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1. Preface 

Worldwide, approximately 10 million people annually are diagnosed with cancer and 

more than 6 million people die of the disease every year (Steward BW and Kleihues P, 

2003). In the year 2000, malignant tumours were responsible for 12 % of the nearly 

56 million deaths worldwide from all causes (Parkin, 2001). According to the World 

Cancer Report, the global cancer rates could increase by 50 % to 15 million by 2020 

(World Health Organization, 2003). In many countries, more than a quarter of deaths 

are attributable to cancer. In the year 1981, Doll and Peto published their 

encyclopaedic analysis of the causes of cancer. The results of the analysis suggested 

that in 1970, 75 to 80 % of all cancers in the United States of America (USA) could 

have theoretically been avoided if the population of the USA could be like those of 

the countries in which the incidence of cancer was the lowest. What made the US 

population different from low-risk populations? The environmental (non-genetic) 

factors that differ between the United States and low risk populations are many and 

diverse, and include factors such as lifelong patterns of diet, weight gain, alcohol 

consumption, use of tobacco and use of pharmacological agents (Figure 1) (Doll and 

Peto, 1981). One out of every three Americans will be diagnosed with cancer at some 

time in their lifetime. Industrial nations like USA, UK, Italy, Australia, Germany, The 

Netherlands, Canada and France show the highest overall cancer rates. Developing 

countries like Northern Africa, Southern and Eastern Asia have the lowest cancer 

incidence. Current research indicates that the foods we eat can influence our 

susceptibility to certain types of cancer. It is estimated that up to 30 to 40 % of all 

cancers are preventable by changes in diet (Colditz et al., 2006). Generally, high 

energy and high fat diets, which can lead to obesity, are thought to increase the risk 

of some cancers. Plant-based diets high in fresh fruits, vegetables, legumes and whole 

grains may help to prevent cancer (Gonzalez and Riboli, 2006). Diet is just one of the 
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lifestyle factors that influence the risk of developing cancer. Smoking, obesity, alcohol 

and physical activity levels are also important (Soerjomataram et al., 2007). New 

research is strengthening the link between “healthy eating” and the prevention of 

certain types of cancer. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Proportion of cancer deaths attributed to non-genetic factors, as estimated 
by Doll and Peto, 1981. 
 

1.1 Diet and colon cancer 
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Japanese gene pool within 1-2 generations that could account for this increase, but it 

is possible that the Japanese susceptibility to colon cancer is nowadays unmasked by 

their changed diet (Tanaka and Imamura, 2006). This adds support to the conclusions 

and shows that the major causes for colon cancer are dietary habits. Genetic 

susceptibility appears to be involved in less than five per cent of cases. Up to 70 % of 

cases can be prevented by following a “healthy lifestyle” (Satia et al., 2004). Physical 

activity and a diet high in vegetables and fibre have been shown to be protective, 

while a high red meat intake (especially processed meat) and alcohol may increase the 

risk (Bingham and Riboli, 2004). However, the link between dietary factors and 

cancer protection is still difficult to establish, and the protective role of fruits and 

vegetables is somewhat controversial (Hung et al., 2004b; Schatzkin and Kipnis, 

2004). It is therefore important to continue exploring possible interactions between 

dietary and potential cancer risk factors, and to appropriately stratify epidemiological 

studies (Schatzkin and Kipnis, 2004). 

 

 
 
 
 
 
 
 
 
 
 
 
Figure 2. Estimates of number of incident cases of cancer in Europe (2004), both sexes 
combined (in thousands) (Boyle and Ferlay, 2005). 
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1.1.1 Genetics of colorectal cancer 

Colorectal cancer (CRC) is usually observed in one of two specific patterns: sporadic 

and inherited. Sporadic disease, with no inherited predisposition, accounts for 

approximately 70 % of colorectal cancer in the population (Hisamuddin and Yang, 

2004). These cancers are common in persons older than 50 years of age, probably as a 

result of dietary and environmental factors as well as normal aging (Heavey et al., 

2004). The two most common inherited syndromes associated with an increased risk 

of CRC are familial adenomatous polyposis coli (FAP) and hereditary non polyposis 

colorectal cancer (HNPCC) also called Lynch Syndrome. FAP is a rare autosomal 

dominant syndrome and least understood pattern of colon cancer development (de 

and Fernando, 1998). Up to less than 1 % of all cases of colon cancer may fall into this 

category. A germline mutation in the tumour suppressor gene for adenomatous 

polyposis coli (APC) results in FAP (Kinzler and Vogelstein, 1996). HNPCC is an 

inherited autosomal dominant syndrome (Jass et al., 1994). Specific genetic mutations 

have been identified as the cause of HNPCC, these mutations are estimated to account 

for only 5-10 % of colorectal cancer cases overall (Figure 3). Although uncommon, 

these syndromes provide insight into the biology of all types of colorectal cancer. 

HNPCC is caused by a fault in DNA mismatch repair (MMR) genes, which include 

MSH1, MLH2, MSH6, PMS2, and PMS1 (Grady, 2003; Lynch and Lynch, 2000).  

 

Moreover, in the intestinal tract, several discrete familial syndromes characterised by 

multiple hamartomatous polyps have been described - these include the Peutz-

Jeghers syndrome, Juvenile polyposis syndrome. Peutz-Jeghers syndrome is an 

autosomal dominant disorder and characteristics of this disease include the presence 

of pigmentation on the lips, buccal mucosa, hands, and feet; hamartomatous polyps 

throughout the gastrointestinal tract (Gruber et al., 1998; Westerman et al., 1999). 

Peutz-Jeghers syndrome is caused by germline mutations in STK11/LKB1, a serine-
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threonine kinase gene. The cumulative risk of colon cancer is 39 %, with similar rates 

for gastric and pancreatic cancer (Brosens et al., 2007). Juvenile polyps are distinctive 

hamartomas that have a smooth surface and are covered by normal colonic 

epithelium. Juvenile polyposis syndrome is defined by 10 or more colonic juvenile 

polyps or any number of juvenile polyps, with a family history of juvenile polyposis 

(Back et al., 1999). The risk of colon cancer is increased in familial juvenile polyposis, 

with cancer occurring at an average age of 34 years. Most families with this syndrome 

have germline mutations of the DPC4/SMAD4 gene, some families carry mutations in 

the PTEN gene (Brosens et al., 2007; Jeter et al., 2006). 

 
  
  
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Figure 3. Factors associated with an increased risk of colorectal cancer (CRC) (Stark et 
al., 2006). APC, Adenomatous polyposis coli; KRAS, Kirsten rat sarcoma; MLH1, 
Mismatch repair protein 1, mutS homolog 1; MSH6, Mismatch repair protein 6, mutS 
homolog 6; MUTYH, MutY homolog (E. coli); TP53,Tumour protein p53 
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1.1.2 Overview of molecular alterations in human 
colorectal cancer 
 

Tumorigenesis is a phenomenon in which transformation from normal to malignant 

mucosa is a multistep process and is called the adenoma-carcinoma sequence. This 

stepwise evolutionary process is mainly driven by selection of an increased mutation 

rate arising in a normal cell. It is estimated that at least four distinct genetic changes 

need to occur to ensure colorectal cancer evolution (Figure 4). The order is not always 

followed precisely, but the favoured sequences of events include inactivation of 

tumour suppressor genes by deletion or mutation and activation of proto-oncogenes 

by mutation. Adenomatous polyposis coli (APC) gene mutations and 

hypermethylation occur early, followed by K-ras, BRAF1, SMAD4 mutations 

(Alazzouzi et al., 2005; Rajagopalan et al., 2002). Deleted in colon cancer (DCC) and 

TP53 gene mutations occur later in the sequence (Bodmer, 2006). Inactivation of APC 

function seems to underlie both tumour initiation and progression in the colon. This 

leads to the earliest identifiable lesion in colon cancer formation, the aberrant crypt 

focus (ACF). Mutations in the KRAS oncogene and APC, SMAD4  and TP53 tumour 

suppressor genes are the main targets of colon carcinogenesis (Fearon and Vogelstein, 

1990; Powell et al., 1992). APC mutations disrupt the association of APC with β-

catenin, resulting in excessive amounts of β-catenin and overactivation of the Wnt 

signaling pathway. Consequently, genes that promote tumour formation are 

transcribed (Behrens, 2005; Chung, 2000). Mutations in members of the transforming 

growth factor-β (TGF-β) signalling pathway are thought to have a rate limiting role in 

colorectal cancer. The TGF-β can stimulate or inhibit cell proliferation, 

differentiation, motility, adhesion or apoptosis (Blobe et al., 2000). The most 

frequently targeted gene for mutation in this pathway is the TGF-β receptor type II 

tumour suppressor gene (TGFBR2). Other less frequently targeted genes include the 
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BCL2-associated X protein (BAX) and DNA mismatch repair proteins (MSH3, MSH6) 

(Grady, 2003). Progression into metastatic CRC requires additional molecular changes 

in order for the tumour to invade surrounding tissues. The exact molecular events 

controlling CRC metastasis are not fully known. The involvement of, for example, 

PRL3 and multiple factors in the WNT/β-catenin pathway has been suggested (Pai et 

al. 2004, Dhawan et al. 2005).  

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Proposed adenoma to carcinoma sequence in colorectal cancer (CRC) (Fodde 
et al., 2001b). APC, adenomatous polyposis coli; BAX, bcl2-associated x protein; 
BRAF1, v-raf murine sarcoma viral oncogene homolog B1; DCC, deleted in 
colorectalcancer; K-ras, kirsten-ras; MSH3, muts, E. coli, homolog of 3; PRL3, 
protein-tyrosine phosphatase, type 3. SMAD4, mothers against decapentaplegic, 
drosophila, homolog of 4; TGFBR2, transforming growth factor-β receptor, type 2; 
TP53, tumour protein p53 
 
Moreover, the causes of molecular alterations in colorectal cancer can be grouped into 
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(APC, TP53), defect in chromosome segregation and loss of the mitotic checkpoint 

gene BUB1 (Fodde et al., 2001b). Mutated forms of APC, as present in colorectal 

cancers, have the ability to cause CIN (Fodde et al., 2001a). It was therefore 

postulated that mutations in APC lead to spindle stress that can result in CIN through 

defective mitosis, and at the same time induce aberrant Wnt/β-catenin signalling 

activation, thus leading to both cell proliferation and genomic aberrations (Fodde et 

al., 2001b) The MIN pathway involves the extensive accumulation of mutations of 

DNA mismatchrepair (MMR) genes MLH1, MSH2, MSH6 and, rarely, PMS2 

(Hendriks et al., 2006). This results in a mutator phenotype at the nucleotide level, 

and in a consequent instability of repetitive sequences such as microsatellites. 

Sporadic MIN tumours account for approximately 15 % of all colorectal cancers and it 

also occurs in patients with ulcerative colitis (Fodde, 2002; Lengauer et al., 1998). 

Furthermore, microsatellite mutations have been observed in a number of putative 

MIN target genes and the tumorigenic implications of these mutations have been 

presented in some cases, such as TGFβRII and BAX (Ionov et al., 2000).  

 

1.1.3 Chemoprevention of cancer and mechanisms 
involved  
 

In recent years, there has been an increased emphasis on chemoprevention. 

Chemoprevention of cancer is aimed to block, inhibit, or reverse either the initiation 

phase of carcinogenesis or the promotion of neoplastic cells. The initiation phase is 

characterised by the conversion of a normal cell to an initiated cell in response to 

DNA damaging agents and factors. The promotion phase is characterized by the 

transformation of an initiated cell into a preneoplastic cell, as a result of alterations in 

gene expression and cell proliferation. The progression phase involves the 
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transformation of the preneoplastic cell to a neoplastic cell population as a result of 

additional genetic alterations (Greenwald, 2002).  

 

Dietary components may be effective chemopreventive agents and they might reduce 

the cancer risk through various mechanisms, affecting different stages of 

carcinogenesis (Kelloff et al., 1999). According to Wattenberg (1985), 

chemopreventive agents can be classified into two main categories based on their 

mechanism of action, namely, “blocking agents” and “suppressing agents” 

(Wattenberg, 1985). Blocking agents can block or reverse the premalignant stage 

(initiation and promotion) of multistep carcinogenesis by increasing detoxification or 

by scavenging reactive carcinogenic compounds. Suppressing agents can inhibit the 

malignant transformation of initiated cells or at least retard the development and 

progression of precancerous cells into malignant ones (Figure 5) (Croce, 2001; Doucas 

et al., 2006).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. Carcinogenesis processes and chemoprevention strategies (Hursting et al., 
1999).  

Normal
Cell

Initiated
Cell

Preneoplastic
Cells

Neoplastic
Cells

“Suppressing Activities”“Blocking Activities”

Initiation Promotion Progression

Primary prevention

1. Enhance carcinogen 
detoxification

2. Detoxification of ROS

3. Antioxidative effect

4. Alter carcinogen 
metabolism

5. Enhance DNA repair

Secondary prevention

1. Inhibition of proliferation

2. Induction of apoptosis

3. Induction of 
differentiation

4. Decreasing inflammation

5. Enhancing immunity

Different stages of carcinogenesis



 

10  

1.2 Fruits, vegetables and colon cancer prevention 
Epidemiological studies in humans that populations consuming diets high in fruits 

and vegetables are associated with reduced risks for many cancers including colon 

cancer (Block et al., 1992; Fernandez et al., 2006; Potter, 1999). According to the 

World Health Organisation’s (WHO) report 2002, there are at least 2.7 million deaths 

globally per year of cancer, which are primarily attributable to low fruit and 

vegetable intake. However, the link between dietary factors and cancer protection is 

still difficult to establish, and the protective role of fruits and vegetables is somewhat 

controversial (Hung et al., 2004a; Schatzkin and Kipnis, 2004). It is therefore, 

important to continue exploring possible interactions between dietary and potential 

cancer risk factors, and to appropriately stratify epidemiological studies (Schatzkin 

and Kipnis, 2004). Numerous components found in fruits and vegetables might 

contribute to their ability to reduce the risk of colon cancer, including dietary fibre, 

micronutrients, and various non-nutritive phytochemicals (Terry et al., 2001). Many 

cell culture and animal model studies have been investigating the relationship 

between colon cancer risk and the consumption of specific type food items such as 

apples or onions that are rich in non-nutritive phytochemicals (Barth et al., 2005; 

Gosse et al., 2005). Results of these studies supported an inverse association between 

these non-nutritive phytochemicals, such as polyphenols, and colon cancer risk. 

Fruits are usually richer in polyphenols than vegetables, with a total phenolic content 

of 1–2 g/100 g fresh weight in certain fruits (Paganga et al., 1999). 

1.2.1 Polyphenols and their biological impact 
 

Polyphenols are large, non-nutritive secondary metabolites of plants. Flavonoids are 

the largest class of phenolic compounds; over 5000 compounds have been described. 

They are mainly classified into flavones, flavanols (catechins), isoflavones, flavonols, 
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flavanones, and anthocyanins (Beecher, 2003). The structural basis for all flavonoids 

(Figure 6) is the flavone nucleus (2-phenyl-benzo-γ-pyrane) but, depending on the 

classification method, the flavonoid group can be divided into several categories based 

on hydroxylation of the flavonoid nucleus as well as the linked sugar (Kuhnau, 1976).  

 

 

 

 

 

 

 

Figure 6. The typical structures of plant phenolics and numbering of the flavone 

nucleus (Beecher, 2003). 

 

Polyphenols possess substantial anticarcinogenic and antimutagenic properties. They 

scavenge free radicals such as, reactive oxygen and nitrogen species generated in 

biological systems, thus breaking the free radical chain reaction of lipid peroxidation. 

Another antioxidative mechanism is the chelation of metals such as iron and copper 

ions, which prevent their participation in Fenton-type reactions and the generation of 

highly reactive hydroxyl radicals (Frei and Higdon, 2003). Polyphenols are also well 

recognized for their antiproliferative activities (Scalbert et al., 2005).  

 
Many polyphenols are considered to be cancer chemopreventive agents because they 

inhibit carcinogen activation, commonly catalysed by cytochrome p450 enzymes 

(CYP450) and they can induce phase II enzymes, in vivo and in vitro (Xu et al., 2005). 

Induction of phase II enzymes may facilitate the elimination of certain carcinogens or 

of their reactive intermediates (Rushmore and Kong, 2002). Moreover, polyphenols 

can also induce apoptosis in cancer cells and inhibit the metabolism of arachidonic 
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acid. Metabolism of arachidonic acid (and linoleic acid) leads to the production of 

many proinflammatory or mitogenic metabolites such as certain prostaglandins and 

leukotrienes (Lambert et al., 2005). The inhibition of phospholipase A2, COX, and 

lipooxygenase are potentially beneficial, and have been proposed as a mechanism in 

the chemopreventive action of polyphenols (Yang et al., 2001). Opposite to this, there 

is also some evidence that polyphenols/antioxidant might cause some harmful health 

effects by their prooxidative effects. Oxidative stress can cause oxidative damage to 

large biomolecules such as proteins, DNA, and lipids, resulting in an increased risk for 

cancer (Galati and O'Brien, 2004; Halliwell, 2007).  

1.2.2 Apple polyphenols and their biological activities 
  
Apples are a good source of phenolic compounds (Eberhardt et al., 2000). The total 

extractable phenolic content has been investigated and ranges from 110 to 357 

mg/100 g of fresh apple (Podsedek et al., 2000). The amounts of polyphenols are 

known to vary depending on the variety (Liu RH et al., 2001). The most important 

flavonoids present in apples are flavanols (quercetin glycosides as the main 

representative) or catechins, flavonols, anthocyanidins, dihydrochalcones (e.g., 

phloridzin) and phenolic acids (e.g., chlorogenic acid, hydroxycinnamic acids) (Lister 

et al., 1994). In the Western diet, apples are one of the main sources of flavonoids 

together with tea, wine, onions, and chocolate (Arts et al., 2001). Apple polyphenolic 

compounds have strong antioxidant activity. The Vitamin C present in the apples is 

responsible for less than 0.4 % of the antioxidant activity; thus, the polyphenols may 

be the main cause of this effect. Apple juice consumption (700 ml) in human 

volunteers significantly (p≤0.05) increased the plasma antioxidant level and 

antioxidant capacity (Lotito and Frei, 2004; Netzel et al., 1999).  
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The apple polyphenols may play a protective role against several cancer diseases 

including colon cancer as shown during in vitro and in vivo studies. It has been 

reported that apple extracts can inhibit the epidermal growth factor receptor (EGFR) 

in human colon carcinoma cell line (HT29) (Kern et al., 2005). Polyphenol extracts 

from apples can inhibit the growth of human liver cancer and colon cancer cells in 

vitro (Eberhardt et al., 2000). Apple juice consumption can prevent damage to human 

gastric epithelial cells in vitro and to rat gastric mucosa in vivo (Graziani et al., 2005). 

Apple extracts effectively inhibited mammary cancer growth in the rat (Liu et al., 

2005). In addition, apple juice consumption decreases DNA-damage, 

hyperproliferation and aberrant crypt foci (ACF) development in the distal colon of 

1,2-dimethylhydrazine dihydrochloride (DMH) initiated rats (Barth et al., 2005). 

Moreover, another in vivo rat study showed that intervention with apple 

procyanidins reduced the number of aberrant crypt foci (ACF) and preneoplastic 

lesions initiated by azoxymethane (AOM) (Gosse et al., 2005). The same study also 

indicated that polyphenols from apples can increase the expression of extracellular 

signal-regulated kinase 1 and 2 (ERK1, 2) and c-Jun N-terminal kinases (JNK) and 

activity of caspase-3, inhibit G2/M phase cell cycle arrest and suppress PKC in SW620 

cells in vitro.  

1.2.3 Metabolism and bioavailability of polyphenols 
 
The bioavailability of polyphenols is an important determinant in understanding their 

biological activities. The dietary intake of polyphenols in northern Europe amounts to 

∼50-150 mg/day (Hollman and Arts, 2000). The bioavailability varies greatly between 

different polyphenols and depending on chemical properties, 

deconjugation/reconjugation in the intestine, intestinal absorption, and enzymes 

available for metabolism. For example, 52 % of the quercetin glycosides present in 

onions and 33 % of chlorogenic acid present in a supplement are absorbed (Hollman 
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et al., 1995). A commonly accepted concept is that the polyphenols are absorbed by 

passive diffusion. For this to occur, the glycosylated polyphenols need to be converted 

to the aglycone by glycosidases in the food or gastrointestinal mucosa, or from the 

colon microflora (Hollman et al., 1999). Moreover, some intact glycosides are 

absorbed by the action of sodium-dependent glucose transporters (SGLT) in small 

intestine (Williamson et al., 2000). A survey of the published bioavailability studies 

shows that human plasma concentrations of intact flavonoids do not exceed 1 μM 

when the polyphenols are given in doses similar to those consumed in our diets 

(Scalbert and Williamson, 2000).  

 

Until now, few references are known about the bioavailability of polyphenols from 

whole foods, including apples. DuPont et al. demonstrated that the bioavailability of 

polyphenolic compounds from cider apples in humans (DuPont et al., 2002). After 

drinking 1.1 l of cider apple juice, no quercetin was detected in the volunteer’s 

plasma. Instead, low levels of 3'-methyl quercetin and 4'-methyl quercetin were 

measurable within 60 minutes. Moreover, the low amounts of catechin, epicatechin, 

and phloridzin contained in cider apples were not seen in the plasma at all. Hippuric 

acid and phloretin were both increased in the subject’s urines but there was no 

evidence of quercetin, catechin, or epicatechin excreted in the urine samples (DuPont 

et al., 2002). In another study involving human subjects, quercetin bioavailability 

from apples was only 30 % of the bioavailability of quercetin from onions (Hollman et 

al., 1997). In this study, quercetin levels reached a peak after 2.5 hours in the plasma; 

however the compounds were hydrolysed prior to analysis, so the extent of quercetin 

conjugation in the plasma is unknown. The bioavailability differences between apples 

and onions most likely are from the differences in quercetin conjugates in the 

different foods. 
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A more recent study by Kahle et al. involving 11 human volunteers who ingested 1 l 

of apple juice showed that ∼33 % of the ingested material was retrieved in the large 

intestine and the rest was probably absorbed in the small intestine. The majority of 

polyphenols reached the large intestine within 2 hours (Kahle et al., 2005). Apples 

contain some quercetin glucoside which following hydrolysis by lactase-phloridzin 

hydrolase (LPH), would be available for uptake by intestinal cells. However, apples 

also contain other conjugates such as quercetin rhamnosides, quercetin xylosides, and 

quercetin galactosides that are not easily hydrolysed by LPH and most likely are not 

readily absorbed by small intestinal cells. Phloridzin, the glucoside conjugate of 

phloretin, is the major dihydrochalcone found in apples. Phloridzin is known to be a 

potent sodium/D-glucose cotransporter (SGLT1) inhibitor, but recently it has been 

discovered that phloridzin is also transported by SGLT1 (Walle and Walle, 2003). 

Dietary phloridzin is known for their antioxidant properties and radical scavenging 

capacity. Still more research is needed to understand the bioavailability of 

polyphenolic compounds from whole foods. The exact mechanisms concerning the 

bioavailability of specific apple polyphenols are still unknown and becoming clearer 

as bioavailability research increases. 

1.3 Biotransformation systems in humans 

Biotransformation is the process by which both endogenous and exogenous 

substances are modified to facilitate their elimination. Biotransformation can convert 

lipophlic compounds to more water soluble metabolites that can be easily excreted. 

Basically there are two major biotransformation reaction systems (see Table 1 for the 

typical enzymes involved in biotransformation), which are called phase I (functional 

group modification) and phase II (conjugation) (Grubben et al., 2001). Most 

pharmaceutical drugs are metabolised through phase I biotransformation reactions 

including oxidation, reduction, hydrolysis, dealkylation, deamination, 
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dehalogenation, ring formation, and ring breakage (Figure 7). Phase I reactions are 

catalysed by a multitude of enzyme activities (Table 1). The most important enzymes 

involve in phase I reactions are the CYP450 isoenzymes. So far, over 10 families of 

this phase I enzyme have been described in humans, which include at least 35 

different genes (Liska, 1998). The CYP450 enzymes use oxygen and the reduced form 

of nicotinamide adenosine dinucleotide (NADH) as cofactor, to add a reactive group 

(i.e., hydroxyl radical) to the substrates. The result of this reaction is the generation of 

reactive molecules, which may be more reactive than the parent molecule, may cause 

damage to proteins, RNA, and DNA within the cell. Furthermore, phase I activities 

are also involved in detoxifying endogenous molecules, such as steroids (Grant, 1991). 

 

Phase I enzymes Phase II enzymes 
Cytochrome P450 monooxygenases 
Flavin-containing monooxygenases 
Xanthine oxidases 
Alcohol dehydrogenases 
Aldehyde dehydrogenases 
Aldehyde oxidases 
Monoamine oxidases 
Esterases 

Glutathione S-transferases 
UDP-glucuronosyl transferases 
Acetyltransacetylases 
Methyltransferases 
Sulfotransferases 
Thioltransferases 
 

 
Table 1: Sample enzymes involved in biotransformation reaction systems in human  
(Liska, 1998).  
 

The phase II detoxification reaction systems are highly complex, and involve multiple 

gene families. Generally xenobiotics (PAHs, epoxides, etc.), activated by phase I 

reactions are further metabolized by phase II conjugation reactions. Produced 

conjugates are more water-soluble and can be excreted. Several types of conjugation 

reactions occur in the body, including glucuronidation, sulfation, acetylation, 

methylation, and glutathione and amino acid conjugation (Figure 7). These reactions 

require cofactors which can be replenished through dietary sources. Moreover, phase 
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II reactions show a great amount of individual variability, due to the factors 

influencing detoxification activity such as, genetic polymorphisms, age and gender, 

diet and lifestyle, environment and disease (Pool-Zobel et al., 2005a). 

Recently, the antiporter activity (p-glycoproteins or multi-drug resistance) has been 

defined as the phase III detoxification system. The antiporter decreases the 

intracellular concentration of non-metabolized xenobiotics by pumping (energy-

dependent efflux) xenobiotics out of a cell and back into the intestinal lumen and may 

allow more opportunity for phase I activity to metabolise the xenobiotic before it is 

taken into circulation (Chin et al., 1993). Antiporter activity in the intestine appears 

to be co-regulated with intestinal phase I Cyp3A4 enzyme, suggesting that the 

antiporter may support and promote detoxification (Chin et al., 1993; Liska, 1998). 

 

 

 

 

 

 
Figure 7: Biotransformation reactions (Liska, 1998). Xenobiotics or phytochemicals 
are activated by phase I reactions (e.g. oxidation, reduction) and they are further 
metabolised by phase II conjugation reactions (e.g. methylation, glucuronidation) and 
the conjugates are excreted. 
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1.3.1  Glutathione S-transferases (GSTs) 
 
Glutathione S-transferases (GSTs) are a family of phase II metabolising enzymes that 

catalyse the conjugation of glutathione (GSH) to a wide variety of endogenous and 

exogenous electrophilic compounds (Hayes and Pulford, 1995; Townsend and Tew, 

2003). To date, human cytosolic GST superfamily contains at least 16 genes 

subdivided into seven distinct classes designated as: GST-Alpha (GSTA), GST-Mu 

(GSTM), GST-Pi (GSTP), GST-Theta (GSTT), GST-Zeta (GSTZ), GST-Sigma (GSTS) 

and GST-Omega (GSTO), whereas GST-kappa (GSTK) is located in the mitochondria 

as well as in peroxisomes. Each GST family is subdivided into several isoenzymes. The 

alpha, mu, pi and theta families are the most extensively studied one (Hayes and 

Strange, 2000). GSTs are constitutively expressed in a wide variety of tissues (Rowe et 

al., 1997) and the expression levels of GSTs can vary markedly between individuals. 

Each GST family consists of isoenzymes which homo or hetero-dimerise to catalyse 

enzymatic reactions using different substrates (Hayes et al., 2005). Sometimes 

overlapping substrate specificities exist. A number of studies demonstrated that high 

level expression of different GSTs detoxify many carcinogenic electrophiles, such as 

polycyclic aromatic hydrocarbons (PAHs), heterocyclic amines (HAs), and can thus 

protect from DNA damage. PAHs such as, benzo[a]pyrene-7,8-dihydrodiol-9,10-

epoxide (BPDE) is a potent mutagenic and carcinogenic metabolite of benzo[a]pyrene 

(B[a]P). BPDE is metabolised by GSTA and GSTP class and then excreted (Fields et 

al., 1998; Steiner et al., 2007). The overexpression of GSTA4 isoenzyme may be 

relevant to protect against the genotoxicity of 4-hydroxynonenal (Knoll et al., 2005).  

 
Polymorphisms exist in many of the glutathione S-transferase genes, e.g., GSTM1, 

GSTT1 and GSTP1. Deletion of the GSTM1 and GSTT1 genes results in a 'null' 

genotype characterized by a general deficit in enzymatic activity (Parl, 2005). About 

50 % and 20 % of Caucasians have the null genotype of GSTM1 and GSTT1, 
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respectively (Ates et al., 2005). GSTP1 null mice show an increased susceptibility to 

PAH-induced tumours (Dang et al., 2005). In particular, allelic variants of the GSTP1 

gene has been associated with higher tumour susceptibility in organs exposed to PAH 

(Hemmingsen et al., 2001). Modulation of these phase II detoxification enzymes play 

a critical role in protecting tissues from xenobiotics and carcinogens through a variety 

of reactions and are being investigated currently as biomarkers for decreasing colon 

cancer risk.  

1.3.2   UDP-glucuronyltransferases (UGTs) 
 

UGTs are endoplasmic reticulum membrane-bound enzymes that play an important 

role in the metabolism and detoxification of a large number of endogenous and 

exogenous nucleophilic substrates (Bock, 2003; Wells et al., 2004). UGTs catalyse the 

transfer of a glucuronic acid moiety to a variety of acceptor groups such as phenols, 

alcohols, carboxylic acids, amines, carbamic acids, hydroylamines, hydroxylamides, 

carboxamides, sulfonamides, thiols, dithiocarboxylic acids, and nucleophilic carbon of 

1,3-dicarbonyl compounds (Tukey and Strassburg, 2000). In humans, UGTs have been 

classified into two subfamilies UGT1 and UGT2; the latter was further subdivided into 

UGT2A and 2B (Mackenzie et al., 2005). To date, 15 different UGTs have been 

identified in human. The UGT1 locus consists of nine functional UGT1A isoenzymes 

(UGT1A1, UGT1A3-UGT1A10) all derived from a single gene locus on chromosome 

2. The UGT2 subfamily consists of 7 isoenzymes (2A1, 2B4, 2B7, 2B10, 2B11, 2B15 

and 2B17). UGT1A enzymes are involved in the metabolism of exogenous compounds 

and UGT2 isoenzymes are involved mainly in the glucuronidation of endogenous 

compounds.  

 

In humans, many UGTs are expressed in the liver and colon. UGT1A8 and UGT1A10 

are predominantly expressed in the colon, whereas UGT1A3 and UGT1A9 are 
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expressed in both liver and colon. Most UGTs can glucuronidate more than one 

substrate, a promiscuity that may be typical for detoxifying enzymes (Burchell et al., 

1995). Several studies have demonstrated that UGTs exhibit a protective effect against 

exogenous and endogenous carcinogens. For example, food-derived mutagenic 

heterocyclic amines, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) and 

N-OH-PhIP are glucuronidated by at least 7 UGT1A isoforms; UGT1A3, UGT1A4, 

UGT1A6, UGT1A8, UGT1A9, UGT1A10 and UGT2A1 (Strassburg et al., 1999; Tukey 

and Strassburg, 2000). Benzo(a)pyrene (B(a)P) has been identified as substrate for 

several UGT isoenzymes such as, UGT1A6, UGT1A7, UGT1A8, UGT1A9, UGT1A10, 

and UGT2B7 (Fang et al., 2002; Zheng et al., 2002). The UGT2B family preferentially 

glucuronidates endogenous substrates such as bilirubin, bile acids and steroid 

hormones in addition to xenobiotics (Hu and Wells, 1994). Hyodeoxycholic acid 

(HDCA), one of the bile acids serves as a substrate for UGT2B4 and found to be more 

efficiently conjugated by UGT2B7 (Strassburg et al., 2000). Turgeon et al. recently 

reported that UGT2B10 and B11 catalyse the glucuronidation of arachidonic and 

linoleic acid metabolites such as, 5-hydroxyeicosatetraenoic acid (HETE) and 13-

hydroxyoctadecadienoic acid (HODE) (Turgeon et al., 2003). Several functional 

polymorphisms in UGTs have been identified. Polymorphism in the UGT1A1 

promoter results in reduced expression of gene and accounts for the most cases of 

“Gilbert’s syndrome” results an elevated level of unconjugated bilirubin in the 

bloodstream. For example, Gilbert's syndrome is associated with abdominal pain, 

jaundice, severe diarrhoea and also reduces the liver's ability to detoxify certain drugs 

(Burchell and Hume, 1999). Moreover, UGT polymorphisms are associated with 

altered risks to certain cancers such as pancreatic cancer and breast cancer (Moghrabi 

et al., 1993). Mutations in UGT1A7  were suggested to increase the risk of colorectal 

cancer development (Strassburg et al., 2002). Induction of the gene expression of 
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chemoprotective protective enzymes, such as UDP-glucuronyltransferases may be 

feasible as an approach to cancer prevention. 

1.3.3 The effects of polyphenols on modulation of 
detoxification enzymes and mechanism involved  
 
The phase I and phase II enzymes metabolise a large number of xenobiotics (Meyer, 

1996). Phase I enzymes (Cyp450) generally activate the xenobiotics and thereby 

increase oxidative stress to cells. Whereas, phase II enzymes (GSTs, UGTs, GPXs, 

CAT, SODs, NQO1, GCL) are considered as detoxification or antioxidant enzymes and 

thus, protect against oxidative and electrophilic insults. Therefore, the balance 

between the phase I activating and phase II detoxifying enzymes plays an important 

role in determining initiation of carcinogenesis. The shift towards carcinogen 

inactivation or elimination by induction of these detoxifying enzymes protects 

cellular components from carcinogenic insults. Biochemical investigations of the 

flavonoid mechanisms of action have shown that these compounds can induce or 

inhibit a wide variety of enzymatic systems (Kuo, 2002), including expression of gene 

related to detoxification (phase II enzymes) enzymes (see Table 2) (Petri et al., 2003; 

Sugatani et al., 2004). Talalay et al. reviewed the protective effects of increased levels 

of phase II enzymes against oxidants and electrophiles (Kwak et al., 2001; Talalay et 

al., 2003). Steele et al. also showed an induction of phase II enzymes, in particular 

glutathione S-transferase (GST) by green tea polyphenols (Steele et al., 2000). 

Polyphenolic compounds from grapes was modulated GST gene expression in human  

hepatocarcinoma cell line (Puiggros et al., 2005). Recently, Hofmann et al. described 

the intervention with polyphenol-rich fruit juices may also increase GSTP1-1 protein 

expression in human leucocytes of healthy volunteers (Hofmann et al., 2006). 

Moreover, treatment of human intestinal cell line (Caco-2) cell line with sulforaphane 

and the flavonoid, apigenin modulated gene expression including phase II detoxifying 
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enzymes, such as glutathione S-transferases (GST) and UDP-glucuronosyltransferases 

(UGT) in vitro (Svehlikova et al., 2004). Another in vitro study by Galijatovic et al., 

showed that the flavonoid chrysin and quercetin induced UGT expression in the 

Caco-2 cells (Galijatovic et al., 2000).  

 
Table 1. Overview on the effects of polyphenols on modulation of detoxification 
enzyme systems. 
 
 
 
 
 
 
 
 
 
The regulation of phase II gene expression addresses a wide variety of transcriptional 

regulators. One important mechanism which is critical for regulation of some, but not 

all phase II genes (including some GSTs or NADPH dependent quinone reductase) 

involves the antioxidant/electrophile-responsive response element (ARE/ERE) located 

within the 5’ upstream regulatory region of the corresponding mouse, rat and human 

genes (Nguyen et al., 2003; Rushmore et al., 1991; Waleh et al., 1998). A major 

transcription factor which can act on ARE is Nrf2 (nuclear factor E2-related factor 2). 

The critical role of Nrf2 for phase II gene regulation is strongly supported by the 

observation that Nrf2-deficient mice display not only a reduced expression of several 

phase II enzymes, but also a severely impaired tolerance against the toxic effects of 

carcinogens and inflammatory drugs (Nguyen et al., 2003). Nrf2 interacts with the 

ARE in the promoter region of phase II detoxifying enzymes, can act as a master 

regulator of ARE-driven transactivation. It was demonstrated that Kelch-like ECH-

associated protein1 (Keap1) - bound to actin protein and localised in the perinuclear 

space-sequesters Nrf2 in the cytoplasm by forming heterodimers and, inhibiting its 

Agents Model systems Modulation of induction References
Sulforaphane Human intestinal cell line (Caco-2) GSTA1, UGT1A1 mRNA Petri et al ., 2003
Chrysin Human hepatocarcinoma cell line (HepG2) UGT1A1 mRNA Sugatani et al ., 2004
Tea polyphenol Human liver cells (Chang) GST and NADPH:QR activity Steele et al ., 2000
Grape polyphenols Human hepatocarcinoma cell line (HepG2) GST, GPx, GR mRNA Puiggros et al ., 2005
Polyphenol-rich fruit juices Human leucocytes GSTP1-1 protein Hofmann et al ., 2006
Sulforaphane and apigenin Human intestinal cell line (Caco-2) GSTA1 and UGT1A1 mRNA Svehlikova et al ., 2004
Chrysin and quercetin Human intestinal cell line (Caco-2) UGT1A6 protein Galijatovic et al ., 2000
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translocation to the nucleus, makes it unable to activate the ARE sequences. Inducers 

like polyphenols dissociate this complex, allowing Nrf2 to translocate to the nucleus 

and form a heterodimer with Maf protein resulting in an active Nrf2 binding to ARE. 

In addition, one or more mechanisms have been implicated for the Nrf2 activation by 

signalling via the upstream kinases pathways, including MAPKs, PI3K, PKC, and Akt 

(Pool-Zobel et al., 2005a). Pinkus et al. demonstrated that polyphenols can also 

activate the activator protein-1 (AP-1) transcription factors that interact with AP-1 

binding sites of target genes (GSTP1 and GSTA1) to regulate transcription (Pinkus et 

al., 1996).  

 

The current state of our knowledge indicates that the selective induction of 

carcinogen-detoxifying enzymes (Phase I and/or Phase II enzymes) may be a useful 

approach for inhibiting carcinogenesis in chemoprevention. In this study, we have 

therefore examined if flavonoids from an apple extract contribute to reduce risks 

during colon carcinogenesis by inhibiting tumour cell growth or by favourably 

modulating expression of drug metabolism genes.  
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1.4 Objectives of the study 

Several studies have shown evidence of associations between induced phase I and/or 

decreased phase II enzyme activities and an increased risk of disease, such as cancer. 

The contribution of phase II detoxification systems has received higher attention both 

in academical and clinical research. Currently little is known about the exact 

mechanism and role of the detoxification systems in metabolism of endogenous and 

exogenous compounds. Therefore, the objective of this study was to evaluate the 

effect of apple polyphenols on modulation of detoxifying enzyme systems as 

biomarkers of chemoprevention in human colon cells. To address this point the 

following questions were worked on: 

 

• First, the antiproliferative effect of a natural polyphenolic apple extract (AE) 

was investigated on a colon carcinoma cell line (HT29) using cell proliferation 

assay (DNA staining with 4’6’-diimidazolin-2-phenylindole, DAPI). 

Furthermore, the effects were compared with major individual compounds in 

AE and a mixture of major AE compounds. Second, the effect of AE on 

modulation of detoxification enzyme systems was studied using cDNA gene 

array analysis (Publication I). 

 

• The antiproliferative effect of different AEs with different polyphenolic 

compositions were investigated together with their corresponding 

fermentation products produced by incubation of the AEs with human gut 

flora under anaerobic conditions in vitro. Polyphenolic compositions of AEs 

and fermented AE (F-AEs) were compared. The effects on proliferation were 

determined in the colon carcinoma (HT29) and colon adenoma cell line (LT97) 

using cell proliferation (DAPI) assay (Publication II).  
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• The effect of short chain fatty acids (e.g. butyrate) produced during in vitro 

fermentation of AE on xenobiotics and stress related gene expression was 

studied in primary, colon carcinoma (HT29) and colon adenoma cell line 

(LT97) by means of gene array. Moreover, the modulation of gene expression 

by butyrate was compared to basal gene expression of primary cells 

(Publication III).   

 

• The putative mechanism of expression of several genes (e.g. phase II genes) by 

polyphenols was reviewed based on currently available literature and our 

research evaluations (Publication IV).   

 

• The effects of AE on the modulation of detoxification enzyme systems and 

other gene functions related to tumour suppression, cell cycle, apoptosis and 

signal transduction pathways were investigated in colon adenoma (LT97) cells 

by cDNA-array analysis. In addition, the enzyme activities of glutathione S-

transferases and UDP-glucuronosyltransferases were investigated (Publication 

V).  

