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Abstract

An n-fold periodic locally finite graph in the euclidean n-space may be considered
the parent of an infinite class of n-dimensional toroidal finite graphs. An elementary
method is developed which allows the characteristic polynomials of these graphs to
be factored, in a uniform manner, into smaller polynomials, all of the same size.
Applied to the hexagonal tessellation of the plane (the graphite sheet), this
method enables the spectra and corresponding orthonormal eigenvector systems
for all toroidal fullerenes and (3, 6)—cages to be explicitly calculated. In particular,

a conjecture of P.W. Fowler on the spectra of (3,6)—cages is proved.

Key words: Graph spectra, periodical graph, toroidal cage, toroidal fullerene, toroidal

graph, (3,6)—cage

Introduction

A toroidal 6-cage S is a trivalent graph embedded in (the surface of) a torus all of whose
faces are hexagons (Figure 1). Reflecting the structure of (hypothetical) toroidal carbon
molecules such graphs are, in a chemical context, also called toroidal fullerenes.

In Hiickel’s model of hydrocarbons (LCAO-MO theory), the eigenvalues and eigen-

vectors of the adjacency matrix of S correspond to the energy levels and orbitals of the
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molecule represented by S, respectively. Therefore, a (simple) method that enables these
quantities to be determined is required.

It is important to note that, by suitable point identification, all toroidal 6-cages can
be derived from a common parent, namely, from the regular hexagonal tessellation of
the plane (the graphite lattice) making use of the twofold periodicity of this structure
(Figure 2; for details see Part II).

The first, seminal paper on the spectrum of toroidal fullerenes appeared in 1993. Its
authors, E.C. Kirby, R.B. Mallion and P. Pollak [6], developed a method (unfortunately,
not too simple) that allows the eigenvalues and eigenvectors for all toroidal fullerenes

with up to 3600 hexagons, and many others, to be calculated.



The second paper on this topic appeared in 2000. A. Ceulemans, L.F. Chibotaru,
S.A. Bovin and P.W. Fowler [1] describe a general method based on solid-state physics:
considering the graphite sheet as a crystal, they construct its first Brillouin zone and,
folding it twice according to the parameters of the fullerene, develop a procedure for
determining spectrum and eigenspaces.

Simplifying and generalizing these procedures we shall in Part I describe a new method
for factoring the characteristic polynomial of any graph of n-dimensional toroidal struc-
ture derivable from some n-dimensional locally finite n-fold periodic parent.

Part II is devoted to the spectral theory of toroidal fullerenes.

In Part III the results are used to determine explicitly spectrum and eigenvectors of
(3,6)-cages. A (3,6)-cage is a trivalent polyhedron that has only hexagons and triangles

as its faces.

Part I. Spectra and eigenvectors of n—dimensional toroidal

graphs: general theory

1.1 Preliminaries

We shall consider graphs G = (V,E) whose vertex set V is a set of points in the
n-dimensional euclidean space S™; the edge set E is a set of pairs of these points which
may be represented by straight line segments.

G is n-fold periodic iff there are n translations T, of S" represented by linearly inde-
pendent vectors p, (periods) that leave G unchanged, i.e., such that 7, G is congruent and
isomorphic to G, v = 1,2,...,n. The concepts of primitive period system, fundamental
region etc. are defined as usual.

In what follows we shall assume that G is n-fold periodic and locally finite: then
all fundamental regions contain the same finite number of vertices. For the sake of

convenience we shall restrict our exposition to the case n = 2: it is not difficult to see



that and how the relevant concepts, proofs and theorems generalize for any value of n
(including n = 1). Thus the graphs to be considered may be interpreted as drawings (not
necessarily embeddings) on the euclidean plane.

Let € be a cartesian coordinate system for the plane such that to point X there
corresponds a vector X = (1, x2) which may be identified with X.

X =Y,orx=y, mod (p1,p2) means that there are integers rq,rs such that

X —y =rip1 + m2P2.

Let G be twofold periodic and assume that € has been so chosen that p; = (1,0),
p2 = (0,1) is a primitive pair of periods. Let P* be the fundamental parallelogram
spanned by pi, p2, let P, be the parallelogram parallel and congruent to P* with its
centre at 0, and denote the configuration consisting of P, and the part of G drawn on it

by PS: clearly, G is determined by PS (Figures 3a,b).
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Figure 3a

Define X = {z1p; + z2p2 | &1, 22 integers} to be the integer coordinate point grid
of the plane generated by pi, p2 and consider the tessellation T generated by P, with

parallelograms Py centered at x € X (Figure 3a). Set [m] = {1,2,...,m} and let
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{v; | 7 € [m]} be the set of vertices of G contained in F,. Tessellation T partitions the
vertex set of G into classes in two ways:

class C7. consists of the m vertices contained in Py (i.e., C;, = VN Py), x € X

class C7 consists of all vertices v = v; mod (p1,p2), J € [m].

