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Preface 
 
Dear Participants, 
 
Confronted with the ever-increasing complexity of technical processes and the growing demands on their 
efficiency, security and flexibility, the scientific world needs to establish new methods of engineering design and 
new methods of systems operation. The factors likely to affect the design of the smart systems of the future will 
doubtless include the following: 

• As computational costs decrease, it will be possible to apply more complex algorithms, even in real 
time. These algorithms will take into account system nonlinearities or provide online optimisation of the 
system’s performance. 

• New fields of application will be addressed. Interest is now being expressed, beyond that in “classical” 
technical systems and processes, in environmental systems or medical and bioengineering applications. 

• The boundaries between software and hardware design are being eroded. New design methods will 
include co-design of software and hardware and even of sensor and actuator components. 

• Automation will not only replace human operators but will assist, support and supervise humans so 
that their work is safe and even more effective. 

• Networked systems or swarms will be crucial, requiring improvement of the communication within 
them and study of how their behaviour can be made globally consistent. 

• The issues of security and safety, not only during the operation of systems but also in the course of 
their design, will continue to increase in importance. 

The title “Computer Science meets Automation”, borne by the 52nd International Scientific Colloquium (IWK) at 
the Technische Universität Ilmenau, Germany, expresses the desire of scientists and engineers to rise to these 
challenges, cooperating closely on innovative methods in the two disciplines of computer science and 
automation. 

The IWK has a long tradition going back as far as 1953. In the years before 1989, a major function of the 
colloquium was to bring together scientists from both sides of the Iron Curtain. Naturally, bonds were also 
deepened between the countries from the East. Today, the objective of the colloquium is still to bring 
researchers together. They come from the eastern and western member states of the European Union, and, 
indeed, from all over the world. All who wish to share their ideas on the points where “Computer Science meets 
Automation” are addressed by this colloquium at the Technische Universität Ilmenau. 
All the University’s Faculties have joined forces to ensure that nothing is left out. Control engineering, 
information science, cybernetics, communication technology and systems engineering – for all of these and their 
applications (ranging from biological systems to heavy engineering), the issues are being covered.  
Together with all the organizers I should like to thank you for your contributions to the conference, ensuring, as 
they do, a most interesting colloquium programme of an interdisciplinary nature. 
I am looking forward to an inspiring colloquium. It promises to be a fine platform for you to present your 
research, to address new concepts and to meet colleagues in Ilmenau. 
 
 
 
 
 
Professor Peter Scharff     Professor Christoph Ament  
Rector, TU Ilmenau             Head of Organisation 
 





 
 

 
 

 
Ta

b
le

 o
f 

C
o

n
te

n
ts

 

 





 III 

C O N T E N T S 
  Page  
1 Systems Engineering and Intelligent Systems 
 

A. Yu. Nedelina, W. Fengler  3 
DIPLAN: Distributed Planner for Decision Support Systems 
 

O. Sokolov, M. Wagenknecht, U. Gocht  9 
Multiagent Intelligent Diagnostics of Arising Faults 
 

V. Nissen  15 
Management Applications of Fuzzy Conrol 
 

O. G. Rudenko, A. A. Bessonov, P. Otto  21 
A Method for Information Coding in CMAC Networks 
 

Ye. Bodyanskiy, P. Otto, I. Pliss, N. Teslenko 27 
Nonlinear process identification and modeling using general  
regression neuro-fuzzy network 
 

Ye. Bodyanskiy, Ye. Gorshkov,  V. Kolodyazhniy , P. Otto  35 
Evolving Network Based on Double  Neo-Fuzzy Neurons 
 

Ch. Wachten, Ch. Ament, C. Müller, H. Reinecke 41 
Modeling of a Laser Tracker System with Galvanometer Scanner 
 

K. Lüttkopf, M. Abel, B. Eylert  47 
Statistics of the truck activity on German Motorways 
 

K. Meissner, H. Hensel  53 
A 3D process information display to visualize complex process  
conditions in the process industry 
 

F.-F. Steege, C. Martin, H.-M. Groß  59 
Recent Advances in the Estimation of Pointing Poses on Monocular  
Images for Human-Robot Interaction 
 