 

• In a pilot study to determine whether apple juice intervention in humans 

could affect genotoxin levels in the gut lumen and the effects of apple juice 

consumption in humans the protection against DNA-damage induced by 

carcinogens in ex vivo was measured by Comet assay. Furthermore, the 

capacity of those apple juice components which passed the small intestine for 

modulation of GSTT2 mRNA expression, GSTT2 promotor activity and for 

prevention of oxidative genotoxic stress was studied in HT29 cells using real-

time PCR and reporter gene assay, respectively. Moreover, the samples 
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collected at different time points after intervention were characterised 

analytically using HPLC (Publication VI). 
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2 Publications 

2.1 Publication I: Veeriah S, Kautenburger T, Sauer J, Habermann N, Dietrich H, 

Will F, Pool-Zobel BL. “Apple flavonoids inhibit growth of HT29 human colon 

cancer cells and modulate expression of genes involved in the biotransformation of 

xenobiotics”. Mol Carcinog. 2006 Mar;45(3):164-74. 

Flavonoids from fruits and vegetables probably reduce risks of diseases associated with 

oxidative stress, including cancer. Apples contain significant amounts of flavonoids 

with antioxidative potential. The objectives of this study were to investigate such 

compounds for properties associated with reduction of cancer risks. HT29 cells were 

treated with apple extract (AE), with a synthetic flavonoid mixture mimicking the 

composition of the AE or with individual flavonoids. HT29 cell growth was inhibited 

by the complex extract and by the mixture. HT29 cells were treated with the AE and 

total RNA was isolated to elucidate patterns of gene expression using cDNA-

microarray. Treatment with AE resulted in an upregulation of several 

chemopreventive genes. Some differentially modulated genes were confirmed with 

real-time PCR. On the basis of the pattern of differential gene expression found here, 

we conclude that apple flavonoids modulate toxicological defence against colon 

cancer risk factors. In addition to the inhibition of tumour cell proliferation, this 

could be a mechanism of cancer risk reduction. 

 
Own contribution to the manuscript: 
 

• Establishment of cDNA-microarray (Superarray) system in the lab   

• Cell culture and measurement of HT29 cell proliferation 

• Gene expression analysis with cDNA-microarrays and real-time PCR  

• Data evaluation, interpretation and representation of the results 
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Human Colon Cancer Cells and Modulate
Expression of Genes Involved in the
Biotransformation of Xenobiotics

Selvaraju Veeriah,1 Tanja Kautenburger,1 Nina Habermann,1 Julia Sauer,1 Helmut Dietrich,2

Frank Will,2 and Beatrice Louise Pool-Zobel1*
1Department of Nutritional Toxicology, Institute for Nutrition, Friedrich-Schiller-University, Jena, Germany
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Flavonoids from fruits and vegetables probably reduce risks of diseases associated with oxidative stress, including
cancer. Apples contain significant amounts of flavonoids with antioxidative potential. The objectives of this study were

to investigate such compounds for properties associated with reduction of cancer risks. We report herein that apple
flavonoids from an apple extract (AE) inhibit colon cancer cell growth and significantly modulate expression of genes
related to xenobiotic metabolism. HT29 cells were treated with AE at concentrations delivering 5–50 mM of one of the
major ingredients, phloridzin (‘‘phloridzin-equivalents,’’ Ph.E), to the cell culture medium, with a synthetic flavonoid

mixture mimicking the composition of the AE or with 5–100 mM individual flavonoids. HT29 cell growth was inhibited
by the complex extract and by the mixture. HT29 cells were treated with nontoxic doses of the AE (30 mM, Ph.E) and
after 24 h total RNA was isolated to elucidate patterns of gene expression using a human cDNA-microarray

(SuperArray1) spotted with 96 genes of drug metabolism. Treatment with AE resulted in an upregulation of several
genes (GSTP1, GSTT2, MGST2, CYP4F3, CHST5, CHST6 and CHST7) and downregulation of EPHX1, in comparison to
the medium controls. The enhanced transcriptional activity of GSTP1 and GSTT2 genes was confirmed with real-time

qRT-PCR. On the basis of the pattern of differential gene expression found here, we conclude that apple flavonoids
modulate toxicological defense against colon cancer risk factors. In addition to the inhibition of tumor cell
proliferation, this could be a mechanism of cancer risk reduction. � 2005 Wiley-Liss, Inc.

Key words: apple flavonoids; colon cancer chemoprevention; cDNA-microarray; biotransformation enzymes; HT29

colon cells

INTRODUCTION

Colorectal cancer is the second leading cause of
cancer deaths in men and women in Western
countries. It is estimated that approximately
783000 new cases will be diagnosed annually world-
wide [1]. Epidemiological studies have shown that
colorectal cancer incidence could be significantly
modulated by dietary intake of flavonoidswith fruits
and vegetables [2,3]. Flavonoids probably contribute
to prevention of various diseases associated with
oxidative stress, including cancer, by their antiox-
idative properties [4–6]. Also, nonmicronutrient
flavonoids are suspected of having tumor preventive
efficacybymodulating signal transductionpathways
which generate a stress response [7,8] and by
inhibiting proliferation of cancer cells [9,10].
Apples are a significant part of the Western diet,

and they are a major source of flavonoids. A Dutch
Food Consumption Survey which included an
analysis of flavonoid contents of fruits, vegetables,
and beverages, reported that apples are the third
largest contributors of flavonoids in the Dutch diet

after tea and onions [11,12]. Similar orders of
magnitude in terms of apple consumption are
probably also valid for other countries of the
European community. Flavonoids are the bioactive
compounds in apples [13]. The total extractable
phenolic content has been investigated and was
found to range between 110 and 357 mg/100 g fresh
apple [14]. Several studies have been performed to
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show possible health benefits of apple polyphenols
(particularly flavonoids) [15]. Moreover, flavonoids
in general, are known to have powerful antioxidant
properties including the scavenging of free radicals
and prevention of lipid peroxidation [16,17]. This is
only partially in line with findings on selected
dietary flavonoids in human colon cells in vitro.
Some studies have shown that antioxidative poly-
phenols can protect colon epithelial cells from
oxidative DNA damage in vitro, albeit other anti-
oxidative analogs were not effective [18,19]. There-
fore, it is necessary tomore closelymonitor potential
protectivemechanisms by compounds that have not
yet been investigated in depth, such as apple
flavonoids.
Biochemical investigations of the flavonoid

mechanisms of action have shown that these
compounds can induce or inhibit a wide variety of
enzymatic systems [20], including expressionof gene
related to detoxification (Phase I and/or Phase II
enzymes) enzymes [21,22]. Modulation of these
enzymes has a very important role in decreasing
colon cancer risk, because many chemical carcino-
gens which can initiate colon cancer enhance
progression are metabolized by Phase I enzymes
(e.g., members of the cytochrome p450 family) as
well as by Phase II enzymes (e.g., GSTs, epoxide
hydrolase, NAD(P)H: quinone reductase, and UDP-
glucuronosyl transferase). The latter conjugate che-
mically reactive metabolites [23]. Talalay et al.
reviewed the protective effects of increased levels of
Phase II enzymes against oxidants and electrophiles
[24,25]. The importance of Phase II enzymes for
inactivating chemical carcinogens was highlighted
in a study with nrf2 transcription factor deficient
mice [26]. The current state of our knowledge
indicates that the selective induction of carcino-
gen-detoxifying enzymes (Phase I and/or Phase II
enzymes) may be a useful approach for inhibiting
carcinogenesis in chemoprevention [27,28].
In this study, we have, therefore, examined if

flavonoids from an apple extract (AE) contribute to
reducing risks during colon carcinogenesis by inhi-
biting tumor cell growth or by favorablymodulating
expression of drug metabolism genes.

MATERIALS AND METHODS

Preparation of the Apple Polyphenol Extract

Clear apple juicewasproducedonanexperimental
scale. In compliance with the usual practice of the
apple juice production, we used a definedmixture of
table apples consisting mainly of the species
Jonagold (20%), and the varieties Topaz (25%), cv.
Bohnapfel (17.5%), cv.Winterrambur (22.5%), and cv.
Bittenfelder (15%). This typeofwell-balancedmixture
of cider and table apples is required to achieve
adequate sensorial properties. Polyphenols of 100 L
of that juicewere retained on5L adsorber resin (XAD

16 HP, Rohm & Haas, Frankfurt, Germany) packed
onto a Pharmacia glass column (BPG 100, 100�10
cm). Water soluble juice ingredients like sugars,
organic acids, andminerals werewashed outwith six
bed volumes of distilled water. Polyphenols were
elutedwith three bed volumes of ethanol (96%). The
ethanolic fraction was gently concentrated by eva-
poration, transferred into the water Phase, and
finally freeze dried [29].

HPLC Analyses of AE Polyphenols

AE polyphenols were separated after dissolution
(1 g/L, 10% methanol) and 0.45 mm membrane
filtration on an 1090 HPLC/PDA system (Hewlett-
Packard; Böblingen, Germany) equipped with a
250�4.6mmAqua 5 mmC18 column and protected
with a 4�3 mm C18 ODS security guard (Phenom-
enex; Aschaffenburg, Germany). Gradient elution
was performed with an acetonitrile/acetic acid
gradient according to Schieber et al. [30]. Detection
wavelengths were 280 nm for flavonoids, 320 nm for
phenolcarbonic acids, and 360 nm for the quercetin
derivatives. Quantification was carried out using
peak areas from external calibration curves. Phlor-
etin-20-xyloglucosid and 4-cumaroyl quinic acid
were isolated with preparative HPLC from the AE.
The two unknown dihydrochalcones (phloretin
glycosides 1 and 2) were quantified using the
calibration curve of commercially available phlor-
idzin. Due to the lack of appropriate standards, the
3- and 5-isomers of cumaroyl quinic acid were
quantitated with the calibration curve of the 4-
isomer isolated on preparative scale [30].

Synthetic Apple Flavonoids and Preparation
of the Mixture

The polyphenols and flavonoids identified in the
AE (epicatechin, phloridzin, chlorogenic acid, caffeic
acid, quercetin-3-rutinoside, quercetin-3-galacto-
side, quercetin-3-glucoside, quercetin-3-rhamno-
side) were HPLC purified (�90%–99%) and
purchased from Sigma-Aldrich Chemical GmbH
Co. (Munich, Germany). To assess effects on cell
growth and cell survival, the individual flavonoids
were dissolved in ethanol and stored at �208C as a
stock solution. A synthetic AEmixture was prepared,
mimicking the composition of the complex AE. For
this, a stock solution (1.4 mM in ethanol) was
prepared, which contained equimolar concentra-
tionsof thephloridzin,whichwas identifiedasmajor
polyphenol of the natural AE. The stock solutionwas
divided into aliquots and stored �208C. To assess
effects on HT29 cell growth, all stock solutions were
appropriately diluted and added to the cell culture
medium yielding concentrations of 20–200 mM of
individual flavonoids or of ‘‘phloridzin-equivalents
(Ph.E)’’ (synthetic AE mixture). The nature of the
10% residualmaterial in theHPLC samples couldnot
be determined on account of the minute quantities
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ofmaterial provided, but presumably they contained
organic solvents. Therefore, each biological assay
included a solvent control with ethanol to control
for the residual material.

Cell Culture HT29 Cells

Human colon cancer cells HT29, that had been
established by Fogh and Trempe [31] from a colon
adenocarcinoma of a female Caucasian, were origin-
ally purchased from the American Tissue Culture
Collection (Rockville,MD).HT29 cellswere grown in
Dulbecco’smodified Eaglemedium (DMEM, Invitro-
gen GmbH, 76131 Karlsruhe, Germany) supplemen-
ted with 10% FCS and antibiotics (1% penicillin/
streptomycin (v/v); Roche Molecular Biochemicals,
Meylan, France) according to our laboratory stan-
dard culture conditions. Adherent cultures were
passaged two times in a week at subconfluent stage
after trypsinization.Culturesweremaintainedunder
sterile conditions in incubators at 378C in an atmo-
sphere of 5% CO2 and 95% air and were routinely
checked to exclude mycoplasma or bacterial
contaminations. Cell passages 27–46 were used for
the experiments.

Determination of Cell Growth and Cell Survival

These studies were performed to compare basic
biological activities of the test compounds and to
find the doses to be used in the microarray analysis.
HT29 colon tumor cells were seeded in 96-well plates
(NuncGmbH&Co., KG,Germany) at approximately
20% confluence (8000 cell/well) and allowed to
attach for 48 h. The usedmediumwas aspirated after
48 h and new medium (control) with test substance
(treatment) was applied. Cells were treated with AE
(delivered 5–100 mM phloridzin to the cell culture
medium, that is ‘‘5–100 mMPh.E’’), with 10–200 mM
individual compounds found to be apple ingre-
dients (epicatechin, phloridzin, chlorogenic acid,
caffeic acid, quercetin-3-rutinoside, quercetin-3-
galactoside, quercetin-3-glucoside, quercetin-3-
rhamnoside) or with a synthetic mixture (concen-
tration range from 5 to 100 mM, Ph.E) of these eight
components composed according to the AE. The
final concentration of ethanol in medium did not
exceed 2% during treatments, which had no effect
on cell growth. The growth of the cancer cells was
determined 24, 48, and72h after additionof ethanol
or of the apple compounds dissolved in ethanol.
Remaining cells were quantified after cell lysis by
staining the DNAwith 40,6-diamino-2-phenylindole
(DAPI) and measuring the fluorescence intensity at
360 and 465 nm was using a computer-interfaced,
96-well microtiter plate reader (TECAN Spectrafluor
GmbH, Crailsheim, Germany). All experiments were
conducted using triplicate determinations per plate
and each assay was repeated at least three times. The
concentrations of extract, mixture and individual
compounds atwhich50%of the cells survived (EC50)

were determined. These concentrations were taken
as the basis for choosing the subtoxic doses for the
gene expression analysis.

Cell Treatment and RNA Preparation

HT29 colon cells (3�106) were precultured or
allowed to adhere on the bottom of the T25 cell
cultured flask (Falcon, Fisher Scientific, Loughbor-
ough, UK) for 48 h before treatment. Fresh medium
was added and the cells were treated with AE at
concentrations of 30 mM (Ph.E) for 24 h. After this
time6�106 cells had reached80%–90%confluence.
They were trypsinized and then harvested by
resuspending in 5 mL of DMEM medium. Cell
suspensions were centrifuged and the resulting cell
pellets were resuspended again and washed twice
with equal volumes of PBS containing BSA and EDTA
(pH 7.0). Total cellular RNA was isolated using
RNeasy mini kit (Qiagen, Hilden, Germany). Prior
to in vitro reverse transcription steps the integrity of
the isolated total RNA was checked by agarose-
formaldehyde denaturing gel electrophoresis. Con-
taminating DNA was eliminated by DNase-I treat-
ment using the RNase-free DNase kit (Qiagen)
according to manufacturer’s instructions.

Analysis of Gene Expression Using cDNA-microarrays

cDNA-microarray analysis was conducted with
Biotin-16-dUTP-labeled (Roche, Basel, Switzerland)
cDNA probes which were specifically generated by
single step linear polymerase reaction (LPR) using
designed gene-specific primers (GEA primer mix,
Primer A). Three micrograms of total RNA were
in vitro transcribed with 200 U moloney murine
leukemia (M-MLV) reverse transcriptase (Promega,
Madison, WI). Expression of genes encoding
enzymes of the biotransformation system was ana-
lyzed using the drugmetabolismGEArrayTMQ series
cDNA expression array kits which were obtained
from SuperArray1, Inc. (Cat no.: HS-011-N, Super-
Array, Inc., Frederick, MD). This kit determines
differential expression levels of multiple genes
involved in a xenobiotic metabolism pathway con-
taining 96 gene-specific cDNA fragments spotted on
nylonmembranes which were subdivided into three
functionally characterized gene groups, namely (1)
Phase I, (2) Phase II, and (3) Phase III metabolism.
Detailed information including the mechanism and
description of the gene probes are listed on the kit
provider web page (http://www.superarray.com/
gene_array_product/HTML/HS-011.html). The array
membranes were subsequently hybridized with the
denatured biotin-labeled cDNA probes at 608C over
night according to themanufacturer’s protocol. The
membranes were washed and chemilumilescence
detection steps were performed by hybridizing the
membranes with streptavidin-conjugated alkaline
phosphatase and CDP-Star substrate. The signals
were captured by CCD camera (Fujifilm LAS-1000,
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Diana) and quantified using ‘‘AIDA array’’ Image
analysis software version 3.50 (Raytest GmbH, D
75339 Streubenhardt, Germany). All signal intensi-
ties were PUC18 plasmid (negative control) DNA
background subtracted, and normalized to the
housekeeping gene glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) (positive control). Scatter
plots were made from normalized signals. Relative
gene expression levels were calculated as the ratio of
themeanof allGAPDH signals of all experiments and
themean ofGAPDH of eachmembrane. The relative
expression level of each gene was based on the ratio
of GAPDH.
Changes in gene expression can be illustrated as a

fold increase/decrease. The cut-off fold induction
determining expression was �1.5 or �0.6 fold-
changes. Genes which suited both above criteria
were considered to be induced or suppressed.
Changes in selected genes of interest were con-

firmed by quantitative real-time RT-PCR analysis.
The cut off value of 1.5 was chosen, because our
previous data on induction of GSTP1-1 and other
GST-isoenzymes had shown that this increase by a
factor of 1.5 significantly resulted in functional
consequences [32,33]. This induction was measured
using a number of differentmethods (determination
of enzyme activities, protein expression with Wes-
tern blot or ELISA, gene expression with Northern
blot or semiquantitative PCR). The increase to 150%
of an original value is especially meaningful for
enzymes, which are highly available to begin with,
such as GSTP1-1 and GSTT1-1 in HT29 cells [34].

PCR Primers and Cloning

The external controls were constructed with
existing cDNA plasmid standards. The target and
reference gene was PCR amplified with cDNA
template from human colon tissues (BioChain,
Hayward, CA) and the amplicons were analyzed by
DNA-gels for specific products, followed by cloning
into TOPO II vector according to manufacturer’s
protocol (Invitrogen GmbH, 76131 Karlsruhe,
Germany). The primer sequences used for PCR
amplification are as follows; for the target GSTT2
sense, 50-ggtggaacgcaacaggactgcc-30 and antisense,
50-gcctgataggcctctggtgagg-30; GSTP1 sense, 50-ctgc-
gcatgctgctggcagatc-30 and antisense, 50-ggccag-
gaaggccttgagcttg-30; and for the reference GAPDH
sense, 50-ccacccatggcaaattccatggc-30 and antisense,
50-tagacggcaggtcaggtccacc-30.

Real-Time Quantitative RT-PCR Expression Analysis

The modulation of GSTT2 and GSTP1 mRNA was
confirmed by an independent measure of mRNA
levels. For quantitative RT-PCR-analysis we used the
system of iCycler iQ1 (Bio-Rad GmbH, München,
Germany), enabling quantitative analysis of the
mRNA expression levels. Therefore, aliquots of 3 mg
total RNA from each sample were reverse transcribed

using reagents from the SuperScript II reverse
transcriptase (Invitrogen) according to the
manufacturer’s protocol. For each reaction 2 mL of
cDNA equivalent to 100 ng total RNA was mixed
with PCR master mix iQTM SYBR1 Green Supermix
(2� SYBR Green I, iTaq DNA polymerase, reaction
buffer, deoxynucleotide triphosphate mix, 10 mM
MgCl2, 20 nM fluorescein, and stabilizers, Bio-Rad),
and the gene-specific primers for target GSTT2
sense, 5’-tgacactggctgatctcatggcc-30 and antisense,
50-gcctcctggcatagctcagcac-30; GSTP1 sense 50-ctgcgc-
atgctgctggcagatc-30 and antisense, 50-ttggactggta-
cagggtgaggtc-30; and reference GAPDH, sense, 50-
ccacccatggcaaattccatggc-30 and antisense, 50-agtg-
gactccacgacgtactcag-30; (each 10 pmol) in a final
volume of 25 mL. The PCR amplification efficiency of
the target and reference gene was analyzed by
standard curve using the plasmid template (2 mL)
containing the cloned target and the reference-
specific gene. All experiments were performed in
triplicate and the PCR reactionmixture was set in an
iCycler iQ 96-well PCR plate (Bio-Rad). The relative
fluorescence signal was captured at primer nucleo-
tide extension step of each cycle. At end of the
reaction the melting curve analysis was conducted
with temperature gradient from 60 to 958C at
0.108C/s to differentiate nonspecific primer dimer
and specific amplicon.
The relative quantitation of GSTT2 gene expres-

sion was performed using the plasmid standard
(serial tenfold dilutions from 5 to 0.00005 ng curve
method), usingGAPDH as an endogenous reference.
The iCycler iQ1 optical v3.0a software was utilized
for obtaining the relative threshold cycle number
(CT) and the data normalization and analysis was
carried out by REST1 tool programme [35]. Results
were expressed as fold-change induction.

Biostatistical Analysis

All of the in vitro experiments were repeated at
least three times and the results are presented as the
means of the three separate experiments. The
statistical analysis was carried out using GraphPad1

Prism software Version 4.0 (GraphPad1 Software,
Inc., San Diego, CA). One way ANOVA and unpaired
t-tests were used to assess differences between
treated and control groups, as is stated in the
legends of the Tables and Figures. Differences with
p-values�0.05 were considered to be statistically
significant (Table 3).

RESULTS

Apple Flavonoids (Extract and Mixtures) Inhibit

Survival of Human Colon Tumor Cells

The AE inhibited growth of HT29 cells with EC50

values of 76.3, 31 and 20.5 mM (Ph.E, Table 2), after
24, 48, and 72 h treatment, respectively (Figure 1a–
c). The survival of HT29 cells was not found to be
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significantly different after treatment with AE
alone, or in the presence of catalase (Figure 1a–c),
which did not indicate that H2O2 formation was
responsible for the biological efficacy [36]. The
synthetic mixture effectively reduced cell growth
as well, with EC50 values of �111.0, 59.9, and
49.5 mM, Ph.E for 24, 48, and 72 h treatment,
respectively (Table 2). This, however, indicated that
the complete extract contains additional active
components because it was more effective than the

mixture of eight flavonoids. In contrast, the indivi-
dual flavonoids (data are not shown, except caffeic
acid, phloretin, and quercetin) showed hardly any
inhibitory effects at all, with EC50 values ranging
from 235.1 mM for caffeic acid to over 289.2 mM for
chlorogenic acid after 48 and 72 h treatment. Even
the most important apple ingredients, phloridzin
and quercetin aglycons, inhibited HT29 cell growth
only at relatively high concentrations, with EC50

value of 168.9, 147.3, and 148.4, 101.9 mM after 48

Table 2. EC50 Values (‘‘–‘‘ not Present, ‘‘�’’ Approximately Calculated by the Software) for
HT29 Cells Treated With Apple Flavonoids

Substances

EC50 (mM)

24 h 48 h 72 h

AE (phloridzin-equivalents, Ph.E) �76.3 31.0 20.5
AEþ catalase 1 U/mL (Ph.E) �62.8 36.6 27.9
Synthetic AE (Ph.E) �111.0 59.9 49.5
Caffeic acid – �235.0 189.3
Chlorogenic acid – – �289.2
Epicatechin – – –
Phloridzin – – –
Phloretin – 169.0 149.3
Quercetin – 148.4 101.9
Quercetin-3-galactoside – – –
Quercetin-3-glucoside – – –
Quercetin-3-rhamnoside – – –
Quercetin-3-rutinoside – – –

Table 1. Composition of Apple Flavonoids Analytically Characterized by HPLC Method

Apple extract (AE)
polyphenols/flavonoids

Originally weighted (1 g/L)

Mean
(mg/g)

Concentration
(mM)/L

Quantity-1 Quantity-2

Procyanidin B1 5.5 8.5 7.0 0.012
Procyanidin B2 14.7 15.4 15.1 0.026
Epicatechin 24.8 13.5 19.2 0.066
Phloretinglycosid 1 24.2 25.2 24.7 a

Phloretinglycosid 2 8.3 9.7 9.0 a

Phloretinxyloglucosid 135.5 142.3 138.9 b

Phloridzin 26.8 29.0 27.9 0.064
Chlorogenic acid 180.0 183.0 181.5 0.512
Caffeic acid 4.8 4.8 4.8 0.027
3-Coumaroyl-quinic acid 9.5 9.5 9.5 b

4-Coumaroyl-quinic acid 76.9 77.6 77.3 c

5-Coumaroyl-quinic acid 10.3 10.4 10.4 c

Quercetin-3-rutinoside 2.5 2.7 2.6 0.004
Quercetin-3-galactoside 0.7 0.8 0.8 0.002
Quercetin-3-glucoside 1.2 1.5 1.4 0.003
Quercetin-3-rhamnoside 3.5 4.7 4.1 0.009
Summary of HPLC-value 529.2 538.6 533.9

The abundance of all identified polyphenols in the total extract amounted to 53.4%.
aNo commercial standard available, glycoside part unknown.
bNo commercial standard available, isolated by preparative HPLC.
cNo commercial standard available, quantitated with 3-isomer.
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and 72 h treatment, respectively (Table 2), which
indicated more than additive effects by extract and
mixture.

Apple Flavonoids Modulate Expression of the Genes
Related to Drug Metabolism

For thegeneexpressionanalysis,mRNAwas isolated
fromHT29 cells treatedwith a dose of 30 mM(Ph.E) for

24h.Thebasis for thechoiceof this concentrationwas
cell growth studies. It was equal to an EC25 value,
which is considered to be in a subtoxic range.
The analysis of the human cDNA-macroarray

(Figure 2) revealed that the AE significantly altered
the expression of genes encoding enzymes related to
xenobiotic metabolism. Figure 3 shows scatter plots
that compare the expression of normalized signals
from nontreated cells and cells treated with AE. The
normalized data were clustered on the basis of three
(Phase I, Phase II, and Phase II)major gene functions.
Table 3 shows data for only genes that reached cut off
signal �9.5 and for which the treatment with AE
resulted in a fold change of �1.5 or �0.6. It is
apparent that the AE-induced expression of at least
seven genes (‘‘fold change’’ �1.5, �0.6) and inhib-
ited one gene (EPHX1). Of these only three genes
were shown to be significantly altered according to
an unpaired t-test, namely GSTP1, MGST2, and
EPHX1. When regarding only the less stringent
criteria of a ‘‘fold change,’’ one of the upregulated
genes belonged to the Phase I metabolism group,
namely cytochrome P450, family 4, subfamily F,
polypeptide 3 (CYP4F3) (P450 gene family). The
rest belonged to the group of Phase II meta-
bolism enzymes, namely GSTP1, GSTT2, MGST2
(glutathione S-transferases), carbohydrate sulfo-
transferase 5 (CHST5), carbohydrate sulfotransferase
6 (CHST6), carbohydrate sulfotransferase 7 (CHST7)
(sulfotransferases), which were increased in the AE-
treated samples.

Modulation of GSTT2 and GSTP1 mRNA
Transcript by Quantitative Real-Time RT-PCR

We performed additional mRNA expression ana-
lysis for selected genes of interest, namelyGSTP1 and
GSTT2, by real-time qRT-PCR. We have developed
the techniques to analyze these two genes in
particular, because they appear to be the most
abundantly expressed GSTs in the HT29 colon cells.
Figure 4 shows that theAE (30 mM,Ph.E) significantly

Figure 1. Proliferation of HT29 cells treated with apple flavonoids;
(a) 24 h, (b) 48 h, and (c) 72 h incubation time periods: ( ) caffeic
acid, ( ) phloretin, ( ) quercetin, ( ) synthetic apple
extract (AE) (phloridzin-equivalents, Ph.E), ( ) catalaseþAE
(Ph.E), ( ) AE (Ph.E), one-way ANOVA Bonferroni’s posttest,
n¼ 3.

Figure 2. Pictures of cDNA membrane analysing gene expression;
HT29 cells treated with AE or medium as control.
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induced mRNA expression of GSTT2 1.8 fold
(p�0.0013) and GSTP1 1.3 fold (p�0.0049). This
confirmed the significant increases of GSTP1 (1.6
fold) from the cDNA-microarray analysis. The ana-
lysis also pointed an induction ofGSTT2, which had
shown only a nonsignificant 1.7 fold change in the
microarray determinations.

DISCUSSION

Apples are one of the most important sources of
polyphenol flavonoids in the Western diet, provid-
ing approximately 22% and 30%of the total phenols
consumed per capita in the United States and in
Europe, respectively. There are a number of poly-
phenolic substances in AEs [37], some of them have
been analytically characterized as flavonoids. They
have been shown to exert a wide range of effects in
biological systems, including potent radical scaven-
ging activities [38,39]. Eberhardt et al. [40], demon-
strated that vitamin C in apples contributed to less
than 0.4% of total antioxidant activity, suggesting
that the complex mixture of phytochemicals in this
type of fruit are of higher potency to protect from
products of oxidative stress. Next to antioxidative
activities, apple flavonoids have been shown to
act antiproliferative in HepG(2) and Caco-2 cells
[41]. Previous studies have shown that apple
flavonoids can inhibit cancer cell growth in the
liver [40].
Another hypothesis is that the apple antioxidants

have concomitant prooxidative activities at higher
concentrations andunder certain in vitro conditions
and thus lead to the formation of H2O2 [42]. Not the
apple flavonoids, but the formedH2O2was suggested

to be the toxic component affecting cell prolifera-
tion, e.g., by causing a condensation of polyphenolic
compounds such as flavonoids with commonly used
cell culture media. We investigated this hypothesis
by adding catalase (1 U/mL, Sigma) to our cell
cultures, in order to degrade probably produced
H2O2 [43]. However, we were not able to detect a
reduced or an enhanced antiproliferative activity of
our AE in the presence of catalase, suggesting that
this mechanism is not relevant for our experimental
conditions.
Hosokawa et al. [44] and Yoshida et al. [45]

reported that quercetin aglycones arrested growth
in cell lines derived from gastric, colonic, and
leukemic cancers. Some of these compounds are also
ingredients of apple flavonoid mixtures, such as
quercetin aglycones and phloridzin aglycones that
we investigated in our cellular system. We observed
that the aglycones quercetin and phloretin signifi-
cantly inhibitedHT29 tumor cell growth (Figure 1a–
c), suggesting that these components also contrib-
uted to the growth inhibitory properties of the
complete AE. This is in line with other studies
showing that the individual apple flavonoid agly-
cones possess strong cell growth inhibitory activities
and are biologically more active than the glycoside
derivatives [46,47]. An important, and so far unique,
finding of our study was the observation that the
individually tested apple flavonoids and their glyco-
sides (Table 2) were hardly inhibitory on their own,
but that equimolar concentrations applied as mix-
tures (mimicking the complete AE) were biologically
active in that they resulted in an impairment of cell
growth and survival.

Figure 3. Scatter plot for HT29 cells treated with AE or medium as control.
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Studies with a synthetic apple flavonoids mixture
were performed to relate the effects found with
individual components to the effects foundwith the
complex mixtures to bridge the gap and to find an
explanation for these apparent controversial find-
ings. The biological activity in terms of growth
inhibition was intermediary between individual
compounds and complete extract. This suggests on
one hand that there were additive or synergistic
effects of the individual compounds, when applied
as a mixture. On the other hand, it suggests that the
complete AE contained additional components
contributing to the growth arrest, which were not

present in the synthetic apple mixture. This syner-
gistic effect could have been a result of cleavage of
glycosides yielding aglycones by apple phenolic
acids (chlorogenic acid and caffeic acid) which were
included in the synthetic mixture [48]. A number of
studies relate the significant antiproliferative effects
of apple flavonoids to their lipophilic properties
which facilitate cell permeability [49]. Another
reason for the enhanced efficacy of the complex
extract could be that each ingredient has different
molecular targets in the cells. The impairment of the
individual targets on their ownmayhaveonlyminor
functional consequences. However, when a number

Table 3. Gene Expression Profiling of HT29 Cells Treated With Medium Control and AE (30 mM, Ph.E; 24 h)

Functional gene groups Gene

Signal �9.3
medium

AE 30 mM
(Ph.E)

Fold
change

t-test p
valuesMean SD Mean SD

Phase I, p450 family 5 of 25 CYP2F1 13.7 10.1 14.0 1.8 1.0 0.96
CYP3A5 10.0 4.8 9.7 4.5 1.0 0.94
CYP3A7 20.6 13.3 22.0 7.0 1.1 0.88
CYP4F3* 46.2 16.3 76.4 55.8 1.7 0.42
POR 8.8 4.0 10.8 3.5 1.2 0.55

Phase II, acetyltransferases 6 of 10 ACAT1 10.4 7.9 8.6 5.4 0.8 0.77
ACAT2 10.7 9.3 9.1 3.7 0.9 0.80
CRAT 11.1 4.7 9.5 2.6 0.9 0.64
HAT1 8.3 4.1 10.4 3.4 1.3 0.53
LOC51126 11.8 6.0 12.6 7.3 1.1 0.89
MORF 7.8 3.7 10.8 5.5 1.4 0.48

Phase II, glutathione S-transferases 6 of 12 GSTP1* 71.6 14.6 113.2 21.4 1.6 0.05
GSTT1 8.5 3.9 9.8 3.2 1.2 0.67
GSTT2 31.7 12.1 52.6 26.4 1.7 0.28
MGST1 29.6 17.4 31.3 15.9 1.1 0.91
MGST2* 14.8 5.2 30.9 3.6 2.1 0.01
MGST3 9.1 7.3 12.9 11.3 1.4 0.65

Phase II, sulfotransferases 6 of 21 CHST5 30.5 19.3 49.9 12.5 1.6 0.22
CHST6 29.8 18.7 46.3 5.0 1.6 0.21
CHST7 29.3 14.1 47.1 9.0 1.6 0.14
SULT1A1 10.3 8.0 11.0 2.7 1.1 0.89
SULT2B1 8.4 3.9 10.8 4.0 1.3 0.51
TPST1 10.5 7.7 10.6 4.1 1.0 0.98

Phase II, miscellaneous 5 of 13 COMT 10.7 5.8 9.3 3.0 0.9 0.72
EPHX1a,** 28.1 1.4 14.4 3.2 0.5 0.002
TPMT 37.6 14.5 44.2 21.0 1.2 0.68
UGT1A1 20.6 4.8 22.6 2.2 1.1 0.56
UGT2B 8.3 3.8 10.1 2.6 1.0 0.88

Phase III, drug transporters, metallothioneins 5 of 8 MT1A 23.8 11.8 29.4 14.8 1.2 0.54
MT1E 7.9 3.3 9.3 2.6 1.2 0.63
MT1G 15.3 9.3 15.6 1.9 1.2 0.61
MT1L 9.6 4.3 12.0 1.5 1.0 0.96
MTIX 13.4 11.8 10.0 4.2 1.3 0.40

Phase III, drug transporters, p-glycoproteins 2 of 7 ABCC1 30.8 10.2 40.2 24.9 0.7 0.66
ABCC3 21.4 6.2 22.0 0.5 1.3 0.58

Total gene of 96 35 8 4

Only genes are shown which had mean signals of �9.3. Those which were modulated by factors of �1.5 or �0.6 fold are highlighted in
bold letters.
Gene was downregulated by more than 0.5 fold; *,**genes were significantly modulated by AE (unpaired t-test).
*p� 0.05.
**p�0.01.
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of different ingredients impair a number of different
signaling pathways, this could lead to more distinct
functional consequences, reflected in as growth
inhibition. We have not yet studied this in detail,
but we are presently investigating the impact of our
test samples on expression of genes related cell-cycle
regulation and apoptosis, whichmay revealmore on
the involved mechanisms. Altogether, this present
part of our study shows that aglycones of the major
apple flavonoids, especially quercetin and phloretin,
inhibited growth of human colon cancer cells.
The present study investigated the potentials of

apple flavonoids to modulate genes related to drug
metabolism. Thirty five of 96 genes were differently
expressed in HT29 cells treated with apple flavo-
noids, in comparison to the nontreated control cells.
Of these more belonged to the group of Phase II
biotransformation genes than to genes encoding
Phase I and Phase III enzymes. HT29 cells treated
with 30 mM AE (Ph.E) possibly expressed higher
levels of CYP4F3 (Phase I), CHST5, CHST6, CHST7
(Phase II, sulfotransferases), and GSTP1, GSTT2,
MGST2 (Phase II, glutathione S-transferases) genes.
This could be possibly related to chemoprevention
[50], because the induction of many Phase II glu-
tathione S-transferases has been suggested to serve as
biomarker of reduced cancer risk and of chemopre-
ventive response [51,52]. In contrast, for theexample
of one of the sulfotransferases [53], the induction of
this enzyme group has been associated with an
enhanced activation of promutagens. Whether

or not this is also relevant for the specific sulfotrans-
ferases has not been investigated. The particular
role of CHSTs seems to be related more to carbohy-
drate metabolism, than to xenobiotic metabolism.
Our findings on induced cytosolic human CHST5,
CHST6, and CHST7 gene expression could also be
considered to be beneficial to cells. An interesting
finding of this study was that the Phase II epoxide
hydrolase gene (EPHX1) was 1.95 fold downregu-
lated. Because the enzyme product of this gene plays
a role in metabolic activation of benzo(a)pyrene, its
absence might convey protection in situations of
exposure to polycyclic aromatic hydrocarbons [54].
The CYP450monooxygenase plays a very important
role in metabolic activation of numerous xenobio-
tics. Also, some species catalyze hydroxylation of
endogenous substrates. The P450 isoform CYP4F3 is
known to contribute to the control of inflammation
by inactivating the proinflammatory leukotriene
LTB4 [55]. Thus, its induction CYP4F3 by AE in
HT29 cell lines may provide protection by inactiva-
tion of these proinflammatory mediators from
inflammatory diseases. In the future, it will be
interesting to assess the functional consequences of
AE treatment in these cells. This will include the
analysis of protein expression andof enzyme activity
that would need to follow a similar pattern of res-
ponse to AE as the transcriptional activity does, to be
meaningful. In particular we will be investigating
whether GST substrates, such as benzo(a)pyrene,
may, e.g., loose their genotoxic potential as a result

Figure 4. Real-time quantitative RT-PCR analysis of GSTT2 (left, **p� 0.0013) and GSTP1 (right, **p�0.0049)
mRNA transcripts for HT29 cells treated with AE 30 mM (Ph.E) or medium as control, unpaired t-test, n¼ 3.
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of induced GSTP1. Similar observations have been
made for HT29 cells treated with butyrate, which
induces, e.g., GSTA4, GSTP1, GSTM2, and other GST
isoenzymes. The genotoxicity of 4-hydroxynonenal,
which is ahighly-specific substrateofGSTA4-4andof
other GSTs, is inhibited in these cells [32].
In conclusion, here we have observed that treat-

ment of HT29 cells with a well-characterized AE
strongly inhibited growth of HT29 cells and mark-
edly influenced expression of genes encoding xeno-
biotic enzymes in subtoxic concentrations. While
the antiproliferative effect in tumor cells can be
directly related to properties of chemoprotection, it
is more difficult to speculate which functional
consequences may arise from the altered pattern of
gene expression. For the time being, when taking
available knowledge into consideration, the upregu-
lation of the genes GSTP1, GSTT2, GSTM2, CHST5,
CHST6, CHST7 and the downregulation of EPHX1
can all be related to chemoprotection, due to an
enhanceddetoxificationof some relevant risk factors
or to their decreased metabolic activation. On the
one hand, in tumor cells, this is probably not of
advantage because it could give them an improved
survival probability. On the other hand, the induced
cellular protection could ward off risk factors,
prevent the occurrence of additional molecular
alterations, and thus retard further progression. In
any case the target genes found to be affected here
need tobe investigatedmore indepth, and it remains
to be resolved whether apple compounds may also
favorably modulate expression of xenobiotic genes
in nontransformed or in preneoplastic cells of the
human colon. Altogether, the genes could be new
targets for chemoprevention and this information
adds more knowledge on particular beneficial
effects of apples possibly also for colon cancer
chemoprotection.
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Apple Polyphenols and Products Formed in the Gut Differently
Inhibit Survival of Human Cell Lines Derived from Colon

Adenoma (LT97) and Carcinoma (HT29)
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Colorectal tumor risks could be reduced by polyphenol-rich diets that inhibit cell growth. Here, apple
polyphenols were studied for effects on the survival of colon adenoma (LT97) and carcinoma-derived
(HT29) cell lines. Three apple extracts (AEs) from harvest years 2002-2004 were isolated (AE02,
AE03, and AE04) and fermented in vitro with human fecal flora. Extracts and fermentation products
were analyzed for polyphenols with HPLC. The cells were treated with AEs (0-850 µg/mL) or
fermented AEs (F-AEs, 0-9%), and survival was measured by DNA staining. All AEs contained high
amounts of polyphenols (311-534 mg/g) and reduced cell survival (in LT97 > HT29). AE03 was
most potent, possibly because it contained more quercetin compounds. Fermentation of AEs resulted
in an increase of short chain fatty acids, and polyphenols were degraded. The F-AEs were ∼3-fold
less bioactive than the corresponding AEs, pointing to a loss of chemoprotective properties through
fermentation.

