

PROCCEDINGS

| 10 - 13 September 2007

FACULTY OF COMPUTER SCIENCE AND AUTOMATION

COMPUTER SCIENCE MEETS AUTOMATION

VOLUME II

- Session 6 Environmental Systems: Management and Optimisation
- Session 7 New Methods and Technologies for Medicine and Biology
- Session 8 Embedded System Design and Application
- Session 9 Image Processing, Image Analysis and Computer Vision
- **Session 10 Mobile Communications**
- Session 11 Education in Computer Science and Automation

Bibliografische Information der Deutschen Bibliothek

Die Deutsche Bibliothek verzeichnet diese Publikation in der deutschen Nationalbiografie; detaillierte bibliografische Daten sind im Internet über http://dnb.ddb.de abrufbar.

ISBN 978-3-939473-17-6

Impressum

Herausgeber:	Der Rektor der Technischen Universität Ilmenau UnivProf. Dr. rer. nat. habil. Peter Scharff		
Redaktion:	Referat Marketing und Studentische Angelegenheiten Kongressorganisation Andrea Schneider Tel.: +49 3677 69-2520 Fax: +49 3677 69-1743 e-mail: kongressorganisation@tu-ilmenau.de		
Redaktionsschluss:	Juli 2007		
Verlag:	Co Technische Universität Ilmenau/Universitätsbibliothek Universitätsverlag Ilmenau Postfach 10 05 65 98684 Ilmenau www.tu-ilmenau.de/universitaetsverlag		
Herstellung und Auslieferung:	Verlagshaus Monsenstein und Vannerdat OHG Am Hawerkamp 31 48155 Münster www.mv-verlag.de		
Layout Cover:	www.cey-x.de		
Bezugsmöglichkeiten:	Universitätsbibliothek der TU Ilmenau Tel.: +49 3677 69-4615 Fax: +49 3677 69-4602		

© Technische Universität Ilmenau (Thür.) 2007

Diese Publikationen und alle in ihr enthaltenen Beiträge und Abbildungen sind urheberrechtlich geschützt. Mit Ausnahme der gesetzlich zugelassenen Fälle ist eine Verwertung ohne Einwilligung der Redaktion strafbar.

Preface

Dear Participants,

Confronted with the ever-increasing complexity of technical processes and the growing demands on their efficiency, security and flexibility, the scientific world needs to establish new methods of engineering design and new methods of systems operation. The factors likely to affect the design of the smart systems of the future will doubtless include the following:

- As computational costs decrease, it will be possible to apply more complex algorithms, even in real time. These algorithms will take into account system nonlinearities or provide online optimisation of the system's performance.
- New fields of application will be addressed. Interest is now being expressed, beyond that in "classical" technical systems and processes, in environmental systems or medical and bioengineering applications.
- The boundaries between software and hardware design are being eroded. New design methods will include co-design of software and hardware and even of sensor and actuator components.
- Automation will not only replace human operators but will assist, support and supervise humans so that their work is safe and even more effective.
- Networked systems or swarms will be crucial, requiring improvement of the communication within them and study of how their behaviour can be made globally consistent.
- The issues of security and safety, not only during the operation of systems but also in the course of their design, will continue to increase in importance.

The title "Computer Science meets Automation", borne by the 52nd International Scientific Colloquium (IWK) at the Technische Universität Ilmenau, Germany, expresses the desire of scientists and engineers to rise to these challenges, cooperating closely on innovative methods in the two disciplines of computer science and automation.

The IWK has a long tradition going back as far as 1953. In the years before 1989, a major function of the colloquium was to bring together scientists from both sides of the Iron Curtain. Naturally, bonds were also deepened between the countries from the East. Today, the objective of the colloquium is still to bring researchers together. They come from the eastern and western member states of the European Union, and, indeed, from all over the world. All who wish to share their ideas on the points where "Computer Science meets Automation" are addressed by this colloquium at the Technische Universität Ilmenau.

All the University's Faculties have joined forces to ensure that nothing is left out. Control engineering, information science, cybernetics, communication technology and systems engineering – for all of these and their applications (ranging from biological systems to heavy engineering), the issues are being covered.

Together with all the organizers I should like to thank you for your contributions to the conference, ensuring, as they do, a most interesting colloquium programme of an interdisciplinary nature.

I am looking forward to an inspiring colloquium. It promises to be a fine platform for you to present your research, to address new concepts and to meet colleagues in Ilmenau.

