

PROCCEDINGS

| 10 - 13 September 2007

FACULTY OF COMPUTER SCIENCE AND AUTOMATION

COMPUTER SCIENCE MEETS AUTOMATION

VOLUME I

- **Session 1 Systems Engineering and Intelligent Systems**
- Session 2 Advances in Control Theory and Control Engineering
- Session 3 Optimisation and Management of Complex Systems and Networked Systems
- **Session 4 Intelligent Vehicles and Mobile Systems**
- **Session 5 Robotics and Motion Systems**

Bibliografische Information der Deutschen Bibliothek

Die Deutsche Bibliothek verzeichnet diese Publikation in der deutschen Nationalbiografie; detaillierte bibliografische Daten sind im Internet über http://dnb.ddb.de abrufbar.

ISBN 978-3-939473-17-6

Impressum

Herausgeber:	Der Rektor der Technischen Universität Ilmenau UnivProf. Dr. rer. nat. habil. Peter Scharff
Redaktion:	Referat Marketing und Studentische Angelegenheiten Kongressorganisation Andrea Schneider Tel.: +49 3677 69-2520 Fax: +49 3677 69-1743 e-mail: kongressorganisation@tu-ilmenau.de
Redaktionsschluss:	Juli 2007
Verlag:	Co Technische Universität Ilmenau/Universitätsbibliothek Universitätsverlag Ilmenau Postfach 10 05 65 98684 Ilmenau www.tu-ilmenau.de/universitaetsverlag
Herstellung und Auslieferung:	Verlagshaus Monsenstein und Vannerdat OHG Am Hawerkamp 31 48155 Münster www.mv-verlag.de
Layout Cover:	www.cey-x.de
Bezugsmöglichkeiten:	Universitätsbibliothek der TU Ilmenau Tel.: +49 3677 69-4615 Fax: +49 3677 69-4602

© Technische Universität Ilmenau (Thür.) 2007

Diese Publikationen und alle in ihr enthaltenen Beiträge und Abbildungen sind urheberrechtlich geschützt. Mit Ausnahme der gesetzlich zugelassenen Fälle ist eine Verwertung ohne Einwilligung der Redaktion strafbar.

Preface

Dear Participants,

Confronted with the ever-increasing complexity of technical processes and the growing demands on their efficiency, security and flexibility, the scientific world needs to establish new methods of engineering design and new methods of systems operation. The factors likely to affect the design of the smart systems of the future will doubtless include the following:

- As computational costs decrease, it will be possible to apply more complex algorithms, even in real time. These algorithms will take into account system nonlinearities or provide online optimisation of the system's performance.
- New fields of application will be addressed. Interest is now being expressed, beyond that in "classical" technical systems and processes, in environmental systems or medical and bioengineering applications.
- The boundaries between software and hardware design are being eroded. New design methods will include co-design of software and hardware and even of sensor and actuator components.
- Automation will not only replace human operators but will assist, support and supervise humans so that their work is safe and even more effective.
- Networked systems or swarms will be crucial, requiring improvement of the communication within them and study of how their behaviour can be made globally consistent.
- The issues of security and safety, not only during the operation of systems but also in the course of their design, will continue to increase in importance.

The title "Computer Science meets Automation", borne by the 52nd International Scientific Colloquium (IWK) at the Technische Universität Ilmenau, Germany, expresses the desire of scientists and engineers to rise to these challenges, cooperating closely on innovative methods in the two disciplines of computer science and automation.

The IWK has a long tradition going back as far as 1953. In the years before 1989, a major function of the colloquium was to bring together scientists from both sides of the Iron Curtain. Naturally, bonds were also deepened between the countries from the East. Today, the objective of the colloquium is still to bring researchers together. They come from the eastern and western member states of the European Union, and, indeed, from all over the world. All who wish to share their ideas on the points where "Computer Science meets Automation" are addressed by this colloquium at the Technische Universität Ilmenau.