KEYWORDS: Antiproliferative activity; apple polyphenols; colon cancer chemoprevention; fermentation;

colon cell line

INTRODUCTION

Epidemiological findings suggest that plant foods decrease
colorectal tumor risks (1). This could be due to a number of
different phytoprotectants, including polyphenolic flavonoids,
which act chemopreventive by inhibiting the growth of tumor
cells (2-4). It has also been shown that compounds such as
flavonoids can affect processes that induce differentiation, cause
apoptosis, and enhance anti-inflammatory responses in colorectal
cancer cell lines (5-7). Apple flavonoids, such as phloridzin,
quercetin, and (+)-catechin, have been shown to exert potent
antiproliferative activities in several studies (8-10), and it has
been shown that they are able to scavenge endogenous reactive
oxygen species (ROS) (11). Other than acting as antioxidants
(12) or scavenging carcinogens, the apple polyphenols may
inhibit carcinogenesis by affecting molecular events in the
initiation, promotion, and progression stages (13). Apples
contain very high amounts of polyphenols (14), which vary
depending on the variety (15). The total amount of polyphenols

that can be extracted from 100 g of fresh apples ranges from
110 to 357 mg (16), and quercetin and its glycosides are the
most abundant polyphenols found in apples (17).

Eberhardt et al. reported that an apple extract (AE) inhibited
the proliferation of HepG2 liver tumor cells in vitro and
suggested that these antiproliferative effects could have been
due to the presence of a unique combination of phytochemicals
in the apples in addition to ascorbic acid (18). We have
performed similar studies with human colon carcinoma cells
(HT29) and compared the effects of an AE, a synthetic AE
(mixture of the major polyphenols that mimicked AE), and
individual polyphenol compounds. It was shown that both
mixtures significantly inhibited the growth of HT29 cells in a
dose- and time-dependent manner (10). However, the effect
differed between the test compounds (individual polyphenols
< synthetic AE< natural AE). The findings thus suggested
that complete mixtures of phytochemicals in fresh fruits were
more antiproliferative in HT29 cells than the sum of individual
ingredients when tested alone. Apples are a significant source
of flavonoids in people’s diet in the U.S. and Europe (19, 20).
The ability of the mammalian colon to absorb apple polyphenols
has been shown in vivo and in vitro (21). About 0-33% of
polyphenols reached the colon and were fermented by the gut
bacteria (22). This means that both original apple polyphenols
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as well as metabolites formed physiologically in the gut are
present in the lumen and theoretically may interact with the
enterocytes.

Therefore, here we had the aim of investigating unaltered
AEs, as well as their counterparts fermented by the human gut
flora. Our expectation was that the fermented apple polyphenol
extracts (F-AEs) should differ from the unfermented polyphenol
extracts (AEs). This was hypothesized because certain key
flavonoids in the fresh, unfermented state are bound to sugar
moieties and thus occur as glycosides, galactosides, rhamnosides,
etc. The fermentation process is expected to liberate the
aglycones of the flavonoids by cleaving the flavonoid sugar
complexes. Alternatively, it is known from the literature (23)
that polyphenols can be metabolized to short chain fatty acids
(SCFA) of which butyrate and propionate have been shown to
inhibit the growth of HT29 cells (24). The key question to be
solved here was therefore to determine if the fermentation
process leads to an alteration of the biological activities.

Different AEs with different polyphenolic compositions were
investigated together with their corresponding fermentation
products produced by incubation of the AEs with human gut
flora under anaerobic conditions. Polyphenolic compositions of
AEs and F-AEs were compared. Also, the effects on prolifera-
tion were determined in the human colon adenocarcinoma cell
line HT29, as this was previously shown to be a sensitive model
of biological activity (25). We also determined effects in the
LT97 colon adenoma cell line, which represents an early
premalignant stage of tumor development (26).

MATERIALS AND METHODS

Preparation of the Extract Containing Apple Polyphenols.Clear
apple juice was produced on an experimental scale. In compliance with
the usual practice of apple juice production, we used a defined mixture
of apple varieties consisting of Jonagold (20%), Topaz (25%),
Bohnapfel (17.5%), Winterrambur (22.5%), and Bittenfelder (15%).
This type of well-balanced mixture of cider and table apples is required
to achieve adequate sensorial properties. Polyphenols from 100 L of
the resulting apple juice were retained on a 5 L adsorber resin (XAD
16 HP, Rohm and Haas, Frankfurt, Germany) that was packed in a
Pharmacia glass column (BPG 100, 100 cm× 10 cm). Water soluble
juice ingredients like sugars, organic acids, and minerals were removed
by washing using six bed volumes of distilled water. Polyphenols were
eluted with three bed volumes of ethanol (96%). The ethanolic fraction
was gently concentrated by evaporation and transferred to an aqueous
solution that was then freeze-dried (27).

Quantification of Polyphenols in AEs. A solution of the apple
polyphenol extracts was prepared to yield a concentration of 1 g/L in
20% methanol. The solution was filtered (0.2µm), and 20µL was
injected into an HP1090HPLC system equipped with a photodiode array
detector (Hewlett-Packard, Palo Alto, CA). A Phenomenex aqua column
(250 mm× 4 mm, Phenomenex, Aschaffenburg, Germany) was used
at ambient temperature. Gradient elution was performed using an
acetonitrile (ACN)/phosphoric acid gradient. Detection wavelengths
were 280 nm for flavonoids, 320 nm for phenolcarbonic acids, and
360 nm for quercetin derivatives. Quantitation was carried out using
peak areas from external calibrations with standard solutions (27). After
isolation, the extracts were stored in a dark place at ambient temperature
for 6 months, and this time, there were no significant differences of
the polyphenols. Moreover, the proliferation assay and fermentation
experiments were performed within 2 months after production of AEs.
Also, the proliferation assay for F-AEs was done after only 1 month
of storage (-80 °C).

Preparation of the Fermented Apple Polyphenol Extracts.All
fermentations were conducted in vitro under anaerobic conditions (80%
nitrogen, 10% carbon dioxide, and 10% hydrogen at 37°C), basically
according to described procedures (28). A mixture of fresh human feces
from three healthy volunteers who had given their informed consent

was prepared as a bacterial source. These were used to ferment the
reconstituted AEs (AE02, AE03, and AE04). The volunteers consumed
their normal, non-vegetarian diet without any restrictions. The study
was approved by the Ethical Committee of the Friedrich-Schiller-
University Jena.

The fecal samples were immediately weighed and filled into one
homogenizing bag. Potassium phosphate buffer (0.1 M, pH 7.0) was
added (5:1 v/w), and the mixture was homogenized thoroughly in a
Stomacher 400 (Seward, Worthing, UK). From the fecal homogenate,
40 mL aliquots were filled into 500 mL glass bottles. Apple polyphenol
samples were dissolved in anaerobic potassium phosphate buffer to
provide 20 g/L fermentable substances. A total of 40 mL of each
polyphenol solution was added to separate bottles to obtain a final AE
content of 10 g/L and a fecal suspension of 10% as recommended by
Barry et al. (29). As a negative control (blank), potassium phosphate
buffer was added to one bottle instead of apple polyphenols. Anaerobic
conditions in the glass bottles were achieved by removing the air with
an injected cannula (0.5 bar for 1 min). Subsequently, the bottles were
filled with the fermentation gas mixture via the cannula (0.8 bar for 1
min). After 30 min (15 cycles repeated), the cannulas were removed,
and the fermentation suspensions were incubated for 24 h in a shaking
water bath at 37°C. Afterward, the fermentation process was stopped
by placing the suspensions on ice. Each sample was transferred to 50
mL tubes and centrifuged (4200g, 4 °C) for 30 min. The fermentation
supernatants (F-AEs) were divided into aliquots and stored at-80 °C.
Samples were sterilized by filtration (pore size 0.22µm) before use in
the cell culture experiments.

Analyses of Polyphenols or Metabolites in Fermented AE
Samples. Only two (F-AE03 and F-AE04) of three fermentations
samples were characterized analytically due to the limited sample size
of F-AE02. Aliquots (2 mL) of the fermentation samples including the
blank (without AEs) were lyophilized and dissolved in methanol.
Polyphenol amounts in the fermentation samples were determined using
the Hewlett-Packard 1100 HPLC gradient pump and a Hewlett-Packard
1100 photodiode array detector (Waldbronn, Germany), equipped with
a Wisp 712b autosampler (Waters, Eschborn, Germany). Data acquisi-
tion and evaluation were performed with Hewlett-Packard ChemStation
software. A Hypersil Gold C18 column, 100 mm× 4.6 mm, with a 3
µm particle size (Thermo, Runcorn, UK), was used. The mobile phase
consisted of aqueous 0.1% v/v formic acid and ACN (Lichrosolv,
Merck, Darmstadt, Germany). The gradient applied was 1-99% ACN
in 40 min at a flow rate of 1 mL/min, and 25µL injection volumes
were used. The peaks were identified by comparison of retention time
and UV spectra (200-600 nm) with authentic references (22). Chlo-
rogenic acid, caffeic acid, 4-p-coumaroylquinic acid, phloretin-2′-O-
xyloglucoside, phloridzin, phloretin, procyanidin B1, procyanidin B2,
(+)-catechin, (-)-epicatechin, quercetin-3-O-glucoside, quercetin-3-
O-galactoside, quercetin-3-O-xyloside, quercetin-3-O-arabinoside, quer-
cetin-3-O-rhamnoside, quercetin, and quercetin-3-O-rutinoside (100
mg/L each) in methanol were diluted. Dihydrochalcones, catechins, and
procyanidins (B1 and B2) were determined at 280 nm, hydroxycinnamic
acid derivatives at 320 nm, and flavonols at 360 nm. 3,4,5-Trimethoxy-
cinnamic acid (Sigma, Steinheim, Germany) was used as a standard
(IS) for quantification (50 mg/L). Calibration curves (at the appropriate
wavelengths according to the absorption maximum of the compounds)
were used for quantification. Compounds were quantified by means of
calibration curves (peak area divided by IS area vs quotient of substance
and IS concentration). Linearity was given for 0.4-600 mg/L; limits
of quantification ranged from 0.4 to 0.9 mg/L and limits of determi-
nation from 0.2 to 0.4 mg/L with a signal-to-noise ratio of 3:1,
respectively.

Analysis of SCFA.To determine the SCFA, the samples were mixed
with an isocapronate standard (1:11 v/v), shaken, and centrifuged at
6400g for 10 min at 4°C. Then, the gas chromatographic measurements
(GC 17A, Shimadzu, Duisburg, Germany) were performed using a 15
m FFAP column (Phenomenex, Aschaffenburg, Germany) and a specific
temperature program (starting temperature 130°C, increase 35°C/min,
and final temperature 170°C) (30).

Human Colon Cell Lines LT97 and HT29. LT97 cells were
isolated from a micro-adenoma of a patient with familiar adenoma
polyposis coli (26). These are cells of an early colon adenoma in the
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premalignant stage of tumor development. Concerning their genetic
specifications, they are characterized by homozygous mutations of the
APC tumor suppressor gene and a homozygousk-ras oncogene.
However, there are no genetic changes in thep53 gene. LT97 cells
were cultivated in MCDB medium with 2% fetal calf serum (FCS), 10
µg/mL insulin, 2× 10-10 M triiodotyronin, 2 mg/mL transferrin, 1
µg/mL hydrocortisone, 5× 10-9 M sodium-selenite, 30 ng/mL
epidermal growth factor (EGF), and 1% penicillin/streptomycin.
Adherent cultures were passaged at subconfluent stages by using PBS/
EDTA (5 mM).

The HT29 cell line that had been established by Fogh and Trempe
from a colon adenocarcinoma of a Caucasian female (31) was originally
purchased from the American Tissue Culture Collection (Rockville,
MD). Cells were grown in Dulbecco’s modified eagle medium (DMEM,
Invitrogen Life Technology, Carlsbad, CA) supplemented with 10%
FCS and antibiotics (1% penicillin/streptomycin (v/v); Roche Molecular
Biochemicals, Meylan, France) according to our laboratory standard
culture conditions. Confluent cultures were passaged 3 or 4 days after
trypsinization.

Both cells lines were maintained under sterile conditions at 37°C
in a 95% humidified incubator (5% CO2). Cells were routinely checked
for mycoplasma contaminations using highly sensitive PCR analysis
(Minerva Biolabs GmbH, Germany). For the experiments performed
here, cells of passages 32-36 (LT97), and passages 30-41 (HT29)
were used.

Determination of Cell Growth. Growth and survival of colon cells
were determined in 96 well microtiter plates (Nunc GmbH & Co. KG,
Berlin, Germany). A total of 72 h (LT97,∼20-30% confluence) or
48 h (HT29 cells 8000 cell/well,∼20-30% confluence) after seeding
the cells, the cultures were treated with AEs (AE02, AE03, and AE04)
and fermented AEs (F-AE02, F-AE03, and F-AE04) diluted in cell
culture medium containing 0-850 µg/mL (dry mass) and 0-900 µg/
mL (dry mass), respectively. After 24, 48, and 72 h of incubation time,
the cells were lysed and fixed by methanol. Total cell counts were
determined indirectly by staining DNA with DAPI (4′,6-diamino-2-
phenylindole, Sigma, Germany), which becomes fluorescent after DNA
binding. After 30 min, the DNA content, which reflects the number of
cells, was detected by fluorimetrical analysis with Ex/Em 360/450
(TECAN Spectrafluor GmbH, Crailsheim, Germany). All data points
were performed in triplicate, and each experiment was repeated
independently at least 3 times for statistical evaluation. There were no
additional substances added to the extracts. To measure the effect of
AEs on cell growth, two controls were included in the proliferation
assay. One was the no treatment control, for which the cells were
incubated with only medium (0µg/mL, 100%), and the second con-
trol was blank control, performed using different concentrations of
extracts without cells. This second control (blank) was included to
accommodate for the fluorescence of the extracts. Moreover, since DAPI
can also produce fluorescence in the presence of extracts alone, the
artifacts were normalized to the original fluorescence from cell DNA.
The effective median doses (EC50) of AEs and F-AEs that inhibited
growth by 50% were determined and expressed as micrograms (µg)
of AE.

Statistical Analysis. Statistical analysis was performed using the
GraphPad Prism Version 4.0 for Windows (GraphPad Software Inc.,
San Diego, CA). Data shown in the tables and figures represent mean
values( SEM. Unless otherwise stated, these means were calculated
from the means of triplicate replicates obtained in at least three
independent experiments. Significant differences between treatment and
control values were determined by one-way ANOVA and Bonferroni’s
post test.

RESULTS

Contents of Polyphenols in AE02, AE03, and AE04.The
content of AE02 was reported in our previous publication (10),
and it was used here to compare the content of new AEs (AE03
and AE04) additionally investigated here. AE02 contained the
highest concentration of polyphenols, with a total amount of
533.9 mg/g of AE. AE04 contained 478.3 mg/g, whereas AE03

contained only 310.9 mg/g.Table 1 shows the individual
constituents in each of the three AEs. Chlorogenic acid was
the most abundant phenolic compound detected in AE02 and
AE04, each with concentrations of about 180 mg/g, whereas
AE03 contained only about one-tenth of this amount. The
phloretin sugars formed another abundant group of phenolic
compounds in the AEs. AE02 contained the highest amount of
phloretin glycosides with a total content of 200.5 mg/g.
Phloridzin (phloretin-2′-O-â-D-glucoside) was the most common
glycoside with 78.9 mg/g detected in AE03. AE02 had the
smallest amount of phloridzin with only 27.9 mg/g. Quercetin
derivates were detected in all three AEs. The total amounts of
quercetin derivatives amounted to 116.2, 12.1, and 8.8 mg for
AE03, AE04, and AE02, respectively. There are some uncer-
tainties encountered for estimating the presence of unknown
dihydrochalcones (seeTable 1 footnote), but according to the
relevant literature,Table 1 is more or less complete and contains
all the major polyphenols. In addition, the concentrations of
total sugar were also analyzed and are included inTable 1.
Moreover, the extracts were analyzed for lipids after methanol/
chloroform extraction. But, after a derivatization to fatty acid
methyl ester (FAMEs) followed by gas chromatography-mass
spectrometry (GC-MS) on a DB-Wax column, no fatty acids
could be detected. Also, no phytosterols (silylation, GC-FID
on DB-5) were detectable. Extracts were also analyzed for
proteins, but after a 6 M HCl hydrolysis, no amino acids were
detected in the hydrolysates (HPAEC/PAD, Dionex BioLC).

Contents of Polyphenols or Metabolites and SCFA in the
Fermentation Samples.The polyphenols were hardly detectable

Table 1. Polyphenols in AE from Cultivar Years 2002, 2003, and 2004
(AE02, AE03, and AE04) Analytically Characterized by HPLCa

mean values (mg/g of AE)

Substances AE02 AE03 AE04

280 nm
procyanidin B1 7.0 6.2 n.d.
procyanidin B2 15.1 18.4 12.1
(+)-catechin n.d. 2.7 n.d.
(−)-epicatechin 19.2 17.7 12.5
phloretin glycoside 1b 24.7 n.d. n.d.
phloretin glycoside 2b 9.0 n.d. n.d.
phloretin-2-O-xyloglucosidec 138.9 31.7 68.9
phloretin-2-O-xylogalactosidec n.d. 4.2
phloridzin 27.9 78.9 48.0

320 nm
chlorogenic acid 181.5 19.2 183.2
caffeic acid 4.8 4.0 7.5
3-coumaroyl-quinic acidd 9.5 3.0 9.4
4-coumaroyl-quinic acidd 77.3 5.0 66.0
5-coumaroyl-quinic acidd 10.4 3.8 39.8
p-cumaric acid n.d. 4.2 2.6
cumaroyl-glucose n.d. n.d. 11.9

360 nm
quercetine-3-O-rutinoside 2.6 49.1 4.5
quercetine-3-O-galactoside 0.8 8.1 1.8
quercetine-3-O-glucoside 1.4 12.3 1.5
quercetine-3-O-rhamnoside 4.1 25.1 4.3
quercetine-3-O-xyloside n.d. 18.1 n.d.
quercetine-3-O-arabinopyranoside n.d. 3.5 n.d.
total polyphenols 533.9 311.0 478.2
total polysaccharides 164.0 305.0 99.0

a Content of AE02 was reported in our previous publication (10). We have
included the data here to compare the content of AE02 to the additionally
investigated AEs (AE03 and AE04). n.d.: Polyphenols that were not detectable.
b No commercial standard available, glycoside part unknown. c No commercial
standard available, isolated by preparative HPLC, unknown dihydrochalcone. d No
commercial standard available, quantitated with 3-isomer.
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in the fermentation samples (Table 2). Most of the polyphenols
were degraded (approx. 99.9%) when compared to the total
amount of non-fermented AEs. The total amounts were 0.10
and 0.002 mg/L of fermented F-AE03 and F-AE04, respectively.
Only some of the polyphenols that have complex structures,
namely, (+)-catechin (0.145µmol/L), phloretin-2′-O-xyloglu-
cosid (0.062µmol/L), procyanidin B2 (0.041µmol/L), quercetin-
3-O-rhamnoside (0.007µmol/L), phloridzin (0.002µmol/L), and
caffeic acid (0.006µmol/L) were retrieved in very minor
amounts in the sample F-AE03 and F-AE04, respectively. There
were no polyphenols detected in the fermented blank control
samples (without addition of AEs). Moreover, the analysis of
polyphenol metabolites in the fermentation samples showed that
the total concentration of phloroglucin and 3,4-dihydroxyphe-
nylpropionic acid was higher in F-AS03 (75.5 mg/L) than in
F-AS04 (41.3 mg/L).

The formation of SCFA in the control sample (prepared
without the addition of AE) was lower (11.4 mmol/L) than in
the fermented samples with AE (Figure 1). The mean content
of total SCFA in F-AE02 (44.5 mmol/L) was approximately
1.5-fold higher than in the other samples, which amounted to
28.9 mmol/L in F-AE03 and 35.4 mmol/L in F-AE04. Among
all the analyzed SCFA, acetate (29.16 mmol/L) was found in
high concentrations in all three F-AEs in comparison to the fecal
control (blank), which had been produced without addition of
the AEs. Butyrate (5.7 mmol/L) and propionate (4.5 mmol/L)
were the second most abundant SCFA in all the F-AEs. The
relative molar ratios for acetate, butyrate, and propionate were
65:19:16 for the blank, 74:15:11 for AE02, 69:15:16 for AE03,
and 76:14:10 for AE04.

Modification of LT97 and HT29 Cell Growth by AEs. The
effect of AE02 on HT29 cells was reported in our previous
publication (10), and here, its activities were compared to AE03
and AE04. Treatment of LT97 and HT29 cells with all three
AEs affected the cell growth in a time- and dose-dependent
manner (Figure 2). After 24 and 48 h of treatment, the growth
of the LT97 adenoma cells was more strongly inhibited by AEs
than in the HT29 carcinoma cells. After 48 h, the EC50 values
ranged from 240.8( 28.0 -to 454.8 ( 59.9 µg and from
380.8( 18.5-to 634.5( 42.8µg for the different AEs in the
LT97 and HT29 cells, respectively (Table 3). AE03 had the
highest antiproliferative activity as compared to AE02 or to
AE04 and resulted in EC50 values of 240.8( 28.0 and 380.8
( 18.5 µg after 48 h, in LT97 and HT29 cells, respectively.
AE02 had the lowest antiproliferative activities with EC50 values
of 454.8( 59.9 and 634.5( 42.8µg after 48 h in LT97 and
HT29 cells, respectively. Intermediate bioactivities were ob-
served for AE04 (Table 3) with EC50 values of 290.6( 18.7

or 411.9( 30.8µg in LT97 or HT29 cells. The values, however,
were not significantly different from the values obtained for
AE02 and AE03.

Modulation of LT97 and HT29 Cell Growth by Fer-
mented AEs. Figure 3 shows the effects of F-AEs on the
growth of LT97 and HT29 cells after 24 and 48 h of treatment.
The effect on cell growth of F-AEs and of the corresponding
fermentation blank (without addition of AEs) was measured.
Since there was a significant (p e 0.01) inhibition of cell growth
by the blank (after 48 h), the data of F-AEs were normalized to
the corresponding F-AE blank. All fermented samples also
inhibited the growth of LT97 and HT29 cells in a time- and
concentration-dependent manner. However, again, F-AE03
showed a more pronounced inhibitory effect than F-AE02 and
F-AE04 and resulted in EC50 values of 404.1( 140.8 and 801.0
( 44.0 µg after 48 h, in LT97 and HT29 cells, respectively
(Table 4). The results show that the growth inhibition by
fermented AEs did not directly reflect the amounts of SCFA
found in the samples (Figure 1). Although the mean value of
SCFA for F-AE02 was higher than that of F-AE03 and F-AE04,
this did not result in a stronger growth inhibition. The LT97
cells were more sensitive than the HT29 cells toward the growth
inhibitory activities of all F-AE. As compared to unfermented
AEs, the F-AEs were approximately 3-fold less active.

DISCUSSION

AEs contain several compounds with antiproliferative po-
tential (10). In this study, we used three different types of AEs,
each containing different concentrations and types of polyphe-
nols. The analyses of polyphenols again provided evidence for
remarkable differences depending on cultivars, varieties, and
harvest years.

The polyphenols, however, seem to be mostly degraded by
fermentation mediated through the gut flora since some com-
pounds were no longer detectable in fermented AEs. Exceptions
were for larger, more complex polyphenols such as catechin
and procyanidin derivatives, which were both still detectable,
although only in very small amounts. Because of the complex
structures of these particular compounds, they might be less
susceptible to the action of the gut microflora enzymes (32). In
addition, the fermentation process resulted in the formation of
SCFA. Thus, by the fermentation of apple polyphenols through
the gut flora, SCFA can be produced in the human colon, and

Table 2. Polyphenols and Metabolites Present in Fermented AE
(F-AE03 and F-AE04) Analytically Characterized by HPLCa

before fermentation after fermentation

polyphenols and metabolites (mg/g) AE03 AE04 F-AE03 F-AE04

procyanidin B2 18.4 12.1 0.024 n.d.
catechin 2.7 n.d. 0.042 n.d.
phloretin-2-xyloglucoside 31.7 68.9 0.035 n.d.
phloridzin 78.9 48.0 n.d. 0.001
caffeic acid 4.0 7.5 n.d. 0.001
quercetin-3-rhamnoside 25.1 4.3 0.003 n.d.
phloroglucin n.d. n.d. 42.2 n.d.
3,4-dihydroxyphenylpropionic acid n.d. n.d. 33.3 41.3
total 160.80 140.80 75.60 41.30

a There were no polyphenols detected in the fermented blank control sample
(without addition of AEs). n.d.: Polyphenols or metabolites were not detected.

Figure 1. SCFA (mmol/L) in the fermentation samples of AEs (F-AE02,
F-AE03, and F-AE04), n ) 2.
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the formation depends on the amount of total polyphenols
present in AEs. F-AE02, which had the highest amount of
polyphenols before fermentation, also contained the highest
amount of total SCFA. Interestingly, the fermentation of dietary

fibers such as prebiotic long chain inulin-type fructans or
arabinoxylans resulted in quite similar SCFA profiles (33, 34).

We used DNA-DAPI staining as an indirect method to assess
the total cell number in the proliferation assay. We have chosen

Figure 2. Growth inhibition of LT97 colon adenoma cells (a) and HT29 colon carcinoma cells (b) after 24 and 48 h incubation with AEs. The effect of
AEs was normalized to the blank control (AEs without cells) and to the non-treated control (0 µg/mL, 100%) cells. One-way ANOVA and Bonferroni’s
post test gave *p e 0.05, **p e 0.01, and ***p e 0.001, n ) 3.

Table 3. Antiproliferative Activities (EC50 Values, µg) of AEs Determined in LT97 and HT29 Cellsa

EC50 (µg/mL)

AE LT97 HT29

treatment time (h) 24 48 72 24 48 72

AE02 650.9 ± 25.2 454.8 ± 59.9 361.0 ± 59.3 × 634.5 ± 42.8 462.4 ± 20.2
AE03 280.6 ± 45.3 240.8 ± 28.0 206.2 ± 19.5 × 380.8 ± 18.5 272.5 ± 8.1
AE04 430.8 ± 26.6 290.6 ± 18.7 224.2 ± 15.3 × 411.9 ± 30.8 454.7 ± 181.3

a ×: Denotes that EC50 values were not achieved, n ) 3.
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this method since it is faster, more reliable, and sensitive to
determine the total cell number as compared to other methods
used routinely in the laboratory. To exclude possible artifacts
arising from fluorescence of the test substance, we included a

blank control (test substances without cells). In our study, we
used two in vitro cell model systems. One is a highly
transformed human colon carcinoma cell line (HT29), and the
second is a human colon adenoma cell line (LT97) that is

Figure 3. Growth inhibition of LT97 colon adenoma cells (a) and HT29 colon carcinoma cells (b) after 24 and 48 h incubation with F-AEs. The effect
of AEs was normalized to the blank control (AEs without cells) and to the non-treated control (0 µg/mL, 100%) cells. One-way ANOVA and Bonferroni’s
post test gave *p e 0.05, **p e 0.01, and ***p e 0.001, n ) 3.

Table 4. Antiproliferative Activities (EC50 Values, µg) of Fermented AEs Determined in LT97 and HT29 Cellsa

EC50 (µg/mL)

F-AE LT97 HT 29

treatment time (h) 24 48 72 24 48 72

F-AE02 × 764.7 ± 9.3 628.8 ± 40.3 × × 738.2 ± 13.2
F-AE03 821.4 ± 49.5 404.1 ± 140.8 565.8 ± 99.0 × 801.0 ± 44.0 687.7 ± 18.0
F-AE04 784.9 ± 44.1 572.4 ± 52.8 398.3 ± 106.4 × × 724.9 ± 82.6

a ×: Denotes that EC50 values were not achieved, n ) 3.
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representative of preneoplastic cells. The rationale of the model
choice was to compare the antiproliferative efficacy of apple
polyphenols between transformed cells and partially transformed
cells. If the effect was more pronounced in preneoplastic cells
than highly transformed cells, one could expect that the effect
would be higher in primary cells. However, since both cell types
were grown and maintained in different cell culture media, some
of the differences could also be attributed to culture conditions.
The antiproliferative activity of AE03 was higher than that of
AE04 and AE02 in both LT97 and HT29 cells after 24 and 48
h treatments. This was unexpected since AE03 (311.0 mg/g)
contained only approximately 65 or 58% of the total polyphenols
contained in AE04 or AE02, respectively. An explanation for
this finding, however, could be that the pronounced antiprolif-
erative activities of AE03 result from its higher quercetin
concentrations, which were about 10- and 13-fold higher than
the respective concentration of AE04 and AE02. This is
supported by findings from previous studies with HT29 cells,
showing that quercetin was the major compound contributing
to the antiproliferative and antioxidative activities of AEs (10,
35, 36). This present part of the study confirms previous findings
that both the mixture of major apple flavonoids as well as the
amount of specific bioactive flavonoids are important factors
for growth arrest in human colon cell lines (37).

Since the majority of the polyphenols was degraded (99.9%)
during human gut flora-mediated fermentation, the growth
inhibitory effects of F-AEs in LT97 and HT29 cells are probably
not due to the same polyphenols as they are in the unfermented
samples. The amounts of the detected polyphenols, such as (+)-
catechin (0.145µmol/L), phloretin-2′-O-xyloglucoside (0.062
µmol/L), procyanidin B2 (0.041 µmol/L), and quercetin-3-O-
rhamnoside (0.007µmol/L), are possibly below the effective
concentration ranges found in previous investigations, and some
are lower than the reported concentration of apple polyphenols
in human plasma (0.1-0.4 µmol/L) (38-40). It will, however,
be of interest to assess in the future whether such low amounts
of polyphenols, together with resulting metabolites, are able to
inhibit growth or modulate the expression of relevant genes, as
has, for example, been reported before (41, 42). For example,
it has also been shown that exposure of colon cells to catechins
and procyanidins increases the expression of phase II enzymes,
such as GSTs and UGTs, that are important for the biotrans-
formation of carcinogens (43, 44).

The SCFA, and especially butyrate, produced from AEs may
play a role in the colon. Colon crypts may use SCFA as an
energy source, whereas in tumor cells, SCFA stimulate pathways
of growth arrest, differentiation, and apoptosis (45). Moreover,
SCFA may also enhance toxicological defense in primary,
adenoma, and tumor human colon cells by favorably modulating
detoxifying enzymes (46). In our investigation, we did not find
an association between the concentration of SCFA and anti-
proliferative properties of AEs. The F-AE03 contained only 80
and 63% of the SCFA contained in F-AE04 and F-AE02,
respectively, but F-AE03 inhibited cell growth 1.6- and 1.4-
fold more efficiently than F-AE04 and F-AE02 in LT97 cells.
Similar directional but less pronounced effects were noticed with
F-AE03 in comparison to F-AE04 and F-AE02 in HT29 cells
with 1.2- and 1.1-fold differences, respectively. Thus, the
amount of SCFA present in F-AEs did not directly reflect the
differences in antiproliferative activities of F-AEs. Moreover,
the total concentration of 3,4-dihydroxyphenylpropionic acid
and phloroglucin, which are metabolites of proanthocyanidins
and phloridzin (47, 48) polyphenols, is higher in F-AS03 (75.5

mg/L) than in F-AS04 (41.3 mg/L), respectively. This might
cause differences in antiproliferative effects by fermented AEs.

On the basis of equivalent apple concentrations, AEs were
consistently about 10-fold more growth inhibitory than F-AEs
in both LT97 and HT29 cells. Thus, the fermentation process
reduced the effectiveness of AEs. The growth inhibition of
adenoma-derived LT97 was more pronounced than carcinoma-
derived HT29 cells after treatment with both AEs and F-AEs.
LT97 cells may be representative of preneoplastic lesions in
the human colon (26); thus, apple polyphenols might have a
higher antiproliferative efficacy in the preneoplastic lesion than
in carcinoma cells.

In conclusion, apple polyphenols were able to significantly
suppress the growth of both adenoma (LT97) and carcinoma
cells (HT29). The growth suppressing properties of AEs are
due to their polyphenols but not due to the SCFA derived from
the polyphenols during gut flora-mediated fermentation. The
adenoma cells were more sensitive than the highly transformed
carcinoma cells. This may mirror a higher chemoprotective
potential of apple polyphenols in the preneoplastic lesion than
in carcinoma. Our findings indicate that the adenoma and
carcinoma cell proliferation is significantly inhibited by a
specific combination of an apple polyphenol/flavonoid mixture
from different cultivars. Collectively, these results imply that
the antiproliferative effect by AEs might contribute to its overall
chemoprotective function against colon carcinogenesis.

ABBREVIATIONS USED

AEs, apple polyphenol extracts; AE02, apple extract 2002;
AE03, apple extract 2003; AE04, apple extract 2004; F-AEs,
fermented apple polyphenol extracts; SCFA, short chain fatty
acid.
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Butyrate, formed by bacterial fermentation of plant foods,
has been suggested to reduce colon cancer risks by suppres-
sing the proliferation of tumor cells. In addition, butyrate
has been shown to induce glutathione S-transferases
(GSTs) in tumor cell lines, which may contribute to the
detoxification of dietary carcinogens. We hypothesize that
butyrate also affects biotransformation in non-transformed
colon cells. Thus, we have investigated the gene expression
of drug metabolism genes in primary human colon tissue,
premalignant LT97 adenoma and HT29 tumor cells cul-
tured in an appropriate medium�butyrate. A total of
96 drug metabolism genes (including 12 GSTs) spotted
on cDNA macroarrays (Superarray�; n ¼ 3) were hybrid-
ized with biotin-labeled cDNA probes. To validate the
expression detected with Superarray�, samples of LT97
cells were also analyzed with high density microarrays
(Affymetrix� U133A), which include biotransformation
genes that overlap with the set of genes represented on the
Superarray�. Relative expression levels were compared
across colon samples and for each colon sample�butyrate.
Compared with fresh tissue, 13 genes were downregulated
in primary cells cultivated ex vivo, whereas 8 genes were
upregulated. Several genes were less expressed in LT97
(40 genes) or in HT29 (41 and 17 genes, grown for 72 and
48 h, respectively) compared with primary colon tissue.
Butyrate induced GSTP1, GSTM2, and GSTA4 in HT29 as
previously confirmed by other methods (northern blot/
qPCR). We detected an upregulation of GSTs (GSTA2,
GSTT2) that are known to be involved in the defence
against oxidative stress in primary cells upon incubation
with butyrate. The changes in expression detected in LT97
by Superarray� and Affymetrix� were similar, confirming
the validity of the results. We conclude that low GST
expression levels were favourably altered by butyrate. An
induction of the toxicological defence system possibly con-
tributes to reported chemopreventive properties of but-
yrate, a product of dietary fibre fermentation in the gut.

Introduction

The lifetime colorectal cancer risk in the general population is
reported to be ~5%, with individual risk increasing signifi-
cantly with age (1). Although a small proportion of colorectal
tumors are caused by inherited genetic alterations (2), the
greatest numbers of tumors are sporadic and probably the
result of a life-long accumulation of genetic alterations in
somatic tissues (3,4). These may be caused by carcinogenic
compounds derived from foods that are putative risk factors for
colorectal cancer (5,6). Carcinogenic compounds ingested
with food may pass directly into the gut lumen or may reach
the colon indirectly through the bile and/or the enterohepatic
circulation after being metabolically activated and conjugated
in the liver (7--9). The extent of dietary exposure, the ability to
prevent DNA damage by inactivating dietary carcinogens and
the capacity to repair the damage caused by dietary carcino-
gens all contribute to an individual’s risk of developing cancer.
A favourable balance of biotransformation enzymes, which
include various phase I enzymes (10), phase III transport sys-
tems (11,12), as well as phase II enzymes, such as glutathione
(GSH) S-transferases (13), UDP-glucuronosyl transferases
(14,15), might protect tumor target cells from accumulating
additional mutations. This mechanism of action by xenobiotics
has been defined as ‘blocking agent activity’ as opposed to
‘suppressing agent activity’, which targets altered cells by
e.g. inhibiting their growth or inducing apoptosis (16). Both
mechanisms contribute to the chemopreventive action of
compounds (17--19).
Levels of biotransformation enzymes have been associated

with genetic polymorphisms (20), as well as with environmen-
tal factors (21). The induction of selected phase II enzymes
that exhibit mainly detoxifying activities is an important target
in dietary chemoprevention (22,23). A family of enzymes
that plays an important role in detoxification is glutathione
S-transferases (GSTs; EC 2.5.1.18), which catalyze the con-
jugation of many electrophilic compounds with reduced GSH.
Based on their biochemical, immunological and structural
properties, the GSTs are characterized as cytosolic, mitochon-
drial and microsomal enzymes. The cytosolic transferases are
represented by classes Alpha, Mu, Pi, Sigma, Theta, Zeta and
Omega. The mitochondrial transferase is called class Kappa
GST. The microsomal transferases form a unique MAPEG
(membrane-associated proteins in eicosanoid and GSH meta-
bolism) grouping of transferases (13,24).
In this context, we have been exploring the potential of

physiologically available butyrate to modulate the expression
levels of GSTs (25; T.Kautenburger, G.Beyer-Sehlmeyer,
G.Festag, N.Haag, S.Kuechler, A.Kuechler, A.Weise,
B.Marian, W.H.M.Peters, T.Liehr, U.Claussen, and B.L.Pool-
Zobel, submitted for publication) and to confer resistance to
human colon cells towards the exposure to colon cancer
risk factors (26,27). Butyrate is a major product of dietary
fibre fermentation by the gut microflora and evidence is

Abbreviations: ARE, antioxidant responsive element; GAPDH,
glyceraldehyde-3-phosphate dehydrogenase; GSTs, glutathione
S-transferases; HBSS, Hank’s balanced salt solution; HDACs, histone
deacetylases; Keapl, Kelch-like ECH-associated protein 1; PBS, phosphate
buffered saline.
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accumulating that it may also be formed from other ingredients
of plant foods, such as polyphenols (28). In HT29 cells, butyr-
ate was an efficient inducer of GSTs, particularly GSTP1-1,
GSTM2-2 and GSTA4-4 (25--29), whereas in colon adenoma
cells butyrate reduced the expression of GSTT1-1 protein,
probably by destabilizing the GSTT1 mRNA (T.Kautenburger
et al., submitted for publication). Additional GST genes may
contribute to GSH conjugation within colon cells resulting in
cellular protection (30).
In this study we (i) investigated whether GSTs and other

biotransformation genes were expressed differently in human
colon cells and (ii) determined differences in gene expression
owing to butyrate. For this purpose we utilized two types of
DNA arrays, both novel developments of functional genomics
(31) and assessed the expression levels of 12 GSTs in colon
epithelial tissue, primary human colon cells (32), premalignant
human LT97 adenoma cells (33) and highly transformed HT29
tumor cells (34). All studied stages were considered to be
relevant targets to study the dietary-related colon carcinogen-
esis, and particularly, HT29 cells have been used in many
studies as a model for colon cancer cells. We aimed to enhance
the knowledge of biotransformation capacities and the tran-
scriptional regulation by butyrate. This type of nutrigenomics
approach will help in expanding our understanding of the
mechanisms that mediate the effects of chemopreventive
diets in reducing the risk of colorectal cancer (35,36).

Materials and methods

Cell lines and culture condition

The human colon adenoma cell line LT97 was a kind gift from Professor
Brigitte Marian (Institute for Cancer Research, University of Vienna, Austria)
who established it from colon microadenomas of a patient with familial
adenomatous polyposis (33). LT97 was maintained in a culture medium
(MCDB 302) containing 20% of L15 Leibovitz medium, 2% FCS (fetal calf
serum), 0.2 nM triiodo-L-thyronine, 1 mg/ml hydrocortisone (302 basic
medium) supplemented with 10 mg/ml insulin, 2 mg/ml transferrin, 5 nM
sodium selenite and 30 ng/ml EGF (epidermal growth factor). HT29 cells
were isolated from a colon adenocarcinoma of a female Caucasian (34) and
originated from an adenoma colon tissue. It was obtained from the American
Tissue Culture Collection (ATCC), Rockville, MD, USA. The HT29 cells were
maintained in Dulbecco’s Modified Eagle Medium (DMEM) supplemented
with 10% FCS and 1% penicillin/streptomycin (26). LT97 and HT29 cells
were grown in T25 flasks and cultivated in a humidified incubator (5% CO2;
95% humidity, at 37�C). Under these conditions, doubling time for LT97 was
72--96 h; and for HT29 cells, 24 h. Passages 29--32 and 29--46, respectively
were used for the experiments.