In Sherte

Professor Peter Scharff Rector, TU Ilmenau

"L. Ummt

Professor Christoph Ament Head of Organisation

Table of Contents

CONTENTS

Page

6 Environmental Systems: Management and Optimisation

T. Bernard, H. Linke, O. Krol A Concept for the long term Optimization of regional Water Supply Systems as a Module of a Decision Support System	3
S. Röll, S. Hopfgarten, P. Li A groundwater model for the area Darkhan in Kharaa river Th. Bernard, H. Linke, O. Krol basin	11
A. Khatanbaatar Altantuul The need designing integrated urban water management in cities of Mongolia	17
T. Rauschenbach, T. Pfützenreuter, Z. Tong Model based water allocation decision support system for Beijing	23
T. Pfützenreuter, T. Rauschenbach Surface Water Modelling with the Simulation Library ILM-River	29
D. Karimanzira, M. Jacobi Modelling yearly residential water demand using neural networks	35
Th. Westerhoff, B. Scharaw Model based management of the drinking water supply system of city Darkhan in Mongolia	41
N. Buyankhishig, N. Batsukh Pumping well optimi ation in the Shivee-Ovoo coal mine Mongolia	47
S. Holzmüller-Laue, B. Göde, K. Rimane, N. Stoll Data Management for Automated Life Science Applications	51
N. B. Chang, A. Gonzalez A Decision Support System for Sensor Deployment in Water Distribution Systems for Improving the Infrastructure Safety	57
P. Hamolka, I. Vrublevsky, V. Parkoun, V. Sokol New Film Temperature And Moisture Microsensors for Environmental Control Systems	63
N. Buyankhishig, M. Masumoto, M. Aley Parameter estimation of an unconfined aquifer of the Tuul River basin Mongolia	67

M. Jacobi, D. Karimanzira Demand Forecasting of Water Usage based on Kalman Filtering	73
7 New Methods and Technologies for Medicine and Biology	
J. Meier, R. Bock, L. G. Nyúl, G. Michelson Eye Fundus Image Processing System for Automated Glaucoma Classification	81
L. Hellrung, M. Trost Automatic focus depending on an image processing algorithm for a non mydriatic fundus camera	85
M. Hamsch, C. H. Igney, M. Vauhkonen A Magnetic Induction Tomography System for Stroke Classification and Diagnosis	91
T. Neumuth, A. Pretschner, O. Burgert Surgical Workflow Monitoring with Generic Data Interfaces	97
M. Pfaff, D. Woetzel, D. Driesch, S. Toepfer, R. Huber, D. Pohlers, D. Koczan, HJ. Thiesen, R. Guthke, R. W. Kinne	103
Gene Expression Based Classification of Rheumatoid Arthritis and Osteoarthritis Patients using Fuzzy Cluster and Rule Based Method	
S. Toepfer, S. Zellmer, D. Driesch, D. Woetzel, R. Guthke, R. Gebhardt, M. Pfaff A 2-Compartment Model of Glutamine and Ammonia Metabolism in Liver Tissue	107
J. C. Ferreira, A. A. Fernandes, A. D. Santos Modelling and Rapid Prototyping an Innovative Ankle-Foot Orthosis to Correct Children Gait Pathology	113
H. T. Shandiz, E. Zahedi Noninvasive Method in Diabetic Detection by Analyzing PPG Signals	119
S. V. Drobot, I. S. Asayenok, E. N. Zacepin, T. F. Sergiyenko, A. I. Svirnovskiy Effects of Mm-Wave Electromagnetic Radiation on Sensitivity of Human Lymphocytes to lonizing Radiation and Chemical Agents in Vitro	123
8 Embedded System Design and Application	
B. Däne Modeling and Realization of DMA Based Serial Communication	131

