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Preface 
 
Dear Participants, 
 
Confronted with the ever-increasing complexity of technical processes and the growing demands on their 
efficiency, security and flexibility, the scientific world needs to establish new methods of engineering design and 
new methods of systems operation. The factors likely to affect the design of the smart systems of the future will 
doubtless include the following: 

• As computational costs decrease, it will be possible to apply more complex algorithms, even in real 
time. These algorithms will take into account system nonlinearities or provide online optimisation of the 
system’s performance. 

• New fields of application will be addressed. Interest is now being expressed, beyond that in “classical” 
technical systems and processes, in environmental systems or medical and bioengineering applications. 

• The boundaries between software and hardware design are being eroded. New design methods will 
include co-design of software and hardware and even of sensor and actuator components. 

• Automation will not only replace human operators but will assist, support and supervise humans so 
that their work is safe and even more effective. 

• Networked systems or swarms will be crucial, requiring improvement of the communication within 
them and study of how their behaviour can be made globally consistent. 

• The issues of security and safety, not only during the operation of systems but also in the course of 
their design, will continue to increase in importance. 

The title “Computer Science meets Automation”, borne by the 52nd International Scientific Colloquium (IWK) at 
the Technische Universität Ilmenau, Germany, expresses the desire of scientists and engineers to rise to these 
challenges, cooperating closely on innovative methods in the two disciplines of computer science and 
automation. 

The IWK has a long tradition going back as far as 1953. In the years before 1989, a major function of the 
colloquium was to bring together scientists from both sides of the Iron Curtain. Naturally, bonds were also 
deepened between the countries from the East. Today, the objective of the colloquium is still to bring 
researchers together. They come from the eastern and western member states of the European Union, and, 
indeed, from all over the world. All who wish to share their ideas on the points where “Computer Science meets 
Automation” are addressed by this colloquium at the Technische Universität Ilmenau. 
All the University’s Faculties have joined forces to ensure that nothing is left out. Control engineering, 
information science, cybernetics, communication technology and systems engineering – for all of these and their 
applications (ranging from biological systems to heavy engineering), the issues are being covered.  
Together with all the organizers I should like to thank you for your contributions to the conference, ensuring, as 
they do, a most interesting colloquium programme of an interdisciplinary nature. 
I am looking forward to an inspiring colloquium. It promises to be a fine platform for you to present your 
research, to address new concepts and to meet colleagues in Ilmenau. 
 
 
 
 
 
Professor Peter Scharff     Professor Christoph Ament  
Rector, TU Ilmenau             Head of Organisation 
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Nonlinear process identification and modeling using 
general regression neuro-fuzzy network 
 
 

INTRODUCTION 
 
 

At present time, artificial neural networks are widely used for solving the problems of 

identification, prediction and modeling of nonlinear processes and systems. However, 

when the data are fed in real time and their processing must be simultaneous with 

functioning of the plant, in the case of nonstationary plant the problem becomes 

difficult. The so-called "optimization-based networks" such as Multilayer Perceptron, 

Radial Basis Functions Networks (RBFN) or Normalized Radial Basis Functions 

Networks (NRBFN) can be ineffective to solve such a problem thorough their slow 

convergence rate, curse of dimensionality, appearance of regions where all neurons 

of the network are inactive and possibility of getting to the local minima. 

"Memory-based networks", such as General Regression Neural Network (GRNN), 

proposed by D. F Specht [1], can be referred to, so-called, just-in-time models [2], 

which are learned by one-pass learning algorithm by the principle "neurons at data 

points" [3]. These properties are the cause of GRNN high learning rate.  

For the solving of nonlinear plant identification problem 

y(x)= F(x(k)) , 

 where y(x), x(k)– scalar and (nx1)-vector of output and input signals correspondingly 

in the instant time k=1,2,…,  – unknown nonlinear operator of the plant, it is 

necessary to form learning sample 

F(•)

{ }* *x (k),y (k) , k=1,2,…,l, whereupon it is possible 

to get the estimate y(x) of the plant response y(x) to arbitrary input signal x in the 

form 

        (1) 
-1l l

*

k=1 k=1
y(x) = y (k) (D(k)) (D(k))ϕ ϕ

⎛ ⎞
⎜
⎝ ⎠

∑ ∑ ⎟

where D(k) – distance measure in accepted metrics between x and x*(k), ϕ(•)  – 

some kernel function, usually, Gaussian. GRNN converges asymptotically to optimal 
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nonlinear regression surface with the growing of learning sample size [4] and its 

learning process can be organized easily in real time. But the main problems 

connected with GRNN using are defined by possible curse of dimensionality, when 

the number of data l is large.   