All the University's Faculties have joined forces to ensure that nothing is left out. Control engineering, information science, cybernetics, communication technology and systems engineering – for all of these and their applications (ranging from biological systems to heavy engineering), the issues are being covered.

Together with all the organizers I should like to thank you for your contributions to the conference, ensuring, as they do, a most interesting colloquium programme of an interdisciplinary nature.

I am looking forward to an inspiring colloquium. It promises to be a fine platform for you to present your research, to address new concepts and to meet colleagues in Ilmenau.

In Sherte

Professor Peter Scharff Rector, TU Ilmenau

"L. Ummt

Professor Christoph Ament Head of Organisation

Table of Contents

CONTENTS

1 Systems Engineering and Intelligent Systems	Page
A. Yu. Nedelina, W. Fengler DIPLAN: Distributed Planner for Decision Support Systems	3
O. Sokolov, M. Wagenknecht, U. Gocht Multiagent Intelligent Diagnostics of Arising Faults	9
V. Nissen Management Applications of Fuzzy Conrol	15
O. G. Rudenko, A. A. Bessonov, P. Otto A Method for Information Coding in CMAC Networks	21
Ye. Bodyanskiy, P. Otto, I. Pliss, N. Teslenko Nonlinear process identification and modeling using general regression neuro-fuzzy network	27
Ye. Bodyanskiy, Ye. Gorshkov, V. Kolodyazhniy , P. Otto Evolving Network Based on Double Neo-Fuzzy Neurons	35
Ch. Wachten, Ch. Ament, C. Müller, H. Reinecke Modeling of a Laser Tracker System with Galvanometer Scanner	41
K. Lüttkopf, M. Abel, B. Eylert Statistics of the truck activity on German Motorways	47
K. Meissner, H. Hensel A 3D process information display to visualize complex process conditions in the process industry	53
FF. Steege, C. Martin, HM. Groß Recent Advances in the Estimation of Pointing Poses on Monocular Images for Human-Robot Interaction	59
A. González, H. Fernlund, J. Ekblad After Action Review by Comparison – an Approach to Automatically Evaluating Trainee Performance in Training Exercise	65
R. Suzuki, N. Fujiki, Y. Taru, N. Kobayashi, E. P. Hofer Internal Model Control for Assistive Devices in Rehabilitation Technology	71
D. Sommer, M. Golz Feature Reduction for Microsleep Detection	77

F. Müller, A. Wenzel, J. Wernstedt A new strategy for on-line Monitoring and Competence Assignment to Driver and Vehicle	
V. Borikov Linear Parameter-Oriented Model of Microplasma Process in Electrolyte Solutions	89
A. Avshalumov, G. Filaretov Detection and Analysis of Impulse Point Sequences on Correlated Disturbance Phone	95
H. Salzwedel Complex Systems Design Automation in the Presence of Bounded and Statistical Uncertainties	101
G. J. Nalepa, I. Wojnicki Filling the Semantic Gaps in Systems Engineering	107
R. Knauf Compiling Experience into Knowledge	113
R. Knauf, S. Tsuruta, Y. Sakurai Toward Knowledge Engineering with Didactic Knowledge	119
2 Advances in Control Theory and Control Engineering	
U. Konigorski, A. López Output Coupling by Dynamic Output Feedback	129
H. Toossian Shandiz, A. Hajipoor Chaos in the Fractional Order Chua System and its Control	135
O. Katernoga, V. Popov, A. Potapovich, G. Davydau Methods for Stability Analysis of Nonlinear Control Systems with Time Delay for Application in Automatic Devices	141
J. Zimmermann, O. Sawodny Modelling and Control of a X-Y-Fine-Positioning Table	145
A. Winkler, J. Suchý Position Based Force Control of an Industrial Manipulator	151
E. Arnold, J. Neupert, O. Sawodny, K. Schneider Trajectory Tracking for Boom Cranes Based on Nonlinear Control and Optimal Trajectory Generation	157