A. González, H. Fernlund, J. Ekblad  65 
After Action Review by Comparison – an Approach to Automatically  
Evaluating Trainee Performance in Training Exercise 
 

R. Suzuki, N. Fujiki, Y. Taru, N. Kobayashi, E. P. Hofer  71 
Internal Model Control for Assistive Devices in Rehabilitation Technology 

  

D. Sommer, M. Golz  77 
Feature Reduction for Microsleep Detection 
 
 



 IV 

F. Müller, A. Wenzel, J. Wernstedt 83 
A new strategy for on-line Monitoring and Competence Assignment to  
Driver and Vehicle 
 

V. Borikov   89 
Linear Parameter-Oriented Model of Microplasma Process in 
Electrolyte Solutions 
 

A. Avshalumov, G. Filaretov 95 
Detection and Analysis of Impulse Point Sequences on  
Correlated Disturbance Phone 
 

H. Salzwedel  101 
Complex Systems Design Automation in the Presence of Bounded  
and Statistical Uncertainties 
 

G. J. Nalepa, I. Wojnicki  107 
Filling the Semantic Gaps in Systems Engineering 
 

R. Knauf  113 
Compiling Experience into Knowledge 
 

R. Knauf, S. Tsuruta, Y. Sakurai  119 
Toward Knowledge Engineering with Didactic Knowledge 
 
 
2 Advances in Control Theory and Control Engineering   
 

U. Konigorski, A. López 129 
Output Coupling by Dynamic Output Feedback 
 

H. Toossian Shandiz, A. Hajipoor  135 
Chaos in the Fractional Order Chua System and its Control 
 
 

O. Katernoga, V. Popov, A. Potapovich, G. Davydau  141 
Methods for Stability Analysis of Nonlinear Control Systems with Time  
Delay for Application in Automatic Devices 
 

J. Zimmermann, O. Sawodny  145 
Modelling and Control of a X-Y-Fine-Positioning Table 
 

A. Winkler, J. Suchý  151 
Position Based Force Control of an Industrial Manipulator 
 

E. Arnold, J. Neupert, O. Sawodny, K. Schneider  157 
Trajectory Tracking for Boom Cranes Based on Nonlinear Control  
and Optimal Trajectory Generation 
 



 V 

K. Shaposhnikov, V. Astakhov  165 
The method of ortogonal projections in problems of the stationary  
magnetic field computation 
 

J. Naumenko  167 
The computing of sinusoidal magnetic fields in presence of the surface with  
bounded conductivity 
 

K. Bayramkulov, V. Astakhov  169 
The method of the boundary equations in problems of computing static and  
stationary fields on the topological graph 
 

T. Kochubey, V. Astakhov 171 
The computation of magnetic field in the presence of ideal conductors  
using the Integral-differential equation of the first kind 
 
M. Schneider, U. Lehmann, J. Krone, P. Langbein, Ch. Ament, P. Otto, 173 
U. Stark, J. Schrickel  
Artificial neural network for product-accompanied analysis and control 
 

I. Jawish  179 
The Improvement of Traveling Responses of a Subway Train using  
Fuzzy Logic Techniques 
 

Y. Gu, H. Su, J. Chu    185 
An Approach for Transforming Nonlinear System Modeled by the Feedforward  
Neural Networks to Discrete Uncertain Linear System 
 
 
3 Optimisation and Management of Complex Systems  
 and Networked Systems 
 

R. Franke, J. Doppelhammer  193 
Advanced model based control in the Industrial IT System 800xA 
 

H. Gerbracht, P. Li, W. Hong 199 
An efficient optimization approach to optimal control of large-scale processes 
 

T. N. Pham, B. Wutke 205 
Modifying the Bellman’s dynamic programming to the solution of the discrete   
multi-criteria optimization problem under fuzziness in long-term planning 
 

S. Ritter, P. Bretschneider  211 
Optimale Planung und Betriebsführung der Energieversorgung im  
liberalisierten Energiemarkt 
 

P. Bretschneider, D. Westermann  217 
Intelligente Energiesysteme: Chancen und Potentiale von IuK-Technologien 

 