for a Multi Processor System

M. Müller, A. Pacholik, W. Fengler Tool Support for Formal System Verification	137
A. Pretschner, J. Alder, Ch. Meissner A Contribution to the Design of Embedded Control Systems	143
R. Ubar, G. Jervan, J. Raik, M. Jenihhin, P. Ellervee Dependability Evaluation in Fault Tolerant Systems with High-Level Decision Diagrams	147
A. Jutmann On LFSR Polynomial Calculation for Test Time Reduction	153
M. Rosenberger, M. J. Schaub, S. C. N. Töpfer, G. Linß Investigation of Efficient Strain Measurement at Smallest Areas Applying the Time to Digital (TDC) Principle	159
9 Image Processing, Image Analysis and Computer Vision	
J. Meyer, R. Espiritu, J. Earthman Virtual Bone Density Measurement for Dental Implants	167
F. Erfurth, WD. Schmidt, B. Nyuyki, A. Scheibe, P. Saluz, D. Faßler Spectral Imaging Technology for Microarray Scanners	173
T. Langner, D. Kollhoff Farbbasierte Druckbildinspektion an Rundkörpern	179
C. Lucht, F. Gaßmann, R. Jahn Inline-Fehlerdetektion auf freigeformten, texturierten Oberflächen im Produktionsprozess	185
HW. Lahmann, M. Stöckmann Optical Inspection of Cutting Tools by means of 2D- and 3D-Imaging Processing	191
A. Melitzki, G. Stanke, F. Weckend Bestimmung von Raumpositionen durch Kombination von 2D-Bildverarbeitung und Mehrfachlinienlasertriangulation - am Beispiel von PKW-Stabilisatoren	197
F. Boochs, Ch. Raab, R. Schütze, J. Traiser, H. Wirth	203

3D contour detection by means of a multi camera system

M. Brandner Vision-Based Surface Inspection of Aeronautic Parts using Active Stereo	209
H. Lettenbauer, D. Weiss X-ray image acquisition, processing and evaluation for CT-based dimensional metrology	215
K. Sickel, V. Daum, J. Hornegger Shortest Path Search with Constraints on Surface Models of In-the-ear Hearing Aids	221
S. Husung, G. Höhne, C. Weber Efficient Use of Stereoscopic Projection for the Interactive Visualisation of Technical Products and Processes	227
N. Schuster Measurement with subpixel-accuracy: Requirements and reality	233
P. Brückner, S. C. N. Töpfer, M. Correns, J. Schnee Position- and colour-accurate probing of edges in colour images with subpixel resolution	239
E. Sparrer, T. Machleidt, R. Nestler, KH. Franke, M. Niebelschütz Deconvolution of atomic force microscopy data in a special measurement mode – methods and practice	245
T. Machleidt, D. Kapusi, T. Langner, KH. Franke Application of nonlinear equalization for characterizing AFM tip shape	251
D. Kapusi, T. Machleidt, R. Jahn, KH. Franke Measuring large areas by white light interferometry at the nanopositioning and nanomeasuring machine (NPMM)	257
R. Burdick, T. Lorenz, K. Bobey Characteristics of High Power LEDs and one example application in with-light-interferometry	263
T. Koch, KH. Franke Aspekte der strukturbasierten Fusion multimodaler Satellitendaten und der Segmentierung fusionierter Bilder	269
T. Riedel, C. Thiel, C. Schmullius A reliable and transferable classification approach towards operational land cover mapping combining optical and SAR data	275
B. Waske, V. Heinzel, M. Braun, G. Menz Classification of SAR and Multispectral Imagery using Support Vector Machines	281

V. Heinzel, J. Franke, G. Menz Assessment of differences in multisensoral remote sensing imageries caused by discrepancies in the relative spectral response functions	287
I. Aksit, K. Bünger, A. Fassbender, D. Frekers, Chr. Götze, J. Kemenas An ultra-fast on-line microscopic optical quality assurance concept for small structures in an environment of man production	293
D. Hofmann, G. Linss Application of Innovative Image Sensors for Quality Control	297
A. Jablonski, K. Kohrt, M. Böhm Automatic quality grading of raw leather hides	303
M. Rosenberger, M. Schellhorn, P. Brückner, G. Linß Uncompressed digital image data transfer for measurement techniques using a two wire signal line	309
R. Blaschek, B. Meffert Feature point matching for stereo image processing using nonlinear filters	315
A. Mitsiukhin, V. Pachynin, E. Petrovskaya Hartley Discrete Transform Image Coding	321
S. Hellbach, B. Lau, J. P. Eggert, E. Körner, HM. Groß Multi-Cue Motion Segmentation	327
R. R. Alavi, K. Brieß Image Processing Algorithms for Using a Moon Camera as Secondary Sensor for a Satellite Attitude Control System	333
S. Bauer, T. Döring, F. Meysel, R. Reulke Traffic Surveillance using Video Image Detection Systems	341
M. A-Megeed Salem, B. Meffert Wavelet-based Image Segmentation for Traffic Monitoring Systems	347
E. Einhorn, C. Schröter, HJ. Böhme, HM. Groß A Hybrid Kalman Filter Based Algorithm for Real-time Visual Obstacle Detection	353
U. Knauer, R. Stein, B. Meffert Detection of opened honeybee brood cells at an early stage	359

