

PROCCEDINGS

| 10 - 13 September 2007

FACULTY OF COMPUTER SCIENCE AND AUTOMATION

COMPUTER SCIENCE MEETS AUTOMATION

VOLUME I

- **Session 1 Systems Engineering and Intelligent Systems**
- Session 2 Advances in Control Theory and Control Engineering
- Session 3 Optimisation and Management of Complex Systems and Networked Systems
- **Session 4 Intelligent Vehicles and Mobile Systems**
- **Session 5 Robotics and Motion Systems**

Bibliografische Information der Deutschen Bibliothek

Die Deutsche Bibliothek verzeichnet diese Publikation in der deutschen Nationalbiografie; detaillierte bibliografische Daten sind im Internet über http://dnb.ddb.de abrufbar.

ISBN 978-3-939473-17-6

Impressum

Herausgeber:	Der Rektor der Technischen Universität Ilmenau UnivProf. Dr. rer. nat. habil. Peter Scharff
Redaktion:	Referat Marketing und Studentische Angelegenheiten Kongressorganisation Andrea Schneider Tel.: +49 3677 69-2520 Fax: +49 3677 69-1743 e-mail: kongressorganisation@tu-ilmenau.de
Redaktionsschluss:	Juli 2007
Verlag:	Co Technische Universität Ilmenau/Universitätsbibliothek Universitätsverlag Ilmenau Postfach 10 05 65 98684 Ilmenau www.tu-ilmenau.de/universitaetsverlag
Herstellung und Auslieferung:	Verlagshaus Monsenstein und Vannerdat OHG Am Hawerkamp 31 48155 Münster www.mv-verlag.de
Layout Cover:	www.cey-x.de
Bezugsmöglichkeiten:	Universitätsbibliothek der TU Ilmenau Tel.: +49 3677 69-4615 Fax: +49 3677 69-4602

© Technische Universität Ilmenau (Thür.) 2007

Diese Publikationen und alle in ihr enthaltenen Beiträge und Abbildungen sind urheberrechtlich geschützt. Mit Ausnahme der gesetzlich zugelassenen Fälle ist eine Verwertung ohne Einwilligung der Redaktion strafbar.

Preface

Dear Participants,

Confronted with the ever-increasing complexity of technical processes and the growing demands on their efficiency, security and flexibility, the scientific world needs to establish new methods of engineering design and new methods of systems operation. The factors likely to affect the design of the smart systems of the future will doubtless include the following:

- As computational costs decrease, it will be possible to apply more complex algorithms, even in real time. These algorithms will take into account system nonlinearities or provide online optimisation of the system's performance.
- New fields of application will be addressed. Interest is now being expressed, beyond that in "classical" technical systems and processes, in environmental systems or medical and bioengineering applications.
- The boundaries between software and hardware design are being eroded. New design methods will include co-design of software and hardware and even of sensor and actuator components.
- Automation will not only replace human operators but will assist, support and supervise humans so that their work is safe and even more effective.
- Networked systems or swarms will be crucial, requiring improvement of the communication within them and study of how their behaviour can be made globally consistent.
- The issues of security and safety, not only during the operation of systems but also in the course of their design, will continue to increase in importance.

The title "Computer Science meets Automation", borne by the 52nd International Scientific Colloquium (IWK) at the Technische Universität Ilmenau, Germany, expresses the desire of scientists and engineers to rise to these challenges, cooperating closely on innovative methods in the two disciplines of computer science and automation.

The IWK has a long tradition going back as far as 1953. In the years before 1989, a major function of the colloquium was to bring together scientists from both sides of the Iron Curtain. Naturally, bonds were also deepened between the countries from the East. Today, the objective of the colloquium is still to bring researchers together. They come from the eastern and western member states of the European Union, and, indeed, from all over the world. All who wish to share their ideas on the points where "Computer Science meets Automation" are addressed by this colloquium at the Technische Universität Ilmenau.

All the University's Faculties have joined forces to ensure that nothing is left out. Control engineering, information science, cybernetics, communication technology and systems engineering – for all of these and their applications (ranging from biological systems to heavy engineering), the issues are being covered.