Every vertex v being determined by the pair of classes C}, C7 that it belongs to we

shall briefly write

v=(x;7) = (x1,72; 7).

Let a = (ay,as), b = (b1, by) be any pair of vectors with integer components (i.e., a,b €
X), set

a a
G): PPl =4 (detAl=A
by by

and assume A > 0: then (a,b) is a period pair which is primitive if and only if A is
unimodular (A = 1). Let 2 denote the set of all matrices with the above properties.
Consider the parallelogram P = P(a,b) = P(A) spanned by a, b; of the boundary of

P only the points ta, tb (0 <t < 1) belong to P (Figures 3). Note that the area of P is



Figure 4

A times the area of P,, in other words, P covers (the area of) A fundamental regions.
Turning to topology, identify any two boundary points of P that lie on opposite
sides of P in analog position (Figures 2,4) to obtain a torus T with a graph G(A) on
m/\ vertices drawn on it. The vertex set of G = G(A) is V = V(A) = VN P(A4).
Graph G(A) may also be considered the result of identifying any points of the plane
being congruent mod (a, b). The partitioning of the vertex set into classes Cy, C7 is
maintained (but shrinked) by replacing each x by its residue class xmod (a,b): classes
C! and C! (xmod (a,b)) have the same number m of elements whereas their number
shrinks from infinity to A; the number of classes C'} and C}(xmod (a, b)) is the same —

namely, m — whereas the number of elements shrinks from infinity to A. Note that G

10
is the universal cover of all G(A) and every G(A) is a cover of G(I), I = CIf

0 1
matrix A’ is derived from A by a unimodular transformation then graphs G(A) and G(A’)



are isomorphic which means that the toroidal realization G(A) is not unique (Figure 4)
(toroidal 6-cages depend on only three parameters); nevertheless for our purposes this is
the appropriate representation.

If G is plane then G(A) is embedded in T: such embedded graphs will be called
toroidal cages.

Let G be a twofold periodic fixed graph and consider the class of graphs G(A) (A € ).

We shall split up the task of calculating the spectrum of G(A) into two simpler tasks:

Task 1, using only the parameters of A and having nothing to do with the structure of

G, has an elementary algorithmic solution;

Task 2, depending on the outcome of task 1, consists in solving A eigenvalue problems
each of size m which, in many cases of practical significance (especially, in the case
of toroidal fullerenes), can be solved simultaneously. In particular, the method allows
the characteristic polynomial of G(A), which is of degree mA, to be factored into A

polynomials each of degree m.

1.2 Spectra of graphs representable on a torus

Given a twofold periodic graph G and a matrix A € 2, set G(A) = G = (V, E). The
problem to be solved is to find all vectors e = {e(v) | v € V'} (the eigenvectors of GG) and

corresponding values A (the eigenvalues of GG) satisfying

(1) > (W) =Ae(v), veV
v' €N (v)
where N(v), the neighbourhood of vertex v, is the set of vertices in G adjacent to v.
We extend the vector e to the vertex set V of G such that e(v) is twofold periodic

with the period pair (a, b) and, following Kirby et al. [6], make the following



Ansatz:

(2) e(v) =o1'0y’u;  (v=(x]) = (z1,22;)); x € X, j € [m]).
This immediately entails two conditions for o1, 02; w1, U, . .., Up:

1) For fixed u; the function p7'052u; must be twofold periodic in x = (21, z2) with
j 1 027U

the periods a,b. That means that we have to determine pq, g2 such that the function
1 T2

©0(x) = 07" 05 has the period pair (a,b). As ¢(0) = 005 = 1, and because the points 0,

A and B of the plane (Figures 3) represent the same point of the torus, we must have
(3) of' o5t = ot'oy = 1.
This necessary condition is also sufficient for periodicity: indeed, (3) implies

(p(X +pa+ qb) — QTI+PGI+qb1 X Q§2+pa2+qbz

T T a] a q T T
= o105 (07 05°)" (' 05?)" = of' 05® = (x).
Equations (3) will be called the basic equations. We shall discuss and solve these equations
in Section 1.3; let us anticipate:
(I) the basic equations have exactly A pairwise distinct solutions o = (o1, 02) (pre-
cisely as many as required);

(IT) in every solution @ the numbers o1, 0o are A roots of unity, thus o;* = 0,

Let R = R(A) denote the set of solutions g of the basic equations (3).
2) Next uy,usg,...,u, must be determined. Consider the vertices in P,, namely,

vj = (0,7),j € [m], and their neighbours. According to our ansatz (2), the corresponding



equations of (1), with v' = (x'; k), become

(4) D 0Kk | 05 5)er 0tk = Ay, j € [m]
x'eX
ke[m]

where

1 ifv" € N(v)
o' | v) =

0 otherwise

is the adjacency characteristic function of G = G(A). Up to a common factor oi* 05°, the
same equations arise if vertices v; = (0; j) are replaced by vertices (x; j) (x fixed, j € [m]).
This means that our ansatz has been successful: every solution to equations (3) and
(4) yields an eigenvalue A and corresponding (complex) eigenvector e with components
e(w1,22;j) = 07" 05%u;. By (I), (3) has precisely A solutions. By (II), for every fixed
o € R(A), the corresponding coefficients matrix of equations (4) is Hermitean implying
that equations (4) have precisely m (independent) solutions. Thus we have obtained a
system of mA = |V| eigenvalues A = A(p; @) and corresponding eigenvectors e = e(y; 9)
(1 € m]) of G.

