


Bibliografische Information der Deutschen Bibliothek 
Die Deutsche Bibliothek verzeichnet diese Publikation in der deutschen 

Nationalbiografie; detaillierte bibliografische Daten sind im Internet über 
http://dnb.ddb.de abrufbar. 

 
 

ISBN 978-3-939473-17-6 
 
 
Impressum 
 
Herausgeber:   Der Rektor der Technischen Universität Ilmenau 
    Univ.-Prof. Dr. rer. nat. habil. Peter Scharff 
 
Redaktion:    Referat Marketing und Studentische Angelegenheiten 
    Kongressorganisation 

Andrea Schneider 
    Tel.: +49 3677 69-2520 
    Fax: +49 3677 69-1743 
    e-mail: kongressorganisation@tu-ilmenau.de 
     
Redaktionsschluss:  Juli 2007 
 
 
Verlag:    
   
 Technische Universität Ilmenau/Universitätsbibliothek 

Universitätsverlag Ilmenau 
Postfach 10 05 65 
98684 Ilmenau 
www.tu-ilmenau.de/universitaetsverlag 

 
Herstellung und   Verlagshaus Monsenstein und Vannerdat OHG 
Auslieferung:   Am Hawerkamp 31 
    48155 Münster 
    www.mv-verlag.de 
     
Layout Cover:   www.cey-x.de      

 
Bezugsmöglichkeiten: Universitätsbibliothek der TU Ilmenau 
    Tel.: +49 3677 69-4615 
    Fax: +49 3677 69-4602 
 
 

©  Technische Universität Ilmenau (Thür.) 2007 
 
Diese Publikationen und alle in ihr enthaltenen Beiträge und Abbildungen sind 
urheberrechtlich geschützt. Mit Ausnahme der gesetzlich zugelassenen Fälle ist eine 
Verwertung ohne Einwilligung der Redaktion strafbar. 
 



 
 
 
Preface 
 
Dear Participants, 
 
Confronted with the ever-increasing complexity of technical processes and the growing demands on their 
efficiency, security and flexibility, the scientific world needs to establish new methods of engineering design and 
new methods of systems operation. The factors likely to affect the design of the smart systems of the future will 
doubtless include the following: 

• As computational costs decrease, it will be possible to apply more complex algorithms, even in real 
time. These algorithms will take into account system nonlinearities or provide online optimisation of the 
system’s performance. 

• New fields of application will be addressed. Interest is now being expressed, beyond that in “classical” 
technical systems and processes, in environmental systems or medical and bioengineering applications. 

• The boundaries between software and hardware design are being eroded. New design methods will 
include co-design of software and hardware and even of sensor and actuator components. 

• Automation will not only replace human operators but will assist, support and supervise humans so 
that their work is safe and even more effective. 

• Networked systems or swarms will be crucial, requiring improvement of the communication within 
them and study of how their behaviour can be made globally consistent. 

• The issues of security and safety, not only during the operation of systems but also in the course of 
their design, will continue to increase in importance. 

The title “Computer Science meets Automation”, borne by the 52nd International Scientific Colloquium (IWK) at 
the Technische Universität Ilmenau, Germany, expresses the desire of scientists and engineers to rise to these 
challenges, cooperating closely on innovative methods in the two disciplines of computer science and 
automation. 

The IWK has a long tradition going back as far as 1953. In the years before 1989, a major function of the 
colloquium was to bring together scientists from both sides of the Iron Curtain. Naturally, bonds were also 
deepened between the countries from the East. Today, the objective of the colloquium is still to bring 
researchers together. They come from the eastern and western member states of the European Union, and, 
indeed, from all over the world. All who wish to share their ideas on the points where “Computer Science meets 
Automation” are addressed by this colloquium at the Technische Universität Ilmenau. 
All the University’s Faculties have joined forces to ensure that nothing is left out. Control engineering, 
information science, cybernetics, communication technology and systems engineering – for all of these and their 
applications (ranging from biological systems to heavy engineering), the issues are being covered.  
Together with all the organizers I should like to thank you for your contributions to the conference, ensuring, as 
they do, a most interesting colloquium programme of an interdisciplinary nature. 
I am looking forward to an inspiring colloquium. It promises to be a fine platform for you to present your 
research, to address new concepts and to meet colleagues in Ilmenau. 
 