Together with all the organizers I should like to thank you for your contributions to the conference, ensuring, as they do, a most interesting colloquium programme of an interdisciplinary nature.

I am looking forward to an inspiring colloquium. It promises to be a fine platform for you to present your research, to address new concepts and to meet colleagues in Ilmenau.

In Sherte

Professor Peter Scharff Rector, TU Ilmenau

"L. Ummt

Professor Christoph Ament Head of Organisation

Table of Contents

CONTENTS

1 Systems Engineering and Intelligent Systems	Page
A. Yu. Nedelina, W. Fengler DIPLAN: Distributed Planner for Decision Support Systems	3
O. Sokolov, M. Wagenknecht, U. Gocht Multiagent Intelligent Diagnostics of Arising Faults	9
V. Nissen Management Applications of Fuzzy Conrol	15
O. G. Rudenko, A. A. Bessonov, P. Otto A Method for Information Coding in CMAC Networks	21
Ye. Bodyanskiy, P. Otto, I. Pliss, N. Teslenko Nonlinear process identification and modeling using general regression neuro-fuzzy network	27
Ye. Bodyanskiy, Ye. Gorshkov, V. Kolodyazhniy , P. Otto Evolving Network Based on Double Neo-Fuzzy Neurons	35
Ch. Wachten, Ch. Ament, C. Müller, H. Reinecke Modeling of a Laser Tracker System with Galvanometer Scanner	41
K. Lüttkopf, M. Abel, B. Eylert Statistics of the truck activity on German Motorways	47
K. Meissner, H. Hensel A 3D process information display to visualize complex process conditions in the process industry	53
FF. Steege, C. Martin, HM. Groß Recent Advances in the Estimation of Pointing Poses on Monocular Images for Human-Robot Interaction	59
A. González, H. Fernlund, J. Ekblad After Action Review by Comparison – an Approach to Automatically Evaluating Trainee Performance in Training Exercise	65
R. Suzuki, N. Fujiki, Y. Taru, N. Kobayashi, E. P. Hofer Internal Model Control for Assistive Devices in Rehabilitation Technology	71
D. Sommer, M. Golz Feature Reduction for Microsleep Detection	77

F. Müller, A. Wenzel, J. Wernstedt A new strategy for on-line Monitoring and Competence Assignment to Driver and Vehicle	
V. Borikov Linear Parameter-Oriented Model of Microplasma Process in Electrolyte Solutions	89
A. Avshalumov, G. Filaretov Detection and Analysis of Impulse Point Sequences on Correlated Disturbance Phone	95
H. Salzwedel Complex Systems Design Automation in the Presence of Bounded and Statistical Uncertainties	101
G. J. Nalepa, I. Wojnicki Filling the Semantic Gaps in Systems Engineering	107
R. Knauf Compiling Experience into Knowledge	113
R. Knauf, S. Tsuruta, Y. Sakurai Toward Knowledge Engineering with Didactic Knowledge	119
2 Advances in Control Theory and Control Engineering	
U. Konigorski, A. López Output Coupling by Dynamic Output Feedback	129
H. Toossian Shandiz, A. Hajipoor Chaos in the Fractional Order Chua System and its Control	135
O. Katernoga, V. Popov, A. Potapovich, G. Davydau Methods for Stability Analysis of Nonlinear Control Systems with Time Delay for Application in Automatic Devices	141
J. Zimmermann, O. Sawodny Modelling and Control of a X-Y-Fine-Positioning Table	145
A. Winkler, J. Suchý Position Based Force Control of an Industrial Manipulator	151
E. Arnold, J. Neupert, O. Sawodny, K. Schneider Trajectory Tracking for Boom Cranes Based on Nonlinear Control and Optimal Trajectory Generation	157