In order to prove that this system is complete we shall show that if the eigenvectors
u (the solutions of (4)) chosen are orthonormal then the eigenvectors e are pairwise
orthogonal with common norm A.

We need some preparation.

In what follows A € 2l is arbitrary but fixed. In order to avoid confusion we shall write
down the eigenvalues, eigenvectors and their components together with all parameters
they depend on: so the m solutions of the Hermitean eigenvalue problem (4) that we

shall use are

M 0);  ulp; 0) ={uj(p;0) | j € [m]}



satisfying

(5) u(u; @) -u(v;e) = 6w

(0 e R(A); p,ve[m]). !

Lemma 1. Under the multiplication rule

(917 92) : (01702) = (Q101, 9202)

the set R = R(A) is an abelian group (immediate).

In particular: (1,1) € R and with 9,0 € R also g € R and o' = (9%, 05 ")

(01,02) =0 € R.
Let XN P(A) = X(A). Note that

V=V() ={(x)) [ x e X(A),j € [m]} = X(A) x [m].

, I A if@1:Q2:17
Lemma 2. ? For any o € R(A), Y. o053 =

xEeX(4) 0 otherwise.

Proof. W.lo.g., we may assume € to be the usual orthogonal coordinate system. Con-

sider the grids I'y, 'y generated by vector pairs a = (a1, asz), b = (b1, by) and p = (A, 0),

q = (0,4), respectively. As p = bya — asb, ¢ = —bja + a;1b, I'y is a subgrid of T';.

If points congruent mod (p, q) are considered equivalent, the square () spanned by p, q,

with area A2, after due exchange of area, covers A parallelograms Py = P(A), P, ...

each congruent to P(A) of area A (Figure 5). For any g € R(A) the function ¢

7PA

1 02" 18

!x -y, the scalar product of vectors x = {x; | i € I}, y = {y; | i € T}, isx-y = > 2% ;

5o 1 ifu=v,
710 otherwise.

2The authors did not find this proposition in the literature.
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Figure 5

twofold periodic mod (a,b) and mod (p, q), thus

AN
oot =Y ) oter=40 > Q?Q?ZA Z o7 03

xeXNQ =1 xeXNP; xeEXNP(A xeX(A

On the other hand,

A-1 A-1 A—-1 A—-1 2 if 01 =03 = 1
SISO WITED WD IS
x€XNQ 21=0 22=0 21=0 =0 0  otherwise.?
The claim follows. O

By Lemma 1, for 9,0 € R(A) also po~! € R(A), thus Lemma 2 is equivalent to

Lemma 2’. For any 9,0 € R(A),

A ifo=o,
> ofesror o, =

xeX(A) 0 otherwise.

A—1

SFor g A1, 1+ 0i+ 03+ +o " = (0 —1)/(0s — 1) = 0.

11



Return to the mA eigenvectors we have found by our ansatz for G(A), namely,

e(u; @) = {o07" 05’ uj(p; @) | (x,5) € V(A)} (e € R(A), u € [m]).

For 9,0 € R(A) and p,v € [m] we have

e(mio)-e(vio)= Y ooy @)ooy " uy(vi o).
(x,7)EV(4)

Recall: V(A) = X(A) x [m]. Thus the last summation may be carried out as follows:

(x;,...: )OI S S

€V(A) (x,7)EX(A)x[m] xEX(A) j€[m)]

Therefore, e(y; @) - e(v;0) = >, - >, where

Zl - Z u;(p; 0)u(v; o), Z Z o oo

J€m] xeX(A

A if p =0,
By Lemma 2/, >, =

0 otherwise.
Assume g = o; then by (5), >, =J,,. We conclude that

A ifp=0cand p=v,
e(u; 0) -e(v;o) =
0 otherwise.

Thus we have proved

Theorem 1. Given a twofold periodic graph G, a matriz A € A and the corresponding
toroidal graph G = G(A):
Let, for o € R(A), the eigenvalue problem (4) have eigenvalues A(u; @) and cor-

responding orthonormal eigenvectors u(p; @) (1 € [m]). Then the numbers A(u; @) and

12



vectors

e(u; 0) = {01 05 uj(p; 0) | (x;5) € V(A)} (0 € R(A), u € [m])

form the spectrum and a complete eigenvector system for the graph G, the e(u; @) being

pairwise orthogonal with common norm /\.

Note that the solutions g of the basic equations are the dominant parameters deter-
mining the spectrum and a particular system of orthogonal eigenvectors (not just the

eigenspaces determined by the eigenvalues).

