

PROCCEDINGS

| 10 - 13 September 2007

FACULTY OF COMPUTER SCIENCE AND AUTOMATION

COMPUTER SCIENCE MEETS AUTOMATION

VOLUME I

- **Session 1 Systems Engineering and Intelligent Systems**
- Session 2 Advances in Control Theory and Control Engineering
- Session 3 Optimisation and Management of Complex Systems and Networked Systems
- **Session 4 Intelligent Vehicles and Mobile Systems**
- **Session 5 Robotics and Motion Systems**

Bibliografische Information der Deutschen Bibliothek

Die Deutsche Bibliothek verzeichnet diese Publikation in der deutschen Nationalbiografie; detaillierte bibliografische Daten sind im Internet über http://dnb.ddb.de abrufbar.

ISBN 978-3-939473-17-6

Impressum

Herausgeber:	Der Rektor der Technischen Universität Ilmenau UnivProf. Dr. rer. nat. habil. Peter Scharff	
Redaktion:	Referat Marketing und Studentische Angelegenheiten Kongressorganisation Andrea Schneider Tel.: +49 3677 69-2520 Fax: +49 3677 69-1743 e-mail: kongressorganisation@tu-ilmenau.de	
Redaktionsschluss:	Juli 2007	
Verlag:	Ge	
	Technische Universität Ilmenau/Universitätsbibliothek Universitätsverlag Ilmenau Postfach 10 05 65 98684 Ilmenau www.tu-ilmenau.de/universitaetsverlag	
Herstellung und Auslieferung:	Verlagshaus Monsenstein und Vannerdat OHG Am Hawerkamp 31 48155 Münster www.mv-verlag.de	
Layout Cover:	www.cey-x.de	
Bezugsmöglichkeiten:	Universitätsbibliothek der TU Ilmenau Tel.: +49 3677 69-4615 Fax: +49 3677 69-4602	

© Technische Universität Ilmenau (Thür.) 2007

Diese Publikationen und alle in ihr enthaltenen Beiträge und Abbildungen sind urheberrechtlich geschützt. Mit Ausnahme der gesetzlich zugelassenen Fälle ist eine Verwertung ohne Einwilligung der Redaktion strafbar.

Preface

Dear Participants,

Confronted with the ever-increasing complexity of technical processes and the growing demands on their efficiency, security and flexibility, the scientific world needs to establish new methods of engineering design and new methods of systems operation. The factors likely to affect the design of the smart systems of the future will doubtless include the following:

- As computational costs decrease, it will be possible to apply more complex algorithms, even in real time. These algorithms will take into account system nonlinearities or provide online optimisation of the system's performance.
- New fields of application will be addressed. Interest is now being expressed, beyond that in "classical" technical systems and processes, in environmental systems or medical and bioengineering applications.
- The boundaries between software and hardware design are being eroded. New design methods will include co-design of software and hardware and even of sensor and actuator components.
- Automation will not only replace human operators but will assist, support and supervise humans so that their work is safe and even more effective.
- Networked systems or swarms will be crucial, requiring improvement of the communication within them and study of how their behaviour can be made globally consistent.
- The issues of security and safety, not only during the operation of systems but also in the course of their design, will continue to increase in importance.

The title "Computer Science meets Automation", borne by the 52nd International Scientific Colloquium (IWK) at the Technische Universität Ilmenau, Germany, expresses the desire of scientists and engineers to rise to these challenges, cooperating closely on innovative methods in the two disciplines of computer science and automation.

The IWK has a long tradition going back as far as 1953. In the years before 1989, a major function of the colloquium was to bring together scientists from both sides of the Iron Curtain. Naturally, bonds were also deepened between the countries from the East. Today, the objective of the colloquium is still to bring researchers together. They come from the eastern and western member states of the European Union, and, indeed, from all over the world. All who wish to share their ideas on the points where "Computer Science meets Automation" are addressed by this colloquium at the Technische Universität Ilmenau.

