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Preface 
 
Dear Participants, 
 
Confronted with the ever-increasing complexity of technical processes and the growing demands on their 
efficiency, security and flexibility, the scientific world needs to establish new methods of engineering design and 
new methods of systems operation. The factors likely to affect the design of the smart systems of the future will 
doubtless include the following: 

• As computational costs decrease, it will be possible to apply more complex algorithms, even in real 
time. These algorithms will take into account system nonlinearities or provide online optimisation of the 
system’s performance. 

• New fields of application will be addressed. Interest is now being expressed, beyond that in “classical” 
technical systems and processes, in environmental systems or medical and bioengineering applications. 

• The boundaries between software and hardware design are being eroded. New design methods will 
include co-design of software and hardware and even of sensor and actuator components. 

• Automation will not only replace human operators but will assist, support and supervise humans so 
that their work is safe and even more effective. 

• Networked systems or swarms will be crucial, requiring improvement of the communication within 
them and study of how their behaviour can be made globally consistent. 

• The issues of security and safety, not only during the operation of systems but also in the course of 
their design, will continue to increase in importance. 

The title “Computer Science meets Automation”, borne by the 52nd International Scientific Colloquium (IWK) at 
the Technische Universität Ilmenau, Germany, expresses the desire of scientists and engineers to rise to these 
challenges, cooperating closely on innovative methods in the two disciplines of computer science and 
automation. 

The IWK has a long tradition going back as far as 1953. In the years before 1989, a major function of the 
colloquium was to bring together scientists from both sides of the Iron Curtain. Naturally, bonds were also 
deepened between the countries from the East. Today, the objective of the colloquium is still to bring 
researchers together. They come from the eastern and western member states of the European Union, and, 
indeed, from all over the world. All who wish to share their ideas on the points where “Computer Science meets 
Automation” are addressed by this colloquium at the Technische Universität Ilmenau. 
All the University’s Faculties have joined forces to ensure that nothing is left out. Control engineering, 
information science, cybernetics, communication technology and systems engineering – for all of these and their 
applications (ranging from biological systems to heavy engineering), the issues are being covered.  
Together with all the organizers I should like to thank you for your contributions to the conference, ensuring, as 
they do, a most interesting colloquium programme of an interdisciplinary nature. 
I am looking forward to an inspiring colloquium. It promises to be a fine platform for you to present your 
research, to address new concepts and to meet colleagues in Ilmenau. 
 
 
 
 
 
Professor Peter Scharff     Professor Christoph Ament  
Rector, TU Ilmenau             Head of Organisation 
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C. Schröter, H.-M. Gross

Efficient Gridmaps for SLAM with Rao-Blackwellized

Particle Filters
Abstract

Simultaneous localization and mapping (SLAM) has been an important field of
research in the robotics community in recent years. A successful class of SLAM al-
gorithms are Rao-Blackwellized Particle Filters (RBPF), where the particles approxi-
mate the pose belief distribution, while each particle contains a separate map. So far,
RBPF with landmark based environment representations as well as gridmaps have
been shown to work. Existing gridmap approaches typically used laser range scan-
ners, because the high accuracy of that sensor keeps the state uncertainty low and
allows for efficient solutions. In this paper, we present a combination of our previous
work on map-matching with RBPF, which enable us to solve the SLAM problem also
with low-resolution sonar range sensors. Furthermore, we introduce a simple and fast
but very efficient shared representation of gridmaps which reduces the memory cost
overhead caused by inherent redundancy between the particles.

1 Introduction and Related Work

In order to navigate autonomously, a basic requirement for a mobile robot is the ability

to build a map of the environment. Because mapping depends on a good estimate of

the robot’s pose w.r.t. the environment, while localization needs a consistent map, the

localization and mapping problems are coupled in applications where an unknown area

has to be explored without an external position reference like GPS. The term Simultaneous

Localization And Mapping (SLAM) has been coined for this problem [1]. SLAM can be seen

as a generalization of the map building problem, as it describes the objective of aquiring a

map of the environment without assuming any additional position information apart from

those that can be derived from the mapping process itself.

There are two main criteria that can be used to categorize existing SLAM techniques: the

kind of model used to describe the robot and environment state and the algorithm that is

utilized to estimate the state belief.

In many SLAM approaches, the map representation is assumed to be a vector of point-like

feature positions [2], also called landmarks. The attractiveness of feature/landmark-based

representations for SLAM lies in their compactness. However, they rely on a priori knowl-

edge about the structure of the environment to identify and distinguish potential landmarks.