K. Shaposhnikov, V. Astakhov The method of ortogonal projections in problems of the stationary magnetic field computation	165
J. Naumenko The computing of sinusoidal magnetic fields in presence of the surface with bounded conductivity	167
K. Bayramkulov, V. Astakhov The method of the boundary equations in problems of computing static and stationary fields on the topological graph	169
T. Kochubey, V. Astakhov The computation of magnetic field in the presence of ideal conductors using the Integral-differential equation of the first kind	171
M. Schneider, U. Lehmann, J. Krone, P. Langbein, Ch. Ament, P. Otto, U. Stark, J. Schrickel Artificial neural network for product-accompanied analysis and control	173
l. Jawish The Improvement of Traveling Responses of a Subway Train using Fuzzy Logic Techniques	179
Y. Gu, H. Su, J. Chu An Approach for Transforming Nonlinear System Modeled by the Feedforward Neural Networks to Discrete Uncertain Linear System	185
3 Optimisation and Management of Complex Systems and Networked Systems	
R. Franke, J. Doppelhammer Advanced model based control in the Industrial IT System 800xA	193
H. Gerbracht, P. Li, W. Hong An efficient optimization approach to optimal control of large-scale processes	199
T. N. Pham, B. Wutke Modifying the Bellman's dynamic programming to the solution of the discrete multi-criteria optimization problem under fuzziness in long-term planning	205
S. Ritter, P. Bretschneider Optimale Planung und Betriebsführung der Energieversorgung im liberalisierten Energiemarkt	211
P. Bretschneider, D. Westermann Intelligente Energiesysteme: Chancen und Potentiale von IuK-Technologien	217

Z. Lu, Y. Zhong, Yu. Wu, J. Wu WSReMS: A Novel WSDM-based System Resource Management Scheme	223
M. Heit, E. Jennenchen, V. Kruglyak, D. Westermann Simulation des Strommarktes unter Verwendung von Petrinetzen	229
O. Sauer, M. Ebel Engineering of production monitoring & control systems	237
C. Behn, K. Zimmermann Biologically inspired Locomotion Systems and Adaptive Control	245
J. W. Vervoorst, T. Kopfstedt Mission Planning for UAV Swarms	251
M. Kaufmann, G. Bretthauer Development and composition of control logic networks for distributed mechatronic systems in a heterogeneous architecture	257
T. Kopfstedt, J. W. Vervoorst Formation Control for Groups of Mobile Robots Using a Hierarchical Controller Structure	263
M. Abel, Th. Lohfelder Simulation of the Communication Behaviour of the German Toll System	269
P. Hilgers, Ch. Ament Control in Digital Sensor-Actuator-Networks	275
C. Saul, A. Mitschele-Thiel, A. Diab, M. Abd rabou Kalil A Survey of MAC Protocols in Wireless Sensor Networks	281
T. Rossbach, M. Götze, A. Schreiber, M. Eifart, W. Kattanek Wireless Sensor Networks at their Limits – Design Considerations and Prototype Experiments	287
Y. Zhong, J. Ma Ring Domain-Based Key Management in Wireless Sensor Network	293
V. Nissen Automatic Forecast Model Selection in SAP Business Information Warehouse under Noise Conditions	299
M. Kühn, F. Richter, H. Salzwedel Process simulation for significant efficiency gains in clinical departments – practical example of a cancer clinic	305

D. Westermann, M. Kratz, St. Kümmerling, P. Meyer Architektur eines Simulators für Energie-, Informations- und Kommunikations- technologien	311
P. Moreno, D. Westermann, P. Müller, F. Büchner Einsatzoptimierung von dezentralen netzgekoppelten Stromerzeugungs- anlagen (DEA) in Verteilnetzen durch Erhöhung des Automatisierungsgrades	317
M. Heit, S. Rozhenko, M. Kryvenka, D. Westermann Mathematische Bewertung von Engpass-Situationen in Transportnetzen elektrischer Energie mittels lastflussbasierter Auktion	331
M. Lemmel, M. Schnatmeyer RFID-Technology in Warehouse Logistics	339
V. Krugljak, M. Heit, D. Westermann Approaches for modelling power market: A Comparison.	345
St. Kümmerling, N. Döring, A. Friedemann, M. Kratz, D. Westermann Demand-Side-Management in Privathaushalten – Der eBox-Ansatz	351
4 Intelligent Vehicles and Mobile Systems	
A. P. Aguiar, R. Ghabchelloo, A. Pascoal, C. Silvestre , F. Vanni Coordinated Path following of Multiple Marine Vehicles: Theoretical Issues and Practical Constraints	359
R. Engel, J. Kalwa Robust Relative Positioning of Multiple Underwater Vehicles	365
M. Jacobi, T. Pfützenreuter, T. Glotzbach, M. Schneider	371
A 3D Simulation and Visualisation Environment for Unmanned Vehicles in Underwater Scenarios	
	377
in Underwater Scenarios M. Schneider, M. Eichhorn, T. Glotzbach, P. Otto A High-Level Simulator for heterogeneous marine vehicle teams under real	377 383