All the University's Faculties have joined forces to ensure that nothing is left out. Control engineering, information science, cybernetics, communication technology and systems engineering – for all of these and their applications (ranging from biological systems to heavy engineering), the issues are being covered.

Together with all the organizers I should like to thank you for your contributions to the conference, ensuring, as they do, a most interesting colloquium programme of an interdisciplinary nature.

I am looking forward to an inspiring colloquium. It promises to be a fine platform for you to present your research, to address new concepts and to meet colleagues in Ilmenau.

In Sherte

Professor Peter Scharff Rector, TU Ilmenau

"L. Ummt

Professor Christoph Ament Head of Organisation

Table of Contents

CONTENTS

1 Systems Engineering and Intelligent Systems	Page
A. Yu. Nedelina, W. Fengler DIPLAN: Distributed Planner for Decision Support Systems	3
O. Sokolov, M. Wagenknecht, U. Gocht Multiagent Intelligent Diagnostics of Arising Faults	9
V. Nissen Management Applications of Fuzzy Conrol	15
O. G. Rudenko, A. A. Bessonov, P. Otto A Method for Information Coding in CMAC Networks	21
Ye. Bodyanskiy, P. Otto, I. Pliss, N. Teslenko Nonlinear process identification and modeling using general regression neuro-fuzzy network	27
Ye. Bodyanskiy, Ye. Gorshkov, V. Kolodyazhniy , P. Otto Evolving Network Based on Double Neo-Fuzzy Neurons	35
Ch. Wachten, Ch. Ament, C. Müller, H. Reinecke Modeling of a Laser Tracker System with Galvanometer Scanner	41
K. Lüttkopf, M. Abel, B. Eylert Statistics of the truck activity on German Motorways	47
K. Meissner, H. Hensel A 3D process information display to visualize complex process conditions in the process industry	53
FF. Steege, C. Martin, HM. Groß Recent Advances in the Estimation of Pointing Poses on Monocular Images for Human-Robot Interaction	59
A. González, H. Fernlund, J. Ekblad After Action Review by Comparison – an Approach to Automatically Evaluating Trainee Performance in Training Exercise	65
R. Suzuki, N. Fujiki, Y. Taru, N. Kobayashi, E. P. Hofer Internal Model Control for Assistive Devices in Rehabilitation Technology	71
D. Sommer, M. Golz Feature Reduction for Microsleep Detection	77

F. Müller, A. Wenzel, J. Wernstedt A new strategy for on-line Monitoring and Competence Assignment to Driver and Vehicle	83
V. Borikov Linear Parameter-Oriented Model of Microplasma Process in Electrolyte Solutions	89
A. Avshalumov, G. Filaretov Detection and Analysis of Impulse Point Sequences on Correlated Disturbance Phone	95
H. Salzwedel Complex Systems Design Automation in the Presence of Bounded and Statistical Uncertainties	101
G. J. Nalepa, I. Wojnicki Filling the Semantic Gaps in Systems Engineering	107
R. Knauf Compiling Experience into Knowledge	113
R. Knauf, S. Tsuruta, Y. Sakurai Toward Knowledge Engineering with Didactic Knowledge	119
2 Advances in Control Theory and Control Engineering	
U. Konigorski, A. López Output Coupling by Dynamic Output Feedback	129
H. Toossian Shandiz, A. Hajipoor Chaos in the Fractional Order Chua System and its Control	135
O. Katernoga, V. Popov, A. Potapovich, G. Davydau Methods for Stability Analysis of Nonlinear Control Systems with Time Delay for Application in Automatic Devices	141
J. Zimmermann, O. Sawodny Modelling and Control of a X-Y-Fine-Positioning Table	145
A. Winkler, J. Suchý Position Based Force Control of an Industrial Manipulator	151
E. Arnold, J. Neupert, O. Sawodny, K. Schneider Trajectory Tracking for Boom Cranes Based on Nonlinear Control and Optimal Trajectory Generation	157