 
 
 
 
Professor Peter Scharff     Professor Christoph Ament  
Rector, TU Ilmenau             Head of Organisation 
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Multi-Cue Motion Segmentation

1 Introduction

This paper presents an approach to multi-object image segmentation based on object mo-

tion using Markov Random Fields1. To support the information gained from motion and

to achieve robustness, several additional visual cues extracted from the image data are

integrated. Depth information gained from stereo disparity is included to maintain segmen-

tation in case an segmented object stops moving. Motion is estimated with a correspondence

matching scheme. The approach differs from regular optical flow in the way that rich match-

ing results are used for segmentation rather than only the best matches. The representation

of segmented regions is realized implicitly as labeling on a 2D lattice.

Motion segmentation is a key to many modern image processing applications. In video

compression algorithms, the analysis of motion and regions with coherent motion helps to

drastically reduce the amount of information that has to be stored and transmitted for each

frame [11]. Motion segmentation and motion understanding, for example, plays an essential

role in detecting and/or avoiding obstacles in vehicles or with a mobile robot.

The rest of this paper is organized as follows: while Sect. 2 provides a short overview of

the work done in the field of image segmentation and relations to our approach, Sect. 3

describes the architecture of the proposed system. Its evaluation is presented in Sect. 4.

Finally, the paper concludes with Sect. 5.

2 State of the Art

Recent research in the area of motion segmentation focuses on feature-based motion esti-

mation, approaches using level set methods [4], and on multi-cue segmentation on Markov

Random Fields [6]. Optimization on Markov Random Fields is an established approach to

segmentation [9]. It permits to let motion estimation be part of the segmentation process

in one single optimization framework.

When Markov Random Fields are used in combination with optimization methods like

iterated conditional modes (ICM) [2], the initialization of the field configuration and the

label parameters has a strong influence on the time needed for convergence as well as on the

quality of the result. In multi-frame applications, results from the last frame can be used

for initialization [3]. Our approach uses motion estimates that fulfill certain quality criteria,

as well as results from the previous frame.

1This paper reflects the results of Boris Lau’s diploma thesis, available online at

http://www.borislau.de/computerscience/publications/
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Figure 1: Schematic overview of the framework’s architecture. Multiple visual cues are

incorporated by the segmentation framework. The data resulting from the segmentation

in the current time step is used as initialization for the following by applying the motion

information for each segment.

In state-of-the-art optimization-based motion segmentation systems with an implicit repre-

sentation, motion information is included either in the form of spatio-temporal image gra-

dients [9], or as optical flow [12]. Our system transfers the approach to use sum of squared

differences (SSD) surfaces instead of just the best matches [8] to motion segmentation by

directly integrating SSD surfaces into a cost function.

Our system as well as other approaches (e.g. [5]) alternately estimates the labeling and the

motion parameters of the labels using least squares fitting as in [3].

Correct correspondence matches cannot be found for occlusions, i.e. areas that are freshly

covered or uncovered by a moving object. Stiller [10] proposed to use the displacement field

of the previous image frame. The estimation of a binary (dis)occlusion field has been done

using the residual motion-compensation error as a marker [12].

Whenever pure motion information is not sufficient for robust segmentation, the integra-

tion of supplementary visual modalities is appealing. In most cases the mutliple cues are

combined in a sequential way (e.g. [1]), but this does not exploit the supplementary nature

of the cues [6]. However, some work has been done that follows the concept of combining

multiple cues in one cost function, for example by using edges [12] to enhance segment

boundaries, by evaluating uniformity of both color and motion with adaptive weights [6].In

contrast to [7], who utilizes disparity information for occlusion detection, our system uses

it directly for segmentation.

