



4.4. ARCHITECTURAL REQUIREMENTS 95

Matrix Library

One of the architectural requirements placed upon the NN-Trainer PL is the de-

velopment of a library for matrix operations. The system architects identified the

intense matrix manipulation operations required for the implementation of many

parts of the NN-Trainer system, e.g. for the creation of training and validation

patterns or for the training of the NNs themselves.

Like in the first transformation phase, the FArM elementary transformations are

applied sequentially to this architectural requirement, i.e. first the requirement

is considered for direct transformation, then for merging with existing functional

features and finally the creation of new functional features is considered.

In the case of the Matrix Library architectural requirement the FArM direct resolu-

tion is solely needed to be applied. For this architectural requirement the decision

was made to purchase a third-party library for matrix operations. The decision was

based on the effort and cost needed to write a high performance matrix manipula-

tion library, compared to the cost of purchasing an existing one. The third-party

library is purchased along with its source code for the case of customizations. In the

NN-Trainer case study, the Matrix TCL Pro library was used [Ltd06].

External License Manager

Another architectural requirement placed upon the NN-Trainer PL is the use of an

external license management technology for the licensing of NN-Trainer products.

This architectural requirement expresses the need to use a third party solution for the

implementation of licensing in the NN-Trainer system. This need arises for a variety

of reasons. On the one hand, the use of a third party solution leads to the reduction

of the development costs of the system. On the other hand, it also increases the

quality of the product, since the used technology must respectively fulfill high quality

standards and is thoroughly tested in an industrial environment. This architectural

requirement defines additionally that the FLEXlm license manager [Mac05] must

be supported in the first version of the NN-Trainer system, but it should also be

possible to switch to another external license manager product with relatively small

effort.

This architectural requirement is resolved through the use of the FArM elementary

transformations. At the beginning, the specification of the architectural requirement

is examined for direct resolution, i.e. if it can be satisfied without influencing any

features of the current transformed FM. The developers realized that no direct res-



96 CHAPTER 4. THE FEATURE-ARCHITECTURE MAPPING METHOD

olution of this architectural requirement is possible. For example, the requirement

specification cannot be resolved through the use of managerial or organizational

solutions.

Since the architectural requirement cannot be directly resolved, the developers pro-

ceed to the resolution of the requirement by merging it with existing functional

features. For this elementary transformation the developers identified the License

feature, which is present in the transformed FM (fig. 4.13). The License feature

was already part of the initial FM and was not affected by the first FArM trans-

formation phase. This feature specifies the licensing scheme required by the owners

and marketing department of the PL. More precisely, it indicates that each product

of the PL must be licensed. This can be seen from the mandatory nature of the

License feature. Additionally, the internal specification of the feature dictates that

a customer of the PL must register his/her product based either on a single, group

or network license scheme. This includes e.g. key-generation, implementation of

encryption algorithms, license file management, etc. For a more formal specification

of the Licence feature refer to Appendix B.

Figure 4.13: The License feature used for the resolution of the External
License Manager architectural requirement

Through the FArM elementary transformation, the specification of the architectural

requirement is merged with the specification of the License pre-existing functional

feature. The specification of the License feature has indicated until this point

in time that the feature should provide a licensing mechanism for the NN-Trainer

system. This responsibility is now delegated to the external license manager and the

License feature specification is altered. The feature now refers to the encapsulation

of the NN-Trainer system from the external license manager software. From an

architectural perspective, the component which is derived from the License feature

will have the responsibility of providing a layer between the NN-Trainer system and

the external license manager, thus providing the desired flexibility. This can be

shown in the case of the FLEXlm license manager.

The FLEXlm license manager is based, as most license manager software, on an

SDK (Software Development Kit) and a set of tools to impose a licensing scheme.

The SDK provides a simple way of integrating code constructs into the source code

of the software to be license-protected. This is done in the case of the FLEXlm



4.4. ARCHITECTURAL REQUIREMENTS 97

software through special method calls. These method calls are used to enclose

code fragments implementing a feature that needs to be protected (listing 4.1). The

FLEXlm method-calls handle the communication with a license server, which checks

the access rights of a user to the protected feature. The tools provided by the license

manager software include the actual license server, key-generation, the mapping of

keys to features, as well as the management of licenses and users.

Listing 4.1: FLEXlm macros

1 #inc lude ” lmpo l i cy . h”

3 i f (CHECKOUT(LM RESTRICTIVE, ” f e a tu r e ” , ” 1 . 0 ” , ” l i c e n s e . dat” ) ){
PERROR(”Checkout f a i l e d ” ) ;

5 e x i t (−1);

}
7

// Checkout succeeded

9 // Actual a p p l i c a t i o n code here

11 CHECKIN( ) ; // Done with ” f e a t u r e ” , check i t back in .

The responsibility of the component implementing the License feature is now the

implementation of specific method-calls that are to replace the ones provided by

the FLEXlm SDK. The License component would then internally place the actual

calls to the FLEXlm software. This effectively protects the rest of the system from

changing upon switching to another license manager and thus satisfies the posed

architectural requirement.

Network Training

The software architects identified, based on their experience, that some training

algorithms require a large amount of memory in order to operate. The amount of

memory needed even for medium-sized NNs exceeds by far the RAM of a single

PC. This fact led to the architectural requirement of training NNs within a network

environment.

This architectural requirement is initially examined for direct resolution. During

this examination, it becomes clear that a large amount of data must be transferred

on the network environment upon which the NN-Trainer is to operate. For this

reason it is decided that a broader network bandwidth is required for the proper



98 CHAPTER 4. THE FEATURE-ARCHITECTURE MAPPING METHOD

operation of a network training. During the resolution of the Hardware feature

hierarchy, described in section 4.3.1, it was identified that the system needed merely

a modem connection to operate properly. This requirement was captured in the form

of a traceability link between the Network Adapter feature and the NN-Trainer

root feature of the transformed FM (sect. 4.2). This traceability link specification

is effectively changed in this transformation phase to indicate the new requirements

of the system. More precisely, the minimum network requirements of the system are

now increased to at least a 56Mbps DSL connection. This constraint contributes

partially to the realization of the training of NNs in a PC network.

Nonetheless, this architectural requirement cannot be completely resolved through

the direct elementary transformation alone. The architects, in cooperation with the

feature analysts, examine if there are existing functional features, which can be used

for the actual implementation of the network training. This search unfortunately

yields no features that are closely related to this architectural requirement and could

thus take on the responsibility of implementing this architectural requirement.

It is clear at this point that a new feature must be added to the NN-Trainer FM for

the resolution of the Network Training architectural requirement. The PL developers

create the new Train-Mode feature hierarchy shown in fig. 4.14. The Train-Mode

super-feature refers to the environment in which a training takes place. This can be

either a single PC, indicated by the PC feature or on a Network environment. The

marketing department made the decision to promote this functionality in separate,

i.e. a customer can train a NN either on a single PC or on a PC network, which is

indicated by the cardinality of 1.

Figure 4.14: The Train-Mode feature hierarchy

The Network feature in the Train-Mode hierarchy has now the responsibility of

performing the intensive operations needed by the algorithms, e.g. matrix inversions.

Additionally, the derived component must perform the network communication and

synchronization between the different NN-Trainer instances.

For example, if a customer selects the Network feature, then many instances of the



4.5. FEATURE INTERACTION 99

NN-Trainer can be started on different networked PCs. The NN-Trainer instance

that initiates the training of a NN can then use the other NN-Trainer instances to

invert a large matrix. The matrix inversion is performed by the Network component

of each instance.

The component derived from the PC feature provides a simple version for the com-

pletion of the algorithm intensive operations, e.g. a local, one-PC matrix inversion.

The component derived from the Train-Mode feature is responsible for providing

an abstract interface for the algorithm intensive operations and for delegating the

operations to the selected component. Additionally, the Train-Mode component is

responsible for making sure that the operations needed for a specific NN training

are possible in the present mode.

For example, if a large NN must be trained with a training algorithm that requires a

matrix inversion, just before the NN instantiation, the Train-Mode component will

be notified to check if the matrix inversion is possible for the given NN size and NN

training algorithm in the current mode. If the response is negative, then the user

will be notified to upgrade his/her product with the Network feature, in order to

perform this training. If the response is positive, the NN will be instantiated and

trained. During the training, the Train-Mode component will be called upon for

the matrix inversion, which will propagate the call to the component that had been

selected during the NN configuration, i.e. either the PC or Network component.

4.5 Feature Interaction

After the first two transformation phases of the FArM method, there should exist

ideally only functional features in the transformed FM. Furthermore, there should

exist a balance between problem and solution domain related features. For each one

of the features of the transformed FM, one architectural component must have been

derived, who’s specification reflects the specification of the feature it is implementing.

Traceability links connect the features of the initial FM with those of the transformed

FM.

All these factors provide a strong feature architecture mapping, but there exists one

more factor that can further increase this mapping. Namely, the feature interaction

(sect. 4.5.1). The communication needs between the features of the transformed

FM can also be mapped to the respective architectural components in the form of

component interfaces. This is performed in FArM through a series of discrete steps:



100 CHAPTER 4. THE FEATURE-ARCHITECTURE MAPPING METHOD

• Identification of Feature Interaction

• Optimization of Feature Interaction

• Interface Derivation

The first step of this transformation phase focuses on the identification of the in-

teractions that exist between the features of the transformed FM. These interacts

relations are indicators of the main communication needs between the features and

respectively, between the architectural components. In the next step, the feature

interactions are optimized. This is a vital precondition also for the optimization

of the architectural component communication. This step contributes to the en-

hancement of the system maintainability and variability through e.g. decoupling

and encapsulation of tightly coupled features with a high change probability. Fi-

nally, the interacts relations between the features are used to derive interfaces for

the architectural components. Each of the steps of the third FArM transformation

phase is described in more detail in the following sections.

4.5.1 Identification

Feature interaction is identified in FArM through the utilization of two constructs

that are naturally present in a FM. Namely, interacts relations and hierarchy rela-

tions. Nonetheless, neither interacts relations, nor hierarchy relations can be used

for the identification of feature interaction in their present form.

Interacts relations have been seen in existing works as an indirect influence between

features (sect. 2.7). The concept of interacts relations in FArM is generalized to

include any direct and indirect influence that a feature may have on another feature

in the FM. Based on this generalization, three types of interacts relations can be

identified as shown in table 4.5.

Interacts Relation Types

Type Description
A feature requires the functionality of another

Uses feature in order to operate properly and this
functionality is readily provided by the other feature

Extends A feature requires functionality from another feature,
which is not readily provided by that feature

Runtime Excludes Leads to the runtime exclusion of one of
the features that participate in the relation

Table 4.5: FArM Types of Interacts Relations

These three types of interacts relations cover the entire probability space from the



4.5. FEATURE INTERACTION 101

point of view of the functionality that a features may require or provide. Uses inter-

acts relations cover all cases where the functionality needed is also readily provided

by another feature. Extends interacts relations cover all cases where more function-

ality is required, leading to the extension of a feature and respectively to a change

of the feature’s behavior. Runtime excludes interacts relations cover all cases where

less functionality is required, leading to the exclusion of functionality provided by

another feature at runtime and thus also changing the feature’s behavior.

The last two types of interacts relations can be and are transformed to uses interacts

relations in FArM (see upcoming sections for details). This is possible, because in

the case of an extends interacts relation, functionality is added to a feature, which is

then simply used by the feature that required it. In the case of the runtime excludes

interacts relations, a new feature can be added to decide which of the interacting

features should be excluded at runtime. This feature uses the functionality of the

interacting features and therefore resolves the runtime excludes interaction.

The transformation of the types of interacts relations to uses interacts relations

allows the direct derivation of component interfaces. For instance, a feature using

the functionality of another enables the addition of an interface to the component

that implements that feature. Therefore, the feature interaction can be directly

mapped to the architecture and thus enhance the feature-architecture mapping.

Apart from interacts relations, FArM utilizes hierarchy relations for the derivation

of component interfaces. In most of the state of the art domain analysis methods,

hierarchy relations are used to indicate a strong logical connection between the

features participating in the relation. This logical connection is in most cases of

pure structural nature. Nonetheless, a more strict definition of hierarchy relations

can also allow the utilization of hierarchy relations for the derivation of component

interfaces. In FArM, a hierarchy relation is used again as a structural element, but

this time complying to exactly one of the types shown in table 4.6.

Hierarchy Relation Types

Type Description
Aggregation The sub-feature is a part of its super-feature
Specialization The sub-feature is a more concrete instance

of its super-feature

Table 4.6: FArM Types of Hierarchy Relations

These two constraints placed upon hierarchy relations have a direct association to

the architectural perspective of a software system, e.g. to object-oriented develop-

ment principles. Under these circumstances, hierarchy relations can be also used,



102 CHAPTER 4. THE FEATURE-ARCHITECTURE MAPPING METHOD

like interacts relations, for the direct derivation of component interfaces. For in-

stance, if a feature is composed of a number of sub-features, then the respective

super-feature architectural component can operate as a facade for the sub-feature

derived components, i.e. the component uses the functionality of the other compo-

nents to fulfill its facade responsibility. In the case of specialization, the component

implementing the super-feature may also operate as a switch mechanism or it may

hold the common functionality of the sub-feature components. Thus, the FArM hi-

erarchy relations can be directly translated to interfaces for the component derived

from a feature hierarchy.

This transformation step is performed with the following process: Initially, the ex-

tends and runtime excludes interacts relations are identified and transformed to uses

interacts relations. Afterwards, based on the FArM definition of hierarchy relations,

all pre-existing hierarchy relations of the FM are examined for validity. The hier-

archy relations not complying to the FArM definition are effectively ”broken” and

uses interacts relations are placed between the separated features and their former

super-feature. This process leaves only valid hierarchy relations and uses interacts

relations in the FM.

After this transformation step, all feature interaction has been identified and cap-

tured in the form of interacts and hierarchy relations. In the next transformation

step, the feature interaction is optimized with focus on maintainability and variabil-

ity. The following sections present the aforementioned process of this transformation

step in more detail.

Uses Interacts Relations

Uses interacts relations exist between features, when one feature requires the func-

tionality of another feature in order to operate properly and this functionality is

readily provided by the feature. An example of such an interacts relation can be

found between the features related to the training of a NN in the NN-Trainer case

study.

During the supervised training of a NN, a training pattern must be presented to the

input of the NN and the NN must be activated to provide an output for this pattern.

This output is compared to the expected value and based on a performance function,

the deviation from this value is calculated. The calculated deviation is then fed into

a training algorithm that adjusts the weights and biases of the NN, so as to minimize

the error.



4.5. FEATURE INTERACTION 103

The PL developers examine this training scenario to identify interacts relations.

Uses interacts relations exist between features that generically provide functionality

needed by other features. Figure 4.15 shows the uses interacts relations identified

in the NN-Trainer case study, based on the above scenario. Note that the figure

shows a compact view of the FM, including only the features directly involved in

the above scenario, along with their super-features. Extra details, e.g. cardinalities,

other sub-features, etc., are excluded from the figure.

Figure 4.15: NN-Trainer uses interacts relations

As shown in fig. 4.15, the Train-Start feature coordinates the training of a NN.

It triggers the NN activation by signaling the NN-Activation feature. The latter

retrieves the current training pattern from the Pattern-Format feature and cal-

culates the NN output. The result is returned to the Train-Start feature, which

now triggers the MSE feature. MSE stands for Mean Square Error and the MSE

feature is the one that implements the performance function and calculates the de-

viation from the expected value. Finally, the Levenberg-Marquardt feature is

responsible for calculating and updating the weights and biases of the NN.

Each of the aforementioned features generically provides the functionality, which

is demanded from it. This can be found in their specification. For instance, the

Pattern-Format feature is responsible for importing files and converting them

into input patterns. It is also responsible for providing these patterns to any other

feature that needs them. The same holds for the other features presented in this

scenario. If a feature requires this readily available functionality, then the features

are said to have a uses interacts relation.

In the given example, there existed only unidirectional uses interacts relations. Nev-

ertheless, uses interacts relations may also be bidirectional, e.g. in the cases where

two features require functionality from each other in order to operate properly.

As already mentioned, this is the main kind of interaction that may eventually be



104 CHAPTER 4. THE FEATURE-ARCHITECTURE MAPPING METHOD

present in a FArM FM. This type of interaction indicates the actual communication

needs between two features and can be directly used for the derivation of component

interfaces. The interacts relations presented in the following section are transformed

to uses interacts relations.

Extends Interacts Relations

Extends interacts relations exist, when a feature requires functionality from another

feature, which is not readily provided by that feature, consequently leading to the

extension of the feature. In other words the feature’s behavior is change in some

way due to the presence of the other feature. This kind of interacts relation is shown

in the context of an example from the NN-Trainer case study.

During the second transformation phase in section 4.4, the specification of the Li-

cense feature was enhanced to satisfy the External License Manager architectural

requirement. This enhancement raised the need for each feature of the PL to be

license-protected through the inclusion of special method-calls, as shown in listing

4.1. Thus, the License feature indirectly affects all other features of the PL. It en-

forces that each feature interacts with it in order to operate. This can be expressed

graphically in FArM as shown in fig. 4.16. The asterisk of fig. 4.16 indicates that

each other feature of the FM (not explicitly shown in the figure) has an extends

interacts relation to the License feature. The + sign above the arrow is used to

indicate the extension made to the uses interacts relation of fig. 4.15.