K. Shaposh The methoo magnetic fi	nikov, V. Astakhov I of ortogonal projections in problems of the stationary eld computation	165
J. Naumenk The compu bounded co	o ting of sinusoidal magnetic fields in presence of the surface with onductivity	167
K. Bayramk The methoo stationary f	ulov, V. Astakhov I of the boundary equations in problems of computing static and ields on the topological graph	169
T. Kochube The compu- using the Ir	y, V. Astakhov tation of magnetic field in the presence of ideal conductors ntegral-differential equation of the first kind	171
M. Schneide U. Stark, J. Artificial ne	er, U. Lehmann, J. Krone, P. Langbein, Ch. Ament, P. Otto, Schrickel ural network for product-accompanied analysis and control	173
I. Jawish The Improv Fuzzy Logic	ement of Traveling Responses of a Subway Train using Techniques	179
Y. Gu, H. Su An Approac Neural Netv	ı, J. Chu ch for Transforming Nonlinear System Modeled by the Feedforward vorks to Discrete Uncertain Linear System	185
3 Opt and	imisation and Management of Complex Systems Networked Systems	
R. Franke, J Advanced r	. Doppelhammer nodel based control in the Industrial IT System 800xA	193
H. Gerbrach An efficient	nt, P. Li, W. Hong optimization approach to optimal control of large-scale processes	199
T. N. Pham, Modifying t multi-criteri	B. Wutke he Bellman's dynamic programming to the solution of the discrete a optimization problem under fuzziness in long-term planning	205
S. Ritter, P. Optimale Pl liberalisierte	Bretschneider anung und Betriebsführung der Energieversorgung im en Energiemarkt	211
P. Bretschne Intelligente	eider, D. Westermann Energiesysteme: Chancen und Potentiale von IuK-Technologien	217

Z. Lu, Y. Zhong, Yu. Wu, J. Wu WSReMS: A Novel WSDM-based System Resource Management Scheme	223
M. Heit, E. Jennenchen, V. Kruglyak, D. Westermann Simulation des Strommarktes unter Verwendung von Petrinetzen	229
O. Sauer, M. Ebel Engineering of production monitoring & control systems	237
C. Behn, K. Zimmermann Biologically inspired Locomotion Systems and Adaptive Control	245
J. W. Vervoorst, T. Kopfstedt Mission Planning for UAV Swarms	251
M. Kaufmann, G. Bretthauer Development and composition of control logic networks for distributed mechatronic systems in a heterogeneous architecture	257
T. Kopfstedt, J. W. Vervoorst Formation Control for Groups of Mobile Robots Using a Hierarchical Controller Structure	263
M. Abel, Th. Lohfelder Simulation of the Communication Behaviour of the German Toll System	269
P. Hilgers, Ch. Ament Control in Digital Sensor-Actuator-Networks	275
C. Saul, A. Mitschele-Thiel, A. Diab, M. Abd rabou Kalil A Survey of MAC Protocols in Wireless Sensor Networks	281
T. Rossbach, M. Götze, A. Schreiber, M. Eifart, W. Kattanek Wireless Sensor Networks at their Limits – Design Considerations and Prototype Experiments	287
Y. Zhong, J. Ma Ring Domain-Based Key Management in Wireless Sensor Network	293
V. Nissen Automatic Forecast Model Selection in SAP Business Information Warehouse under Noise Conditions	299
M. Kühn, F. Richter, H. Salzwedel Process simulation for significant efficiency gains in clinical departments – practical example of a cancer clinic	305