1.3 Solution of the basic equations

We shall first show that both p; and g, are A™ roots of unity.

01, 0o satisfying the basic equations

(3) 0103 = o} oy =

we also have

a1 a2)b2 a1ba a2b2 — 1

(Ql 02 = 07 09 ( by bz)*az — Q—azbl —agbs -1

01 02 1 Q2

which, by multiplication, yield

ajbo—agby ‘a1b2*a2b1‘ VAN
1 =1 =0 =1

implying 0, ;

analogously, Q2A =1, as claimed. Thus g1, 02 uniquely determine, and are determined by,

integers k1, ko satisfying

QIZEkAl? Q2:€’X (0§k17 k2<A)

h

where ¢, is an abbreviation for e , a primitive r** root of unity. Therefore, the basic

13



equations are equivalent to the basic congruences

Cl,lkl -+ a2k‘2 = 0,
(6) briefly, Ak = o, modA.

bllﬁ—Fbgkg = 0,

To solve these congruences, we shall first transform them using a variant of Euclid’s
algorithm?. Note that the set of solutions of (6) as well as A = | det A| remain unchanged

under the following elementary transformations of matrix A:

e interchange of the rows,
e multiplication of a row by —1,

e subtraction of one row from the other.

Therefore, we may assume a; > 0, by > 0.

Apply the following algorithm:
(i) if by = 0: stop;
(ii) if 0 < by < ay: substract the second row from the first;
(iii) if by > ay: substract the first row from the second;

(iv) return.

/

ay a

The procedure stops when the transform of A has attained the form b ; it can,
0 b

of course, be accelerated by using integer division with remainder in steps (ii) and (iii).

Note that @} is the greatest common divisor of a; and by. Setting a = |b}|, 8 = af,

v = —al, we have A = a3 and the congruences to be solved become

ki —~ky = 0,
Bl =k, modA\.

0,

Ckk‘z

4This idea (which repeatedly applied also settles the n-dimensional case) is due to W. Rausch and
T. Bohme (Ilmenau).

14



Starting from the second congruence we obtain

A

k2 = —VIBV,
“ modA, upu=0,1,...,6—-1, v=0,1,...,a—1.
k LN +
= —+Zu=aptw,
' ERRNC

Result. The basic congruences (6) have precisely af = A solutions, namely,

(kl) = (aug—yu)j modA, u=0,1,....,6-1, v=0,1,...,a—1.
v

a=9, 0=2,y=-7 ki=9u—"Tv; ko =2v, mod18, ©=0,1; v=0,1,2,3,4,5,6,7,8.

1.4 An example

Let H be the twofold periodic graph part P2 of which is displayed (bold face) in Figure 6.

With the abbreviations
l+o+o=0 1+0+02=0

the corresponding eigenvalue problem (4) becomes

auz + fuy = Aug
Bug + auy = Mg
(7)
auy + Bus = \us
L Bul + Qus = )\U4

15



A

Figure 6

with characteristic polynomial

= X =2(aa+ BH)AN + (aa — 35)

= (A=l = 18D = laf + [BA + |af = [BDA + o] +15]).

The characteristic polynomial of the toroidal graph H = H(A) (A € ) is

(9) ) = [ #(eN.

0€R(A)

2 1
As an example, let A = ( ) (Figure 7). With






the solutions of (3) are

01:€2V7 02:€V7V:O71727374 )

thus

|Oé|2 — <1+€2y+€u)(1+63y+64y) — 1+El/+82l/_|__€3l/_|__€4l/+(6211_1_531/)2’

|ﬁ|2 — (1+€3y+€y)(1+€2y+64y):1+€V+82V+63V+€4u+(€V+€4l/)2

yielding

for v = 0: la| = |6 =3,

4 1 2 1
for v=1,4 |a|=2 cosg = 5(/5+1), [8]=2 cos% = 5(V5-1),
2 1 4 1
forv=2,3: |a| =2 cosg7T 25(\/3—1), 18] =2 COS%‘ 25(\/§+1)

which, by (8) and (9), results in

fa(A) = XA =6)(A+6)(A — D*(A+ D*(\? = 5)%.

Having the spectrum, the eigenvectors can now be obtained from equations (7) and (2)

(for a simpler example, the eigenvectors will explicitly be calculated in Part II).

1.5 Regular toroidal cages

There are three regular tessellations of the plane (Figure 8):
e the tiling by squares whose graph is the four-lattice F,

e the tiling by equilateral triangles whose graph is the three-lattice T,

18



e the tiling by regular hexagons whose graph is the six-lattice S.

S and T are duals of each other, F is self-dual.

These tessellations generate three classes of regular toroidal cages, namely, § =
{F(A)}, £ = {T(A)}, 6 = {S(A)}; A € A. For all of them — in particular, for §
and ¥ — the eigenvalue problem becomes most simple. After giving the results for § and
T, we shall discuss the class & of regular toroidal 6-cages at some length, because of its

significance for the chemistry (Hiickel theory) of toroidal fullerenes, in Part II.

