

PROCCEDINGS

| 10 - 13 September 2007

FACULTY OF COMPUTER SCIENCE AND AUTOMATION

COMPUTER SCIENCE MEETS AUTOMATION

VOLUME I

- **Session 1 Systems Engineering and Intelligent Systems**
- Session 2 Advances in Control Theory and Control Engineering
- Session 3 Optimisation and Management of Complex Systems and Networked Systems
- **Session 4 Intelligent Vehicles and Mobile Systems**
- **Session 5 Robotics and Motion Systems**

Bibliografische Information der Deutschen Bibliothek

Die Deutsche Bibliothek verzeichnet diese Publikation in der deutschen Nationalbiografie; detaillierte bibliografische Daten sind im Internet über http://dnb.ddb.de abrufbar.

ISBN 978-3-939473-17-6

Impressum

Herausgeber:	Der Rektor der Technischen Universität Ilmenau UnivProf. Dr. rer. nat. habil. Peter Scharff
Redaktion:	Referat Marketing und Studentische Angelegenheiten Kongressorganisation Andrea Schneider Tel.: +49 3677 69-2520 Fax: +49 3677 69-1743 e-mail: kongressorganisation@tu-ilmenau.de
Redaktionsschluss:	Juli 2007
Verlag:	Ge
	Technische Universität Ilmenau/Universitätsbibliothek Universitätsverlag Ilmenau Postfach 10 05 65 98684 Ilmenau www.tu-ilmenau.de/universitaetsverlag
Herstellung und Auslieferung:	Verlagshaus Monsenstein und Vannerdat OHG Am Hawerkamp 31 48155 Münster www.mv-verlag.de
Layout Cover:	www.cey-x.de
Bezugsmöglichkeiten:	Universitätsbibliothek der TU Ilmenau Tel.: +49 3677 69-4615 Fax: +49 3677 69-4602

© Technische Universität Ilmenau (Thür.) 2007

Diese Publikationen und alle in ihr enthaltenen Beiträge und Abbildungen sind urheberrechtlich geschützt. Mit Ausnahme der gesetzlich zugelassenen Fälle ist eine Verwertung ohne Einwilligung der Redaktion strafbar.

Preface

Dear Participants,

Confronted with the ever-increasing complexity of technical processes and the growing demands on their efficiency, security and flexibility, the scientific world needs to establish new methods of engineering design and new methods of systems operation. The factors likely to affect the design of the smart systems of the future will doubtless include the following:

- As computational costs decrease, it will be possible to apply more complex algorithms, even in real time. These algorithms will take into account system nonlinearities or provide online optimisation of the system's performance.
- New fields of application will be addressed. Interest is now being expressed, beyond that in "classical" technical systems and processes, in environmental systems or medical and bioengineering applications.
- The boundaries between software and hardware design are being eroded. New design methods will include co-design of software and hardware and even of sensor and actuator components.
- Automation will not only replace human operators but will assist, support and supervise humans so that their work is safe and even more effective.
- Networked systems or swarms will be crucial, requiring improvement of the communication within them and study of how their behaviour can be made globally consistent.
- The issues of security and safety, not only during the operation of systems but also in the course of their design, will continue to increase in importance.

The title "Computer Science meets Automation", borne by the 52nd International Scientific Colloquium (IWK) at the Technische Universität Ilmenau, Germany, expresses the desire of scientists and engineers to rise to these challenges, cooperating closely on innovative methods in the two disciplines of computer science and automation.

The IWK has a long tradition going back as far as 1953. In the years before 1989, a major function of the colloquium was to bring together scientists from both sides of the Iron Curtain. Naturally, bonds were also deepened between the countries from the East. Today, the objective of the colloquium is still to bring researchers together. They come from the eastern and western member states of the European Union, and, indeed, from all over the world. All who wish to share their ideas on the points where "Computer Science meets Automation" are addressed by this colloquium at the Technische Universität Ilmenau.

All the University's Faculties have joined forces to ensure that nothing is left out. Control engineering, information science, cybernetics, communication technology and systems engineering – for all of these and their applications (ranging from biological systems to heavy engineering), the issues are being covered.