D. Westermann, M. Kratz, St. Kümmerling, P. Meyer Architektur eines Simulators für Energie-, Informations- und Kommunikations- technologien	311
P. Moreno, D. Westermann, P. Müller, F. Büchner Einsatzoptimierung von dezentralen netzgekoppelten Stromerzeugungs- anlagen (DEA) in Verteilnetzen durch Erhöhung des Automatisierungsgrades	317
M. Heit, S. Rozhenko, M. Kryvenka, D. Westermann Mathematische Bewertung von Engpass-Situationen in Transportnetzen elektrischer Energie mittels lastflussbasierter Auktion	331
M. Lemmel, M. Schnatmeyer RFID-Technology in Warehouse Logistics	339
V. Krugljak, M. Heit, D. Westermann Approaches for modelling power market: A Comparison.	345
St. Kümmerling, N. Döring, A. Friedemann, M. Kratz, D. Westermann Demand-Side-Management in Privathaushalten – Der eBox-Ansatz	351
4 Intelligent Vehicles and Mobile Systems	
A. P. Aguiar, R. Ghabchelloo, A. Pascoal, C. Silvestre , F. Vanni Coordinated Path following of Multiple Marine Vehicles: Theoretical Issues and Practical Constraints	359
R. Engel, J. Kalwa Robust Relative Positioning of Multiple Underwater Vehicles	365
M. Jacobi, T. Pfützenreuter, T. Glotzbach, M. Schneider A 3D Simulation and Visualisation Environment for Unmanned Vehicles in Underwater Scenarios	371
M. Schneider, M. Eichhorn, T. Glotzbach, P. Otto A High-Level Simulator for heterogeneous marine vehicle teams under real constraints	377
A. Zangrilli, A. Picini Unmanned Marine Vehicles working in cooperation: market trends and technological requirements	383
T. Glotzbach, P. Otto, M. Schneider, M. Marinov A Concept for Team-Orientated Mission Planning and Formal Language Verification for Heterogeneous Unmanned Vehicles	389

M. A. Arredondo, A. Cormack SeeTrack: Situation Awareness Tool for Heterogeneous Vehicles	395
J. C. Ferreira, P. B. Maia, A. Lucia, A. I. Zapaniotis Virtual Prototyping of an Innovative Urban Vehicle	401
A. Wenzel, A. Gehr, T. Glotzbach, F. Müller Superfour-in: An all-terrain wheelchair with monitoring possibilities to enhance the life quality of people with walking disability	407
Th. Krause, P. Protzel Verteiltes, dynamisches Antriebssystem zur Steuerung eines Luftschiffes	413
T. Behrmann, M. Lemmel Vehicle with pure electric hybrid energy storage system	419
Ch. Schröter, M. Höchemer, HM. Groß A Particle Filter for the Dynamic Window Approach to Mobile Robot Control	425
M. Schenderlein, K. Debes, A. Koenig, HM. Groß Appearance-based Visual Localisation in Outdoor Environments with an Omnidirectional Camera	431
G. Al Zeer, A. Nabout, B. Tibken Hindernisvermeidung für Mobile Roboter mittels Ausweichecken	437
5 Robotics and Motion Systems	
Ch. Schröter, HM. Groß Efficient Gridmaps for SLAM with Rao-Blackwellized Particle Filters	445
St. Müller, A. Scheidig, A. Ober, HM. Groß Making Mobile Robots Smarter by Probabilistic User Modeling and Tracking	451
A. Swerdlow, T. Machmer, K. Kroschel, A. Laubenheimer, S. Richter Opto-acoustical Scene Analysis for a Humanoid Robot	457
A. Ahranovich, S. Karpovich, K. Zimmermann Multicoordinate Positioning System Design and Simulation	463
A. Balkovoy, V. Cacenkin, G. Slivinskaia Statical and dynamical accuracy of direct drive servo systems	469
Y. Litvinov, S. Karpovich, A. Ahranovich The 6-DOF Spatial Parallel Mechanism Control System Computer Simulation	477

V. Lysenko, W. Mintchenya, K. Zimmermann Minimization of the number of actuators in legged robots using biological objects	483
J. Kroneis, T. Gastauer, S. Liu, B. Sauer Flexible modeling and vibration analysis of a parallel robot with numerical and analytical methods for the purpose of active vibration damping	489
A. Amthor, T. Hausotte, G. Jäger, P. Li Friction Modeling on Nanometerscale and Experimental Verification	495
Paper submitted after copy deadline	
2 Advances in Control Theory and Control Engineering	
V. Piwek, B. Kuhfuss, S. Allers Feed drivers – Synchronized Motion is leading to a process optimization	503

M. Lemmel / M. Schnatmeyer

RFID-Technology in Warehouse Logistics

Wireless technology becomes more important in logistics processes. Beside the usage of GPS or GSM technology for tracking and tracing of goods in the external logistics also internal logistics processes have a high demand on wireless technologies, which supports the quality, environmental and safety management. This paper resumes results from research projects, which have examined wireless technologies for positioning and identification of goods in warehouses.

