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Preface 
 
Dear Participants, 
 
Confronted with the ever-increasing complexity of technical processes and the growing demands on their 
efficiency, security and flexibility, the scientific world needs to establish new methods of engineering design and 
new methods of systems operation. The factors likely to affect the design of the smart systems of the future will 
doubtless include the following: 

• As computational costs decrease, it will be possible to apply more complex algorithms, even in real 
time. These algorithms will take into account system nonlinearities or provide online optimisation of the 
system’s performance. 

• New fields of application will be addressed. Interest is now being expressed, beyond that in “classical” 
technical systems and processes, in environmental systems or medical and bioengineering applications. 

• The boundaries between software and hardware design are being eroded. New design methods will 
include co-design of software and hardware and even of sensor and actuator components. 

• Automation will not only replace human operators but will assist, support and supervise humans so 
that their work is safe and even more effective. 

• Networked systems or swarms will be crucial, requiring improvement of the communication within 
them and study of how their behaviour can be made globally consistent. 

• The issues of security and safety, not only during the operation of systems but also in the course of 
their design, will continue to increase in importance. 

The title “Computer Science meets Automation”, borne by the 52nd International Scientific Colloquium (IWK) at 
the Technische Universität Ilmenau, Germany, expresses the desire of scientists and engineers to rise to these 
challenges, cooperating closely on innovative methods in the two disciplines of computer science and 
automation. 

The IWK has a long tradition going back as far as 1953. In the years before 1989, a major function of the 
colloquium was to bring together scientists from both sides of the Iron Curtain. Naturally, bonds were also 
deepened between the countries from the East. Today, the objective of the colloquium is still to bring 
researchers together. They come from the eastern and western member states of the European Union, and, 
indeed, from all over the world. All who wish to share their ideas on the points where “Computer Science meets 
Automation” are addressed by this colloquium at the Technische Universität Ilmenau. 
All the University’s Faculties have joined forces to ensure that nothing is left out. Control engineering, 
information science, cybernetics, communication technology and systems engineering – for all of these and their 
applications (ranging from biological systems to heavy engineering), the issues are being covered.  
Together with all the organizers I should like to thank you for your contributions to the conference, ensuring, as 
they do, a most interesting colloquium programme of an interdisciplinary nature. 
I am looking forward to an inspiring colloquium. It promises to be a fine platform for you to present your 
research, to address new concepts and to meet colleagues in Ilmenau. 
 
 
 
 
 
Professor Peter Scharff     Professor Christoph Ament  
Rector, TU Ilmenau             Head of Organisation 
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GENERAL APPROACH TO WLLS 
 

In this paper we discuss the problem of developing worm-like locomotion systems 

(WLLS), which have the earthworm as a living prototype. Non-pedal forms of loco-

motion show many advantages and are very interesting in current robotic research. 

The following is taken as the basis of our theory: 

(i) a worm is a terrestrical locomotion system of one dominant linear dimension with 

no active legs nor wheels; (ii) global displacement is achieved by (periodic) change of 

shape (such as local strain) and interaction with the environment; (iii) the model body 

of a worm is a 1-dimensional continuum that serves as the support of various fields. 

The continuum in (iii) is just an interval of a body-fixed coordinate. Most important 

fields are: mass, continuously distributed (with a density function) or in discrete distri-

bution (chain of point masses), actuators, i.e., devices which produce internal dis-

placements or forces thus mimicking muscles, surface structure causing the interac-

tion with the environment. 

Observing the locomotion of worms one recognizes first a surface contact with the 

ground. It is well known, that, if there is contact between two bodies (worm and 

ground), there is some kind of friction, which depends on the physical properties of 

the surfaces of the bodies. In particular, the friction may be anisotropic (orientation 

dependent of the relative displacement). This interaction (mentioned in (ii)) could 

emerge from a surface texture as asymmetric Coulomb friction or from a surface en-

dowed with scales or bristles (we shall speak of spikes for short) preventing back-

ward displacements. It is responsible for the conversion of (mostly periodic) internal 

and internally driven motions into a change of external position (undulatory locomo-

tion [5]), see [6] and [9]. 

Summarizing, we consider a WLLS in form of a chain of point masses in a common 

straight line (a discrete straight worm), which are connected consecutively by linear 

visco-elastic elements, see [1], [2], [9] for instance and Fig. 1. 
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Fig. 1. Model of a WLLS - chain of point masses 

In [6] and [7] the case is considered, where the point masses are endowed with 

scales, which could make the friction also orientation dependent (in sliding forward 

the frictional forces are minimal while in opposite direction the scales dig in and 

cause large friction). But, due to [1] and [2], we do not want to deal with reactive 

forces, we model this ground interaction as impressed forces - asymmetric (aniso-

tropic) dry friction as a Coulomb sliding friction force. 

 
WLLS AS A DYNAMICAL CONTROL SYSTEM 

 
We model the ground interaction as an asymmetric Coulomb dry friction force , 

which is taken to be different in the magnitude depending on the direction of each 

point mass motion: 
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 (neg-

lecting stick-slip). For later simulation we restrict the number of point masses to 

, but we point out that our theory is valid for fixed but arbitrary n , see [3]. 2=n

Mathematical model 

Firstly, we derive the differential equations of motion of the WLLS by using Newton's 

second law: 
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with ( ) ( ) ( ) ( ) ( ) ( ) 212111010202101000 0,0,0,0,0,0 xxxxxxxxxxxx ====== &&&  (all initial va-

lues are real numbers). Putting 

111 : lcu =  and u  222 : lc= (3) 

then  is in fact a control of the original spring length. Therefore, we have internal 

inputs and no longer external force inputs, as in [1]. New outputs of this system could 

iju
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be the actual distances of the point masses 

101 : xxy −=  and . 212 : xxy −= (4) 

Therefore, this system (2), (4) is described by a mathematical model that falls into the 

category of quadratic, nonlinearly perturbed, minimum phase, multi-input u , multi-

output  systems with strict relative degree two. 