 VI 

Z. Lu, Y. Zhong, Yu. Wu, J. Wu 223 
WSReMS: A Novel WSDM-based System Resource Management Scheme 
 

M. Heit, E. Jennenchen, V. Kruglyak, D. Westermann  229 
Simulation des Strommarktes unter Verwendung von Petrinetzen 
 

O. Sauer, M. Ebel  237 
Engineering of production monitoring & control systems  
 

C. Behn, K. Zimmermann  245 
Biologically inspired Locomotion Systems and Adaptive Control 
 

J. W. Vervoorst, T. Kopfstedt  251 
Mission Planning for UAV Swarms 
 

M. Kaufmann, G. Bretthauer  257 
Development and composition of control logic networks for  
distributed mechatronic systems in a heterogeneous architecture 
 

T. Kopfstedt, J. W. Vervoorst  263 
Formation Control for Groups of Mobile Robots Using a Hierarchical  
Controller Structure 
 

M. Abel, Th. Lohfelder  269 
Simulation of the Communication Behaviour of the German Toll System 
 

P. Hilgers, Ch. Ament  275 
Control in Digital Sensor-Actuator-Networks 
 

C. Saul, A. Mitschele-Thiel, A. Diab, M. Abd rabou Kalil  281 
A Survey of MAC Protocols in Wireless Sensor Networks  
 

T. Rossbach, M. Götze, A. Schreiber, M. Eifart, W. Kattanek  287 
Wireless Sensor Networks at their Limits – Design Considerations  
and Prototype Experiments 
 

Y. Zhong, J. Ma 293 
Ring Domain-Based Key Management in Wireless Sensor Network 
 

V. Nissen  299 
Automatic Forecast Model Selection in SAP Business Information  
Warehouse under Noise Conditions 
 
M. Kühn, F. Richter, H. Salzwedel  305 
Process simulation for significant efficiency gains in clinical departments –  
practical example of a cancer clinic 
  
 
 



 VII 

D. Westermann, M. Kratz, St. Kümmerling, P. Meyer  311 
Architektur eines Simulators für Energie-, Informations- und Kommunikations- 
technologien 
 
P. Moreno, D. Westermann, P. Müller, F. Büchner  317 
Einsatzoptimierung von dezentralen netzgekoppelten Stromerzeugungs- 
anlagen (DEA) in Verteilnetzen durch Erhöhung des Automatisierungsgrades 

 

M. Heit, S. Rozhenko, M. Kryvenka, D. Westermann  331 
Mathematische Bewertung von Engpass-Situationen in Transportnetzen 
elektrischer Energie mittels lastflussbasierter Auktion 
 

M. Lemmel, M. Schnatmeyer  339 
RFID-Technology in Warehouse Logistics 
 

V. Krugljak, M. Heit, D. Westermann  345 
Approaches for modelling power market: A Comparison. 
 

St. Kümmerling, N. Döring, A. Friedemann, M. Kratz, D. Westermann 351 
Demand-Side-Management in Privathaushalten – Der eBox-Ansatz 
 
 
4  Intelligent Vehicles and Mobile Systems 
 

A. P. Aguiar, R. Ghabchelloo, A. Pascoal, C. Silvestre , F. Vanni 359 
Coordinated Path following of Multiple Marine Vehicles: Theoretical  
Issues and Practical Constraints 
 

R. Engel, J. Kalwa  365 
Robust Relative Positioning of Multiple Underwater Vehicles 
 

M. Jacobi, T. Pfützenreuter, T. Glotzbach, M. Schneider  371 
A 3D Simulation and Visualisation Environment for Unmanned Vehicles  
in Underwater Scenarios 
 

M. Schneider, M. Eichhorn, T. Glotzbach, P. Otto  377 
A High-Level Simulator for heterogeneous marine vehicle teams under real  
constraints 
 

A. Zangrilli, A. Picini  383 
Unmanned Marine Vehicles working in cooperation: market trends  
and technological requirements 
 

T. Glotzbach, P. Otto, M. Schneider, M. Marinov 389 
A Concept for Team-Orientated Mission Planning and Formal Language  
Verification for Heterogeneous Unmanned Vehicles 
 
 
 



 VIII 

M. A. Arredondo, A. Cormack  395 
SeeTrack: Situation Awareness Tool for Heterogeneous Vehicles 

J. C. Ferreira, P. B. Maia, A. Lucia, A. I. Zapaniotis  401 
Virtual Prototyping of an Innovative Urban Vehicle 

 