Furthermore, a data association problem arises from the need to robustly recognize land-

marks. In contrast to landmark representations, gridmaps [3] do not make assumptions

about specific features to be observable in the environment. They can represent arbitrary

environment structures with nearly unlimited detail. However, they require a large amount

of memory.

445



An effective means of handling the high-dimensionality in the SLAM problem has been

introduced in the form of the Rao-Blackwellized Particle Filter (RBPF): in this approach

the state space is partitioned into the pose and map state. A particle filter approximates

the pose belief distribution of the robot, while each particle contains a map which represents

the model of the environment, assuming the pose estimation of that specific particle to be

correct.

Our aim here is to use a RBPF for grid mapping using no other sensory input than robot

odometry and low-resolution sonar range scans. Since this requires a relatively large number

of particles, we have to emphasize the efficient representation of the maps carried by the

particles. To this purpose we present a short analysis of map redundancy between particles

and a map storing scheme that exploits that redundancy in order to save memory.

The rest of the paper is organized as follows: We give a short introduction to the RBPF

approach for SLAM in the next section. Section 3 will explain the specific details of our

Sonar-SLAM implementation, while section 4 deals with the shared gridmap representation.

Experiments with real robot data are presented and discussed in section 5, section 6 closes

with a short summary and outlook.

2 Rao-Blackwellized Particle Filter for SLAM

As already described before, the complexity of the SLAM problem arises from the very

high-dimensional state space, consisting of the variables describing the robot pose and the

variables describing the environment state. In the case of gridmaps, the map alone usually

contains a few thousands up to several million cells, each of which corresponding to a state

variable. Obviously, a full posterior over the state is extremely costly to estimate. The

idea of the RBPF in application to SLAM is to use a particle filter to estimate the robot

trajectory distribution p(x1:t|z1:t, u0:t) given the sequence of odometry measurements u0:t

and environment observations z1:t. This trajectory estimate is then used to estimate the

desired distribution over map and trajectory:

p(x1:t,m|z1:t, u1:t) = p(m|x1:t, z1:t)p(x1:t|z1:t, u0:t) (1)

The particle filter works analogous to Monte-Carlo-Localization [7], except that instead of

one given map each particle contains a separate map. To calculate the importance weights

for p(x1:t), each particle uses its own map. The map, in return, is built from the estimated

trajectory of that corresponding particle. The effect is that a number of hypothesis maps

are built, each corresponding to a possible trajectory. Importance weighting is performed

with the weight for particle i following

w(i) ' p(x
(i)
t |z1:t, u0:t)

π(x
(i)
t |z1:t, u0:t)

(2)

446



Here, π(x
(i)
t ) denotes the proposal distribution. Typically, the motion model is used to

generate the proposal distribution from the last particle generation (again, in analogy to

localization), in which case the weight formula simplifies to

wi ' p(zt|x(i)
t ,m(i)) (3)

By repeatedly calculating importance weights followed by resampling to adapt the particle

distribution to the estimated distribution, particles are preferred whose maps match new

observations best, therefore the most likely map is selected.

3 Sonar Grid SLAM

(x, y,   )φ
pose = global map

local map
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Figure 1: Left - Data representation overview: The particles model the distribution of the robot pose belief. Each particle
carries a full map of the environment, which is a combination of the full particle trajectory and the sonar range measurements,
and a local map, which only contains the most recent measurements. Right - Map matching: For the upper particle the local
map (clean white) is aligned to the global map (hatched) very well, while for the lower particle, which does not contain a
position belief consistent with the environment, the local map conflicts with the global map. This situation would result in a
higher weight for the upper particle.

The base of our Sonar SLAM approach is a particle filter, where each particle contains a

pose estimate as well as a map estimate. Without loss of generality we can assume the robot

to start mapping at position (0,0,0). While the robot moves, the particles move as well,

according to the odometry readings and the probabilistic odometry motion model, which

describes the uncertainty in the actual robot motion. Due to this uncertainty, the motion

model contains a stochastic component, which effects in the particles spreading out and

generating slightly different trajectories. Additionally, during motion the robot observes the

environment by means of sonar range sensors. A map update is triggered frequently (approx.

every 0.2m). In that map update, each particle adds the new environment observation to

its own map, at its own estimated current position. Since the position estimates of the

particles are slightly different, the maps differ as well (Fig. 1).