\
Y
Figure 8

Regular toroidal 4-cages (class §) and 3-cages (class ¥)

For § and ¥ we have m = 1 (Figures 9, 10) which means that the eigenvalue problem

\ //
/ /N

1

Figure 9 Figure 10

19



B
1,2
A
0,1 2,1
)
P

0

1,0 0,0 2 |10
0,-1
Figure 11

(4) becomes trivial, we can write down the spectrum straightaway:

A = g1+gl_1+g2+g;1 for§ and

A= o+o0 +oto oo +oilo for%.

All that remains to be done is to insert the solutions of the basic equations.

1
Figures 11 and 12 show two respective examples for A = , the same matrix

-1 2

as in the preceding example with the same solutions (o1, 02), and we obtain the following

spectra.

20



Figure 12

Spectrum of F(A):

)\V — 82V+6—2V+€l/+6—l/
= 14" +e¥+e¥ 4+ -1, v=0,1,2,3,4
yielding
=4 ===\ =—1

(note that F(A) is isomorphic to the complete graph on 5 vertices).
Spectrum of T(A):
—2v

)\V _ €2V+€—2V+€V+E—V+€2V.€—V+€ -5”

= 14"+ 4+ 4+ 14"+, v=0,1,2,3,4

21



yielding

2 1
)\0:67 )\1:)\4:—1+2COS§:§(—3+\/3),

4 1
Ao=A3 = —1+ 2005% = 5(—3 —V5).

Part II. Spectra and eigenvectors of toroidal 6-cages
(toroidal fullerenes)

I1.1 The spectrum of a toroidal fullerene

Graph S with corresponding parallelogram tessellation of the plane (one of three possi-

bilities) is displayed in Figure 13 (cf. Figure 2).

Figure 13

The neighbours of the m = 2 vertices vy, v9 in P, are:

vertex | neighbours
v =(0,0:1) | (0,0;2), (=1,0;2), (0,—1;2)

22



The corresponding eigenvalue problem is

ug + 07 Uz + 05 Uz (1+ 01 + 02)us = Aua,

(10)

Uy + 01U + 02Uy (14 01 + 02)u1 = Aus.

Multiplying the right-hand sides and the left-hand sides of (10) we obtain

(11) M =(1+0+0)1+0+0) =140+ 0 .

Thus we have proved

Theorem 2. The characteristic polynomial of a toroidal 6-cage S = S(A) is

fs) =TI O =11+ 0+ ef)

0€R(A)

(Ae).

An example. Let, same as above, A = . Consider the toroidal 6-cage S(A)

with A =5 hexagons (Figure 14). Equation (11), with

v=0,1,2,3,4),

becomes

(14 ¥ +e") (14 ¥ 4 &%)

9

(62V + 5_21/)2

23

(2 cos

forv =0

)

forv=1,2,3,4 ,



0
0,0

Figure 14

thus

fs) = =B+ 30— 2(VE+ P+ S (VB4 NP~ (V5 — 1P+ 5 (V5 - 1)

= A=3)A+HN = A =12\ + 1 -1)%

We may fix u; = 1; by division (10) then implies

2_1+91+Q2_1+5y+52y 2
Uy

14 a+e 144

I

thus us = £ £” where, by (10), the sign depends on the sign of A.
The eigenvectors can now easily be calculated from (10): the complete result is con-

tained in Table 1 where the components

T T2 o 5(2x1+12)u

en(A | v) = e (A | 21,22, ) = 01" 05" - cu; (j=1,2)

of the 10 eigenvectors e, (\) (v = 0, 1,2, 3, 4; two values of A for each value of v) are given

24



only for j =1, for A > 0, and for v = 0, 1, 2, the missing entries being already determined
by
es—v(A) =e,(A)  (v#0)

(implying that to v and 5 — v there belongs the same pair of eigenvalues) and by the

relations

eo(3 | x1,m9;2) = 1,
ev(N | 21,19;2) = —(—=¢)’e, (N | x1,29;1) (v =1,2;)>0),

el/(_A | IlamQ;j) = (_1)]‘—"_1611(A | I1,$2;j) (] = 1727 V= 07 172a374)'

vertices (x1,xo; 1)

(z1,22) =
v \ A H (0,0) \ (0,1) \ (0,2) \ (1,1) \ (1,2)
0 3 1 1 1 1 1
1 %(\/ngl) 1 £ e2 | &8 | &t
2 %(\/5 —1 | 1 e2 | &t 5 =
Table 1

We observe that the real part eg, and the imaginary part ey, of eigenvector e = e, (\),

v # 0, being themselves eigenvectors for A (which has even multiplicity), satisfy

2 2 A
eRe = eIm = 37 €Re ' €Im = Oa

i.e., ege and er, have the same norm and are orthogonal, the latter implying linear

independence.

