

PROCCEDINGS

| 10 - 13 September 2007

FACULTY OF COMPUTER SCIENCE AND AUTOMATION

COMPUTER SCIENCE MEETS AUTOMATION

VOLUME I

- **Session 1 Systems Engineering and Intelligent Systems**
- Session 2 Advances in Control Theory and Control Engineering
- Session 3 Optimisation and Management of Complex Systems and Networked Systems
- **Session 4 Intelligent Vehicles and Mobile Systems**
- **Session 5 Robotics and Motion Systems**

Bibliografische Information der Deutschen Bibliothek

Die Deutsche Bibliothek verzeichnet diese Publikation in der deutschen Nationalbiografie; detaillierte bibliografische Daten sind im Internet über http://dnb.ddb.de abrufbar.

ISBN 978-3-939473-17-6

Impressum

Herausgeber:	Der Rektor der Technischen Universität Ilmenau UnivProf. Dr. rer. nat. habil. Peter Scharff
Redaktion:	Referat Marketing und Studentische Angelegenheiten Kongressorganisation Andrea Schneider Tel.: +49 3677 69-2520 Fax: +49 3677 69-1743 e-mail: kongressorganisation@tu-ilmenau.de
Redaktionsschluss:	Juli 2007
Verlag:	Co Technische Universität Ilmenau/Universitätsbibliothek Universitätsverlag Ilmenau Postfach 10 05 65 98684 Ilmenau www.tu-ilmenau.de/universitaetsverlag
Herstellung und Auslieferung:	Verlagshaus Monsenstein und Vannerdat OHG Am Hawerkamp 31 48155 Münster www.mv-verlag.de
Layout Cover:	www.cey-x.de
Bezugsmöglichkeiten:	Universitätsbibliothek der TU Ilmenau Tel.: +49 3677 69-4615 Fax: +49 3677 69-4602

© Technische Universität Ilmenau (Thür.) 2007

Diese Publikationen und alle in ihr enthaltenen Beiträge und Abbildungen sind urheberrechtlich geschützt. Mit Ausnahme der gesetzlich zugelassenen Fälle ist eine Verwertung ohne Einwilligung der Redaktion strafbar.

Preface

Dear Participants,

Confronted with the ever-increasing complexity of technical processes and the growing demands on their efficiency, security and flexibility, the scientific world needs to establish new methods of engineering design and new methods of systems operation. The factors likely to affect the design of the smart systems of the future will doubtless include the following:

- As computational costs decrease, it will be possible to apply more complex algorithms, even in real time. These algorithms will take into account system nonlinearities or provide online optimisation of the system's performance.
- New fields of application will be addressed. Interest is now being expressed, beyond that in "classical" technical systems and processes, in environmental systems or medical and bioengineering applications.
- The boundaries between software and hardware design are being eroded. New design methods will include co-design of software and hardware and even of sensor and actuator components.
- Automation will not only replace human operators but will assist, support and supervise humans so that their work is safe and even more effective.
- Networked systems or swarms will be crucial, requiring improvement of the communication within them and study of how their behaviour can be made globally consistent.
- The issues of security and safety, not only during the operation of systems but also in the course of their design, will continue to increase in importance.

The title "Computer Science meets Automation", borne by the 52nd International Scientific Colloquium (IWK) at the Technische Universität Ilmenau, Germany, expresses the desire of scientists and engineers to rise to these challenges, cooperating closely on innovative methods in the two disciplines of computer science and automation.

The IWK has a long tradition going back as far as 1953. In the years before 1989, a major function of the colloquium was to bring together scientists from both sides of the Iron Curtain. Naturally, bonds were also deepened between the countries from the East. Today, the objective of the colloquium is still to bring researchers together. They come from the eastern and western member states of the European Union, and, indeed, from all over the world. All who wish to share their ideas on the points where "Computer Science meets Automation" are addressed by this colloquium at the Technische Universität Ilmenau.

All the University's Faculties have joined forces to ensure that nothing is left out. Control engineering, information science, cybernetics, communication technology and systems engineering – for all of these and their applications (ranging from biological systems to heavy engineering), the issues are being covered.

Together with all the organizers I should like to thank you for your contributions to the conference, ensuring, as they do, a most interesting colloquium programme of an interdisciplinary nature.