Together with all the organizers I should like to thank you for your contributions to the conference, ensuring, as they do, a most interesting colloquium programme of an interdisciplinary nature.

I am looking forward to an inspiring colloquium. It promises to be a fine platform for you to present your research, to address new concepts and to meet colleagues in Ilmenau.

In Sherte

Professor Peter Scharff Rector, TU Ilmenau

"L. Ummt

Professor Christoph Ament Head of Organisation

Table of Contents

CONTENTS

1 Systems Engineering and Intelligent Systems	Page
A. Yu. Nedelina, W. Fengler DIPLAN: Distributed Planner for Decision Support Systems	3
O. Sokolov, M. Wagenknecht, U. Gocht Multiagent Intelligent Diagnostics of Arising Faults	9
V. Nissen Management Applications of Fuzzy Conrol	15
O. G. Rudenko, A. A. Bessonov, P. Otto A Method for Information Coding in CMAC Networks	21
Ye. Bodyanskiy, P. Otto, I. Pliss, N. Teslenko Nonlinear process identification and modeling using general regression neuro-fuzzy network	27
Ye. Bodyanskiy, Ye. Gorshkov, V. Kolodyazhniy , P. Otto Evolving Network Based on Double Neo-Fuzzy Neurons	35
Ch. Wachten, Ch. Ament, C. Müller, H. Reinecke Modeling of a Laser Tracker System with Galvanometer Scanner	41
K. Lüttkopf, M. Abel, B. Eylert Statistics of the truck activity on German Motorways	47
K. Meissner, H. Hensel A 3D process information display to visualize complex process conditions in the process industry	53
FF. Steege, C. Martin, HM. Groß Recent Advances in the Estimation of Pointing Poses on Monocular Images for Human-Robot Interaction	59
A. González, H. Fernlund, J. Ekblad After Action Review by Comparison – an Approach to Automatically Evaluating Trainee Performance in Training Exercise	65
R. Suzuki, N. Fujiki, Y. Taru, N. Kobayashi, E. P. Hofer Internal Model Control for Assistive Devices in Rehabilitation Technology	71
D. Sommer, M. Golz Feature Reduction for Microsleep Detection	77

F. Müller, A. Wenzel, J. Wernstedt A new strategy for on-line Monitoring and Competence Assignment to Driver and Vehicle	83
V. Borikov Linear Parameter-Oriented Model of Microplasma Process in Electrolyte Solutions	89
A. Avshalumov, G. Filaretov Detection and Analysis of Impulse Point Sequences on Correlated Disturbance Phone	95
H. Salzwedel Complex Systems Design Automation in the Presence of Bounded and Statistical Uncertainties	101
G. J. Nalepa, I. Wojnicki Filling the Semantic Gaps in Systems Engineering	107
R. Knauf Compiling Experience into Knowledge	113
R. Knauf, S. Tsuruta, Y. Sakurai Toward Knowledge Engineering with Didactic Knowledge	119
2 Advances in Control Theory and Control Engineering	
U. Konigorski, A. López Output Coupling by Dynamic Output Feedback	129
H. Toossian Shandiz, A. Hajipoor Chaos in the Fractional Order Chua System and its Control	135
O. Katernoga, V. Popov, A. Potapovich, G. Davydau Methods for Stability Analysis of Nonlinear Control Systems with Time Delay for Application in Automatic Devices	141
J. Zimmermann, O. Sawodny Modelling and Control of a X-Y-Fine-Positioning Table	145
A. Winkler, J. Suchý Position Based Force Control of an Industrial Manipulator	151
E. Arnold, J. Neupert, O. Sawodny, K. Schneider Trajectory Tracking for Boom Cranes Based on Nonlinear Control and Optimal Trajectory Generation	157