25



Figure 15

I1.2 On the multiplicities of the eigenvalues °

1) Toroidal 6-cages with eigenvalue zero
By Theorem 2 zero is an eigenvalue if and only if the basic equations (3) have a solution

(01, 02) such that

(12) 1401+ 02=0.

As |o1| = |o2] = 1, (12) holds if and only if either

01 = €3, 02 = sgl = €3 or 01 = sgl =£3, P02 = 552 = €3 where €z =e¢€3
(see Figure 15 with (4, j) = (1,2) or (2,1)). If one of these pairs is a solution then so is the
other which, in particular, implies that if zero is an eigenvalue then it is of multiplicity 4.
Recall: g, = e%; assume, w.l.o.g., 01 = €3, 02 = €3. By (II), 01 is a power of e, say the

r'h power (0 <r < A):

r ,
~ 211

5Cf. [1], Sections IV and V.
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which implies A = 3r and g; = €'y, g2 = €¥. The basic congruences (6) now yield

ar+as-2r = oA =o-3r,

bir+by-2r = 7A=71-3r

with some integers o, 7, thus
a; + 2(12 = 30’,

bl + 2b2 = 37

or, equivalently.

(13) a, —as =b; — by =0, mod 3.

This necessary condition is also sufficient: from (13) we obtain
A = layby — agby| =0, mod 3.

Let v’ =

A
3 (13) is equivalent to

a1 +2ay = 30,
b1+262 = 37'/

with some integers o/, 7/; multiplication with 7’ yields

ar’' +as-2r' = o -3 =d A,
bir' +by -2 = 13" =17A
which means that
(52752Ar,) = (5375§> - (53753)

is a solution to the basic equations.

Thus we have proved
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a, a
Theorem 3. Let A = b € 2A. Zero is an eigenvalue of S(A), necessarily of

by by
multiplicity 4, if and only if

a1 —as =by — by =0, mod 3.

2) A general proposition on multiplicities
Case I: 01, 0o are real.

Then g1, 00 € {1,—1}. Let j € {1,2}. By (II),
0j =ch = e2™  for some kE, 0<k<A.

Thus g; = —1 = ™ implies A = 2k, i.e., A is even.
Next we discuss the four cases p; = £1, oo = £1.
(i) 01 = 02 = 1 (the trivial case).
This solution is always present. We obtain A? = |1 + 1 + 1|* = 3%; clearly,
|1+ 01 + 02| = 3 if and only if 9, = g2 = 1, and we conclude that the eigenvalues

+3 are always present, both of multiplicity one (as is the case for any connected

trivalent bipartite graph).
(ii) o1 =1, 02 = -1, (i) o1 = —1, 02 =1, (iv) 01 = 02 = —1.
It can easily be verified that if A is even and

(A) at least one of ay, ag, by, by is odd

then precisely one of (ii), (iii), (iv) is a solution, and if

(B) all of ay, ag, by, by are even

then each of (ii), (iii), (iv) is a solution.

Thus for the characteristic polynomial we obtain in case (A) (at least) one, and in case

(B) (at least) three factors A* — 1, but it should be noted that this factor may also, in
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addition, result from some non-real solution (g1, 02); this happens if and only if o; = —1,

or oo = —1, or g9 = —p; (see, in particular, Section I1.4, Table 2 and equations (14)).

Case II: At least one of g1, 0o is non-real.

Then the pairs (01, 02) and (g1, 02) are distinct but yield the same factor
N —1+o01+ 0> =N —[1+ 01+ 2|
Therefore, the multiplicity of the corresponding eigenvalues A # +1 is even.

Summarizing we have found

ay ag

Theorem 4. Let A = €A, S=8S(A), A =|det A|. Then
by by

Fs() =A% = 1PV = 9) [ TN = &)?

i=1

where
(
2 ifay —ay=0b; — by =0, mod 3,
o=
0 otherwise;
\
(
3 if all of ay,aq,b1,by are even (then A is a multiple of 4),
B=191 if A is even and at least one of ay,as, by, by is odd,
0 if A is odd;
\

’}/:%(A—(X—ﬁ—l),
and

0<c¢ <3 for i=1,2,...,7.
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AN=14+014+0|=r

l+o+0=2

U2

02 01 I+ o
2 U12
«
V2 1 x
2
U1y
U21

Figure 16

I1.3 The eigenvectors of a toroidal fullerene

To set up a system of eigenvalues and corresponding pairwise orthogonal eigenvectors
according to Theorem 1 we need, for every o € R(A), a pair of eigenvalues A = A(p; @) and
corresponding orthonormal eigenvectors u = u(u; @) (p = 1,2) satisfying equations (10)

which may be rewritten as

, ZUuy = )\ul,
(107 z=14 01+ 0.
ZUup = Ao,

Setting
z=re¥ (r=r(e) 20, 0 < ¢ =p(e) < 2m; p arbitrary if r = 0), = 20,

such a pair is

Mps @) = (=17, u(p; @) = J(it e, i*~te)  (n=1,2) (Figure 16).