I am looking forward to an inspiring colloquium. It promises to be a fine platform for you to present your research, to address new concepts and to meet colleagues in Ilmenau.

In Sherte

Professor Peter Scharff Rector, TU Ilmenau

"L. Ummt

Professor Christoph Ament Head of Organisation

Table of Contents

CONTENTS

1 Systems Engineering and Intelligent Systems	Page
A. Yu. Nedelina, W. Fengler DIPLAN: Distributed Planner for Decision Support Systems	3
O. Sokolov, M. Wagenknecht, U. Gocht Multiagent Intelligent Diagnostics of Arising Faults	9
V. Nissen Management Applications of Fuzzy Conrol	15
O. G. Rudenko, A. A. Bessonov, P. Otto A Method for Information Coding in CMAC Networks	21
Ye. Bodyanskiy, P. Otto, I. Pliss, N. Teslenko Nonlinear process identification and modeling using general regression neuro-fuzzy network	27
Ye. Bodyanskiy, Ye. Gorshkov, V. Kolodyazhniy , P. Otto Evolving Network Based on Double Neo-Fuzzy Neurons	35
Ch. Wachten, Ch. Ament, C. Müller, H. Reinecke Modeling of a Laser Tracker System with Galvanometer Scanner	41
K. Lüttkopf, M. Abel, B. Eylert Statistics of the truck activity on German Motorways	47
K. Meissner, H. Hensel A 3D process information display to visualize complex process conditions in the process industry	53
FF. Steege, C. Martin, HM. Groß Recent Advances in the Estimation of Pointing Poses on Monocular Images for Human-Robot Interaction	59
A. González, H. Fernlund, J. Ekblad After Action Review by Comparison – an Approach to Automatically Evaluating Trainee Performance in Training Exercise	65
R. Suzuki, N. Fujiki, Y. Taru, N. Kobayashi, E. P. Hofer Internal Model Control for Assistive Devices in Rehabilitation Technology	71
D. Sommer, M. Golz Feature Reduction for Microsleep Detection	77

F. Müller, A. Wenzel, J. Wernstedt A new strategy for on-line Monitoring and Competence Assignment to Driver and Vehicle	83
V. Borikov Linear Parameter-Oriented Model of Microplasma Process in Electrolyte Solutions	89
A. Avshalumov, G. Filaretov Detection and Analysis of Impulse Point Sequences on Correlated Disturbance Phone	95
H. Salzwedel Complex Systems Design Automation in the Presence of Bounded and Statistical Uncertainties	101
G. J. Nalepa, I. Wojnicki Filling the Semantic Gaps in Systems Engineering	107
R. Knauf Compiling Experience into Knowledge	113
R. Knauf, S. Tsuruta, Y. Sakurai Toward Knowledge Engineering with Didactic Knowledge	119
2 Advances in Control Theory and Control Engineering	
U. Konigorski, A. López Output Coupling by Dynamic Output Feedback	129
H. Toossian Shandiz, A. Hajipoor Chaos in the Fractional Order Chua System and its Control	135
O. Katernoga, V. Popov, A. Potapovich, G. Davydau Methods for Stability Analysis of Nonlinear Control Systems with Time Delay for Application in Automatic Devices	141
J. Zimmermann, O. Sawodny Modelling and Control of a X-Y-Fine-Positioning Table	145
A. Winkler, J. Suchý Position Based Force Control of an Industrial Manipulator	151
E. Arnold, J. Neupert, O. Sawodny, K. Schneider Trajectory Tracking for Boom Cranes Based on Nonlinear Control and Optimal Trajectory Generation	157