A. Wenzel, A. Gehr, T. Glotzbach, F. Müller  407 
Superfour-in: An all-terrain wheelchair with monitoring possibilities to  
enhance the life quality of people with walking disability 
 

Th. Krause, P. Protzel  413 
Verteiltes, dynamisches Antriebssystem zur Steuerung eines Luftschiffes 
 
T. Behrmann, M. Lemmel 419 
Vehicle with pure electric hybrid energy storage system 
 

Ch. Schröter, M. Höchemer, H.-M. Groß 425 
A Particle Filter for the Dynamic Window Approach to Mobile Robot Control 
 

M. Schenderlein, K. Debes, A. Koenig, H.-M. Groß 431 
Appearance-based Visual Localisation in Outdoor Environments with an  
Omnidirectional Camera 
 

G. Al Zeer, A. Nabout, B. Tibken 437 
Hindernisvermeidung für Mobile Roboter mittels Ausweichecken 
 
 
5 Robotics and Motion Systems 
 

Ch. Schröter, H.-M. Groß 445 
Efficient Gridmaps for SLAM with Rao-Blackwellized Particle Filters 
 

St. Müller, A. Scheidig, A. Ober, H.-M. Groß  451 
Making Mobile Robots Smarter by Probabilistic User Modeling and Tracking 
 

A. Swerdlow, T. Machmer, K. Kroschel, A. Laubenheimer, S. Richter 457 
Opto-acoustical Scene Analysis for a Humanoid Robot 
 

A. Ahranovich, S. Karpovich, K. Zimmermann  463 
Multicoordinate Positioning System Design and Simulation 
 

A. Balkovoy, V. Cacenkin, G. Slivinskaia  469 
Statical and dynamical accuracy of direct drive servo systems 
 

Y. Litvinov, S. Karpovich, A. Ahranovich  477 
The 6-DOF Spatial Parallel Mechanism Control System Computer Simulation 
 
 
 



V. Lysenko, W. Mintchenya, K. Zimmermann  483 
Minimization of the number of actuators in legged robots using  
biological objects 
 

J. Kroneis, T. Gastauer, S. Liu, B. Sauer  489 
Flexible  modeling and vibration analysis of a parallel robot with  
numerical and analytical methods for the purpose of active vibration damping 
 

A. Amthor, T. Hausotte, G. Jäger, P. Li 495 
Friction Modeling on Nanometerscale and Experimental Verification 
 
 
Paper submitted after copy deadline 
 
2 Advances in Control Theory and Control Engineering   
 
V. Piwek, B. Kuhfuss, S. Allers 
Feed drivers – Synchronized Motion is leading to a process optimization 503 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 IX 





52nd Internationales Wissenschaftliches Kolloquium 
Technische Universität Ilmenau 

 10 – 13 September 2007 
 
René Güttler/Axel Schneider/Christoph Ament/Josef Schmitz 
 
 

Using a reinforcement learning approach in a 
discrete event manufacturing system  
 

Abstract 
  

Up to date assembly lines and manufacturing systems use manufacturing cells and single machines which are loaded 
and unloaded by a gantry loader. The gantry loader is a rare resource that has to be shared by all manufacturing cells 
and machines (clients). In this context the loading and unloading strategy which is implemented in the controller of 
the gantry is essential to gain a high manufacturing efficiency. To our knowledge, the implemented control strategies 
are mostly based on fixed schedules that dictate the order in which the available clients are served. On the one hand a 
fixed schedule guarantees safe operation in the normal case. On the other hand a fixed schedule can not adapt to 
unknown situations. We propose a reinforcement learning approach to add the flexibility of lifelong learning to the 
classical controller’s ability of keeping the process in well defined boundaries. The control approach introduced in 
this paper can also be used offline to train a new controller or it can be used online. To evaluate the adaptive 
properties of the flexible controller trained by means of reinforcement learning we present simulation data of a small 
setup consisting of n single machines and a gantry loader. 
 