10 Mobile Communications

K. Ghanem, N. Zamin-Khan, M. A. A. Kalil, A. Mitschele-Thiel Dynamic Reconfiguration for Distributing the Traffic Load in the Mobile Networks	367
N. ZKhan, M. A. A. Kalil, K. Ghanem, A. Mitschele-Thiel Generic Autonomic Architecture for Self-Management in Future Heterogeneous Networks	373
N. ZKhan, K. Ghanem, St. Leistritz, F. Liers, M. A. A. Kalil, H. Kärst, R. Böringer Network Management of Future Access Networks	379
St. Schmidt, H. Kärst, A. Mitschele-Thiel Towards cost-effective Area-wide Wi-Fi Provisioning	385
A. Yousef, M. A. A. Kalil A New Algorithm for an Efficient Stateful Address Autoconfiguration Protocol in Ad hoc Networks	391
M. A. A. Kalil, N. Zamin-Khan, H. Al-Mahdi, A. Mitschele-Thiel Evaluation and Improvement of Queueing Management Schemes in Multihop Ad hoc Networks	397
M. Ritzmann Scientific visualisation on mobile devices with limited resources	403
R. Brecht, A. Kraus, H. Krömker Entwicklung von Produktionsrichtlinien von Sport-Live-Berichterstattung für Mobile TV Übertragungen	409
N. A. Tam RCS-M: A Rate Control Scheme to Transport Multimedia Traffic over Satellite Links	421
Ch. Kellner, A. Mitschele-Thiel, A. Diab Performance Evaluation of MIFA, HMIP and HAWAII	427
A. Diab, A. Mitschele-Thiel MIFAv6: A Fast and Smooth Mobility Protocol for IPv6	433
A. Diab, A. Mitschele-Thiel CAMP: A New Tool to Analyse Mobility Management Protocols	439

S. Bräunig, HU. Seidel Learning Signal and Pattern Recognition with Virtual Instruments	447
St. Lambeck Use of Rapid-Control-Prototyping Methods for the control of a nonlinear MIMO-System	453
R. Pittschellis Automatisierungstechnische Ausbildung an Gymnasien	459
A. Diab, HD. Wuttke, K. Henke, A. Mitschele-Thiel, M. Ruhwedel MAeLE: A Metadata-Driven Adaptive e-Learning Environment	465
V. Zöppig, O. Radler, M. Beier, T. Ströhla Modular smart systems for motion control teaching	471
N. Pranke, K. Froitzheim The Media Internet Streaming Toolbox	477
A. Fleischer, R. Andreev, Y. Pavlov, V. Terzieva An Approach to Personalized Learning: A Technique of Estimation of Learners Preferences	485
N. Tsyrelchuk, E. Ruchaevskaia Innovational pedagogical technologies and the Information edu- cational medium in the training of the specialists	491
Ch. Noack, S. Schwintek, Ch. Ament Design of a modular mechanical demonstration system for control engineering lectures	497

Education in Computer Science and Automation

11

P. Brückner/ S.C.N. Töpfer/ M. Correns/ J. Schnee

Position- and colour-accurate probing of edges in colour images with subpixel resolution

ABSTRACT

This paper presents a novel method for probing of edges in colour images with subpixel resolution. The enhanced method based on [1] enables the highly precise determination of the edge position at edges with a change in colour as well as with a change in intensity or a combination of both. The attained precision is similar to the precision of subpixel-accurate edge position determination in greyvalue images.

INTRODUCTION

Subpixeling methods enable probing of edges in greyvalue images with a resolution larger than the pixel centre distance of the sensors. Depending on the quality of the image data an increase of resolution of $1/10^{th}$ to $1/100^{th}$ pixels is attainable [2]. Typically, methods for subpixel-accurate edge position determination presume that only one function value, id est the intensity respectively the greyvalue, varies within the image. Colour images do not fulfil this requirement. They contain three function values, which may vary with the position within the image, for example the primary colours red R(x, y), green G(x, y) and blue B(x, y).