K. Shaposhnikov, V. Astakhov The method of ortogonal projections in problems of the stationary magnetic field computation	165
J. Naumenko The computing of sinusoidal magnetic fields in presence of the surface with bounded conductivity	167
K. Bayramkulov, V. Astakhov The method of the boundary equations in problems of computing static and stationary fields on the topological graph	169
T. Kochubey, V. Astakhov The computation of magnetic field in the presence of ideal conductors using the Integral-differential equation of the first kind	171
M. Schneider, U. Lehmann, J. Krone, P. Langbein, Ch. Ament, P. Otto, U. Stark, J. Schrickel Artificial neural network for product-accompanied analysis and control	173
l. Jawish The Improvement of Traveling Responses of a Subway Train using Fuzzy Logic Techniques	179
Y. Gu, H. Su, J. Chu An Approach for Transforming Nonlinear System Modeled by the Feedforward Neural Networks to Discrete Uncertain Linear System	185
3 Optimisation and Management of Complex Systems and Networked Systems	
R. Franke, J. Doppelhammer Advanced model based control in the Industrial IT System 800xA	193
H. Gerbracht, P. Li, W. Hong An efficient optimization approach to optimal control of large-scale processes	199
T. N. Pham, B. Wutke Modifying the Bellman's dynamic programming to the solution of the discrete multi-criteria optimization problem under fuzziness in long-term planning	205
S. Ritter, P. Bretschneider Optimale Planung und Betriebsführung der Energieversorgung im liberalisierten Energiemarkt	211
P. Bretschneider, D. Westermann Intelligente Energiesysteme: Chancen und Potentiale von IuK-Technologien	217

Z. Lu, Y. Zhong, Yu. Wu, J. Wu WSReMS: A Novel WSDM-based System Resource Management Scheme	223
M. Heit, E. Jennenchen, V. Kruglyak, D. Westermann Simulation des Strommarktes unter Verwendung von Petrinetzen	229
O. Sauer, M. Ebel Engineering of production monitoring & control systems	237
C. Behn, K. Zimmermann Biologically inspired Locomotion Systems and Adaptive Control	245
J. W. Vervoorst, T. Kopfstedt Mission Planning for UAV Swarms	251
M. Kaufmann, G. Bretthauer Development and composition of control logic networks for distributed mechatronic systems in a heterogeneous architecture	257
T. Kopfstedt, J. W. Vervoorst Formation Control for Groups of Mobile Robots Using a Hierarchical Controller Structure	263
M. Abel, Th. Lohfelder Simulation of the Communication Behaviour of the German Toll System	269
P. Hilgers, Ch. Ament Control in Digital Sensor-Actuator-Networks	275
C. Saul, A. Mitschele-Thiel, A. Diab, M. Abd rabou Kalil A Survey of MAC Protocols in Wireless Sensor Networks	281
T. Rossbach, M. Götze, A. Schreiber, M. Eifart, W. Kattanek Wireless Sensor Networks at their Limits – Design Considerations and Prototype Experiments	287
Y. Zhong, J. Ma Ring Domain-Based Key Management in Wireless Sensor Network	293
V. Nissen Automatic Forecast Model Selection in SAP Business Information Warehouse under Noise Conditions	299
M. Kühn, F. Richter, H. Salzwedel Process simulation for significant efficiency gains in clinical departments – practical example of a cancer clinic	305