Figure 4.16: NN-Trainer extends interacts relations

For example, the Levenberg-Marquardt algorithm feature must interact with the

License feature in order to operate. This implies that the Levenberg-Marquardt

feature must be extended, so as to provide the functionality needed by the License

feature. This kind of interacts relation is said to be an extends interacts relation.

Like in the case of uses interacts relations, extends interacts relations can be either

unidirectional or bidirectional.

The extends type of interacts relation is transformed to a uses interacts relation

in FArM. This is the simple process of extending each feature’s specification with



4.5. FEATURE INTERACTION 105

the specification of the interacts relation and choosing the right direction for the

interaction based on the features’ needs.

For the example of the License feature, all feature specifications that have an ex-

tends interacts relation are extended to indicate that they must use the License

feature functionality for the enforcement of the licensing policy. Thus, the extends

interacts relations are transformed to uses interacts relations pointing to the Li-

cense feature, as shown in fig. 4.17. The direction of the interacts relation is set

by the fact that the License feature needs to have no knowledge of which features

make use of its functionality, while all other features do need to known the provider

of the functionality.

Figure 4.17: Transformation of the extends interacts relations

Runtime Excludes Interacts Relations

A runtime excludes interacts relation is an interacts relation that leads to the run-

time exclusion of one of the features that take part in the relation. As in the case of

extends interacts relations, again the presence of another feature practically influ-

ences the behavior of the feature. An example of such an interaction can be found

between the MSE and MAE features of the NN-Trainer FM.

As shown in the example for the uses interacts relations, the MSE feature imple-

ments the algorithm that defines the performance of a NN during its training. The

MAE feature stands for Mean Average Error and refers to another performance

function that may be selected for the training of a NN.

Figure 4.18: NN-Trainer runtime excludes interacts relation

When the Train-Start feature in fig. 4.15 needs to trigger the calculation of the



106 CHAPTER 4. THE FEATURE-ARCHITECTURE MAPPING METHOD

NN training performance, it must ”know”, which feature is responsible for this

calculation. Since both the MSE and MAE features provide this functionality and

they may both be present in the system, it must be distinguished at runtime, which

of the features is to be activated.

This case illustrates a runtime excludes interacts relation. If it is not clear, which of

the MSE and MAE features is to be activated, then the behavior of the system is

unpredictable. Therefore, only one of the MSE and MAE features can be active at

runtime. In other words, the two features are mutually exclusive at runtime. This

kind of interacts relation is shown graphically in fig. 4.18. The - sign in the relation

indicates the runtime mutual exclusion of the two features.

In contrast to the two previous types of interaction, runtime excludes interacts

relations are always bidirectional, i.e. both features that take part in such a relation

influence the other feature.

Similarly to the extends interacts relations, the runtime excludes interacts relations

are transformed to uses interacts relations. For this purpose, a new feature is cre-

ated to decide at runtime, which of the alternatives is to be activated at runtime.

The runtime excludes interacts relation is then replaced by a uses interacts relation

pointing from the new feature to the alternatives.

In the case of the MSE and MAE features, a new Performance feature is added

with the responsibility to activate the proper feature at runtime (fig. 4.19). This

feature must be configured by the user before the training of the NN with the proper

performance function.

Figure 4.19: Transformation of the runtime excludes interacts relation

Finding Interacts Relations

The PL developers are guided by the FArM interacts relation types to find the

interactions between the features in the FM. This process is rather domain specific

and therefore cannot be entirely methodized. Nonetheless, a number of guidelines

can be provided that further support the finding of interacts relations.



4.5. FEATURE INTERACTION 107

One obvious approach is to utilize domain knowledge. The feature analysts can

identify feature interactions by making use of their experience in the domain. An-

other approach is the utilization of the requires relations. Requires relations are very

frequently created during the domain analysis process and are generically supported

by numerous domain analysis methods, e.g. FODA [KCH+90]. The requires rela-

tions are in most cases indicators of uses interacts relations. Feature multiplicities

can also serve as indicators of feature interactions. Features having a multiplicity

of 1..* and are part of a FArM aggregation hierarchy relation, are likely to have

uses interacts relations with each other. Features having a multiplicity of 1..* and

are part of a specialization hierarchy relation, must have FArM runtime excludes

interacts relations with each other. The former case is a natural consequence of an

aggregation hierarchy relation. Features taking part in such a relation most often

cooperate to accomplish a complex task. The latter case is a definite indicator for

a runtime excludes interacts relations, since the features perform similar tasks in

different ways. An example of such a case was seen in the MSE and MAE feature

hierarchy.

Additionally, the feature analysts can take advantage of the system use cases. Exam-

ining use case scenarios may bring numerous interactions to the surface, belonging

to any of the three FArM types. An example of the identification of uses interacts

relations was given for the NN training use case scenario.

The architecture team may also use its architectural expertise to identify interactions

between components in the architectural level. For example, the Network component

introduced during the resolution of the network training architectural requirement

(sect. 4.4) could lead to the identification of interactions between the Network

feature and other features implementing memory intensive algorithms.

The whole searching process can be further supported through simple searching

tools. For example, the PL developers may utilize a text searching tool that will run

through the feature specifications and search for similar lexical structures, e.g. nouns

and adjectives or verbs and adverbs. Similar lexical constructs between different

feature specifications indicate possible interactions, which can then be more closely

examined for classification into the FArM interaction types.

Hierarchy Validation

After finding feature interactions based on the types of interacts relations, the PL

developers concentrate on the identification of feature interactions on the basis of

hierarchy relations. In order to accomplish this task, all pre-existing hierarchy rela-



108 CHAPTER 4. THE FEATURE-ARCHITECTURE MAPPING METHOD

tions are examined for validity based on the FArM definition for hierarchy relations.

Namely, a hierarchy relation must have a structural role, but only in the form of ei-

ther an aggregation or a specialization. Additionally, in the case where a feature has

more than one hierarchy relation, the type of the hierarchy relations must remain

consistent throughout. For example, if a feature has an aggregation relation with

one of its sub-features, then it must not have a specialization relation to any of its

sub-features.

This extra restriction placed upon hierarchy relations focuses on the enhancement

of the system’s maintainability and the preservation of the system’s conceptual in-

tegrity. On the one hand, the component derived from the super-feature of an invalid

hierarchy relation has a number of different responsibilities, depending on the spec-

ification of its sub-features. The fulfilment of these responsibilities increases the

complexity of the derived components, thus reducing their maintainability. On the

other hand, the inconsistencies that arise have a negative impact on the system’s

conceptual integrity.

Invalid hierarchy relations are broken and the sub-features of the relation are placed

under the root feature of the FM. Additionally, a uses interacts relation is created

between the single features and their former super-feature. The semantics of the

interacts relation should reflect the semantics of the broken hierarchy relation. The

direction of the interacts relation depends from the case at hand. This is done

due to the fact that the broken hierarchy relation indicates some kind of domain-

specific relation between the features, which must be taken into consideration during

the development process. The interacts relation created during the breaking of

an invalid hierarchy relation plays an important role during the next step of this

transformation phase, when the optimization of the hierarchy relations takes place

(sect. 4.5.2). During that transformation step, the interacts relation can be used to

properly order the single feature under its former super-feature.

In the NN-Trainer case study, the initial FM has been developed based on the

FODA domain analysis method. The latter has the notion of hierarchy relations

similar to the aggregation/specialization concepts of FArM [PS94]. An example of

an aggregation hierarchy relation from the NN-Trainer case study is shown in fig.

4.20. This example shows that the Neural Network feature is composed of a

number of elements, e.g. a Neuron Distance, a Topology, etc.

An example of a specialization hierarchy relation is given in fig. 4.21. The Import

feature refers to the ability of the NN-Trainer to import patterns and NNs of specific

format. Both Pattern-Format and NN-Format are special types of importing,



4.5. FEATURE INTERACTION 109

Figure 4.20: An aggregation hierarchy relation

i.e. pattern-importing and NN-importing respectively.

Figure 4.21: A specialization hierarchy relation

An example of an invalid hierarchy relation is found under the Pattern-Format

feature of the Import feature hierarchy. Fig. 4.22 illustrates the Pattern-Format

hierarchy in more detail. This feature hierarchy does not comply to the FArM

definition of a hierarchy relation, given at the beginning of this section. Namely,

the hierarchy relations of the super-feature with its sub-features are not consistent.

The Binary and Text features represent specialized pattern formats, whereas the

Pattern-Format feature has an aggregation relation to the Structure feature.

The latter indicates solely that the pattern format can be structured with spaces,

newlines, etc. Thus, the Pattern-Format feature has both an aggregation and

specialization relation with its sub-features.

Figure 4.22: An invalid hierarchy relation

The hierarchy relation is broken according to the aforementioned FArM rule, placing

the Binary, Text, ... features as single features under the NN-Trainer root

feature. Additionally, a uses interacts relation is created between the features and

the Pattern-Format feature (fig. 4.23). In this case, the direction of the interacts

relation targets the single features and eventually results in the Pattern-Format



110 CHAPTER 4. THE FEATURE-ARCHITECTURE MAPPING METHOD

component effectively using e.g. the Text component for importing a textual training

pattern.

Figure 4.23: A broken invalid hierarchy relation

4.5.2 Optimization

At this step of the third FArM transformation phase, ideally, all feature interactions

have been captured in the form of valid hierarchy and uses interacts relations between

the features of the FM. The goal of this transformation step is to optimize the feature

interaction. This is done through a number of processes attempting to achieve the

right balance between uses interacts relations and hierarchy relations.

Although both kinds of relations are indicators of feature interaction in FArM, they

do possess different properties. Hierarchy relations have, additionally to interacts

relations, also a structural role. This structural role of hierarchy relations is trans-

lated on the architectural level as increased encapsulation and decoupling, thus

enhancing the system maintainability and variability. A few examples are the use

of super-features for the derivation of components that act as containers of common

sub-feature functionality, for the encapsulation of the components implementing its

sub-features or as components that act as switches between them.

Interacts relations on the other hand, may reach across the hierarchy structure and

directly connect two features. This direct connection is translated on the architec-

tural level as a direct communication between the respective components, which in

some cases may increase the performance of the system in time or resource-critical

situations. Nevertheless, this performance increase is most frequently accompanied

by a maintainability penalty.

During the identification of feature interactions the main activity was the creation

of uses interacts relations and the breaking of invalid hierarchy relations. These

processes lead normally to an asymmetry between the number of these two kinds



4.5. FEATURE INTERACTION 111

of relations. Thus, this transformation phase strives to effectively restore a balance

between them by increasing the number of hierarchy relations and at the same time

decreasing the number of uses interacts relations.

This is done through the following processes:

• Hierarchy Relation Derivation

• Hierarchy Relation Enhancement

• Normalization of Interacts Relations

The first process of Hierarchy Relation Derivation is concerned with the utilization

of the existing uses interacts relations for the derivation of hierarchy relations. This

process directly reduces the number of uses interacts relations, while increasing the

number of hierarchy relations. The second process of Hierarchy Relation Enhance-

ment is concerned with the merging of the remaining uses interacts relations with

existing hierarchy relations. This process reduces the number of uses interacts re-

lations, while maintaining a stable number of hierarchy relations. Finally, in a last

effort to further reduce the number of uses interacts relations, the remaining fea-

tures are examined for high interaction with other features based on their number

of interacts relations and are respectively transformed. Each of these processes are

described in detail in the following sections.

Hierarchy Relation Derivation

The first process of this transformation step is the derivation of hierarchy relations

based on interacts relations. This transformation process provides an immediate

transformation of interacts relations into hierarchy relations. This fact allows even-

tually the derivation of components that can enhance the maintainability of the

system by e.g. encapsulating the components derived from their sub-features. Ad-

ditionally, the reduction of interacts relations leads also to the minimization of com-

ponent communication across the software system. The structural cohesiveness of

the system is thus increased.

The derivation of hierarchy relations is performed through the examination of all

existing interacts relations. The PL developers attempt to identify interacting fea-

tures, which also comply to the FArM hierarchy types. Namely, aggregation or

specialization. If there do exist features that have both an interacts relation and

also a logical aggregation or specialization relation, then the interacts relation is a

good candidate to be transformed into a hierarchy relation.



112 CHAPTER 4. THE FEATURE-ARCHITECTURE MAPPING METHOD

The probability of interacting features having also a logical aggregation or special-

ization relation at this point in FArM is not minimal. On the contrary, there may

exist numerous cases where this phenomenon exists. This is due to the fact that

FArM does not make any assumptions of the domain analysis method used for the

development of the initial FM. Because of this, the identification of interacts rela-

tions did not take into consideration the hierarchy structure of the FM. Thus, there

may exist several features whose interacts relations can be directly transformed into

a hierarchy relation.

The transformation of an interacts relation to a hierarchy relation is done based

on the semantics of the logical relation between the features, the direction of the

interacts relation and possible pre-existing hierarchy relations that each of the fea-

tures may have. Based on the semantics of the logical relation between the two

features, the one specializing or being aggregated from the other should be placed

as a sub-feature. Based on the direction of the uses interacts relation, the feature

being used should be placed as a sub-feature under the feature using it. In the case

of bidirectional interacts relations, the PL developers must base their decision on

the specialization or generalization relation alone. Finally, the validity of the pre-

existing hierarchy structure for each of the features must be preserved. For example,

a feature already having a specialization relation may only receive a new sub-feature

if it can also have a specialization relation with that feature. If this is not directly

possible, new features must be added to preserve the validity of the pre-existing

hierarchy structure.

Examples of the aforementioned cases can be found in the NN-Trainer case study.

Fig. 4.24 illustrates the derivation of a specialization relation. At the left part of

the figure, the Template feature under the Neural Network feature refers to the

ability of the system to provide templates for the design of a NN. The importance of

this feature is also evident from the fact that it is a mandatory feature. Namely, the

Template feature significantly reduces the effort of setting the right parameters for

a NN for a variety of NN architectures. In order for the feature to accomplish its task,

it has two uses interacts relations with the Feed-Forward and Self-Organizing

features respectively. The latter can set the right parameters for the instantiation of

NNs, complying to the feed-forward backpropagation and self-organizing maps NN

architectures.

In this transformation process, the PL developers identify that there exists a spe-

cialization relation between the three features. More precisely, the Feed-Forward

and Self-Organizing features are both special cases of the Template feature. Ad-



4.5. FEATURE INTERACTION 113

Figure 4.24: Derivation of a specialization hierarchy relation

ditionally to the nature of the specialization relation, the direction of the interacts

relations indicates that the features are to be placed as sub-features of the Tem-

plate feature. Furthermore, the validity of the pre-existing hierarchy relations of

all three features is not broken. Thus, the interacts relations between the features

are transformed into hierarchy relations, as shown in the right part of fig. 4.24. The

Feed-Forward and Self-Organizing features become sub-features of the Tem-

plate feature. The cardinality of 1..* is also added for domain specific reasons,

i.e. a customer may select during the configuration of a product either the Feed-

Forward or Self-Organizing features or both.

An example for the derivation of an aggregation hierarchy relation can be found

during the examination of the interacts relations of fig. 4.23. These interacts re-

lations resulted from the breaking of the invalid hierarchy relations between the

Pattern-Format feature and the Binary, Text, ... features respectively. The

PL developers identify in this case that there does exist a logical relation between

these features, i.e. a specialization relation. For example, a pattern can be of binary

format. Therefore, the interacts relations should be transformed to specialization

hierarchy relations. Additionally, based on the direction of the interacts relations,

the Binary, Text and ... features should be placed as sub-features under the

Pattern-Format feature. Nonetheless, this transformation cannot be directly per-

formed, since this would break the validity of the pre-existing hierarchy relation of

the Pattern-Format feature with the Structure feature.

As already mentioned, in such cases FArM dictates the addition of a new feature to

enable the creation of the hierarchy relation. In this example, the Pattern-Format

feature is transformed to the more general Pattern feature and a new Format

feature is added under this feature, as shown in fig. 4.25. Now, the Binary, Text

and ... features can be placed as sub-features under the new Format feature. The

interacts relations are transformed to hierarchy relations and the validity of the

hierarchy structure is preserved, i.e. the general Pattern feature has now only

aggregation hierarchy relations to its Format and Structure sub-features. For a

more formal specification of the Pattern feature refer to Appendix B.



114 CHAPTER 4. THE FEATURE-ARCHITECTURE MAPPING METHOD

Figure 4.25: Derivation of an aggregation hierarchy relation

Hierarchy Relation Enhancement

During the derivation of hierarchy relations, interacts relations were directly trans-

formed into hierarchy relations. This process led to an immediate reduction of the

number of interacts relations and to an increase in the number of hierarchy rela-

tions. This fact localized feature interactions to small hierarchy structures, while

minimizing interactions across the system. The Hierarchy Relation Enhancement

transformation process focuses on the merging of interacts relations with existing

hierarchy relations. The main goal of this process is to further reduce the number

of interacts relations and thus increase system maintainability.

FArM defines an interacts relation delegation process for the enhancement of hier-

archy relations. During this process, interacts relations are delegated to features

higher on the FM hierarchy and their hierarchy relations are respectively enhanced.

Such a hierarchy enhancement is shown in fig. 4.26. In the left part of the figure, the

sub-feature (lower feature) has an interacts relation to another feature. The latter

can be any other feature of the FM, e.g. even a neighbor sub-feature. On the right

part of the figure, this interacts relation is delegated to the super-feature (upper

feature) and the hierarchy relation between the features is enhanced.