K. Shaposh The methoo magnetic fi	nikov, V. Astakhov I of ortogonal projections in problems of the stationary eld computation	165
J. Naumenk The compu bounded co	o ting of sinusoidal magnetic fields in presence of the surface with onductivity	167
K. Bayramk The methoo stationary f	ulov, V. Astakhov I of the boundary equations in problems of computing static and ields on the topological graph	169
T. Kochube The compu- using the Ir	y, V. Astakhov tation of magnetic field in the presence of ideal conductors ntegral-differential equation of the first kind	171
M. Schneide U. Stark, J. Artificial ne	er, U. Lehmann, J. Krone, P. Langbein, Ch. Ament, P. Otto, Schrickel ural network for product-accompanied analysis and control	173
I. Jawish The Improv Fuzzy Logic	ement of Traveling Responses of a Subway Train using Techniques	179
Y. Gu, H. Su An Approac Neural Netv	ı, J. Chu ch for Transforming Nonlinear System Modeled by the Feedforward vorks to Discrete Uncertain Linear System	185
3 Opt and	imisation and Management of Complex Systems Networked Systems	
R. Franke, J Advanced r	. Doppelhammer nodel based control in the Industrial IT System 800xA	193
H. Gerbrach An efficient	nt, P. Li, W. Hong optimization approach to optimal control of large-scale processes	199
T. N. Pham, Modifying t multi-criteri	B. Wutke he Bellman's dynamic programming to the solution of the discrete a optimization problem under fuzziness in long-term planning	205
S. Ritter, P. Optimale Pl liberalisierte	Bretschneider anung und Betriebsführung der Energieversorgung im en Energiemarkt	211
P. Bretschne Intelligente	eider, D. Westermann Energiesysteme: Chancen und Potentiale von IuK-Technologien	217

Z. Lu, Y. Zhong, Yu. Wu, J. Wu WSReMS: A Novel WSDM-based System Resource Management Scheme	223
M. Heit, E. Jennenchen, V. Kruglyak, D. Westermann Simulation des Strommarktes unter Verwendung von Petrinetzen	229
O. Sauer, M. Ebel Engineering of production monitoring & control systems	237
C. Behn, K. Zimmermann Biologically inspired Locomotion Systems and Adaptive Control	245
J. W. Vervoorst, T. Kopfstedt Mission Planning for UAV Swarms	251
M. Kaufmann, G. Bretthauer Development and composition of control logic networks for distributed mechatronic systems in a heterogeneous architecture	257
T. Kopfstedt, J. W. Vervoorst Formation Control for Groups of Mobile Robots Using a Hierarchical Controller Structure	263
M. Abel, Th. Lohfelder Simulation of the Communication Behaviour of the German Toll System	269
P. Hilgers, Ch. Ament Control in Digital Sensor-Actuator-Networks	275
C. Saul, A. Mitschele-Thiel, A. Diab, M. Abd rabou Kalil A Survey of MAC Protocols in Wireless Sensor Networks	281
T. Rossbach, M. Götze, A. Schreiber, M. Eifart, W. Kattanek Wireless Sensor Networks at their Limits – Design Considerations and Prototype Experiments	287
Y. Zhong, J. Ma Ring Domain-Based Key Management in Wireless Sensor Network	293
V. Nissen Automatic Forecast Model Selection in SAP Business Information Warehouse under Noise Conditions	299
M. Kühn, F. Richter, H. Salzwedel Process simulation for significant efficiency gains in clinical departments – practical example of a cancer clinic	305