( )⋅

( )⋅y
Control objective 

For the further analysis we suppose that the masses are all equal, but unknown, also 

the damping factors and spring stiffnesses, and the friction magnitudes as well (un-

certain systems). The consideration of uncertain systems leads to the use of adap-

tive control. The aim is to design universal adaptive controllers, which learn from the 

behavior of the system, so automatically adjust their parameters and achieve a pre-

specified control objective. Precisely, given an arbitrarily small 0>λ , a control stra-

tegy  is sought which, when applied to the system, achieves uya λ -tracking for 

every reference signal  (belonging to a certain function class, for instance a 

given favoured kinematic gait presented), i.e., the following: 

( )⋅refy

• every solution of the closed-loop system is defined and bounded on , and 0≥R

• the output  tracks  with asymptotic accuracy quantified by ( )⋅y ( )⋅refy 0>λ  in the 

sense that ( ) ( ){ } 0,0 →− λtymax − yt ref as +∞→t . 

The last condition means that the error ( ) ( ) ( )tytyte ref−=:  is forced, via the adaptive 

feedback mechanism (controllers (5) and (6)), towards a ball around zero radius 

0>λ , see Fig. 2. 

 

Fig. 2. The λ -radius around the reference signal 

Controllers 

Let us consider the following two λ -trackers, see also [1]. 
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with , ( ) Rkk ∈= 00 0>λ ,  (a Sobolev-Space), u and ( ) ∞∈⋅ ,2Wyref ( ) ( ) 2, Rtet ∈ ( ) Rtk ∈ . 

The second one includes a dynamic compensator due to a controller of [4]. This con-

troller allows us to avoid the drawback of using the derivative of the output: 
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with ( ) 00 ϑθ = , , ( ) 00 0 >= kk 0>λ , , ( ) ∞∈⋅ ,2Wyref ( ) ( ) ( ) 2,, Rttet ∈ϑu  and k . ( ) Rt ∈

We stress, that the controller (6) does not invoke any derivatives. The structure of the 

feedback law and the simple adaptation law of the controllers in this subsection al-

ready exist in the literature, but they were only applied to systems with relative de-

gree one. The considered WLLS has relative degree two. Therefore, the novelty is 

the application of the controller to systems with relative degree two. Only a few pa-

pers focus the adaptive λ -tracking problem for system with relative degree two, but 

the feedback law here is simpler than the introduced ones in [3], [8], [4]. These con-

trollers achieve λ -tracking (for the proofs see [1]). 

 
SIMULATIONS 

 
We apply the presented simple adaptive λ -tracking control strategies to our WLLS  

in order to track a given reference signal: a kinematic gait developed in [7]. We try to 

track the “fast gait” in [7] in our dynamical theory, it is for [ ]1,0∈t : 
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where  is the original length (dimensionless chosen as  units) and 20l 2 3.0=ε  is the 

elongation. This gait is periodically repeated. Mind that one point mass is resting (ac-

tive spike) at any time. In order to detect differences we present the simulation re-
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sults with the λ -trackers (6) and (5), respectively, side by side. 

 
Fig. 3. Outputs and λ -strips – left: for (6), right: for (5) 

 
Fig. 4. The gain parameters - left: for (6), right: for (5) 

 
Fig. 5. The control inputs - left: for (6), right: for (5) 

 
Fig. 6. The motions of the worm -  left: with (6), right: with (5) 

Fig. 3 shows the outputs of the systems and the according λ -strips. The reference 
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signal is tracked very quickly with controller (5) in comparison to controller (6). In Fig. 

3, left, the outputs are not captured yet. The gain parameters, shown in Fig. 4, in-

crease as long as the outputs are outside the λ -strips. Fig. 5 shows the necessary 

control inputs, and Fig. 6 the corresponding motions of the worm. 

It can be seen that controller (5) works more effectively than controller (6) because 

we feed back more information about the output derivative than (6), which has to es-

timate the derivative. Hence, in the simulation with controller (6) , the outputs are not 

captured on the considered time interval and the gain parameter is still increasing. 

Fig. 4, right, clearly shows the convergence of the gain parameter in the simulation 

with controller (5). 

 
SUMMARY AND OUTLOOK 

 
The motion of an earthworm was the inspiration for a (technical) solution of an artifi-

cial worm. In [7] a theory is developed for the peristaltic motion of such systems, 

which to a large extent allows to characterize these motions already on a kinematic 

level. Here, the advantage of adaptive control for the dynamical realization of these 

motions (tracking of kinematic gaits) is shown. The numerical simulations demon-

strate and illustrate that the adaptive controllers work successfully and effectively. 

We point out, that the adaptive nature of the controllers is expressed by the arbitrary 

choice of the system parameters. It is obvious that for numerical simulation the sys-

tem data have to be chosen fixed and known, but the controllers are able to adjust 

their gain parameter to each set of system data. 
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