Primary human colon tissue

Cells and RNA were isolated from patients who had given their informed
consent after being admitted to hospital for surgery of colorectal tumors,
diverticulitis and colon polyps (25). Mean age (�SD) of the six donors of tissue
for direct RNA isolation was 58.5 � 11.1 years; three of the donors were male
and three were female. Mean age (�SD) of the three donors from which colon
cells were first isolated before incubation and RNA isolation was 65.7 �
20.2 years; one of the donors was male and two were female. The Ethical
Committee of the Friedrich-Schiller-University of Jena approved the study.
Non-tumor colon tissue was stored in HBSS (Hank’s balanced salt solution;
8.0 g/ l NaCl, 0.4 g/ l KCl, 0.06 g/ l Na2HPO4� 2 H2O, 0.06 g/ l K2HPO4, 1 g/ l
glucose, 0.35 g/ l NaHCO3 and 4.8 g/ l HEPES, pH 7.2), transported on ice to
the laboratory within 1 h and worked up immediately. The human colon
epithelium was separated from the tissue by a perfusion-supported mechanical
disaggregation (32). Epithelial stripes were either conserved for RNA isolation
or they were further incubated in vitro and treated with butyrate (see below).

Treatment with butyrate

Effects of butyrate on the growth properties of HT29 and LT97 cells and on the
expression of GSTP1, GSTM2, GSTA4 and GSTT1 have been assessed in detail
perviously (25). Based on these studies, each of the cell types was incubated

and treated with the maximum butyrate concentration without affecting the
viability and growth rates as had been described previously for LT97 and HT29
cells (T.Kautenburger et al., submitted for publication; 26), or as had been
established during this study for primary colon tissues/cells. Therefore, the
cell-specific, subtoxic and optimal conditions varied in terms of time between
plating and treatment, duration of treatment and concentration of butyrate.
HT29 cells were plated and after allowing attachment for 24 and 48 h, subjec-
ted to treatment with 4 mM butyrate or plain medium. LT97 cells were plated
and after allowing attachment for 72 h, treated with 1 and 2 mM butyrate or
plain medium. Both cell lines were harvested after a further 24 h treatment.
Primary human colon tissue pieces were cultured in petri dishes (35 mm) and
after allowing to settle for 15 min, subjected to treatment with 10 mM butyrate
or plain medium. After 12 h treatment, the cells were isolated from the epi-
thelial stripes by mincing and were incubated in 3 ml HBSS (60 min, 37oC)
supplemented with 6 mg proteinase K (Sigma; Steinheim, Germany) and 3 mg
collagenase P (Boehringer; Mannheim, Germany). The suspensions of pri-
mary human colon cells were diluted with HBSS, centrifuged and resuspended
in PBS (phosphate-buffered saline; 8 g/ l NaCl, 1.44 g/ l Na2HPO4, 0.2 g/ l KCl
and 0.2 g/ l KH2PO4, pH 7.3). Viability and cell yields were determined with
trypan blue.

RNA isolation

Total RNA was isolated from primary human colon cells, LT97 adenoma cells
and HT29 tumors cells (up to 6 � 106 cells) using RNeasy Mini Kit (Qiagen,
Hilden, Germany), dissolved in 30--70 ml RNase free water and stored at
�20�C. RNA was also isolated from surgical tissue samples, which had been
placed into RNA Later solution (Qiagen, Hilden, Germany) immediately after
excision. The integrity of the ribosomal RNA and DNA contamination was
checked routinely using formaldehyde denaturing RNA gel electrophoresis
(1.2%) before proceeding with the further macro and micro array analysis.
Protein or phenol contamination and concentration of the total RNA was
assessed by determining the ratio A 260:280 spectrophotometrically
(Eppendorf BioPhotometer, Hamburg, Germany).

Macro and micro array analysis

Superarray.� Hybridization was performed on 112 sites (3 blanks, 3 negative
reference spots, 10 household genes, and 96 human genes related to
drug metabolism) on cDNA gene macroarrays (GEArray Q Series Human
Drug Metabolism Gene Array HS11, SuperArray� Bioscience Corporation;
Frederick, MD). Genes were classified into functional categories, representing
phase I enzymes (cytochrome p450 family, epoxide hydroxylases), phase II
enzymes (acetyltransferases, GST, sulfotransferases, and UDP-glucuronosyl
transferases andmiscellaneous others) and phase III enzymes (metallothioneins
and p-glycoproteins). A detailed gene list is available on the company’s
website (http://www.superarray.com/) and in the accessory file to this manu-
script. [The studies were done with c-DNAmacroarrays, containing sequences
of 96 genes related to drug metabolism, the data for the 12 spotted genes
belonging to the family of the glutathione S-transferases are presented here in
more detail, since confirmatory studies are available. Data for the other
genes of drug metabolism are available from the accessory data file (http://
www2.uni-jena.de/biologie/ieu/et/Dateien/Butyrate_gene.pdf).] Six arrays
were used to determine the interindividual variation levels for RNA isolated
from six different donors. Three arrays each were used for RNA isolated from
three independently reproduced experiments consisting of medium controls
and butyrate-treated samples of primary colon cells, LT97 cells and HT29
cells. HT29 cells were investigated both at 24 h after plating and at 48 h after
plating to determine differences owing to culture conditions. Work-up of the
array was performed according to the manufacturer’s protocol. Single-stranded
cDNA was synthesized from total RNA (1--3 mg) in vitro by using M-MLV
reverse transcriptase (Promega, USA). By applying a single-step ampo linear
polymerase reaction (LPR) labelling technique, the cDNA was labelled with
dUTP-biotin. The cDNA macroarray was hybridized overnight at 60�C with
the biotin-labelled cDNA. The hybridized membrane was subjected to chemi-
luminesence analysis for quantification of the conjugation signals with
streptavidin-linked alkaline phosphatase and CDPstar. The resulting signals
were captured by CCD camera equipment (Fujifilm LAS-1000, Diana, USA)
and analyzed with AIDA array analysis (Raytest GmbH, Germany) program to
comprehensively evaluate the differential gene expression of the various
samples. Raw data were normalized between 0 and 100% expression, where
the signals of the means of the negative controls (areas without spotted gene
sequences or with genes not expressed in human cells) equalled 0 and the
means of the signals of the positive controls (household genes) were fixed
to equal 100%. Thus, the data shown here represent the mean expression levels
relative to negative and positive reference genes. Some genes may reach
signals over those of the household genes and thus reach values 4100%.
Negative values are obtained for genes revealing signals below those of the
six negative reference spots. Additionally, to enable other comparisons,
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the data were also normalized according to two other criteria (data not shown).
One was to set the lowest signal to equal 0% and the other was to set the means
of signals of all genes to equal 100% (global normalization). The values of
‘fold change’, obtained for all three normalization procedures, were used to
identify differentially expressed genes and butyrate-regulated genes, respect-
ively. This comparison revealed that the first approach was the most sensitive
and (based on all confirmatory data) also the most predictive one.

Affymetrix�. Hybridizations were done on Affymetrix U133A gene expres-
sion arrays containing probe sets recognizing 414 000 well-characterized
human genes. A detailed list of genes is available on the Affymetrix website
(http://www.affymetrix.com). Labelled probes for hybridization were prepared
from total RNA obtained as described above from LT97 cells. To remove
residual contamination with genomic DNA, total RNA samples were treated
with DNAse I at 37�C for 30 min followed by repurification through RNeasy
columns (Qiagen, Hilden, Germany). Labelling reactions were done following
the suggested protocol for the preparation of fragmented biotinylated com-
plementary RNA (cRNA). In short, with all variable points, 5 mg of total
RNA, DNase I treated, was used for cDNA synthesis using the T7-promoter
primer (Affymetrix). After a second strand synthesis, biotinylated cRNA was
obtained by transcription from the double-stranded cDNA with T7-RNA-
polymerase (Enzo). Biotinylated cRNA was fragmented by treatment
with Mg2þ directly before hybridization. Hybridization and scanning were
done on an Affymetrix array processing station and scanner. Primary data
obtained scanning the signals of the micro arrays (Affymetrix U133A)
were analyzed using the Affymetrix MicroArraySuite analysis package. The
resulting signal intensities for each gene and the change of P-values were used
for comparative evaluation.

Northern blot analysis of GSTP1 expression

Ten micrograms of LT97 and HT29 RNA were loaded on a 1.5% denaturing
agarose gel, separated for 3--4 h at 80 V and blotted on a positively charged
nylon membrane (Roche Diagnostics, Mannheim, Germany). Preparation of
digoxygenin-labelled RNA probes for GSTP1 and GAPDH was performed
as described previously (26). Hybridization occurred overnight at 72�C
in standard high SDS hybridization buffer (containing 100 ng/ml of GAPDH
and 67 ng/ml of GSTP1 RNA probe). The signals were detected by incu-
bating the membrane with anti-DIG alkaline phosphatase antibody (Roche
Diagnostics, Mannheim, Germany), followed by CDP-Star substrate incuba-
tion. Afterwards, the blot was exposed for 10 min on X-ray film (Hyperfilm
ECL, Amersham Biosciences, Freiburg, Germany) and photographed
(Fluor-S� MultiImager, Bio-Rad, M€uunchen, Germany). Evaluation of the
band intensities proceeded with the Quantity One� 4.1 Software (Bio-Rad,
M€uunchen, Germany).

Real-time RT--PCR analysis of GSTT2 expression

Expression of GSTT2 mRNA was assessed by the two-step SYBR Green I
quantitative real-time RT--PCR by iCycler iQ system (Bio-Rad GmbH
M€uunchen, Germany). Briefly, 3 mg of total RNA from the butyrate-treated
samples (LT97 and HT29 cells) were converted into first-strand cDNA using
Superscript II (Invitrogen) according to the manufacturer’s conditions.
The PCR amplification reactions contained 2 ml of first-strand cDNA mixed
with 12.5 ml of iQTM SYBR� Green Supermix (Bio-Rad GmbH M€uunchen,
Germany) master mixture (2� mix containing SYBR Green I, iTaq DNA
polymerase, reaction buffer, deoxynucleotide triphosphate mix, 10 mM
MgCl2, 20 nM fluorescein and stabilizers), 10 pmol stock of each of the
specific primers (GSTT2), glyceraldehyde-3-phosphate dehydrogenase
(GAPDH ) in a final reaction volume of 25 ml. All reactions were performed
in triplicate. The PCR profile consisted of an initial denaturation of 5 min at
95�C, 40 cycles of 30 s at 95�C denaturing, 40 s at 63�C annealing, 45 s at 72�C
extension and followed by a final extension step of 10 min at 72�C. Cumulative
fluorescence was measured at the end of the extension phase of each cycle.
Product-specific amplification was confirmed by melting curve analysis and
agarose gel electrophoresis analysis. Gene-specific primer sequences used for
the quantification were as follows: GAPDH, forward, 50-CCACCCATGG-
-CCACCCATGGCAAATTCCATGGC-30 and reverse, 50-AGTGGACTCC-
ACGACGTACTCAG-30; GSTT2 forward, 50-TGACACTGGCTGATCTC-
ATGGCC-30 and reverse, 50-GCCTCCTGGCATAGCTCAGCAC-30; PCR
primer for target and reference gene cloning GSTT2 forward, 50-GGTGGA-
ACGCAACAGGACTGCC-30 and reverse, 50-GCCTGATAGGCCTCTGGT-
GAGG-30; and GAPDH forward, 50-CCACCCATGGCAAATTCCATGGC-30

and reverse, 50-TAGACGGCAGGTCAGGTCCACC-30. Primer nucleotides
confirmation of the total gene specificity was performed using the BLASTN
search programme.

Relative quantification of unknown GSTT2 mRNA gene expression was
determined by using a series dilution of cDNA plasmid containing the inserted
GSTT2, GAPDH and constructing a calibration curve. Wells with no template
were used as negative control.

Statistical analysis

Superarray�. Comparisons were made for the directly excised tissue and for
colon cells after cultivation in medium, which was a reflection of the baseline
expression levels. Comparisons were also made for each of the three colon
cells incubated with medium and with butyrate, which was a reflection of the
modulated gene expression. Responses of drug metabolism genes spotted on
the Superarray� membranes and Affymetrix� array were directly compared by
using identical RNA aliquots of LT97 cells incubated in medium and with
butyrate. Another comparison was made from a technical point of view,
namely to compare the gene expression levels of HT29 cells, which were
worked up 48 and 72 h after plating. Genes were clustered into functional
entities and subjected to an analysis on a group basis, using the GraphPad�

Prism software Version 4.0 (GraphPad� Software Inc., San Diego, USA).
Values obtained after normalization were taken for an analyses of variance
(ANOVA) test and Bonferroni’s post-test was then used to identify genes that
were statistically different between the groups. ANOVA calculations taken
to compare biopsies and individual cell types were non-repeated measures,
whereas ANOVA calculations, based on repeated measures, were used to
determine the effects of butyrate. Additionally, unpaired t-tests (�Welch’s
correction for unequal variances) were used, as appropriate, to determine the
differences of multiple genes on a group basis. All data were evaluated
to establish the two-sided significance levels of independently reproduced
determinations.

Affymetrix�. Before comparison of the signal intensities across all data sets,
data were normalized using a global normalization approach supervised by the
rank intensity distribution of the normalized signal intensities (37). Changes in
gene expression were then calculated as fold changes with respect to the
untreated reference (38). In cases, in which one gene is represented by different
groups of probes, results were summarized when all probe sets gave the same
results. In cases of discrepancy, probe set located at the 30 end of the coding
sequence were preferentially considered. In cases where no decision could be
made, results for all probe sets were included in the presentation of results. The
most likely explanation for these differences is that alternative processed and
transcribed mRNA originated from the respective genes.

Real-time PCR. Final results were expressed as an n-fold difference in
the GSTT2 gene expression relative to the internal reference GAPDH and
the calibrator. Statistical significance between control and treated cells was
calculated by unpaired t-test and one-way ANOVA.

Results

Cellular parameters

Primary cells, isolated from colon tissue incubated in vitro
(12 h), had a viability of 79 � 13 and 76 � 18% in the control
medium and in the medium containing 10 mM butyrate,
respectively. Confluence of LT97 cells before isolating RNA
was ~70--80 and ~80--90% for medium control and for the
butyrate-treated samples, respectively. Confluence of HT29
cells after 48 h attachment was 70--80 and 80--90%, and after
24 h attachment it was 60--70 and 70--80%, for medium con-
trols and butyrate-treated samples, respectively. Viability of
recovered HT29 and LT97 cells was always 495% for all
experimental conditions.

Baseline expression levels

The baseline expression levels of the target genes were deter-
mined in freshly excised colon tissues from six individual
donors. The data for the GST group of genes obtained for
each donor are shown in Figure 1. (The accessory data file
shows baseline values for all genes related to drug metabol-
ism.) To enable a better discrimination of the expressed genes,
the left panel shows GSTs with low signals and the GSTs with
higher relative expression levels are grouped in the right panel
of the figure. There was a considerable variation the of expres-
sion with total signal strength, which may vary depending on
the probe characteristics. Altogether, the signal strength ran-
ged from 482 (donor 3) to 972 (donor 5), which was a 2-fold
difference for the sum of all GSTs.
The mean expression levels (n ¼ 6 donors) of each indi-

vidual gene were the basis for assaying differential expression
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across the human colon samples. For this comparative
analysis, we took into account various parameters, namely, the
absolute expression levels, the subtractive degree of change
between groups, the fold change between groups and the
reproducibility of the measurement. The cut-off values for
the expression levels were chosen to be 10 [which was equal
to the average variation (SEM) in the control genes from the
colon tissue samples; n ¼ 6]. The fold change to indicate
upregulation was set at �2.0, which was previously found to
be significant (P5 0.05, n¼ 3) for butyrate-mediated changes
of GST activity, GSTP1 mRNA and GSTP1-1 expression in
HT29 cells (25). The fold change to indicate downregulation
was set at �0.5, since this was previously found to be signi-
ficant (P 5 0.001, n ¼ 3) for the butyrate-mediated inhibition
of GSTT1-1 protein expression in LT97 cells (T.Kautenbur-
ger, et al., submitted for publication). These numbers were
therefore not arbitrary, since they had been shown to reflect
significant changes for GST mRNA, GST protein and GST
enzyme activity.
Table I shows the relative baseline expression levels for all

differentially expressed genes (including GSTs), which were
spotted on the membrane (accessory data file). Most genes
yielded signals of 410. There were no differences of GSTP1
and GSTT1 expression in primary tissues, compared with the
colon cells. The other GSTs were differently expressed, albeit
with different patterns. With respect to the evaluation criteria
described above, a subset of GSTs were less expressed in LT97
and in HT29 (72 h) than in colon tissues. However, in primary
cells and in HT29 cells (48 h after plating), there were several
examples of genes expressed more in the cells than in biopsies
(Table I).
The evaluation of the data on group basis revealed that

the expression levels of GSTs from LT97 were significantly
(P ¼ 0.0317, two-tailed paired t-test) different from HT29
(grown for 48 h after plating). Details comparing the expres-
sion levels of all genes are available from the accessory data
sheets (accessory data file).

Effects of butyrate

According to the exclusion criteria, butyrate was an efficient
inducer of GSTs, clearly resulting in an upregulation ofGSTA2
and GSTT2 in primary cells, of GSTM3, GSTT2 andMGST3 in

LT97 cells and of GSTP1, GSTA4, GSTM2, GSTM5 and
MGST3 in HT29 cells [Table II (accessory data file)]. With
only normalization procedure 1, upregulation of GSTT2 in
LT97 cells (2-fold at 2 mM butyrate) was significant (P 5
0.05 two-way ANOVA, Bonferroni’s post-test), as was the
GSTP1 upregulation (2.2-fold) in HT29 cells incubated for
72 h (P 50.001). On a group basis, 1 and 2 mM butyrate
treatment induced GSTs in LT97 (P¼ 0.0104 and P¼ 0.0332,
respectively; two-way ANOVA). MGST1 was efficiently
(0.5-fold) downregulated in HT29 cells. It was one of the
only few examples of a clear cut downregulation by butyrate,
when taking into acount all the genes on the array. Details of
all butyrate-mediated effects on GSTs are shown in Table II
(accessory data file).
These experiments were independently reproduced three

times, thus reducing the necessity of performing the obligatory
confirmational experiments usually required for microarray
analysis. However, we had some data (e.g. for GSTP1, GSTM2
and GSTA4 in HT29) available from previous work, as indic-
ated in the legend of Table II and the expression levels of
GSTP1 in LT97 (no induction in the macro array) and in
HT29 (induction in the macro array) were additionally
confirmed by northern blot using aliquots of the same RNA.
Figure 2 shows that the northern blot results are fully confirm-
atory of the microarray results. We also subjected an aliquot of
the RNA isolated from LT97 (medium control, 1 or 2 mM
butyrate) to expression analysis using Affymetrix�. Table III
summarizes data for genes which were induced by butyrate
using Superarray� (n ¼ 3) and which were also spotted on
Affymetrix� (n ¼ 1). (Table III of the accessory data file
shows additional comparisons for genes with signals 410
which were not induced according to Superarray analysis, but
which were spotted on the Affymatrix array.) Of these 14
genes, all but one (GSTT2) gave results in the same direction.
Therefore, GSTT2 expression was additionally confirmed with
real-time RT--PCR.
Analysis of the effect of butyrate on the colon adenoma cell

line LT97 with Affymetrix� arrays also shows a significant
regulation of a larger number of other genes (~500) connected
with various other cellular processes. These data however, do
not interfere with the discussed effect on the detoxifying genes
and will be presented in another manuscript under preparation.

Fig. 1. Individual levels of GST mRNA-expression in freshly excised primary colon tissues derived from six different donors. The 12 GSTs were divided
into two groups, namely one with low expression levels and in another one with high expression levels. The mean values and individual variations for
the individual GSTs are shown in Table I.
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Table I. Baseline expression levels of drug metabolizing enzymes in human colon cells compared with tissues

Functional gene
family

Number of
expressed
genes

Differentially
expressed
genes

Primary tissue� Primary cells LT97 adenoma cells HT29 tumour cells HT29 tumour cells
0 ha 12 ha 72 ha 72 ha 48 ha

Means SEM Down Up Down Up Down Up Down Up

Phase I
p450 Family 14/25 CYP2B 60.3 21.8 CYP2B CYP2B CYP2B CYP3A4

CYP2F1 33.7 7.8 CYP2F1 CYP2F1
CYP3A4 36.3 17.5 CYP3A4 CYP3A4
CYP4F3 154.5 32.7 CYP4F3

Phase II
Acetyltransferases 10/10 ACAT1 89.8 16.1 CRAT ACAT2 ACAT1 ACAT1 CHAT DLAT

ACAT2 331.5 63.3 LOC51126 ACAT2 ACAT2 NAT1 HAT1
CHAT 134.8 44.2 CHAT CHAT HBOA
CRAT 41.9 12.1 CRAT CRAT LOC51126
DLAT 27.8 7.4 DLAT DLAT
HAT1 17.6 6.6 NAT1 NAT1
HBOA 3.2 4.7 LOC51126 LOC51126
MORF 17.2 5.1
NAT1 82.4 16.6
LOC51126 48.2 12.9

Glutathione
S-transferases

12/12 GSTA2 73.7 34.4 GSTA2 GSTM2 GSTA2 GSTA2 GSTA2 GSTA4
GSTA3 45.8 18.8 GSTA3 GSTM3 GSTA3 GSTA3 GSTA3 MGST1
GSTA4 7.4 2.9 MGST1 GSTM5 GSTM3 GSTM3 GSTM3
GSTM2 17.9 8.4 GSTM5 GSTM5 GSTM5
GSTM3 27.5 5.5 GSTT2 GSTT2
GSTM5 36.7 8.6 MGST2 MGST2
GSTT2 152.2 25.1 MGST3 MGST3
MGST1 35.1 9.7
MGST2 43.7 8.2
MGST3 99.3 43.3

Sulfotransferases 15/21 CHST5 37.8 18.1 CHST5 TPST1 CHST6 CHST6 SULT1B1 CHST5
CHST7 72.1 45.8 CHST7 HNK-1ST HNK-1ST CHST7
HNK-1ST 56.4 7.9 SULT1B1 SULT1A1 SULT1A1
SULT1A1 31.8 11.9 SULT1A2 SULT1A2
SULT1A2 27.5 9.5 SULT1B1 SULT1B1
SULT1B1 52.4 20.4 TPST1 TPST1
TPST1 40.2 4.8

Miscellaneous 12/13 UGT1A1 151.5 54.0 UGT2A1 NNMT UGT1A1 UGT1A1 TPMT UGT2A1 UGT2B
UGT2A1 28.0 10.0 UGT2B4 UGT2A1 UGT2A1 UGT2B10 TPMT
UGT2B 59.1 9.7 TPMT UGT2B UGT2B UGT2B4 EPHX1
UGT2B10 105.5 15.8 UGT2B10 UGT2B10 NNMT
UGT2B4 38.8 13.7 UGT2B4 UGT2B4
COMT 32.4 8.6 HNMT COMT
HNMT 169.9 20.9 NNMT HNMT
NNMT 87.8 18.3 NNMT
TPMT 33.6 25.7

Phase III
Metallothioneins 8/8 MT1A 125.5 33.1 MT1G MT1A MT1A MT1A

MT1G 257.1 23.2 MT1G MT1G MT1G
MT1H 196.7 32.6 MT1H MT1H MT1H
MT1L 267.5 34.1 MT1L MT1L MT1L
MT2A 87.9 23.6 MT2A MT2A MTIX
MT3 21.2 4.3 MTIX MT3
MTIX 386.0 42.5 MTIX

p-Glycoproteins 3/7 ABCC2 127.1 70.4 ABCC2 ABCC2 ABCC2 ABCC3
ABCC3 45.7 13.0 ABCG2 ABCG2 ABCG2
ABCG2 131.0 39.6

Housekeeping
genes

10/10 GAPD 311.2 30.3 PPIA RPL13A PPIA RPL13A RPL13A
GAPD 275.3 17.7 PPIA RPL13A PPIA RPL13A RPL13A
PPIA 89.5 7.6 PPIA ACTB PPIA ACTB ACTB
PPIA 88.4 11.0 PPIA ACTB ACTB ACTB
PPIA 97.7 6.8
PPIA 107.0 4.9
RPL13A �0.3 5.1
RPL13A 0.9 4.4
ACTB 15.3 7.1
ACTB 14.9 7.6

Primary colon cells isolated from surgical material, LT97 human colon adenoma cells and HT29 cells were plated and grown in medium for 12 h, 72 h,
and/or 48 h prior to work-up. Only those genes for which the baseline expression levels reached a signal of �10 at least in one cell type are show in the
table. Regulation is based on expression levels in primary tissue. Downregulation is defined as a ratio �2 (tissue/cells), and a subtractive difference 420.
Upregulation is defined as a ratio �0.5 (tissue/cells). Data were calculated using the relative signals obtained after normalization from samples of
six different donors (biopsies) from three independently reproduced experiments (colon cells).
*Means � SEM, n ¼ 6. The baseline data for this table are in Table I of the accessory data file.
aTotal culture period.
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Confirmatory studies of array GSTT2 gene expression by
real-time RT--PCR

The modulation of the GSTT2 gene was confirmed by an
independent measure of mRNA levels. Relative mRNA levels
using cDNA macroarray were reasonably consistent with
relative mRNA levels determined using real-time RT--PCR,
which is more sensitive than northern blot analysis. We found
that the relative GSTT2 expression level was 2.73, 2.52-fold
and 2.08-fold in the cells treated with 1 or 2 mM (LT97) and
4 mM (HT29) butyrate, respectively (Figure 3a and b). The
increased expression of the GSTT2 gene was statistically
significant (one-way ANOVA and unpaired t-test).

Discussion

Colon cell systems

In vitro studies provide important tools to enhance our under-
standing of hazardous effects by chemicals and to predict
the potential consequences of exposure to humans (39). There

is also an increasing need to investigate chemicals for mech-
anisms of beneficial effects on health using in vitro methods
(40). Colorectal cells and cell lines are highly useful in study-
ing the genotoxic potentials of cancer risk factors (32,41--43),
properties of chemoprotective components (27,44--46), as well
as their interactions (26,38,47). The majority of such in vitro
studies have utilized tumor cell lines. Whilst this may be feas-
ible for studies on chemotherapeutic potentials, primary or
premalignant cells are needed for studies on chemoprevention.
However, it has been hardly possible to study early changes
affecting the normal colonic epithelial cells owing to the lack
of manageable culture methods for those cells (33). We have
recently demonstrated the validity of using intact primary
colonic epithelial cells (for 30 min--1 h) as models to assess
the genotoxicity of risk factors (32,41,48). We have now exten-
ded our methodology to first cultivate the intact tissue in vitro
and then to isolate cells, which was profoundly successful for
retaining cell viability. Thus, we were able to treat primary
tissue with butyrate for up to 12 h and then isolate viable cells
in sufficient quantity and quality for expression analysis.

Table II. Overview on the modulation of expression of drug metabolizing enzymes by butyrate in primary colon cells isolated from surgical material in LT97
human colon adenoma cells and in HT29 cells

Functional gene family Total number of genes Primary LT97 HT29
12 ha 72 ha 72 ha 48 ha

10 mM 1 mM 2 mM 4 mM

Phase I
p450 Family 25 CYP2F1 CYP4F3��� CYP4F3��� POR POR

CYP3A4

CYP4F3��

CYP7A1

Phase II
Acetyltransferases 10 ACAT1 ACAT1 ACAT1 CRAT

CHAT CRAT CRAT

DLAT DLAT

NAT1 NAT1

LOC51126 LOC51126

Glutathione S-transferases 12 GSTA2 GSTM3 GSTM3 GSTP1��� GSTA4
GSTT2 GSTT2 GSTT2� MGST1 GSTM2

MGST3 MGST3 GSTM5
MGST1
MGST3

Sulfotransferases 21 HNK-1ST CHST5 TPST1���

CHST7
TPST1

Miscellaneous 13 UGT1A1� UGT1A1 TPMT�� COMT

TPMT�� UGT2B
TPMT���

Phase III
Metallothioneins 8 MT1E MT1A MT1A MT1A MT1A

MT1L MT1E MT1E MT1E MT1E
MT3 MT1G MT1G MT1G MT1G

MT1H MT1H MT1H MT1L
MT1L MT1L MT1L MT3
MT2A MT2A MT2A MTIX
MTIX MTIX MTIX

p-Glycoproteins 7 ABCC2 ABCB1 ABCB1

ABCC3 ABCG2

ABCG2

Treatment was for 12 h immediately after explantation (primary cells) or for the last 24 h of the whole cultivation period (LT97 and HT29 cells). Only those
genes are shown for which the baseline expression levels reached a signal of �10. Bold letters: butyrate-mediated change was �2-fold with subtractive differences
420s. Normal letters: butyrate-mediated change was at least 1.5-fold and/or with subtractive differences at least 15. MGST1 was the only gene which was
downregulated with a butyrate-mediated change of 0.5-fold. Data were calculated using the mean relative signals obtained after normalization from three
independently reproduced experiments. Individual genes were significantly different from medium controls (�P 5 0.05; ��P 5 0.01; ��� P 5 0.001; repeated
measures ANOVA with Bonferroni’s post-test to compare replicate means by row). The baseline data for this table are in Table II of the accessory data file.
aTotal culture period.
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We had previously also reported novel findings on how a
newly established cell line (LT97), consisting of epithelial
cells representing an early premalignant phenotype and geno-
type, could be used as an experimental model to investigate the
impact of risk factors (42). The LT97 cells have typical genetic
traits of adenoma, such as loss of both APC tumor suppressor
gene alleles and a mutated Ki-Ras-allele, but normal TP53
(33). This cell line was investigated along with primary and
HT29 tumor cells, since there was a need to understand how
cell models from these three different stages (non-malignant
primary cells, premalignant adenoma cells and malignant
tumor cells) would respond to the gut-lumen specific environ-
mental factors.

GSTs in colon tissue

Tissue specimens were included for reference purposes, since
this type of material is commonly used to understand gene
expression in the human colon and reflects more the expres-
sion levels of the in vivo situation than cells in culture (49).
Here, we have focused our attention on the expression of
GSTs (accessory data file), since phase II metabolism is
decisive for cell and tissue-specific susceptibility. The activ-
ities of both toxic and antitoxic agents are probably highly
dependent on the expression of such biotransformation
enzymes by which they can be detoxified and which, in turn,
they may modulate (50,51). Information on gene expression
levels is only available sporadically and data usually pertain to
only selected individual genes. We have therefore used expres-
sion genomics to enhance our understanding on GSTs [and
other drug metabolism systems (accessory data file)] in

colon tissue and cells. These advanced methods are very
powerful in that they can generate expression data for a large
number of genes simultaneously across multiple samples.
Here, we have been able to show the GST gene expression
levels in tissue directly excised from the colon of six different
individuals. The variation on transcriptional level was in a
similar order of magnitude as we had previously observed for
GST protein expression in colon samples obtained from 15
donors (25). In these previous studies, some samples contained
2- to 4-fold higher GST protein levels than others and in
some of the samples, not even the most common colonic
GST form, namely GSTP1-1 was available in abundant
amounts. The results of this study (mRNA from 12 GST iso-
enzymes, 6 donors) also show a 2-fold difference between the
person with the lowest and highest values of GST expression.
On the basis of our present knowledge, we may conclude that a
considerable number of subjects could be at higher risk on
account of low GST expression levels.

GSTs in cell models compared with tissues

We have now, for the first time, been able to study the expres-
sion levels in cells isolated from the tissues (primary cells)
incubated in vitro for a period up to 12 h. This was the longest
duration of in vitro culture yielding sufficient viable cells that
had succeeded in our hands so far. Several genes were differ-
ently expressed in the primary cells, compared with tissues.
Three of the 12 investigated GSTs (GSTA2, GSTA3, and
MGST1) were expressed less, whereas three GSTs (GSTM2,
GSTM3 and GSTM5) were expressed more in the cells than in
the tissue, reflecting changes probably owing to the cultivation

Fig. 2. Northern blots showing the expression of GSTP1mRNA in human adenoma LT97 (a) and HT29 colon cancer cells (b). LT97 and HT29 cells were treated
with 1, 2 or 4 mM butyrate. Lane c ¼ control cells, d ¼ 1 mM, e ¼ 2 mM butyrate and lane f ¼ 4 mM butyrate. Values are expressed as mean �SEM,
n ¼ 3, ���P 5 0.001 (a: one-way ANOVA, b: unpaired t-test).
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in vitro. In comparison, LT97 andHT29 cells cultivated for 72 h
before work-up revealed more striking differences to the tissue
samples. Of the 12 GSTs, 7 and 7 respectively, were expressed
less in the cells than in the tissue. The differences, however,
were not cell line specific, since in HT29 cells cultivated for
only 48 h, four genes were expressed less and two additional
genes were expressed more. These results again clearly show
that the in vitro cultivation conditions had marked influence on
gene expression, and thus these need to be carefully controlled
during experiments using cells in vitro.

GST upregulation as a mechanism of chemoprevention

The described comparative analyses (tissue versus colon cells)
were needed as a basis to set up the experimental conditions of
further studies. These studies had the aim to define specific
GST expression patterns in human colon cells of various
origins, to determine whether these could be modulated by
butyrate, and to assess whether the modulation would be likely
to confer protection against diet-associated risk factors. Thus,
we have now found that butyrate is an efficient inducer of
several GSTs in cells from all three stages of malignancy.
Treatments with the maximal tolerated doses of butyrate

resulted in an upregulation of GSTP1, GSTM2, GSTA4,
MGST3 and others in HT29 cells, of GSTM2, GSTM3,
GSTT2 and GSTA4 in LT97 cells and of GSTA2 and GSTT2
in primary cells, with a marked downregulation of MGST1
in HT29 cells. According to the available databases, the pro-
ducts of these genes inactivate endogenous a, b-unsaturated
aldehydes, quinones, epoxides and hydroperoxides formed as
secondary metabolites during oxidative stress and protect from
food contaminants, such as polycyclic aromatic hydrocarbons
(24). For instance the gene product GSTA4-4 was previously
reported to have a high affinity for the substrate 4-hydroxyno-
nenal (HNE) (52,53), which is a cytotoxic and mutagenic
lipid peroxidation product associated with oxidative stress
(54). GSTA2-2 may be of similar importance as GSTA4-
4, but with different substrate specificity, resulting in the
detoxification of other products, such as cumene hydro-
peroxide, dibenzo[a,l]pyrene diol epoxide, 7-chloro-4-nitro-
benz-2-oxa-1,3-diazole (24). GSTP1-1 may inactivate
benzo[a]pyrene-9,12-diolepoxide, the reactive intermediate
of benzo[a]pyrene (55), which is of dietary relevance, since
it may be found in cooked foods (56). Other preferential
substrates for GSTP1-1 are acrolein, base propenals,

Table III. Modulation of gene expression in LT97 adenoma cells by butyrate

Gene Superarray Affymetrix
Fold change Fold change

1 mM 2 mM 1 mM 2 mM

Phase I
p-450 family CYP3A7 1.7 2.2 CYP3A7 0.7 0.7 211843_x_at

CYP4F3 1.7 2.4 CYP4F3 3.7 6.5 206514_s_at
Phase II

Acetyltransferases ACAT1 4.0 3.5 ACAT1 1.7 1.9 205412_at
CRAT 2.4 2.6 CRAT 2.2 1.9 209522_s_at, 205843_x_at
DLAT 3.9 4.9 DLAT 1.1 1.1 213149_at, 212568_s_at
HAT1 2.4 2.7 HAT1 0.6 1.0 203138_at
LOC51126 3.4 4.4 LOC51126 1.4 1.5 203025_at
NAT1 3.6 4.5 NAT1 2.1 3.6 214440_at

Glutathione S-transferases GSTA4 6.1 2.7 GSTA4 2.2 1.7 202967_at
GSTM2 3.2 3.5 GSTM2 0.6 0.7 204418_x_at
GSTM3 5.8 7.3 GSTM3 3.9 4.3 202554_s_at
MGST3 2.0 2.7 MGST3 1.1 1.1 201403_s_at
GSTT2 1.5 2.0 GSTT2 0.9 1.8 205439_at

Sulfotransferases CHST5 1.4 2.0 CHST5 1.2 0.8 64900_at
TPST1 2.7 3.9 TPST1 1.6 1.9 204140_at
CHST7 1.2 1.6 CHST7 6.7 10.4 206756_at

Miscellaneous EPHX1 2.9 2.9 EPHX1 2.6 1.5 202017_at
LTA4H 3.2 3.7 LTA4H 1.9 2.3 208771_s_at
UGT1A1 2.5 1.8
COMT 2.3 2.5 COMT 0.3 0.4 208818_s_at, 208817_at
HNMT 2.1 2.0 HNMT 0.4 0.2 204112_s_at, 211732_x_at
TPMT 1.6 2.2 TPMT 1.7 1.4 203671_at, 203672_x_at

Metallothioneins MT1A 3.8 2.9

MT2A 6.8 4.9 MT2A 4.8 5.7 212185_x_at, 212859_x_at
MT1L 5.0 4.4

MT1G 2.7 2.3 MT1G 1.9 4.5 204745_x_at, 210472_at
MT1H 2.6 2.2 MT1H 4.9 6.1 206461_x_at
MT3 2.6 4.2 MT3 2.9 4.5 205970_at
MTIX 4.1 3.8 MT1X 6.3 8.8 204326_x_at, 208581_x_at

Phase III
p-Glycoproteins ABCB1 169.7 205.4 ABCB1 2.4 1.5 209994_s_at, 209993_s_at

ABCC3 0.7 0.4 ABCC3 0.1 0.0 208161_s_at, 209641_s_at
ABCG2 �19.7 �14.6 ABCG2 2.2 2.0 209735_at

Comparison of two array methods for those genes which were changed (�2 fold in comparison to the respective medium control). For the Superarray� membranes,
all genes (including those with expression levels 510) were regarded in this evaluation. Bold lettering means that the values are �2- or �0.5-fold change
(butyrate-treated sample/medium control), which is defined as induction or inhibition, respectively. Fold change—mean value of probe sets named in
Affymetrix� array (Superarray� n ¼ 3; Affymetrix� n ¼ 1).
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chlorambucil, crotonyloxymethyl-2-cyclohexenone (COMC-
6), ethacrinic acid (EA) and thiotepa (24). GSTM2-2 is
known to efficiently detoxicate O-quinones (e.g. amino-
chrome), the oxidation products of catecholamines, which
may be involved in the development of the Parkinson’s disease
(57). Other GSTM2-2 substrates are COMC-6, DCNB, dopa
O-quinone and prostaglandins (24). The human class GSTTs
display activity against a broad range of compounds, including
methyl halides and sulfate esters. The activity of recombinant
GSTT2-2 with a range of secondary lipid peroxidation pro-
ducts, as well as its reported glutathione peroxidase activity
with organic hydroperoxides, suggests that it may play a
significant role in protection against the products of lipid
peroxidation (58), and its substrates cumene hydroperoxide
and menaphthyl sulfate (24). Finally, the MGST3 gene
encodes an enzyme, which catalyzes the conjugation of
leukotriene A4 and reduced GSH to produce leukotriene C4.
This enzyme also demonstrates GSH-dependent peroxidase
activity towards lipid hydroperoxides (59) and conjugates
CDNB and (S)-5-hydroperoxy-8,11,14-cis-6-trans-eicosate-
traenoic acid (24). MGST1 encodes a protein that catalyzes
the conjugation of GSH to electrophiles and the reduction
of lipid hydroperoxides (60). Particular substrates are CDNB,
cumene hydroperoxide, hexachlorobuta-1,3-diene (24).
MGST1was inhibited in HT29 cells, and thus the only example
of a clear cut downregulation by butyrate when regarding all
genes on the array. The consequences of the downregulation of
this GST are not predictable and need to be studied in more
detail.
Altogether, a number of the butyrate target genes can be

associated with potential chemoprotection, since they should
have the ability to ward off risk factors associated with
oxidative stress and genotoxic risks (61). Their life-long
upregulation in primary cells by dietary butyrate may therefore
contribute to the prevention of carcinogenesis, which may be
mediated by genotoxic products of oxidative stress (62,63).
The ingestion of dietary fibres providing sufficient luminal
butyrate concentrations may accordingly be considered to

substantially contribute to an effective strategy of dietary
cancer chemoprevention.

Confirmatory data

Altogether the evaluation of our expression analysis data was
based on n ¼ 3 independent experiments (cell culture experi-
ments) or on the data obtained by n ¼ 6 individual donors,
strengthening the validity of the measurement. We compared
different normalization procedures and stick to the one basing
the 100% value on the means of all housekeeping genes. The
reported responses found with GSTs using this normalization
have largely been confirmed independently with other meth-
ods. For example, we have previously found that GSTP1-1,
GSTM2-2, GSTA1/2 proteins and GSTM2 mRNA were
induced in HT29 cells treated with 2--4 mM butyrate (25), as
were GSTA4mRNA and GSTA4-4 protein (29). In LT97 cells,
GSTP1-1 protein was not induced by butyrate pretreatment
(T.Kautenburger et al., submitted for publication), the genes
found to be modulated in this study (GSTM3, GSTT2, MGST3)
had not been investigated since antibodies were not available.
Other confirmatory data were generated here, such as GSTP1
induction in HT29 and non-induction in LT97 using northern
blot analysis.
Interestingly, the independent evaluation of RNA aliquots

using two different array methods gave often similar results,
which is to our knowledge, the first direct comparison of
this type. An exception was GSTT2 which was induced
according to Superarray�, but not to Affymetrix�. We there-
fore additionally investigated GSTT2 expression using another
aliquot of the RNA by real-time qRT--PCR. The results con-
firmed the responses observed for GSTT2 with Superarray�

but not with Affymetrix�. The inability to detect the induction
of GSTT2 on Affymetrix� array is most possibly owing to the
characteristics of the GSTT2 probe set. The signal given by
GSTT2 is so weak that it is assumed by the analysis software as
absent both in control and treated cells. However, the signal
intensity increased 1.8 times in cells treated with 2 mM butyr-
ate versus control cells.