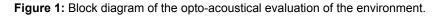
K. Shaposhnikov, V. Astakhov The method of ortogonal projections in problems of the stationary magnetic field computation	165
J. Naumenko The computing of sinusoidal magnetic fields in presence of the surface with bounded conductivity	167
K. Bayramkulov, V. Astakhov The method of the boundary equations in problems of computing static and stationary fields on the topological graph	169
T. Kochubey, V. Astakhov The computation of magnetic field in the presence of ideal conductors using the Integral-differential equation of the first kind	171
M. Schneider, U. Lehmann, J. Krone, P. Langbein, Ch. Ament, P. Otto, U. Stark, J. Schrickel Artificial neural network for product-accompanied analysis and control	173
l. Jawish The Improvement of Traveling Responses of a Subway Train using Fuzzy Logic Techniques	179
Y. Gu, H. Su, J. Chu An Approach for Transforming Nonlinear System Modeled by the Feedforward Neural Networks to Discrete Uncertain Linear System	185
3 Optimisation and Management of Complex Systems and Networked Systems	
R. Franke, J. Doppelhammer Advanced model based control in the Industrial IT System 800xA	193
H. Gerbracht, P. Li, W. Hong An efficient optimization approach to optimal control of large-scale processes	199
T. N. Pham, B. Wutke Modifying the Bellman's dynamic programming to the solution of the discrete multi-criteria optimization problem under fuzziness in long-term planning	205
S. Ritter, P. Bretschneider Optimale Planung und Betriebsführung der Energieversorgung im liberalisierten Energiemarkt	211
P. Bretschneider, D. Westermann Intelligente Energiesysteme: Chancen und Potentiale von IuK-Technologien	217

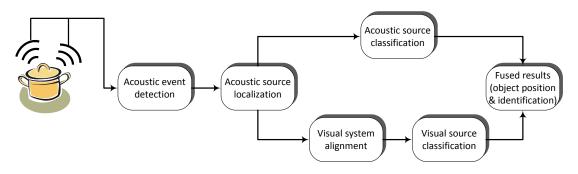
Z. Lu, Y. Zhong, Yu. Wu, J. Wu WSReMS: A Novel WSDM-based System Resource Management Scheme	223
M. Heit, E. Jennenchen, V. Kruglyak, D. Westermann Simulation des Strommarktes unter Verwendung von Petrinetzen	229
O. Sauer, M. Ebel Engineering of production monitoring & control systems	237
C. Behn, K. Zimmermann Biologically inspired Locomotion Systems and Adaptive Control	245
J. W. Vervoorst, T. Kopfstedt Mission Planning for UAV Swarms	251
M. Kaufmann, G. Bretthauer Development and composition of control logic networks for distributed mechatronic systems in a heterogeneous architecture	257
T. Kopfstedt, J. W. Vervoorst Formation Control for Groups of Mobile Robots Using a Hierarchical Controller Structure	263
M. Abel, Th. Lohfelder Simulation of the Communication Behaviour of the German Toll System	269
P. Hilgers, Ch. Ament Control in Digital Sensor-Actuator-Networks	275
C. Saul, A. Mitschele-Thiel, A. Diab, M. Abd rabou Kalil A Survey of MAC Protocols in Wireless Sensor Networks	281
T. Rossbach, M. Götze, A. Schreiber, M. Eifart, W. Kattanek Wireless Sensor Networks at their Limits – Design Considerations and Prototype Experiments	287
Y. Zhong, J. Ma Ring Domain-Based Key Management in Wireless Sensor Network	293
V. Nissen Automatic Forecast Model Selection in SAP Business Information Warehouse under Noise Conditions	299
M. Kühn, F. Richter, H. Salzwedel Process simulation for significant efficiency gains in clinical departments – practical example of a cancer clinic	305

D. Westermann, M. Kratz, St. Kümmerling, P. Meyer Architektur eines Simulators für Energie-, Informations- und Kommunikations- technologien	
P. Moreno, D. Westermann, P. Müller, F. Büchner Einsatzoptimierung von dezentralen netzgekoppelten Stromerzeugungs- anlagen (DEA) in Verteilnetzen durch Erhöhung des Automatisierungsgrades	317
M. Heit, S. Rozhenko, M. Kryvenka, D. Westermann Mathematische Bewertung von Engpass-Situationen in Transportnetzen elektrischer Energie mittels lastflussbasierter Auktion	331
M. Lemmel, M. Schnatmeyer RFID-Technology in Warehouse Logistics	339
V. Krugljak, M. Heit, D. Westermann Approaches for modelling power market: A Comparison.	345
St. Kümmerling, N. Döring, A. Friedemann, M. Kratz, D. Westermann Demand-Side-Management in Privathaushalten – Der eBox-Ansatz	351
4 Intelligent Vehicles and Mobile Systems	
A. P. Aguiar, R. Ghabchelloo, A. Pascoal, C. Silvestre , F. Vanni Coordinated Path following of Multiple Marine Vehicles: Theoretical Issues and Practical Constraints	359
R. Engel, J. Kalwa Robust Relative Positioning of Multiple Underwater Vehicles	365
M. Jacobi, T. Pfützenreuter, T. Glotzbach, M. Schneider	371
A 3D Simulation and Visualisation Environment for Unmanned Vehicles in Underwater Scenarios	
	377
in Underwater Scenarios M. Schneider, M. Eichhorn, T. Glotzbach, P. Otto A High-Level Simulator for heterogeneous marine vehicle teams under real	377 383