The set of real parts and imaginary parts of the complex eigenvectors e so found is again

a complete system of eigenvectors for S = S(A); it is a straightforward procedure to
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Figure 17
prove that these real eigenvectors are pairwise orthogonal, too.

I1.4 A special sequence of toroidal fullerenes

n 0
Consider the sequence of fullerenes S,, = S(A,,) where A, = ,n =123 ...

0 n

(Figure 17). The basic equations for S, are of = ¢§ = 1 with the n? solutions

27

o1=¢ck oo=¢c (ep=€en; uv=01,....,n—1),

so the spectrum of S, is {£ |1+t +e/| | u,v =0,1,...,n—1} (for n =8, see Table 2).

Let g, p, g be positive integers. Because of

g9 =gl ei =g (0<j<p 0<k<g),

the numbers + |1 —i—é?{, —i—&?’;\ are eigenvalues for Sgp,. This means that, given any two roots
of unity o1, 02, the numbers |1 + o; + 05| are eigenvalues for infinitely many toroidal

fullerenes. Note that the set of these numbers is dense in the interval —3 < A < 3.
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Let o € R(A,), |1+ 01 + 02| = A\o- Then for the 12 ordered pairs

(01,02) = (01, 02), (02, 01), (01, 02), (02,01),
(0102,01), (01,0102), (0102,01), (01,0102),

(02, 0102); (0102, 02), (02,0102), (0102, 02)
also |1 + o1 + 09| = Ag. We conclude that, generically, the multiplicity m,(\) of an

(unspecified) eigenvalue A of a toroidal fullerene S, is 12.

The case n = 8.

p\v | o 1 2 3 4 5 6 7

the entries are
_ © 2
cw = |1+¢ef +e8|%,

gg=e5 = - (1 +1);

V2
3 a- 3 3 a- 1 b~ b~ 1 ai:5i2\/§:5i\/§,

6 ) 3 1 b- 1 3 5 bt

7 at bt 3 1 1 3 bt at

The spectrum of Sg is {£,/¢. | 1, v =0,1,...,7};

Fse(N) = (A2 = 9)(A2 = 5)5(A2 — 3)12(A% — 1)2L(M* — 1002 + 17)5(X* — 632 + 1)°.

Table 2

There are exceptions. The multiplicity reduces if there occur coincidences among the

12 pairs listed above, so, e.g.,

4 if n is a multiple of 3,

0 otherwise.
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There are also eigenvalues with multiplicity greater than 12:

3(n—1) if nis even,
(14) mp(1) = mp(=1) =

0 otherwise

(cf. Table 2); checking for n up to 300 we found only one eigenvalue A > 0, A # 1 with
my(A) > 12, namely, A = V/3: the numbers + /3 are eigenvalues for n = 3 as well as for
n = 8 with multiplicities 6 and 12, respectively, entailing that, for n = 3-8 = 24 and all
multiples of 24, m,(v/3) = m,(—v/3) > 6 4+ 12 = 18; in fact, m,(v/3) = m,(—v/3) = 18
(n =24k, 1 <k <12).5

Part III. Spectrum and eigenvectors of a (3,6)—cage

I11.1 Preliminaries

A (3,6)—cage is a trivalent polyhedron each face of which is either a hexagon or a triangle;
by Euler’s formula the number of triangles is four. The structure of the (3,6)-cages is
well known [4],[5]; in [3] the interrelations between the spectra of (generalized) (3,6)—
cages and toroidal 6—cages are discussed in some detail. In a quantum—chemical context,
A. Ceulemans et al. [2] developed methods based on solid—state (crystal) physics which
allow the spectra and eigenspaces of (3, 6)-cages explicitly to be calculated.

(3,6)—cages C' depend on three parameters r, s, t [3]" (Figures 18, 19)

r is the radius (number of rings),
s is the size (number of steps = half the number of spokes),

t is the twist (torsion) (—s<t<s; t=r mod2).

5The authors thank W. Rausch for carrying out the calculations.
"The notation used here differs from that in [3]: the new s equals the old S and is half the old s.
Note also that ¢ may be negative.
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torsion

=3
=2
=1
Figure 18
r=3s=2t=1 r=2,s=3t=2 i
r=1,s=6,t=5
Figure 19
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We shall briefly write C' = [r,s,t]. This representation is, in general, not unique [3]:
there may be up to three different tripels determining the same (3, 6)-cage (Figure 19);
the product rs is the same in all of them. Given C', we shall arbitrarily fix some triple
r,s,t such that C' = [r, s, t]. The numbers v of vertices, e of edges and h of hexagons are
v=4rs, e =6rs and h =2(rs — 1).

In 1995 P.W. Fowler [3] formulated the

Conjecture. The spectrum of any (3,6)-cage C has the form
{3, —1, -1 - 1, )\1, )\2, ce 7)\2(1/—1); —)\1, —>\2, ceey —)\2(,/_1)}
1 .
where v = ZU(C) = rs; equivalently,
fe) = (A =3)(A+1)° ge(N?)