Figure 4.26: Hierarchy enhancement

This enhancement enables the PL developers to decide which percentage of the

feature interaction specification is to be performed by the super-feature and which

percentage should be delegated back to the sub-feature. For example, if the super-



4.5. FEATURE INTERACTION 115

feature is to act as a facade or as a switch, then most of the interacts relation

specification is merged with the hierarchy relation. If the super-feature is meant

to further encapsulate the sub-feature by performing e.g. some kind of information

pre-processing, then it receives a larger part of the feature interaction and the rest

is used to enhance its hierarchy relation to the sub-feature.

The interacts relation delegation process begins by the ”lowest” features of the FM

and works its way up the FM hierarchy towards the root feature. Now the question

arises, when the delegation process should cease. The answer to this question is:

When there are no more additional benefits from the application of the delegation

to higher levels.

Theoretically, if the delegation process is applied throughout the entire FM, then

communication would be performed only through hierarchy relations. For example,

if a feature on a lower level needs to communicate with another feature on another

branch, then it should send a message to its super-feature, that to its super-feature,

etc., until the message reaches the root-feature and then the hierarchy-chain down

again to the desired feature (fig. 4.27).

Figure 4.27: Feature interaction exclusively through hierarchy relations

This kind of communication has the advantage of high encapsulation, but on the

cost of performance. It is evident that a balance must be found between performance

and maintainability. Experience with FArM has shown that the optimal point to

cease the application of the delegation process is the one where the super-feature

acts merely as a facade or a switch for its sub-features. In this case, no further

information encapsulation can be performed in the next higher layer. At this point,

the continuance of the interacts relation delegation process ceases to provide any

further maintainability advantages through encapsulation and decoupling.

These various patterns of communication that occur during the application of the

interacts relation delegation process are possible, because of the nature of the FArM

hierarchy relations. That is, the specialization and aggregation hierarchy relations

between features enable the super-feature to take on some of the interactions of its

sub-features. This facilitates the provision of a natural encapsulation and/or vari-



116 CHAPTER 4. THE FEATURE-ARCHITECTURE MAPPING METHOD

ability mechanism on the architectural level, through the derivation of components

from the super and sub-features.

An example of the application of the interacts relation delegation process is shown in

fig. 4.28. The figure shows a part of the interacts relations for the training of a NN

(sect. 4.5.1). In the left part of the figure, the Train-Start feature interacts with

the Levenberg-Marquardt feature for the activation of the training algorithm for

a given NN. The application of the FArM interacts relation delegation process leads

to the redirection of the interacts relation to the super-feature of the Levenberg-

Marquardt feature, i.e. the Algorithm feature. Through this delegation, the

Algorithm feature receives the extra responsibility to identify and activate the

right training algorithm. On the architectural level, the Algorithm component will

provide a switch mechanism between the various algorithms. The same component

could also e.g. perform some kind of data pre-processing before activating certain

algorithms. This fact allows the easier accommodation of new training algorithms

and even the dynamic switching between them, thus increasing the components’

maintainability and variability.

Figure 4.28: Interacts relation delegation

Note also that although it is possible, there is no point into further applying the

interaction delegation process in the above example. Yet another interaction del-

egation would lead to the creation of an interacts relation between the Neural

Network and Algorithm features. In such a case, the interacts relation would

be entirely merged with the hierarchy relation, as shown in fig. 4.29. This would

now imply that the Neural Network feature is responsible for notifying the Al-

gorithm feature to activate the proper training algorithm. Such a communication

path for the activation of the proper training algorithm does not further encapsu-

late the training algorithms, rather just adds additional overhead in the activation

process. Thus, the level of the Algorithm feature is the proper one for ceasing the

interaction delegation process.



4.5. FEATURE INTERACTION 117

Figure 4.29: Improper continuance of the interaction delegation process

Normalization of Interacts Relations

At this stage of the feature interaction phase, several of the interacts relations have

been either transformed to or have been merged with hierarchy relations. In a last

attempt to further reduce the number of interacts relations, FArM performs a per

feature normalization of interacts relations.

In this transformation process, features having a large number of interacts relations

are examined for transformation. A large number of interacts relations indicates

that a feature has a lot of dependencies on the other features of the FM. Respec-

tively, the architectural component derived from this feature will also have the same

dependencies from the other components in the system architecture. If the feature

has a high change probability in the future, then it is likely that these changes prop-

agate to the dependant architectural components in the software architecture. This

fact has a negative influence on the system’s maintainability.

In such cases, the FArM create elementary transformation is applied. With this

elementary transformation new features are created to take on the responsibilities

of the original feature. Through this transformation, the overall number of interacts

relations remains constant, while the per feature number of interacts relations is

normalized. This has in turn a direct influence on the maintainability of the system,

since the new features have, on the one hand, a smaller change probability and

on the other hand, their implementation complexity is reduced, compared to the

original feature.

The identification of a high interacting feature depends on the average number of

interacts relations of all features in the FM. At first, the PL developers calculate the

number of interacts relations for each feature in the FM. These numbers are then

summed and divided with the number of features in the FM. The features having

a larger number of interacts relations respective to the average are then considered

for transformation.

In FArM, the calculation of the number of interacts relations for a feature is done



118 CHAPTER 4. THE FEATURE-ARCHITECTURE MAPPING METHOD

through the addition of the uses interacts relations that a feature has, plus the

number of interacts relations of its direct sub-features. For example, the super-

feature in fig. 4.30 has a total of 6 interacts relations. This number is the result of

the sum of the 2 interacts relations of the feature itself, plus the 2 interacts relations

of each of its direct sub-features.

Figure 4.30: Calculation of interacts relations

This way of performing the calculation of a feature’s interacts relations is based on

the strong mapping between features and architectural components. A super-feature

is used in FArM to derive an architectural component that can directly communicate

with the components derived from its sub-features. Therefore, the interacts relations

of the sub-features have a direct influence on the super-feature. For instance, the

super-feature may be responsible for the common functionality of its sub-features

and thus provides services to them, when they directly interact with other features.

This way, the interacts relations of the sub-features indirectly influence the super-

feature. Therefore, sub-feature interacts relations must be taken into consideration

for the calculation of the number of interacts relations of their super-features.

The final decision to transform a feature depends on the number of interacts relations

and the change probability of the feature. The decision for a feature transformation

is left to the judgement of the PL developers and must be made individually for

every feature. A summary of the general rules that apply are shown in table 4.7.

Transformation Decision Rules

Rule Description
High Interaction The larger the deviation from the average,

the higher the transformation probability
Change Probability The higher the probability for future change,

the higher the transformation probability

Table 4.7: Decision rules for the normalization of interacts relations

Nonetheless, it may not always be possible to apply the create elementary trans-

formation to every feature of the FM that has a high deviation from the average

number of interacts relations. This may be due to the inability of creating new

features to take on the responsibilities of the original feature. It may also be the

case that the newly created features need more interacts relations as the original



4.5. FEATURE INTERACTION 119

feature. This would then increase the overall number of interacts relations.

An example of the normalization of interacts relation can be found in the NN-

Trainer case study. The Neural-Network feature has a large number of direct

sub-features as shown in fig. 4.31. Although the number of interacts relations for

each of these features does not exceed the average, the Neural Network feature

has a high deviation from the average number of interacts relations. This is due

to the way interacts relations are calculated in FArM, namely, as the sum of the

interacts relations of the direct sub-features.

Figure 4.31: The Neural Network feature hierarchy

Therefore, the Neural Network feature becomes a candidate for transformation.

The PL developers evaluate in a consecutive step the feature’s change probability.

The Neural Network feature plays a main role in the NN-Trainer PL. It practi-

cally reflects the ability to design and train a NN. This can also be seen from its

sub-features. For example, the Neuron Distance, Topology and Template fea-

tures are all related to the design of a NN, while the Performance, Train-Start

and Algorithm features are related to the training of a NN. Thus, the Neural

Network feature reflects the central functionality of the NN-Trainer PL. This is

the functionality that will need to be extended or optimized in future versions of the

PL.

Because the Neural Network feature has both a large number of interacts relations

and a high change probability, it is transformed with the create elementary trans-

formation. The PL developers identify the double role that the Neural Network

feature plays and create the NN-Design and NN-Train features to replace it. The

design-related sub-features of the Neural Network feature are placed under the

NN-Design feature and the train-related sub-features under the NN-Train feature

as shown in fig. 4.32.

This transformation allows for a reduction of the per feature interacts relations.

The interacts relations of the newly created NN-Train feature allow for the en-



120 CHAPTER 4. THE FEATURE-ARCHITECTURE MAPPING METHOD

Figure 4.32: Normalization of the Neural Network feature’s interacts
relations

capsulation of the training functionality of the NN-Trainer PL. Accessing training

functionality may for example take place through the NN-Train feature when no

direct access to the sub-features of the NN-Train feature is required. Therefore,

changes to the way a training is conducted can be hidden from the rest of the features

and thus, more easily changed in the future. The same holds for the NN-Design

feature hierarchy.

Another example of a feature with a large number of interacts relations is the Li-

cense feature in fig. 4.13 (sect. 4.5.1). The License feature interacts with every

feature of the FM in order to impose the desired licensing policy. Therefore, it has

the largest deviation from the average number of interacts relations from all features

in the FM. Nonetheless, for the License feature no meaningful features can be cre-

ated to take on its responsibilities. The License feature is itself an encapsulation

layer for the third party license manager. Further ”division” of the encapsulation

layer would consequently lead to no extra advantages. Therefore, no expedient com-

ponents can result from the application of the create elementary transformation and

no further reduction of the License feature interactions can be performed.

Nevertheless, there may exist certain cases where the performance of the software

system is more important than its maintainability. A few example domains are

hard real-time systems, computer games, etc. In such domains, the large number of

interacts relations can be seen as a chance for performance optimization. In this case,

a large number of interacts relations indicates that a system component needs to

access or be accessed by a large number of other components. Most frequently, access

calls are performed through the component’s interface, they are processed and are

then propagated to the sub-components in its internals. A performance optimization

could be achieved if the access calls are sent directly to the sub-component.

This kind of performance optimization can be achieved with the FArM merge ele-



4.5. FEATURE INTERACTION 121

mentary transformation. With the merge elementary transformation, a feature with

a high number of interacts relations is merged with the features using it or with the

features it is using. This way, a direct access to its internals is achieved that gives

a slight boost in performance.

An example can be found in the game development domain, where direct access to

graphic card functionality is allowed. In these cases the developers renounce the

use of a hardware abstraction layer, which would be respectively implemented into

a FArM feature, in order to achieve the highest performance.

Handling Pre-Existing Hierarchy and Interacts Relations

An issue that arises during the FArM transformation phases is the handling of pre-

existing hierarchy and interacts relations during the FArM transformation phases.

During the transformation phases, features may be directly resolved, merged with

others, features may be reordered or new features may be created to replace other

features. The features influenced by these transformations may have pre-existing

hierarchy or interacts relations. The question that now arises is: ”How are the

hierarchy and interacts relations of these features handled?”

Hierarchy relations may stem from the domain analysis method. These hierarchy

relations may be influenced even at the beginning of the FArM iterations. For

example, a feature that has a hierarchy relation identified during the domain analysis

method may be directly resolved. For this kind of hierarchy relations FArM defines

no direct measures. The hierarchy relations that originate from the domain analysis

are simply broken without any further processing. This is due to the fact that FArM

explicitly focuses on hierarchy relations in the third transformation phase, where

feature interactions are identified and optimized. In this transformation phase, valid

FArM hierarchy relations are created based on a systematical process. This process

eliminates the need for preserving domain related hierarchy relations.

Nonetheless, FArM hierarchy and interacts relations may be influenced throughout

the FArM transformation phases. In such cases a number of rules are identified for

their handling. These rules are categorized based on the various transformations

that may occur.

During the direct resolution of a feature, its hierarchy relation is documented and

added to the definition of the traceability link between the feature and the root

feature of the transformed FM. In the left-hand-side FM of fig. 4.33, the lower

feature is directly resolved, leading to the breaking of its hierarchy relation. The



122 CHAPTER 4. THE FEATURE-ARCHITECTURE MAPPING METHOD

latter is captured by the traceability link between the feature and the root feature of

the transformed FM, which is indicated by the plus sign over the traceability link.

Figure 4.33: Handling of FArM hierarchy relations during a direct resolu-
tion

During direct resolution, interacts relations are redirected to the super-feature. Fig.

4.34 shows the various scenarios. In the FM on the left part of the figure, the lower

feature has two interacts relations. It is being used by another feature of the FM

(left interacts relation) and it uses another feature (right interacts relation). After

its direct resolution, these interacts relations are respectively redirected to its super-

feature. In the right part of the figure, the former super-feature has now received

both interacts relations and respectively the responsibilities of its former sub-feature.

Figure 4.34: Handling of FArM interacts relations during a direct resolu-
tion

In the case of merging, pre-existing hierarchy relations are transformed to interacts

relations as shown in fig. 4.35. The feature in the transformed FM (right part of

figure) with the plus sign, is the result of the merging of the sub-feature and single

feature shown at the left part of the figure. The hierarchy relation between the sub-

feature and its super-feature is now transformed into an interacts relation between

the former super-feature and the feature resulting from the merging transformation.

Interacts relations in the case of merging are merely ”inherited” by the feature that

results from the merging. This is a natural consequence, since the resulting feature

is extended and is thus capable of handling any interactions the merged features

might have had with others.

Figure 4.35: Handling of FArM hierarchy relations during merging



4.5. FEATURE INTERACTION 123

The case of the creation of features for the replacement of another can be discussed

in the example of the resolution of the Neural Network feature, given in the

previous section on the normalization of interacts relations. In this example, the

Neural Network feature was replaced by two other features, the NN-Design

and NN-Train features. In such cases, the hierarchy relations that a feature may

have had are divided between the new features as shown in fig. 4.32. This process is

largely dependent on the case at hand and relates to the responsibilities of the newly

created features. Similarly, interacts relations formerly pointing to the transformed

feature must now be distributed among the newly created features.

Finally, in the case of reordering, hierarchy relations may be broken or new hierarchy

relations may be created. The former case may occur because of an invalid hierar-

chy relation, while the latter during the creation of a new valid hierarchy relation.

Examples of these cases have been given in figures 4.23 and 4.25 respectively.

In these examples, the Binary, Text, ... sub-features were found to have an invalid

hierarchy relation to the Pattern-Format feature. This led to the breaking of these

hierarchy relations. In such cases, the former hierarchy relations are transformed

to interacts relations as shown also in fig. 4.23. Additionally, if one of the features

has itself sub-features, then these ”follow” practically the feature, i.e. they neither

become single features, nor are they bound with a hierarchy relation to the super-

feature of the broken hierarchy. The interacts relations of the single features remain

unchanged.

During the creation of a new hierarchy relation, the hierarchy relations are trans-

formed dictated by the transformation process as in the case of Binary, Text, ...,

features shown in fig. 4.25. In this case also, the interacts relations that the features

may have remain unchanged.

4.5.3 Interface Derivation

In this last step of the feature interactions transformation phase, the PL developers

concentrate on the derivation of component interfaces. This step closes the circle

of the component derivation process based on the transformed FM. For each of

the features of the transformed FM, exactly one architectural component is defined.

Based on this mapping, the feature interactions can be directly used for the definition

of the communication needs of the architectural components. This is done on the

basis of the hierarchy and uses interacts relations among the features. These relations

have been identified and optimized for maintainability and variability in the previous



124 CHAPTER 4. THE FEATURE-ARCHITECTURE MAPPING METHOD

two steps of this transformation phase. Furthermore, compromises regarding these

two factors have been made were necessary in favor of performance.

This transformation step is going to derive interfaces for the architectural compo-

nents by means of the various interacts and hierarchy relations between features.

The next sections explore the various possibilities and examples are given from the

NN-Trainer case study.

Interacts relations

At this stage of FArM, the interacts relations that exist between the features of

the FM are uses interacts relations. These interacts relations allow for the direct

derivation of interfaces. This is because the uses type of interacts relation per

definition dictates which functionality a feature provides and which functionality

it requires. This information can be directly mapped to the respective provides

and requires interfaces for the component that implements the feature. This fact

increases the feature-architecture mapping between features and the architecture.

In this transformation step, the PL developers utilize the interacts relations to de-

rive the component interfaces. This process cannot be performed directly, since it

naturally requires input from the solution domain. The PL architects are involved

in this process by providing their domain specific knowledge to complement the in-

formation taken from the interacts relations. In other words, the interacts relations

define the interface context and rationale, while the PL architects fill in the details

and specialize the interfaces based on solution domain knowledge.

At this point, the PL developers utilize the direction of the interacts relations for

concluding if a certain interface should be a required or provides interface. This can

be rather intuitively deduced from the direction of the arrow of the graphical form

of FArM interacts relations. In the simple case of fig. 4.36, the left feature requires

certain functionality, which is provided by feature on the right.