M. A. Arredondo, A. Cormack SeeTrack: Situation Awareness Tool for Heterogeneous Vehicles	
J. C. Ferreira, P. B. Maia, A. Lucia, A. I. Zapaniotis Virtual Prototyping of an Innovative Urban Vehicle	401
A. Wenzel, A. Gehr, T. Glotzbach, F. Müller Superfour-in: An all-terrain wheelchair with monitoring possibilities to enhance the life quality of people with walking disability	407
Th. Krause, P. Protzel Verteiltes, dynamisches Antriebssystem zur Steuerung eines Luftschiffes	413
T. Behrmann, M. Lemmel Vehicle with pure electric hybrid energy storage system	419
Ch. Schröter, M. Höchemer, HM. Groß A Particle Filter for the Dynamic Window Approach to Mobile Robot Control	425
M. Schenderlein, K. Debes, A. Koenig, HM. Groß Appearance-based Visual Localisation in Outdoor Environments with an Omnidirectional Camera	431
G. Al Zeer, A. Nabout, B. Tibken	437
Hindernisvermeidung für Mobile Roboter mittels Ausweichecken	
Hindernisvermeidung für Mobile Roboter mittels Ausweichecken	445
 Hindernisvermeidung für Mobile Roboter mittels Ausweichecken 5 Robotics and Motion Systems Ch. Schröter, HM. Groß 	445 451
 Hindernisvermeidung für Mobile Roboter mittels Ausweichecken 5 Robotics and Motion Systems Ch. Schröter, HM. Groß Efficient Gridmaps for SLAM with Rao-Blackwellized Particle Filters St. Müller, A. Scheidig, A. Ober, HM. Groß 	
 Hindernisvermeidung für Mobile Roboter mittels Ausweichecken 5 Robotics and Motion Systems Ch. Schröter, HM. Groß Efficient Gridmaps for SLAM with Rao-Blackwellized Particle Filters St. Müller, A. Scheidig, A. Ober, HM. Groß Making Mobile Robots Smarter by Probabilistic User Modeling and Tracking A. Swerdlow, T. Machmer, K. Kroschel, A. Laubenheimer, S. Richter 	451
 Hindernisvermeidung für Mobile Roboter mittels Ausweichecken 5 Robotics and Motion Systems Ch. Schröter, HM. Groß Efficient Gridmaps for SLAM with Rao-Blackwellized Particle Filters St. Müller, A. Scheidig, A. Ober, HM. Groß Making Mobile Robots Smarter by Probabilistic User Modeling and Tracking A. Swerdlow, T. Machmer, K. Kroschel, A. Laubenheimer, S. Richter Opto-acoustical Scene Analysis for a Humanoid Robot A. Ahranovich, S. Karpovich, K. Zimmermann 	451 457

V. Lysenko, W. Mintchenya, K. Zimmermann Minimization of the number of actuators in legged robots using biological objects	483
J. Kroneis, T. Gastauer, S. Liu, B. Sauer Flexible modeling and vibration analysis of a parallel robot with numerical and analytical methods for the purpose of active vibration damping	489
A. Amthor, T. Hausotte, G. Jäger, P. Li Friction Modeling on Nanometerscale and Experimental Verification	495
Paper submitted after copy deadline	
2 Advances in Control Theory and Control Engineering	
V. Piwek, B. Kuhfuss, S. Allers Feed drivers – Synchronized Motion is leading to a process optimization	503