M. A. Arredondo, A. Cormack SeeTrack: Situation Awareness Tool for Heterogeneous Vehicles	395
J. C. Ferreira, P. B. Maia, A. Lucia, A. I. Zapaniotis Virtual Prototyping of an Innovative Urban Vehicle	401
A. Wenzel, A. Gehr, T. Glotzbach, F. Müller Superfour-in: An all-terrain wheelchair with monitoring possibilities to enhance the life quality of people with walking disability	407
Th. Krause, P. Protzel Verteiltes, dynamisches Antriebssystem zur Steuerung eines Luftschiffes	413
T. Behrmann, M. Lemmel Vehicle with pure electric hybrid energy storage system	419
Ch. Schröter, M. Höchemer, HM. Groß A Particle Filter for the Dynamic Window Approach to Mobile Robot Control	425
M. Schenderlein, K. Debes, A. Koenig, HM. Groß Appearance-based Visual Localisation in Outdoor Environments with an Omnidirectional Camera	431
G. Al Zeer, A. Nabout, B. Tibken	437
Hindernisvermeidung für Mobile Roboter mittels Ausweichecken	
Hindernisvermeidung für Mobile Roboter mittels Ausweichecken	445
 Hindernisvermeidung für Mobile Roboter mittels Ausweichecken 5 Robotics and Motion Systems Ch. Schröter, HM. Groß 	445 451
 Hindernisvermeidung für Mobile Roboter mittels Ausweichecken 5 Robotics and Motion Systems Ch. Schröter, HM. Groß Efficient Gridmaps for SLAM with Rao-Blackwellized Particle Filters St. Müller, A. Scheidig, A. Ober, HM. Groß 	
 Hindernisvermeidung für Mobile Roboter mittels Ausweichecken 5 Robotics and Motion Systems Ch. Schröter, HM. Groß Efficient Gridmaps for SLAM with Rao-Blackwellized Particle Filters St. Müller, A. Scheidig, A. Ober, HM. Groß Making Mobile Robots Smarter by Probabilistic User Modeling and Tracking A. Swerdlow, T. Machmer, K. Kroschel, A. Laubenheimer, S. Richter 	451
 Hindernisvermeidung für Mobile Roboter mittels Ausweichecken 5 Robotics and Motion Systems Ch. Schröter, HM. Groß Efficient Gridmaps for SLAM with Rao-Blackwellized Particle Filters St. Müller, A. Scheidig, A. Ober, HM. Groß Making Mobile Robots Smarter by Probabilistic User Modeling and Tracking A. Swerdlow, T. Machmer, K. Kroschel, A. Laubenheimer, S. Richter Opto-acoustical Scene Analysis for a Humanoid Robot A. Ahranovich, S. Karpovich, K. Zimmermann 	451 457

V. Lysenko, W. Mintchenya, K. Zimmermann Minimization of the number of actuators in legged robots using biological objects	483
J. Kroneis, T. Gastauer, S. Liu, B. Sauer Flexible modeling and vibration analysis of a parallel robot with numerical and analytical methods for the purpose of active vibration damping	489
A. Amthor, T. Hausotte, G. Jäger, P. Li Friction Modeling on Nanometerscale and Experimental Verification	495
Paper submitted after copy deadline	
2 Advances in Control Theory and Control Engineering	
V. Piwek, B. Kuhfuss, S. Allers Feed drivers – Synchronized Motion is leading to a process optimization	503


A. Swerdlow / T. Machmer / K. Kroschel / A. Laubenheimer / S. Richter


Opto-acoustical Scene Analysis for a Humanoid Robot

INTRODUCTION

The goal of the paper is to add the ability of a human to scan a scene acoustically and optically to a humanoid robot whose head is equipped with a visual system and a microphone array. The skill to scan and analyze a scene is an urgent precondition for a robot in order to cooperate with a human.

A typical peculiarity of the auditory system is that it senses its environment almost omnidirectional, whereas the visual system is only focused on a section of the environmental scene.