3 System Architecture

The algorithm presented in this paper is designed following the concept of Fig. 1. Motion,

edges, color, and depth information are the visual cues used in this paper. For the actual

segmentation algorithm we have chosen a Markov Random Field (MRF) framework as

fundament. As done by other authors, we are alternating two different optimization steps

during the iterative optimization for one image frame.
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Motion estimation: Motion is estimated by rating correspondences, using the sum of

squared differences metric SSD(x, y, ∆x, ∆y). Classic motion estimation approaches select

the displacement with the minimum SSD value from the SSD surface as the motion estimate

and discard the rest. In many cases this is not appropriate, for example, if no or only low

contrast is present at all or only in one direction in the image patch, also referred to as

“aperture problem”. Instead, the whole SSD surface is used as input data for the opti-

mization procedure during segmentation. This way, information from ambiguous matching

surfaces is used in a sensible way.

To detect areas of occlusion where the image changes cannot be explained by motion, we use

the minimum of an SSD surface as a measure for its validity: only if there is a low minimum

in an SSD surface, the respective motion can account for the brightness changes in the

correlation window at that particular location. If the minimum is higher than a certain

threshold τoccl, the matching is assumed to be bogus. Such SSD surfaces are completely

set to zero so they do not affect motion segmentation.

Motion segmentation: The segmentation of an image is specified by a labeling (configu-

ration) of a Markov Random Field with one site (vertex in the Markov Random field graph)

s(x, y) for each pixel. The value assigned to a site is its label l ∈ {1, ..., L}. The number of

labels L can change during optimization and from frame to frame. Each label l is associated

with a displacement ∆xl, ∆yl and other optional features like a normalized color histogram

cl(h, s) of hue and saturation values or the average depth dl of all sites labeled with l. Thus,

sites with the same label are considered to show the same translational motion, and if using

the optional descriptive features, similar coloring and depth. So, the framework bootstraps

the object knowledge from the presented scene.

Optimization of site configuration: How well a label l fits the local image properties is

expressed with the fidelity term FID. Good correspondence matches have a low SSD value,

and similar colors have a high value in the histogram. The weights αcol ≥ 0 and αdep ≥ 0

control the influence of the color cue and the depth cue respectively:

FID(x, y, l) = SSD(x, y, ∆xl, ∆yl)−αcol·cl(H(x, y), S(x, y))+αdep·(d(x, y)−dl)
2 . (1)

Furthermore, to introduce smoothness constraints, a regularization term (2) is formulated

for each site s that assigns a penalty for each adjacent site s′ in a 4-neighborhood that has

a different label than s. We use the inverted Kronecker-Delta-function δ̄(a, b) which is 0

if a = b and 1 otherwise. The penalty for a neighboring site s′ is reduced if a brightness

edge goes through exactly one of the two sites in a pair (s, s′) with image coordinates (x, y)

and (x′, y′) respectively. With N4 being the 4-connected neighborhood, the regularization

is defined as follows:

REG(x, y, l) =
∑

(x′,y′)∈N4

δ̄ (l, s (x′, y′)) · (1− αedg · δ̄ (e (x, y) , e (x′, y′))) (2)
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The optimization of the labeling of the sites is done with greedy local optimization called

Iterated Conditional Modes (ICM), which is identical to Simulated Annealing with a minimal

temperature from the very beginning [2]. The update in each iteration is done for all sites

in a random order, always selecting the label for a site which minimizes the sum of fidelity

and regularity for that site.

Optimization of labels: The motion parameters of the labels as well as the color infor-

mation have to be updated along with the configuration in each iteration step. For each

label l the displacement values are chosen that belong to the minimum in the sum of all

SSD surfaces of sites with the same label l. Labels that are not assigned to any site are

deleted from the list. Labels with identical motion parameters are unified. This way the

total number of labels L can decrease during one iteration.

For color representation, the normalized 2D (10×10) hue-saturation color histogram cl(h, s)

of a label l is computed by accumulating the hue and saturation values H(x, y) and S(x, y)

from all sites with label l. The depth information dl is represented as an average over all

pixels with the same label l, i.e. pixels that belong to the same segment.

After this optimization step is done, the information describing the segmented object is

represented by the label parameters. Hence, the system is able to segment unknown objects.

Furthermore, objects with smoothly changing occurence can be tracked.