D. Westermann, M. Kratz, St. Kümmerling, P. Meyer Architektur eines Simulators für Energie-, Informations- und Kommunikations- technologien	311
P. Moreno, D. Westermann, P. Müller, F. Büchner Einsatzoptimierung von dezentralen netzgekoppelten Stromerzeugungs- anlagen (DEA) in Verteilnetzen durch Erhöhung des Automatisierungsgrades	317
M. Heit, S. Rozhenko, M. Kryvenka, D. Westermann Mathematische Bewertung von Engpass-Situationen in Transportnetzen elektrischer Energie mittels lastflussbasierter Auktion	331
M. Lemmel, M. Schnatmeyer RFID-Technology in Warehouse Logistics	339
V. Krugljak, M. Heit, D. Westermann Approaches for modelling power market: A Comparison.	345
St. Kümmerling, N. Döring, A. Friedemann, M. Kratz, D. Westermann Demand-Side-Management in Privathaushalten – Der eBox-Ansatz	351
4 Intelligent Vehicles and Mobile Systems	
A. P. Aguiar, R. Ghabchelloo, A. Pascoal, C. Silvestre , F. Vanni Coordinated Path following of Multiple Marine Vehicles: Theoretical Issues and Practical Constraints	359
R. Engel, J. Kalwa Robust Relative Positioning of Multiple Underwater Vehicles	365
M. Jacobi, T. Pfützenreuter, T. Glotzbach, M. Schneider	371
A 3D Simulation and Visualisation Environment for Unmanned Vehicles in Underwater Scenarios	
	377
in Underwater Scenarios M. Schneider, M. Eichhorn, T. Glotzbach, P. Otto A High-Level Simulator for heterogeneous marine vehicle teams under real	377 383

M. A. Arredondo, A. Cormack SeeTrack: Situation Awareness Tool for Heterogeneous Vehicles	
J. C. Ferreira, P. B. Maia, A. Lucia, A. I. Zapaniotis Virtual Prototyping of an Innovative Urban Vehicle	401
A. Wenzel, A. Gehr, T. Glotzbach, F. Müller Superfour-in: An all-terrain wheelchair with monitoring possibilities to enhance the life quality of people with walking disability	407
Th. Krause, P. Protzel Verteiltes, dynamisches Antriebssystem zur Steuerung eines Luftschiffes	413
T. Behrmann, M. Lemmel Vehicle with pure electric hybrid energy storage system	419
Ch. Schröter, M. Höchemer, HM. Groß A Particle Filter for the Dynamic Window Approach to Mobile Robot Control	425
M. Schenderlein, K. Debes, A. Koenig, HM. Groß Appearance-based Visual Localisation in Outdoor Environments with an Omnidirectional Camera	431
G. Al Zeer, A. Nabout, B. Tibken	437
Hindernisvermeidung für Mobile Roboter mittels Ausweichecken	
Hindernisvermeidung für Mobile Roboter mittels Ausweichecken	445
 Hindernisvermeidung für Mobile Roboter mittels Ausweichecken 5 Robotics and Motion Systems Ch. Schröter, HM. Groß 	445 451
 Hindernisvermeidung für Mobile Roboter mittels Ausweichecken 5 Robotics and Motion Systems Ch. Schröter, HM. Groß Efficient Gridmaps for SLAM with Rao-Blackwellized Particle Filters St. Müller, A. Scheidig, A. Ober, HM. Groß 	
 Hindernisvermeidung für Mobile Roboter mittels Ausweichecken 5 Robotics and Motion Systems Ch. Schröter, HM. Groß Efficient Gridmaps for SLAM with Rao-Blackwellized Particle Filters St. Müller, A. Scheidig, A. Ober, HM. Groß Making Mobile Robots Smarter by Probabilistic User Modeling and Tracking A. Swerdlow, T. Machmer, K. Kroschel, A. Laubenheimer, S. Richter 	451
 Hindernisvermeidung für Mobile Roboter mittels Ausweichecken 5 Robotics and Motion Systems Ch. Schröter, HM. Groß Efficient Gridmaps for SLAM with Rao-Blackwellized Particle Filters St. Müller, A. Scheidig, A. Ober, HM. Groß Making Mobile Robots Smarter by Probabilistic User Modeling and Tracking A. Swerdlow, T. Machmer, K. Kroschel, A. Laubenheimer, S. Richter Opto-acoustical Scene Analysis for a Humanoid Robot A. Ahranovich, S. Karpovich, K. Zimmermann 	451 457