Fig. 3. Quantitative analysis of GSTT2 mRNA transcript by real-time RT--PCR in LT97 cells (a) and HT29 cells (b) treated with 1, 2 and 4 mM butyrate,
respectively. The relative gene expression analysis in HT29 cells showed 2.08-fold (���P 5 0.001) and in LT97 cells 2.73 (�P 5 0.05), 2.52-fold (�P 5 0.05)
(a: one-way ANOVA, b: unpaired t-test) increase compared with control cells.
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Potential mechanisms of GST induction in human cells

One important mechanism which is critical for regulation
of some, but not all phase II genes (including some
GSTs or NADPH-dependent quinone reductase) involves
the antioxidant/electrophile-responsive element (ARE/ERE)
located within the 50 upstream (consensus sequences 50-GT-
GACNNNGC-30) regulatory region of the corresponding
mouse, rat and human genes (64,65). A major transcription
factor which can act on ARE is Nrf2 (nuclear factor E2-related
factor 2) (66,67). As a key regulator of Nrf2 activity, which
links Nrf2-mediated ARE activation to cellular exposure to
oxidants and chemoprotective agents, the BTB- and Kelch-
domain containing protein Keap1 (Kelch-like ECH-associated
protein 1) has been identified. Keap1 anchors the transcription
factor Nrf2 in the cytoplasm and targets it for ubiquitination
and proteasome degradation, thereby repressing its ability to
induce phase II genes (68). Inducers of ARE-mediated gene
expression disrupt the Keap1--Nrf2 complex, leading to an
increase in Nrf2 levels, and allowing Nrf2 to translocate into
the nucleus (69). Some of the GST-encoding genes contain
ARE motif and can be induced in an ARE-mediated manner
(24). ARE sequences in the promoter of GSTA2 are required
for basal expression and for its induction by phenolic anti-
oxidants (70). These compounds activate GST-encoding genes,
however, also through the AP-1 family of transcription factors,
which include Jun, Fos, Maf, ATF and Fra proteins (71). AP-1-
binding sites have been identified in the promotor regions of
the GSTA1, GSTA4 and GSTP1 genes (72,73). In addition,
C/ EBPb (CCAAT/enhancer binding protein b), which is a
member of the C/ EBP bZip class of transcription factors,
may serve as a more common transcriptional factor for the
induction of phase II enzymes and cancer chemoprevention.
The mechanisms by which butyrate probably mediates gene

expression in human colon tumor cells are by activation of the
mitogen-activated protein kinase (MAPK) signalling trans-
duction pathway (26), and by modifying the acetylation of
histones at the N-terminal lysine rich tails (74,75). Two classes
of enzymes can affect the acetylation of histones, namely
histone acetyltransferases (HATs) and histone deacetylases
(HDACs). The classes of compounds that are identified as
HDAC inhibitors now include: short--chain fatty acids, such
as butyrate and several analogues (76). HDAC inhibitors from
several different structural classes exhibit clinical activity
against a variety of human malignancies, and have also attrac-
ted interest as potential chemopreventive agents. Butyrate
inhibits HDAC activity and cell growth at millimolar concen-
trations. Our own studies have shown that treatment of human
colon cells HT29 leads to the marked accumulation of acet-
ylated histone 4 (H4), which could be related to enhanced
levels of GST-encoding gene expression in these cells (77).
More elaborate studies by Mariadason et al. (78) conclude a
tight correspondence between the kinetics of altered histone
acetylation and kinetics of altered expression for genes in
specific clusters and that changes in HDAC activity underlie
the changes in expression for these genes. Whether or not
promoter areas of GSTs are actually targeted by this mechan-
ism is not known and will be an important subject of research
in the near future.

Double-edged sword/GST induction in tumor cells

It remains to be elucidated, whether the typical expression
patterns can afford chemoresistance of the cells to appropriate
substrates, some of which may be colon cancer risk factors.

It must also be clarified for each of the target genes in more
detail by which mechanisms their butyrate-mediated induction
proceeds on molecular level, e.g. by inhibiting the deacetyla-
tion of histones (79) and/or through MAPK pathways leading
to the transcriptional activation of antioxidative response
element (19).
In this context, we must also again consider the concept of a

double-edged sword. On one hand, an induction of GSTs in
primary cells seems straightforward and favourable since this
should result in an enhanced detoxification of risk factors.
Connected to this is a reduced probability of cancer initiation
in the underlying stem cells. In tumor and in adenoma cells,
on the other hand, GST induction could counteract cancer
chemotherapy by causing resistance to therapeutic agents,
thereby enhancing the survival of transformed cells (26). How-
ever, this adverse situation, may not be probable in vivo, since
the luminal millimolar concentrations of butyrate could be
much too high (exceeding 2--4 mM) to result in GST induction.
Instead physiological gut luminal butyrate concentrations
would impair tumor cell or adenoma cell growth and thus
decrease availability of such cells for GST induction. The
physiologically available butyrate amounts may also be effi-
cient in inducing apoptosis in tumor cells and thus additionally
remove them from the tissue. Another reflection is that, not
only butyrate, but also propionate is produced during gut
fermentation, and this short chain fatty acid adds on to the
growth inhibitory properties of gut luminal products (80,81).
Finally, according to all available information, the concentra-
tions found in the gut lumen are much higher (10--20 mM) than
the concentrations used here (82,83), albeit in vivo colon tissue
is probably more protected from the gut luminal components
by barrier functions of the mucosa (84) than they are in vitro in
cell culture. However, it may still be speculated that emerging
premalignant and malignant cells will be removed owing to the
toxic and growth inhibitory properties of SCFA before GST
induction can occur.
Physiological butyrate concentrations may indeed retard

tumor progression and lead to a reduced tumor incidence,
as has been suggested by the results of a number of animal
studies. Dietary fibres, which are fermented to yield high
amounts of butyrate, have been associated with a higher
efficacy of protecting from AOM-induced colon tumors in
animals (85--88). In particular, an in vivo study by Perrin
demonstrated that those fibres, which promoted a stable
butyrate-producing colonic ecosystem decreased the rate of
aberrant crypt foci in rats, thus adding on to the line of evi-
dence that a stable butyrate producing colonic ecosystem
related to dietary plant foods reduces risks of developing
colon cancer (87).

Conclusions

A considerable number of subjects could be at higher risk on
account of low GST expression levels in their colonocytes.
The hypothesis is that butyrate may mediate in colonocytes
an enhanced expression of GSTs and other systems, which
protect from products of oxidative stress. We have now been
able to add evidence to support this possible mechanism using
new systems of in vitro toxicology, namely, primary human
colon cells. The favourable modulation of toxicological
defence systems in these cells is expected to contribute to
protection during early stages of carcinogenesis by resulting
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in an enhanced cellular protection from cancer risk factors.
Butyrate also has the potential to inhibit growth of emerging
premalignant and malignant cells, which could conceivably
retard tumor progression. When translated to the in vivo situ-
ation, it must be first of all be taken into account that results on
gene expression regulation in some conditions in vitro may
misrepresent the status of regulation of the same genes in vivo.
However, the results are also promising in that they could also
mean that a life-long supply with butyrogenic dietary plant
foods may contribute substantially to dietary colon cancer
chemoprevention. This is a feasible hypothesis, which will be
needed to be proved in human clinical trials.
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A wide variety of antioxidant or phase II detoxifying enzymes such as GSTs 

contribute to a fundamental cellular defence system against oxidative and 

electrophilic insult. One important mechanism of GST induction involves 

transcriptional activation of Nrf2 transcription factors and an antioxidant-responsive 

element (ARE) and this may protect cells from oxidative damage. Many 

chemoprotective phytochemicals have been found to enhance cellular antioxidant 

capacity through activation of this particular transcription factor, thereby blocking 

initiation of carcinogenesis. The modulation of cellular signalling by anti-

inflammatory phytochemicals hence provides a rational and pragmatic strategy for 

molecular target based chemoprevention. This review summarises the modulation of 

detoxification enzyme systems including GSTs by several dietary factors and describes 

the recently identified molecular targets of phytochemicals. It is hoped that 

continued research will lead to development of phytochemicals as an anticancer 

agent. 
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Abstract

There is evidence that consumption of certain dietary ingredients may favourably modulate biotransformation of carcinogens.
Associated with this is the hypothesis that the risk for developing colorectal cancer could be reduced, since its incidence is
related to diet. Two main groups of biotransformation enzymes metabolize carcinogens, namely Phase I enzymes, which convert
hydrophobic compounds to more water-soluble moieties, and Phase II enzymes (e.g. glutathione S-transferases [GST]), which
primarily catalyze conjugation reactions. The conjugation of electrophilic Phase I intermediates with glutathione, for instance,
frequently results in detoxification. Several possible colon carcinogens may serve as substrates for GST isoenzymes that can
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have marked substrate specificity. The conjugated products could be less toxic/genotoxic if GSTs are induced, thereb
exposure. Thus, numerous studies have shown that the induction of GSTs by antioxidants enables experimental
tolerate exposure to carcinogens. One important mechanism of GST induction involves an antioxidant-responsive
element (ARE) and the transcription factor nuclear factor E2-related factor 2 (Nrf2), which is bound to the Kelch-lik
associated protein 1 (Keap1) in the cytoplasm. Antioxidants may disrupt the Keap–Nrf2 complex, allowing Nrf2 to trans
the nucleus and mediate expression of Phase II genes via interaction with the ARE. GSTs are also induced by butyrate
of gut flora-derived fermentation of plant foods, which may act via different mechanisms, e.g. by increasing histone ac
GSTs are expressed with high inter-individual variability in human colonocytes, which points to large differences in
susceptibility to xenobiotics. Enhancing expression of GSTs in human colon tissue could therefore contribute to reduci
risks. However, it has not been demonstrated in humans that this mechanism is associated with cancer prevention. In t
will be useful to determine GSTs during dietary intervention studies to enhance our understanding of this protective me
© 2005 Elsevier B.V. All rights reserved.
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1. Colorectal carcinogenesis (CRC)

1.1. Genes and environment

There is increasing evidence that human cancers
can be prevented not only by avoiding exposure to
carcinogens but also by favouring the intake of protec-
tive factors that modulate the defense mechanisms of
the host organism. This preventative strategy, referred
to as chemoprevention[1], can be pursued either by
means of pharmacological agents[2] and/or by dietary
factors[3]. One of the cancers that could be success-
fully prevented, especially by dietary ingredients, is
colorectal cancer (CRC), since there is strong evi-
dence for both positive and inverse associations with
diet [4]. Colorectal cancers are the second to third
most frequent causes of death due to cancer in Europe,
with 190,000 new cases occurring per year, affecting
6% of men and women by the age of 65 years[5].
The risk of developing CRC rises exponentially with
age, commencing at 40 years, increasing to 50 years,
and doubling with each decade, where it peaks at 70
years [6]. Several risk factors have been identified,
including red meat intake[7,8], smoking[9,10], and
alcohol intake[11]. Individuals with chronic inflam-
matory diseases of the digestive tract and family his-
tories, e.g. with ulcerative colitis and Crohn’s disease,
are at increased risk. Molecular mechanisms linking
chronic inflammation and colon cancer have recently
been disclosed[12]. Another proportion of colorectal
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Multiple genetic lesions in the affected cells lead to
the acquisition of host-threatening biological pheno-
types such as growth factor-independence, apoptosis
deficiency, metastatic potential, and pro-angiogenic
activity [19]. These may be caused by carcinogenic
risk factors found in foods or in tobacco smoke[4,20].
Many molecular lesions which contribute to the
development of colon cancer have been characterized,
including mutations in APC, Ras, and p53[21].
Aberrations in further genes with potential relevance
for colon carcinogenesis are being identified based
on different types of high-throughput studies[22,23].
For example, allele loss and point mutations in genes
encoding protein-tyrosine phosphatases suggest a role
of members of this class of molecules as tumor sup-
pressors[23–25]. The extent of exposure, the ability
to prevent DNA damage by inactivating carcinogens,
and the capacity to repair the damage caused by
carcinogens all contribute to an individual’s risk of
developing cancer. Gene–gene and gene–environment
interactions have a significant influence on suscepti-
bility to cancer[26]. In terms of dietary risk-reduction
of colon tumors in populations, consuming “Western
style diets”, it is desirable to find ways to better utilize
dietary factors to enhance life-long chemoprevention.

1.2. Dietary prevention by modulation of
biotransformation

A mechanism by which dietary ingredients could
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umors are associated with family history and cause
nherited genetic alterations[13–15]. High-penetranc

utations confer predisposition to colorectal cance
ynch syndrome (previously designated as hered
on-polyposis colon cancer [HNPCC], which involv
utations in mismatch-repair genes) and in fam
denomatous polyposis (which involves mutation

he APC tumor suppressor, a protein which seque
ytoplasmic beta-catenin and targets it for degr
ion). Together, these conditions account for 5%
ess of all cases of colorectal cancer[16,17]. Low-
enetrance mutations probably account for a high
ortion of all colorectal cancers, in both familial a
poradic cases. These mutations are more difficu
dentify, but are increasingly being detected and c
cterized[17,18].

The sporadic tumors are likely the result of life-lo
ccumulation of genetic alterations in somatic tiss
be of benefit is that they modulate biotransformatio
such a manner that carcinogens are less active an
exert less harm in the target cells of cancer. Nume
examples exist on how the modulation of Pha
and Phase II enzymes by dietary agents are re
to chemopreventive potential[27]. In the contex
of dietary colon cancer prevention, the hypoth
is difficult to prove, since the issues are extrem
complex. There are a number of open questions
as which carcinogens induce colon cancer and
are these carcinogens metabolically transformed i
target cells. Largely unknown is the question of h
food components modulate the biotransformatio
a favourable manner, so that unavoidable carcino
are no longer able to cause the type of dam
which enhance carcinogenesis. It is very diffic
to resolve these questions in detail, due to the
complex exposure situations encountered with



76 B. Pool-Zobel et al. / Mutation Research 591 (2005) 74–92

The proposed intake of a balanced diet with high
variety of vegetable food, for instance, provides a large
variety of compounds that may interact in an additive,
synergistic or inhibitory manner. Also, the individual
susceptibilities, e.g. based on genetic polymorphisms
of populations consuming the diets are highly interac-
tive with modulator activities of the food components.
These associations can be quite different for different
types of cancers. Since the evidence for the modulation
of biotransformation systems on the whole has rarely
been investigated, in this review, we will focus on one
group of biotransformation enzymes, namely the Phase
II enzyme family of glutathione S-transferases (GSTs;
EC.2.5.1.18). This family of enzymes has recently been
reviewed in detailed excellence by Hayes et al.[28].
Here, we will address the question on how GSTs could
contribute to modulating risks in colorectal cancer.

1.3. Plant foods, CRC risks and glutathione
S-transferases

Associations between colon and rectal cancer and
intakes of vegetables, other plant foods, and fiber have
stimulated much debate. Many studies of colon can-
cer have shown inverse associations with intakes of
plant foods and fibre, although other studies have not
[29–31]. A recent study investigated whether habitual
consumption of fruits and vegetables, especially citrus
fruits andBrassica and allium vegetables, is positively
associated with parameters reflecting the activity of the
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contribute to variations in human rectal GST enzyme
activity [32].

2. Biotransformation

Biotransformation is the “process whereby a sub-
stance is changed from one chemical to another (trans-
formed) by a chemical reaction within the body”[33].
The involved enzymes regulate toxic, mutagenic, and
neoplastic effects of environmental and endogenous
carcinogens, in two main phases of conversions. Phase
I enzymes (cytochromes P450 and flavin-dependent
monooxygenases) convert hydrophobic compounds
to reactive electrophiles by oxidation, hydroxylation
and reduction reactions to prepare them for reaction
with water-soluble moieties. Phase II enzymes (e.g.
GSTs, UDP-glucuronosyltransferases (UGTs), sulfo-
transferases,N-acetyltransferases) primarily catalyze
conjugation reactions. Phase I enzymes, particularly
the cytochrome P450s, frequently result in bioactiva-
tion, compared with the inactivation that most often
results from Phase II reactions. This has led to the
concept that selective induction of expression of genes
encoding Phase II enzymes may have the potential to
protect against chemical carcinogenesis[34].

3. Glutathione S-transferases
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ST enzyme system in human rectal mucosa[32]. GST
nzyme activity, GST isoenzyme levels of GST-al
A1-1, A1-2, and A2-2), -mu (M1-1) and -pi (P1-1
nd glutathione (GSH) levels were measured in re
iopsies from 94 subjects. Diet, lifestyle,GSTM1, and
STT1 null polymorphisms were assessed. Consu

ion of citrus fruits was positively associated with G
nzyme activity, as was found withBrassica vegeta
les but only among carriers of theGSTM1*1 genotype
nd not amongGSTM1*0 individuals. Consumption o
llium vegetables was not associated with GST enz
ctivity, but negatively with GSTP1-1 levels. Asso
tions were similar among those with theGSTT1*1
nd GSTT1*0 genotype. Based on their studies,
uthors were able to conclude that variations in hab
onsumption of fruits, particularly citrus fruits, and
egetables, in particularBrassica vegetables, amon
hose subjects with theGSTM1-plus genotype, ma
.1. GSTs—state of the art

GSTs (EC 2.5.1.18) are ubiquitous enzymes fo
n bacteria, yeast, nematodes, insects, fish, birds

ammals[35]. In humans, they are localized in d
erent tissues with organ specific expression patt
36]. They constitute a complex supergene family
ollectively metabolizes chemotherapeutic drugs,
inogens, and environmental pollutants, and pla
rotective pivotal role against xenobiotics, as has b
eviewed in the past[35,37]. Their levels of expressio
an have profound effects on susceptibility to chem
nsult, with over expression resulting in resistance
nder expression enhancing susceptibility[35,37]. The

nduction of hepatic GSTs by antioxidants or other a
arcinogenic xenobiotics enables experimental ani
o tolerate exposure to carcinogens[38,39]. There-
ore, the induction of GST expression by chemic
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Fig. 1. Schematic overview of genes encoding human glutathione transferases (EC 2.5.1.18), adapted from Hayes et al.[28]. GSTs catalyze
nucleophilic attack by reduced glutathione (GSH) on nonpolar compounds that contain an electrophilic carbon, nitrogen, or sulphur atom. There
are three major families of proteins with glutathione transferase activity. Two of these, the cytosolic and mitochondrial GST, comprise soluble
enzymes that are only distantly related[150,151]. The third family comprises microsomal GSTs, now referred to as membrane-associated
proteins in eicosanoid and glutathione (MAPEG) metabolism[152]. Cytosolic and mitochondrial GST share some similarities in their three-
dimensional fold[150], but are structurally distinct from the MAPEG enzymes[153]. The similarities of the GSTs are that all three families contain
members that conjugate glutathione (GSH) with 1-chloro-2,4-dinitrobenzene (CDNB) and exhibit glutathione peroxidase activity toward cumene
hydroperoxide (CuOOH)[28]. A number of variants have been identified which comprise of sequence polymorphisms (GSTA1, GSTA2, GSTM1,
GSTM3, GSTM4, GSTO1, GSTO2, GSTP1, GSTT2, GSTZ1), deletion polymorphisms (GSTM1, GSTT1), and duplication polymorphisms
(GSTM1). (*) A higher number of single nucleotide polymorphisms have been reported for individual population groups as reviewed in[28].
Nomenclature for other MAPEG enzymes: LTC4S, leukotriene C4 synthase (conjugates leukotriene A4 with GSH); FLAP, 5-lipoxygenase-
activating protein (arachidonic acid-binding protein required for 5-lipoxygenase to exhibit full activity); PGES1, prostaglandin E2 synthase 1
(catalyzes GSH-dependent isomerization of PGH2 to PGE2)[152].

and by diet holds promise to enhance the toxicolog-
ical defence system of colon tissue, and thus retard
development of cancer, by reducing exposure to car-
cinogens. One of these exposures is oxidative stress
which leads to molecular damage in cells that is linked
to many degenerative diseases including cancer[40].
GSTs contribute to resistance against oxidative stress
[41]. The inactivation of toxic and mutagenic alkene
products of free radical reactions and oxidative pro-
cesses, catalyzed by GSTs, is a major detoxication
pathway protecting cells and tissues[42]. GSTs cat-
alyze the conjugation of the tripeptide glutathione via
its sulphur atom to many toxins containing an elec-

trophilic functional group, allowing these compounds
to be excreted from the body[35]. GSTs also exhibit
peroxidase activity toward organic hydroperoxides and
serve to combat oxidative stress[41]. Based on their
biochemical, immunological, and structural properties,
the GSTs are characterised as cytosolic, mitochon-
drial, and microsomal enzymes (Fig. 1). The cytosolic
transferases are represented by classes Alpha, Mu, Pi,
Sigma, Theta, Zeta, and Omega. The mitochondrial
transferase is called class Kappa GST. The microso-
mal transferases form a unique “membrane-associated
proteins in eicosanoid and glutathione metabolism”
(MAPEG) grouping of transferases[28,35]. Null geno-
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types forGSTM1 andGSTT1 occur in frequencies of
approximately 50% and 20–50% of the population,
respectively, and result in absence of the respective
enzymes. The primary hypothesis has been that indi-
viduals with theGST-null genotypes are at higher risk
for cancer because of a reduced capacity to eliminate
activated carcinogens. A pooled analysis forGSTM1
revealed no association with colorectal adenoma or
cancer, whereas theGSTT1 null genotype was asso-
ciated with a small increase in colorectal cancer risk
[18]. Two linked polymorphisms were described in the
GSTP1 gene, one in codon 105 and one in codon 114,
of which the polymorph variant of codon 105 modi-
fies the enzyme’s specific activity[43]. No association
with colorectal cancer was observed for either polymor-
phisms[18]. These results are consistent with larger
scale analyses[44].

3.2. GST expression levels in human colon cells

It has been argued that studies focusing on polymor-
phisms in the low-penetrance genes may have limita-
tions in studying cancer susceptibility and that appro-
priately designed studies using validated functional
parameters should be more predictive of the biotrans-
formation capacity of a given tissue[45]. Recently,
we have investigated gene expression, protein expres-
sion, and GST activities of drug metabolism genes in
primary human colon tissue, premalignant LT97 ade-
noma and HT29 tumor cells cultured in appropriate
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susceptibility to xenobiotics. GST gene and protein
expression levels were determined in tissue directly
excised from the colon of different individuals. The
analysis of GST proteins from 15 donors showed that
some samples contained two- to four-fold higher GST
protein levels than others and in some of the samples,
not even the most common colonic GST form, namely
GSTP1-1 was available in abundant amounts[48]. The
results of a further study on variations of transcriptional
levels (mRNA from 12 GST isoenzymes, six donors)
also revealed a two-fold difference between the person
with lowest and highest values of GST expression[49].
On the basis of our present knowledge, we may con-
clude that a considerable number of subjects could be
at higher risk on account of low GST expression levels,
in spite of the lacking associations between GST poly-
morphisms and cancer risks. The studies also support
endeavours to find ways to increase GSTs in the colon
as a potential strategy for chemoprevention.

3.3. Colon cancer risk factors as substrates for
GSTs

Any strategy involving modulation of biotransfor-
mation necessitates knowledge on the exposing chem-
icals, since these will be the substrates for the tar-
get proteins. In particular, it is of interest to iden-
tify the carcinogens that are metabolically converted
by enzymes of biotransformation. For the purpose
of this review, here we present putative carcinogens
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tructure[50]. In the context of risk factors for CRC
he study of nutritionally caused human diseases
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ormation of mutagens or carcinogens (heterocy
mines, polycyclic aromatic hydrocarbons)[52]. The

mpact of these contaminants, especially of the
rocyclic amines, was previously considered to
ery low on account of the exposure situation
he respective carcinogenic potencies[53]. However
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deactivation of one of the most abundant heterocyclic
amines which is 2-amino-1-methyl-6-phenylimidazo
[4,5-b]pyridine (PhIP)[55,56], whereas one of its less
abundant metabolites,N-acetoxy-PhIP, is detoxified by
GSTs[57].

Data from both in vitro and in vivo studies sug-
gest that exposure to polycyclic aromatic hydrocarbons
(PAHs), such as benzo(a)pyrene, may be important
determinants of colorectal cancer risk[54,58]. Dietary
PAHs are derived from animal fats[59,60] and are
also present at significant levels in tobacco smoke
[61]. There is a close association of colorectal cancer
risk and cigarette smoking[10,62,63], possibly due to
transversion mutations in K-ras[64]. PAHs are known
to be metabolized by a variety of Phase I and Phase
II drug metabolizing enzymes, including cytochrome
P450s, glutathioneS-transferases, andN-acetyl trans-
ferases. The reactive metabolite of benzo(a)pyrene,
namely benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide
(BPDE) is, e.g. a substrate for GSTs of the alpha
class[28]. It also a substrate for GSTP1 with different
affinities, depending on whether the protein product is
encoded by the wild-type or genetic variant form of the
GSTP1 gene[65].

Next to the food contaminants, endogenously
formed mutagens and carcinogens may increase risk
as well. The compounds include nitroso compounds
(apparent total nitroso compound (ATNC)), formed in
the gut subsequent to nitrate intake[66]. ATNC for-
mation also increases with increasing meat intake[67].
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toxic in colon cells[74,75]. Recent studies have shown
that increased iron intake, consumed in the form of
ferrous sulphate capsules, causes a significant increase
in free radical generation in ex vivo incubations[76].
Similarly, diets rich in fat and meat have been shown
to increase faecal free radicals[77]. Free radical gen-
eration is also significantly correlated with the level
of iron in the faeces. Using a refined HPLC method, it
has now been reported that ROS are produced by (an as
yet unidentified) soluble factor within the faecal stream
rather than by the indigenous bacteria[78]. However,
uncertainties are apparent for the role of iron in meat
as an actual risk factor via ROS production as heme
iron is one of the most effectively absorbed forms of
dietary iron in the small intestine. It may be that only
very high meat consumption carries any real risk. A
recent study has indicated that faecal water from rats
fed heme iron is more cytotoxic and hyperprolifera-
tive in colon cells than that from rats fed inorganic iron
[79]. Obviously, more studies are needed to analyse the
prooxidative effects of heme iron, when available from
the gut lumen and to assess the susceptibilities of colon
cells to this factor. The supergene family of GSTs are
well recognized to contribute to resistance against these
and other factors of oxidative stress, whereby they may
also exert peroxidase activities[28,41].

In an extension of these mechanisms, it must be
noted that ROS-mediated attacks of lipids (derived
from the cellular membranes or from high fat diets)
may result in oxidation products (aldehydes, 4-
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factors that could be less toxic/genotoxic if GSTs are
induced.

4. Phase II gene expression

4.1. Molecular mechanisms of regulation

Many xenobiotics, or products of them generated by
Phase I enzymes, are able to induce the expression of
Phase II genes. The regulation of Phase II gene expres-
sion addresses a wide variety of transcriptional regu-
lators. One important mechanism which is critical for
regulation of some, but not all Phase II genes (includ-
ing some GSTs or NADPH dependent quinone reduc-
tase) involves the antioxidant/electrophile-responsive
response element (ARE/ERE) located within the 5′
upstream (consensus sequences 5′-GTGACNNNGC-
3′) regulatory region of the corresponding mouse, rat,
and human genes[83–85]. A major transcription fac-
tor which can act on ARE is nuclear factor E2-related
factor 2 (Nrf2, Fig. 2) [86,87]. Nrf2 belongs to the
NF-E2 family of nuclear basic leucine zipper (bZip)
transcription factors. The key regulator of Nrf2 activity,
which links Nrf2-mediated ARE activation to cellular
exposure to oxidants and chemoprotective agents, has
been identified as the BTB- and Kelch-domain contain-
ing protein Keap1 (Kelch-likeECH-associatedprotein
1). Under basal conditions, Keap1 binds to Nrf2 and
mediates association with a Cul3-dependent ubiquitin
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or motifs embedded into AREs in certain promoters
(Fig. 2). An in vitro study in HepG2 cells showed that
the dimerization of Nrf2 (589 amino acid) with c-Jun is
more effective than Nrf1 (742 amino acid) with c-Jun
in regulation of ARE-mediated gene expression. Also,
the authors reported that the level of intracellular c-Jun
is important and that higher levels of c-Jun repressed
the activation of ARE due to formation of a c-Jun and
c-Fos complex that interferes with the binding of the
Nrf2/c-Jun complex to ARE[94]. Homodimers of Juns
(c-Jun, Jun-D, and Jun-B) or heterodimers of Jun with
c-Fos or Fras (Fra1 and Fra2) bind to AP1 promoter
sites contained in genes likeGSTP1 andGSTA1 [95].
Kim et al. demonstrated that sulforaphane induces ARE
in HepG2 cells and that the intracellular level of GSH
was inversely related to ARE activation[96].

4.2. Induction of hGST gene expression

Some of the GST-encoding genes, which contain
ARE motifs (seeTable 1) can be induced in an
ARE-mediated manner. Thus, it has been shown that
Oltipraz ((5-[2-pyrazinyl]-4-methyl-1, 2-3-thione), an
antischistosomal (parasite killing) agent, which pro-
tects against chemically induced carcinogens induces
gastric and hepatic GST activity and mRNA in Nrf2
wild-type but not in Nrf2-deficiant mice. This allowed
the authors to conclude that Nrf2 is the main fac-
tor for regulation of GSTs[97]. Relatively little is
known about the relevance of ARE-mediated transcrip-
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Fig. 2. Schematic diagram for Phase II enzyme regulation by different substances adapted according to Surh[3]. Abbreviations: C/EBP�,
CCAAT/enhancer-binding protein beta; JUN, mitogen-activated protein kinase; ERK2, extracellular signal-regulated kinase; J NK1, c-Jun N-
terminal kinases 1; AP-1, activator protein-1; JUN, FOS, and FRA, transcription factor complex; KEAP1, Kelch-like ech-associated protein
1; NF-E2, nuclear factor erythroid 2; NRF2 and NRF1; NF-E2related factor-2 and -1; PI3K, phosphatidylinositol 3-kinase; MAPK, mitogen-
activated protein kinase; p38, cysteine-rich MAPK kinase kinase; NQO-1, NAD(P)H:quinone oxidoreductase 1; QR, quinone reductase; Raf-1,
Ras, GTPase-activating protein; NF-kB, nuclear factor kappa-b; STAT, signal transducer and activator of transcription; GATA, gata-binding
protein; Sp1, specific protein-1; PPAR, peroxisome proliferator-activated receptor; GSH, glutathione; GSTA-2 and GSTA-4, glutathione S-
transferase alpha-2 and 4; GSTP1, glutathione S-transferase Pi-1; GSTM-1 and GSTM-3, glutathione S-transferase Mu-1 and 3; GTP, green
tea polyphenols; BHA, butylated hydroxyanisole; SUL, sulforaphane;t-BHA, tert-butylhydroquinone;�-Nap,�-naphthoflavone and Oltipraz.
A major mechanism for induction of Phase II gene expression is transcriptional activation through promoters containing ARE motifs. ARE
motifs bind Nrf2, a transcription factor of the basic leucine zipper (bZip) transcription factor family. By interaction with the redox sensor Keap1
in its reduced state, Nrf2 is maintained in the cytoplasm and targeted for degradation in the proteasome. Modification of Keap1 cysteine(s)
by xenobiotics leads to disruption of the complex, stabilization, and nuclear translocation of Nrf2. Nrf2 has activity only as heterodimer with
other transcriptional regulators, as indicated. Its activity can further be modified by different signal transduction pathways, which, for example,
mediate Nrf2 phosphorylation. The illustrated pathways are explained in more detail in the text.

cation and binding of to the C/EBP response ele-
ment (TTGCGAA) in theGSTA2 gene promoter. The
authors searched the GenBank database for the C/EBP
response elements in the regulatory regions of other
Phase II enzymes. The result revealed that the genes
containing C/EBP as a core sequence include human
�-glutamylcysteine synthetase, mouse quinone reduc-
tase, human GST�, and human heme oxygenase-1.

Therefore, C/EBP� may serve as a more common tran-
scriptional factor for the induction of Phase II enzymes
and cancer chemoprevention. Other transcription fac-
tor binding sites (NF-�B, SP-1, AP-2, GRE, and AP-2)
have been described forGSTP1 and/orGSTA1, but it is
clear from the available data that much further exper-
imentation is necessary to complete understanding on
the induction of GSTs by different mechanisms.
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Table 1
Transcription factor binding sites in the promoter regions of genes
encoding selected biotransformation enzymes

Gene name Transcription factor
binding site

Species Reference

Glutathione S-transferase Pi-1 (GSTP1)
NF-kB Human Xia et al.[139]
AP-1 Morceau et al.[140]
SP-1

NAD(P)H:quinone oxidoreductase (NQO-1)
HSE Human Hayes et al.[141]
NF-kB Venugopal et al.[142]
CCAAT
AP-1
AP-2

Glutathione S-transferase Alpha-1 (GSTA1)
AP-2 Human Lorper et al.[143]
AP-1 Rat Falkner et al.[144]
GRE
TCF1
NF-E2
HNF

Glutathione S-transferase Alpha-2 (GSTA2)
C/EBP Human Lorper et al.[143]
PPAR Hayes et al.[141]
NF-E2 Park et al.[145]

Glutathione S-transferase Alpha-4 (GSTA4)
NF-kB Human Desmots et al.[100]
STAT
GATA
AP-1
SP-1

Glutathione S-transferase Mu-1 (GSTM1)
MYP Mouse Bartley et al.[146]

Glutathione S-transferase Mu-2 (GSTM2)
ETS Mouse Kumar et al.[147]
MYP
AP-2
NF-E2
AP-1
SP-1

Glutathione S-transferase Mu-3 (GSTM3)
SP-1 Human Patskovsky et al.[148]

Glutathione S-transferase Theta-1 subunit Yrs (GSTT1)
SP1 Rat Ogura et al.[149]
PU1
PEA3
AP-2

Glutathione S-transferase Alpha-2 (GSTA2)a

ARE Human Chen et al.[98]

Transcription factors were functionally characterized for the regula-
tion of target genes[100,139–149].

a Further ARE elements identified in the promoters of rat GSTA2,
rat GSTP1, and mouse GSTP1 are described in Nguyen et al.[85].

In summary, numerous pathways occur, by which
GST-encoding genes can be transcriptionally activated
and studies are needed to assess which compounds have
the potential to mediate one or more of these mecha-
nisms in human colon cells and how this relates to GST
activity and detoxification of colon cancer risk factors.

4.3. Modulation of GSTs in human colon cells by
butyrate

Low GST expression levels in the colon may be
compensated by the presence of butyrate, an important
product of gut flora mediated fermentation of dietary
fibers. Our recent studies have shown that butyrate,
one of the three most abundant SCFA produced in
the gut [102], inducedGSTP1, GSTM2, and GSTA4
in HT29 cells[48,103]. We also detected an up regula-
tion of GSTs (e.g.GSTA2, GSTT2) in primary human
colon epithelial cells upon incubation with butyrate
[49]. Thus, low GST expression levels were favourably
altered by butyrate. The mechanisms by which butyrate
has been found to mediate gene expression in human
colon tumor cells are by activation of the MAPK sig-
nalling transduction pathway[103], but also by modify-
ing the acetylation of histones at the N-terminal lysine
rich tails[104,105]. Two classes of enzymes can affect
the acetylation of histones, namely histone acetyltrans-
ferases (HATs) and histone deacetylases (HDACs).
Altered HAT or HDAC activity has been identified
in several cancers and the modification of the struc-
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ject of research in the near future. Additional work
is also necessary to disclose whether the anticarcino-
genic properties of dietary fibres, which upon ingestion
give rise to enhanced butyrate formation in the gut
lumen[110], may in part be protective on account of
this mechanism. These dietary fibres also include the
prebiotic food ingredients, inulin-type fructans (�(2-
1)-fructans) extracted from chicory roots (Cichorium
intybus), which are fermented to lactic acid and short-
chain fatty acids (SCFA) and which have marked anti-
cancer properties[46]. The products formed during in
vitro fermentation of inulin-type fructans and human
gut flora have different chemoprotective properties,
including modulation of GSTs and other enzymes of
biotransformation in human colon tumor cells and in a
colon adenoma cell line[111,112].

5. GSTs as targets of chemoprevention

Cancer chemoprevention can be defined as the use
of naturally occurring or synthetic agents to prevent,
inhibit, or reverse the process of carcinogenesis[113].
A large body of experimental data has shown that this
approach is feasible. As described above, chemopre-
ventive agents transcriptionally induce a battery of
genes whose protein products can protect cells from
chemical-induced carcinogenesis. Enhanced detoxifi-
cation of cancer causing agents may contribute to
reduced cancer risk. Whether or not an enhanced
e tion
h ively.
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with more damage[117]; (3) individuals with null poly-
morphisms[118] for GSTM1, GSTT1 or other types of
genetic predispositions[18] are at higher risk for devel-
oping tumors in the case of specific exposure situations
[119–121], albeit the associations with colorectal can-
cer are not as clear[44]. Alternatively, sequence poly-
morphisms forGSTP1 protect from benzo(a)pyrene
mediated genotoxic damage[65] and genetic poly-
morphisms, likeGSTM1*0 andGSTT1*0 appear to be
associated with an improved beneficial effect of crucif-
erous vegetables (see below)[122].

6. GSTs as targets of dietary prevention

Phytochemicals in plant foods modulate activities of
biotransformation enzymes, one mechanism by which
fruits and vegetables, and cruciferous vegetables, in
particular, could act chemoprotective[116,123].

6.1. Brassica vegetables

It has been reported that the chemoprotective effect
of cruciferous vegetables is due to their high glu-
cosinolate content and the capacity of glucosinolate
metabolites to modulate biotransformation enzyme
systems (e.g. cytochromes P450 and conjugating
enzymes)[122]. Glucosinolates (�-thioglycoside-N-
hydroxysulfates) are hydrolysed by the plant enzyme
myrosinase releasing the biologically active isothio-
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Fig. 3. Overview on key biotransformation pathways of aflatoxin B1 (AFB1) and steps that oltipraz might affect its enzymatic conversion
(adapted according to Zhang et al.[154]). Oltipraz was extensively evaluated as a treatment for schistosomiasis in the early 1980s when it was
found that single doses markedly elevated the activities of Phase II enzymes in hepatic and extrahepatic tissues[155]. The subsequent analyses
of chemopreventive activities showed that oltipraz indeed inhibited cancers in breast, colon, pancreas, lung, forestomach, skin, bladder, and
liver tumor models[115]. Roebuck et al.[38] reported that dietary administration of oltipraz completely protected against aflatoxin-induced
hepatocarcinogenesis, probably due to induced activities of glutathione S-transferases which facilitates conjugation of glutathione to aflatoxin-
8,9-oxide, thereby enhancing its elimination and coordinately diminishing DNA adduct formation[156]. Molecular studies indicated that initial
increases in hepatic glutathione S-transferase mRNA and protein levels in response to oltipraz were mediated through transcriptional activation
of transferase genes in rodent hepatocytes[157,158]and in human hepatocytes[159]. These findings were the basis for a randomized, placebo-
controlled, double-blind intervention trial conducted in residents of Qidong, People’s Republic of China, who are at high risk for exposure to
aflatoxin and development of hepatocellular carcinoma. The major conclusions of the resulting study were that intermittent, high-dose oltipraz
inhibited Phase I activation of aflatoxins, and sustained low-dose oltipraz increased Phase II conjugation of aflatoxin, yielding higher levels of
aflatoxin–mercapturic acid. The study thus highlighted the feasibility of inducing Phase II enzymes as a chemopreventive strategy in humans
[160]. AFM1, the metabolite aflatoxin M1; GSH, glutathione.

block carcinogenesis by dual mechanisms, of which
the Phase II response, which includes GST-induction,
contributes most importantly to reducing cellular sus-
ceptibility to carcinogens[126]. Since ITCs are present
in substantial quantities in human diets, the agents
are ideal candidates for the development of effective
dietary chemoprotection of humans against cancer.