M. Schneider / U. Lehmann / J. Krone / P. Langbein / Ch. Ament / P. Otto / U. Stark / J. Schrickel

Artificial neural network for product-accompanied analysis and control

1. Material behaviour of the side shell

In the context of the project in cooperation with Airbus the material behaviour of several components of a fuselage section is modelled and simulated by the Competence Platform "Computer Vision based on Computational Intelligence (KOPF CV&CI)" with artificial neural network (ANN) at the South Westphalia University of Applied Sciences. For this purpose fuselage components were measured in a series of experiments to model the interrelationship between movement of actors for positioning and corresponding change of component geometry [2]. Every actor can move independently of each other in x-, y-, z-direction. A very exact measuring system delivers the coordinates of the measuring points which are integrated as planned in the fuselage components. With these mesuring points the geometry of the side shell and the position in space is determined. The data sets of every single measuring form the base to develope a simulation model showing the material behaviour of the right side shell in an artificial neural network (ANN). After the data sets had been processed and evaluated, they could be used for training. The training was not accomplished by absolute coordinates of the measuring points but by relative deviations from zero position of side shell.

Movements of controllable actors serve as input to artificial neural network and x-, y- and z-coordinates of every single measuring point serve as output. Due to a low number of data sets an artificial neural network was developed for every single measuring point. In addition, only the main moving direction (=y-direction) of the actors was taken into account to reduce the connections between the neurons. These artificial neural networks were put into a parallel order (figure 1). The predicted position of measuring points meets the high precision request of Airbus, i.e. artificial neural networks are suitable to predict this strong nonlinear material behaviour of fuselage components very well. With a larger number of data sets and taking into account of all possible actor movements it

would be better to train the material behaviour in <u>one</u> artificial neural network. So the result of the simulation might be even better. The interaction of measuring points with each other could be trained much better in a neural material model. Therefore the material behaviour of the side shell could be simulated more exactly. Due to the better relationship of connections between neurons to training data sets the neural model by 7 parallel artificial neural networks was favoured concerning the generalization performance.

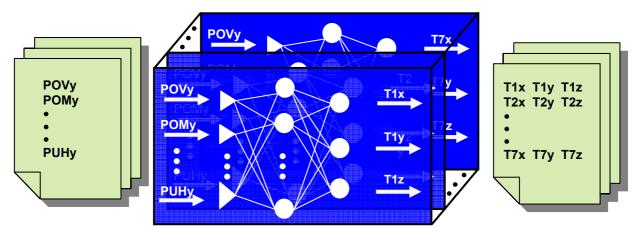


Figure 1: parallel order of the networks to simulate the material behaviour

In comparison to the finit elements method artificial neural networks are suitable very well to simulate this strongly nonlinear behaviour of components of a bent extensive fuselage section [1]. The data of process monitoring and prediction shall be used to simulate the process control.

2. Control concept

An aim of the project is to create a concept for production accompanying analysis of component geometry of a fuselage section by artificial neural networks [1]. "At present it is common for fuselage production, first to join extensive bent components to fuselage sections together [3]". The individual components are riveted together at the component transitions. The fuselage section can stabilize now and is transported to another location for further assembly. This ready fuselage section shall correspond to the construction plan exactly. If the precision is not optimal, special approval procedures for the Aeronautics Federal Office or time- and cost-intensive improvement work are necessary to meet the demanded precision of the geometry of the fuselage section [5].

Various outer influences can have an effect on the components of the fuselage section and can influence the assembly. They shall be compensated automatically by a Computational Intelligence (CI) control concept. "It is not unusual, that the tool finally made produces parts, which one being outside the measure tolerances of the original design sheet ... In addition, deviations which are caused by temperature changes in the factory, can change ... the measurements of the final part [4]." In predefined intervals a visual measuring system (Computer Vision) delivers the coordinates of the measuring points. These data are led back in control system to ensure the component of a fuselage section corresponding to its specification. Controllable actors can specifically influence the geometry of the fuselage component in context of the permitted limits at measured deviations.

