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Preface 
 
Dear Participants, 
 
Confronted with the ever-increasing complexity of technical processes and the growing demands on their 
efficiency, security and flexibility, the scientific world needs to establish new methods of engineering design and 
new methods of systems operation. The factors likely to affect the design of the smart systems of the future will 
doubtless include the following: 

• As computational costs decrease, it will be possible to apply more complex algorithms, even in real 
time. These algorithms will take into account system nonlinearities or provide online optimisation of the 
system’s performance. 

• New fields of application will be addressed. Interest is now being expressed, beyond that in “classical” 
technical systems and processes, in environmental systems or medical and bioengineering applications. 

• The boundaries between software and hardware design are being eroded. New design methods will 
include co-design of software and hardware and even of sensor and actuator components. 

• Automation will not only replace human operators but will assist, support and supervise humans so 
that their work is safe and even more effective. 

• Networked systems or swarms will be crucial, requiring improvement of the communication within 
them and study of how their behaviour can be made globally consistent. 

• The issues of security and safety, not only during the operation of systems but also in the course of 
their design, will continue to increase in importance. 

The title “Computer Science meets Automation”, borne by the 52nd International Scientific Colloquium (IWK) at 
the Technische Universität Ilmenau, Germany, expresses the desire of scientists and engineers to rise to these 
challenges, cooperating closely on innovative methods in the two disciplines of computer science and 
automation. 

The IWK has a long tradition going back as far as 1953. In the years before 1989, a major function of the 
colloquium was to bring together scientists from both sides of the Iron Curtain. Naturally, bonds were also 
deepened between the countries from the East. Today, the objective of the colloquium is still to bring 
researchers together. They come from the eastern and western member states of the European Union, and, 
indeed, from all over the world. All who wish to share their ideas on the points where “Computer Science meets 
Automation” are addressed by this colloquium at the Technische Universität Ilmenau. 
All the University’s Faculties have joined forces to ensure that nothing is left out. Control engineering, 
information science, cybernetics, communication technology and systems engineering – for all of these and their 
applications (ranging from biological systems to heavy engineering), the issues are being covered.  
Together with all the organizers I should like to thank you for your contributions to the conference, ensuring, as 
they do, a most interesting colloquium programme of an interdisciplinary nature. 
I am looking forward to an inspiring colloquium. It promises to be a fine platform for you to present your 
research, to address new concepts and to meet colleagues in Ilmenau. 
 
 
 
 
 
Professor Peter Scharff     Professor Christoph Ament  
Rector, TU Ilmenau             Head of Organisation 
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Coordinated Path Following of Multiple Marine Vehicles: 
Theoretical Issues and Practical Constraints 
 

Abstract 
 
We address the problem of making a group of marine vehicles follow pre-determined paths 
while keeping a desired spatial formation pattern (coordinated path following). We provide 
a brief summary of recent work in the area, leading to challenging theoretical issues that bear 
affinity with those that arise in Networked Control Systems. Practical constraints imposed by 
the underlying inter-vehicle acoustic communications network are discussed. The paper 
surveys some of the solutions developed so far and contains the results of simulations that 
illustrate the potential of the methodologies developed for coordinated path following. 
 

Introduction 
 
Spawned by the advent of small embedded processors and sensors, advanced 
communication systems, and the miniaturization of electro-mechanical devices, there is 
widespread interest in the design and deployment of groups of networked autonomous 
robotic vehicles operating in a number of challenging environments. Some of the potential 
applications include searching and surveying operations, as well as exploration and habitat 
mapping in hazardous environments.  
 
A particular important scenario that motivates the cooperation of multiple autonomous 
vehicles and poses great challenges to systems engineers, both from a theoretical and 
practical standpoint, is automatic ocean exploration/monitoring for scientific and commercial 
purposes. In this scenario, one can immediately identify two main disadvantages of using a 
single, heavily equipped vehicle: lack of robustness to system failures and inefficiency due to 
the fact that the vehicle may need to wander significantly to collect data over a large spatial 
domain. A cooperative group of vehicles connected via a mobile communications network 
has the potential to overcome these limitations. It can also reconfigure the network in 
response to measurements of the environment in order to increase mission performance and 
optimize the strategies for detection and measurement of vector / scalar fields and features 
of particular interest. Furthermore, in a cooperative mission scenario each vehicle may only 
be required to carry a single sensor (per environmental variable of interest) making each of 
the vehicles in the formation less complex, thus increasing its reliability.  
 
As an example, Figure 1 captures a conceptually simple mission scenario where an 
autonomous surface craft (ASC) and an autonomous underwater vehicle (AUV) maneuver in 
synchronism along two spatial paths, while aligning themselves along the same vertical line, 
so as to fully exploit the good properties of the acoustic communications channel under these 
conditions. This is in striking contrast to what happens when communications take place at 
slant range, for this reduces drastically the bandwidth of the channel, especially due to 
multipath effects in shallow water operations.  
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Fig. 1  Synchronization of two vehicles 
for data gathering at sea. 