Figure 4.36: Derivation of requires or provides interfaces



4.5. FEATURE INTERACTION 125

Hierarchy Relations

The placement of a feature in the FM hierarchy can be just as well utilized for

the direct derivation of component interfaces as uses interacts relations. The PL

developers can now take advantage of the ”component”-oriented nature of FArM

hierarchy relations for the derivation of interfaces. Namely, they can exploit the fact

that a feature can have either an aggregation or a specialization relation with its

sub-features. This fact allows the PL developers to use the components derived from

the super-features as facades for decoupling of functionality, for the encapsulation

of sub-feature common functionality or as placeholders for functionality switching

mechanisms. All these various roles that a FArM super-feature can play can be

reflected as component interfaces in the software architecture of the system.

The various possibilities can be directly identified from the FM hierarchy structure.

If a hierarchy relation is an aggregation interacts relation, then it is most likely for

the component derived from the super-feature to play the role of a facade. This

is because diverse functionality is provided by the sub-features, which is very fre-

quently combined to accomplish a more complex task. Therefore, in the case of an

aggregation hierarchy relation, the sub-feature components provide interfaces to the

super-feature component, which reveal their functionality. The super-feature com-

ponent must then provide a unified interface to the ”outer world” that eases the use

of the sub-feature functionality.

In the case of a specialization relation, the super-feature component can be most

frequently used for the encapsulation of common functionality and/or as a switching

mechanism. In the former case, the component derived from the super-feature im-

plements an interface that is common to the sub-feature components. Within this

interface, a number of operations are performed that are needed from each of the

sub-feature components.

In order for a feature to be used as a switching mechanism, in addition to a special-

ization hierarchy relation, the feature must also fulfil the following preconditions:

• The feature has more than one sub-feature

• More than one sub-feature can be selected by the user, i.e. non-1 cardinality

If all the above preconditions hold, then an interface can be added to the architec-

tural component implementing the super-feature to act as a switching mechanism

between the respective sub-features’ components. This is most frequently a variation

of the Strategy design pattern [BJM+95], where the Context is any calling compo-



126 CHAPTER 4. THE FEATURE-ARCHITECTURE MAPPING METHOD

nent, the super-feature’s component plays the role of the Strategy and defines an

abstract interface, which is implemented by each of the sub-features’ components

that play the role of the ConcreteStrategys.

NN-Trainer Examples

Deriving an interface from a uses interacts relation is always specific to the case

at hand. For this reason, examples will be given from the NN-Trainer case study.

In fig. 4.15, a partial view of the interacts and hierarchy relations for the training

process of a NN was given. Throughout the transformation phase, these relations

have been optimized. Fig. 4.37 shows a partial view of the FM after the Feature

Interactions transformation phase.

Figure 4.37: NN training related features after the third transformation
phase

Based on the interacts and hierarchy relations, the PL developers derive interfaces

for the architectural components that implement each feature. Note that before

a training can be started, a NN must be designed with the NN-Design feature

not shown in the figure and training patterns have to be imported with the NN-

Pattern feature. Initially, the PL developers examine the interacts relation between

the Train-Start and the NN-Activation features. The direction of the interacts

relation indicates that the Train-Start component will require an interface from

the NN-Activation component. The specification of this interacts relation leads to

the addition of the interface of listing 4.2 in C++ notation.

Listing 4.2: NN-Activation interface

1 double Act ivate ( u long ulNNID , u long ulPatternID )

This interface receives as input an identification number of the NN that must be

activated and an identification number of the pattern to be used for the activation.

The interface defines that the activation of the NN should be returned in the form of



4.5. FEATURE INTERACTION 127

a double-precision number. The NN ID is used by the NN-Activation component

to extract the proper NN parameters from the NN-Design component, which is not

shown in the figure. With these parameters, the NN-Activation component can

gather the needed structural information for the activation of the NN, e.g. number

of neurons, NN-Architecture, weights, etc. The pattern identification number is

used by the NN-Activation component to load the proper training pattern from

the Pattern component and apply it to the NN.

The Pattern feature has an aggregation relation to its sub-features. As mentioned

above, such hierarchy relations indicate that the derived architectural component

should play the role of a facade for the components derived from the sub-features.

In the NN-Trainer case study, the Pattern component is an example of this case.

The PL developers identify the type of hierarchy relation as an aggregation interacts

relation and add the interface of listing 4.3.

Listing 4.3: Pattern interface

1 void ∗ GetPattern ( u long ulPatternID )

Through this interface, the retrieval of a pattern is considerably simplified. It allows

the NN-Activation component to get a specific pattern without having to provide

any additional parameters, like e.g. the path and name of the pattern or define

its structure. The Pattern component receives as input the pattern identification

number that is to be used for the activation of the NN and performs the communica-

tion with the Format and Structure components to load the proper pattern. This

identification number has been defined during the importing of the pattern into the

system, just before the start of the NN training. The GetPattern interface returns

a pointer to void, which is then casted by the NN-Activation component according

to the structural parameters of the NN.

The activation of the NN is returned eventually to the Train-Start component,

which then propagates it to the Performance component for the calculation of the

NN performance. The Performance feature hierarchy is a specialization hierarchy.

The MSE and MAE features implement special performance algorithms. Addition-

ally, more than one of the Performance feature’s sub-features can be selected by a

PL customer due to the 1..* cardinality. These factors fulfil the three preconditions

for the implementation of a switch mechanism for the Performance component.

Based on this, the PL developers apply the Strategy design pattern to the Perfor-

mance feature hierarchy. The Performance feature becomes the Strategy com-

ponent that defines the abstract interface for the calculation of the performance



128 CHAPTER 4. THE FEATURE-ARCHITECTURE MAPPING METHOD

(listing 4.4, line 3). This interface receives the NN identification number and the

current NN activation and returns the performance of the NN as a percentage. The

NN identification number is used to store the various NN activations for calculating

their average value. This interface is implemented in each of the sub-feature com-

ponents of the Performance feature, namely, the MSE and MAE components. These

components play the role of the concrete strategies in the Strategy design pattern.

For the complete implementation of the design pattern, the Performance compo-

nent receives another interface to set the active performance algorithm (listing 4.4,

line 6). The desired performance algorithm is set through an enumeration during

the configuration of the NN training parameters.

Listing 4.4: Performance interface

1 v i r t u a l u shor t CalcPerformance ( u long ulNNID ,

double dAct ivat ion )=0

3

5 void SetPerformanceAlg (PERFORMANCE ePerformance )

After the calculation of the performance of the NN, this is propagated to the

Algorithm component. The Algorithm feature hierarchy fulfils the same precon-

ditions as the Performance feature hierarchy and can therefore be implemented

respectively, i.e. with the Strategy design pattern. The abstract interface for the

algorithm component is given in listing 4.5. The Algorithm component calculates

the new weights and biases of the NN based on its identification number and per-

formance.

Listing 4.5: Algorithm interface

v i r t u a l void CalcWeights ( u long ulNNID ,

2 u shor t usPerformance )=0

The main difference to the Performance component implementation is that the

Algorithm component encapsulates common functionality for its sub-features. The

Algorithm component provides a body for the CalcWeights interface, which can be

explicitly inherited by the concrete algorithm components. The body implementa-

tion performs various calculations based on the topology of the NN that are needed

by many training algorithms. If this functionality is desired, then it can be explicitly

called by the concrete algorithm components.



4.6. ARCHITECTURE DEVELOPMENT 129

4.6 Architecture Development

The development of the PL architecture is performed progressively throughout the

FArM method. Fig. 4.1 illustrates exactly this by presenting the Architecture Devel-

opment phase as a constant activity of medium intensity performed in each iteration.

At every point in time during the various iterations, the PL architecture reflects the

FM structure. More precisely, each of the architectural components is derived di-

rectly from the corresponding feature of the FM. For each of the features there exists

exactly one architectural component that implements it. This fact assures a strong

feature-architecture mapping.

Throughout the FArM transformations, the granularity of the software components

is optimized and the interfaces of the components are defined. Eventually, the

components are placed within an architectural context, e.g. through the application

of an architectural style and each of the components is implemented. The component

implementation may also lead to the addition of new interfaces or even back to one

of the transformation phases, where new features may be added or existing features

altered.

NAR & Quality Features

During the NAR & Quality transformation phase, the PL developers create a first

coarse software architecture for the PL system. This is composed solely of the

architectural components derived from the features that persist throughout the first

transformation phase. During this transformation phase, there exist no relations

between the software components. Furthermore, the component specification is

identical to the specification of the feature it is implementing.

Most of the architectural components during the NAR & Quality transformation

phase are closer to the customer perspective. This is due to the fact that they

originate primarily from the initial FM. The latter is created with a domain analysis

method that is independent from FArM. Most domain analysis methods give the

customer perspective a rather high priority for the definition of features.

Nonetheless, this fact has also a positive side. Namely, the PL architecture can cope

well with market changes. For instance, changing of an existing feature, e.g. an

extension, can be readily supported because of the separation of concerns based on

the customer perspective, i.e. features implemented in an architectural component.

This is facilitated by the resolution of any NAR and quality feature, which leads to



130 CHAPTER 4. THE FEATURE-ARCHITECTURE MAPPING METHOD

a FM containing solely functional features. These in turn have a higher probability

to be directly implemented in an architectural component.

Architectural Requirements

Nevertheless, it may not always be possible to directly implement a functional feature

into one architectural component. This issue is addressed, among others, during

the Architectural Requirements transformation phase. During this transformation

phase, the architectural requirements of the system are explicitly addressed. Issues

like communication mechanisms, data management, etc., which are not visible to

the customer perspective, are handled.

Primarily, the PL architects focus on the various architectural requirements of the

PL system in order to directly resolve them, integrate them into existing functional

features and/or derive new features. Additionally, the specification of existing func-

tional features is considered in relation to architectural requirements, which may also

lead to the creation of new functional features that can replace or complement the

functionality of a feature that cannot be directly implemented into one architectural

component.

In this transformation phase, the PL architecture is enriched with features derived

primarily from an architectural perspective. This is a conscious decision in the

FArM method made in order to achieve a balanced software architecture from both

the customer and architectural perspectives of the system.

As a result, just before the beginning of the next transformation phase, the software

architecture contains a fair mix of both customer and architecture related compo-

nents. Additionally, the specification of all features in the FM and respectively

of the derived architectural components has been significantly concretized and any

ambiguities with respect to architectural implementation have been resolved.

Feature Interaction

During the iterations of the feature interaction transformation phase, the develop-

ers address the interactions between the features of the FM. These are identified,

optimized and finally, interfaces are derived based on the interacts relations. The

derived interfaces are placed directly into the components that implement a feature.

This process practically completes the specification of the components. During the

previous transformation phases, the main responsibilities of the components were



4.6. ARCHITECTURE DEVELOPMENT 131

defined. In this transformation phase, the dependencies and communication needs

between the components are also established.

Furthermore, this transformation phase leads to higher maintainability and flexibil-

ity on the architectural level. This is realized in terms of the optimization of the

feature interaction. From the maintainability perspective, FArM strives to achieve

a balance between the number of hierarchy and interacts relations. This is trans-

lated on the architectural level as an increase of the encapsulation and decoupling of

components, e.g. through the implementation of the facade design pattern in super-

feature components. Additionally, features with a large number of interacts relations

are identified and, according to their future change probability, transformed, so as

to localize possible changes.

From the flexibility point of view, FArM natively supports the direct implementation

of switching mechanisms, e.g. through the Strategy design pattern within feature

hierarchies. This is translated on the architectural level as the addition of variability-

specific interfaces to the respective architectural components that implement the

features.

The performance of the system architecture is also addressed during this transfor-

mation phase. Interacts relations between features are translated to direct calls

between the respective architectural components. This mechanism can be utilized

by the PL architects to optimize the performance of the system for time-critical use

case scenarios. Again, interfaces are derived from such interactions and are added

to the components.

With the aforementioned actions on the architectural level, the PL developers can

adjust the architecture of the system to the desired level of maintainability versus

performance or add overall flexibility to the system.

Architectural Context

At some point in time, the PL developers commit to a specific architectural context

for the derived components. This point in time is most frequently during the first

few iterations of the Feature Interaction transformation phase. The architectural

context is specified in the majority of domains by committing to an architectural

style, also known as an architectural pattern.

There exist numerous architectural styles [BJM+95], each having a number of ad-

vantages and disadvantages regarding maintainability, flexibility, performance, etc.

FArM has been developed with primer focus on maintainability and flexibility, fol-



132 CHAPTER 4. THE FEATURE-ARCHITECTURE MAPPING METHOD

lowed by performance. This priorities have to do with the fact that FArM targets

the development of software PLs. The latter exhibit high complexity, require a lot

of variability and for some domains also high performance. For these reasons, FArM

primarily supports architectural styles that possess such attributes.

Microkernel

One of the main architectural styles supported by FArM is the Microkernel architec-

tural style [BJM+95]. This architectural style separates a minimal functional core

from extended functionality and customer-specific parts. The Microkernel serves as

a socket for the plugging of these extensions and the coordination of their collabo-

ration. Fig. 4.38 illustrates the main components of a Microkernel architecture and

the relations between them.

Figure 4.38: Microkernel architecture

In the Microkernel architectural pattern the Microkernel component provides core

functionality, manages common resources, encapsulates system dependencies and

offers the communication mechanisms between the various system components. The

Internal Server components encapsulate system specific functionality and im-

plement additional services. The External Server components provide services

to Client components, either through their own implementation and/or through

services provided by Internal Server components. Client components play the

role of applications, which access External Server services through Adapter com-

ponents. The latter hide system dependencies, such as the communication with

External Servers for the access of services.

One main advantage of the Microkernel architecture is its extendibility. This advan-

tage comes from the ability to plug new services into the Microkernel through the

implementation of additional External Server or Internal Server components.

The latter must comply to the communication protocol defined by the Microkernel.

Afterwards, Client components can easily make use of this functionality. Fur-

thermore, the Microkernel architecture illustrates enhanced flexibility. External or



4.6. ARCHITECTURE DEVELOPMENT 133

Internal Server components can be added or removed from the system at compile

or even at runtime, e.g. if they are implemented as DLLs (Dynamic Link Libraries).

The aforementioned attributes of the Microkernel architectural style readily suit

the development of software PLs. On the one hand, PLs require high extendibility

because of their long life-cycle. Software PLs represent a large investment that

can provide significant gains when exploited over a long period of time. Over this

period, new requirements are destined to arise from the domain, which must be

rapidly satisfied by the PL in order to preserve its competitiveness in the market.

This can be achieved through the implementation of new External and Internal

Server components and their easy integration into the system.

On the other hand, flexibility is a primer concern in software PLs for the support

of the variability of a domain. For instance, based on the PLs common core, a

series of similar products must be instantiated. The instantiation process must be

performed ideally with minimal effort. This is readily supported by the Microkernel

architecture through the combination of the desired External and Internal Server

components.

The FArM transformed FM and the derived components, along with their inter-

actions can be directly mapped to the Microkernel architecture. Namely, the root

feature of the transformed FM will be implemented in a component that will play

the role of the Microkernel. Each of the derived components will either play the

role of an External Server, an Internal Server or an Adapter. For a partial

view of the NN-Trainer software architecture see Appendix C.

More precisely, the components derived from features that have been slightly changed

throughout the transformation phases, will play the role of an External Server.

This is suitable, because such components implement domain logic that is indepen-

dent from system specifics. Components derived from features during the architec-

ture requirements transformation phase are more likely to provide system specific

services. Such components can readily play the role of an Internal Server. Com-

ponents derived from FArM super-features are suitable candidates for the role of an

Adapter. Super-feature derived components generically encapsulate the communi-

cation between features, which is exactly the role of an Adapter component in the

Microkernel architecture. Finally, a Client component can be viewed merely as an

implementation of a feature, which requests services from another feature.

The interacts relations of the FM can also be directly mapped to the Microker-

nel architecture. Since each feature of the transformed FM is implemented in one

Microkernel component, the communication between the components reflects the



134 CHAPTER 4. THE FEATURE-ARCHITECTURE MAPPING METHOD

interaction between the features. For example, a feature interacting with another

feature through its super-feature is shown in the left part of fig. 4.39. The right

part of the figure shows the mapping of the features to the Microkernel architecture.

The root feature illustrated as a shaded box is implemented as the Microkernel

component. Feature A is illustrated as a Client component, although it could be

an External or Internal Server itself. Feature B is a super-feature and therefore

is implemented as an Adapter component. Feature C is the feature that provides

the functionality required by feature A and is thus implemented as an External

Server component.

Figure 4.39: Mapping to the Microkernel architecture

The interaction between features A and C through feature B is translated into the

following component communication:

1. The Client sends a request to the Adapter

2. The Adapter gets a reference to the External Server through the Microkernel

3. The Adapter propagates the request from the Client to the External Server

4. The External Server dispatches the request and returns the result to the

Adapter, which in turn sends it back to the Client

This mapping of the FArM transformed FM to the Microkernel architecture fur-

ther enhances the advantages inherited by the architectural style. FArM brings the

extendibility and flexibility of the Microkernel architecture to the feature level and

adds to the maintainability of the resulting system. Because of the one to one rela-

tion between the transformed FM and the architecture, features become first class

entities. From the extendibility point of view, the system can be now directly ex-

tended in terms of features. New External or Internal Server components that

implement the features can be easily plugged into the existing PL platform. The

instantiation of PL products can be simple done through the selection of the desired

features and their implementing components, i.e. External or Internal Servers



4.6. ARCHITECTURE DEVELOPMENT 135

and Adapters. The maintainability of the PL is also increased, since the features,

which represent the main concerns in the PL, are effectively implemented either in

one architectural component or in at most a few architectural components. Further-

more, the feature interaction is directly mapped to the component communication,

allowing for a prediction of the impact a change would have on the system (see also

chapter 5).