Neuro-Fuzzy Systems (NFS) [5-6] combine the neural networks learning abilities with 

transparence and interpretability of the Fuzzy Inference Systems (FIS). Having 

approximating abilities of RBFN [6-7], NFS subject to curse of dimensionality with 

less degree, that provides them advantage in comparison with neural networks 

because of using univariate Fuzzy Basis Functions (FBF) instead of multidimansional 

RBF.   

Among NFS Adaptive Network-based Fuzzy Inference System (ANFIS) have got 

wide spread [8]. ANFIS has five-layer architecture and is typical representative of the 

optimization-based networks family, which are characterized by insufficient learning 

rate. Lattice-based Associative Memory Networks (LAMN) [9-10] are the 

representatives of memory-based networks, whose output signal is formed on basis 

of univariate bell-shaped functions uniformly distributed on axes of n-dimensional 

input space. As a result of aggregation operation multidimensional FBFs are formed, 

whose centers are also uniformly distributed in multidimensional space, and their 

layout doesn’t depend on characteristics of learning sample. 

The goal of this work is solving the problem of nonlinear process identification and 

modeling using General Regression Neuro-Fuzzy Network (GRNFN), which 

represents by itself NFS and learns as GRNN that provides approximating properties 

of ANFIS with learning rate of memory-based networks. 

 
 

THE GENERAL REGRESSION NEURO-FUZZY NETWORK ARCHITECTURE  
 
 

The architecture of General Regression Neuro-Fuzzy Network is illustrated on Fig. 1 

and consists of five sequentially connected layers. First hidden layer is composed of l 

blocks with n FBF in each and realizes fuzzification of the input variables vector. 

Second hidden layer implements aggregation of membership levels that are 

computed in first layer, and consists of l multiplication blocks. Third hidden layer – the 

layer of synaptic weights that are defined in special way. Fourth layer is formed by 

two summation units and computes the sums of output signals from the second and 

third layers. Finally, normalization takes place in fifth (output) layer, where the output 
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signal is computed.  

nx

ϕ∏ *
i

n

i 1x (1)
i=1

μ (x ) = (x)

ϕ∏ *
i

n

i 2x (2)
i=1

μ (x ) = (x)

ϕ∏ *
i

n

i lx (l)
i=1

μ (x ) = (x)

*y (1)

*y (2)
2x

1x ∑ ∏ *
i

nl
*

ix (k)
k=1 i=1

y (k) μ (x )

∑∏ *
i

nl

ix (k)
k=1 i=1

μ (x )

*y (l)

1y (x)

2y (x)

y(x)

ly (x)

*
1x (1)μ

*
2x (1)μ

*
nx (1)μ

1

*
1x (2)μ

*
2x (2)μ

*
nx (2)μ
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*
1x (l)μ

*
2x (l)μ

*
nx (l)μ

l

 
Fig.1 – General Regression Neuro-Fuzzy Network. 

 
 

GENERAL REGRESSION NEURO-FUZZY NETWORK LEARNING  
 
 
Since GRNFN belongs to memory-based networks, its learning is based on principle 

“neurons at data points” that makes it extremely easy and fast. Learning sample 

vectors * * *x (1),...,x (k),...,x (l)  are normalized in advance on unit centered hypercube 

so, that , , . For each vector from the 

learning sample 

*min * *max
i i ix x (k) x≤ ≤ *

i-0,5 x (k) 0,5≤ ≤ i = 1,2,...,n

* * * * Τ
1 2 nx (k) = (x (k),x (k),..., x (k))  in the first hidden layer own set of  fuzzy-

basis membership functions  is formed, so that centers of  

coincide with 

* * *
1 2 nx (k) x (k) x (k)μ ,μ ,...,μ *

ix (k)μ

*
ix (k) , k=1,2,…,l. The process of FBF formation is illustrated on Fig. 2. 

Note that GRNFN contains nl fuzzy-basis functions, that can’t lead to the curse of 

dimensionality. 

Theoretically, any kernel function with non-strictly local support can be used as FBF 

that allows to avoiding of appearance of “gaps” [4]. As such a function one can 

recommend generalized Gaussian  

 *
i

-12b*
i i

ix (k)
i

x (k) - xμ (x )= 1+
σ (k)

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

b 0,5≥, ,    (2) 

that is the bell-shaped function, whose shape is defined by the scalar parameter b 

[6]. As for choosing of the width parameter , standard recommendation leads to iσ (k)
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the idea [11], that it must ensure small overlapping of FBFs neighboring. At the same 

time with FBFs forming in first hidden layer, the synaptic weights are formed in the 

third hidden layer and they are supposed to be equal to the signals of learning 

sample . *y (k)
*
ixμ

1*min
ixμ *max

ixμ*
ix (m)μ*

ix (k)μ

*
ix (m)*

ix (k)*min
i-0.5 = x *max

i0.5 = x
min
i iD (x (m))  

Fig.2 – Fuzzy-basis membership functions. 