V. Lysenko, W. Mintchenya, K. Zimmermann Minimization of the number of actuators in legged robots using biological objects	483
J. Kroneis, T. Gastauer, S. Liu, B. Sauer Flexible modeling and vibration analysis of a parallel robot with numerical and analytical methods for the purpose of active vibration damping	489
A. Amthor, T. Hausotte, G. Jäger, P. Li Friction Modeling on Nanometerscale and Experimental Verification	495
Paper submitted after copy deadline	
2 Advances in Control Theory and Control Engineering	
V. Piwek, B. Kuhfuss, S. Allers Feed drivers – Synchronized Motion is leading to a process optimization	503

H. Toossian Shandiz / A. Hajipoor

Chaos in the Fractional Order Chua System and its Control

Abstract: In this paper, we study the chaotic behaviors in the fractional order Chua system. We found that chaos exists in the fractional order Chua system with order less than 3. The lowest order we found to have chaos in this system is 2.7. Linear feedback control of chaos in this system is also studied.

1. Introduction

Fractional calculus is one of the classical mathematical topics in recent years. According to [1,2], more attentions have been paid to the application of fractional calculus in physics, engineering systems and financial analysis.

The fractional-order dynamics of a system known to us include viscoelastic systems [3,4], dielectric polarization [5], electrode–electrolyte polarization [6], electromagnetic waves [7], quantitative finance [8], and quantum evolution of complex systems [9]. Moreover, the control of fractional-order dynamic systems is also performed by various researchers [10–15].

Zaslavsky [16] conducted a comprehensive review for the existing models of fractional kinetics and their connection to dynamical models, phase space topology, and other characteristics of chaos. Many researchers have found that the chaotic attractors indeed exist in fractional-order systems according to [17–24]. In 2004, Li and Chen [25] found that the hyper chaos in fractional order Rossler equations has an order as low as 3.8.

In this paper, we study the chaotic behaviors in the fractional order Chua system [24]. A linear feedback control is also presented for this fractional order system.

2. Approximation of Fractional Derivative

There are several definitions of fractional derivatives [1]. Perhaps the best known is the Riemann–Liouville definition, which is given by

$$\frac{d^{\alpha}f(t)}{dt^{\alpha}} = \frac{1}{\Gamma(n-\alpha)} \frac{d^{n}}{dt^{n}} \int_{0}^{t} \frac{f(t)}{(t-\tau)^{\alpha-n+1}} d\tau \qquad (1)$$

where $\Gamma(.)$ is the gamma function and $n-1 \le \alpha < n$. This definition is significantly different from the classical definition of derivative.

Fortunately, the Laplace transform is still applicable and works as one would expect. Upon considering all the initial conditions to be zero, the Laplace transform of the Riemann–Liouville fractional derivative satisfies the following equation.

$$L\left\{\frac{d^{\alpha}f(t)}{dt^{\alpha}}\right\} = s^{\alpha}L\left\{f(t)\right\}$$
(2)

Thus, the fractional integral operator of order α can be represented by the transfer

function $F(s) = 1/s^{\alpha}$. The standard definition of fractional differential does not allow direct implementation of fractional operators in time-domain simulations. An efficient method to circumvent this problem is to approximate fractional operators by using standard integer order operators. In [26], an effective algorithm is developed to approximate fractional order transfer functions. Basically, the idea is to approximate the system behavior in the frequency domain. By utilizing frequency domain techniques based on Bode diagrams, one can obtain a linear approximation of the fractional order integrator, the order of which depends on the desired bandwidth and discrepancy between the actual and the approximate magnitude Bode diagrams. This approximation approach was adopted in [15], [18], [21–23]. In Table 1 of [15], approximations for $1/s^q$ with q = 0.1-0.9 in steps 0.1 are given, with errors of approximately 2 dB. We also use these approximations in the following simulations.