Other Architectural Styles

Despite the fact that the FArM method directly supports the Microkernel architec-

tural style, yet other architectural styles can be used with FArM. For this purpose,

the PL developers must map the derived architectural components to the entities

of the chosen architectural style. This section will briefly discuss a few of the most

widely used architectural styles, i.e. the Layers, Blackboard, Broker and Model View

Controller (MVC) architectural styles.

The Layers architectural style decomposes a system in groups of subtasks, where

each group is at a particular level of abstraction. Communication is allowed only

between neighbor layers. The mapping of FArM derived components to the Layers

architectural style can be achieved based on the FM hierarchy. Each layer comprises

of the components derived from features belonging to the same hierarchy level as

shown in fig. 4.40. The features of the same hierarchy level are most likely also at the

same level of abstraction. If this is not the case, then the PL developers must adjust

the FM hierarchy by going through the third FArM transformation phase. Another

restriction that applies for the Layers architectural style is that no feature interaction

is allowed between non-neighboring hierarchy levels. If such interacts relations exist,

then the developers must repeat the third FArM transformation phase with the

objective to merge these interacts relations into neighboring hierarchy relations.

Figure 4.40: Mapping to the Layers architecture



136 CHAPTER 4. THE FEATURE-ARCHITECTURE MAPPING METHOD

The FArM transformed FM can also be directly mapped to an architecture adhering

to the Blackboard architectural style. In a Blackboard architecture, the root feature

will be implemented as the Blackboard component, while each of the features of

the FM will take on the role of a Knowledge Source component. The Control

entity of the Blackboard architectural style can be mapped in two ways. The first

one is to delegate the responsibilities of the Control component to the Blackboard

component. In this case, the Blackboard component will additionally decide which

of the Knowledge Source components should be activated. If this approach is not

satisfactory to the PL developers, then the second FArM transformation phase can

be repeated for the identification of a feature or a set of features that are to take on

the role of the Control component.

The main entities of the Broker architectural style require more compromises for

their mapping to the FArM FM. Fig. 4.41 shows a possible mapping of a FM to a

Broker architecture. The role of the Broker components is taken on by the com-

ponents that implement the features having a direct hierarchy relation to the root

feature. Each of their sub-features can be a Client, a Server or both. Interaction

between the features is allowed only through the Broker features. Features not

being under the same broker feature must send a request to the Broker feature

of their hierarchy tree, which will then propagate the request to the proper feature

through another Broker. This hierarchy and interaction enforced to the FM allows

for a mapping to the Broker architecture. Each of the sub-trees of the FM can run

on different network nodes. The communication between the Broker components

will take place through remote data exchange, e.g. the http or ftp communication

protocols, which also removes the need for Bridge components. Client-side and

Server-side Proxy components are also not required, since the communication be-

tween components and the Broker will be derived from the hierarchy relations of

the FM.

Figure 4.41: Mapping to the Broker architecture



4.7. TOOL SUPPORT 137

Finally, the MVC architectural style entities can be mapped to the FArM features

through categorization. The PL developers must identify features related to the pre-

sentation of data, the interpretation of data and the user interaction. The identified

features must then be placed in the logical categories of the View, the Model and

the Controller respectively. In a next step, the interactions between the features

must be adjusted to conform to the MVC architectural style. Namely, the features

belonging to the Model category must not use any features of the View category

directly, rather indirectly. Each of the View features must provide a generic inter-

face for communication with Model features, e.g. an Update() method that is to be

triggered by the Model features when a change occurs that influences a View fea-

ture. The Controller features may directly interact with both the Model-related and

View-related features to apply changes that occur through user interaction. Note

that most FMs do contain MVC-related features. If no features of a category are

found, then the PL developers must return to the FArM architecture requirements

transformation phase and add new features that can take on the role of the missing

category, e.g. Controller-related features.

4.7 Tool Support

A necessity for every methodology is tool support, i.e. a set of tools that will allow an

efficient and consistent workflow with the method processes. FArM can be applied

at the time of this writing with a set of industrial tools. These tools focus on the

various phases of the method and can support all needs of the FArM developers.

One primary need of a FArM developer is to capture and manage feature specifica-

tions in the form of a FM. This process can be supported with a variety of indus-

trial documentation management tools. An example is IBM’s Rational RequisitePro

[IBM06]. The hierarchy relations, cardinalities, etc. of a FM can be represented in

the form of a structured list in such tools. Nevertheless, there exist numerous tools

for the graphical representation and management of information, specific for feature

modeling and PLs. Examples are the XFeature [PS06] and DOME [Hon06] tools.

FArM traceability links and interacts relations can be better captured and managed

through the use of documentation management tools. The latter can also assist on

finding interacts relations between features with the techniques described in section

4.5.1. For example, interacts relations can be identified through a recursive search

through the feature specifications for the identification of common lexical structures,

e.g. verbs, nouns, etc.



138 CHAPTER 4. THE FEATURE-ARCHITECTURE MAPPING METHOD

The modeling of the PL architecture can be performed with the use of industrial

modeling tools, e.g. Borland’s Together tool suite [Bor06]. The actual implementa-

tion of the PL components can be done on a development platform, e.g. with the

Microsoft’s Visual Studio [Mic06] tool suite.

For the deployment and instantiation of PL products a software dependencies and

packaging tool can be used, e.g. the RPM Package Manager [Hat06]. Such tools

are able to handle versioning issues and dependencies that may exist between FArM

components.

Although the use of various tools for the implementation of the FArM method does

provide efficiency regarding the workflow processes, it is rather hard to achieve

consistency for the overall application of the method. For this reason, it would

be advantageous to develop a unifying tool for the specific support of the FArM

workflows. Such a tool has not been yet developed, although a large part of the tool

specification has been made [Kau05]. In this student-work, it was identified that

the optimum approach for a tool implementation would be a plug-in for the Eclipse

platform [Fou06]. An implementation of such a tool is part of future work on FArM.



Chapter 5

Evaluation

This section will examine the extend up to which the goals set in section 2.6 have

been achieved in this work. This includes at first an evaluation of the attributes of

the methodology developed, i.e. of the FArM method. Afterwards, the strength of

the mapping attained between features and the architecture will be evaluated. Then

follows an evaluation of the efficiency with which feature-level variability is reached.

Finally, this section will focus on the evaluation of PL product instantiation after

the application of the FArM method.

5.1 Method Attributes

In section 2.6 the various attributes that the FArM method should possess were iden-

tified. These are, complying to a clearly defined methodical approach, the seamless

integration into existing PL methods and generic support for currently used tech-

nologies and tools.

Methodical Approach

A vital precondition of the FArM method is its usability and comprehensibility by

PL developers. This precondition is satisfied through a number of FArM attributes.

At first, the FArM method has been structured based on a broadly accepted devel-

opment process, namely, an iterative process with clearly defined milestones. The

FArM development process shown in fig. 4.1 is organized in four distinct transfor-

mation phases, which are completed in a series of iterations. On the one hand, this

approach complies to widely accepted development standards in today’s software

139



140 CHAPTER 5. EVALUATION

industry and on the other hand, it is similar to other broadly used development

methodologies, e.g. the Rational Unified Process. These factors assist the PL de-

velopers to adopt the FArM development method and integrating it into their own

development processes. Furthermore, the FArM development process inherits the

advantages of iterative development, e.g. early identification of risks and efficient

distribution of project resources.

Another FArM attribute that contributes to its useability and comprehensibility, is

the clear definition of the FArM phases. The FArM method has been designed to

lead the PL developers with a series of distinct transformation phases to the de-

sired results. Arguments for this are the small number of the FArM phases, namely,

four, along with clearly defined pre and post-conditions for every phase. Addition-

ally, within these phases, the FArM method clearly defines steps that assist the PL

developers to achieve the desired post-conditions with high probability, regardless

of the given domain. For instance, the third transformation phase clearly defines

as a pre-condition the existence of exclusively functional features originating from

both the problem and solution domain. The post-condition is the derivation of ar-

chitectural components along with their interfaces for each of the features of the

transformed FM. Within this transformation phase, the PL developers are assisted

through a series of distinct steps, i.e. Identification, Optimization and Interface

Derivation.

Finally, the useability and comprehensibility of the FArM method is supported by

the produced literature of its application within various domains. The FArM method

has been applied to the domain of Integrated Development Environments (IDEs)

[Soc04], [SRP04], the domain of mobile phones [Kau05], [SRP05], [SRP06] and the

domain of artificial Neural Networks presented in this work.

PL Method Integration

It was identified that the method should be able to seamlessly integrate into existing

PL development methods. This attribute of the FArM method comes from the need

to utilize existing knowledge and experience in the development of PLs that has been

acquired from other PL methods. Furthermore, this integration naturally increases

the useability and acceptance of FArM.

FArM can be integrated with existing PL methods at the transition point from the

domain analysis to the architecture development. For example, the FArM method

can be integrated into the FeatuRSEB method. Right after the development of



5.1. METHOD ATTRIBUTES 141

the initial FM, the FArM method can be applied replacing the existing FeatuRSEB

processes where appropriate. The derived architectural components can then be used

in the Layers architectural style that is used in the FeatuRSEB method [GAd98] as

described in section 4.6.

FArM can also be readily integrated into PL methods that place their focus either on

the domain analysis or after the architecture development processes. An example

of the former case is the use of the FODA method for the creation of the FArM

initial FM. This can then be directly used for the application of FArM. An example

of the latter case is the use of the Hyperspace approach with FArM. In this case,

the PL components can be implemented with the FArM method and then each one

of the components can be modeled as a hyperslice. With this approach, the PL

developers can have the advantages offered by the Hyperspace approach, as well as

the advantages of the FArM method.

Technology Support

The FArM method must also be compatible with the technologies currently used in

software development, e.g. object-orientation, architectural and design patterns and

tools. This is a vital precondition for the efficient application of the method.

FArM can be used in combination with any programming language, e.g. object-

oriented or procedural. This is evident by the fact that FArM models the architec-

tural components of the PL, but does not impose any restrictions regarding their

implementation. The latter can be done with any programming language or platform

that satisfies the needs of the PL domain.

FArM also explicitly supports and encourages the use of architectural and design

patterns. Design patterns may be used in each iteration of the FArM method dur-

ing the architecture development phase. These can be used, e.g. for the internal

implementation of the FArM components or for the implementation of variability

mechanisms, as described in the cases of components derived from super-features

(sect. 4.5.3). Architectural patterns are also applied in FArM, usually during the

third transformation phase. FArM primarily supports the application of the Micro-

kernel architectural pattern. An extensive discussion of the application of this and

other architectural patterns in FArM is given in section 4.6.

Tool support is also a very important issue that is addressed in FArM. The FArM de-

veloper can use a number of industrially available tools for the application of FArM.

These range from documentation management tools, to development platforms and



142 CHAPTER 5. EVALUATION

packaging tools. Nonetheless, as already mentioned in section 4.7, the development

of a FArM-specific tool would be beneficial to the FArM developers.

5.2 Feature-Architecture Mapping

The main goal of this work is to provide a stronger mapping between features and the

architecture in the context of PLs. Section 2.6 discussed the specific requirements

for this mapping in relation to the state of the art methods’ problems. The results of

this discussion pointed out the need for a mapping that allows the application logic

of one feature to be implemented into an architectural component and the feature

interaction to be reflected by the component communication. Additionally, it was

identified that solution domain entities must sometimes participate on the design of

the PL architecture and should therefore be explicitly considered. Finally, it was

pointed out that the actual mapping mechanisms must resolve the problems evident

in the state of the art methods, i.e. the excessive use of traces in FeatuRSEB

and the introduction of extra constructs in the generative programming technics,

e.g. hyperslices in the Hyperspace approach. The following sections will look into

the aforementioned objectives and evaluate the FArM approach from the feature-

architecture mapping perspective.

Application Logic Mapping

At first, the extend up to which the application logic of a feature is actually im-

plemented into an architectural component will be examined. FArM utilizes for

this purpose an initial FM, developed with a domain analysis method. The FArM

developers are free to select any domain analysis method that suits their needs,

e.g. FODA. No assumptions are made regarding the nature or hierarchy of the fea-

tures of the initial FM. Afterwards, in three distinct transformation phases, FArM

transforms the features of the initial FM in order to derive the PL architectural

components.

The application logic of a feature is defined by the specification given in the initial

FM. Throughout the FArM transformation phases, any of the FArM elementary

transformations may occur (sect. 4.2). That is, either the whole feature or a part

of its specification may be directly transformed or merged with another feature

or new features may be created to implement a feature’s specification. The FArM

elementary transformations can therefore cause the initially defined application logic

of a feature to be eventually mapped to either none or more than one feature.



5.2. FEATURE-ARCHITECTURE MAPPING 143

Because of the fact that exactly one architectural component is derived for each

feature of the final transformed FM, the application logic of an initial feature will

be implemented respectively into none or more than one architectural components.

On the one hand, if a feature is entirely transformed with the direct elementary trans-

formation, then it is practically not present in the transformed FM. This implies that

the feature will not be implemented in an architectural component. Nonetheless,

FArM allows such a transformation to take place only for features that have minimal

effect on the software architecture. These are the so called NAR (Non-Architecture

Related) FArM features, which are handled in the first transformation phase (sect.

4.3). On the other hand, the direct elementary transformation may also take place

only for parts of a feature’s specification. Similarly, these specification parts should

have no impact on the software architecture and thus can be resolved with alterna-

tive approaches, e.g. managerial solutions. Therefore, the ”loss” of such application

logic has no effect on the quality of the PL architecture.

With any other of the FArM elementary transformations the application logic of

a feature can be mapped into more than one feature and respectively may be im-

plemented into more than one architectural component. Nevertheless, the number

of components into which a feature may be eventually implemented is constrained

to a minimum in FArM. In most cases, a feature needs to be implemented into at

most a few components. An example from the NN-Trainer case study is the Neu-

ral Networks feature (fig. 4.31), which is transformed with the create elementary

transformation and is eventually implemented into the NN-Design and NN-Train

features (fig. 4.32).

There may of course exist cases where a feature is mapped to many features of the

FM, i.e. it is merged with numerous features or many new features are created to

implement the feature. Such transformations occur primarily on quality features.

In the majority of cases, such mappings cannot be avoided due to the broad impact

that quality features have on a software system. An example of such a case is

the transformation of the Efficiency quality feature (sect. 4.3.2). This quality

feature had to be merged with a large number of functional features in order to be

mapped to the architecture. Nevertheless, FArM still provides for a higher feature-

architecture mapping compared to the contemporary methods. The merge of quality

features occurs either into pre-existing functional features or into new functional

features. The mapping of functional features to a large number of features is rather

seldom in FArM and occurs mainly in time-critical domains for the enhancement of

performance.



144 CHAPTER 5. EVALUATION

Another factor that enhances the mapping of features to the architecture in FArM

is the fact that the elementary transformations are only applied when absolutely

necessary. That is, FArM gives high priority to the preservation of the conceptual

integrity and strives to maintain a direct mapping between features and the archi-

tecture. An example can be found in the case of the License feature (sect. 4.5).

Although this feature interacts with a large number of features, it is not merged

with each one of them in order to preserve the system’s conceptual integrity.

From the above discussion it becomes obvious that the FArM elementary transfor-

mations cause in the majority of cases minimal scattering of application logic. In

the cases where a feature is mapped to a large number of other features, FArM con-

straints the scattering of the application logic on the feature level, introducing no

solution domain entities that drastically weaken the feature-architecture mapping.

Finally, no tangling of a feature’s application logic occurs in FArM, since each feature

of the transformed FM is implemented into exactly one architectural component.

Feature Interaction Mapping

Another decisive factor for the achievement of a stronger mapping between features

and the architecture is to allow for the component communication to reflect the fea-

ture interaction. When the application logic of a feature is mapped to at most a few

architectural components, it is of great advantage, when also the feature interaction

can be mapped to the component communication. This allows consequently for a

stronger feature-architecture mapping.

This is achieved in FArM through an explicit transformation phase based on feature

interaction (sect. 4.5). In this transformation phase, all possible interacts relations

are identified and transformed to uses interacts relations. Afterwards, an optimiza-

tion of these interacts relations takes place. The main goal of these optimizations is

an increase of system maintainability through the transformation of interacts rela-

tions to hierarchy relations, which in turn leads to an increase of encapsulation and

decoupling. Additionally, a normalization of the number of interacts relations takes

place to further minimize the impact that future changes can have on the system.

Finally, based on the optimized uses interacts relations between the features of the

transformed FM, interfaces for the respective architectural components are directly

derived.

A concrete example of the results of this FArM transformation phase is given at

the end of section 4.5, where the interfaces of the components participating in the



5.2. FEATURE-ARCHITECTURE MAPPING 145

training of a NN are derived. This example reveals the direct mapping of fea-

ture interaction to component communication. The domain specific interaction sce-

nario between features can now be directly mapped to component communication

through methods required and provided by the architectural components, e.g. the

CalcWeights() method is implemented in a concrete Algorithm component, which

reflects the interaction between the NN-Train and Algorithm features.

With this process, FArM directly utilizes feature interactions to derive the requires

and provides component interfaces. Furthermore, FArM performs explicit steps for

the optimization of these interactions, which also have a further positive effect on

the system maintainability.