There are three ways by which ITC may modu-
late GSTs of which some may result in chemopre-
vention. Firstly, GSTA1-1, GSTP1-1, GSTM1-1, and
GSTM2-2, may conjugate ITCs with glutathione in

humans, albeit substrate specificity can vary greatly
[127]. Also, the induction capacity is clearly related to
cellular uptake[128]. Secondly, ITCs induce expres-
sion of Phase I and Phase II enzymes and also directly
inhibit P450[129]. Some ITCs induce Phase I enzymes,
others induce only Phase II enzymes, and some induce
both[130,131]and the properties could be associated
with chemoprotection. It has been demonstrated that
the addition of watercress to diets of smokers protected
from genotoxic insults by tobacco smoke-related car-
cinogens[132]. It is, however, a complex endeavour
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to evaluate or predict protective properties by other
representatives ofBrassica, since individual species
contain a variety of glucosinolates, each with different
properties[133]. Thirdly, GST polymorphisms seem
to greatly affect the beneficial role ofBrassica veg-
etables. Subjects withGSTM1*0 genotypes seem to
benefit most[133], as was shown in a randomized
crossover study of four controlled diets (basal diet
with no vegetables or fruit, and the basal diet supple-
mented with cruciferous, allium or apiaceous vegeta-
bles). Serum GSTA concentration, an enzyme induced
by ITC, increased significantly in response to crucif-
erous vegetable feeding, but only inGSTM1-null indi-
viduals [122]. In the absence of serological evidence
for hepatocellular damage, e.g. measured as serum ala-
nine aminotransferase levels, increased serum GSTs
can be correlated to tissue levels[123]. Therefore, the
results indicated that the relationships between crucif-
erous vegetable intake and cancer risk are influenced
by genetic polymorphisms of GSTs[122].

Human intervention studies have been performed
to examine effects of cruciferous vegetable sup-
plementation on metabolism of carcinogens. Broc-
coli and Brussels sprouts increased metabolism of
cooked meat derived heterocyclic aromatic amines
(i.e., reduced urinary excretion of 2-amino-3,8-
dimethyl- imidazo[4,5-f]quinoxaline and 2-amino-1-
methyl-6-phenylimidazol[4,5-b]pyridine), implicating
the induction of both CYP1A2 and Phase II enzymes
involved in heterocyclic amine metabolism[131].
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recent study by Seow et al.[136], middle-aged men
and women were enrolled for a nested case-control
analysis. Two hundred and thirteen incident cases of
colorectal cancer were compared to 1194 controls.
Information on dietary ITC intake from cruciferous
vegetables was combined withGSTM1, T1, and P1
genotype data. The analysis revealed that there were no
overall associations betweenGSTM1, T1, or P1 geno-
types and colorectal cancer risk. However, among indi-
viduals with bothGSTM1 andT1 null genotypes, a 57%
reduction in risk among high versus low consumers of
ITC was observed for colon cancer. Studies by John-
son[137] have addressed which effects glucosinolates
may have in the gut lumen. Their work has shown
that the glucosinolate breakdown product sulforaphane
can inhibit DNA adduct formation induced by a hete-
rocyclic amine in a dose-dependent manner, possibly
acting through the induction of Phase II detoxification
enzymes such as GSTs and UGTs (see above). Another
study has investigated the effects of indols and ITCs in
human colon cancer cell lines, in which the natural
isothiocyanates sulforaphane, benzyl isothiocyanate,
and phenethyl isothiocyanate stimulated apoptosis in
human colon adenocarcinoma cell lines[138]. Natu-
ral indols were inducers of cytochrome P450, but not
of gamma-glutamylcysteine synthetase heavy subunit
(�GCS(h)), In contrast, treatment of the cells with ITCs
did not result in an induced expression ofCYP1A1,
but caused a marked increase of the protein levels
of NAD(P)H:quinone oxidoreductase 1 (NQO1) and
� oles
a ent-
o pres-
s sis-
t c-
t

8

cers
c tec-
t s of
t bal-
a es is
n tics.
E that
c car-
ore studies are needed to understand whethe
onsequences of this type of bifunctional induc
f enzymes of biotransformation result in ove
etabolic inactivation or activation[134].

. Effects of Brassica and ITC in the human
olon

The results of 74 case-control studies (reviewe
135]) on the association betweenBrassica consump
ion and cancer risk showed for 64% an inverse a
iation between consumption of one or moreBrassica
egetables and risk of cancer at various sites, and c
as one of the sites for which the association appe

o be most consistent. It was not possible to res
hether associations could be attributed toBrassica
egetables per se or to vegetables in general. In a
GCS(h). Thus, evidence was presented that ind
nd ITCs stimulate either xenobiotic response elem
r antioxidant response element-driven gene ex
ion. The induction was associated with chemore
ance against benzo(a)pyrene, supporting the prote
ive consequences of altered metabolic activities[138].

. Conclusions

There is increasing evidence that human can
an be prevented by favouring the intake of pro
ive factors that modulate the defense mechanism
he host organism. The careful co-ordination and
nce of Phase I and Phase II metabolizing enzym
ecessary for cellular protection against xenobio
specially the complex supergene family of GSTs
ollectively metabolizes chemotherapeutic drugs,



86 B. Pool-Zobel et al. / Mutation Research 591 (2005) 74–92

cinogens and environmental pollutants plays a pro-
tective pivotal role against xenobiotics and carcino-
gens. Their levels of expression can have profound
effects on susceptibility to chemical insult, with over
expression resulting in resistance and under expres-
sion enhancing susceptibility. GSTs are expressed with
high inter-individual variability in human colonocytes,
which points to large differences in cellular suscep-
tibility to xenobiotics. Thus, dietary, putative cancer
risk factors, such as nitrosamines, heterocyclic aro-
matic amines, polycyclic aromatic hydrocarbons, and
products of oxidative stress collectively include sub-
strates for glutathione S-transferases. A considerable
number of subjects could therefore be at higher risk on
account of low GST expression levels. Together this
supports endeavours to find ways to increase GSTs in
the colon as a potential strategy for chemoprevention.
Cancer prevention experts generally recommend that
people maintain a healthy weight, exercise, and eat
diets high in fruits, vegetables, and fibre. And there is
a growing body of evidence showing that plant foods
can enhance GST expression levels. In particular, e.g. it
has been shown that isothiocyanates (ITCs) ofBrassica
vegetables block carcinogenesis by dual mechanisms,
namely inhibition of Phase I and induction of Phase II,
including GST. Since ITCs are present in substantial
quantities in human diets, the agents are ideal candi-
dates for the development of effective dietary chemo-
protection of humans against cancer. Moreover, other
studies have shown that variations in habitual consump-
t ta-
b te
t ity.
N ing
g lude
p ant-
r duct
b ty-
l hich
c ore
o how
t lon
c oci-
a stion
r ow-
i rs to
m e of
t state

of chemoprotection due to modulation of Phase I and
Phase II enzymes, in general, and an induction of GSTs,
in particular. Since efficient life-long mechanisms of
chemoprevention could include a favourable modula-
tion of biotransformation systems in human tissues by
diet, this type of measurement could help researchers
select the most promising dietary regimens for clini-
cal trials and public health issues. The evaluation of
this marker necessitates more knowledge on the types
of involved carcinogens and their biotransformation
and how the dietary mediated alteration of biotransfor-
mation is related to cancer initiation and progression.
Altogether, the study of these associations warrants
close attention in the future and may eventually lead
to a more precise understanding on these types of pro-
tective mechanisms.
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2.5 Publication V: Veeriah S, Miene C, Habermann N, Hofmann T, Klenow S, 

Sauer J, Böhmer FD, Wölfl S, Pool-Zobel BL. “Apple polyphenols modulate 

expression of selected genes related to toxicological defence and stress response in 

human colon adenoma cells”. Submitted, 2007 

An important mechanism of antigenotoxicity is the induction of phase II detoxifying 

enzymes. Apples contain significant amounts of polyphenols which are antigenotoxic 

and chemoprotective by this mechanism. The purpose of this study was to investigate 

whether polyphenols from apples modulate expression of genes related to colon 

cancer prevention in preneoplastic cells derived from colon adenoma (LT97). For this, 

LT97 cells were treated with apple extracts (AE). RNA was isolated and gene 

expression studies were performed using cDNA-arrays contains genes related to 

mechanisms of carcinogenesis or chemoprevention. Real-time PCR and enzyme 

activity assays were additionally performed to confirm selected array results. 

Treatment of cells with AE altered several genes including GSTs and UGTs. The 

enzyme activities of GSTs and UGTs were altered by treatment of LT97 cells with AE. 

The observed altered gene expression patterns in LT97 cells resulting from AE 

treatment points to a possible protection of the cells against some toxicological insults. 

Our approach to determine this specific profile of gene expression in preneoplastic 

human cells provides a relevant possibility to identify target genes and agents that 

could contribute to chemoprotection in colon mucosa cells. 

 
Own contribution to the manuscript: 
 

• Establishment of custom-made cDNA-microarray system in the lab 

• Cell culture and RNA isolation, execution of the cDNA-arrays, gene expression 

analysis and verification of array genes by real-time PCR 

• Data evaluation, interpretation and representation of the results  
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ABSTRACT  

Apples contain significant amounts of flavonoids that are potentially cancer risk reducing by 

acting antioxidative or antiproliferative and by favourably modulating gene expression. The 

purpose of this study was to investigate whether polyphenols from apples modulate expression of 

genes related to colon cancer prevention in preneoplastic cells derived from colon adenoma 

(LT97). For this, LT97 cells were treated with effective concentrations of apple extracts (AE). 

RNA was isolated and used for synthesis and labelling of cDNA which was hybridized to 

cDNA-arrays. Gene expression studies were performed using a commercial cDNA-array from 

Superarray® which contains a limited number of genes (96 genes) related to drug metabolism and 

a custom-made cDNA microarray which contains a higher number of genes (300 genes, 

including some genes from Superarray®) related to mechanisms of carcinogenesis or 

chemoprevention. Real-time PCR and enzyme activity assays were additionally performed to 

confirm selected array results. Treatment of cells with AE resulted in 30 and 46 genes expressed 

over cut-off values (≥1.5 or ≤0.7-fold) in Superarray® and custom array, respectively. Of 87 

genes spotted on both arrays, four genes (CYP3A7, CYP4F3, CHST7, GSTT2) were regulated 

with similar directional changes. Expression of selected phase II genes (GSTP1, GSTT2, GSTA4, 

UGT1A1, UGT2B7) regulated on either array was confirmed by real-time PCR. The enzyme 

activities of glutathione S-transferases and UDP-glucuronosyltransferases were altered by 

treatment of LT97 cells with AE. The observed altered gene expression patterns in LT97 cells, 

resulting from AE treatment, points to a possible protection of the cells against some 

toxicological insults.  
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INTRODUCTION 

Colon cancer is among the most common types of epithelial malignancies in both genders, 

affecting the Western world and most probably related to dietary habits [1]. Although debatable, 

it is thus a promising expectation that changes in diet, such as the frequent consumption of fruits 

and vegetables with high contents of polyphenols and flavonoids, may reduce the risk of 

developing carcinoma of the colon [2]. One mechanism is thought to occur through the 

composition of the luminal environment that may alter the expression of genes in the intestinal 

epithelium and thus, directly influence disease. Experimental studies have shown that selected 

polyphenolic compounds can affect cellular processes that are important for cancer development. 

For instance, in vitro studies with colorectal cancer cell lines have demonstrated that flavonoids 

(e.g. quercetin, phloretin) are able to inhibit cell proliferation, induce cell differentiation and 

apoptosis, and enhance anti-inflammatory responses [3;4]. The chemopreventive properties of 

various flavonoid compounds also have been found to include the induction of carcinogen 

detoxifying systems [5], interaction with cellular signalling pathways, and modulation of gene 

expression [6]. 

 

Apples have significant amounts of polyphenolic compounds [7] and are an important source of 

flavonoids in peoples’ diets in the United States of America and in Europe [8]. Effective 

absorption of the apple polyphenols from the mammalian colon has been shown in vivo and in 

vitro [9;10]. Other than antioxidative effects [11] and their ability to scavenge carcinogens, the 

apple polyphenols may be chemoprotective by affecting molecular events in the initiation, 

promotion, and progression stages of carcinogenesis [12]. A variety of cellular effectors have 

been recognized as targets for actions of apple flavonoids as well. One recent in vitro study has 

shown that polyphenolic procyanidins from apples can increase the expression of extracellular 

signal-regulated kinase 1 and 2 (ERK1, 2), c-Jun N-terminal kinase (JNK), activity of caspase-3, 

inhibit G2/M phase cell cycle arrest and suppress PKC in SW620 cells [13]. The epidermal 

growth factor receptor (EGFR) signalling, that  plays an important role in the regulation of cell 

proliferation, was substantially inhibited by a polyphenol-rich apple extract [14]. On the other 

hand, the PTPRJ gene, encoding the protein-tyrosine phosphatase DEP-1, a candidate tumour 

suppressor with antiproliferative activity in colon epithelial cells, was induced upon cell 

treatment with apple polyphenols [15]. Interestingly, AE can significantly reduce the DNA 
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strand breakage and the proliferation of rat colon cells isolated from animals pretreated with 

dimethylhydrazine (DMH) [16]. Another in vivo rat study showed that intervention with apple 

procyanidins reduced the number of aberrant crypt foci (ACF) and preneoplastic lesions initiated 

by azoxymethane (AOM) [13]. However, the molecular bases of the chemopreventive effects of 

flavonoids, in general, and of apple flavonoids, in particular, are poorly understood.  

 

Gene expression studies using microarrays can yield important information on the mechanisms 

of how dietary components may influence colorectal carcinogenesis. We have reported 

previously that a HT29 colon carcinoma cell line treated with AE differentially modulated the 

expression of several genes associated with the process of chemoprevention [4]. We therefore, 

proposed that the upregulation of chemoprevention-related genes, especially those involved on 

phase II metabolism such as, glutathione S-transferases (GSTs) and UDP-

glucuronosyltransferases (UGTs) could potentially reduce the availability of carcinogens to the 

healthy colonic mucosa, thereby preventing the carcinogen from acting directly on the tissue. In 

support of this proposal, now it was of high interest to explore the effect of AE on gene 

expression in preneoplastic colon cells that are not tumourigenic. Therefore in this study, we 

have used as target cells a recently established human colon adenoma (LT97) cell line, which 

represents preneoplastic lesions [17]. We sought to identify genes specifically related to 

mechanisms of carcinogenesis or chemoprevention using cDNA microarrays, which allow the 

simultaneous detection of expression of a high number of genes [18]. 

 

First, cDNA microarray analysis of AE (128 µg/ml) treated LT97 cell line was performed using 

a commercially available cDNA array membrane (SuperArray® Inc., Frederick, USA) which, 

however, contained only a limited number of genes (96 human drug metabolism genes) and the 

analysis of more of the relevant target genes of interest would have necessitated the use 

additional arrays. Therefore, a more focussed, custom-made cDNA microarray (PIQOR™, 

Memorec, Germany) was designed which was spotted with 300 human genes involved in distinct 

pathways of carcinogenesis. It was commercially produced (Miltenyi Biotec, Köln, Germany) 

according to our selection of the genes that was based on (a) functionality of the gene products in 

chemoprevention or carcinogenesis and (b) expression levels in the numerous cell systems used 

in our laboratory. The baseline expression levels had previously been determined with 
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Superarray® membranes in several types human colon [19], breast [20] and prostate [21] cells 

and it was the aim of this study to assess the modulation of their expression in LT97 cells treated 

with AE.  
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MATERIALS AND METHODS 

Apple polyphenols extract  

The apple extract (AE) was produced as has been described before [4] and was kindly provided 

by Dr. Frank Will and Prof. Dr. Helmut Dietrich (Institute for Oenology and Beverage Research, 

Geisenheim, Germany). An aliquot was used for analysis of individual polyphenol ingredients, 

such as chlorogenic acid, which was identified as one of the major flavonoids of the AE [4]. 

Other aliquots were needed for determining biological properties in the colon cells.  

 

Cell line and culture conditions 

The human colon adenoma cell line LT97 was established from colon micro adenomas of a 

patient with Familial Adenoma Polyposis coli [17] and were kindly provided by Brigitte Marian 

(Institute of Cancer Research, University of Vienna, Vienna, Austria). The LT97 cell line was 

cultured as previously described [19] but instead of 2.5 U/ml PenStrep, 10 mg/ml Gentamicin 

(Invitrogen GmbH, Karlsruhe, Germany) was used. The cells between passages 21 and 32 were 

used for the experiments described here. 

 

Cell treatment and RNA extraction 

Cell growth assays had been previously conducted to determine effective concentration ranges of 

the apple polyphenol extract in LT97 cells. The studies showed that AE concentrations of 128 

and 255 µg/ml reduced cell numbers to 93 % and 83 %, respectively, after treatment for 24h. 

Prolonged treatment resulted in pronounced loss of numbers of cells compared to the medium 

control after 72 hours to 82 % and 71 %, respectively [22]. In the present study these two 

concentrations were used to test if there were any differences in biological effects on gene 

expression and enzyme activities. The LT97 cells were subcultured in the T25 flask (Falcon, 

UK). 72 h later, cells were treated with 128 and 255 µg/ml concentrations of AE for 24 h. LT97 

cells were harvested by incubation with EDTA-PBS and then resuspended in 5 ml of medium. 

After centrifugation, the cell pellet was resuspended and washed once with ice-cold PBS (pH 

7.4). Total RNA from these cells was isolated using a RNeasy mini kit (Qiagen GmbH, Hilden, 

Germany). RNA was checked for stability and DNA contamination by gel electrophoresis. The 

purity of RNA samples was determined based on the ratio of spectrophotometric absorbance of 

the sample at 260 nm to that of 280 nm (A260/A280) using a NanoDrop ND-1000 photometer 
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(Wilmington, USA). Only RNA samples with A260/A280 ratio ≥ 1.8 were used in further 

experiments.  

 

Superarray® analysis 

The Superarray® system (SuperArray® Inc., Frederick, USA) was utilized to compare the relative 

levels of mRNA expressed in LT97 cells with or without AE treatment (128 µg/ml). The 

Superarray® (Cat #: HS-011-N) contained 96 spotted genes probes related to drug metabolism. 

cDNA synthesis, probe preparation, and hybridizations to the array were done, as previously 

described in quadruplicate [4]. For each set of quadruplicates the mean value for each gene was 

determined and used to calculate the fold-changes (treatment versus medium control). Using cut-

off criteria, a 1.5-fold induction or a 0.7-fold repression in expression were considered to be of 

biological importance.  

 

Custom-made cDNA microarray analysis 

In addition to the drug metabolism related genes it was of interest to also analyse a broader range 

of genes involved in additional mechanisms of carcinogenesis or chemoprevention. This was 

done using a customized cDNA-array system (Miltenyi Biotec, Germany) spotted with 300 

genes belonging to nine functional categories, namely: 1) phase I metabolism, 2) phase II 

metabolism, 3) phase III metabolism, 4) phase II gene regulation pathway, 5) stress and signal 

transduction pathway, 6) apoptosis signalling pathway, 7) tumour suppressor genes, 8) cell cycle 

arrest/regulation of cell cycle and 9) miscellaneous (several functions). The total RNA prepared 

for Superarray® analysis was 3 years old and therefore, the new batch of total RNA was isolated 

from LT97 cells treated with AE (128 µg/ml) for 24 h. First-strand cDNA was synthesized from 

2 µg of total RNA with a primer incorporating a T7-RNA polymerase promoter. After second-

strand cDNA synthesis (Invitrogen GmbH, Karlsruhe, Germany), cRNA amplification was 

performed with RNA polymerase (Ambion, Cambridgeshire, UK). Subsequently, the cRNA was 

used as template to prepare labelled cDNAs with Cy3-dUTP or Cy5-dUTP (Amersham 

Biosciences, Uppsala, Sweden). Labelled cDNAs were hybridized to the custom cDNA-arrays 

overnight at 65°C by following the manufacturer’s instructions. 
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Preprocessing of custom array data 

Slides ware scanned by GenePix® 4000B microarray scanner and preprocessing of the custom 

arrays data was carried out using GenePix Pro v6.0 software (Molecular Devices, Union City, 

USA). Experiments were independently reproduced four times and the average intensity of each 

set of probes was used for normalization based on the GAPDH gene. The differential gene 

expression was analysed by using the same cut-off value (≥1.5 or ≤0.7-fold change) as described 

for the Superarray® analysis and changes in genes of interest were confirmed by real-time PCR 

analysis.  

 

Quantification of mRNA levels by real-time PCR 

The relative differences in expression levels of selected genes of interest (GSTT2, GSTP1, 

GSTA4, UGT1A1, UGT1A4 and UGT2B7) were evaluated by real-time PCR using the iCycler 

iQ® (Bio-Rad GmbH München, Germany) system. First-strand cDNA probes were prepared as 

reported previously [4]. The real-time PCR experiments were performed with gene specific 

primers (Table 1). A standard curve was generated for each run using cDNA-templates to 

determine the PCR amplification efficiency of the target and of an endogenous reference. Each 

experiment was independently repeated three times, with in each sample was run in duplicate 

each time. The relative mRNA expression levels of targets genes were calculated as previously 

described [4]. 

 

Total GST and UGT enzyme activity assays 

LT97 medium (control) and AE (128 and 255 µg/ml, 24 h) treated cells were washed with PBS, 

and harvested with 5 mM EDTA in PBS and the cytosol was extracted as previously described 

[23]. Total GST enzyme activity was determined using 1-chloro-2,4-dinitrobenzene (CDNB) as a 

substrate according to the procedure of Habig et al. [24]. Enzyme activities were normalized to 

total cytosolic protein measured according to the Bradford method [25]. Mean enzyme activities 

for AE-treated cells were calculated and the fold-induction enzyme activities determined by 

taking a ratio of AE-treated enzyme activities to the controls. 

 

UGT enzyme activity was determined with 4-methylumbelliferone (4MU, 50 µM) as a substrate 

in 96-well microtiter plates as described previously by Collier et al. [26]. The rate of UGT 
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activity was determined by the 4MU-dependent, fluorescent reduction during 4MU-

glucuronidating activity. The microsomal proteins were prepared as described by Collier et al., 

cells were resuspended with homogenisation buffer (0.1 M Tris, 2 mM Pefabloc, pH 7.8), 

followed by ultrasonification and centrifugation (9,000 g, 20 min, 4°C). 105 µl of 4MU, 30 µl 

homogenization buffer, 30 µl of microsomal proteins were added to the reaction mixture and 

reactions were started by the addition of 20 µl of UDPGA (0.2 M) in a final volume of 155 µl. 

Blank controls for each experiment were incubated in the presence of assay buffer (0.1 M Tris-

HCl, 5 mM MgCl2, 0.05 % BSA, pH 7.4) instead of microsomal proteins. Using a microtiter plate 

reader (SpectraFLUOR Plus, Tecan, Austria) readings were obtained at Ex/Em 360/465 nm for 

60 min at 5 min intervals, at 37°C. Mean specific enzyme activities were calculated from the 

slope and the fold-inductions were calculated by taking a ratio of the values obtained for AE 

treated LT97 cells and for the medium controls. 

 

 Statistical Analysis 

Statistical analysis was performed using the GraphPad® Prism software Version 4.0 (GraphPad® 

Software Inc., San Diego, USA) and Microsoft Excel 2003 (Microsoft Corporation, USA), based 

on the mean values of independently reproduced experiments. All experiments performed in 

vitro were repeated at least three times unless otherwise indicated. Significant differences 

between treatment and control values were determined by the two-tailed student t-test and one-

way ANOVA with Bonferroni’s post test. The values of p ≤ 0.05 were taken to be statistically 

significant.  
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RESULTS 

Effects of apple flavonoids on gene expression in LT97 cells (Superarray® analysis) 

For Superarray® array analysis resulted in there was no statistically significant (p ≤ 0.05, t-test) 

regulation of genes in LT97 cells in response to treatment with AE. However, on the basis of the 

evaluation criteria (≥1.5 or ≤0.7-fold), the analysis revealed an increased expression for 30 genes 

of the 96 spotted sequences after 24 h treatment with AE (Table 2). 25 of the 30 altered genes 

belonged the phase II genes and included major detoxifying enzyme systems of glutathione S-

transferases family (seven genes, GSTA3, GSTM5, GSTP1, GSTT2, MGST1, MGST2, MGST3). 

Also five acetyltransferase genes (CRAT, DLAT, HAT1, NAT1, NAT5), five sulfotransferase 

genes (CHST5, CHST6, CHST7, SULT1C1, TPST1), three methyltransferase genes (TPMT, 

HNMT, COMT), two genes from UDP-glycosyltransferase family (UGT1A1, UGT1A4) and three 

epoxide hydrolase genes (EPX1, EPH2, LT4H) were upregulated. Three genes of the phase I 

cytochrome-p450 family (CYP2B6, CYP3A7, CYP4F3) and two miscellaneous function genes 

(MT1E, ABCC3) were altered as well.  

 

Effects of apple flavonoids on gene expression in LT97 cells (custom-made cDNA microarray 

analysis)  

Custom array results indicated that expression of 14 genes was significantly (p ≤ 0.05, t-test) 

modulated (Table 3). Moreover, a total of 46 genes were upregulated on the basis of the 

evaluation criteria (≥1.5 or ≤0.7-fold) in response to AE (128 µg/ml) for 24 h. The target genes 

were all upregulated, and none of the genes were down regulated. Notably, a relatively higher 

number of carcinogen metabolism-related genes tended to be upregulated (19 genes) by AE 

treatment than genes belonging to the other functional categories. The mRNA of glutathione S-

transferases (GSTT2 [p=0.009], GSTA4 [p=0.022]), carbohydrate sulfotransferases (CHST3 

[p=0.016], CHST7) and UDP-glucuronosyltransferases (UGT1A6, UGT2B7 [p=0.056]) were 

markedly elevated. Treatment of LT97 cells with AE also resulted in upregulated expression of 

genes related to cell cycle control (CDKN1A, NFKB2 [p=0.008], NFKBIB [p=0.039], CGRRF1 

[p=0.039]), apoptosis signalling (CASP10 [p=0.009], WNT3), oxidative stress (GPX2, FMO1, 

HSPA5, UBE2D1) and tumour suppression (BRCA2, PTPRJ [p=0.019], PTPN6 [p=0.034], 

PTPRN, PTPRT).  
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Comparison of results from Superarray® and custom array analysis  

Of the 96 genes present on the Superarray®, 87 genes were also spotted on the custom array (see 

Figure 1 for detailed information). Of these 87 genes, 30 were found upregulated in the 

Superarray® analysis of which only 4 were similarly altered in the custom array analysis 

(CYP3A7, CYP4F3, GSTT2, CHST7) in response to AE treatment in LT97 cells. Thus 86 % of 

the genes detected in the superarray experiments were not identified with the custom array. This 

can be explained with a higher sensitivity of the Superarray® in comparison to the custom array. 

However, the differences obtained by custom array were statistically significant and the 

differences obtained from superarray were not statistically significant meaning that the custom 

array platform seemed to be higher accuracy. This discrepancy indicates that results from 

screening using cDNA-arrays must be confirmed by additional methods as real-time PCR 

analysis described below. 
 

Real-time PCR analysis for mRNA enhanced expression in LT97 cells by apple flavonoids 

To confirm gene expression differences observed from microarray results, real-time PCR was 

performed on 6 genes (GSTA4, GSTT2, GSTP1, UGT1A1, UGT1A4, UGT2B7). The choice of 

these genes had been based on their functional importance and expression levels in the human 

cell model. We analyzed the mRNA expression levels in response to two AE concentrations (128 

and 255 µg/ml). Figure 2 shows that RNA from LT97 cells, thus treated, revealed modulation of 

GSTP1 (1.7, 1.2-fold), GSTT2 (1.9, 1.4-fold), GSTA4 (1.8, 1.4-fold), UGT1A1 (1.1, 1.8-fold) and 

UGT2B7 (2.7, 1.9-fold) which were all similar directional changes as those revealed in the 

analysis of the arrays. However, UGT1A4 (0.7, 0.5-fold, data not shown) was altered in the 

opposite direction as in the Superarray® (Table 2). With the exception of UGT1A1, which was 

most effectively altered at the higher AE concentration (255 µg/ml, which was cytotoxic), the 

128 µg/ml was most effective in eliciting modulated responses of gene expression. The mRNA 

expression levels of all of these verified genes were significantly (p ≤ 0.05) altered in response to 

AE treatment in LT97 cells (Figure 2).  

 

Induction of total GST and UGT enzyme activities in colon cells by apple polyphenols  

In addition to the induction of GSTs and UGTs transcript levels, also total GST and UGT 

enzyme activities were assessed in LT97 cells treated with AE (128 and 255 µg/ml). The 
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analysis revealed that GST and UGT enzyme activities seemed to be altered in LT97 cells in 

response to the AE treatment (Figure 3). The altered GST (3.8, 2.8-fold) enzyme activities, 

however, were not significantly different from the control (Figure 3a), whereas the UGT (1.2, 

1.5-fold) enzyme activities were enhanced significantly (p ≤ 0.001) in the presence of the higher 

concentration (255 µg/ml) of AE which was cytotoxic (Figure 3b).   
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DISCUSSION  

This study aimed to assess the effects of complex mixtures of apple polyphenols on patterns of 

expression of genes related to toxicological defence and to mechanisms relevant for early stages 

of carcinogenesis. According to Superarray® and custom array analysis, it was observed that 30 

and 46 genes were upregulated by treatment of LT97 cells with AE, respectively. Among these, 

83 % (25 genes from Superarray) and 41 % (19 genes from custom array) of the genes are 

potentially involved in the key processes of phase II detoxification metabolism, such as GSTs 

and UGTs. Genes belonging to these groups were selected for more detailed studies to verify 

their responses to AE. In particular GSTT2, GSTP1, GSTA4, UGT1A1, UGT2B7 were also up 

regulated according to real-time PCR analysis. The products of these target genes are involved in 

detoxification and excretion of carcinogens, including putative food carcinogens such as 

polycyclic aromatic hydrocarbons and heterocyclic amines [27]. Moreover, some GSTs are 

known to have peroxidase activity, like GSTT2 [28]. Therefore, the upregulation of GSTT2, as 

observed here, could be an important mechanism of chemoprotection. The enhanced levels of 

GSTT2 products possibly result in an elevated detoxification of peroxides. For instance the 

enzyme has pronounced substrate specificity towards cumene hydroperoxide (Cum-OOH) [28] 

which however is not physiologically available. Examples of physiological peroxides, are those 

formed during lipid peroxidation or arachidonic acid metabolism, such as arachidonic acid 15-

hydroperoxide which potentially damages DNA and is pronounced substrate for rGSTT2 [29]. 

The metabolic deactivation of endogenously formed peroxides may indeed be favoured by 

enhanced GSTT2 levels, thus providing cellular chemoprotection. This mechanism is also of 

interest in the case of an upregulated GSTP1, although the carcinogenic substrates that may be 

deactivated belong to different chemical classes. One candidate of interest is benzo[a]pyrene diol 

epoxide (BPDE), a metabolically activated form of the polycyclic aromatic hydrocarbon 

benzo(a)pyrene  [30]. Another target of interest is GSTA4 which is involved in the detoxification 

of final lipid peroxide products, such as 4-hydroxy-2-nonenal (HNE) [31]. Thus its up regulation 

by AE could also be related to an antigenotoxic potential and chemoprotection of LT97 cells. 

UGTs such as, UGT1A1, UGT2B7 are another group of phase II enzymes. They play a role in 

glucuronidation and subsequent elimination of potentially toxic xenobiotics, endogenous 

compounds (e.g. bilirubin) and exogenous carcinogenic compounds (e.g. heterocyclic amines, 

polycyclic aromatic hydrocarbons) [32;33].  
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In addition to upregulation of GSTs and UGTs mRNA, AE also seemed to alter GST and UGT 

enzyme activities in LT97 cells. This is meaningful since GSTs and UGTs potentially play 

important roles in cancer chemoprevention [34]. Both GST and UGT genes are regulated by the 

transcription factor Nrf2 [35]. Related to this mechanism is our finding from the custom array 

analysis that AE also resulted in an upregulation of four down stream transcription factors of 

Nrf2 namely, PIK3CB, PIK3CG, FRA-2 and AHR. These transcription factors may result in the 

enhanced transcription of phase II genes such as GSTs, UGTs and NAD(P)H dehydrogenase, 

quinone 1 (NQO1) [36]. Moreover, the data of the Superarray® analysis showed that exposure of 

LT97 cells to AE triggers the transcription level of the HAT1 gene. HAT1 is a member of the 

histone gene family involved in histone acetylation, particularly of histone H4. As a 

consequence, histone acetylation alters nucleosomal conformation, which can increase the 

accessibility of transcriptional regulatory proteins to chromatin templates and subsequently 

increases gene expression, while deacetylation is associated with decreases in gene expression 

[37]. Together, these results show that activation of these transcription factors and the histone 

gene family by AE could be a relevant mechanism of transcriptional activation of phase II genes 

such as GSTs and UGTs.  

 

In addition to the capacity of AE to modulate detoxification related genes, AE also seemed to 

modulate several other genes spotted on the custom array which are related to important 

functions such as, tumour suppression, cell cycle control, cell signalling as well as apoptosis. For 

instance, AE increased the expression of five established or candidate tumour suppressor genes 

namely, BRCA2, PTPRT, PTPN6, PTPRN and PTPRJ (Dep-1) in LT97 cells. Expression of 

BRCA2 is reported to play a role in DNA repair and thus to maintain chromosomal stability [38]. 

PTPRJ (Dep-1), a newly identified candidate tumour suppressor gene, that has been reported to 

be involved in apoptosis, cell cycle arrest and tumour suppression. It’s re-expression in PTPRJ-

negative SW480 cells leads to inhibition of cell growth and cell migration, and induction of 

PTPRJ expression by apple polyphenols in HT29 cells [39]. These findings indicate that the 

upregulation of several tumour suppressor genes by AE might reduce the probability for tumour 

progression. 
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Custom array analysis also showed an increase of mRNA from genes involved in the cell cycle 

arrest and regulation of cell cycle, such as CDKN1A, CGRRF1, ESR2, NFKB2, NFKBIB and 

TGFA in response to AE treatment. Upregulation of these genes could modulate cell signalling, 

block progression of cell cycle and inhibit proliferation [40]. This is in accordance with previous 

findings showing that AE modulated growth and survival of LT97 cells with EC50 values of 

650.9 µg/ml after 24 h treatment [41]. In addition, AE influenced genes from the stress and 

signal transduction pathways namely, FMO1, GPX2, HSPA5 and UBE2D1, the products of 

which are have several functions such as peroxidase activity and ubiquitination [42]. Moreover, 

there was an AE-mediated upregulation of the apoptosis mediator CASP10 which is part of the 

caspase cascade. Overexpression of CASP10 (a caspase closely related to CASP8) induces 

apoptosis [43] and thus this the finding suggests that AE can modulate apoptosis signalling [13]. 

Indeed, induction of apoptosis in HT29 cells by treatment with relatively high concentrations of 

apple polyphenols has been shown [44].  

 

Our previous study with Superarray® gene expression analysis of the human colon carcinoma 

cell line (HT29) treated with AE (510 µg/ml or 30 µM, Ph.E) showed 8 genes were altered and 

most of them were related to phase II metabolism gene family [4]. In our present study using the 

same Superarray® system in human colon adenoma (LT97) cell line, 30 genes were altered, even 

though the concentration of AE added to LT97 cells was lower (128 µg/ml) compared to the 

treatment used for the HT29 cells. Accordingly, apple polyphenols might have stronger 

biological effects in the preneoplastic colon epithelial cells than in adenoma cells or carcinoma 

cells. Moreover, validation of microarray results by real-time PCR with two different 

concentrations (128 and 255 µg/ml) of AE showed that induction was more pronounced with the 

lower concentration, indicating that AE can alter the gene expression in colon cells even at low 

concentrations.   

 

In this study with LT97, the comparison of Superarray® to custom array data showed that of 87 

genes mutually spotted on both arrays, only 4 genes (CYP3A7, CYP4F3, GSTT2, CHST7) were 

altered on both arrays which may be due to differences in sensitivity. These two genes (CYP3A7, 

CYP4F3) not involved in carcinogen activation and not yet described to be involved in colon 

carcinogenesis. The Venn diagram [45] was used to asses the across-platform agreement. It is 
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important to note that this was used to compare results from two different RNA preparation 

experiments, and thus we did not expect a perfect agreement. From the genes present on both 

arrays 11 genes were only detected as regulated on the custom array and 25 were only detected 

with Superarray®, respectively. Collectively, the results indicate that there were considerable 

differences in the responsiveness of the two arrays. Since the work up procedure was very 

similar, the observed differences were probably more due to the platform and to the different 

probes than to the processes involved in amplification and hybridisation [46]. Accordingly, 

additional methods were used to confirm mRNA expression data. The lower variation of spotted 

glass slide array is most likely due to the much lower dynamic rang of the system which is 

limited by the thermodynamics of the hybridisation process. A very crucial point which is often 

not considered when looking at data (Wölfl S et al., personal communication).  

 

In conclusion, apple polyphenols are able to induce gene expression of enzymes related to 

tumour suppression, cell cycle arrest, regulation of cell cycle, apoptosis signalling, stress and 

signal transduction and, in particular, detoxification enzymes systems (GST and UGT) in LT97 

adenoma cells. Statistically significant modulations were generally more pronounced in custom 

array than in Superarray® analyse. Based on gene expression analysis using real-time PCR, the 

lower concentration of AE was more effective. However, the higher concentration used here, 

which was also cytotoxic, was more effective in enhancing UGT enzyme activity. Such 

induction of detoxification enzymes in colon cells may account for the chemopreventive 

potential of apple polyphenols. However, one should realize that the dose of apple polyphenols 

used here (128 and 255 µg/ml) needs to be related to the amounts that can be reached in the 

human colon. Our recent studies in volunteers with ileostomy pouches have, for instance, 

revealed that a total of 16.0±3.5 mg polyphenols (16000 µg per bag with ~360 ml) could be 

retrieved from the samples of eleven subjects, who had consumed one litre of cloudy apple juice 

2 hours before [47]. This may not be too far removed from the concentrations that reach the 

colon, but definite measurements will be needed with colon samples before coming to a 

conclusion. An additional consideration regards the total human diet which contains additional 

polyphenols from many more sources. Jointly, these might lead to a prolonged exposure and thus 

be able to exert effects on detoxification enzymes, such as GSTs and UGTs. The induction of 

these detoxification enzymes by AE or other plant foods in adenoma cells may detoxify 
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compounds that lead to further progression and thus contribute to chemoprotection in stages 

subsequent to the initiation stage. The hypothesis will need further experimental back up 

investigations, but the mechanism could be a promising contribution to cancer chemoprotection 

by diet. 
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Table 1. Primer sequences for real-time PCR, primers designed by using PerlPrimer v1.1 

software. Primer pairs were verified by normal PCR with gene specific amplicons.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Locus ID Gene name Amplicon 
size (bp)

Anealing 
temperature Primer name Primer sequences  5' to 3'

NM_000854 GSTT2 142 60 - 63°C iGSTT2_F tgacactggctgatctcatggcc
iGSTT2_R gcctcctggcatagctcagcac

NM_000852 GSTP1 149 60 - 63°C iGSTP1_F ctgcgcatgctgctggcagatc
iGSTP1_R ttggactggtacagggtgaggtc

NM_001512 GSTA4 131 56 - 60°C iGSTA4_F ccggatggagtccgtgagatgg
iGSTA4_R ccatgggcacttgttggaacagc 

NM_000463 UGT1A1 145 57 - 60°C iUGT1A1_F tcatgctgacggaccctttc
iUGT1A1_R ctgggcacgtaggagaatgg

NM_007120 UGT1A4 131 57 - 60°C iUGT1A4_F ccggatggagtccgtgagatgg 
iUGT1A4_R ccatgggcacttgttggaacagc

NM_001074 UGT2B7 230 64.2 - 65°C iUGT2B7_F taattgcatcagccctggccc 
iUGT2B7_R gttgatcggcaaacaatggaatc 

NM_002046 GAPDH 110 62 - 65°C iGPADH_F acccactcctccacctttgac
iGAPDH_R tccaccaccctgttgctgtag
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Table 2. Gene expression analysis using a cDNA microarray system (Superarray®) in LT97 cells.  