D. Westermann, M. Kratz, St. Kümmerling, P. Meyer Architektur eines Simulators für Energie-, Informations- und Kommunikations- technologien	311
P. Moreno, D. Westermann, P. Müller, F. Büchner Einsatzoptimierung von dezentralen netzgekoppelten Stromerzeugungs- anlagen (DEA) in Verteilnetzen durch Erhöhung des Automatisierungsgrades	317
M. Heit, S. Rozhenko, M. Kryvenka, D. Westermann Mathematische Bewertung von Engpass-Situationen in Transportnetzen elektrischer Energie mittels lastflussbasierter Auktion	331
M. Lemmel, M. Schnatmeyer RFID-Technology in Warehouse Logistics	339
V. Krugljak, M. Heit, D. Westermann Approaches for modelling power market: A Comparison.	345
St. Kümmerling, N. Döring, A. Friedemann, M. Kratz, D. Westermann Demand-Side-Management in Privathaushalten – Der eBox-Ansatz	351
4 Intelligent Vehicles and Mobile Systems	
A. P. Aguiar, R. Ghabchelloo, A. Pascoal, C. Silvestre , F. Vanni Coordinated Path following of Multiple Marine Vehicles: Theoretical Issues and Practical Constraints	359
R. Engel, J. Kalwa Robust Relative Positioning of Multiple Underwater Vehicles	365
M. Jacobi, T. Pfützenreuter, T. Glotzbach, M. Schneider A 3D Simulation and Visualisation Environment for Unmanned Vehicles in Underwater Scenarios	371
M. Schneider, M. Eichhorn, T. Glotzbach, P. Otto A High-Level Simulator for heterogeneous marine vehicle teams under real constraints	377
A. Zangrilli, A. Picini Unmanned Marine Vehicles working in cooperation: market trends and technological requirements	383
T. Glotzbach, P. Otto, M. Schneider, M. Marinov A Concept for Team-Orientated Mission Planning and Formal Language Verification for Heterogeneous Unmanned Vehicles	389

M. A. Arredondo, A. Cormack SeeTrack: Situation Awareness Tool for Heterogeneous Vehicles	395
J. C. Ferreira, P. B. Maia, A. Lucia, A. I. Zapaniotis Virtual Prototyping of an Innovative Urban Vehicle	401
A. Wenzel, A. Gehr, T. Glotzbach, F. Müller Superfour-in: An all-terrain wheelchair with monitoring possibilities to enhance the life quality of people with walking disability	407
Th. Krause, P. Protzel Verteiltes, dynamisches Antriebssystem zur Steuerung eines Luftschiffes	413
T. Behrmann, M. Lemmel Vehicle with pure electric hybrid energy storage system	419
Ch. Schröter, M. Höchemer, HM. Groß A Particle Filter for the Dynamic Window Approach to Mobile Robot Control	425
M. Schenderlein, K. Debes, A. Koenig, HM. Groß Appearance-based Visual Localisation in Outdoor Environments with an Omnidirectional Camera	431
G. Al Zeer, A. Nabout, B. Tibken Hindernisvermeidung für Mobile Roboter mittels Ausweichecken	437
5 Robotics and Motion Systems	
Ch. Schröter, HM. Groß Efficient Gridmaps for SLAM with Rao-Blackwellized Particle Filters	445
St. Müller, A. Scheidig, A. Ober, HM. Groß Making Mobile Robots Smarter by Probabilistic User Modeling and Tracking	451
A. Swerdlow, T. Machmer, K. Kroschel, A. Laubenheimer, S. Richter Opto-acoustical Scene Analysis for a Humanoid Robot	457
A. Ahranovich, S. Karpovich, K. Zimmermann Multicoordinate Positioning System Design and Simulation	463
A. Balkovoy, V. Cacenkin, G. Slivinskaia Statical and dynamical accuracy of direct drive servo systems	469
Y. Litvinov, S. Karpovich, A. Ahranovich The 6-DOF Spatial Parallel Mechanism Control System Computer Simulation	477

V. Lysenko, W. Mintchenya, K. Zimmermann Minimization of the number of actuators in legged robots using biological objects	483
J. Kroneis, T. Gastauer, S. Liu, B. Sauer Flexible modeling and vibration analysis of a parallel robot with numerical and analytical methods for the purpose of active vibration damping	489
A. Amthor, T. Hausotte, G. Jäger, P. Li Friction Modeling on Nanometerscale and Experimental Verification	495
Paper submitted after copy deadline	
2 Advances in Control Theory and Control Engineering	
V. Piwek, B. Kuhfuss, S. Allers Feed drivers – Synchronized Motion is leading to a process optimization	503

Ch. Wachten / Ch. Ament / C. Müller / H. Reinecke

Modeling of a Laser Tracker System with Galvanometer Scanner

INTRODUCTION

Laser trackers are systems that are capable of doing high accuracy 3D measurements. A laser beam is deflected by an actuator and follows the movements of a reflector in space. The position of the reflector can uniquely be defined by the distance measurement of an integrated interferometer and the measurement of the angle encoders of the actuator. Such systems offer the possibility of doing static as well as dynamic measurements. That is the reason why they are used in calibration tasks e.g. for robots or for coordinate measurement machines [1], [2].