Introduction 
 

Assembly and production lines consist of components like conveyors, machines for 

handling the work pieces, CNC-machines for drilling, milling and turning etc. The 

production processes are controlled by human workers who still, in some cases, fulfil 

production steps manually. In these processes, all members, be it humans or machines, 

have to interact in such a way that the work pieces are produced with a high efficiency at 

a desired quality. The work pieces have to pass different production steps in different 

machines. Each machine in this chain is specialized on certain production steps to 

minimize set-up time. Usually, there is a well defined number of machines at each 

production site in the line to process the desired operations for the work pieces in a 

desired cycle time. In a real world process, each machine is affected by different 

machine failures. In such a case, a human operator has to find the source of defect, 

eliminate it and restart the machine. 

Especially when more than one machine accomplishes the same process (parallel) 

usually a gantry loader transports the work pieces from a storage area or a conveyor to 

the machines and back. In a well configured system this transfer time (including waiting 

time due to busy machines) is minimal because the process time of each machine and 

the arrival of new work pieces are synchronized. This balancing is disturbed by the 

above mentioned machine failures. A classical controller for the gantry loader orientates 



itself to the given state vector of the machines at time t and reacts according to its 

implemented strategy. However, in some cases it is more suitable to alter the 

implemented strategy, for example in unpredictable situations like the sudden shutdown 

of machines due to failures or configurationally changes. Therefore, an adaptive strategy 

for loading and unloading, even in the situations described above, would minimize the 

transport costs in error-prone real world scenarios. The loader should be able to decide 

on the action it has to take next for a given situation of the environment. This decision 

should consider past and current data respectively to adapt to changing situations. 

Strategies that use past data in current control actions can be regarded as learning 

strategies. 

On the one hand, a controller with a live long learning algorithm is able to find time 

optimal solutions in new situations but stability can not always be guaranteed. On the 

other hand, a classical controller uses a robust strategy which is not time optimal in 

unpredictable situations. In this paper we propose a combination of these two control 

approaches to combine their advantages (see Fig. 1). 

Different applications have already been introduced in the context of industrial 

manufacturing in which an optimal control strategy was designed by means of a 

reinforcement learning algorithm. Creighton and Nahavandi developed a reinforcement 

learning agent to determine the optimal operating policy in a multi-part serial line by 

using a discrete event simulation environment [3]. Ayedin and Oztemel successfully 

implemented a reinforcement learning agent for a job-shop scheduling problem [5]. Real 

world problems for elevator dispatching were presented by Crities and Barto [6, 7]. 

 

Using a Reinforcement Learning approach 
 
The idea of Reinforcement Learning (RL) was derived from dynamic programming (DP) 

where a full model of the process has to be known (including all states and transition 

probabilities). The motivation for using a reinforcement learning approach for the control 

of a manufacturing process is that it does not need an explicit model or an a-priori 

strategy. In real world control problems a closed model of a complex process is difficult 

to derive, especially in manufacturing applications that consist of many components. A 

controller based on reinforcement learning develops its strategy by getting rewards for 

beneficial behaviour and punishments (or fewer rewards) for useless actions.  

A control system that is based on reinforcement learning consists of the following 

components: A policy, a reward function, a value function and usually a model of the 



environment [1]. During a learning phase the agent makes a decision (policy) and 

controls the environment by an action a so that the environment changes its state from s 

to s’. As a result of the change in the state the agent receives a specified reward r 

( ) for the action he has taken. A cumulative reward is calculated by integration of all 

current rewards over time. The cumulative reward function implicitly defines the goal of 

the RL while the agent tries to maximize the overall received reward. The decision for a 

certain action of the agent for state s depends on the value function which describes the 

long term experience of the agent [1, 10 and 11]. 

As opposed to classical controller design, in which the developer has to choose the 

control strategy based on a model, in RL-based controller design the difficulty lies in 

designing the reward and value functions. Current research is focussed on finding 

suitable reward and value functions for a given application because there is no general 

framework for the design process [7, 8 and 9].  

Common methods for calculating the value-function are so called Q-values [1]. These 

values are stored in large tables or are estimated by neural networks when the state 

space is too large. The following updating equation (1) describes how to estimate a 

Value-Function that is derived by the Bellman Equation. It is independent of the 

transition probability to get from state s to state s’, 

 
where  are the states and  are the actions of the agent.  denotes the 

reward for a given state s and action a. The parameter  describes the learning rate and 

 the discount rate for learning. Discounting the reward determines the present value for 

future rewards [1].  The states of the environment include the position of the gantry 

loader, the loading states of the gripper, the state of the storage area or conveyor and 

the states of the machines. Actions that are processed by the crane are wait, turn left, 

turn right and pick-and-place for both grippers. 