The table shows data for selected genes with fold changes ≥1.5 or ≤ 0.7. Note that all of these 30 

genes were upregulated by AE (128 µg/ml). # indicates those genes for which mRNA levels 

were confirmed by real-time PCR. Significant differences to the medium controls were analysed 

with a two-tailed student t-test (n=4), but were not found. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p values
t -test 

Phase I
P450 gene family

NM_000767 CYP2B6 Cytochrome P450, family2, subfamily B, polypeptide 6 1.6 0.35 0.489
NM_000765 CYP3A7 Cytochrome P450, family3, subfamily A, polypeptide 7 2.4 2.22 0.248
NM_000896 CYP4F3 Cytochrome P450, subfamily IVF, polypeptide 3 3.2 3.43 0.144

Phase II
Acetyltransferases

NM_000755 CRAT Carnitine acetyltransferase 1.8 1.01 0.465
NM_001931 DLAT Dihydrolipoamide S -acetyltransferase 2.8 2.87 0.405
NM_003642 HAT1 Histone acetyltransferase 1 2.1 1.45 0.358
NM_000662 NAT1 N-acetyltransferase 1 (arylamine N-acetyltransferase) 2.3 1.99 0.676
NM_016100 NAT5 N-acetyltransferase 5 (ARD1 homolog, S.cerevisiae) 2.6 2.34 0.478

Sulfotransferases
NM_012126 CHST5 Carbohydrate (Nacetylglucosamine 6-O) sulfotransferase 5 3.1 3.66 0.296
NM_021615 CHST6 Carbohydrate (Nacetylglucosamine 6-O) sulfotransferase 6 2.9 3.50 0.809
NM_019886 CHST7 Carbohydrate (Nacetylglucosamine 6-O) sulfotransferase 7 3.9 4.48 0.387
NM_001056 SULT1C1 Sulfotransferase family, cytosolic, 1C, member 1 1.9 1.11 0.440
NM_003596 TPST1 Tyrosylprotein sulfotransferase 1 2.6 1.64 0.475

Glutathione S -transferases
NM_000847 GSTA3 Glutathione S -transferase A3 1.6 0.51 0.220
NM_000851 GSTM5 Glutathione S -transferase M5 1.8 0.42 0.221
NM_000852 GSTP1# Glutathione S -transferase P1 2.2 0.85 0.105
NM_000854 GSTT2# Glutathione S -transferase T2 3.0 3.15 0.149
NM_020300 MGST1 Microsomal glutathione S -transferase 1 2.2 1.32 0.086
NM_002413 MGST2 Microsomal glutathione S -transferase 2 2.7 1.82 0.058
NM_004528 MGST3 Microsomal glutathione S -transferase 3 1.9 1.09 0.598

Methyltransferases
NM_000367 TPMT Thiopurine methyltransferase 3.3 4.39 0.287
NM_001024074 HNMT Histamine N-methyltransferase 2.5 1.19 0.326
NM_000754 COMT Catechol-O-methyltransferase 1.8 1.08 0.458

UDP-Glycosyltransferases
NM_000463 UGT1A1 UDP glycosyltransferase 1 family, polypeptide A1 1.9 0.94 0.501
NM_007120 UGT2B UDP glycosyltransferase 1 family, polypeptide A10 1.8 0.50 0.434

Epoxide hydrolases
NM_000120 EPHX1 Epoxide hydrolase 1, microsomal (xenobiotic) 2.4 2.55 0.519
NM_001979 EPHX2 Epoxide hydrolase 2, cytoplasmic 2.1 1.45 0.358
NM_000895 LTA4H Leukotriene A4 hydrolase 2.3 2.17 0.428

Miscellaneous (several functions)
NM_175617 MT1E Metallothionein 1E (functional) 3.5 4.32 0.286
NM_003786 ABCC3 ATP-binding cassette, subfamily C (MDR/TAP), member 3 4.1 6.05 0.439

STDRatioGene ID DescriptionsGene name
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Table 3. Gene expression analysis of AE (128 µg/ml) treated LT97 cells using a custom-made 
cDNA microarray: The table includes genes that have increased expression levels of ≥1.5 or 
≤0.7-fold the medium control cells. Altogether 46 of 300 genes were modulated using this 
custom array. # indicates those genes for which mRNA levels were confirmed by real-time PCR. 
Numbers in bold are significantly modulated genes. Significant differences to the medium 
controls were calculated with a two-tailed student t-test (p≤0.05, n=4). 
 

 

Legends to figures. 

Figure 1.Venn diagram illustrates the comparison of the Superarray® with custom array data. For 

each mapping the data were obtained from Superarray® and custom array experiments and that 

were detected in four replicates for both arrays. The numbers that are shown in big grey circles 

are the total number of genes spotted on either array. The numbers that are shown in small grey 

circles are chosen as the number of regulated (≥1.5 or ≤0.7-fold change) genes. The numbers in 

small dotted grey circles refer to the number of genes that are detected as significantly 

differentially expressed (two-tailed student t-test).  

 

Figure 2. Real-time PCR analysis of selected genes that were modulated in LT97 cells by AE 

treatment according to cDNA microarrays: Shown are effects of AE on the expression levels of 

GSTP1, GSTT2, GSTA4, UGT1A1 and UGT2B7 mRNA. Total RNA samples were isolated from 

LT97 cells treated with 128 and 255 µg/ml of AE for the 24 h and then subjected to real-time 

PCR analyses using the gene specific primers (summarized in table 1). The modulations of 

mRNA levels were obtained by comparing the treatment groups to the medium controls and 

calculating the fold changes. The GAPDH (housekeeping gene) was used as internal reference 

control. Mean values ± SD, Significant differences to the controls were calculated by a One-way 

ANOVA with Bonferroni’s post test (***p≤ 0.001, **p≤ 0.01, *p≤ 0.05, n=3). 

 

Figure 3. Effects of AE on the activity levels of total GST (a) and UGT (b) enzymes in AE 

treated (128 and 255 µg/ml,  24 h ) LT97 cells. The total enzyme activity levels were obtained by 

comparing the treatment groups to the medium controls and calculating the fold changes. Mean 

values ± SD, Significant differences to the controls were calculated by a One-way ANOVA with 

Bonferroni’s post test (***p≤ 0.001, n=3). 

 

Phase I metabolism
NM_000761 CYP1A2 Cytochrome P450, family 1, subfamily A, polypeptide 2 1.5 1.0 0.366
NM_000782 CYP24A1 Cytochrome P450, family 24, subfamily A, polypeptide 1 4.5 2.9 0.025
NM_000771 CYP2C9 Cytochrome P450, family 2, subfamily C, polypeptide 9 4.6 3.8 0.344
NM_000765 CYP3A7 Cytochrome P450, family 3, subfamily A, polypeptide 7 1.6 0.5 0.062
NM_000896 CYP4F3 Cytochrome P450, subfamily 4 F, polypeptide 3 2.2 2.2 0.777
NM_000941 POR P450 (cytochrome) oxidoreductase 1.7 1.5 0.519
Phase II metabolism
NM_005891 ACAT2 Acetyl-Coenzyme A acetyltransferase 2 1.8 1.7 0.874
NM_001512 GSTA4# Glutathione S -transferase A4 1.7 0.2 0.022
NM_000854 GSTT2# Glutathione S -transferase theta 2 1.5 0.3 0.009
NM_004273 CHST3 Carbohydrate sulfotransferase 3 2.2 0.5 0.016
NM_005769 CHST4 Carbohydrate sulfotransferase 4 1.6 0.7 0.134
NM_019886 CHST7 Carbohydrate sulfotransferase 7 1.6 0.3 0.094
NM_004861 CST Cerebroside sulfotransferase 2.5 1.5 0.258
NM_003595 TPST2 Tyrosylprotein sulfotransferase 2 1.5 0.7 0.160
NM_001072 UGT1A6 UDP-glycosyltransferase 1 family, polypeptide A6 2.1 1.8 0.660
NM_019077 UGT1A7 UDP-glycosyltransferase 1 family, polypeptide A7 1.5 0.5 0.109
NM_001074 UGT2B7# UDP-glycosyltransferase 2 family, polypeptide B7 2.1 1.2 0.056
Phase III drug transporters
NM_004996 ABCC1 ATP-binding cassette, sub-family C (CFTR/MRP), member 1 2.2 1.0 0.007
NM_000392 ABCC2 ATP-binding cassette, sub-family C (CFTR/MRP), member 2 1.6 0.5 0.057
Phase II gene regulation pathway
NM_006219 PIK3CB Phosphoinositide-3-kinase, catalytic, beta polypeptide 1.6 0.8 0.176
NM_002649 PIK3CG Phosphoinositide-3-kinase, catalytic, gamma polypeptide 1.6 0.6 0.068
NM_005253 FRA-2 FOS-like antigen 2 4.3 7.8 0.894
NM_001621 AHR Arylhydrocarbon 1.8 1.9 0.721
Stress and signal transduction
NM_002021 FMO1 Flavin containing monooxygenase 1 1.6 0.7 0.074
NM_002083 GPX2 Glutathione peroxidase 2 (gastrointestinal) 1.9 2.3 0.730
NM_005347 HSPA5 Heat shock 70kDa protein 5 1.6 1.3 0.611
NM_003338 UBE2D1 Ubiquitin-conjugating enzyme E2D 1 1.9 0.8 0.071
Apoptosis signaling
NM_001230 CASP10 Caspase 10, apoptosis-related cysteine protease 1.7 0.4 0.009
NM_030753 WNT3 Wingless-type MMTV integration site family, member 3 1.7 0.7 0.245
Tumour suppressor
NM_000059 BRCA2 Breast cancer 2, early onset 2.7 2.6 0.217
NM_002843 PTPRJ Protein tyrosine phosphatase, receptor type, J 1.6 0.3 0.019
NM_002846 PTPRN Protein tyrosine phosphatase, receptor type, N 1.5 0.8 0.330
NM_007050 PTPRT Protein tyrosine phosphatase, receptor type, T 1.7 1.6 0.475
NM_002831 PTPN6 Protein tyrosine phosphatase, non-receptor type 6 1.6 0.3 0.034
Cell cycle arrest-regulation of cell cycle
NM_000389 CDKN1A Cyclin-dependent kinase inhibitor 1A (p21, Cip1) 1.6 0.9 0.180
NM_006568 CGRRF1 Cell growth regulator with ring finger domain 1 2.8 1.5 0.039
NM_001437 ESR2 Estrogen receptor 2 (ER beta) 1.6 0.6 0.108
NM_002502 NFKB2 Nuclear factor of kappa light polypeptide gene enhancer in B-cells 2 (p49/p100) 2.2 0.6 0.008
NM_002503 NFKBIB Nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, beta 3.8 4.2 0.039
NM_003236 TGFA Transforming growth factor, alpha 1.5 0.2 0.015
Miscellaneous (several functions)
NM_000799 EPO Erythropoietin 1.6 0.4 0.022
NM_000146 FTL Ferritin, light polypeptide 1.6 1.0 0.426
NM_000578 SLC11A1 Solute carrier family 11, member 1 2.3 2.4 0.529
NM_000617 SLC11A2 Solute carrier family 11, member 2 1.6 1.2 0.586
NM_014585 SLC40A1 Solute carrier family 40, member 1 1.9 1.7 0.528
NM_003234 TFRC Transferrin receptor (p90, CD71) 1.7 1.4 0.452

Gene symbol Gene descriptionGene ID p values 
t-testSTDRatio
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Figure 1. The Venn diagram for array platform comparison  
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Figure 2. Real-time PCR analysis for microarray data validation  
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Figure 3. Enzyme activity analysis 
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2.6 Publication VI: Veeriah S, Böhmer FD, Kamal K, Kahle K, Glei M, Rickling E, 

Schreyer P, Pool-Zobel BL. “Intervention with cloudy apple juice results in altered 

biological activities of ileostomy samples collected from individual volunteers”. 

Manuscript in preparation, 2007 

Apple juice is considered to be an important component of the healthy diet, which 

has recently been shown to have numerous types of chemoprotective activities in 

experiments with colon cancer animal models and in human colon cells in vitro. 

Since only little is known on comparable activities in the human colon in vivo, here a 

pilot study was performed to assess related mechanisms in ileostomy samples from 

volunteers that had consumed apple juice. Ileostomy samples were collected at 

different time points after intervention (0 - 8 h) and were characterized analytically 

for major apple polyphenols and in HT29 colon cells for their potential to cause 

genotoxic damage, protect from the genotoxic insult by hydrogen peroxide (H2O2) 

and modulate the expression of GSTT2, an enzyme related to antioxidative defence of 

other peroxides. After the intervention, some ileostomy samples were less genotoxic 

and also better protected HT29 cells from genotoxic damage by H2O2, resulted in an 

increased GSTT2 expression and an enhanced GSTT2 promotor activity. It appears as 

if ileostomy samples after intervention with apple juice cause a number of biological 

effects related to chemoprotection and that these effects have also been shown to be 

mediated by the apple extracts and/or individual phenolic components or gut flora 

mediated fermentation products 
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ABSTRACT 
 
Apple juice is considered to be an important component of the healthy diet, which has 

recently been shown to have numerous types of chemoprotective activities in experiments 

with colon cancer animal models and in human colon cells in vitro. Since only little is known 

on comparable activities in the human colon in vivo, here a pilot study was performed to 

assess related mechanisms in ileostomy samples from volunteers that had consumed apple 

juice. Ileostomy samples were collected at different time points after intervention (0 - 8 h) and 

were characterized analytically for major apple polyphenols and in HT29 colon cells for their 

potential to cause genotoxic damage, protect from the genotoxic insult by hydrogen peroxide 

(H2O2) and modulate the expression of GSTT2, an enzyme related to antioxidative defence 

against other peroxides. The analytical determination of polyphenols in the ileostomy samples 

revealed that the majority of the compounds were recovered in the samples collected 2 h after 

intervention. The comparison of genotoxic effects of samples before intervention and 2 h after 

intervention revealed a considerable variation of genotoxic response, but there was a trend for 

reduced genotoxicity in 3 of 8 persons (P) after intervention. Samples collected at 2 h 

protected HT29 cells from genotoxic damage by H2O2 (for 3 of 7 persons), resulted in an 

increased GSTT2 expression (for 2 of 6 persons) and of GSTT2 promotor activity (2 of 6 

persons). The intervention with apple juice results in bioavailable concentrations of related 

polyphenols in the gut lumen, which could contribute to reduced genotoxicity, enhanced 

antigenotoxicity and favourable modulation of GSTT2 gene expression in some individuals. 

The pilot study for the first time used this combination of faecal biomarkers which in larger 

cohorts may reveal significant alterations that contribute to reduced genotoxic exposure and 

thus to chemoprotection of colon cells.     

 
 
Keywords: Ileostomy, colon cancer chemoprevention, Comet assay, gene expression, HT29 

cells 
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INTRODUCTION 
 
Population based studies, including case control and cohort studies, have indicated that eating 

sufficient portions of fruit and vegetables may reduce the risk of developing cancer, especially 

cancers of the digestive tract (Steinmetz and Potter, 1991; Terry et al., 2001). Therefore, this 

dietary habit, together with other lifestyle factors, such as increasing the intensity and duration 

of physical activity, or reducing consumption of meat especially red meat, has been 

recommended by health agencies for a better protection against the aforementioned types of 

cancer (Cerhan et al., 2004). Still, the link between dietary factors and cancer protection is 

difficult to establish, and the protective role of fruits and vegetables is somewhat controversial 

(Hung et al., 2004; Schatzkin and Kipnis, 2004a). It is therefore, important to continue 

exploring possible interactions between dietary and potential cancer risk factors, and to 

appropriately stratify epidemiological studies (Schatzkin and Kipnis, 2004b). Furthermore, 

possible protective effects should be substantiated with more detailed studies of the 

mechanisms of protective dietary components, combined with measuring effects in human 

intervention studies (Branca et al., 2001).  

 

Apple juice is an important component of fruit intake in Europe. Recent animal experiments 

have shown a protective activity of cloudy apple juice with respect to carcinogenesis in the 

distal colon of rats induced by 1,2-dimethylhydrazine (DMH) treatment (Barth et al., 2005b). 

The underlying mechanisms are not yet understood and warrant further investigation. 

Polyphenols extracted from apple juice contain a number of different flavonoids with known  

antioxidative effects (Boyer and Liu, 2004). Apple polyphenol extracts, as well as some of 

their major ingredients like chlorogenic acid, phloretin and quercetin were shown to inhibit 

the growth of the colon tumour-derived cell line HT29 (Veeriah et al., 2006d), which may 

partially be related to inhibition of different growth factor signalling events (Balavenkatraman 

et al., 2006; Kern et al., 2005). In HT29 cells treated with the apple polyphenol extract, a 

modulation of gene expression patterns occurred, including an up regulation of several genes 

involved in drug detoxification, notably GSTP1 and GSTT2 (Veeriah et al., 2006c). Induction 

of GSTT2 could also be recapitulated using a corresponding reporter construct (K. Palige et 

al., unpublished data). In an LT97 human colon adenoma cell line also GSTT2 was 

transcriptionally elevated, in addition to other target genes (Veeriah et al., 2007). Together, 

the results imply that apple compounds are protecting human colon cells from oxidative stress 

by causing an up regulation of enzymes involved in detoxification of specific peroxides.  
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To link the above described findings better to the in vivo situation, it was the objective of this 

study to determine whether apple juice intervention in humans could affect genotoxin levels 

in the gut lumen. Furthermore, the capacity of those apple juice components which passed the 

small intestine for modulation of GSTT2 expression and for prevention of oxidative genotoxic 

stress was studied in HT29 cells using ileostomy samples from volunteers who had consumed 

cloudy apple juice (Kahle et al., 2005b). The samples were collected at different time points 

after intervention and were characterized analytically and biologically for various parameters 

associated with chemoprotection.   
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MATERIALS AND METHODS 

 

Design and procedure of intervention study  

Information on the ileostomy study performed, and data on the preparation of ileostomy bags 

were published previously (Kahle et al., 2005a). Quantification of polyphenols in the apple 

juices under study and the ileostomy samples were performed using HPLC-DAD and HPLC-

MS/MS methods as described before (Kahle et al., 2005c; Kahle et al., 2006).  

 

The study was approved by the Ethics Commission of the University of Wuerzburg. The 11 

volunteers gave their informed consent to participate in the study and agreed to avoid all 

foods contain polyphenols the day before the study started. After an overnight fasting period, 

all volunteers drank one litre of cloudy apple juice within 15 minutes. A light meal which did 

not contain polyphenols was served four hours later. The ileostomy bag was removed before 

(= control value) and 1, 2, 4 and 6 h after the start of the apple juice intake (person 1 and 2). 

When we recognized, that after 6 h, polyphenols had not completely passed the small 

intestine, samples were taken from the remaining persons at 8 h (persons 3 to 11) as well. All 

ileostomy samples were immediately frozen at -20°C for storage, freeze-dried and 

homogenized. For cell culture experiments, ileostomy samples were thawed and reconstituted 

with phosphate buffered saline (PBS). The samples were then stored at -80°C.  

 

Cell line and cell culture 

HT29 colon carcinoma cells were obtained from the American Type Culture Collection 

(ATCC, Rockville, MD, USA) and cultured in Dulbecco's Modified Eagle Medium (DMEM, 

Invitrogen Life Technology, USA) supplemented with 10 % foetal calf serum (FCS) and 

antibiotics (1 % penicillin/streptomycin (v/v); Roche Molecular Biochemicals, Meylan, 

France) according to our laboratory standard culture conditions. Confluent cultures were 

passaged three or four days after trypsinization. HT29 cells were maintained under sterile 

conditions at 37°C in a 95 % humidified incubator (5 % CO2). Every batch of HT29 cells was 

routinely checked for mycoplasma contaminations using highly sensitive PCR analysis 

(Minerva Biolabs GmbH, Germany). In the experiments described here, cell passages 30 – 41 

were used. 

 

 

 

 5



Detection of genotoxicity and antigenotoxicity   

 

DNA damage was measured using single cell micro gel electrophoresis (Comet assay). The 

alkaline version of this assay was performed to detect single strand breaks and alkali-labile 

sites, such as apyrimidinic and apurinic (AP)-sites that are formed when bases are lost. HT29 

cells were incubated with the ileostomy samples (5 %, v/v) for 24 h. H2O2 (obtained as a 30 % 

aqueous solution from Merck, Darmstadt, Germany) was used as the genotoxic reference 

compound (positive control) and to induce DNA damage (challenge) after preincubation of 

the cells with the ileostomy samples to measure their antigenotoxic capacity. The cell 

suspensions were treated with H2O2 at 37°C for 5 min. After this, the suspensions were 

diluted by adding DMEM and were centrifuged (2,000 g, 5 min) to recover the cells. The cell 

pellets were resuspended in DMEM and stored on ice.  

 

Finally, cell suspensions were centrifuged (2,000 g, 5 min), and cells were embedded into 

agarose on microscopical slides, lysed (10 mM Tris–HCl, 100 mM Na2EDTA, 2.5 M NaCl, 

10 % dimethylsulfoxide, 1 % Triton X-100, pH 10.0) for at least 60 min and subjected to 

electrophoresis. For this, slides were placed into an electrophoresis chamber containing 

alkaline (1 mM Na2EDTA, 300 mM NaOH, pH 13.0) buffer for DNA unwinding. After 20 

min, the electrophoresis was carried out at 1.25 V/cm, 300 mA for 20 min. The slides were 

removed from the electrophoresis chamber and washed three times for 5 min each with 

neutralisation buffer (4.2 M Tris-HCl, 0.08 M Tris–base, pH 7.2). Slides were stained with the 

DNA-specific fluorescence dye SYBR-Green (Sigma-Aldrich Chemie GmbH, Steinheim, 1 

µl/ml; 30 µl per slide).  

 

All steps of the Comet assay were conducted under red light. The extent of DNA migration 

was determined for 150 DNA spots per treatment using the image analysing system of 

Perceptive Instruments (Suffolk, UK, www.perceptive.co.uk). The intensity of fluorescence in 

the comet tail, expressed as “tail intensity”, was the evaluation criterion presented in the table 

and graphs. Each experiment was performed independently at least three times. 

 

GSTT2 - gene expression with real-time PCR 

HT29 cells were seeded into 6 well culture dishes (Falcon, UK) at 0.4 × 106 cells/well and 

cultured for 48 h. Ileostomy samples were added at a concentration of 5 % (v/v) and 

incubation was done for 24 h. RNA was isolated using RNeasy mini plus kit (QIAGEN, 
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Hilden, Germany). Total RNA was checked for purity and stability by gel electrophoresis. 

First-strand cDNA was synthesized using the SuperScript II reverse transcriptase (Invitrogen 

GmbH, Karlsruhe, Germany) with 3 µg of DNA free total RNA according to the 

manufacturer’s protocol. Real-time PCR was performed on the iCycler iQ® instrument (Bio-

Rad GmbH München, Germany) with the iQ™ SYBR  Green Supermix ® (Bio-Rad GmbH 

München, Germany). PCR was performed with a set of specific targets (GSTT2) and reference 

(GAPDH) gene primers as follows: GSTT2(forward) 5'-tgacactggctgatctcatggcc-3', 

GSTT2(reverse) 5'-gcctcctggcatagctcagcac-3' and GAPDH (forward) 5'-acccactcctccacctttgac-

3', GAPDH (reverse) 5'-tccaccaccctgttgctgtag-3'. Melting curve analyses were conducted after 

completion of the cycling process to confirm the gene specific amplicons. Average threshold 

cycle (Ct) values were used to determine the relative differences between control and treated 

groups and the REST® tool program (Pfaffl et al., 2002) was utilized for the data 

normalization. 

 

Reporter gene assay for GSTT2 promotor activity 

Promoter constructs of human GSTT2, driving expression of Firefly luciferase in the vector 

pGL3 were kindly provided by Dr. Paul R. Buckland (Cardiff, UK) (Guy et al., 2004b). 

Among the polymorphic variants, the most prevalent A form was used. 2.5 × 106 HT29 cells 

were seeded in a 6 cm dish. The next day, the cells were transfected with 0.8 µg GSTT2 in 

pGL3 (or empty pGL3 for control) and 0.04 µg of the Renilla luciferase expressing construct 

pRL-TK (Promega GmbH, Mannheim, Germany) using lipofectamine 2000 (Invitrogen, 

Karlsruhe, Germany) according to the recommendations of the manufacturer. A ratio of 

lipofectamine (µl) /DNA (µg) of 6:1 was used. After 24 h, the cells were trypsinized and 

seeded into 96-well plates (2 × 104 cells per well). The next day, ileostomy samples and 

corresponding controls were added, and incubation continued for 24 h. Thereafter, the cells 

were washed with PBS and processed for measurement of luciferase activities with the Dual 

GloTM assay kit (Promega GmbH, Mannheim, Germany) according to the method 

recommended by the manufacturer. Luminiscence was read in a LumiStar Galaxy reader 

(BMG Labtechnologies, Durham, NC, U.S.A.) 

 

Statistical analysis 

Results represent the mean value ± SD of triplicate experiments unless stated otherwise. Data 

were analysed using the one- and two-way ANOVA with Bonferroni’s post test in order to 

determine the presence of statistically significant differences. 
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RESULTS 
 
The kinetic of excretion of total polyphenols (flavonoids and phenolic acids such as 

chlorogenic acid) were determined following ingestion of cloudy apple juice. From Figure 1, 

it is apparent that the majority of the compounds were recovered in the samples collected 2 h 

after the intervention. At an average a total of 16.0±3.5 mg polyphenols could be retrieved 

from the samples of eleven subjects. The average volume of the samples was 360 ± 143. 

Chlorogenic acid concentrations were also at their maximum in the 2 h samples and the 

absolute mean values of the eleven subjects were 6.0±1.0 mg. Interestingly, person number 3 

seemed to have a delayed response, in that the total polyphenol concentrations were higher in 

the 4 h sample than in the 2 h sample.  

 

The samples before intervention (0 h) and after intervention (2 h) were compared for 

genotoxic activity in HT29 colon tumour cells. As shown in Figure 2, there is a considerable 

variation of genotoxic response. In comparison to the medium control only the ileostomy 

sample of subject 1 (P1, 0 h) was significantly genotoxic (p≤0.01). But there was a trend of 

increased genotoxicity as compared with the medium control also in the 0 h samples of 

subjects 8, and 11. For subject 1, the sample collected 2 h after cloudy apple juice intervention 

was significantly (p≤0.01) less genotoxic than before the intervention. A trend in the same 

direction of reduced genotoxicity after the intervention (sample 2 h) was also observed in 

person 8 and 11. There was no indication for an increased level of genotoxicity after 

intervention.  

 

Table 1 compares the dose related genotoxic effects of H2O2 in cells pretreated with medium 

or with ileostomy samples colleted before (0 h) or after invention (2 h) with apple juice. Only 

two of the three antigenotoxic samples (P8, P11) also protected from H2O2-mediated DNA 

damage. In addition, the 2 h sample from person 9 (Table 1) and from person 3 (Figure 3) 

significantly protected more from H2O2-mediated damage than did the corresponding 0 h 

samples from the same subjects. The results obtained with samples from person 3 were an 

interesting exception since the 2 h sample of this person was the most protective, without 

exhibiting a reduced baseline genotoxic potential and are therefore plotted in Figure 3. 

Pretreatment of cells with three other 2 h-samples (P1, P4, P7), did not result in reduced 

genotoxic effects by H2O2, compared to the corresponding samples collected at 0 h (Table 1) 
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Since apple extracts have been shown to increase expression of GSTT2 (Veeriah et al., 

2006b), we next addressed the question of whether the ileostomy samples might also induce 

this enzyme that may deactivate other peroxides than H2O2. Figure 4 shows that the 2 h 

samples of P8 and P11 tended to enhance expression of the GSTT2 mRNA in comparison 

with cells treated with the corresponding sample at 0 h, as determined by real-time PCR. The 

results did not reach statistical significance after 3 independent replications possibly on 

account of the experimental variability. The samples sizes were too limited in quantity and it 

was therefore not possible to perform additional determinations. 2 h samples from P1, P4, P7 

and P9 in contrast had no apparent capacity to elevate GSTT2 mRNA levels. Samples of 

subject 3 could not be investigated also due to limited amounts available. 

 

The samples were also investigated using a newly established reporter assay measuring 

GSTT2 promoter activity. HT29 cells were transfected with a luciferase expression construct 

under control of the most prevalent form of a GSTT2 promoter sequence (Guy et al., 2004a). 

Apple polyphenol extracts have the capacity to activate this reporter, with detectable 

induction upon treatment for 24 h and optimal induction at 48 h treatment (K. Palige et al., 

unpublished data). Cells were treated for 24 h with ileostomy samples taken at 0 h and 2 h 

after the intervention with apple juice. The obtained reporter activity was compared. The 2 h 

sample of person 11 induced GSTT2 promoter activities, relative to the cells treated with the 0 

h sample, a very weak induction was detected with the sample from patient 1 (Figure 5). No 

induction was seen with samples from persons 4, 7, 8, or 9. These data, although obtained 

under not optimal conditions for reporter stimulation, are in support of a regulatory activity of 

apple constituents which have passed the ileum with respect to GSTT2 expression.
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DISCUSSION 

This study deals with the investigation of possible chemoprotective effects in the gut lumen of 

humans resulting from apple juice consumption. In this context the reported pilot study with 

11 ileostomy subjects is a first exploratory effort to assess whether different faecal biomarkers 

can be used to determine the reduction of specific risk parameters related to exposure. 

Foremost, the analytical determination of polyphenols in the ileostomy samples revealed that 

the majority of the apple phenolic compounds were recovered in the ileostomy samples 

collected 2 h after intervention, and chlorogenic acid was one of the predominant detected 

polyphenols. Such a compound could be responsible for reducing exposure to genotoxins and 

oxidants in the gut lumen, thus reducing the likelihood of damage to the DNA of colon cells, 

as has been demonstrated recently (Glei et al., 2006). To analyse this we determined the 

genotoxicity of the ileostomy samples before and after intervention of 8 volunteers, for whom 

samples were still available in sufficient quantities. The method was used according to 

procedures established to study genotoxic activities of faecal water. Faecal water genotoxicity 

is a biomarker method being developed to indicate whether dietary intervention with e.g. pro- 

and prebiotics may result in a reduced exposure to genotoxic agents (Glei et al., 2005; 

Oberreuther-Moschner et al., 2004). In rats there seem to be an direct association between 

development of tumours and degree of faecal water genotoxicity (Klinder et al., 2004). The 

studies have however shown that there is a high inter- and intraindividual variability of faecal 

water genotoxicity, even in subjects consuming identical diets (Osswald et al., 2000). 

Nevertheless, the impact of dietary intervention still yields significant results when analysing 

each subject as his own control, as we have also seen in this study with ileostomy samples 

from 3 of the 8 investigated subjects. In rats, there was a reduction of DNA damage in the 

colon cells of animals receiving cloudy apple juice (Barth et al., 2005a). Since apple juice 

contains polyphenols, typical antioxidants, we next addressed the question as to whether this 

reduction of genotoxicity is associated with protection against oxidants, like H2O2 that is also 

available in the colon (Babbs, 1992). Using a challenge assay, which is performed by first 

treating model cells with biological samples obtained before or after intervention and then 

challenging them with genotoxic agents, here it was found that several samples obtained 2 h 

after intervention indeed reduced the genotoxic response toward H2O2. This antigenotoxicity 

of the ileostomy samples could be due to a direct antioxidative effect by the polyphenols 

excreted in the 2 h samples. Among others, especially chlorogenic acid could be responsible 

for this effect, since it also reduced H2O2 genotoxicity in the challenge assay (Glei et al., 

2006). The comparison of genotoxic and antigenotoxic effects of samples before and 2 h after 
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intervention revealed a considerable variation of responses and only two of the subjects 

showed significant differences for both endpoints. Self evidently the numbers of these 

subjects is too small to find significant associations, but the lack of association also could 

relate to completely different mechanisms. In the context of a reduced basal genotoxicity, 

apple ingredients may be scavenging or inactivating genotoxic and toxic components 

naturally available in the gut lumen. In the context of the challenge assay, antigenotoxicity 

could also mean that the apple phenols are enhancing stress response or antioxidant defence in 

HT29 cells, thus leading to an enhanced deactivation of H2O2.  Enzymes involved could be 

catalase (CAT) and glutathione peroxidases (GPX) of which GPX2 was shown to be 

transcriptionally activated by AE in LT97 colon adenoma cells using gene expression studies 

with Affymetrix® arrays (Veeriah et al., 2007). Next to these target genes, a number of other 

genes which produce products related to defence against other factors of oxidative stress, such 

as superoxide dismutase 2 (SOD2), glutathione reductase (GSR), metallothionein 1X (MT1X), 

and glutathione S-transferase theta 2 (GSTT2) according to the array analyses. Of particular 

interest in this context is GSTT2, the expression of which is altered by apple polyphenols not 

only in HT29 cells (Veeriah et al., 2006a) but also in LT97 colon adenoma cells (Veeriah et 

al., 2007). This is why we chose to investigate more closely, the effects of ileostomy samples 

on GSTT2 expression, using two fully new biomarker approaches. One was to assess the 

transcriptional induction of GSTT2 by the samples using real-time PCR and the other was to 

study effects on GSTT2 promoter activity using a novel reporter gene assay. The main 

objective of the present study was to use these identified “apple-juice senitive parameters”, to 

compare the effects of ileostomy samples obtained before and after intervention with apple 

juice and to assess how this relates to the excreted apple products. For person 11 there was an 

increase of GSTT2 promotor activity and also an increase of mRNA in the 2 h sample in 

comparison to the control at 0 h. It is not known which compounds in the ileostomy sample 

are responsible for the observed GSTT2 gene regulation. Chlorogenic acid may be a 

candidate, since it has been found to weakly induce the GSTT2 promoter (K.Palige et al., 

unpublished data). It is efficiently excreted, and reaches the relatively highest levels in the 

ileostomy sample of person 11 at 2 h after intervention. However, the other ileostomy samples 

of this study containing nearly similar amounts of chlorogenic acid did not respond to these 

parameters. Also the compounds responsible for the genotoxicity before intervention, reduced 

genotoxicity after intervention and responses in the challenge assay were different in different 

individuals. This finding is not only interesting but also to be expected based on the known 

pharmacological, genomic and dietary variability in humans (Ordovas and Corella, 2004). 
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The differences of susceptibility deserve more in depth investigations, as it may be possible to 

identify different individuals who may more or less profit from the habit of consuming apple 

juice in the basis of their gut luminal contents.  

 

Altogether, we may conclude that intervention with apple juice results in bioavailable 

concentrations of related polyphenols in the gut lumen. These could contribute to reduced 

genotoxicity, enhanced antigenotoxicity and favourable modulation of GSTT2 gene 

expression, possibly together with other ingredients of the gut lumen content. The effects 

were not significant on a group level and the number of subjects that participated in the study 

as well as the amount of samples were both too small to show an intervention effect or to 

disprove the possibility that apple juice could lead to chemoprotection in the gut lumen. The 

pilot study, however, for the first time used this new combination of faecal biomarkers which 

in larger cohorts may reveal significant alterations that contribute to reduced genotoxic 

exposure and thus to chemoprotection of colon cells. Taken together, it appears as if 

ileostomy samples, especially 2 h after intervention with cloudy apple juice, causes a number 

of biological effects related to chemoprotection, and that these effects have also been shown 

to be mediated by the apple extracts and/or individual phenolic components.  
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Table 1: Genotoxic effects of H2O2 in human colon cells (HT29) treated (24 h) with ileostomy samples (5 %, v/v) obtained before and after 

intervention with apple juice. Shown are tail intensities (%) (means ± SD) of 3 independent comet assay experiments. Values in bold print indicate 

significant (§p≤0.05, §§p≤0.01, §§§p≤0.001) differences between the ileostomy samples obtained before (0 h) and after 2 h intervention. *p≤0.05, 

**p≤0.01, ***p≤0.01 indicate significant differences to the untreated controls (cell culture medium with PBS) or H2O2 treatments. 

 
  Person 1    Person 8  Person 11 

Challenge Samples were from before (0 h) and 2 h after intervention 
for 5 min 

with 0 h 2 h Difference  0 h 2 h Difference  0 h 2 h Difference 
H2O2 (µM) Mean SD Mean SD 0 - 2 h  Mean SD Mean SD 0 - 2 h  Mean SD Mean SD 0 - 2 h 

Control 2.9 0.5 2.3 0.7 0.6 2.0 0.5 1.4 0.2 0.7 2.7 0.7 3.3 0.8 -0.5 
4.7 5.7 2.0 3.9 1.2 1.8 2.2 0.9 1.2 0.5 0.9 2.0 0.5 3.0 0.5 -1.0 
9.4 3.7 0.9 4.0 1.5 -0.3 2.4 0.2 2.1 0.9 0.4 4.2 1.7 3.2 1.1 0.9 

18.8 4.4 2.4 4.1 2.0 0.3 7.8 4.6 3.1 0.4 4.7 *11.0 3.6 3.5 0.9 §§7.5 
37.5 5.9 1.0 5.6 2.1 0.3 **11.8 2.3 2.7 1.1 §§§9.1 **13.4 0.9 ***10.3 2.2 3.2 
75.0 *9.8 1.8 ***9.5 2.3 0.3 ***21.4 4.1 ***7.6 1.7 §§§13.7 ***24.7 2.8 ***18.3 1.8 §6.4 

150.0 ***28.3 5.0 ***25.2 0.9 3.2 ***41.6 4.2 ***14.2 0.9 §§§27.4 ***44.1 7.0 ***30.8 2.3 §§§13.3 
                  
  Person 4  Person 7  Person 9 

Challenge Samples were from before (0 h) and 2 h after intervention 
for 5 min 

with 0 h 2 h Difference  0 h 2 h Difference  0 h 2 h Difference 
H2O2 (µM) Mean SD Mean SD 0 - 2 h  Mean SD Mean SD 0 - 2 h  Mean SD Mean SD 0 - 2 h 

Control 3.4 1.1 3.3 0.9 0.1 1.4 0.5 4.7 1.7 -3.3 2.5 0.5 3.4 0.8 -0.9 
4.7 4.3 1.0 3.8 1.0 0.5 5.0 1.8 4.3 2.1 0.7 *12.5 0.9 10.6 5.1 1.9 
9.4 8.8 0.6 **14.4 2.2 -5.6 10.1 1.0 7.7 1.0 2.4 ***16.8 2.3 *14.6 4.8 2.1 

18.8 ***20.1 3.8 ***29.1 1.4 §§-8.9 6.3 0.3 *10.6 1.5 -4.4 ***28.6 3.5 ***22.2 2.5 6.4 
37.5 ***37.8 5.8 ***42.0 6.1 -4.1 ***21.5 8.9 ***24.1 2.3 -2.6 ***30.6 1.1 ***40.2 5.9 §-9.6 
75.0 ***41.9 3.5 ***35.2 1.2 6.7 ***35.5 3.3 ***51.1 2.6 §§§-15.6 ***47.9 2.5 ***34.7 4.4 §§§13.2 

150.0 ***39.9 0.5 ***41.0 2.8 -1.0  ***53.4 4.5 ***56.8 3.0 -3.4  ***45.8 5.8 ***42.4 0.2 3.4 
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Legends to the figures:  
 
Figure 1:  

Kinetic of excretion of (a) the total polyphenol and (b) chlorogenic acid in the ileostomy samples (P=8) obtained before (0 h) and after (1- 8 h) 

intervention with apple juice.  

 

Figure 2:  

Effect of apple juice on genotoxic activity assessed by the Comet assay in HT29 cells treated with ileostomy samples (5 % v/v, n = 8) obtained 

before (0 h) and after 2 h intervention with apple juice. Induction of oxidative damage in HT29 cells with H2O2 was used as a positive control. Data 

are expressed as mean ± SD. Two-way ANOVA with Bonferroni’s post-test was used to compare the statistical differences between 0 h and 2 h 

ileostomy samples and one-way ANOVA with Bonferroni’s post-test was used to compare each subject to untreated control; **p≤0.01. 

 

Figure 3:  

Effects of ileostomy samples derived from subject 3 on DNA damage induced by H2O2 (37°C, 5 min) in HT29 cells. Cells were pretreated for 24 h 

with the ileostomy samples obtained before (0 h) and after 2 h intervention with apple juice. The figure shows tail intensities (%) (mean ±SD, n=3). 

Statistical differences were determined by one-way ANOVA with Bonferroni’s post-test.  

 

Figure 4: 

Transcriptional expression of GSTT2 gene was measured by SYBR green I real-time PCR in HT29 cells. Cells were treated with ileostomy samples 

(5 %, v/v) before (0 h) and after intervention (2 h) with apple juice for up to 24 h. The differences in the average threshold cycle (Ct) values were 
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determined and normalized to the expression of GAPDH mRNA. The data reflect the effect of the 2 h sample against the 0 h sample (average of 3 

separate experiments, mean ± SD).  

 

Figure 5:  

Effect of ileostomy samples on GSTT2 promotor activity. HT29 cells were transfected with a GSTT2 promoter construct driving expression of 

firefly luciferase and treated with the indicated ileostomy samples for 24 h. Thereafter, reporter activity was assayed and normalized to a 

cotransfected Renilla luciferase reporter. The change of reporter activity in presence of the 2 h ileostomy samples of the indicated subjects in 

comparison with the 0 h (100 %) sample is depicted.  
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Figure 1. Total polyphenol and chlorogenic acid excretion 
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Figure 2: Genotoxicity before and after intervention 
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Figure 3: Effects of ileostomy sample 3 on genotoxicity  
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Figure 4: GSTT2 mRNA induction in HT29 cells by ileostomy samples 
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Figure 5: Effects of ileostomy on GSTT2 promoter activity  
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3 Additional Results 
 

3.1 Affymetrix arrays for global gene expression 
analysis in time series  

Previous studies have demonstrated the effects of polyphenols in cultured human 

colon epithelial cells after a 24 h exposure period (Noe et al., 2004). In our study a 

similar exposure time was chosen to determine the effects of apple polyphenols on 

gene expression in colon cells. Now, it would be interesting to study the expression 

changes at earlier time points because gene expression changes can occur already after 

short-time exposure (Guo et al., 2005). The effects of AE on global gene expression in 

human colon cells have not been reported before. Therefore, the aim of this work was 

to study the molecular effects of AE on LT97 cells, by gene expression analysis in time 

series using the Affymetrix GeneChip™. 