State-of-the-Art in Wireless Technologies

Wireless technologies open the possibility for the seamless tracking and tracing of logistics process. For external logistics processes GPS and GSM technologies are in use for the position finding of logistics items. For internal logistics processes in a covered warehouse GPS is not available and GSM to imprecise for location goods on pallet level.

Alternative technologies for in-door processes are for example optical (Infrared), DECT, WLAN or RFID. WLAN utilizes spread-spectrum technology based on radio waves to enable communication between devices in a limited area, also known as the basic service set. This gives users the mobility to move around within a broad coverage area and still be connected to the network¹. Further the WLAN infrastructure enables determining the position of a user or item in this network.

Radio-frequency identification

Radio-frequency identification (RFID) is an automatic identification method such as barcode, relying on storing and remotely retrieving data using devices called RFID tags or transponders. An RFID tag is a device that can be attached to or incorporated into a product, animal, or person for the purpose of identification using radio waves. Chipbased RFID tags contain silicon chips and antennas. It operates at standardised frequencies between 134 kHz (LF), 13,56 MHz (HF) up to 868 / 915 MHz (UHF) [1].

¹ <u>http://en.wikipedia.org/wiki/Wireless_LAN</u> (3/22/2007)

Figure 1: Principle of RFID

Passive tags require no internal power source². The antenna uses the radio field of an RFID reader for supplying the chip with energy. After the chip starts to operate, the transponder can exchange data with the reader (see Figure 1). Besides reading data, the reader can also write data on the transponder.

A typical application for passive RFID systems is the gate solution (see Figure 2).

Figure 2: Principle of reader gate

In the centre of the gate it is possible to identify many tagged goods simultaneously. This type of configuration is often in use for retail and wholesale applications. Figure 3 shows a passive transponder which operates at 134 kHz.

² <u>http://en.wikipedia.org/wiki/Rfid</u> (3/22/2007)

Figure 3: LF-Transponder (134 kHz)

Active transponders have onboard power supply. They have the opportunity to transmit data without being electromagnetically activated. This is reasonable in RFID-S (-sensor) for sensorial supervision of temperature or humidity etc.

For certain applications RFID has significant advantages against ordinary barcode. Some examples are:

- complicated optical detection, e.g. in refrigerated warehouse
- detection of piles, e. g. pallet full packed with different goods (see Figure 2)
- secondary data to be stored on tag, e. g. classification of hazardous goods
- sensorial supervision, e. g. temperature, humidity etc.
- high rate of circulation, e. g. tag integrated into deposit pallet

As the well known systems for positioning like GPS or GSM are just suitable for outdoor purposes, other systems have to be considered for in-house use. Nowadays many factories and warehouses facilities are already equipped with WLAN for data transmission. This existing infrastructure can also be used for position purposes. These in-house positioning systems, such as ekahau³ base on triangulation between a couple of access points and enables positioning on a cheap way. WLAN based positioning systems have also been evaluated within several research projects for in-house applications with the following disadvantages as results:

- The accuracy of ca. 3 m is insufficient for positioning goods in sizes of a europellet or less.
- Due to the complex algorithms for processing the position the system is not suitable for real-time applications.
- The performance of the system is varying with the signal quality of the WLAN access, which can be alloyed by certain goods such as metal und fluids.

Therefore a new method for in-house positioning based on RFID has been implemented within a couple of actual research activities.