The human robot extracts the direction of acoustic events by the use of the acoustic sensory system. This is realized by a microphone array consisting of four microphones which are positioned at the ears, the forehead and the chin of the robot. Since the distance information which might be gained by analysis of the acoustic signals, is too imprecise, it is not used. Instead, the head is moved into the detected direction and the optical signal can be picked up by the visual system. Thus, by fusing acoustical and optical information, the coordinates of the event can be determined and the object identified by evaluating the acoustical and optical information. For exemplification, such an opto-acoustical evaluation of the environment is shown in Figure 1.

THE AUDIO SYSTEM

Acoustic Sound Source Localization

The technique of choice in most passive acoustic sound source localization systems using a microphone array is a two-step procedure. First, the time difference of arrival (TDOA) of sound signals in a pair of spatially separated microphones is estimated. Then the estimated TDOA is used in combination with the known microphone array geometry for the localization of the sound source in the environment. The most popular approach for determining the TDOAs is the Generalized Cross Correlation (GCC) method [1, 2], which was also used for this work.

Acoustic Sound Source Identification

In addition to the acoustic localization, the identification of localized persons and ambient sound sources is another major part of the acoustic scene analysis. The interaction between man and machine gains more and more importance. Typical applications are for instance the identification of speakers by humanoid robots or the identification of passengers within a car to adjust position and speaker specific properties.

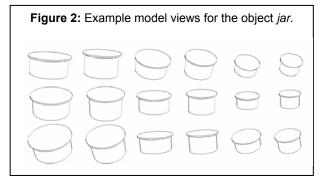
We use the Mel Frequency Cepstral Coefficients (MFCC) as spectral features in combination with the Gaussian Mixture Model (GMM) to identify speakers [3, 4]. For the classification of ambient sound sources we present another approach. The sampled instationary signal s(k) requires a short time spectral analysis based on segments of 16 ms each and an overlap by the factor 0.5, within which the signal is assumed to be stationary. Like speaker identification, these sources are usually instationary. In contrary to the speaker identification, data processing takes place in the time domain.

In order to be able to detect an acoustic event, the energy within a frame is calculated for each frame. The energy $en(\kappa)$ in the frame κ of length L=256 is

defined as
$$en(\kappa) = \frac{1}{L} \cdot \sum_{k=n_{\kappa}}^{n_{\kappa}+L-1} s^{2}(k).$$

For the classification of acoustic events, autoregressive (AR) models are used. The estimation of the detected sound class is done in the following way:

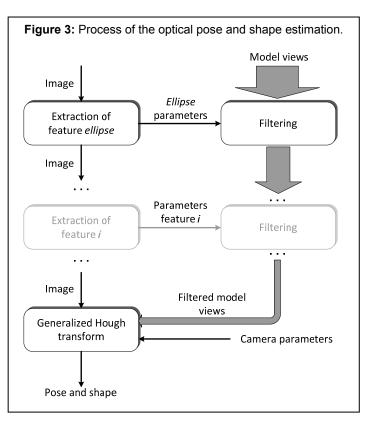
$$\hat{K}(\kappa) = \arg\min_{c=1,\dots,N_{\kappa}} \left[\min_{j=1,\dots,P^{(c)}} \sum_{i=(\kappa-1)\cdot L}^{\kappa\cdot L-1} \left(s(k) - \sum_{\ell=1}^{M} p_{j,\ell}^{(c)} \cdot s(k-\ell) \right)^2 \right].$$


For each sound class $K^{(c)}$ with $c = 1, ..., N_{\kappa}$ to be recognized, one or more AR models $\mathbf{p}_{j}^{(c)}$ with $j = 1, ..., P^{(c)}$ of order *M* are appointed. For every sound class $K^{(c)}$ and the associated prediction coefficients $\mathbf{p}_{j}^{(c)}$, the prediction error $e_{j}^{(c)}(k)$ for the sample s(k) is determined. To be able to determine which model fits the currently handled frame κ at best, the energy of the prediction error signal is calculated for every sound class $K^{(c)}$ and the associated models $\mathbf{p}_{j}^{(c)}$ over the entire frame κ . Subsequently, the value of the prediction error of the model $\mathbf{p}_{j}^{(c)}$ and the sound class $K^{(e)}$ which represents the frame κ at best is calculated by finding the minimal prediction error. Finally, the frame κ is assigned to the estimated sound source class \hat{K} by calculating the index of the class with the lowest prediction error.