3. The Fractional Order Chua System

We consider the fractional order Chua system .The standard derivative [24] is replaced by fractional derivatives as follows:

$$\frac{d^{q} x}{dt^{q}} = \alpha \left[y + \frac{x - 2x^{3}}{7} \right]$$

$$\frac{d^{q} y}{dt^{q}} = x - y + z$$

$$\frac{d^{q} z}{dt^{q}} = -\frac{100}{7} y$$
(3)

where q is the fractional order. When q = 1, system (3) is the original integer order Chua system. Simulations are performed for q = 0.9, q = 1.1 The simulation results demonstrate that chaos indeed exist in the fractional order Chua system with order less than 3. When q = 0.9, q = 1.1 chaotic attractors are found and the phase portraits are shown in Figs. 1, 2 and 3, respectively. When q = .8 no chaotic behavior is found, which indicates that the lowest limit of the fractional order for this system to be chaotic is q = 0.8 - 0.9. Thus, the lowest order we found for this system to yield chaos is 2.7

4. Stability and Controller Design

In this section, stability of the fractional order Chua system is discussed. Then a controller is proposed to meet the stability criteria.

4.1. Stability Region of Fractional Order Systems

Stability of fractional systems has been thoroughly investigated. The necessary and sufficient conditions have been derived in [25]. It has been shown that the stability region of a linear set of fractional order equations with order q, is bounded by a cone, with vertex at the origin, and hat extends into the right half of the s-plane such that it encloses an angle of $\pm q \pi/2$ as shown in Fig. 1. For example, the stability region of the linearized part of equation (3) when q = 0.5 is the entire s-plane less the area enclosed by the cone making $\pm 45^{\circ}$. Thus, when q = 1, we get the all-familiar stability region of the integer order system, i.e. the left half-plane where the imaginary axis becomes the border of stability region. Hence, if the eigenvalues of the system Jacobian matrix are placed anywhere outside the cone in Fig. 1, the fractional order system will be stable. Moreover, a controller that stabilizes the integer order system stabilizes the fractional

order system. Therefore, a controller that places the characteristic roots in the left half-plane will stabilize both the integer order model as well as all of its fractional versions. However, from performance standpoint, it may be necessary to place the characteristic roots of the fractional system in the right half-plane but outside the stability cone. In this case, the fractional order system is stable whereas the integer order system is unstable.

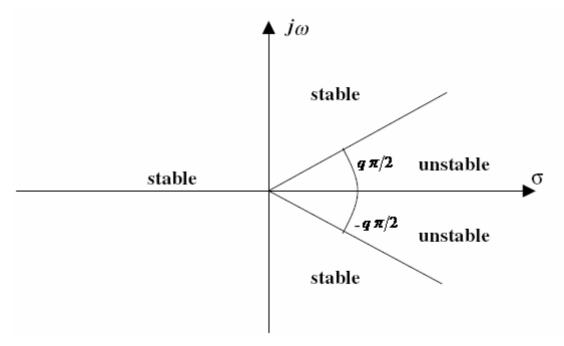


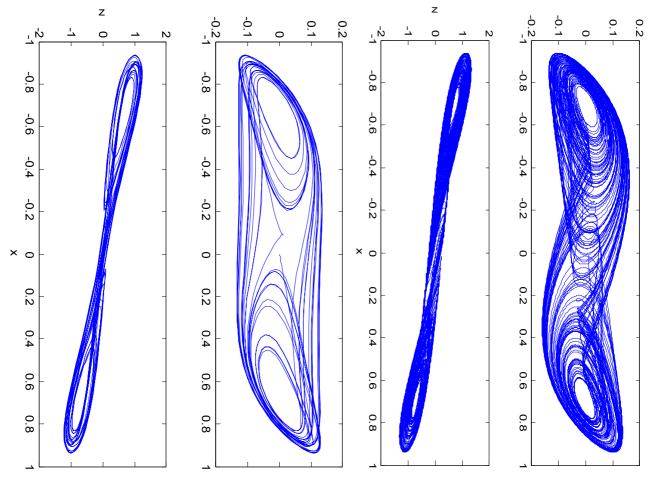
Figure 1. Stability region of fractional order system for order q