Fig. 2  AUV formation: the quest for 
hydrothermal vents 

 
Figure 2 captures a different mission scenario involving a group of autonomous underwater 
vehicles (AUVs) in a “quest” for hydrothermal vents in the ocean floor. The mission is based 
on the knowledge that vents produce methane, which does not dissolve quickly in the water. 
This in turn allows for its detection and for the measurement of the gradient of its concentration 
using methane sensors. The vehicle baseline configuration is such that spatial estimates of the 
gradient of the methane concentration can be computed cooperatively. It is up to the fleet to 
maneuver so as to seek the region of higher concentration, and thus the localization of the 
vent. The scenario described requires multiple vehicle cooperation based on the type of 
information (methane concentration) that is acquired as the mission progresses. The mission 
poses formidable challenges to systems designers due to the need to develop a distributed, 
multi-vehicle cooperation scheme (requiring robust vehicle localization, navigation, and 
control) in the presence of severe underwater communication constraints. Other challenging 
scientific mission scenarios in the marine field can of course be envisioned (Cardigos et al., 
2006). 
 
Figure 3 shows the systems that are at the core of multiple vehicle cooperation. The scheme 
depicted is quite general and captures the basic trends in current research. Each vehicle is 
equipped with a navigation and control system that uses local information as well as 
information provided by a subset of the other vehicles over the communication network, so 
as to make the vehicle maneuver in cooperation with the whole formation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3 General architecture for multiple vehicle cooperation 
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Navigation is in charge of computing the vehicle’s state (e.g. position and velocity). Control 
accepts references for selected variables, together with the corresponding navigation data, 
and computes actuator commands so as to drive tracking errors to zero. The cooperation 
strategy block is responsible for implementing cooperative navigation and control. Its role is 
twofold: i) for control purposes, it issues high level synchronization commands to the local 
vehicle based on information available over the network (e.g. speed commands to achieve 
synchronization of a number of vehicles executing path following maneuvers). For navigation 
purposes, it merges local navigation data acquired with the vehicle itself as well as by a 
subset of the other vehicles. This is especially relevant in situations where only some of the 
vehicle can carry accurate navigation suites, whereas the others must rely on less precise 
sensor suites, complemented with information that is exchanged over the network. Finally, 
the system named logic-based communications is responsible for supervising the flow of 
information (to and from a subset of the other vehicles), which we assume is asynchronous, 
occurs on a discrete-time basis, has latency, and is subject to transmission failures. Central to 
the above scheme is the fact that each vehicle can only exchange information with a subset of 
the remaining group of vehicles. Furthermore, and because of the intrinsic nature of the 
underwater communications channel, communications should be parsimonious and take 
place at a very low data rate. This calls for the implementation of schemes to decide when 
and what minimum information should be transmitted from each of the vehicles to its 
neighbours. Interestingly enough, analogous constraints appear in the vibrant area of 
networked control systems, from which interesting and fruitful techniques can be borrowed.   
 
Close inspection of the general architecture for multiple vehicle cooperation described above 
reveals the plethora of problems that must be addressed and solved:  
 

i) Cooperative Control (CC) (e.g. cooperative path following and cooperate 
trajectory tracking),  

ii) Cooperative Navigation (CN), and  
iii) CC and CN under strict communication constraints over a faulty, possibly 

switching network.  
 

From a theoretical standpoint, much work remains to be done to derive analysis and 
synthesis tools aimed at assessing stability and performance of such a general scheme. In this 
respect, there are some very recent results that stand at the crossroads of control and 
information theory. These will probably shed some light into stability and performance 
limitations under constraints on the capacity of the communication channels involved. 
Finally, there is a need to bridge the gap between theory and practice by actually 
implementing selected sets of algorithms for cooperative navigation and control using 
prototypes of marine vehicles. Some of these issues are briefly discussed in the text below. 
 

Cooperative control of multiple autonomous vehicles: state of the art and 
future challenging problems 

 
The ever increasing sophistication of autonomous vehicles (AVs) is steadily paving the way 
for the execution of complex missions without direct supervision of human operators. A key 
enabling element for the execution of such missions is the availability of advanced systems 
for navigation and motion control of AVs. The past few decades have witnessed considerable 
interest in this area (Fossen, 1994; Leonard, 1995; Encarnação and Pascoal, 2000; Alonge et al., 
2001; Jiang, 2002; Pettersen and Nijmeijer, 2003; Aguiar and Hespanha, 2004; Aguiar and 
Hespanha, 2007a; Aguiar and Pascoal, 2007b). The problems of motion control addressed in 
the literature can be roughly classified into three groups: point stabilization, trajectory 
tracking, and path following. For underactuated AVs, motion control is still an active 
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research topic (Aguiar and Hespanha, 2007a). The dynamics of these vehicles are nonlinear, 
which makes the control design task quite challenging. A common practice to deal with this 
issue is to simplify the dynamics using linearization-based techniques (Silvestre et al., 2002). 
The key assumption is that the range of operation is restricted to a small region for which the 
linear model remains valid. As a consequence, adequate control is only guaranteed in a 
neighborhood of the selected operating points and performance can suffer significantly 
when the required operating range is enlarged. Nonlinear Lyapunov-based designs can 
overcome some of the limitations mentioned above. See for example (Leonard, 1995; 
Encarnação and Pascoal, 2000; Alonge et al., 2001; Jiang, 2002; Pettersen and Nijmeijer, 
2003)). Recently, in (Aguiar and Hespanha, 2007a) (see also (Aguiar et al., 2003) for 
experimental results conducted at Caltech) the authors have derived control algorithms for 
motion control of AVs (land and marine vehicles, in two and three-dimensional space). The 
important common feature that these designs share is the fact that they explicitly exploit the 
physical structure of the AVs instead of “fighting” it. In (Aguiar et al., 2007c), a robust 
control strategy called switched seesaw control is proposed that solves the challenging 
problem of point stabilization for a class of AVs in the presence of input disturbances and 
measurement noise.  
 