Solution Domain Entities

During the exploration of the state of the art methods for the development of PLs,

the need for the consideration of solution domain entities in relation to the design

of the PL architecture was identified. Namely, it has been shown that the utiliza-

tion of solution domain specific entities in the software architecture is sometimes

indispensable for the enhancement of system maintainability, performance, etc. A

characteristic example is the instantiation of FAD archetypes based on solution do-

main entities (sect. 2.4.3). It is thus of great importance for the FArM method

to provide a balance between problem domain and solution domain entities in the

PL architecture. The former is performed through the derivation of architectural

components based on PL features, while the latter is explicitly performed in FArM’s

architectural requirements transformation phase.

The second FArM transformation phase focuses on the architectural requirements

placed upon the PL. The PL developers identify and handle the architectural require-

ments of the system with the FArM elementary transformations. In this transforma-

tion phase, besides the direct resolution and merging of architectural requirements

into pre-existing functional features, it is very likely that new features are added to

the FM to satisfy the architectural requirements. These features are mainly concep-

tualized from the PL architects, but must also be approved by the feature analysts.

The approval of features originating from the solution domain indicates that the fea-

tures are on one hand understood by the feature analysts and on the other hand that

they are of importance for the majority of the PL stakeholders. This fact justifies

the introduction of these features into the FM.

A representative example of this case from the NN-Trainer case study is the in-



146 CHAPTER 5. EVALUATION

troduction of the Network feature (sect. 4.4). The Network feature enables the

training of NNs in a computer network. This feature effectively satisfies the architec-

tural requirement to train large NNs with specific training algorithms that consume

significant amounts of memory. The responsibilities of this new feature are mainly

providing the communication and synchronization mechanisms between the various

NN-Trainer instances that run on the different network nodes. The Network fea-

ture is explicitly approved by the feature analysts before it is introduced into the

FM. Its eventual introduction into the FM is justified by the fact that most of the

PL customers possess a computer network and are thus familiar with the concept of

distributed applications. Furthermore, it is of great significance for the prevalence

of the NN-Training in the NN market to enable the training of large NNs, even with

training algorithms that have high memory requirements.

The above discussion illustrated that FArM explicitly introduces solution domain

entities into the PL architecture through the handling of architectural requirements.

Additionally, the process with which these solution domain entities are introduced

is elevated to the feature level. This fact is consistent with and supports a stronger

feature-architecture mapping.

Mapping mechanism

Many of the state of the art PL methods recognize the need for a strong mapping

between features and the architecture. This is also evident by the fact that a num-

ber of these methods have introduced certain mechanisms to realize this mapping.

Representative examples are FeatuRSEB’s traces (sect. 2.3.2) and the hyperslices

constructs of the Hyperspace approach (sect. 2.5.1). Nevertheless, these mecha-

nisms operate on architectures with a high scattering and tangling of features. This

leads in the case of the FeatuRSEB method to an explosion of the number of traces

needed for the mapping of features to the architecture. In the case of the Hyperspace

approach, hyperslices are hard to create and maintain, while providing a superficial

separation of concerns, evident by the hyperslice interaction. One of the goals of

this work is to provide an efficient mapping mechanism between features and the

architecture.

FArM makes use of traceability links for this purpose (sect. 4.2). FArM trace-

ability links are created between the transformed features and the features of the

transformed FM that took part in the transformation. If the direct elementary

transformation is applied, then a traceability link is added between the transformed

feature and the root feature of the transformed FM. In the case of the merge and



5.2. FEATURE-ARCHITECTURE MAPPING 147

create elementary transformations, traceability links are created between the trans-

formed features and the features in the transformed FM with which the feature was

merged or in which the feature was implemented.

The FArM traceability link has a double role. The traceability link provides a

mechanism to follow the transformations that occur on a feature from the initial FM,

down to the final transformed FM and the respective architectural component(s).

This link serves for forward and backward traceability. Furthermore, the traceability

link holds the rationale of the transformations on the feature, i.e. the reasons and

thoughts behind the decision to transform the feature. This information is invaluable

for the maintenance of the system. A FArM traceability link has been expressed in

the form of XML code in [Kau05].

An example of a FArM traceability link for the Neural Network feature is illus-

trated in listing 5.1. As shown in the listing, each traceability link is assigned an

identification number (id). Additionally, every feature receives an id, which is dif-

ferent between the various versions of the FM, i.e. the same feature receives a new

id after each transformation phase. Within the <tphase> tag the transformation

phase is defined. This also sets the FM in which the origin of the traceability link

is situated. The <sourcefeature> tag defines the feature that is transformed. The

<targetfeature> tag defines the feature that takes part in the transformation. The

<telementary> tag defines the FArM elementary transformation that is applied on

the source feature and contains the rationale of the transformation. For the direct

elementary transformation no target feature is defined. For each elementary trans-

formation, a new traceability link is created between the features of the FM before

and after the transformation.

Listing 5.1: XML notation of FArM Traceability Links

<t r a c e l i n k id=”123”>

2 <tphase>3</ tphase> < !−− 3 = Feature In t e r a c t i on −−>
<s ou r c e f e a tu r e id=15>

4 <name>Neural Network</name>

</ s ou r c e f e a tu r e>

6 <t a r g e t f e a t u r e id=57>

<name>NN−Train</name>

8 </ t a r g e t f e a t u r e>

<te lementary name=Create>

10 <r a t i o n a l e>

The NN−Train f e a tu r e takes on the r e s p o n s i b i l i t y

12 o f t r a i n i n g a NN. I t coo rd ina t e s the NN t r a i n i n g



148 CHAPTER 5. EVALUATION

by i n t e r a c t i n g with other f e a t u r e s .

14 </ r a t i o n a l e>

</ te lementary>

16 . . .

</ t r a c e l i n k>

The main advantage of FArM traceability links in comparison to the existing mech-

anisms is the fact that a finite number of traceability links is required to map a

feature to the architecture. This is due to the small number of transformations that

occur in average during the FArM transformation phases and the one to one rela-

tion between features of the final transformed FM and architectural components.

Furthermore, the creation and maintenance of FArM traceability links requires far

less effort compared to the hyperslice mechanism of the Hyperspace approach. This

effort can be further reduced, e.g. through tool support and the use of the XML

format given in listing 5.1.

Maintainability

One of the main advantages of the stronger feature-architecture mapping achieved

in FArM is system maintainability. High system maintainability is accomplished

when changes can be quickly performed and require small effort. The most crucial

factor for achieving high maintainability is the locality of change, i.e. the extend up

to which a change propagates into the system. In order to minimize the impact of

changes, the system must illustrate a suitable separation of concerns. That is, the

main concerns of the system, which are also most likely to be modified in the future,

must be as much encapsulated and decoupled as possible. In the context of PLs,

this separation of concerns must be performed on the basis of features. Ideally one

feature should be implemented into exactly one architectural component. Although

this is not always possible, the PL architecture must at least illustrate a strong

mapping between features and the architecture.

FArM provides this stronger mapping between features and the architecture in a

number of ways. On the one hand, through the encapsulation of the application

logic of a feature into at most a few architectural components, through the mapping

of the feature interaction onto the component communication and by providing

an efficient traceability mechanism from features of the initial FM to architectural

components. On the other hand, FArM incorporates solution domain entities into

the PL architecture design, while assuring that these entities are compatible with



5.2. FEATURE-ARCHITECTURE MAPPING 149

the existing PL features. It also performs an optimization of the feature interaction

to enhance the encapsulation and decoupling between features. Eventually, for each

of the features of the final transformed FM exactly one architectural component is

derived. All these processes allow for a stronger mapping between features and the

architecture in comparison to the state of the art PL methods.

FArM is also compatible with numerous architectural styles for the concrete im-

plementation of the derived components. The Microkernel architectural style is

especially supported by FArM (sect. 4.6). With this architectural style, the FArM

developers can take full advantage of the feature-architecture mapping provided by

FArM. Furthermore, each feature can be directly mapped to a Microkernel plugin

component with specific requires and provides interfaces, as defined by the uses

interacts relations of the features.

The advantages of a stronger feature-architecture mapping regarding maintainability

can also be shown in the context of a concrete example from the NN-Trainer case

study. Figure 4.25 shows the Pattern feature hierarchy. The responsibility of

this feature is to import patterns for the training of a NN. These can have various

formats, e.g. binary, text, etc. and various structures, e.g. they may consist of

elements separated by semicolons, spaces, commas or a combination of both. The

imported patterns are then made available to the various features of the FM for

the training of NNs. Listing 4.3 shows one of the interfaces of the Pattern derived

component for the retrieval of a pattern. This interface receives the identification

number of a previously loaded pattern and returns the pattern as a void pointer.

The pointer is then casted to the proper format needed based on the structure of

the NN to be trained. Listing 5.2 shows the interface for importing a pattern. This

is the interface that imports the pattern into the system given a file path. Upon a

call to this interface, the given file is scanned for the identification of its format and

structure and a unique ID for later access to the pattern is returned.

Listing 5.2: GetPattern() interface

1 u long GetPattern (char∗ path )

For comparison, we assume a software architecture of the NN-Trainer system, which

has been designed with conventional use-case-oriented techniques, e.g. as would be

the case with the FeatuRSEB method. In this software architecture, each particular

component has knowledge of and handles the loading of patterns. Each component

needs to load patterns with specific formats and structures, e.g. images, film streams,

etc. The following change scenario then occurs:



150 CHAPTER 5. EVALUATION

”A new image format shall be supported by the system for the solution of pattern

recognition problems with the following format: ... and structure: ...”

In the hypothetical NN-Trainer system designed with the FeatuRSEB method, all

components related to pattern recognition are affected by the aforementioned re-

quirement. Each one of the components must be internally changed to support

the new image format. For the FArM developed NN-Trainer system, this change

remains local. New features must be added under the Format and Structure fea-

tures to support the format and structure of the new image format. The respective

architectural components must also be derived and plugged into the Microkernel

architecture. All other system components remain unaffected by this change and

may continue to use the GetPattern() method of the Pattern feature exactly as

before.

This change scenario illustrates the advantages of a stronger feature-architecture

mapping. The effects of feature scattering and tangling are minimized in the FArM

architecture, while the hypothetical conventional architecture suffers from propa-

gating changes. In the hypothetical architecture the importing of a pattern, which

is actually a main concern of the system and thus a feature, is unavoidably imple-

mented throughout the system because of the use-case-oriented development process.

FArM on the other hand identified the importance of this concern as a system feature

and encapsulated it into one loosely coupled component.

The problems occurring from this change scenario might have been predicted by

an experienced architect of the hypothetical architecture, who would then build a

layer to encapsulate the pattern importing functionality. Nonetheless, this would

doubtably be consistently performed for each feature of the system. FArM provides

a methodical, structured approach for the encapsulation of the main system concerns

through the enhancement of the feature-architecture mapping.

Scattering & Tangling in the NN-Trainer PL

In order to provide an indication of the ability of the FArM method to limit feature

scattering and tangling, this section will provide a few numbers regarding these two

issues drawn from the NN-Trainer PL case study. Figures 5.1 and 5.2 show the

distribution of scattering and tangling in the NN-Trainer PL.

One can read the scattering histogram of fig. 5.1 as follows:

”< y > feature(s) is/are implemented in < x > component(s)”



5.2. FEATURE-ARCHITECTURE MAPPING 151

Figure 5.1: Histogram of scattering in the NN-Trainer PL

Note that when referring to the implementation of a feature in an architectural com-

ponent, it is actually referred to the implementation of the feature’s application logic.

That is, a component implementing a feature can have access to other components’

functionality, but it has no knowledge of the internal implementation of this func-

tionality. Furthermore, the features taken into consideration for the construction of

the aforementioned diagrams are the features of the initial FM.

From the histogram of fig. 5.1 it can be concluded that 71 features of the initial

FM are implemented in exactly 1 architectural component, i.e. for 71 features of

the initial FM there exists no scattering. Since there exist overall 85 features in the

initial FM, in approximately 92% of the cases there was no scattering. Merely 8%

of the initial features was scattered in the NN-Trainer PL.

As shown in the left-most bar of fig. 5.1, 7 features of the initial FM needed no

implementation within an architectural component. These are the NAR features,

which were directly resolved in FArM. A few functional features, along with the

quality features caused the deviation seen in the scattering histogram. For instance,

the Recoverability quality feature was implemented into 3 different architectural

components (sect. 4.3.2). The feature most scattered in the NN-Trainer PL was

the UI feature and its GUI and Command-Line sub-features. This is indicated

by the right-most bar of the scattering histogram. Nonetheless, this has been a

conscious decision of the PL developers, since there is little change probability for

these features in the future. The developers decided to provide a stable interface to



152 CHAPTER 5. EVALUATION

the users of the NN-Trainer products, so as to reduce the learning curve for future

versions of the software.

The histogram for the tangling occurring in the NN-Trainer case study can be seen

in fig. 5.2. This diagram can be read as follows:

”< y > component(s) implement < x > feature(s)”

Again, implementation refers to the application logic of a feature of the initial FM.

The histogram shown in fig. 5.2 reveals that 57 components implement the logic of

exactly one feature. Since there are 87 components in total, approximately 65% of

components contain no tangling in the final NN-Trainer software architecture. More-

over, at most 3 features are implemented into an architectural component. Note also

that a significant part of the tangling in the NN-Trainer software architecture is due

to quality features, e.g. Efficiency (sect. 4.3.2), which force their implementation

in numerous functional features, thus increasing feature tangling.

Figure 5.2: Histogram of tangling in the NN-Trainer PL

It can be concluded that for the NN-Trainer case-study most features where imple-

mented into exactly one architectural component, while a large percent of compo-

nents illustrated no tangling. In the cases where tangling did occur, it was limited

to the tangling of at most 3 features in a component. The above discussion indi-

cates that FArM does indeed minimize feature scattering, while significantly limiting

feature tangling.



5.3. FEATURE-LEVEL VARIABILITY 153

5.3 Feature-Level Variability

Another primary goal of this work is to provide efficient variability on the fea-

ture level. Achieving efficient variability of features enables maximum gains from

adopting a PL approach. This is the case, because the various PL products can be

naturally expressed as a set of features. Varying feature constellations will conse-

quently yield various products. An efficient feature-level variability minimizes the

effort needed for instantiating these feature combinations, thus fully exploiting the

possibilities of the PL and maximizing the return on the initial development invest-

ment.

Section 2.3.3 presented the various variability mechanisms applied in the state of

the art PL methods and provided an evaluation of these mechanisms with respect

to their application on the feature level. The following sections will illustrate, how

these problems are resolved in combination with the FArM method.

Feature Tangling

One of the problems of numerous variability mechanisms regarding their efficient

application on the feature level is feature tangling. Examples of such variability

mechanisms are the ”null” component variability mechanism, linking, configuration

management and code fragment superimposition, e.g. the Hyperspace approach.

These variability mechanisms can only operate efficiently on the feature level if fea-

tures are only scattered throughout the system, but not tangled with other features.

FArM minimizes feature tangling in the PL architecture. Features may indeed use

other features, but this is controlled by the allowed interacts relations between the

features. The latter have been further explicitly optimized in FArM, both with

respect to quantity and direction (sect. 4.5.2). Additionally, each feature is imple-

mented in either one or at most a few different architectural components. Therefore,

feature scattering is also minimized in FArM. Nonetheless, a certain degree of fea-

ture scattering may occur for a number of features. Despite this fact, the above

variability mechanisms can be applied more efficiently in combination with FArM.

An example can be seen in the application of the configuration management vari-

ability mechanism. If the features of the transformed FM are directly mapped to

an architectural component, then the configuration management tool can be effi-

ciently used for the instantiation of a product based on a set of features. Each of the

features of the initial FM can be programmed into the configuration management



154 CHAPTER 5. EVALUATION

tool along with the traceability links to the transformed FM and eventually, to the

respective architectural components. Features of the initial FM can then be selected

by the customer and the corresponding architectural components can be automati-

cally chosen by the configuration management tool. If the customer has no special

customization needs, the final product can also be automatically deployed.

Precondition Enforcement

A number of variability mechanisms enforce certain rigid preconditions for their

application on the feature level. Two representative examples of such variability

mechanisms are infrastructure-centered architectures, e.g. CORBA, COM, etc. and

ADLs.

Through the use of FArM, the PL developers are more flexible in the selection

of variability mechanisms. With FArM, other variability mechanisms that do not

enforce any special preconditions can be applied, instead of the aforementioned

mechanisms. For instance, one may use a configuration management tool, instead,

of an ADL to achieve alternative variability during product architecture derivation.

Furthermore, FArM does enforce the precondition of following the FArM develop-

ment processes, but it still remains more flexible than the aforementioned variability

mechanisms. For example, the architecture development of FArM can be performed

with any architectural style, e.g. Microkernel, Layers, Broker, etc., rather with

e.g. a CORBA architecture. Additionally, the PL developers are unhindered in the

selection of an implementation technology in FArM, in contrast to an infrastructure-

centered architecture or an ADL approach.

Feature Size

Yet another problem identified for the application of the contemporary variability

mechanisms on the feature level is that a number of variability mechanisms can

only be efficiently applied for small-sized features. Examples of such variability

mechanisms are condition on constant, condition on variable and design patterns,

e.g. strategy. This is mainly due to the fact that features are scattered and tangled

throughout numerous architectural components. Therefore, the PL developers must

invest a lot of effort to first identify a feature’s various parts and then repeatedly

apply the aforementioned variability mechanisms throughout.