In this paper we present a laser tracker system that is based on a galvanometer scanner. The accuracy of the system depends on the model as well as the calibration algorithm. Therefore a complete analytical model is developed that takes into account the internal behavior of the system and calculates the transformation of the measurements into 3D coordinates. An inverse kinematics is also developed to have the possibility to simulate the calibration process to reduce time and cost consuming experiments.

OPERATION PRINCIPLE OF THE LASER TRACKER SYSTEM

Fig. 1 shows the operation principle of the laser tracker system. A two-frequency HeNe laser emits two slightly different frequencies. The split frequency is about 2 MHz. An interferometer splits the laser beam into a reference beam (frequency f_2) and a measurement beam (frequency f_1). The measurement beam leaves the interferometer hits a nonpolarizing beam splitter and is deflected by a magnetically driven actuator and is reflected by a retroreflector in space. On its returning path the reflected beam again hits the beam splitter and the beam position is analyzed by a quadrant diode. A part of the beam also interferes with the reference beam in the interferometer.

The quadrant diode generates analog output signals which are the inputs of a subsequent analog PI controller. This controller deflects the mirrors of the actuator in such a way that the laser beam follows the movements of the reflector. If the reflector is moved, the laser beam leaves its initial position – ideally the center position - on the quadrant diode and the controller compensates the deviation. The controller has to be fast because the offset between the reference beam and the measurement beam must be below a certain threshold value to guarantee a stable function of the interferometer. With an analytical model the position of the reflector can be calculated. So, a direct kinematics is needed which transforms the angle and distance measurements into real coordinates.

Fig. 1. Operation principle of the system

DEVELOPMENT OF THE DIRECT KINEMATICS

The analytical model of the system is an essential part because it is responsible for the accuracy of the system. It is important to consider all effects in contrast to [3] in the interferometer-scanner head to obtain a good model. First the interferometer function is neglected and the laser beam is propagated through the scanner head as proposed in [1]. So, the direction of the outgoing beam can be written as a line as shown in (1).

$$\vec{g}_{s1} = \overrightarrow{OC} + s \cdot \vec{r}_{s1} \tag{1}$$

The point C, the direction \vec{r}_{S1} and the parameter *s* have to be calculated (see Fig. 2). The direction is \vec{r}_{S1} obtained by a reflection of \vec{r}_L on the second mirror resulting in \vec{r}_{S21} and a reflection of \vec{r}_{S21} on the first mirror resulting in \vec{r}_{S1} . The normal vectors of the mirrors depend on the rotation of the corresponding axis. This is modeled by the Rodrigues formula given in (2) and (3).

$$\boldsymbol{R} = \begin{pmatrix} \boldsymbol{v_x}^2 \cdot \boldsymbol{A} + \cos\alpha & \boldsymbol{v_x} \cdot \boldsymbol{v_y} \cdot \boldsymbol{A} - \boldsymbol{v_z} \cdot \sin\alpha & \boldsymbol{v_x} \cdot \boldsymbol{v_z} \cdot \boldsymbol{A} + \boldsymbol{v_y} \cdot \sin\alpha \\ \boldsymbol{v_x} \cdot \boldsymbol{v_y} \cdot \boldsymbol{A} + \boldsymbol{v_z} \cdot \sin\alpha & \boldsymbol{v_y}^2 \cdot \boldsymbol{A} + \cos\alpha & \boldsymbol{v_y} \cdot \boldsymbol{v_z} \cdot \boldsymbol{A} - \boldsymbol{v_x} \cdot \sin\alpha \\ \boldsymbol{v_x} \cdot \boldsymbol{v_z} \cdot \boldsymbol{A} - \boldsymbol{v_y} \cdot \sin\alpha & \boldsymbol{v_y} \cdot \boldsymbol{v_z} \cdot \boldsymbol{A} + \boldsymbol{v_x} \cdot \sin\alpha & \boldsymbol{v_x}^2 \cdot \boldsymbol{A} + \cos\alpha \end{pmatrix}$$
(2)

with
$$A = 1 - \cos \alpha$$
 (3)