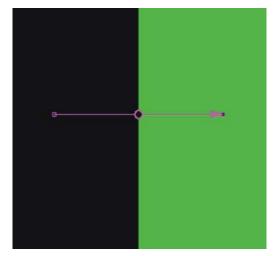


Fig. 1: Colour edge with search line

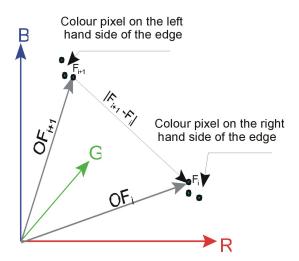


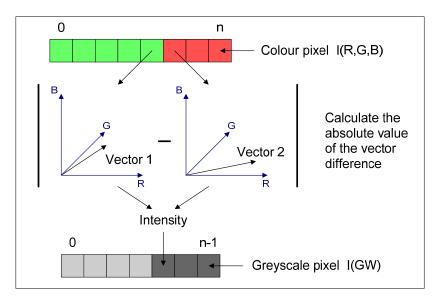
Fig. 2: Definition of the position vectors OF

The solution consists of a vectorial approach. Each pixel of the colour image is considered as a vector. Similar to measurements in greyvalue images a search line is defined (Fig. 1). The search line comprises RGB colour values, which can be represented as vectors in the RGB colour space (Fig. 2). Appropriate vector operations are deployed on each colour vector of two neighbouring pixels. Thus, a one-dimensional function scaled between 0 and 255 is derived for the whole search line. Thus, the edge position is determined by subpixeling as in greyvalue images.

STATE OF THE ART

The known deployed methods for edge detection in colour images yield the pixelaccurate position only. They are mainly utilised for image segmentation and object recognition. If edges are determined for the individual colour channels R, G and B, as in [3], or for only one colour channel as in [4], image information is lost. This applies also if colour images are converted into greyvalue images, as in [5]. A better method is shown in [6] and [7], which convert image data into the HSI colour space. This enables the detection of changes in hue and in intensity with varied Sobel operators. Vector based methods are showing the best performance for edge detection in colour images. They treat each pixel as a vector in a usually three dimensional colour space. The edge detection is done with a variety of operators. The works [8], [9], [10], [11], and [12] deal with the vector gradient operator. In [8] and especially in [9] vector order statistic operators and the entropy operator are examined. In [8], [11], [12] and [13] the difference vector operator or comparable distance metrics are used. Furthermore, operators based on the second derivatives are introduced in [8]. The variety of these operators for colour edge detection proves that no perfect colour edge detection operator exists. Consequently, there are different colour edge detection operators most suitable for each specific task [8]. Basically, the aim of this paper is not edge detection but the highly precise edge position determination. Only few papers are dealing with this issue, for example [14] and [1]. The paper at hand develops these ideas further.

In optical coordinate metrology well known subpixeling methods for probing of edges with subpixel resolution in greyvalue images exist. In [2] an overview of different methods such as threshold ~, differential ~ and integral methods (e.g. photometric mean) as well as correlation and parameter identification is given. Combined with interpolation, approximation and reconstruction subpixel resolution is attained.

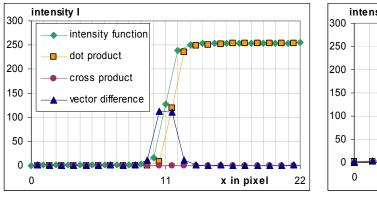

240

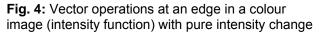
PROCEDURE FOR SUBPIXELING IN COLOUR IMAGES

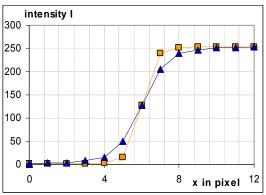
The absolute value of the vector difference $|\vec{u} - \vec{v}|$ of the two three dimensional vectors \vec{u} and \vec{v} is calculated as:

$$\vec{u} = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix}, \quad \vec{v} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}, \quad |\vec{u} - \vec{v}| = \begin{pmatrix} u_1 & - & v_1 \\ u_2 & - & v_2 \\ u_3 & - & v_3 \end{pmatrix}.$$

The conversion of the coloured search line into a function with one intensity value only is done via vector difference. Therefore, the absolute value of the vector differences of two adjacent colour vectors is calculated for the whole search line. The absolute value of the vector differences is maximal at the edge because of the changes in intensity and colour. Thus, the calculated one-dimensional function has low intensities at homogeneous areas and an intensity peak at the edge.