THE VISUAL SYSTEM

For pose and shape estimation, we have developed an appearance based method. Like [5] und [6], we use different model views to calculate the parameters of the object's pose. However, instead of using a 2-D-similarity transformation, we apply a chain of different filtering steps to obtain the best fitting model view.

The generation of virtual views of the objects, which are to be detected, is accomplished offline. Therefore CAD models are used. A virtual camera is placed on the surface of a sphere surrounding the CAD model of a given object. By changing radius r, azimuth and polar angels θ and ϕ , respectively, the model views are


generated. By using deformable models, based on [7], we can not only detect static objects, but we are also able to deal with objects with different shapes. Figure 2 shows some example model views created for the object *jar* that we have used for our experiments.

In order to provide an accurate object pose, an adequate large number of model views is required. To obtain the model view which fits best to the object in the camera image, several steps of filtering are applied to the set of model views. For this purpose features, for instance ellipses, edge segments or junctions are extracted in both the model view images and the camera image. By calculating a distance vector between these features in the model view images and the camera image, the most

likely model views to fit the camera image's object are obtained and at each step the of model number views is reduced. Using efficient algorithms for feature extraction, the time needed for each step can be kept low.

The last step we apply is an extended form of the generalized Hough transform [8]. The model views passing all previous filters are processed and the one with the best fit to the camera image's object is obtained. Using this

model view and its position in the camera image, which is provided by the generalized Hough transform, the final object pose can be calculated. Figure 3 illustrates the process of the optical pose and shape estimation.

EXPERIMENTAL SETUP AND SELECTED RESULTS

For data recording, omni-directional electret condenser microphones in combination with a colour camera (resolution 1392 x 1040 pixels) were used. Since in the project described in this paper a typical scene from a kitchen is sensed, real experiments were carried out in a test environment. For both, the acoustic and the optical analysis, we used jars with different shapes for our experiments. Additionally, each detection system was tested on further objects which are characteristic for a kitchen environment.

For the acoustic analysis, various kitchen appliances¹ in combination with two untrained sound sources² were used. The percentage of correct frame classifications and the required number of AR models of order 16 for each ambient sound source state are summarized in Table 1; the standard deviation is given in brackets.

¹ **KC(P)**: kitchen clock (programming), **KC(E)**: kitchen clock (expiration), **CG(A)**: coffee grinder (activity), **T(D)**: toaster (down), **T(U)**: toaster (up), **TP(R)**: telephone (ringing), **J(B)**: iar (boiling)

T(U): toaster (up), TP(R): telephone (ringing), J(B): jar (boiling) ² US(S): untrained source (speech), US(KN): untrained source (knocking noise)

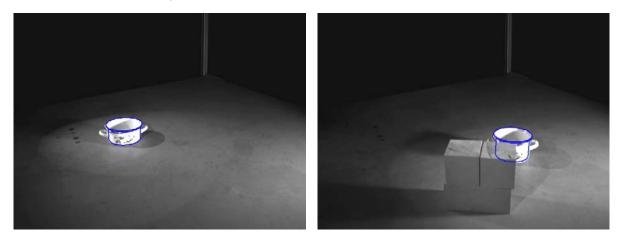

Sound class\AR model	KC(P)	KC(E)	CG(A)	T(D)	T(U)	T(R)	J(B)
KC(P)	98.10 (1.95)	1.90	0.00	0.00	0.00	0.00	0.00
	1.15	(1.95)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)
KC(E)	(0.26)	98.85 (0.26)	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)	0.00 (0.00)
66(A)	1.31	0.00	80.24	12.99	4.99	0.48	0.00
CG(A)	(0.41)	(0.00)	(2.33)	(1.68)	(1.17)	(0.30)	(0.00)
T(D)	1.03	0.00	2.53	84.55	11.84	0.04	0.00
T(D)	(0.09)	(0.00)	(1.10)	(3.37)	(3.42)	(0.09)	(0.00)
T(U)	1.07	0.00	0.40	11.52	87.01	0.00	0.00
т(U)	(0.01)	(0.00)	(0.50)	(3.01)	(3.14)	(0.00)	(0.00)
TP(R)	1.03	0.00	1.50	0.32	0.12	97.03	0.00
IP(K)	(0.09)	(0.00)	(0.36)	(0.33)	(0.18)	(0.52)	(0.00)
J(B)	0.99	0.00	0.95	8.12	1.43	0.00	88.51
J(D)	(0.00)	(0.00)	(0.66)	(2.20)	(0.55)	(0.00)	(1.93)
US(S)	3.33	0.00	81.03	4.00	3.09	8.16	0.40
03(3)	(0.77)	(0.00)	(3.90)	(1.53)	(0.82)	(3.32)	(0.34)
	1.07	0.08	36.87	44.24	11.64	6.10	0.00
US(KN)	(0.18)	(0.11)	(6.30)	(5.52)	(1.40)	(1.69)	(0.00)
Average number of needed AR models	5.12	5.68	16.36	17.48	17.40	15.20	20.04