4.2. State feedback controller design

State feedback controllers will be proposed to stabilize the fractional chaotic system described by equation (3). The controller design may be based on placing the eigenvalues of the Jacobian system matrices for (3) when q = 1 in the left half of the s-plane. Alternatively, we will demonstrate how the fractional system can be stabilized by using static gains that place the eigenvalues in the right half-plane but outside the cone described in $\theta = \pm q \pi/2$. The composite fractional system models with a control law are described by:

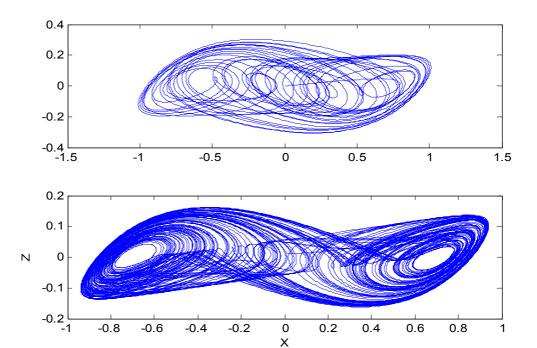
$$\frac{d^{q}X}{dt^{q}} = AX + B_1 f(X) + B_2 u \tag{4}$$

Where $X^q = [x^q y^q z^q]$, $f(x) = \alpha x - 2x^3/7$, the matrix $B_1 = [0 \ 0 \ 1]^T$ for system (3), and where $[.]^T$ is the transpose of [.]. The input matrix B_2 is chosen so that the pair (A, B_2) for the corresponding system is controllable.


The static gain controller takes the form u = -Kx where $K = [k_1, k_2, k_3]$. It can be seen that with $B_2 = [1 \ 1 \ 1]^T$, the Chua model is completely controllable as indicated by the controllability matrix $Q = [B \ AB \ A^2B]$. The dynamics of the controlled fractional chaotic Chua describe by:

$$\begin{bmatrix} \frac{d^{q}x}{dt^{q}} \\ \frac{d^{q}y}{dt^{q}} \\ \frac{d^{q}z}{dt^{q}} \end{bmatrix} = \begin{bmatrix} -k_{1} & -k_{2} + \alpha & -k_{3} \\ -k_{1} + 1 & -k_{2} - 1 & -k_{3} + 1 \\ -k_{1} & -k_{2} - \frac{100}{7} & -k_{3} \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} + \begin{bmatrix} \alpha \\ 0 \\ 0 \end{bmatrix} (\frac{x - 2x^{3}}{7})$$
(5)

The controller gains k_1 , k_2 and k_3 are chosen such that the eigenvalues of $[A - B_2 K]$ are placed outside the cone of angle $\theta = \pm q \pi/2$.


5 Conclusion

In this paper, we have studied the chaotic dynamics of the fractional order Chua system. We found that chaos exists in this system with order less than 2.7. A simple, but effective, linear feedback controller is also designed to stabilize the fractional order chaotic Chua system.

Figure 2. Chaotic attractor of the fractional order Chua system with order q = .9 q=0.9 and $\alpha = 12.75$

Figure 3. Chaotic attractor of the integer order Chua system with order q = 1 and $\alpha = 9.5$

Figure 4. Chaotic attractor of the fractional order Chua system with order q = 1.1 and $\alpha = 7$

References:

[1] Podlubny I. Fractional differential equations. New York: Academic Press; 1999.

[2] Hilfer R, editor. Applications of fractional calculus in physics. New Jersey: World Scientific; 2001.[3] Bagley RL, Calico RA. Fractional order state equations for the control of viscoelastically damped

structures. J Guid, Contr Dyn

1991;14:304–11.