The edge position is at the centre of gravity of the intensity peak. Since the vector difference is calculated from two neighbouring vectors or pixels, n colour pixels yield only n-1 vector differences (Fig. 3). Consequently, the converted search line has one pixel less


Fig. 3: Conversion of a search line through the vector difference


than the coloured original. This also entails a systematic shift of the calculated edge position by 0.5 pixels which has to be included. For the precise determination of the edge position with subpixel resolution the outlined methods from [2] are applied on the one-dimensional function. Due to the characteristic peak of the intensity function marking the edge position a correlation method has been chosen. It determines the maximum correlation between the intensity function and a Gaussian-shaped reference pattern. The subpixel-accurate edge position equals the centre of gravity of the calculated curve of the correlation coefficient. Finally, the mentioned 0.5 pixel shift is charged in order to determine the accurate edge position in the colour image.

SIMULATIONS

Several simulations have been performed. One simulation demonstrated that the vector operations cross product and dot product are not suitable for the conversion of the coloured search line. The cross product does not yield a change in its characteristics if the edge is represented by a pure intensity change (Fig. 4). The dot product is equally unsuitable for dimensional measurements. Depending on the absolute value of the change in the original intensity function in the colour image its signal flank marking the edge is shifted relative to the actual edge position.

Fig. 5: Simulated intensity function for a thin (square) and for a broad edge (triangle)

An other set of simulations was performed in order to evaluate the performance of the outlined method for subpixel-accurate edge probing in colour images independently from the actual lens and the imaging sensor. Therefore artificially generated edges with known edge position were utilised (Fig. 5). The intensity functions have been saved as 8 bit greyvalue images and as 24 bit colour images where each colour channel contained the identical intensity function. The results from the greyvalue subpixeling and from the proposed colour subpixeling have been compared.

Table 1: Average deviation from the known edge position in pixels for 24 bit colour images and for 8
bit greyvalue images at different intensity functions with 8 search lines at 4 angles between 45° and
90° relative to the edge for both probing directions.

Deployed intensity function (see Fig. 5)	Deviation of edge position in greyvalue image	Deviation of edge position in colour image	
Thin edge with int. transition 0 to 254	0,0122	0,0150	
Thin edge with int. transition 30 to 200	0,0134	0,0165	
Thin edge with int. transition 50 to 170	0,0096	0,0140	
Broad edge with int. transition 0 to 254	0,0091	0,0126	
Broad edge with int. transition 30 to 200	0,0055	0,0163	
Broad edge with int. transition 50 to 170	0,0159	0,0201	

The deviation of the determined edge position amounts to the same order of magnitude for greyvalue ~ and for colour subpixeling (Tab. 1). However, the results of the greyvalue subpixeling are slightly better. The attained subpixel resolution is approximately $1/100^{th}$ pixel.

EXPERIMENTAL RESULTS

In order to determine the performance of colour subpixeling under real measuring conditions a circular calibration target has been captured with a colour and a greylevel camera. The latter was an ADIMEC MX12P/8X23 CCD camera with 1024 x 1024 pixels with a pixel size of 7,5 μ m x 7,5 μ m. The colour camera was a BASLER A113CP equipped with a Bayer filter mosaic with 1300 x 1030 pixels with a pixel size of 6,7 μ m x 6,7 μ m. For comparability both cameras where utilised with the same optical reproduction system (one fold magnification) and the same cold light source (colour temperature app. 5000 Kelvin) as transmitted light illumination.

As Table 2 shows, the experimental results validate the simulation results. The small differences between greyvalue ~ and colour subpixeling are due to the different cameras. The colour camera has a much larger noise and a reduced spatial resolution due to the Bayer filter mosaic. Therefore, the 7th and 8th column contain the measured values for greylevel subpixeling which has been deployed on the colour images after they have been converted into greylevel images based on the well known luminance equation. Thus, it is proven that the larger part of the deviation is in deed due to the camera characteristics and not due to the subpixeling method.

