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Preface 
 
Dear Participants, 
 
Confronted with the ever-increasing complexity of technical processes and the growing demands on their 
efficiency, security and flexibility, the scientific world needs to establish new methods of engineering design and 
new methods of systems operation. The factors likely to affect the design of the smart systems of the future will 
doubtless include the following: 

• As computational costs decrease, it will be possible to apply more complex algorithms, even in real 
time. These algorithms will take into account system nonlinearities or provide online optimisation of the 
system’s performance. 

• New fields of application will be addressed. Interest is now being expressed, beyond that in “classical” 
technical systems and processes, in environmental systems or medical and bioengineering applications. 

• The boundaries between software and hardware design are being eroded. New design methods will 
include co-design of software and hardware and even of sensor and actuator components. 

• Automation will not only replace human operators but will assist, support and supervise humans so 
that their work is safe and even more effective. 

• Networked systems or swarms will be crucial, requiring improvement of the communication within 
them and study of how their behaviour can be made globally consistent. 

• The issues of security and safety, not only during the operation of systems but also in the course of 
their design, will continue to increase in importance. 

The title “Computer Science meets Automation”, borne by the 52nd International Scientific Colloquium (IWK) at 
the Technische Universität Ilmenau, Germany, expresses the desire of scientists and engineers to rise to these 
challenges, cooperating closely on innovative methods in the two disciplines of computer science and 
automation. 

The IWK has a long tradition going back as far as 1953. In the years before 1989, a major function of the 
colloquium was to bring together scientists from both sides of the Iron Curtain. Naturally, bonds were also 
deepened between the countries from the East. Today, the objective of the colloquium is still to bring 
researchers together. They come from the eastern and western member states of the European Union, and, 
indeed, from all over the world. All who wish to share their ideas on the points where “Computer Science meets 
Automation” are addressed by this colloquium at the Technische Universität Ilmenau. 
All the University’s Faculties have joined forces to ensure that nothing is left out. Control engineering, 
information science, cybernetics, communication technology and systems engineering – for all of these and their 
applications (ranging from biological systems to heavy engineering), the issues are being covered.  
Together with all the organizers I should like to thank you for your contributions to the conference, ensuring, as 
they do, a most interesting colloquium programme of an interdisciplinary nature. 
I am looking forward to an inspiring colloquium. It promises to be a fine platform for you to present your 
research, to address new concepts and to meet colleagues in Ilmenau. 
 
 
 
 
 
Professor Peter Scharff     Professor Christoph Ament  
Rector, TU Ilmenau             Head of Organisation 
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Mission Planning for UAV Swarms  
 
 

Introduction 

Unmanned Aerial Vehicles (UAVs) play an ever increasing role in a wide variety of 

scenarios in both the civilian and military sector, carrying out tasks like traffic 

surveillance, firefighting, or reconnaissance missions. Furthermore, the use of groups of 

vehicles, or swarms, has been shown to accomplish certain objectives more efficiently 

and more effectively than a single vehicle can, for example in terrain mapping or search 

missions. In all these scenarios, the autonomous vehicles need to fly on trajectories that 

match their flight envelope, are as short as possible, and most importantly, avoid 

collisions with obstacles and other UAVs at all cost.  

In order to achieve this, Mixed-Integer Linear Programming (MILP) is used as the 

optimization principle. MILP extends regular linear programming to include variables that 

are constrained to integer or binary values. Thus, MILP offers the possibility to add 

logical and decision making constraints into the optimization, such as obstacle and 

collision avoidance. 

However, finding long-range minimum-time trajectories in environments with many 

obstacles is a complex optimization problem. In this paper, a Model Predictive Control 

(MPC) approach is chosen to decrease computational complexity and limit computation 

time, therefore making the algorithm capable of real-time calculations as well as 

handling unknown or dynamically changing environments. The presented algorithm is 

capable of calculating near-optimal flight trajectories to ensure that the UAV swarm 

carries out its mission in the minimum time. 

 

Problem Formulation 

In general, a mission for a UAV swarm can be described as visiting a number of 

waypoints spread out on a map. All waypoints have to be visited once during the 

mission by one UAV. This so called Task Assignment constitutes the first part of the 

mission planning algorithm. During the Task Assignment phase, waypoints are assigned 

such that each UAV will have to travel only a minimum distance, therefore also bringing 
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the total mission time to a minimum. The problem is formulated as a multi-dimensional 

Traveling Salesman Problem (TSP), as implemented in [1]. 

In this paper, only planar motion is considered, meaning UAVs fly at constant altitude. 

The dynamics of the UAVs are modeled in the form of a simple point mass, bringing 

their discrete-time state space representation to: 

( )

( )

ky

x

k
y

x

k
y

x a

a

t

t

t

t

v

v

y

x

t

t

v

v

y

x









⋅





















∆

∆

∆

∆

+





















⋅



















∆

∆

=





















+
0

0

2/0

02/

1000

0100

010

001

2

2

1

 

UAV motion is constrained by a maximum velocity and turn rate, therefore giving us: 

maxmax   ,  vvvv yx ≤≤   maxmax   ,  aaaa yx ≤≤  

Calculating the length of a vector is a nonlinear operation. In order to adhere to the 

Linear Programming problem formulation, we approximate vector length by checking a 

number 
maxvn of unit vectors onto which the velocity/acceleration vector is projected [5]. 
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MILP also allows an efficient way to declare obstacles by using binary variables. 