[4] Koeller RC. Application of fractional calculus to the theory of viscoelasticity. J Appl Mech 1984;51:199.

[5] Sun HH, Abdelwahed AA, Onaral B. Linear approximation for transfer function with a pole of fractional order. IEEE Trans

Auto Contr 1984;29:441–4.

[6] Ichise M, Nagayanagi Y, Kojima T. An analog simulation of noninteger order transfer functions for analysis of electrode process.

J Electroanal Chem 1971;33:253-65.

[7] Heaviside O. Electromagnetic theory. New York: Chelsea; 1971.

[8] Laskin N. Fractional market dynamics. Physica A 2000;287:482–92.

[9] Kunsezov D, Bulagc A, Dang GD. Quantum levy processes and fractional kinetics. Phys Rev Lett 1999;82:1136–9.

[10] Oustaloup A, Sabatier J, Lanusse P. From fractal robustness to CRONE control. Fract Calculus Appl Anal 1999;2:1–30.

[11] Oustaloup A, Levron F, Nanot F, Mathieu B. Frequency band complex noninteger differentiator: characterization and synthesis.

IEEE Trans CAS-I 2000;47:25–40.

[12] Chen TQ, Moore K. Discretization schemes for fractional-order differentiators and integrators. IEEE Trans CAS-I 2002;79:363–7.

[13] Hartley TT, Lorenzo CF. Dynamics and control of initialized fractional-order systems. Nonlinear Dyn 2002;29:201–33.

[14] Hwang C, Leu JF, Tsay SY. A note on time-domain simulation of feedback fraction-order systems. IEEE Trans Auto Control 2002;47:625–31.

[15] Podlubny I, Petras I, Vinagre BM, O_Leary P, Dorcak L. Analogue realizations of fractional-order

Nonlinear Dynamic controllers.2002;29:281–6.

[16] Zaslavsky GM. Chaos, fractional kinetics, and anomalous transport. Phys Rep 2002;371:461–580.
[17] Hartley TT, Lorenzo CF, Qammer HK. Chaos in a fractional order Chua_s system. IEEE Trans CAS-I 1995;42:485–90.

[18] Arena P, Caponetto R, Fortuna L, Porto D. Chaos in a fractional order Duffing system. In: Proc ECCTD, Budapest, 1997. p.1259–62.

[19] Ahmad W, El-Khazali R, El-Wakli A. Fractional-order Wien-bridge oscillator. Electr Lett 2001;37:1110–2.

[20] Ahmad WM, Sprott JC. Chaos in fractional-order autonomous nonlinear systems. Chaos, Solutions & Fractals 2003;16:339–51.

[21] Ahmad WM, Harb WM. On nonlinear control design for autonomous chaotic systems of integer and fractional orders. Chaos,

Solitons & Fractals 2003;18:693–701.

[22] Grigorenko I, Grigirenko E. Chaotic dynamics of the fractional Lorenz system. Phys Rev Lett 2003;91:034101.

[23] Chen G, Dong X. From chaos to order: methodologies, perspectives and applications. Singapore: World Scientific; 1998.

[24]Hartley,T.T.:and Mossayebi,F.:Chontrol of Chua's Circuit J.of Circuits Syst., and Comput.,vol.3,no.1,March 1993,pp.173-194

[25] Matignon D. Stability results of fractional differential equations with applications to ontrol processing. In: IMACS, IEEE-SMC,. Lille, France, 1996. p. 963–8.

Authors:

Dr HEYDAR TOOSSIAN SHANDIZ AHMAD HAJIPOOR

Shahrood University of Technology, Electrical Engineering Faculty 7 Th Tir Square, P.o.Box 36155-316, Shahrood, IRAN

Zip code, city: 36155-316, Shahrood Phone: 0098-9121733733 Fax: 0098-273-3334419 E-mail: <u>htshandiz@shahroodut.ac.ir</u> or h_t_shandiz@hotmail.com