The control process is a neural model with 6 inputs (=actor's deviation) and 21 outputs (x-, y-, z-deviation of the 7 measuring points) as pointed in chapter 1. The applied controller needs 21 controlled process variable and 6 actuating variables. At the movement of one single actor all 7 measuring points are moved, e.g. no controlled process variable has to be assigned for exactly one actuating variable. With a classic multivariable control this feedback control problem is very difficult to solve because the controlled process variable and actuating variable are coupled ambiguously. A neural controller is able to meet these requirements. The neural model of the material behaviour cannot simply be inverted, because only <u>one</u> correction movement of the actors can return the measuring points into the desired position. A clear solution would not be received by 7 artificial neural networks in parallel. In spite of the low number of data sets only one network was trained. The data sets were partitioned the following way: 76% for training, 14% for validation and 9% for testing.

If one measuring point is out from zero position the neural controller displayes the essential traverse path of the actors to move the measuring points back into zero position.

In change of outer boundary conditions and/or the system behaviour the artificial neural network delivers the traverse path of every single actor. Therefore the geometry of the fuselage section can be kept automatically constant by a CI-control of a close limit of a couple of one-hundredths of a millimetre.

175

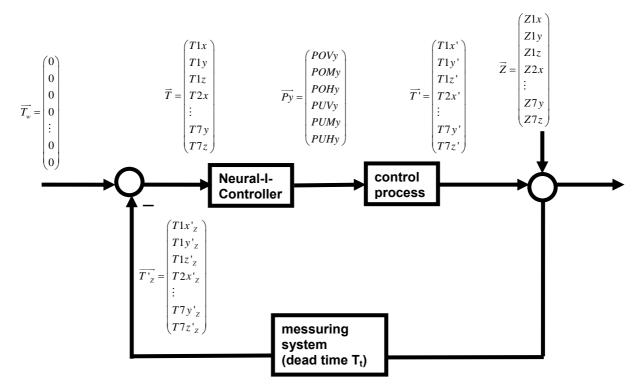


Figure 2: closed loop for simulation

The closed loop (figure 2) is dominated by the dead time. For continuous control an integral element was put in front of the neural controller. The setting rules of Ziegler and Nichols [6] were consulted to dimension the integration time T_i .

For this simulation model was reached a good simulation result for: $T_i = 4 T_t$ Therefore oscillation of the closed loop could be prevented. The process model which is influenced by the disturbance input is controlled well.

3. Prospects

This model based control will be tested at a process model and can gradually be integrated into the real production expiry. Control accuracy of this control system by Cl-controller can be improved permanently by an ongoing training in regular operation. The applicability of this Neural-I-Controller to side shells of other sections of the same aeroplane model and to side shells of other aeroplane models still has to be assayed. Furthermore the number of data sets should be extended and the simulation model should be tested on the real assembly. Advantages at the production costs could be realised by this CI-control concept.

4. Conclusion

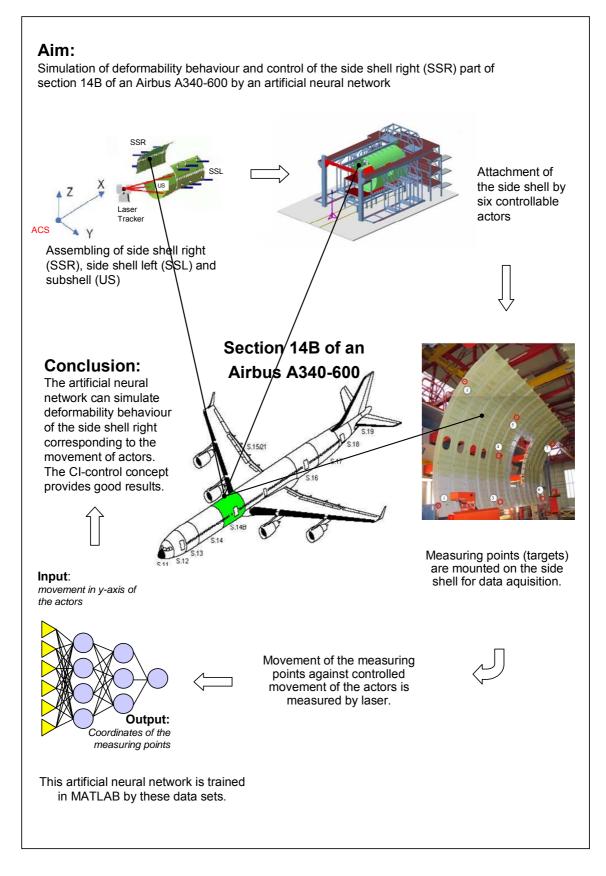


Figure 3: Artificial neural network for production accompanying analysis and control