With the stronger feature-architecture mapping provided by FArM, this issue is re-



5.3. FEATURE-LEVEL VARIABILITY 155

solved. The minimization of feature scattering and tangling, as well as the elevation

of features to first class entities in the architecture, lead to the immediate application

of the aforementioned variability mechanisms on the feature level.

An example can be shown with the application of the Strategy design pattern on the

feature level. This can be seen in listing 4.4, which shows the interfaces belonging to

the features of the Performance feature hierarchy. In this example, the component

derived from the Performance feature, which is the super-feature in a specializa-

tion hierarchy relation, receives the CalcPerformance() and SetPerformanceAlg()

interfaces and plays the role of the abstract Strategy object. The components de-

rived from the sub-features MSE and MAE, provide an implementation for the

CalcPerformance() interface and play the role of a concrete Strategy object.

As shown in this example, the Strategy design pattern is slightly changed for its

application on the feature level. Namely, the interfaces mentioned above must be

placed in facade classes, since the Performance, MSE and MAE components consist

of numerous classes. Additionally, setting the current performance algorithm is not

made in a Context object, as in the original design pattern, rather directly in the

Strategy object, i.e. the facade class of the Performance component. Nevertheless,

the essence of the Strategy design pattern is present in the aforementioned constel-

lation, allowing for the direct and efficient application of the pattern on the feature

level.

Inhomogeneous Entities

One problem that becomes evident for variability mechanism when applied on the

feature level is that they all introduce numerous inhomogeneous entities, which

decrease the system’s conceptual integrity. Examples of such variability mechanisms

are condition on constant, condition on variable, design patterns, code-fragment

superimposition, etc. After the use of FArM, the same variability mechanisms can

be applied more efficiently on the feature level, with minimal introduction of extra

entities.

For instance, the Hyperspace approach can be used much more efficiently after the

application of the FArM method. Namely, hyperslices can be effortlessly defined to

include only the feature-related code derived from the FArM final FM. Because of

the upfront separation of concerns, the combination of hyperslices does not require

any special compositional rules, rather only the Hyperspace merge rule, since feature

tangling is minimized.



156 CHAPTER 5. EVALUATION

Unpredictable Effort

Lastly, all contemporary variability mechanisms require an unpredictable amount of

effort for their application on the feature level in conventional PLs. This is due to

the fact that there is no knowledge of the degree of feature scattering and tangling

in advance. A feature may be scattered throughout the system, while it can be

intensively tangled with other features. This makes it very difficult to predict the

effort needed for the application of a variability mechanism on the feature level.

This problem is resolved in FArM through the stronger feature-architecture map-

ping and the consistent creation of traceability links and interacts relations. Because

of the minimization of feature scattering and tangling, a feature can be easily lo-

calized to at most a few architectural components. Furthermore, there exists a

clear mapping between features of the initial FM and the architectural components

through FArM traceability links. Finally, the implications of applying any of the

variability mechanisms to these components can be foreseen based on the interacts

relations. The latter point out which features are influenced by the application of

the variability mechanisms, thus enabling a precise estimation of the effort needed.

5.4 Product Instantiation

Another main goal of this work is to enable a generative approach to product instan-

tiation, which does not suffer from the problems identified for the generator-based

framework component model (sect. 2.4.6).

Enabling a generative approach to product instantiation is generically achieved in

FArM through the stronger feature-architecture mapping and the efficient applica-

tion of variability mechanisms. Each feature of the initial FM can be mapped to at

most a few architectural components, upon which numerous variability mechanisms

can be efficiently applied, e.g. design patterns. Feature tangling is also minimized

in FArM. These factors generically enable for a generative product instantiation. If

additionally the final FArM PL architecture is constructed with the Microkernel ar-

chitectural style (sect. 4.6), then the instantiation of PL products based on features

is reduced to the plugging of the right components into the Microkernel component.

In the cases where another architectural style is chosen for the implementation of

the PL architecture, then a generative approach to product instantiation can still

be achieved through the application of a suitable variability mechanism. Because

of the strong feature-architecture mapping, the complexity of applying a variability



5.4. PRODUCT INSTANTIATION 157

mechanism, e.g. the Hyperspace approach, is minimized.

Nonetheless, the generator-based framework component model has been identified

as a representative state of the art approach to generative product instantiation. In

order to evaluate the extend up to which FArM has improved the generative product

instantiation in comparison to this model, the following sections will go into each of

the identified problems of the model and show how these are resolved in FArM.

Mature Domain

One of the problems of the generator-based framework component model is the need

for a mature domain. The model requires a well-known domain for the identification

of the right fine-grained extension components and variation points. FArM on the

contrary can be used with any domain, regardless of the degree of knowledge the PL

developers have of the domain. This is on the one hand due to the initial explicit

domain analysis performed in FArM and on the other hand due to the fact that

FArM is entirely based on features for the derivation of architectural components

and variation points.

Just before the application of FArM, an analysis of the domain is required for the

creation of the initial FM. This can be done for example with the FODA method.

The resulting initial FM is then used as input to the FArM method. For each feature

of the initial FM, an architectural component is derived. This dramatically simpli-

fies the architecture development, regardless of the domain knowledge of the PL

architects. Additionally, the PL developers are guided by the FArM phases for the

refinement of the PL architecture and the definition of the right component granular-

ity. The initial features are transformed and new features may be created throughout

the FArM transformation in a methodical way, so that the final transformed FM has

the proper granularity for the direct derivation of architectural components. Because

of the strong mapping between features and the architecture, the variation points,

which are generically present in the FM, can also be directly mirrored onto the PL

architecture. This allows for the application of FArM in domains where little or no

experience is present by the PL developers.

Diminished Evolvability

Another problem identified for the generator-based model is the constant need for

change of the configuration tool or DSL during respective changes to the PL frame-

work. These changes lead to extra effort from the developer point of view to evolve



158 CHAPTER 5. EVALUATION

and maintain the tools and DSL. This issue can cause very high costs to a company

that has based its product instantiation on such an approach.

In the case where the PL architecture is developed with the Microkernel architectural

style, as suggested in FArM, there is no need for extra tools or a DSL for product

instantiation. The PL architecture generically provides the needed mechanisms for

a generative product instantiation. In the cases where another architectural style

is chosen by the PL developers, then the tool configuration and evolution is much

simpler in comparison to a system constructed with the contemporary PL methods.

This is due to the stronger mapping between features and the architecture achieved

in FArM.

For example, the addition of a new feature in a FArM architecture would be per-

formed with the following procedure: First, the feature would be placed into the

initial FM and the various relations between the feature and the other features

would be created, i.e. hierarchy, requires and excludes relations. Afterwards, the

feature would go through the FArM transformation phases. Finally, the entire fea-

ture or parts of it would be either merged with other features or new features would

be created to implement the feature. Based on the transformation results, one or

more architectural components would be derived to implement the feature. The

transformation of the feature would be documented through traceability links.

It is obvious from the above that the addition of a feature in FArM does not dramat-

ically change the PL architectural structure. This is because of the minimization of

feature tangling. The new feature is either directly resolved or merged with existing

features as a whole or partially. The merge elementary transformation does not

increase feature tangling, since FArM does not allow for a merging transformation

when the pre-existing feature is drastically changed. On the contrary, a merge is

only allowed, when the pre-existing feature can be naturally extended to implement

another feature or parts of its specification.

It is thus shown that the evolution of a FArM PL only causes the addition of new

features or the natural extension of existing features, without significantly influ-

encing the existing PL architectural structure. This enables in turn the respective

extension of a configuration tool for the generative instantiation of products. For

instance, the new feature along with its traceability links and dependencies is added

to the tool configuration. This process requires significantly less effort than in the

case of a PL architectural evolution that may cause the restructuring of the PL

architecture.



5.4. PRODUCT INSTANTIATION 159

Possible Products

Yet another problem of the generator-based model is the number of possible products

that can be generated. Because of the use of a configuration tool or DSL, the possible

component combinations are limited to the ones that have been already foreseen by

the designer of the tool or DSL.

FArM allows for flexibility in the selection of the variability mechanisms used for

product instantiation (sect. 5.3). That is, the PL developers are free to decide

between a number of variability mechanisms and efficiently apply them on the fea-

ture level. Because a product can be defined as a set of features, any of these

variability mechanisms can be utilized for product instantiation. For instance, the

PL developers may efficiently use code-fragment superimposition for the generation

of products. They may also utilize the plug in mechanisms and versatility of the

Microkernel architectural style for product generation. In any case, the number of

possible products in FArM is only limited by the number of possible feature combi-

nations allowed due to the requires and excludes relations of the FM. These can be

up to thousands of feature combinations [Boe02] and respective possible products

depending on the number of features of the PL.

Inefficient Mapping

The generator-based model is based on the granularity of the extension components

for the efficient instantiation of products. In the case where a feature is scattered and

tangled into numerous extension components, it becomes very difficult to achieve

the proper component granularity, so as to include exactly the selected features into

a product. This leads very frequently to unwanted functionality in the final product,

which reduces the product performance and increases its price. In cases of extreme

feature scattering and tangling, it may also be impossible to perform a mapping of

a feature to extension components.

FArM prevents such problems through the stronger feature-architecture mapping.

The FArM components are derived directly from the features of the transformed

FM, which are in turn directly traceable to the features of the initial FM. Thus, the

selection of a feature in the initial FM always leads to a suitable set of architectural

components. The inclusion of these components into a product leads also to the

inclusion of the feature functionality. Furthermore, because of the minimization of

feature tangling in FArM, there is little chance that the final product will receive

unwanted features through the inclusion of a feature’s components. The only fea-



160 CHAPTER 5. EVALUATION

tures additionally included upon the inclusion of a feature are the ones defined by

the requires and interacts relations of the feature.

5.5 Limitations

The FArM method has been designed with focus on maintainability and flexibility.

Performance issues have also been taken into consideration in FArM. Furthermore,

the method has been applied successfully to a variety of domains (chap. 3). This

has allowed for the verification of the aforementioned FArM attributes. Nonethe-

less, there exist two issues that must be considered before FArM is selected for the

development of a PL. These are performance and PL size.

With respect to performance, it is very likely that FArM cannot be efficiently applied

for hard real-time systems. In time-critical situations, where responsiveness is of

great importance, it is most likely that FArM architectures may not provide the

required performance. This is due to the natural compromise between flexibility and

maintainability against high performance. This fact does not totally exclude FArM

for such domains, rather it relativises the advantages gained by the FArM method.

For instance, several encapsulation and decoupling FArM practices would have to

be ignored for hard real-time domains. Additionally, the conceptual integrity of the

architecture would have to be jeopardized through the inclusion, e.g. of architectural

entities that would explicitly boost performance, but would be unsuitable as features.

The next issue that has to be considered before the use of the FArM method, is the

size of the PL that is to be developed. This must exceed a certain level, in order for

the benefits of FArM to surpass the effort needed for its application. This level can be

measured in terms of features in relation to their complexity and size. Empirically,

it has been shown that the effort for the FArM application can be compensated for

most industrial PLs. Nevertheless, FArM can also be used for small-sized PLs in

the case where a reasonable number of product variations is to instantiated. This is

because of the versatility that FArM allows through an efficient generative approach

for product instantiation.



Chapter 6

Conclusions

At this point, the discussion of the various aspects of this work has been completed.

Initially, a general state of the art analysis of the different PL methodologies was

made, with respect to feature-architecture mapping, feature-level variability and

product instantiation. Following this, special focus was placed on a few mature

and representative state of the art PL methods. The identified problems of these

methodologies provided the basis for a solution. This came in the form of the new

Feature-Architecture Mapping (FArM) method. The contributions of this work, as

well as the prospects for the future are presented in the upcoming sections.

6.1 Contributions

This work made a number of contributions during the development of the FArM

method for the resolution of the state of the art open issues. A significant contri-

bution is the overall and internal design of the FArM method itself for the enhance-

ment of feature-architecture mapping. FArM defines three iterative transformation

phases and a number of processes within each one. Namely, transformations based

on Quality and NAR features, Architectural Requirements and Feature Interaction.

The order of the transformation phases and the processes within them is especially

designed to enable the methodical derivation of architectural components based on

features and thus, to promote the enhancement of feature-architecture mapping.

The first transformation phase assures the existence of only functional features in

the transformed FM. This is a vital precondition for the implementation of the fea-

tures’ specification in architectural components. The second transformation phase

provides a balance between the customer and architecture perspectives. This leads to

a balanced mix of features originating from the problem and solution domains. The

161



162 CHAPTER 6. CONCLUSIONS

third FArM transformation phase optimizes the feature interaction, thus allowing for

the eventual decoupling and encapsulation of the derived components. This leads to

the enhancement of the system’s maintainability. Throughout the application of the

FArM transformation phases, the development of the PL architecture takes place.

The Architecture Development phase of FArM assures that the PL architecture is

gradually developed through the iterative specification of components.

Numerous contributions of this work can also be found within each of the FArM

phases. In the first transformation phase, FArM provides the resolution of quality

features on the feature level. Work has been done on the resolution of quality fea-

tures on the architectural level [Bos00]. FArM makes use of techniques from such

works, e.g. the profiles method and applies it on the feature level. This approach

allows for the natural extension of pre-existing functional features and thus, for

the indirect integration of quality attributes into the PL architecture from the fea-

ture level. Furthermore, FArM introduces the concept of Non-Architecture-Related

(NAR) features. These features have a minimal impact on the software architecture

and cannot be directly implemented in an architectural component. This fact de-

teriorates the mapping between features and the architecture. FArM methodically

categorizes and resolves NAR features (sect. 4.3.1). These contributions allow for

the enhancement of feature-architecture mapping.

Another contribution of FArM can be found in the second transformation phase,

where architectural requirements are taken into consideration. As in the case of

quality features, FArM handles architectural requirements on the feature level. More

precisely, the requirements are integrated into existing functional features or new

features are created for the satisfaction of the architectural requirements. This

procedure minimizes the addition of architectural entities that may jeopardize the

system’s conceptual integrity, while at the same time it provides a balanced mix

between the solution and problem domains. The latter is a vital precondition for

the development of an efficient PL architecture.

In the third transformation phase, FArM performs transformations on features based

on the feature interaction. For this purpose the concept of feature interaction was

extended in FArM. FArM went beyond the classical definition of an interacts relation,

by defining the so called uses interacts relation between features. This kind of

interacts relation gives features knowledge of each other and enables the optimization

of feature interaction and the direct derivation of component interfaces.

The optimization of feature interaction is done in FArM, among others, through the

derivation or extension of hierarchy relations. To enable this optimization, FArM



6.1. CONTRIBUTIONS 163

enhances the definition of FM hierarchy relations by enforcing aggregation and spe-

cialization. This approach allows for the localization of change on the architectural

level. Components derived from FArM super-features can be used as encapsulation

layers for the components derived by their sub-features. Because of the redirection

of uses interacts relations to super-features and their integration into hierarchy re-

lations, changes to components do not easily propagate to other components. This

enhances the system maintainability. Additionally, due to the optimization of feature

interaction, super-feature derived components can be utilized as switch mechanisms

for sub-feature derived components. This is done without the addition of extra en-

tities, thus allowing for the efficient application of variability mechanisms on the

feature level.

The direct derivation of component interfaces from feature interactions is also an-

other contribution of this work. This is achieved through the uses interacts relations

between features of the transformed FM. Namely, the nature of the uses interacts

relations allows for the direct derivation of requires and provides component inter-

faces. Additionally, this approach to component interface definition further improves

the feature-architecture mapping.

Another important contribution of FArM is the derivation of architectural com-

ponents from the features of the final transformed FM and their mapping to an

architectural style. After the first FArM transformation phase, an architectural

component is derived for each of the features of the transformed FM. The compo-

nent specifications are gradually enhanced throughout the following transformation

phases. Eventually, the components receive an interface based on the uses interacts

relations of the respective feature. This process enables the direct derivation of ar-

chitectural components based on features. The resulting architectural components

are then placed in an architectural context. FArM has provided a mapping of the

feature-derived components to various architectures, e.g. Microkernel, Layers, etc.

(sect. 4.6).

Through the development of the FArM method, the goals of this work were achieved.

Consequently, this work contributes to the enhancement of the mapping between

features and the architecture, to the efficient variability on the feature level and

to an improved generative product instantiation, as illustrated in the evaluation of

this work (chapt. 5). The limitations of FArM were also identified with respect to

the performance and the size of the PLs that can be developed with the method

(sect. 5.5). Taking into consideration the limitations of FArM, in relation to the

achievement of the aforementioned goals, FArM provides higher component stability,



164 CHAPTER 6. CONCLUSIONS

a clearer separation of concerns, as well as the preservation of the system’s concep-

tual integrity. The latter contribute to enhanced maintainability, evolvability and

a shorter time-to-market. All these attributes play a central role in the successful

development of software PLs.

6.2 Future Work

The future of this work can be seen in three areas. In generic tool support, further

domain applications and refactoring. In section 4.7, the various tools needed for

the application of FArM were listed. It was also pointed out that an improvement

of the FArM useability would be achieved through the development of a tool to

generically support the FArM processes, e.g. transformation phases, traceability

links, interaction optimization. The development of such a tool has been examined

in a student-work [Kau05]. The results of this work denoted the possibility of the

implementation of this tools as an Eclipse [Fou06] plugin. The development of such

a tool should be a part of the the future work on FArM.

