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Preface 
 
Dear Participants, 
 
Confronted with the ever-increasing complexity of technical processes and the growing demands on their 
efficiency, security and flexibility, the scientific world needs to establish new methods of engineering design and 
new methods of systems operation. The factors likely to affect the design of the smart systems of the future will 
doubtless include the following: 

• As computational costs decrease, it will be possible to apply more complex algorithms, even in real 
time. These algorithms will take into account system nonlinearities or provide online optimisation of the 
system’s performance. 

• New fields of application will be addressed. Interest is now being expressed, beyond that in “classical” 
technical systems and processes, in environmental systems or medical and bioengineering applications. 

• The boundaries between software and hardware design are being eroded. New design methods will 
include co-design of software and hardware and even of sensor and actuator components. 

• Automation will not only replace human operators but will assist, support and supervise humans so 
that their work is safe and even more effective. 

• Networked systems or swarms will be crucial, requiring improvement of the communication within 
them and study of how their behaviour can be made globally consistent. 

• The issues of security and safety, not only during the operation of systems but also in the course of 
their design, will continue to increase in importance. 

The title “Computer Science meets Automation”, borne by the 52nd International Scientific Colloquium (IWK) at 
the Technische Universität Ilmenau, Germany, expresses the desire of scientists and engineers to rise to these 
challenges, cooperating closely on innovative methods in the two disciplines of computer science and 
automation. 

The IWK has a long tradition going back as far as 1953. In the years before 1989, a major function of the 
colloquium was to bring together scientists from both sides of the Iron Curtain. Naturally, bonds were also 
deepened between the countries from the East. Today, the objective of the colloquium is still to bring 
researchers together. They come from the eastern and western member states of the European Union, and, 
indeed, from all over the world. All who wish to share their ideas on the points where “Computer Science meets 
Automation” are addressed by this colloquium at the Technische Universität Ilmenau. 
All the University’s Faculties have joined forces to ensure that nothing is left out. Control engineering, 
information science, cybernetics, communication technology and systems engineering – for all of these and their 
applications (ranging from biological systems to heavy engineering), the issues are being covered.  
Together with all the organizers I should like to thank you for your contributions to the conference, ensuring, as 
they do, a most interesting colloquium programme of an interdisciplinary nature. 
I am looking forward to an inspiring colloquium. It promises to be a fine platform for you to present your 
research, to address new concepts and to meet colleagues in Ilmenau. 
 
 
 
 
 
Professor Peter Scharff     Professor Christoph Ament  
Rector, TU Ilmenau             Head of Organisation 
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J. Zimmermann / O. Sawodny 
 
 
Modelling and Control of a X-Y-Fine-Positioning Table 
 
 

1. ABSTRACT 
 
This contribution is about the modelling, simulation and control of an x-y-high precision 
positioning table and summarises results from a research work supported by the 
collaborative research centre SFB 622 ‘Nanopositionier- und Nanomessmaschinen’ of 
the Technische Universität Ilmenau. The setup provides an operating range of 
200x200mm² and is build up in a double-H configuration. 
For modelling of the two dimensional system a Langrangian approach, with three mass 
approximation and couplings between the axes, was utilised. Additionally the friction of 
the four guides was implemented using the elasto-plastic friction model [3,4]. Since the 
normal force of the guides of the x-axis depends on the position of the y-axis, the friction 
model also must provide these properties. Therefore the model was adapted according 
to the results of an unequally stressed guide [8]. 
The control task is high precision path-tracking and fine positioning of multiple axes for 
coordinated movements. Therefore a PI state feedback controller with feedforward path 
is compared with a robust double-integrator control scheme [7] using the developed 
simulation model. 
 

2. X-Y-POSITIONING TABLE     
 

The setup which motivates this work was 
constructed by Steffen Hesse, member of 
the collaborative research centre SFB 622. 
It provides an operating range of 
200x200mm² and is build up in a double-H 
configuration, which means there are two 
guides and drives for each axis. Both axes 
are coupled by a torsional stiffness of the 
two guides of each axis and a flexural 
stiffness between the two axes, which is 
modelled by spring-damper-elements.  
Furthermore the accelerated mass of both 
guides of the x-axis depends on the position 
of the y-axis. This also involves the normal 
force and thereby the friction force of the 
guides, which is handled in section 3. 
Positioning of the tool-center-point with 
parallel feed of the axes is the main control 
task, which means the y-axis can be 
simplified to only one motor and guide for 
the Langrangian approach. Thus a three-
mass model is developed, compare Fig. 1.       Fig. 1. x-y-table visualisation 
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Centres of gravity of the axes and locations of the corresponding motors and guides are 
arranged such that torsional movements are reduced, so there is no need to model the 
z-coordinates of the system. Additionally the following assumptions have been made:  

- all masses are combined to three time dependent point masses 
- friction is handled as an external force 
- there is no torque causing torsional stress  
- the is no bowing under load of the carrier 
 

The resulting differential equations are derived from Mathematica® and implemented in 
MATLAB/Simulink® for simulation purposes. Together with the friction model from 
section 3 a state space representation is developed in section 4. 
 