³ http://www.ekahau.com

RFID Positioning

Figure 4 describes a RFID positioning system, which was developed and used within the research project OPAK (Optimized PAcKing logistics in the life cycle economy) funded by the German ministry of education and research (BMBF). The project was focussing on the optimisation of the redistribution of plastic materials for recycling processes. Main goal was to improve logistic processes and optimise available technological infrastructures through RFID technology.⁴

For identification one RFID antenna is placed above the fork. This is responsible for reading information from the handled good or its pallet. A second RFID antenna is attached beneath the fork lift. This antenna reads the geographic data coming from the RFID transponder embedded into the warehouse ground.

Two additional ultrasonic sensors are installed at the front of the forklift: One sensor detects picked products on the fork. A second sensor measures the distance between fork and ground for calculating the storage level. This functionality is necessary for block and rack storage applications.

Combined with WLAN access, data collected from the cargo and the warehouse ground can be transmitted to a central WMS (Warehouse Management System) which traces the material movements and placement in the warehouse (or production plant) and provides the driver of the forklift with new transport orders after finishing the actual job.

⁴ http://www.biba.uni-bremen.de/projects/opak/Opak_homepage.htm

Figure 5: OPAK demonstrator overview

In addition this system can also be used to provide the fork lift driver with additional information, e.g. about dangerous materials, which have to be handled with care. As an example Figure 6 shows the user interface of the touch screen display. If the system identifies dangerous goods the traffic light will change from green to yellow (semi dangerous goods) or red (high dangerous goods).

This semi automated system is optimised for SMEs [3]. High investments in full automated systems seem to be inefficient at this type of industry because the logistic process can not be standardised.

INDYON Track + Race	
Info	
Track + Race	
Service und Test Image Log Datei Image Aufträge Beladezustand	Ziel
E004048BF4000000 — EPC der Ware	1770
R 0000 000000134224689	1/29
ID des Bodentransponders	
Abstand zur Ware	Gabelhöhe in mm
0m 0,5m 1m	
Ern Ertext	<u> </u>
•	

Figure 6: Display of the fork lift terminal [4]

Conclusion

The usage of RFID technology instead of barcode systems is depending on the specific application scenario. For in-house positioning the described RFID system is an attractive opportunity with sufficient accuracy at real time.

For identification purposes it is nowadays difficult to apply existing RFID systems to a

whole process chain regarding to missing standards.

References:

[1] Lemmel, M.; Plettner, A.; Schnatmeyer, M.: Optimierte Ein- und Auslagerung von Packstücken. Technische Umsetzung eines exemplarischen Realisierungskonzepts für Recyclingbetriebe. ZWF Zeitschrift für wirtschaftlichen Fabrikbetrieb, Band 101 (2006) Heft 3, Seite 109-113. München 2006.

[2] Hans, C., Schnatmeyer, M., Schumacher, J., Thoben, K.-D.: Using Transponder Technology to Support the End-of-Life Phase in Product Life Cycle Management. Inter-national IMS Forum 2004 – Global Challenges in Manufacturing; Proceedings, Cernobbio, Italy, 17 – 19 May 2004; S. 1448 – 1455. (ISBN 88 901168 9 7)

[3] Schnatmeyer, M.: MS Engineering & Consulting, Efficient Stock Management. <u>http://www.e.inos.de/3.html</u>.
[4] Goch, G.; Thoben, K.-D.; Plettner, A.; Lemmel, M.; Schnatmeyer, M.; Christ, J.; Zhao, X.: Abschlussbericht zum Forschungsvorhaben Optimierte Verpackungslogistik in der Kreislaufwirtschaft (OPAK). Forschungsbericht. Hannover 2006 (TIB-Hannover, http://edok01.tib.uni-hannover.de/edoks/e01fb06/515071951.pdf).

Authors:

Dr. Marc C. Lemmel BIBA Hochschulring 20 28359 Bremen Phone: +49 421 218 5627 Fax: +49 421 218 5625 E-mail: lem@biba.uni-bremen.de Martin Schnatmeyer MS Engineering & Consulting Teerhof 34 28199 Bremen Phone: + 49 421 59 751 80 Fax: + 49 421 59 751 81 E-mail: <u>schnatmeyer@inos.de</u>