Another prospect for FArM would be its application in other domains for further

refinement of its processes or its adaptation to domain classes. As already mentioned

in section 3, FArM has been applied in a number of domains. Further application

of FArM in other domains, e.g. soft real-time systems, the financial domain or

even hard real-time systems, would enable the optimization of the FArM processes

for these specific domains. Although key aspects of FArM have been explicitly

quantitatively validated within the context of the NN-Trainer case study (sect. 5.2),

it would be advantageous to perform an empirical quantitative evaluation of the

FArM process and results in each of the aforementioned domains. This would include

the rigorous definition of quantitative metrics, e.g. feature scattering and tangling

as used for the NN-Trainer case study, for a variaty of usage scenarios typical to

the domain at hand. This could be performed in the form of controlled experiments

for each usage scenario. The optimization of the FArM processes could then lead

to the adaptation of the FArM method for specific classes of domains, e.g. to the

development of Real-Time FArM.

Finally, an important future prospect of the method is the refactoring of existing

systems to comply to the FArM architecture model. Such future work would en-

able legacy and contemporary systems to take advantage of the FArM possibilities

regarding maintainability and flexibility. This could be achieved, e.g. through the

utilization of existing refactoring techniques and their combination with FArM.



Appendix A

NN-Trainer Feature Models

Figures A.1 and A.2 show the initial feature model and final transformed feature

model respectively for the NN-Trainer case study.

165



166 APPENDIX A. NN-TRAINER FEATURE MODELS

F
ig

u
re

A
.1

:
N

N
-T

ra
in

er
In

itia
l
F
M



167

F
ig

u
re

A
.2

:
N

N
-T

ra
in

er
F
in

a
l
F
M



Appendix B

NN-Trainer Features

Specification

This appendix provides the specification of a representative collection of features

from the NN-Trainer case study. The specification of the NN-Trainer features has

been performed with the FODA [PS94] domain analysis method. Additionally to

the standard FODA feature specification form, a number of the use-cases related to

the features are given.

Recoverability

Name Recoverabiliy
Synonyms -
Description The Recoverability feature allows the periodical saving of

the state of a NN during its training. It allows the user to deter-
mine this period upon the initialization of the training. The train-
ing can then be resumed from the saved state.

Consists of -
Source NN-Trainer Requirements Specification v1.1
Type -
Mutual Exclusive -
With
Mandatory With Train Start, NN Periodic Save, Resume

Table B.1: Recoverabiliy feature FODA definition

168



169

Use Case Name Save the state of a NN training
Preconditions - A NN is being trained
Triggers - A specified period of time elapses
Basic course 1. The NN training is paused
of events 2. The NN structure is saved

3. The state of the training is saved
4. The NN training continues

Postconditions - The last saved state of the NN training may now be retriev-
ed

Table B.2: Save the state of a NN training use-case

Use Case Name Resume a NN training
Preconditions - A NN has been irregularly terminated
Triggers - The user resumes the training
Basic course 1. The NN structure is loaded
of events 2. The NN training state is loaded

3. The user starts the training process
Postconditions - The irregularly terminated training has been resumed from

the last saved state

Table B.3: Resume a NN training use-case

Licence

Name Licence
Synonyms Licence Manager
Description The Licence feature imposes the licensing policy of the NN-

Trainer system. It allows the use of purchased functionality.
Licensing can take place in multiuser, network environments.
Any external licence manager software can be used for the
imposement of the NN-Trainer licensing policy.

Consists of -
Source NN-Trainer Requirements Specification v1.1
Type load-time
Mutual Exclusive -
With
Mandatory With -

Table B.4: Licence feature FODA definition



170 APPENDIX B. NN-TRAINER FEATURES SPECIFICATION

Use Case Name Feature activation
Preconditions - The feature is inactive
Triggers - The user attempts to access the feature functionality
Basic course 1. A notification of an access attempt is made
of events 2. The user is authenticated

3. The functionality access is approved
4. The user receives access to the functionality

Postconditions - The feature is activated and the user can access the feature fun-
ctionality

Table B.5: Feature activation use-case

Pattern

Name Pattern
Synonyms -
Description The Pattern feature allows the loading of training

and validation patterns. The format and structure of the
patterns is read automatically. Numerous pattern formats
and structures are supported by the feature.

Consists of Format, Structure
Source NN-Trainer Requirements Specification v1.1
Type compile-time
Mutual Exclusive -
With
Mandatory With Train-Start

Table B.6: Pattern feature FODA definition

Use Case Name Pattern retrieval
Preconditions - The pattern has already been imported
Triggers - The training process requires access to the training or valida-

tion patterns
Basic course 1. A request for the retrieval of a specific pattern is made
of events 2. The required pattern is retrieved

3. Access is provided to the specified pattern
Postconditions - The pattern may be used by the caller

Table B.7: Pattern retrieval use-case



Appendix C

NN-Trainer Software

Architecture

Figure C.1 shows a partial view of the software architecture for the NN-Trainer PL.

The NN-Trainer software architecture is based on the Microkernel architectural style.

Figure C.1: A partial UML component diagram of the NN-Trainer software
architecture

171



Bibliography

[A+02] C. Atkinson et al. Component-based Product Line Engineering with

UML. Addison-Wesley, 2002.

[B+99] J. Bayer et al. PuLSE: A Methodology to Develop Software Product

Lines. In Proceedings of the 5th Symposium on Software Reusability

(SSR ’99), pages 122–131, 1999.

[BB01] Felix Bachmann and Len Bass. Managing variability in software archi-

tectures. Proceedings of the 2001 symposium on Software reusability:

putting software reuse in context, pages 126–132, 2001.

[BG97] D. Batory and J.B. Geraci. Composition Validation and Subjectivity

in GenVoca Generators. IEEE Transactions on Software Engineering,

23(2):67–82, 1997.

[BJM+95] F. Buschmann, C. Jaekel, R. Meunier, H. Rohnert, and M. Stahl.

Pattern-Oriented Software Architecture-A System of Patterns. John Wi-

ley Sons, 1995.

[Boe02] K. Boellert. Object-Oriented Development of Software Product Lines

for the Serial Production of Software Systems (Objektorientierte En-

twicklung von Software-Produktlinien zur Serienfertigung von Software-

Systemen). PhD thesis, TU-Ilmenau, Germany, 2002.

[Bor06] Borland. Together (R), Accessed on: 30.04.2006. Available from: http:

//www.borland.com/de/products/together/index.html.

[Bos00] J. Bosch. Design & Use of Software Architectures - Adopting and Evolv-

ing a Product Line Approach. Addison-Wesley, 2000.

[Bro95] F.P. Brooks. The Mythical Man-Month: Essays on Software Engineer-

ing. Addison-Wesley Longman, 1995.

172



BIBLIOGRAPHY 173

[Bus96] F. Buschmann. Pattern-Oriented Software Architecture: A System of

Patterns. John Wiley & Sons, 1996.

[CKM+03] M. Calder, M. Kolberg, M.H. Magill, et al. Feature Interaction - A

Critical Review and Considered Forecast. Elsevier: Computer Networks,

41(1):115–141, 2003.

[CN01] P. Clements and L. M. Northrop. Software Product Lines: Practices and

Patterns. Addison Wesley Professional, 1st edition, Aug 20 2001.

[Fou06] The Eclipse Foundation. Eclipse, Accessed on: 30.04.2006. Available

from: http://www.eclipse.org/.

[GAd98] D. Griss, R. Allen, and M. d’Allesandro. Integrating Feature Modelling

with the RSEB. In 5th International Conference of Software Reuse

(ICSR-5), 1998.

[GBS01] Jilles Van Gurp, Jan Bosch, and Mikael Svahnberg. On the Notion

of Variability in Software Product Lines. Proceedings of the Working

IEEE/IFIP Conference on Software Architecture (WICSA’01), 00:45–

54, 2001.

[Gib97] J. Gibson. Feature Requirements Models: Understanding Interactions.

Dini et al., pages 46–60, 1997.

[Hat06] Red Hat. RPM Package Manager, Accessed on: 30.04.2006. Available

from: https://www.redhat.com/.

[HDB96] M. T. Hagan, H. B. Demuth, and M. H. Beale. Neural Network Design.

PWS Publishing, 1996.

[Hon06] Honeywell. DOME (DOmain Modelling Environment), Accessed on:

6.05.2006. Available from: http://www.htc.honeywell.com/dome/.

[IBM06] IBM. Rational RequisitePro, Accessed on: 30.04.2006. Available from:

http://www-306.ibm.com/software/awdtools/reqpro/.

[Inn06] Foerderung von Innovativen Netzwerken - Magentisches Monitoring

(MagMon) / Promotion of Innovative Networks - Magnetic Monitor-

ing. InnoNet, Accessed on: 22.02.2006. Available from: http://www.

vdivde-it.de/innonet/projekte/in_pp057_magmon.pdf.

[ISO01] (ISO) International Standardization Organization. ISO/IEC 9126-

1:2001, Software Engineering, Product Quality, Part 1: Quality Model,

2001.



174 BIBLIOGRAPHY

[JF98] R. Johnson and B. Foote. Designing Reusable Classes. Journal of Object-

Oriented Programming, 1(2), 22-5 1998.

[JGJ97] I. Jacobson, M. Griss, and P. Jonsson. Software Reuse: Architecture,

Process and Organization for Business Success. Addison-Wesley, 1997.

[JZ05] W. Jirapanthong and A. Zisman. Supporting Product Line Development

through Traceability. 12th Asia-Pacific Software Engineering Conference

(APSEC’05), pages 506–514, 2005.

[Kau05] Michel Kaufmann. Analyse und Evaluation der Modellierungsaspekte

der Methode ”Feature-Architecture Mapping” Fallstudie: BlackBerry

Produktlinie. TU-Ilmenau, 10 2005.

[KCH+90] K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson. Feature-

Oriented Domain Analysis (FODA) Feasibility Study. Technical Report

CMU/SEI-90-TR-021, Software Engineering Institute, Carnegie Mellon

University, Pittsburgh, 1990.

[Kic97] G. Kiczales. Aspect-Oriented Programming. In European Conference on

Object-Oriented Programming (ECOOP ’97), pages 220–242. Springer-

Verlag, 1997.

[Kic01] G. Kiczales. Getting Started with AspectJ. Communications of the

ACM, 44(10):59–65, 2001.

[KLD02] K. C. Kang, J. Lee, and P. Donohoe. Feature-Oriented Product Line

Engineering. IEEE Software, 9(4):58–65, Jul./Aug. 2002.

[Ltd06] Techsoft Pvt. Ltd. Matrix TCL Pro - Matrix Algebra Made Easy.

TechSoft, Accessed on: 08.04.2006. Available from: http://www.

techsoftpl.com/matrix/index.htm.

[Mac05] Macrovision. End Users Guide. Macrovision Corporation, 9.5 edition,

August 2005.

[Mei06] J. Meister. Product-Driver Development of Software Product Lines

applied on an Example of Analytical Software (Produktgetriebene En-

twicklung von Software-Produktlinien am Beispiel analytischer Anwen-

dungssoftware). PhD thesis, University of Oldenburg, 2006.

[Mic06] Microsoft. Microsoft Visual Studio, Accessed on: 30.04.2006. Available

from: http://www.microsoft.com/germany/msdn/vstools/default.

mspx.



BIBLIOGRAPHY 175

[MR02] K. Mohan and B. Ramesh. Managing Variability with Traceability in

Product and Service Families. 35th Annual Hawaii International Con-

ference on System Sciences (HICSS’02), 3:76, 2002.

[oS06] University of Stuttgart. Stuttgart Neural Network Simulator (SNNS),

Accessed on: 21.07.2006. Available from: http://www-ra.informatik.

uni-tuebingen.de/SNNS/.

[OT01] H. Ossher and P. Tarr. Software Architectures and Component Technol-

ogy, chapter Multi-Dimensional Separation of Concerns and the Hyper-

space Approach. Kluwer Academic Publishers, 2001.

[Ous98] J.K. Ousterhout. Scripting: Higher Level Programming for the 21st

Century. IEEE Computer, May 1998.

[Par72] D. L. Parnas. On the criteria to be use in decomposing systems into

modules. Communications of the ACM, 15(12):1053–1058, December

1972.

[PS94] A. S. Peterson and J. L. Jr. Stanley. Mapping a domain model and

architecture to a generic design. Technical report, Software Engineering

Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213,

May 1994.

[PS06] PnP-Software. XFeature – Feature Modelling Tool, Accessed

on: 30.04.2006. Available from: http://www.pnp-software.com/

XFeature/.

[Rie03] M. Riebisch. Towards a More Precise Definition of Feature Models. In

Workshop at ECOOP, pages 64–76. BookOnDemand Publ. Co., 2003.

[SEI05] (SEI) Software Engineering Institute. Software Product Lines. Carnegie

Mellon University, Accessed on: 13.07.2005. Available from: http://

www.sei.cmu.edu/productlines/index.html.

[Soc04] P. Sochos. Mapping Feature Models to the Architecture. Proceedings

of the First International Software Product Lines Young Researchers

Workshop (SPLYR), pages 51–60, 2004.

[SPC93] (SPC) Software Productivity Consortium. Reuse-driven software pro-

cesses guidebook. Technical Report SPC-92019-CMC, Version 02.00.03,

Herndon, VA: Software Productivity Consortium, 1993.



176 BIBLIOGRAPHY

[SRP04] P. Sochos, M. Riebisch, and I. Philippow. Feature-Oriented Development

of Software Product Lines: Mapping Feature Models to the Architecture.

Proceedings of Net.ObjectDays, pages 138–152, 2004.

[SRP05] P. Sochos, M. Riebisch, and I. Philippow. Feature-Oriented Architecture

Design for Maintainability and Evolution of Product Lines. Proceeding

of Software Engineering, March 2005. (in german).

[SRP06] P. Sochos, M. Riebisch, and I. Philippow. The Feature-Architecture

Mapping (FArM) Method for Feature-Oriented Development of Soft-

ware Product Lines. Proceeding of Computer Based Systems Engineering

(ECBS 06), March 2006.

[Str03] D. Streitferdt. Family-Oriented Requirements Engineering. PhD thesis,

Faculty of Informatics and Automation of the University of Ilmenau,

August 2003. (in german).

[SY99] J. Suzuki and Y. Yamamoto. Extending UML with Aspects: Aspect

Support in the Design Phase. In Aspect-Oriented Programming Work-

shop at ECOOP ’99, 1999.

[Tar05] Peri Tarr. Multi-Dimensional Separation of Concerns: Software Engi-

neering using Hyperspaces. IBM T. J. Watson Research Center, Ac-

cessed on: 9.11.2005. Available from: http://www.research.ibm.com/

hyperspace/.

[TM06] Inc. The MathWorks. Neural Network Toolbox, Accessed on: 22.07.2006.

Available from: http://www.mathworks.com/products/neuralnet/.

[TO01] P. Tarr and H. Ossher. Hyper/J User and Installation Manual, 2001.

[WL99] D. M. Weiss and C. T. R. Lai. Software product-line engineering : a

family-based software development process. Addison-Wesley, 1999.



Theses

1. Separation of concerns is a vital precondition for advanced maintainability and

high flexibility of software product lines.

2. Features pose the main concerns in the context of software product lines.

3. Ideally, one feature should be implemented into exactly one architectural com-

ponent. In practise, a strong mapping between features and the architecture

must exist.

4. The Feature-Architecture Mapping (FArM) method developed in this work,

allows for a stronger mapping between features and the architecture in com-

parison to the contemporary state of the art product line development method-

ologies and other approaches.

5. FArM progressively transforms an initial customer-specific feature model pro-

ducing a final transformed feature model, where the application logic of each

feature can be implemented into exactly one architectural component. The

feature interaction is reflected by the component communication.

6. Throughout the FArM transformation phases optimization of feature interac-

tion is performed with focus on system maintainability and variability.

7. The stronger feature-architecture mapping achieved through the FArM pro-

cesses allows for an efficient variability on the feature level and for an im-

proved generative product instantiation compared to the present state of the

art approaches.

Ilmenau, April 22, 2007



Erklärung

Ich versichere, dass ich die vorliegende Arbeit ohne unzulässige Hilfe Dritter und

ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe. Die

aus anderen Quellen direkt oder indirekt übernommenen Daten und Konzepte sind

unter Angabe der Quelle gekennzeichnet. Weitere Personen waren an der inhaltlich

materiellen Erstellung der vorliegenden Arbeit nicht beteiligt. Insbesondere habe

ich hierfür nicht die entgeltliche Hilfe von Vermittlungs- bzw. Beratungsdiensten

(Promotionsberater oder anderer Personen) in Anspruch genommen. Niemand hat

von mir unmittelbar oder mittelbar geldwerte Leistungen für Arbeiten erhalten, die

im Zusammenhang mit dem Inhalt der vorgelegten Dissertation stehen. Die Ar-

beit wurde bisher weder im In- noch im Ausland in gleicher oder ähnlicher Form

einer Prüfungsbehörde vorgelegt. Ich bin darauf hingewiesen worden, dass die Un-

richtigkeit der vorstehenden Erklärung als Täuschungsversuch angesehen wird und

den erfolglosen Abbruch des Promotionsverfahrens zur Folge hat.

Ilmenau, April 22, 2007

Periklis Sochos