Throughout this paper we limit ourselves to rectangular obstacles. Obstacles are 

described by their lower left and upper right corner [ ]Tururllll yxyx ,,, . The variable objectb  

is a binary, and the number M is an arbitrary large positive value. 
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,  is the position of UAV j  at time k . Index i  describes the number of obstacles, 

j  lists the number of UAVs in the swarm, k  the number of time steps in the planning 

horizon, and l  enumerates the four inequalities. As long as 3≤∑ ijklobjectb  is fulfilled, the 

UAV is outside the obstacle. 
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Receding Horizon Controller 

The constraints above can now be used to formulate a MILP optimization problem. 

Traditionally, trajectory optimization is done over a fixed horizon. This means that the 

complete trajectory is calculated from beginning to end point, forming a large and 

complicated optimization that does not take into account changing environments. When 

obstacles are added or subtracted, the precalculated optimal solution essentially 

becomes worthless and a recalculation has to be performed. 

To solve this problem, a Model Predictive Control setup is chosen. [2] lists the properties 

of Model Predictive Control, also called Receding Horizon Control: 

• At time i  and initial state ix  the optimization is performed for only the next PN  

time steps. PN  is the so called planning horizon. 

• The first EN values of the optimal solution are used as inputs to the system. EN  

is the execution horizon. EN  is usually set to 1. 

• In the new initial state 
ENix + the optimization is performed again, repeating the 

process, thus taking into account possible changes in the environment. 

Similar implementations of MPC can be found in [3] and [4]. 

 

To be able to use this approach, we need to overcome a problem. As seen in Fig. 1, the 

trajectory is only optimized within a small area around the current state, the planning 

horizon. But the total trajectory consists of the optimized piece plus the remaining pieces 

from the planning horizon to the goal point. However, that piece is unknown and the 

total distance cannot be calculated. Therefore, the remaining trajectory is approximated 

with straight line segments connecting the planning horizon to the goal point. 

 

      
Fig. 1: Details of MPC               Fig. 2: Calculation of the cost map 
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In order to find the shortest distance to the goal point, a cost map of the complete 

environment is calculated, calculating and storing the distances of points to the goal 

point (Fig. 2). [6] shows that the shortest distance in an environment with convex 

obstacles is a combination of line segments between the points and the corners of the 

obstacles. Thus, the corners of the obstacles are cost points in our cost map. The 

visibility graph between all obstacles and the goal point is calculated and by using the 

Dijkstra algorithm, as outlined in [7], the shortest connections between all the points and 

the goal point are calculated and stored as the cost of each point. 

The length of the trajectory outside the planning horizon can now be determined. As 

detailed in Fig. 1, it is: 

• The distance from 
PNix + ,the edge of the planning horizon, to a known cost point 

optx that is visible from that point.  

• The distance from that cost point to the goal point. This value has already been 

calculated and is stored in the cost map.  

The visibility constraint between 
PNix +  and optx  is very important. Because of it, local 

optimization within the planning horizon does indeed have a global influence on the 

whole trajectory, therefore also minimizing the total trajectory length. 

Now the planning problem is expressed in MILP form. Each UAV can select only one 

cost point during each optimization: 
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with CPN = number of cost points, VN = number of UAVs, goalN =2, the next two waypoints. 

Equations (4) and (5) set the cost value and coordinates of the chosen cost point. 
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The line connecting the edge of the planning horizon and the cost point is described by 
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In order to test visibility, this connection is divided into testN  parts: 
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Each part is tested for interference with obstacles using a binary variable 
ikmnoptb , very 

much like in (3). 

 Equations (6) and (7) handle which goal point to use in the optimization. If a goal point 

is reached in the last step of the planning horizon or not at all, then only this point will be 

part of the optimization. If a goal point is reached within the planning horizon, then goal 

points are switched and the optimization directs the trajectory to the next goal point. 
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Cost Function 

The cost function to be minimized is the total trajectory lengths of the UAVs, consisting 

of three parts: 

• The part within the planning horizon, from ix  to 
PNix +  

• The line between 
PNix +  and the selected cost point 

• The distance between selected cost point and goal point. 

The first part is described by the first part of Equation (8), which represents the number 

of time steps to the goal point times the distance traveled per time step. 
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linel  is the distance between 
PNix +  and the selected cost point. Since it constitutes the 

length of a vector, it is calculated just as in Equations (1) and (2). 

The third part is simply the stored value of the cost point, meaning the distance to the 

goal point. 

 

Simulation 

Two scenarios are presented that show the capabilities of the presented MCD algorithm, 

especially in changing environments. Fig. 3 shows a trajectory replanning after a UAV is 

lost during a mission. 
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 Fig. 3: Replanning after UAV loss  Fig. 4: Replanning due to unknown obstacles

  

The regularly planned trajectories are shown in black. UAV #2 is supposed to visit 

waypoints 
5

W  and 
6

W . However, UAV #2 is lost at 
5

W . Immediately, a replanning occurs 

and UAV #3 takes over 
6

W . The newly planned trajectories are shown in gray. 

In Fig. 4, UAV #1 is scheduled to visit 
1

W  and 
2

W . However, it encounters an unknown 

obstacles, shown in gray, that was not part of the previous planning. After a replanning, 

it is determined that UAV #2 can reach 
2

W  faster and it takes over for #1. 

 

Conclusion 

The iterative MPC algorithm presented here has been shown to effectively handle 

various changes in the mission environment, decreasing computational complexity and 

still being able to calculate near-optimal trajectories for groups of cooperating UAVs. 
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