In order to determine the likeliness of a map hypothesis, we need to calculate particle weights

by comparing expected and sensed measurement.
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We already presented a way of comparing expectation and observation from sonar range

sensors in a previous work on mapping [6]. There, we proposed an approach we called

map matching: a local map was built from only the most recent sonar measurements and

the resulting local map was matched against the global map to find the most likely position

w.r.t. that global map. In order to be able to use map matching, each particle must not only

know its global map, but also a local map. We exclude the most recent range measurements

from the global map, and use those measurements for the local map. That way, global

and local map are built from different data and we avoid comparing certain measurements

against themselves. The local map can either be rebuilt from the pose and scan queues for

each weight calculation or be persistent in the particle by just adding every new scan and

forgetting old scans. Making the local map persistent is more efficient but less flexible.

The calculation of the match value between the local and global map is quite simple: For

each occupied cell in the local map the occupancy value of the corresponding cell in the

global map is tested. If the global map cell also is occupied, that cell contributes with a

value of +1. If the global map cell is free, it contributes with a value of −1. Cells with

unknown or undecided occupancy do not contribute. That way, the match value is positive

if local and global map are very similar, and it is negative if many objects exist in the

local map where there is free space in the global map. To obtain the actual particle weight

match(i), an exponential function is applied as follows:

w(i) = e
match(i)

f (4)

with f being a free parameter to influence the spread in the particle weights and therefore

the speed of convergence.

4 Shared Gridmaps

1
3

Particle A Particle B Map Difference

2

Particle A Particle B
shared patch (exact copy)

unique patch (modified after copying)

Figure 2: Left - Analysis: The robot started at position 1, closed the loop and moved onward to position 3. Particle B was
generated as a copy of A during resampling approx. at position 2. Therefore, the major part of the map is identical between
particles A and B. Right - Improved map representation: Particle A contains a map which consists of a number of separate
patches. Particle B is created as a copy of A - the map of B consists of references to the patches in A. Only when A or B
modifies a certain patch, it creates a real copy, so Particle A and B then have a separate instance of that patch.
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A major problem with using gridmaps in RBPF is the memory cost: In a naive implemen-

tation, the number of cell values to be stored would be the product of grid size and particle

number. However, the maps of the individual particles are not completely independent: In

the resampling as part of the observation update, particles with low weights are deleted and

replaced by copies of particles with higher weights. This results in multiple identical copies

of the same map. Afterwards, each of the particles will modify its respective map differently,

according to the path assumed through the probabilistic motion model: The copies will not

remain identical, but it is important to notice the changes often only affect a small area

of the already aquired map (see Fig. 2). The idea to save wasting memory for redundant

information therefore is to split up the map into smaller patches and share those patches

across the particles. When a particle A is cloned, each ”copy” of a map patch belonging to

the clone particle B is just a reference to the original patch. Only when either A or B modify

a map patch later, a real copy is created in the local memory of the respective particle.

The effect of this representation is that the memory cost is not determined by the map area,

but by the size of path loops. As long as a loop is not closed yet, particles are diverging and

many path hypotheses are maintained. When the loop gets closed, only the best particles

survive, and new particles are generated as copies of those few best fitting hypotheses. While

a loop is open, each particle holds an own independent map of that loop, but when it is

closed, only few unique maps of that specific loop (the best fitting ones) continue to exist.

Therefore, the ”residual” memory cost is determined by the entire map area (the sum of

all loops) and nearly independent of the particle number, while the peak memory cost is

determined by particle number and maximum length of a single loop.

5 Experiments

To test our approach we built maps of a home store which is the regular test environment

for our navigation algorithms. This environment is very well suited for our proposed SLAM

approach as it essentially consists of a large number of small circles of hallways (50 to 100

m loop length). Fig. 3 shows the resulting map and the the overall memory usage for all

particles over time. The data shows that our SLAM approach using map matching and

shared gridmaps builds a consistent map with a bounded amount of memory. Only robot

odometry and sonar range sensors were used in those experiments.
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Figure 3: Row 1: Several steps of mapping (500 particles): Yellow dots denote the particle positions, path (magenta line) and
map for one selected particle are shown.
Row 2: Map memory cost for plain gridmaps (green) and shared maps (red, see section 4). It is clearly visible that the memory
for plain maps is growing monotonously, while for the shared maps the cost collapses with each loop closure.

6 Summary & Outlook

We presented an implementation of RBPF with gridmaps which is able to solve the SLAM

problem with low-resolution sensors such as sonar range finders. Furthermore, we intro-

duced a shared map representation for particle filters which effectively makes the maximum

memory cost depend on the loop size instead of the overall map size. Experiments show

that our approach is well suited for large-scale environments consisting of many loops.
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