Table 1: Percentage results of the frame based classification with AR models of order 16 for kitchen appliances.

As can be seen, the classification with AR models is a multiple detection issue. This is the reason why also untrained sound sources (speech, knocking noise) are always classified. To avoid this deficiency, frames can be aggregated into blocks of defined size. A trade-off has to be made between a high percentage of correct classification results and a high number of estimates which is crucial for the continuous real-time classification. The entire acoustic event within the actual block matches the sound source class, which prevails in this block. This approach increases the detection rate to nearly 100%. Additionally, blocks can be labelled as invalid (rejected) in case that less than a defined percentage of frames within one block classify the same sound class.

For the optical analysis, we used several kitchen objects like cups, bowls, dishes, and the above-mentioned jars. Figure 4 shows two different-sized jars. By means of the calculated pose and shape parameters, a CAD model of the jar is projected into the respective camera image. As one can see, the presented method is able to detect even partially occluded objects.

Figure 4: Results of the optical pose and shape detection.

CONCLUSION

Fusing the acoustical and optical long-term information leads to what we call an optoacoustical map which can be provided to the humanoid robot and therewith enhances the robots environment analysis capabilities, even under bad illumination conditions and in acoustically challenging environments.

ACKNOWLEDGMENT

This work has been supported by the German Science Foundation DFG within the Sonderforschungsbereich 588 *Humanoid Robots*.

References:

- C. H. Knapp and G. C. Carter. The generalized correlation method for estimation of time delay. IEEE Trans. Acoustics, Speech, and Signal Proc, 24(4):320–327, 1976.
- [2] D. Bechler and K. Kroschel. Confidence scoring of time difference of arrival estimation for speaker localization with microphone arrays. In 13. Konferenz Elektronische Sprachsignalverarbeitung (ESSV), Dresden, 2002.
- [3] D. O'Shaughnessy. Speech Communication Human and Machine. IEEE Press, New York, 2000.
- K. Kroschel and D. Bechler. Demonstrator for automatic text-independent speaker identification. In DAGA 2006, Braunschweig, 2006.
- [5] A. R. Pope. Learning to recognize objects in images: acquiring and using probabilistic models of appearance. Dissertation, University of British Columbia, Canada, 1995.
- [6] C. Plagemann. Ansichtsbasierte Erkennung und Lokalisierung von Objekten zur Initialisierung eines
- Verfolgungsprozesses. Diplomarbeit, Universität Karlsruhe (TH), 2004.
- [7] A. Laubenheimer. Automatische Registrierung adaptiver Modelle zur Typerkennung technischer Objekte. Dissertation, Universität Karlsruhe (TH), 2004.
- [8] D. H. Ballard. Generalizing the hough transform to detect arbitrary shapes. Pattern Recognition, 13(2): 111-122, 1981.

Authors:

Alexej Swerdlow, Timo Machmer, Kristian Kroschel Astrid Laubenheimer, Steffen Richter Universität Karlsruhe Fraunhofer Institute IITB Institut für Nachrichtentechnik Autonomous Systems and Machine Vision Kaiserstr. 12, 76131 Karlsruhe, Germany Fraunhoferstr. 1, 76131 Karlsruhe, Germany Phone: +49 - 7 21 - 6091 411 Phone: +49 - 7 21 - 608 3348 Fax: +49 - 7 21 - 608 3799 +49 - 7 21 - 6091 233 Fax: E-mail: swerdlow@int.uni-karlsruhe.de E-mail: laubenheimer@iitb.fraunhofer.de