 

Architecture of the proposed system 
 

The architecture of the system proposed in this paper comprises a classical controller, a 

flexible controller, a comparator and the event discrete model of the material flow in the 

real process. Fig.1 shows the control scheme of this approach. The new, flexible 

controller to be trained is arranged in parallel to the classical controller. During a training 

period only the classical controller works on the real process whereas the flexible 

  (1)



controller works on a model of the real process. Both the real and the model process 

receive work pieces at the input and release work pieces at the output after 

manufacturing. A second control input of the real and model process is connected to the 

output of the classical and flexible controller, respectively. Both controllers receive a 

state vector of their own process as input. Besides the states of the process, the state 

vector also contains a reward signal from a teacher that judges the efficiency of the real 

and the modelled process’ actions. The classical controller does not benefit from the 

teaching signal. However, the flexible controller learns to improve its control strategy 

because controller actions which lead to undesirable results (e.g. low work piece 

throughput) are punished and actions that improve the work piece flow are rewarded. 

Therefore, the flexible controller can adapt to situations in which, for example, the 

productivity of manufacturing cells is decreased due to failures or is increased due to 

recovery of the cell. A comparator constantly monitors the reward signals from the 

process controlled by the classical controller and from the process controlled by the 

flexible controller. When the flexible controller achieves higher rewards, the comparator 

circuit can decide to swap the classical and the flexible controller (commutator swiches 

in Fig. 1). As a result, the flexible controller governs the real process and the classical 

controller works on the process model. If the quality of the flexible controller’s actions on 

the process decreases, the comparator can also reverse the swapping process and use 

the classical controller again until the flexible controller achieves better rewards.  

 
Fig.  1 Combined controller 
 
 



Simulation data of a small configuration 
 
In order to test our control approach we implement a model of a manufacturing 

system Matlab/Simulink (The MathWorks Inc., Natick, MA). We compared a simple 

FIFO (first in first out) strategy with a Reinforcement Learning strategy in throughput 

of workpieces and  the cumultativ reward rate of the action of the gantry loader.  

The configuration has 4 machines in which work pieces are processed with a 

processing time of 120s, a gantry loader with two grippers, both for transporting work 

pieces from the machines to the storage area and back. Finally, there is a storage 

area where new work pieces arrive every 30s. The system dynamics are 

characterized as follows: The time to travel from one machine to another is 2.5s, the 

time for grabbing (pick or place) a work piece takes 6s. In an optimal case the gantry 

loader’s position is above the machines or the storage area whenever the processing 

of a work piece is finished or a new work piece has arrived. Hence there is no waiting 

for transport and one can expect a maximal throughput. For each movement of the 

gantry loader the agent gets a static negativ Reward (penalty). In the successful 

state, where the crane places a processed work piece at the conveyor belt,  the 

agent gets a reward of 1000 Points (see Fig. 2)  
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Fig. 2 Comparison between a simple FIFO strategy and a Reinforcement Learning approach in output and 
reward rate 
 
For this architecture to become active in controlling the real production system the 

commutator switch is needed (Fig.1). At the branching point between the FIFO reward 

rate and the Reinforcement Learning reward rate the commutator have to switch from 

the classical strategy to the reinforcement learning strategy until the reward rate of the 
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new strategy becomes worse. We suppose that for a well trained flexible controller with 

Reinforcement Learning the average throughput time for both cases, undisturbed and 

disturbed process, is less than for the classical controller (e.g. FIFO). Thus, one can 

expect more output during a given time window. 

 
Conclusion and Future Work 

 
We propose a new architecture to handle control problems in a discrete 

manufacturing environment by implementing a reinforcement learning approach. We 

tested this approach separately on a simulated machine configuration with a control 

task for the gantry loader. In this simulation we compared a classical FIFO strategy 

with a reinforcement learning strategy. We show that the new approach works in an 

undisturbed environment. In the present paper we did not consider failures of the 

machines. Consideration of stochastic failures will be part of our future work. 
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