Circular	Calibration	Measurement in				nent in colour	0
-	" value,	greylevel image		Original col	our image	Converted in	to greyvalue image
ring	radius [µm]	Radius	Deviation	Radius	Deviation	Radius	Deviation
3	249,60	249,52	-0,08	249,37	-0,23	249,32	-0,28
4	500,39	500,35	-0,04	500,13	-0,26	500,08	-0,31
5	999,72	999,72	0,00	999,72	0,00	999,72	0,00
6	2000,40	2000,31	-0,09	2000,38	-0,02	2000,29	-0,11

Table 1: Circle radii measured at the same calibration target and captured with greyvalue ~ and colour camera (average from 50 measurements, pixel factor calibrated at 5th circular ring, all values in μ m)

The performed experiments prove the suitability of the proposed colour subpixeling for high-resolution dimensional measurements. Nevertheless, most decisive for the achievable accuracy is the quality of the image data as well as the characteristic of the actual measuring object, e.g. colour distribution.

SUMMARY

A method for the highly accurate determination of the edge position in colour images has been outlined. Key principle is the vectorial approach which allows the subsequent application of established subpixel methods for greylevel images. The originality of the paper lies with the detailed investigation of the applicability of the proposed methods for determining the edge position with subpixel accuracy. There are three basic types of edges in colour images. It must be differed between edges represented by a pure intensity transition and edges represented by a pure colour change and edges represented by any combination of the previous two edge types. The vector difference is the only method that enables the determination of the edge position with subpixel accuracy in colour images for all three edge types. Based on simulated and measured data it is demonstrated that a resolution of a colour camera with low noise.

References:

- [1] C. Usbeck und P. Brückner. Verfahren zur Bestimmung der Kantenposition in Farbbildern, insbesondere fur Farb- und Intensitatsubergänge. Nr.DE10020067. Patent, April 2000.
- [2] Olaf Kühn. Ein Beitrag zur hochauflösenden zweidimensionalen Geometriemessung mit CCD-Zeilensensoren. PHD-Thesis, Technische Universitat Ilmenau, 1997.
- [3] Mark Hedley und Hong Yan. Segmentation of color images using spatial and color space information. SPIE Journal of Electronic Imaging Volume 01(04), October 1992, S. 374–380.
- [4] Imao Kaoru und Ouchi Satoshi. SYSTEM FOR DETECTING EDGE PART OF COLOR IMAGE, April 1990. Patent.
- [5] TotsukaTakushiundMitsunagaTomoo. Method and device for detecting edge. Nr. US5995662. Patent, November 1999.
 [6] Takahashi Eiji. Image recognition method and apparatus utilizing edge detection based on magnitudes of color vectors expressing color attributes of respective pixels of color image, October 2000. Patent.
- [7] Thierry Carron und Patrick Lambert. Color edge detector using jointly hue, saturation and intensity. IEEE International Conference on Image Processing Volume 3, November 1994, S. 977–981.
- [8] Shu-Yu Zhu, K.N. Plataniotis und A.N. Venetsanopoulos. Comprehensive analysis of edge detection in color image processing. SPIE Optical Engineering Volume 38(4), April 1999, S. 612–625.
- [9] P. Trahanias und A.N. Venetsanopoulos. Color edge detection using vector order statistics. IEEE Transactions on Image Processing Band 2, April 1993, S. 259–264.
- [10] Rafael C. Gonzalez und Richard E. Woods. Digital Image Processing. Prentice-Hall, Inc. 2. Edition, 2002.
- [11] R.D. Dony und S. Wesolkowski. Edge detection on color images using RGB vector angles. IEEE Canadian Conference on Electrical and Computer Engeneering Volume 2, May 1999, S. 687–692.
- [12] S. Wesolkowski, M.E. Jernigan und R.D. Dony. Comparison of colorimage edge detectors in multiple color spaces. IEEE International Conference on Image Processing Volume 2, September 2000, S. 796–799.
- [13] L. Shafarenko, M. Petrou und J. Kittler. Automatic watershed segmentation of randomly textured color images. IEEE Transactions on Image Processing Volume 6, November 1997, S. 1530–1544.
- [14] P. Brückner, C. Usbeck und A. Eichhorn. Aufnahme und Auswertung von Farbbildern in der Koordinatenmesstechnik. 47. Internationales Wissenschaftliches Kolloquium der TU Ilmenau, September 2002.

Authors:

Dr.-Ing. Peter Brückner, Dipl.-Wirtsch.-Ing. Susanne C.N. Töpfer, Dipl.-Ing. Martin Correns, cand. Dipl.-Ing. Jost Schnee

Technische Universität Ilmenau Quality Assurance Department P.O. Box 100 565 98684 Ilmenau, Germany Phone: +49 3677 693941 Fax: +49 3677 693823 E-mail: peter.brueckner@tu-ilmenau.de