Initialization and motion propagation: Besides a standard (background) label with

∆x = ∆y = 0, the initial labels are determined by searching for “good” motion estimates in

the SSD surfaces. These have to meet all of the following criteria: (a) Motion needs to be

clearly present, which is indicated by bad matching results for ∆x = ∆y = 0. (b) Occlusion

areas are excluded, as defined for motion estimation. (c) The correspondence matches have

to be unambiguous, which corresponds to a peaked minimum in an SSD surface.

When segmenting a sequence of images, the label parameters are carried over to the next

frame. To account for dramatic changes or new occurrences of motion, new additional labels

are included. The configuration is also carried over to the next frame as a prediction for

the positions and shape of the segments: the motion estimates from the labels are applied

to each site, yielding a linear motion model.

4 Experiments and Results

This section presents experiments to demonstrate the performance of our system. The

evaluation is done on synthetic as well as on real world data. The synthetic data (Fig.

2a), showing two textured objects moving in front of cluttered background, is generated

using POV-Ray2. The real world data contains standard MPEG evaluation sequences, as

well as videos recorded with a VidereDesign STOC3 stereo camera device. Due to missing

2http://www.povray.org
3http://www.videredesign.com
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Figure 2: Experimental results using a synthetic test sequence (a) with two objects moving

in front of cluttered background. The diagram (b) show the segmentation error (black)

and the needed time steps (red) while changing the the occlusion threshold τoccl. The plot

for the depth weight αdep (c) shows the results for different types of sequences (black and

green) . Values are averaged over 10 trials with 10 frames each. The error bars show the

standard deviation over the trials.

ground truth data the quantitative tests are performed only on the synthetic data set. Both

segmentation error and number of iterations are evaluated by changing one of the system’s

parameters while keeping the others fixed. The segmentation error is calculated taking

the percentage of pixels which were labeled the wrong segment, according to [13]. Results

considering real world images are not discussed within this paper, due to a lack of space.

The SSD surfaces are obtained using a 5× 5 pixel correlation window, and a 15× 15 pixel

search window. The parameter αreg = 0.5 is determined by experimental evaluation.

In this experiment, segmentation performance is tested with different settings for the oc-

clusion detection threshold τoccl. When occlusions are not treated in particular, false seg-

mentation occurs at frontal boundaries of moving objects. The results of this experiment

are presented and discussed in Fig. 2b. If the threshold τoccl is too high to be reached, the

occlusion handling does not work. With adequate settings the false segments at the front

border of the moving objects are suppressed. If τoccl is too low, good motion estimates are

discarded and the segmentation deteriorates. Further experiments use τoccl = 4.

To analyze the influence of the depth cue, two different scenes are regarded. The first

one is our standard POV-Ray generated one. In the second one, one of the objects slows

down below a detectable velocity. The results can be seen in Fig. 2c. The green plot is

evaluated with the sequence containing continuous movement, while the black one shows

the results with absent movement. It can be seen in the black curve, that the segmentation

result becomes better with an enabled depth cue αdep > 0. Our framework is able to

compensate the absent motion with the help of the depth cue. The green plot shows a

slight disimprovement with the stereo cue enabled. This is due to the fact, that the depth

information we gain from the stereo camera device contains fuzzy borders around each
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object. So, the position of the border caused by the motion differs from the one of the

depth estimation, and the system is unable to find the right one.

5 Conclusion

We have presented a motion segmentation system that integrates additional cues like edges,

color, and depth information in one optimization scheme. Correspondence-based motion

information is incorporated with full SSD surfaces instead of best matches only. This way,

data from evenly good matches in ambiguous cases is not discarded.

Results have been presented for segmentation on rendered scenes. We have shown the

advantage of multi-cue segmentation over approaches with pure motion, and demonstrated

the importance of occlusion handling. Our system converges in less than 30 iterations.

Despite the good results, our current system is limited in some ways. Motion is represented

as local translational motion. The use of 2D affine or 3D motion models would improve the

performance in cases where large rotations or changes of distance take place. Our general

approach with its special characteristics however is suited for other motion models. The

analysis of ways to handle the additional complexity in the optimization could also be part

of future work.
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