Fig. 2. Beam propagation through the scanner head

The vector $v_i = (v_x, v_y, v_z)$ in the matrix describes the direction of the rotation axis of the mirrors and α represents the rotation angle. With the updated normal vector in (4)

$$\vec{n}_{Si}' = \boldsymbol{R}(\vec{v}_i, \theta_i) \cdot \vec{n}_{Si}$$
(4)

and the law of reflection the direction \vec{r}_{S1} is calculated in (5).

$$\vec{r}_{S1} = \vec{r}_{S21} - 2 \cdot (\vec{n}'_{S1} \cdot \vec{r}_{S21}) \cdot \vec{n}'_{S1}$$

$$= (\vec{r}_L - 2 \cdot (\vec{n}'_{S2} \cdot \vec{r}_L) \cdot \vec{n}'_{S2}) - 2 \cdot (\vec{n}'_{S1} \cdot (\vec{r}_L - 2 \cdot (\vec{n}'_{S2} \cdot \vec{r}_L) \cdot \vec{n}'_{S2})) \cdot \vec{n}'_{S1}$$
(5)

To obtain the point B, the line with its starting point A and the initial direction \vec{r}_L is cut with the mirror plane of the second mirror. Point B is calculated in (6).

$$\overrightarrow{OB} = \overrightarrow{OA} + \frac{(\overrightarrow{OD} + u_2 \cdot \vec{n}_{s_2} - \overrightarrow{OA}) \cdot \vec{n}_{s_2}}{\vec{r}_L \cdot \vec{n}_{s_2}} \cdot \vec{r}_L$$
(6)

To obtain point C the line with starting point B and direction \vec{r}_{S21} is cut with the mirror plane of the first mirror.

$$\overrightarrow{OC} = \overrightarrow{OB} + \frac{(\overrightarrow{OG} + u_1 \cdot \vec{n}_{S1} - \overrightarrow{OB}) \cdot \vec{n}_{S1}}{\vec{r}_L \cdot \vec{n}_{S1}} \cdot \vec{r}_{S21}$$
(7)

The parameter $u_i = k_i / 2 + a_i$ describes the distance between the model point of the rotation axis and the mirror plane. The parameter k_i represents the thickness of the mirrors and the parameter a_i is used to model a dumping of the mirror plane to the rotation axis. Now the interferometer function is considered. It is modeled with the parameter *s* of the line in (1). The interferometer only measures relative distances to a given point. It is assumed that the retroreflector is put to a special point with known angles θ_{1start} and θ_{2start} and the initial length r_0 as shown in Fig. 3a). If the reflector is moved from point P₁ in Fig. 3b) to point P₂ then the interferometer detects a change in length that does not correspond to the length Δr because the beam path in the scanner head is neglected.

Fig. 3. Start condition a) and relative measurement of the interferometer b)

To overcome this problem the rotation angles of the mirrors have to be considered. So, it can be written for the parameter *s*:

$$\mathbf{s} = \mathbf{r}_0 + \Delta \mathbf{r}_{gem} - \Delta \mathbf{A}\mathbf{B} - \Delta \mathbf{B}\mathbf{C} \tag{8}$$

with

$$\Delta AB = |\overrightarrow{OB}(\theta_2) - \overrightarrow{OA}| - |\overrightarrow{OB}(\theta_{2Start}) - \overrightarrow{OA}|$$
(9)

$$\Delta BC = |\overrightarrow{OC}(\theta_1, \theta_2) - \overrightarrow{OB}(\theta_2)| - |\overrightarrow{OC}(\theta_{1Start}, \theta_{2Start}) - \overrightarrow{OB}(\theta_{2Start})| \quad (10)$$

So, the outgoing laser beam is completely defined through its point C and its direction \vec{r}_{s1} and the parameter s. It is also of interest to calculate the inverse kinematics because a calibration algorithm can be tested without real experiments.