Current research goes well beyond single vehicle control. In fact, recently there has been 
widespread interest in the problem of coordinated motion control of fleets of AVs. 
Applications include aircraft and spacecraft formation flying control (Beard et al., 2001; 
Giuletti et al., 2000), coordinated control of land robots (Desai et al., 2001), and control of 
multiple surface and underwater vehicles (Encarnação and Pascoal, 2001; Ögren et al., 2004; 
Skjetne et al., 2003; Skjetne et al., 2004, Pascoal et al., 2006; Ghabcheloo et al., 2006a; 
Ghabcheloo et al., 2006b; Aguiar and Pascoal, 2007d; Almeida et al., 2007). The concept of 
multiple AVs cooperatively performing a mission offers several advantages (over single 
vehicles working in a non-cooperative manner) such as increased efficiency, performance, 
reconfigurability, robustness, and the emergence of new capabilities.  
 
The work reported in the literature is by now quite vast and addresses a large class of topics 
that include, among others, leader/follower formation flying, control of the ”center of mass” 
and radius of dispersion of swarms of vehicles, and reaching a moving formation pattern. 
See for example (Rein et al., 2007) and the references therein. In the latter case, the goal is for 
the vehicles to achieve and maintain desired relative positions and orientations with respect 
to each other, while evolving at a desired formation speed. Central to the problems stated is 
the fact that each vehicle can only exchange information with a subset of the remaining 
group of vehicles. Similar constraints appear in the area of networked control (Hespanha et 
al., 2007). 
 
The problem of coordinated motion control has several unique aspects that are at the root of 
new theoretical problems. As pointed out in (Fax and Murray, 2002) the following are worth 
stressing: 
i) except for some cases in the area of aircraft control, the motion of one vehicle does not 
directly affect the motion of the other vehicles, that is, the vehicles are dynamically 
decoupled; the only coupling arises naturally out of the specification of the tasks that they 
are required to accomplish as an ensemble. 
ii) there are strong practical limitations to the flow of information among vehicles, which 
may often be severely restricted due to the nature of the underlying communications 
network. In marine robotics, for example, underwater communications rely on the 
propagation of acoustic waves which travel at an approximate speed of 1500[m s−1]. As is 
well known, this fact sets tight limitations on the communication bandwidths that can be 
achieved and introduces unavoidable latencies that depend on the distance between the 

362



emitter and the receiver (Pascoal et al., 2000). Thus, as a rule, no vehicle will be able to 
communicate with the entire formation. Furthermore, a reliable vehicle coordination scheme 
should exhibit some form of robustness against certain kinds of vehicle failures or temporary 
loss of inter-vehicle communications. 
 
The coordination of AVs involves the design of distributed control laws with limited and 
disrupted communication, time-delays, model uncertainty, external disturbances, and 
possibly partial noisy state measurements. This is particularly significant in the case of 
underwater vehicles. It was only recently that these subjects have started to be formally 
tackled (see, e.g., (Beard et al., 2001; Giuletti  et al., 2000; Ghabcheloo et al., 2006b; Borhaug et 
al., 2006)), and considerable research remains to be done to derive multiple vehicle control 
laws that can yield good performance in the presence of severe communication constraints. 
In (Ghabcheloo et al., 2006b), the concept of brief instabilities is exploited to model network 
failures and a distributed control law that ensures stability of a formation of autonomous 
marine vehicles is proposed The results of a simulation with this control law are shown in 
Fig. 4. Further work is required to address the problems of robustness against 
communication delays and to develop strategies that can decide at each instant of time 
whether or not it is worth sending data through the network. Preliminary results in this 
direction can be found in (Aguiar and Pascoal, 2007d), which describes how a logic-based 
communication system that bears affinity with some of the ideas exposed in (Hespanha et al., 
2007) can be incorporated in each of the vehicles. This system effectively decides when to 
transmit information to the neighbors by comparing its actual state with its estimate, “as 
perceived” by the neighboring system, and transmitting data when the “difference” between 
the two exceeds a certain level. 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4 Coordinated path-following of 3 AUVs under communication constraints  
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