5. Acknowledgement

The Competence Platform "Computer Vision based on and Computational Intelligence" (http://www.fh-swf.de/cv-ci) is funded by the Ministry of Innovation, Science, Research and Technology of the State of North Rhine-Westphalia.

The authors want to express their sincere thanks to Dipl.-Ing. Ulrich Stark and Dipl.-Ing. Jörg Schrickel from the Airbus Deutschland GmbH for supporting this research by providing real measuring data sets.

References:

- R. Tillmann, M. Schneider, J. Krone, U. Lehmann, J. Schrickel, U. Stark, D. Welbhoff: "Airbus KNN zur fertigungsbegleitenden Analyse und Prozessregelung", Ausstellung "Lebendige Forschung an Fachhochschulen im Landtag NRW", Düsseldorf, 24.01.-02.02.2007
- [2] Lehmann, U., Johannes, H., Hohage, S., Woestmann, S.: "Analyse eines Umformprozesses mit KNN und Data Mining", GI/VDI-Computational-Intelligence-Kongress, Baden-Baden im Mai 2000
- Patentschrift DE 198 34 703 C 1; Verfahren zur Herstellung, Ausrüstung und Ausstattung eines Flugzeugrumpfes und Vorrichtung zur Durchführung des Verfahrens; Patentinhaber: DaimlerChrysler Aerospace Airbus GmbH, 21129 Hamburg, DE; Veröffentlichungstag der Patenterteilung 30.12.1999
- Patentschrift DE 693 31 430 T 2; Platten und Rumpfmontage; Patentinhaber: The Boing Co., Seattle, Wash., US; Veröffentlichungstag im Patentblatt 07.11.2002
- [5] Prof. Dr.-Ing. Klaus Rall, Dr.-Ing. habil. Jörg Wollnak, TU Hamburg-Harburg, "Genauigkeit muss nicht teuer sein"; SPEKTRUM: Special Luftfahrtforschung 2003
- [6] Prof. Dr.-Ing. Holger Wendt, Prof. Dr.-Ing. Wolfgang Wendt: "Taschenbuch der Regelungstechnik", Verlag Harri Deutsch, 5. Auflage, 2003

Authors:

Dipl.-Ing. M. Schneider, Prof. U. Lehmann, Prof. Dr.-Ing. J. Krone, Prof. Dr.-Ing. habil. P. Langbein Fachhochschule Südwestfalen South Westphalia Universitiy of Applied Sciences Frauenstuhlweg 31 D-58644 Iserlohn, Germany Phone: +49/(0)2371/566-180 Fax: +49/(0)2371/566-209 E-mail: MSchneider@fh-swf.de, Lehmann@fh-swf.de, Krone@fh-swf.de, langbein@fh-swf.de

Prof. Dr.-Ing. habil. Ch. Ament, Priv.-Doz. Dr.-Ing. habil. P. Otto Technische Universität Ilmenau Faculty of Computer Sciences and Automation System Analysis Group Postfach 10 05 65 D-98684 Ilmenau, Germany Phone: +49/(0)3677/69-2815, -2773 Fax: +49/(0)3677/69-1434 E-mail: christoph.ament@tu-ilmenau.de, peter.otto@tu-ilmenau.de

Dipl.-Ing. U. Stark, Dipl.-Ing. J. Schrickel Airbus Deutschland GmbH Kreetslag 10 D-21129 Hamburg, Germany Phone: +49/(0)40/743-81268, -85167 Fax: +49/(0)40/743-74794 E-mail: ulrich.stark@airbus.com, joerg.schrickel@airbus.com