 
We performed global gene expression analysis using the Human Genome U133A chip 

(Affymetrix GeneChip™, Mercury Park, UK), which contains approximately 34,000 

sequences. For this the LT97 cells were treated with AE (128 μg/ml) for 4, 8, 12 and 

24 h. Total RNA was isolated from control (cell culture medium only) and AE treated 

cells using Qiagen RNAeasy plus mini kit (QIAGEN, Hilden, Germany). cRNA probes 

were synthesised according to the Affymetrix GeneChip expression analysis manual 

and hybridised with Human Genome U133A array (Affymetrix). Hybridisation data 

were normalised and analysed. The treated samples were compared to the 

corresponding untreated culture at the same time point. Genes that showed changes 

≥1.5 or ≤0.7-fold in experiments were chosen for further analysis. The labelling and 

hybridisation was done in a single experiment. 
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Only these 300 genes that are spotted on the custom array (Publication V) were 

chosen for the analysis of the affymetrix array results. Based on gene functions the 

altered genes were grouped and lists of up- and down-regulated genes at any of the 

four time points were created (Figure 9). Affymetrix analysis showed that the 8 h 

treatment was most effective in terms of number of upregulated genes and showed a 

total of 49 upregulated genes and 34 downregulated genes. 24 h treatment showed a 

total of 44 upregulated genes and 39 downregulated genes. 12 h treatment had the 

second most effective (46-up/28-down) and 4 h treatment was least effective (40-

up/30-down) in terms of upregulated genes. AE effectively upregulates higher 

numbers of genes at early time (8 and 12 h) points than 24 h nevertheless, the total 

number modulated genes were similar for 12 and 24 h treatment time points. Thus, 

these 8 or 12 h incubations would be preferred to study the effects of AE on gene 

expression in LT97 cells. Moreover, it was observed that more genes were induced 

than repressed at all time points except for 24 h time points, suggesting a common 

mechanism of AE induced differentiation than repression in LT97 cells.  
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Figure 9. Effects of AE on global gene expression in LT97 cells analysed by affymetrix 
arrays in time series (4 - 24  h).  

 

3.2 Comparison of affymetrix vs. custom array vs. 
superarray gene expression 

Comparing different microarray data across different experiments may provide the 

basis for further choice of array platform and development of array methodologies. 

Therefore, in addition to the analysis of time kinetic gene expression pattern in LT97 

cells after AE treatment, we have also compared the gene expression pattern between 

three major types of technology platforms, namely Affymetrix GeneChip™, cDNA 

spotted on glass array (custom array) and cDNA spotted on membrane array 

(superarray®). The effects of AE on gene expression pattern in LT97 cells were 

obtained from superarray and custom array analysis (Publication V). These array 

results were produced from 24 h treated cells. Therefore, only the results of 24 h 

treatment obtained from affymetrix analysis were used in order to compare between 

the different array platforms and the results are presented in Figure 10. Affymetrix 
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array analysis revealed a total of 44 upregulated (≥1.5 or ≤0.7-fold) genes and showed 

that 39 genes were downregulated after 24 h treatment. Superarray contains 96 genes 

related to drug metabolism and a custom array which contains 300 genes (including 

some genes from superarray) related to mechanisms of carcinogenesis or 

chemoprevention. Treatment of LT97 cells with AE resulted in 30 and 46 genes over 

cut-off values (≥1.5 or ≤0.7-fold) in superarray and custom array, respectively. 

Superarray array analysis resulted in statistically insignificant regulation of genes. 

Custom array results indicated that 14 genes were significantly (p ≤ 0.05, t-test) 

modulated. Indicating, the custom array platform seems to attain better accuracy than 

superarray platform. Comparison of affymetrix vs. custom array reveals 16 genes were 

similarly altered. In terms of similarly expressed genes between affymetrix and 

custom array are higher number (16 genes) than custom array vs superarray (4 genes) 

and thus, affymetrix and custom array matches well. However, since the affymetrix 

experiment was produced from a single attempt, statistical analysis was not possible. 

Analysis of affymetrix vs superarray showed 5 genes were similarly altered. Analysis 

of custom array vs. superarray showed 4 genes were similarly regulated. Moreover, 

comparisons of affymetrix vs. custom array vs. superarray showed that the responses 

were indeed very different. Only 2 genes (CYP3A7, CYP4F3) were similarly altered 

in all three arrays (Figure 10).  
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Figure 10. Venn diagram illustrates the comparison of gene expression pattern 
between three array (Affymetrix vs Custom array vs Superarray) platforms. For each 
mapping the data were obtained from affymetrix (n=1), custom array (n=4) and 
superarray (n=4) experiments. The numbers that are shown in big grey circles are the 
total number of genes spotted on either array. The numbers that are shown in small 
grey circles are chosen as the number of regulated (≥1.5 or ≤0.7-fold change) genes. 
The numbers in small dotted grey circles refer to the number of genes that are 
detected as significantly differentially expressed (two-tailed student t-test). Statistical 
analysis was not possible for affymetrix data, since there were no treatment replicates. 
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3.3  Apple flavonoids modulate the genotoxic effects of 
different DNA damaging compounds 

Apple polyphenols are possibly chemoprotective, since they enhance gene expression 

of detoxifying glutathione S-transferases (e.g. GSTT2, GSTP1) in human colon cells. 

Aim of this study was to elucidate whether pretreatment of the cells with an apple 

extract (AE) also reduces DNA-damage caused by compounds that are deactivated by 

induced GSTs. HT29 cells were incubated with the AE for 24 h. Concentration 

capable of modulating xenobiotic enzymes gene expression (510 μg/ml) was used. The 

treated cells were then challenged with genotoxic compounds and DNA damage was 

determined with the Comet assay. The Comet assay was carried out under the 

conditions described by Tice et al. (Tice et al., 2000). Cumene hydroperoxide (Cum-

OOH, 60-360 μM) and hydrogen peroxide (H2O2, 4.7-150 μM) were used to challenge 

the pretreated cells, both for 5 minutes at 4°C, since they may be conjugated and 

deactivated by GSTT2. In addition, hydrogen peroxide formation in the cell free 

culture media in the presence of the AE was analysed using the ferrous oxidation in 

xylenol orange (FOX, version 2) assay (Jaeger et al., 1994).  

 

The synthetic hydroperoxide Cum-OOH was significantly genotoxic in HT29 cell line 

(grey bars in Figure 11A). Preincubation of HT29 cells with AE reduced viability of 

HT29 cells significantly after the challenge (84±4% in medium control to 56±5% in 

AE treated cells, p ≤ 0.001, t-test). Moreover, preincubation with AE reduced the 

genotoxic effects of Cum-OOH (black bars in Figure 11A). H2O2 was investigated as a 

model for endogenously, relevant compounds. H2O2 was also significantly genotoxic 

at 37.5 μM and higher (grey bars in Figure 11B). Again, viability was strongly reduced 

in AE treated cells after the challenge (81±6% in medium control to 41±7% in AE 

treated cells, p ≤ 0.001, t-test) and genotoxicity of H2O2 was significantly lowered 

(black bars in Figure 11B).  
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Figure 11: Levels of DNA damage induced by (A) Cum-OOH (B) H2O2 after 
preincubation of HT29 cells with AE measured with the Comet assay (mean ± SEM, 
n=3). The significant differences of the genotoxines were calculated to the untreated 
control by one-way ANOVA, including Bonferroni’s multiple comparison test (* p ≤ 
0.05, ** p ≤ 0.01, *** p ≤ 0.001). The effect of the apple extract preincubation was 
calculated using two-way ANOVA, including Bonferroni’s multiple comparison test (* 
p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001). 
 

Incubation of the AE in HT29 cell culture medium (DMEM with 10 % FCS) resulted 

in a significant production of hydrogen peroxide already at 170 μg (Figure 14). In a 

parallel study after addition catalase to the incubation mixture, H2O2 was not 

detectable any longer, confirming formation of H2O2 (not shown).  
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Figure 12: Hydrogen peroxide formation in the culture media (DMEM with 10 % 
FCS) in the presence of the apple extract AE (30 min, mean ± SEM, n=3). The 
significant differences to the untreated medium control were calculated by one-way 
ANOVA, including Bonferroni’s multiple comparison test (*** p ≤ 0.001). 
 
Additionally, we will continue to analyse the antigenotoxic activity of AE also in 

colorectal adenoma cell line (LT97) which represents an early stage of tumour 

development. Even less concentration of AE induced gene expression of phase II 

enzymes to a greater extent in LT97 cells. Thus, we would expect that more 

pronounced antigenotoxic effect of AE in LT97 than HT29 cells with the applied 

genotoxins. In detail, we could show that one of the most important intestinal GSTs 

(GSTP1) was induced by AE (Publication I). Benzo(a)pyrene diolepoxide (BPDE), as a 

substrate for GSTP1, plays also role in colon carcinogenesis thus it will be also the of 

interest whether apple preincubation reduced BPDE-induced DNA damage.  
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4 Discussion 
 

4.1 Colon adenoma (LT97) and carcinoma (HT29) cell 
lines as a model system  

Identifying potential anticancer properties of phytochemicals using animal models is 

time consuming and expensive. In vitro methods can provide a more practical 

alternative. In vitro methods can and should play a much more important role in the 

risk assessment process (e.g. DNA damage, reduction in genotoxicity) and, in fact, 

with the appropriate data in vitro methods might completely bypass animal use 

(Fearon and Vogelstein, 1990). Cell culture techniques have been used extensively as 

an in vitro method to assess the effects of polyphenols on humans. HT29, a human 

colon carcinoma cell line, have numerous morphological and biochemical 

characteristics of enterocytes (Fogh, 1975). This cell model has been used in a wide 

variety of nutritional studies, particularly in the study of mechanisms and in the 

regulation of gene expression (Pool-Zobel et al., 2005b). Although many studies have 

utilised this model (HT29) to investigate the effects of polyphenols only very few 

studies compared the same effects with such induced in human colon adenoma cells. 

The present study was carried out to evaluate the beneficial health effects of apple 

polyphenols and we compared the effects on HT29 cells and LT97 cells (Publication 

II). LT97 is another human colon cell line but of adenomatous origin which is 

representative of preneoplastic leasons of human colon cells (Richter et al., 2002). The 

results of our study will strengthen the use of this LT97 cell model to study the effects 

of different food components.  
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4.2 Inhibition of proliferation of colon cancer cell lines 
by apple polyphenols  

 
Epidemiological findings suggest that plant foods decrease colorectal tumour risks 

(Glade, 1999). This could be due to a number of different phenolic phytoprotectants, 

which act chemopreventive by inhibiting the growth of tumour cells (Boyer and Liu, 

2004; Terry et al., 2001). Apples contain significant amounts of flavonoids that have 

antioxidative or antiproliferative activities, and thus can possibly reduce the cancer 

risk. Previous studies have shown that apple flavonoids can inhibit liver cancer cell 

growth in vitro (Eberhardt et al., 2000). In the present study the growth of colon 

carcinoma cells (HT29) was significantly inhibited by the complex apple extract 

(Publication I). Two groups reported that quercetin aglycones arrested growth in cell 

lines derived from gastric, colonic and leukemic cancers (Hosokawa et al., 1990; 

Yoshida et al., 1992). Some of these compounds are also ingredients of apple flavonoid 

mixtures, such as quercetin aglycones and phloridzin aglycones that we investigated 

in our cellular system. We observed that the aglycones quercetin and phloretin 

significantly inhibited HT29 tumour cell growth, suggesting that these components 

also contributed to the growth inhibitory properties of the complete apple extract. 

This is in line with other studies showing that the individual apple flavonoid 

aglycones possess strong cell growth inhibitory activities and are biologically more 

active than the glycoside derivatives (Kuo, 1996; Shen et al., 2003). An important, and 

so far unique, finding of our study was the observation that the individually tested 

apple flavonoids and their glycosides were hardly inhibitory on their own, but that 

equimolar concentrations applied as mixtures (mimicking the complete apple extract) 

were biologically active, resulting in an impairment of cell growth and survival 

(Publication I). 
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In another part of the study, the effects of apple polyphenols on survival of colon 

adenoma (LT97) and carcinoma-derived (HT29) cell lines were investigated. Three 

apple extracts (AEs) from harvest years 2002-2004 were isolated (AE02, AE03, AE04) 

and fermented in vitro with human faecal flora. Extracts and fermentation products 

were analysed for polyphenols with HPLC. The cells were treated with AEs or 

fermented AEs (F-AE02, F-AE03, F-AE04) and survival was measured by DNA 

staining (Publications II). The analyses of polyphenols showed that each AE 

contained different concentrations and types of polyphenols and provided evidence 

for remarkable differences depending on cultivars, varieties, and harvest years. In 

addition, the fermentation process resulted in formation of short chain fatty acids 

(SCFA), and the polyphenols were degraded (99.9 %). Thus, by the fermentation of 

apple polyphenols through the gut flora, SCFA can be produced in the human colon. 

AEs were consistently about 3 fold more growth inhibitory than F-AEs in both LT97 

and HT29 cells. Thus, fermentation reduced the effectiveness of AEs. The 

antiproliferative activity of AE03 was higher than that of AE04 and AE02 in both 

LT97 and HT29 cells. The pronounced antiproliferative activities of AE03 could be a 

result of its higher quercetin concentration which was about 10 and 13 fold higher 

than the respective concentrations in AE04 and AE02. Moreover, F-AE03 inhibited 

cell growth more efficiently than F-AE04 and F-AE02 in both LT97 and HT29 cells. 

An explanation for this finding is that F-AE03 contained higher concentrations of 

metabolites (e.g. 3,4-dihydroxyphenylpropionic acid, phloroglucin) compared to 

other F-AEs, indicating that the adenoma and carcinoma cell proliferation is 

significantly inhibited by a specific combination of apple polyphenols/flavonoids. The 

growth inhibition of adenoma-derived LT97 was more pronounced than of 

carcinoma-derived HT29 cells after treatment with both AEs and F-AEs. Thus, apple 

polyphenols might have higher antiproliferative efficacy in the preneoplastic lesion 

than in carcinoma cells.  
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4.3 Efficacy of apple polyphenols to modulate gene 
expression in colon cells 

Understanding the chemical inducibility of phase II enzymes in colon cells is of 

importance for development of chemoprotective approaches for the management of 

colon cancer disease. It has been previously demonstrated that polyphenols are 

capable of inducing several phase II enzymes in cultured human colon cells as well as 

in mouse colon tissue in vivo (Breinholt et al., 1999; Galijatovic et al., 2000). Since 

colon epithelium is a critical target of oxidative and electrophilic stress during colon 

carcinogenesis, investigation of the inducibility of endogenous phase II enzymes by 

apple polyphenols in colon cells is warranted. Therefore, this study aimed to assess 

the effects of AE on patterns of expression of genes related to toxicological defence 

and to mechanisms relevant for early stages of carcinogenesis. Gene expression studies 

were performed using cDNA-arrays which contain genes related to mechanisms of 

carcinogenesis or chemoprevention. The results of the present study demonstrated 

that incubation of human adenoma (LT97) and colon carcinoma (HT29) cells with AE 

resulted in upregulation of many phase II genes, including GSTs, UGTs and GPXs 

(Publication I and V). This could be possibly related to chemoprevention (Massaad et 

al., 1992), since the induction of phase II genes has been suggested to serve as 

biomarker of reduced cancer risk and of chemopreventive response (Clapper and 

Szarka, 1998; Talalay, 2000). Furthermore, inducers of GSTs and UGTs are generally 

considered to be protective compounds against cancer, acting as “blocking agents” 

(Graziani et al., 2005; Kensler, 1997; Khan et al., 1992). Apple polyphenols have been 

reported to be anticarcinogenic in several animal models (Barth et al., 2005; Gosse et 

al., 2005). However, induction of phase II enzymes such as, GSTs and UGTs by apple 

polyphenols has not been reported before. Furthermore, our study showed that the 

treatment of LT97 cells with AE altered the GST and UGT enzyme activity levels. 

These data provide the first examination of the modulation of the phase II enzymes 
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by AE and indicating a unique aspect of preventing cellular damage from carcinogens 

(Publication I and V). 

 

The signaling pathway(s) underlying AE-mediated upregulation of the several phase 

II enzymes in colon cells remain to be investigated. Moreover, the nuclear factor E2-

related factor 2 (Nrf2) has been demonstrated to be an essential regulator of phase II 

gene expression in various tissues and cell types (Lee and Surh, 2005). Nrf2 is a 

transcription factor important for the stress-dependent expression of a set of 

chemoprotective genes, such as those for glutathione S-transferase (GST), NAD(P)H-

quinone oxidoreductase 1 (NQO1) and glutamate cysteine ligase (Surh et al., 2005). 

Nrf2 activates the expression of these genes through a cis-acting element called the 

antioxidant responsive element (ARE) (Publication IV). Studies are currently 

underway in our laboratory to investigate if Nrf2 signalling is also involved in the AE-

mediated upregulation of phase II genes in HT29 cells.  

 

In addition, AE fermentation with human gut flora produces several SCFA including 

butyrate and it may play an important role in the human colon. Colon crypts use 

butyrate as an energy source, whereas in tumour cells butyrate stimulate pathways of 

growth arrest, differentiation, and apoptosis (Heerdt et al., 1994; Mariadason et al., 

2000; Singh et al., 1997). Although the present study showed that the treatment of 

different human cells such as primary, adenoma and tumour colon cells treated with 

butyrate modulated several detoxifying enzyme systems and thus, may enhance 

toxicological defence in human colon cells (Publication III).  

 

Apple polyphenols have been shown to inhibit G2/M phase cell cycle and suppress 

protein kinase C (PKC) and can increase the expression of extracellular signal-

regulated kinase 1 and 2 (ERK1, 2), c-Jun N-terminal kinases (JNK) and activity of 
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caspase-3 in SW620 cells (Gosse et al., 2005). These actions would inhibit cell growth 

and transformation, induce apoptosis, and inhibit angiogenesis. Moreover, our study 

has shown that after AE exposure (128 μg/ml) to LT97 cells expression of genes 

related to several functions such as tumour suppression, cell cycle arrest, cell 

signalling and apoptosis was significantly enhanced. It is possible that differential 

modulation of certain genes, such as PTPRJ, PTPRN, MAPK and CASP10 may cause 

differential effects of AE on the growth arrest and induction apoptosis of cancer cells 

(Publication V).  

4.4 Effects of apple polyphenols on global gene 
expression in colon cells analysed by affymetrix arrays in 
time series 

Affymetrix array analysis of gene expression in time kinetics (4, 8, 12 and 24 h) 

showed, AE modulates a higher number of transcriptional changes rather at the early 

time points (8 and 12 h) than after 24 h, indicating that a large part of early events 

occur at the level of transcription in LT97 cells after addition of AE. Thus, further 

analysis of AE mediated gene expression in LT97 cells at earlier time points provide 

better insights in the complex molecular mechanisms of AE effects and potential 

targets for the development of new biomarker for chemoprevention. Interestingly, 

most of the altered genes were shown to be transcriptionaly upregulated, suggesting a 

common mechanism of AE induced differentiation than repression in LT97 cells.  

 

Comparison of multiple microarray platforms for gene expression is not easy because 

of many ambiguities, e.g., the genes spotted on affymetrix array are oligo nucleotides 

and each target gene has at least 10 different oligo probes. In contrast, superarray and 

custom array contain genes that are spotted as cDNA fragments (200-400 bp). In 

practice, gene expression comparison between custom array and superarray are 
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possible since both platforms have higher similarity such as length of cDNA 

nucleotide sequence (200-400 bp) and array processing. However, we have compared 

all three platforms to see if the genes were similarly expressed by chance. Only two 

genes (CYP3A7, CYP4F3) were consistently found to be altered across all platforms. 

These two genes (CYP3A7, CYP4F3) not involved in carcinogen activation and not 

yet described to be involved in colon carcinogenesis. Comparison of the gene 

expression from three different array platform (cDNA and oligonucleotide) showed 

that the responses are indeed very different indicates that difficulties in platform 

comparisons.    

4.5 Apple polyphenols protect against genotoxic 
carcinogens in vitro and ex vivo 

It has been proposed that polyphenols exert their chemoprotective effects by inducing 

several phase II detoxifying enzymes which results in modification and rapid 

excretion of carcinogens (Lin and Liang, 2000). The upregulation of GSTs can protect 

against DNA-damaging effects of 4-hydroxy-2-nonenal (HNE) in colon cells (Ebert et 

al., 2001). In this study we investigated in human colon cell line (HT29) in vitro 

whether an apple juice extract contains polyphenols has chemoprotective effects. In 

particular, the apple extract was tested for its ability to reduce DNA-damage induced 

by different genotoxic agents or oxidants. Furthermore, production of H2O2 by AE 

was studied to understand additional mechanisms of chemoprotective effects. Present 

data provided evidence that polyphenol-rich apple extracts reduce DNA damage in 

colon carcinoma (HT29) cells initiated by relevant risk factors (Cum-OOH, H2O2). 

Obviously, an increased expression of GSTT2 (pronounced substrate for Cum-OOH) 

gene was also noticed in colon cells by AE (Publication I, V). Therefore, the 

coordinated actions of the above cellular phase II enzymes ensure effective 

detoxification of genotoxines. H2O2 production by polyphenols is normal process 
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(Akagawa et al., 2003) however; further investigations are necessary to clarify the 

H2O2-producing property of polyphenols and their prooxidative and on the other 

hand protective effects in vitro. Altogether, the reduction of DNA damage in human 

colon cells by apple polyphenols could be a new target for colon cancer 

chemoprotection.  

 

Apple juice is considered to be an important component of a healthy diet, which has 

recently been shown to have numerous types of chemoprotective activities in 

experiments with colon cancer animal models (Barth et al., 2005) and in human colon 

cells in vitro (Gosse et al., 2005). Since only little is known on comparable effects in 

human colon from in vivo studies, here a pilot study was performed to assess related 

mechanisms in ileostomy samples from volunteers that had consumed apple juice. 

Eight ileostomy samples were collected at different time points after intervention (0 - 

8 h) and were characterised analytically for major apple polyphenols (Kahle et al., 

2005) and in HT29 colon cells for their potential to cause genotoxic damage, protect 

from the genotoxic insult by H2O2 and modulate the expression of GSTT2, an enzyme 

related to antioxidative defence of other peroxides. The analytical determination of 

polyphenols in the ileostomy samples revealed that the majority of the compounds 

were recovered in the samples collected 2 h after intervention, and chlorogenic acid 

was one of the predominant detected polyphenols (Publication VI). Such a compound 

could be responsible for reducing exposure to genotoxins and oxidants in the gut 

lumen, thus reducing the probability of damage to DNA of colon cells (Glei et al., 

2006).  

 

The comparison of genotoxic effects of ileostomy samples before intervention and 2 h 

after intervention revealed a considerable variation of genotoxic response, but there 

was a trend for reduced genotoxicity potential in 3 of 8 persons after intervention 
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(Publication VI). In the context of a reduced basal genotoxicity, apple ingredients 

may be scavenging or inactivating genotoxic and toxic components naturally available 

in the gut lumen (Barth et al., 2005). Samples collected at 2 h protected HT29 cells 

from genotoxic damage by H2O2 (for 3 of 7 persons) and increased GSTT2 expression 

and of GSTT2 promotor activity. This antigenotoxicity of the ileostomy samples could 

be due to a direct antioxidative effect by the polyphenols excreted in the 2 h samples. 

Among others, especially chlorogenic acid could be responsible for this effect, since it 

also reduced H2O2 genotoxicity in the challenge assay (Glei et al., 2006). However, the 

other ileostomy samples of this study containing nearly similar amounts of 

chlorogenic acid did not respond to these parameters. This interesting finding 

deserves more in depth investigations, as it may be possible to identify different 

individuals which may more or less profit from the habit of consuming apple juice on 

the basis of their gut luminal contents. The effects were not significant on a group 

level and the number of subjects that participated in the study was too small to show 

an intervention effect and to prove the possibility that apple juice could lead to 

chemoprotection in the gut lumen. The pilot study, however, for the first time used 

this combination of faecal biomarkers which in larger cohorts may reveal significant 

alterations that contribute to reduced genotoxic exposure and thus to 

chemoprotection of colon cells. Taken together, it appears as if ileostomy samples, 

especially 2 h after intervention with cloudy apple juice, causes a number of 

biological effects related to chemoprotection, and that these effects have also been 

shown to be mediated by the apple extracts and/or individual phenolic components.  
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5 Conclusions 
 
The effects of apple polyphenols on modulation of chemoprotective enzyme systems 

in human colon cells were studied in this work. Based on the results of this study, the 

following conclusions can be drawn: 

 
• Different types of AEs (AE02, AE03, AE04), each containing different 

concentrations and types of polyphenols, significantly inhibit the growth of 

carcinoma (HT29) and colon adenoma (LT97) cells which represent late and an 

early premalignant stage of tumour development. Thus, evidence for 

antiproliferative activity of apple polyphenols is provided. 

 

• Apple flavonoid aglycones potently inhibit the colon carcinoma cell growth 

whereas the individual glycosides are not effective. This indicates that 

aglycones may enter the cells easier than their glycosides.  

 

• A synthetic mixture of polyphenols (mimicking the major apple polyphenols 

constituents) has a potent growth suppressing effect on colon carcinoma cells. 

Thus, growth inhibition may be due to the synergistic effects between the 

phytochemicals of the AE. Even though the synthetic mixture was more 

efficient than the single compounds, it did not reach the efficiency of the 

natural apple extract. Thus, the natural AE possibly contain additional 

compounds that contribute the higher chemoprotective potential.  

 

• Fermentation of AEs resulted in an increase of SCFA and degradation of 

polyphenols. Thus, by the fermentation of apple polyphenols through the gut 

flora, SCFA can be produced in the human colon. 
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• Fermented AEs significantly inhibit the growth of LT97 and HT29 cells. 

However, the F-AEs were approximately 3 fold less bioactive (in terms of cell 

growth inhibition) than the corresponding AEs, indicating lower 

chemoprotective properties, this is possibly due to degradation of polyphenols. 

 

• Apple extract AE03 and the fermented counter part (F-AE03) contain more 

quercetin compounds as well as the related metabolites and have the most 

pronounced effect on cell growth inhibition. The pronounced effect on cell 

growth inhibition might be triggered by higher concentrations of bioactive 

quercetin and their metabolites. Thus, the mixtures of major apple flavonoids 

as well as the amount of specific bioactive flavonoids are important factors for 

growth arrest in human colon cell lines. 

 

• LT97 cells are more sensitive than HT29 cells towards growth inhibitory 

activities of AEs and F-AEs. This reflects higher antiproliferative potential of 

apple polyphenols in the preneoplastic lesions than in carcinoma. LT97 and 

HT29 cells were grown in different cell culture media. Thus, the higher 

antiproliferative potential of AEs and F-AEs in LT97 cells may also depend on 

the culture media used.  

 

• Treatment of HT29 and LT97 cells with AE markedly influences the 

expression of genes encoding phase II enzymes, such as GSTs and UGTs. 

Moreover, AE increases the expression of several transcription factors related 

to ARE activation and histone family genes. This could be an important 

mechanism of transcriptional activation of phase II genes.  
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• AE modulates several genes which are related to important functions such as 

tumour suppression, cell cycle control, cell signalling as well as apoptosis in 

LT97 cells. Thus, the apple polyphenols serve as integrators of numerous 

signal-dependent pathways that control a multitude of genes. 

 

• Confirming array results by real-time PCR shows that phase II genes such as 

GSTT2, GSTP1, GSTA4, UGT1A1, UGT2B7 are indeed target genes. They are 

upregulated and thus point to induction of carcinogen detoxification by AE. 

 

• AE effectively upregulates higher numbers of genes at early time points (8 and 

12 h) than 24 h. Furthermore, these 8 or 12 h incubations would be preferred 

to study the effects of AE in LT97 cells.  

 

• Comparison of different array platforms may not be possible unless the gene 

probes sets and array processing method matched. 

 

• AE protects colon cells against DNA damage induced by relevant risk factors 

like Cum-OOH and H2O2 genotoxins by modulating the phase II gene such as 

GSTT2 (pronounced substrate for Cum-OOH).  

 

• Ileostomy samples obtained after apple juice interventions are less genotoxic 

than before the intervention. Pretreatment of HT29 cells with ileostomy 

samples protects HT29 cells from genotoxic damage by H2O2 and this 

treatment results in an increased GSTT2 expression and GSTT2 promotor 

activity. The intervention with apple juice results in bioavailable 

concentrations of related polyphenols in the gut lumen, which could 

contribute to reduced genotoxicity, enhanced antigenotoxicity and favourable 
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modulation of GSTT2 gene expression, possibly together with other 

ingredients of the gut lumen content. The pilot study for the first time used 

this combination of faecal biomarkers which in larger cohorts may reveal 

significant alterations that contribute to reduced genotoxic exposure and thus 

to chemoprotection of colon cells. 

 

• Altogether, these findings clearly underline the hypothesis that overexpression 

of multiple GST isoforms participate in the metabolism and elimination of 

potential human carcinogens by apple polyphenols. Chemoprophylaxis by 

apple polyphenols may, thus, continue to be a possible method of prevention 

of colon cancer since risks a hypothesis possibility that need to be verified in 

further human studies.  
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6 Outlook 
 
In this work, the complex mixture of apple polyphenols on expression of 

chemoprotection related genes were assessed in cultured human colon cells. Now, it 

would be important to examine the effects of apple polyphenols and their metabolites 

on the expression of these gene products in primary human colon cells (ex vivo), to 

improve chemoprotective strategies. 

 

Apple polyphenols are indeed potential mediators for the transcriptional activation of 

several target genes that are related to colon cancer chemoprevention. However, the 

mechanism of signal transduction for the induction of these genes by apple 

polyphenols is not clear, but it may be related to the activation of the transcriptional 

factor Nrf2. Future mechanism-based in vitro or animal studies may facilitate 

understanding of the potential health benefits of apple polyphenols.  

 

Although considerable research has been carried out on apple polyphenols and their 

chemopreventive role against carcinogens in cell culture and in animal model, it is 

still not fully clear how these compounds exert their action in human. Therefore, 

further experiments, carefully designed, are required to verify how apple polyphenols 

protect DNA from interaction with activated electrophilic metabolites.  

 

 

 

 



 

160  

7 Abstract 
 
Introduction: Colorectal cancer is one of the most common cancers in the developed-

world with Western style diets. Flavonoids from fruits and vegetables probably 

reduce colorectal tumour risks. Apples contain significant amounts of polyphenols 

that are potentially cancer risk reducing, possibly by acting antioxidative or 

antiproliferative and by favourably modulating gene expression.  

 

Purpose: The objectives of this study were to investigate the effect of apple 

polyphenols (a) on survival of colon carcinoma (HT29) and adenoma-derived (LT97) 

cell lines, (b) on modulation of expression of genes related to colon cancer 

chemoprevention, (c) on the defence of cells against DNA-damage caused by 

genotoxic compounds in vitro, (d) to determine whether apple juice intervention 

could result in a decrease of genotoxins in the gut lumen ex vivo in humans. 

 

Methods: HT29 and LT97 cells were treated with apple extracts (AE) or fermented 

AEs (F-AEs). HT29 cells were also treated with a synthetic flavonoid mixture 

mimicking the composition of the AE or with individual flavonoids and cell growth 

was measured by DAPI assay. Cells were treated with effective concentrations of AE 

and RNA was isolated to elucidate patterns of gene expression using human cDNA 

microarrays containing genes related to mechanisms of carcinogenesis or 

chemoprevention. Global gene expression measurements in time series (4 - 24 h) are 

additionally performed using affymetrix arrays and the results were compared to 

other array platforms. Real-time PCR and enzyme activity assays were additionally 

performed to confirm selected array results. Furthermore, AE treated cells were 

challenged with genotoxic compounds and DNA damage was determined with the 

Comet assay in vitro. Human ileostomy samples before (0 h) and after (2 h) 
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interventions with apple juice were compared for genotoxic activity in HT29 cells. 

HT29 cells pretreated (ex vivo) with the ileostomy samples were then also challenged 

with H2O2 and DNA damage was determined with the Comet assay. Moreover, HT29 

cells pretreated with the ileostomy samples were assessed for modulation of the 

expression of GSTT2 mRNA level and GSTT2 promoter activity using real-time PCR 

and reporter gene assay, respectively. 

 

Results: The growth of LT97 and HT29 cell lines was significantly inhibited by the 

AE, and by the mixture of mimicking the major apple polyphenols constituents. 

Different AEs contained varying amounts of quercetin and relevant metabolite, which 

was associated with a different potential to cell growth inhibition. Fermentation of 

AEs resulted in an increase of short chain fatty acids, but polyphenols were degraded. 

The F-AEs were ∼3 fold less bioactive (in terms of cell growth inhibition) than the 

corresponding AEs, pointing to reduced chemoprotective properties through 

fermentation. The growth inhibition of LT97 was more pronounced than of HT29 

cells, indicating a higher effectiveness of AE in preneoplastic lesions of the human 

colon. Treatment of cells with AE resulted in an upregulation of several genes related 

to drugmetabolism and other genes belonging to several functions such as, tumour 

suppression, cell cycle control, cell signalling as well as apoptosis. Time kinetics gene 

expression analysis revealed most of the genes were upregulated at 8 and 12 h time 

points. Expression of selected genes (Glutathione S-transferases [GST] P1, GSTT2, 

GSTA4, UDP-glucuronosyltransferases [UGT] 1A1, UGT2B7) regulated on cDNA-

array was confirmed by real-time PCR. In addition, AE also altered the total enzyme 

activities of GST and UGT. AE reduced DNA-damage by genotoxins in colon cells 

indicating might be due to higher GST activity. Ileostomy samples after interventions 

were less genotoxic than before the intervention. Pretreatment of HT29 cells with 
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ileostomy samples protected HT29 cells from genotoxic damage by H2O2 and this 

treatment results in an increased GSTT2 expression and GSTT2 promotor activity.  

 

Conclusions: The inhibition of tumour cell proliferation could be a one mechanism of 

cancer risk reduction by AE. Furthermore, AE can alter transcriptional changes in 

colon cells rather at the early time points (8 and 12 h) than after 24 h. The observed 

altered gene expression patterns in colon cells resulting from AE treatment parts to a 

protection of the cells against toxicological insult. Our approach to determine this 

specific profile of gene expression in preneoplastic human cells provides a relevant 

possibility to identify target genes and agents that could contribute to 

chemoprotection in colonic mucosa cells. The present study also reveals that apple 

polyphenols have antigenotoxic activities in vitro and ex vivo and the consequences 

of which need to be resolved for the in vivo. Taken together, this study demonstrates 

that a scope of key endogenous phase II enzymes in cultured colon cells can be 

upregulated by apple polyphenols and that cellular defences rendered cells more 

resistant to genotoxic insults. The results of this study, thus, suggested a new 

mechanism which might contribute to the colon cancer protective effects of apple 

polyphenols. 
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8 Zusammenfassung 
 

Einleitung: Zu den häufigsten Krebsarten in den durch die „western style diet“ 

geprägten Industrieländern, gehört der Dickdarmkrebs. Flavonoide aus Früchten und 

Gemüse können möglicherweise das Risiko an kolorektalen Tumoren zu erkranken, 

minimieren. Vor allem Äpfel enthalten signifikante Mengen an Polyphenolen, 

welche potentiell das Krebsrisiko senken können. Dies kann auf die antioxidativen 

oder antiproliferativen Effekte sowie den Einfluss auf die Genexpression 

zurückzuführen sein.  

 

Ziel: Im Rahmen dieser Arbeiten wurden Untersuchungen zum Effekt von 

Apfelpolyphenolen und deren Metabolite (a) auf das Überleben der 

Kolonadenokarzinom- (HT29) und Kolonadenom- (LT97) Zelllinien, (b) auf die 

Modulation der Expression von Genen, welche mit der Prävention von Kolonkrebs in 

Zusammenhang gebracht werden, (c) und auf das Potential die durch genotoxische 

Substanzen verursachten DNA-Schäden in den Zellen (in vitro) zu reduzieren, 

durchgeführt. Des Weiteren wurde bestimmt, ob eine Apfelsaftintervention zur 

Senkung der Genotoxine im humanen Darmlumen (ex vivo) führen kann (d). 

 

Methoden: HT29 und LT97 Zellen wurden mit Apfelextrakt (AE) oder fermentiertem 

Apfelextrakt (F-AE) behandelt. Außerdem wurden die HT29 Zellen mit einer 

synthetischen Mischung aus Flavonoiden, die die Zusammensetzung des AE 

widerspiegelten, oder mit ausgesuchten Einzelkomponenten inkubiert, um den 

Einfluss auf das Zellwachstum anschließend mittels DAPI-Assay zu untersuchen. Die 

Zellen wurden mit den ermittelten effektiven Konzentrationen an AE behandelt und 

die RNA isoliert, um mit Hilfe von humanen cDNA-Microarrays, welche Gene der 

Karzinogenese oder der Chemoprävention beinhalteten, Muster der Genexpression 
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aufzuzeigen. Globale Genexpressionsanalysen wurden in Zeitabhängigkeit zusätzlich 

mittels Affimetrix-Arrays durchgeführt und mit anderen Array-Plattformen 

verglichen. Real-time PCR und Enzymaktivitätsassays wurden zur Verifizierung 

ausgewählter Array-Ergebnisse genutzt. Die mit AE behandelten Zellen wurden 

anschließend mit genotoxischen Substanzen inkubiert und DNA-Schäden mit dem 

Comet Assay bestimmt. Ileostomieproben von humanen Probanden vor (0 h) und 

nach (2 h) Apfelsaftintervention wurden genutzt, um deren genotoxisches Potential 

in HT29 Zellen zu vergleichen. Die mit den Ileostomieproben (ex vivo) 

vorbehandelten HT29 Zellen wurden ebenfalls mit Genotoxinen geschädigt und die 

DNA-Schäden mittels Comet Assay untersucht. 

 

Ergebnisse: Das Wachstum von LT97 und HT29 Zellen wurde durch die AE und die 

synthetische Mischung signifikant inhibiert. Die Fermentation der AEs führte zu 

einem Anstieg der kurzkettigen Fettsäuren und der Degradierung der Polyphenole. 

Die F-AEs waren 3-fach weniger wirksam und demnach weniger chemoprotektiv 

verglichen mit den unfermentierten Testsubstanzen. Es zeigte sich im Gegensatz zu 

den HT29 Zellen eine stärkere Wachstumsinhibierung in den LT97 Zellen. Die 

Behandlung der Zellen mit AE resultiert in einer Hochregulierung von Genen des 

Fremdstoffmetabolismus und Genen, die der Zellzykluskontrolle, den 

Zellsignalwegen wie auch der Apoptose zuzuordnen sind. Den stärksten Effekt auf die 

Genexpression wurde nach 8 h und 12 h beobachtet. Die Expression ausgewählter 

Gene (Glutathion S-Transferasen [GST] P1, GSTT2, GSTA4, UDP-

Glucuronosyltransferasen [UGT] 1A1, UGT2B7), welche im Array reguliert wurden, 

konnten mittels Real-time PCR bestätigt werden. Außerdem beeinflusste der AE auch 

die Gesamtenzymaktivitäten der GST und der UGT.  Der AE reduzierte durch 

Genotoxine verursachte DNA-Schäden in Kolonzellen, was unter anderem auf die 

gesteigerte GST-Aktivität zurückzuführen sein könnte. Die Ileostomieproben nach  
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Apfelsaftintervention waren verglichen mit denen vor der Intervention weniger 

genotoxisch. Die Vorinkubation von HT29 Zellen mit Ileostomieproben nach 

Intervention resultierte in einer geringeren Sensitivität gegenüber dem Genotoxin 

H2O2, einer erhöhten GSTT2-Expression und einer gesteigerten GSTT2 Promotor 

Aktivität.  

 

Schlussfolgerungen: Die Inhibierung der Tumorzellproliferation durch AE könnte ein 

Mechanismus zur Reduzierung des Krebsrisikos darstellen. AE kann transkriptionelle 

Veränderungen in Kolonzellen nach 8 h sowie nach 24 h hervorrufen. Die durch AE-

Behandlung beobachteten veränderten Genexpressionsmuster in Kolonzellen 

resultieren in einen Schutz der Zellen gegenüber toxischen Einflüssen. Unser Ansatz 

zur Bestimmung dieser spezifischen Genexpressionsprofile in präneoplastischen 

humanen Zellen bieten eine bedeutende Möglichkeit um Zielgene und Faktoren, die 

die Chemoprotektion bedingen, zu identifizieren. Die vorliegende Arbeit zeigt, dass 

Apfelpolyphenole antigenotoxische Fähigkeiten in vitro und ex vivo besitzen. 

Zusammenfassend macht diese Arbeit deutlich, dass Phase II-Enzyme in kultivierten 

Kolonzellen durch Apfelpolyphenole hochreguliert werden können und dass Zellen 

mit erhöhtem zellulären Schutz resistenter gegenüber genotoxischen Einträgen sind. 

Die Ergebnisse dieser Arbeit zeigen neue Wirkungen von Apfelpolyphenolen auf, 

welche mögliche Mechanismen hinsichtlich der Dickdarmkrebsprotektion erklären. 
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