 

3. FRICTION MODEL 
 

The Coulomb friction model (1) is well known and reflects the influence of the friction 
coefficient μ, which can depend on velocity, and the normal force between the two 
surfaces. When there is no movement the friction force is equal to the affecting one. 
 

sgn( ) sgn( ) 0f C NF x F x F xμ= ⋅ = ⋅ ⋅ ≠& & &            (1) 
 
Since the model can not reflect pre-sliding effects, which are important in nanometer 
scale, the elasto-plastic model [4,5] based on the bristle idea [6] and similar to the LuGre 
model [2,3] is utilised. The basic model is given by equations (2) and (3); equations (4) 
and (5) define the transition from elastic to mixed elasto-plastic movement. Equation (6) 
reflects the influence of the velocity which serves as a good method to adapt the sliding 
friction, but can hardly be proven since the maximum displacement of the bristles can 
hardly be evaluated during movements. 
The influence of the normal load on a high-precision linear guide, equipped with a laser 
interferometer, was observed in [8]. As a result equation (6) is expanded by position and 
load dependent friction forces. The friction coefficients σ0 and σ1 could also depend on z. 
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The pre-sliding domain can support fine positioning due to the large stiffness which 
decreases from its maximum in rest-position, but this also limits the dynamics due to the 
limited rate of force of the actuator. In the sliding domain there are small apparently 
random changes of the friction force during larger movements and velocities, which 
disturb exact path tracking especially with low velocities. 
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4. CONTROL     
 

Control objectives are fine positioning, disturbance rejection, and exact path tracking as 
a basis for coordinated movements of multiple axes. Inputs of the system are references 
of actuator currents of the current controllers. The actuator force is proportional to the 
current, despite dynamics of the actuator and the influence of temperature and changes 
in the magnetic field. Measurements are only the x-y-positions and angles of the corner 
mirror located on the y-axis, so the other states must be reconstructed. 
The path tracking properties of a PI state feedback controller with feed-forward path are 
compared with a robust double integrator controller according to [7]. All experiments are 
carried out with the simulation model according to sections 2 and 3 with respect to the 
real system inputs and outputs. The simulation model therefore contains also actuator 
and measurement dynamics including amplifier and measurement noise. 
 

PI-State Feedback Regulator 
Based on the mechanical model from section 2 and the linearised sliding friction model 
from section 3, a state space model is developed. Due to the fact that both axes are 
coupled not very strongly compared to the other dynamics, we here propose a 
decentralized control of both axes and present exemplary the x-control. The influence of 
the moving y-axis is taken into account as time-varying parameter, which is possible 
because the rate of change is very small compared to the other dynamics. 
Equation (7) describes the influence of the y-position on the accelerated mass, while 
Equation (8) shows the overall system with the position of the tool-center-point xtcp and 
the parallel position error δx as outputs of the system.  
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Since the tool-center-point must be controlled, position and angle control around this 
point can be split into separate control tasks. Equations (9) state the calculation of the 
tool-center-point coordinates and the corresponding differential equation. The influence 
of the y-axis is handled as time-varying parameter, since the positioning distances are 
small compared to the operating range, and the system dynamics is fast compared to 
the rate of change of the x3 position.  
The state space model of the PI-state regulator is given by equations (10). Therefore we 
assume the integral angle controller to be affective, leading to perfect parallel feed.  
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Figure 2 shows the state space model together with the control system, which basically 
consists of a reference generator, a feed forward part based on the reference trajectory, 
a parallel feed controller with an integrative part only, and a PI state feedback regulator 
based on the simplified system. The reference trajectory is smooth with respect to input 
and state constraints. Additionally the internal variable z is planned based on initial 
states and the reference trajectory. 
 

      
   Fig. 2. State space model with PI-controller 
 
Simulation results show that the PI-controller works well for fast direct movements due to 
the feedforward path and an integrative feedback. Especially when moving with small 
velocities the error dynamic is predictable well. For example a circle can be followed with 
a constant time delay leading to a synchronized movement with good accuracy. Figure 3 
shows the positions, errors and feedback-forces for a circle with a diameter of 10µm and 
a movement time of around 750ms. The position errors are below 300nm/200nm and 
decrease to below 50nm/30nm outside direction-reversal domains. 
 
 

 
 

 
Fig. 3. Simulation results PI-state controller 
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Double Integrato Scheme 
The double integrator controller was developed according to [7] and is shown in figure 4. 
Equation (11) denotes one simplified SISO axis with respect to time varying parameters 
and the total weight m of the axis. The calculated actuator force is divided into the two 
motor forces depending on the position of the y-axis by a decoupling feedforward. 
 

 
   Fig. 4. Double integrator scheme [7] 
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Equation (12) denotes the transfer function of the controlled system according to 
figure 4. A coefficient comparison with equation (13) results in equations (16) which are 
used to calculate the controller parameters online with the given poles p. 
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Simulation results show that the double integrator controller works well for slow complex 
movements due to the high feedback gain for errors with low frequency. On the other 
hand measurement noise can be amplified easily and there is no feedforward path. 
Especially when moving with small velocities the tracking error is around the 
measurement noise. After a short initialisation phase of around 30ms nearly all smooth 
reference trajectories with respect to input constraints can be tracked with a small error.  
Figure 5 shows the positions, errors and friction forces for a circle with a diameter of 
10µm and a movement time of around 750ms. The position errors are only below 
500nm/300nm due to the high velocity, but decrease to below 10nm or even 5nm 
outside direction-reversal domains. 

149



 
Fig. 5. Simulation results double integrator controller 

 
4. CONCLUSIONS     

 
In this paper a x-y-fine positioning table was modelled for simulation and control 
purposes. The friction model is based on former experiments with similar systems. In 
order to achieve exact path tracking of both axes the PI-state feedback regulator and the 
double integrator scheme were implemented. Finally both concepts are compared by 
using the developed simulation model. The PI controller is very fast and can be tuned 
well to achieve fast and exact fine positioning, which is ideal for positioning and step-
height-measurements. The double integrator scheme is much more robust to low 
frequency disturbances and ideal for complex movements, which is ideal for scanning 
movements and three-dimensional tracking. In a next step the developed controllers will 
be tested with the experimental setup. 
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