DEVELOPMENT OF THE INVERSE KINEMATICS

The inverse kinematics calculates to each reflector point in space the angles of the actuator and the distance of the interferometer from an arbitrary starting point. First the reflector is put to a point P in space as shown in Fig. 4. The laser beam is assumed to be deflected in space and does not hit the reflector. There is a distance *a* between point P and point F. The distance *a* is calculated in (11). The aim is to minimize this distance so that point P is coincident with point F as shown in (12).

Fig. 4. Method to calculate the inverse kinematics

The angles of the mirrors are calculated with a numerical minimization algorithm implemented in Mathematica 5.2. This can only be done if the parameters of the laser tracker system are known.

$$\mathbf{a} = |\overrightarrow{FP}| = |\overrightarrow{OP} - \overrightarrow{OC_{1}} - \left[(\overrightarrow{OP} - \overrightarrow{OC_{1}}) \cdot \frac{\overrightarrow{r_{L1}}}{\overrightarrow{r_{L1}}} \right] \cdot \overrightarrow{r_{L1}} |$$
(11)

$$a \rightarrow 0 \Rightarrow \vec{r}_{L1} = \vec{r}_{L2} \land \overrightarrow{OC_1} = \overrightarrow{OC_2}$$
 (12)

To complete the inverse kinematics the path change during the measurement is considered. Fig. 5 shows the beam path at the beginning of a measurement (black line) and during a measurement (gray line). The starting angles θ_{1start} and θ_{2start} are obtained by minimizing (8). So the points B_{start} and C_{start} are calculated. The relative path change is calculated by considering the system in sections.

Fig. 5. Beam path at the beginning (start) and during (new) a measurement

The first section describes the path change between the reflector and the point C. The

second section describes the path change between the two mirrors and finally in the third section the path change between the incident laser beam and the second mirror is considered. This is resumed in (13).

$$\Delta r = \underbrace{\left[\overline{C_{new}P_{new}} \mid - \mid \overline{C_{start}P_{start}}\right]}_{\text{section 1}} + \underbrace{\left[\overline{B_{new}C_{new}} \mid - \mid \overline{B_{start}C_{start}}\right]}_{\text{section 2}} + \underbrace{\left[\overline{A_{new}B_{new}} \mid - \mid \overline{A_{start}B_{start}}\right]}_{\text{section 3}}$$
(13)

CONCLUSION

We have presented the direct and the inverse kinematics for a laser tracking system with galvanometer scanner. The analytical model covers nearly all effects in the scanner head. Furthermore it is possible with the inverse kinematics to simulate the calibration algorithm and to plan trajectories. This saves time and cost consuming experiments.

References:

- [1] J. R. R. Mayer and G. A. Parker, "A Portable Instrument for 3-D Dynamic Robot Measurements Using Triangulation and Laser Tracking", IEEE Transactions on Robotics and Automation, Vol. 10, No. 4, August 1994
- [2] H. Gander, M. Vinzce and J. Prenninger, "An external 6D sensor for Industrial Robots", IEEE/RSJ Intelligent Robots and Systems, Yokohama Japan, pp. 975-978, July 1993
- [3] J. Wang, Z. Hu, Y. Liu and J. Liang, "Experimental Research on Laser Tracking System with Galvanometer Scanner for Measuring Spatial Coordinates of Moving Target", Proceedings of SPIE - Optical Measurement and Nondestructive Testing: Techniques and Applications, Vol. 4221, pp. 10-14, October 2000

Authors: Prof. Dr. Holger Reinecke, Dr. Claas Müller, Dipl.-Ing. Christian Wachten

University of Freiburg Department of Microsystems Engineering Laboratory for Process Technology Georges-Köhler Allee 103 79110 Freiburg, Germany

Phone: +49 761 203 7304 Fax: +49 761 203 7352 E-mail: christian.wachten@imtek.uni-freiburg.de Prof. Dr. Christoph Ament

University of Ilmenau Institute for Automation and Systems Engineering Gustav-Kirchhoff Straße 1 98684 Ilmenau, Germany

Phone: +49 3677 69 2815 Fax: +49 3677 69 1434 E-mail: <u>christoph.ament@tu-ilmenau.de</u>