Thus, when arbitrary signal x  is fed to the input of GRNFN in the first hidden layer 

membership levels *
i ix (k)μ (x ) , i=1,2,…,n, k=1,2,…,l are computed, in the second layer 

their aggregation is realized by forming multidimensional FBFs 

 

-12b*n
i i

k
ii=1

x (k) - x(x)= 1+
σ (k)

ϕ
⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

∏ =1,2,...,l, k ,   (3) 

in the third layer products *
ky(x)= y (k) (x)ϕ  are determined, fourth layer computes the 

values of signals  and , and, finally, in the output layer the 

estimate 

l
*

k
k=1

y (k) (x)ϕ∑
l

k
k=1

(x)ϕ∑

 
*
i

*
i

nll
**

ik x (k)
k=1k=1 i=1

l nl

k ix (k)
k=1 k=1 i=1

y (k) μ (x )y (k) (x)
y(x)= =

(x) μ (x )

ϕ

ϕ

∑∑ ∏

∑ ∑∏
,   (4) 

is forming, which coincides with (1) with the only difference, that instead of radial-

basis functions multidimensional fuzzy-basis functions are used, that were formed of 

univariate FBF. 

The scheme of fuzzy inference, which is realized by GRNFN can be presented as a 

logic equations system 
*

1 1 2 2 n n 1IF(x .IS.A (1)).AND.(x .IS.A (1)).AND.....AND.(x .IS.A (1)), THEN y (x)= y (1)  
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*
1 1 2 2 n n kIF(x .IS.A (k)).AND.(x .IS.A (k)).AND.....AND.(x .IS.A (k)), THEN y (x)= y (k)  

 
*

1 1 2 2 n n lIF(x .IS.A (l)).AND.(x .IS.A (l)).AND.....AND.(x .IS.A (l)), THEN y (x)= y (l)  

where the operator iA (k)  is represented by the membership function (2). Hence, 

using of neuro-fuzzy approach allows to ensure the interpretation of obtained results. 

The GRNFN learning process can proceed both in batch mode, when learning 

sample { }* *x (k),y (k)  is given apriori and in real time, when pairs x*(k), y*(k) are fed 

sequentially, forming multidimensional FBFs kϕ . It is sufficiently easy to organize the 

slight information pairs exclusion process. If for some observation *x (m)  the 

condition  

     (5) min -1
i ii

max D (x (m))< r < (l -1)

is held (here  – the least distance between min
i iD (x (m)) ix (m)  and earlier formed 

neighboring centers of FBFs), then *x (m)  doesn’t form function mϕ  and is removed 

from the consideration. Note, that for univariate situation the threshold parameter r 

and the distance  are significantly easier to define, then in multidimensional 

case of GRNN. 

max
iD

Operation of GRNFN can be organized simply in the online adaptation mode that is 

essentially important for nonstationary processes identification and control. In this 

situation it is possible to use two approaches. The first one – on the sliding window of 

l observations, when new learning pairs x*(l+1), y*(l+1) are being fed to the input of 

the network, in the first and third layers the pair of  and y*(1) is removed, and 

instead of it the membership function  and weight y*(l+1) are formed. The 

second approach is based on inequality (5). In this case newly received pair x*(m), 

y*(m) isn’t removed, but replaces the nearest to it in the “old” data. As far as the 

learning process operates almost immediately, there is no problem with following 

properties of tuning algorithm at all. 

*
ix (1)μ

*
ix (l+1)μ

 
 

NUMERICAL EXPERIMENT 
 
 
The plant to be identified has the form [12] 

2 3y(k+1)=y(k)/(1+y (k))+u (k) , 
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where the input to the plant u(  for k=100.  k)=sin(2πk/25)+sin(2πk/10)

 
Fig.3 – Outputs of the original plant, GRNN and GRNFN  

for 50 signals in learning sample.  

Numerical results of the experiment show that if learning sample consists of 50 

signals, then both networks operates equally and have no mistakes. Fig.3 shows the 

plant and the outputs of GRNN and GRNFN and the differences between them are 

undistinguished. But if the number of signals which form the learning sample less 

then a half of all number of signals, GRNFN has the accuracy higher by 3-5% then 

GRNN.  

 
 

CONCLUSIONS 
 
 

General Regression Neuro-Fuzzy Network, that is generalization of conventional 

GRNN and adaptive fuzzy inference systems, is proposed in this work. This network 

is characterized by computational simplicity, interpretability of the results and ensures 

high accuracy in the nonlinear nonstationary processes identification and modeling 

problems.  
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