1
where go is a polynomial of degree 5(0(0) —4).
Using the results of Part II we shall now explicitly determine the eigenvalues and a
system of pairwise orthogonal real eigenvectors for any (3, 6)—cage [r, s,t| thus, in partic-

ular, prove Fowler’s conjecture.

II1.2 Calculation of spectrum and eigenvectors

An intuitive spatial representation of C' is depicted in Figure 20. Take two copies C', Cy
of C, cut the edges representing the steps and glue the two copies together as indicated
in Figure 21: the result is a toroidal 6-cage S(C') where the adjacency relation in C' is
retained in S(C): if in S(C) vertices labelled p and ¢ are adjacent then so are vertices
labelled p and ¢ in C. That means that C' is a divisor of S(C') (or, S(C) is cover of C;
for the divisor concept, see [3, Section 2]).

A third representation of C' is obtained by flattening out the labelled toroidal 6—cage

S(C) in the plane, i.e., by representing S(C') by a parallelogram P, spanned by vectors
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Figure 20

Figure 21
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Figure 22

a = (ay,az),b = (b, be), over the hexagonal tessellation, as described in I1.1; the triangles
of C', marked by small circles, correspond to those hexagons whose vertices carry only
three different labels (Figure 22). C' is retrieved by identifying all vertices having the
same label.

We may choose P such that the origin of the coordinate system coincides with the
centre of a hexagon representing a triangle, 77 say, and the z—axis follows a row of
hexagons cutting those edges that correspond to the steps of the ladder connecting T}
with another triangle, T5 say (Figure 22).

This configuration (including the labels) is invariant under a rotation of 180° around
the centre of P which interchanges the images of C7,C5. As a consequence: if distinct

vertices (x1,z9;7) and (a7, x5;7") in P ((x1, z2), (2], 25) € X(A); 7,7 € {1,2}) have the
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(c—s,7)QQ T 0
(50 (25,0)
I T, T T
t — 2c —
2s C = [3,6,5]
Figure 23

same label then

(ZL',I,ZL’IQ) = (a1+b1 —1 —Jfl,CLQ—f—bQ —1 —Ig)
(15) =(—x1—1,—25— 1), mod (a,b)
and 7' =3 — 7.
Let the centre of P have coordinates (¢, 7); note that ¢ depends on the twist ¢: we have

r+2c+t=2sorr+t=2(s—c) (Figure 23, note that ¢ may be negative). The vectors

spanning P are

a=(2s,0), b= (2(c—s),2r)=(—r—t2r),

the corresponding matrix A is

2s
A=

—r—t 2r

;A =|det A| = 4rs.

Note that all entries of A are even, therefore, the basic equations for A have precisely
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four real solutions, namely,

(917 QQ) = (17 1)7 (17 _1)7 (_17 1)7 <_17 _1)

(see 11.2, 2, case 1(B)); as a further consequence, the congruences (15) are, in particular,
valid modulo 2.
All the solutions of the basic congruences and equations are

ki =2r ,
! s } mod 4rs

ko = (r +t)p + 2sv,
(16)
01 = 5127 Q2 = 5227

uw=01,...,2s—1 , v=0,1,...,2r—1

where ep = ¢ 2 (cf. 1.3).

Next we shall explicitly write down a system of 4rs eigenvalues and corresponding
pairwise orthogonal real eigenvectors for C'. The simple idea is this: for every real solution
o and for every pair of non-real solutions g, g of the basic equations we shall construct
an eigenvector e* for S(C') whose components for any two vertices (z1,x9;J), (2, 5; j')
in P with the same label are equal: then the restriction ef, of e* to the vertex set of C
is an eigenvector for C.

Let Vi and Vs be the vertex sets of C' and S(C), respectively; if v is a vector on Vg,
let v denote its restriction to V.

We refer to 1.2, Theorem 1 and I1.3 and begin with the real solutions of the basic
equations.

1) 0 = (1,1) (trivial). Choose p = 1, then a = 0, ¢ = 1, A = 3, e(1;1,1) =
\%(1, 1,...,1) implying that ec(1;1,1) is an eigenvector for C'; A = 3.

For what follows suppose that the distinct vertices (1, x9; j) and (2}, 24; j') in P have
the same label: then (15) holds.

2) o= (1,—1). Choose =2, then « =0, ¢’* =1, A = —1. Let e = e(2;1,—1). By
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Theorem 1 and (15) we have

V2e(ah, o j) = (1) (=1 i

implying that the restriction ec(2;1,—1) of e to Vi is an eigenvector for C, and so is
the real vector —iec(2;1,—1); A = —1.

3) o = (—1,1). Analogously, —iec(2; —1,1) is a real eigenvector for C', A = —1.

4) o = (—1,—-1). Choose =2, then o = §, e'* =i, A = —1.

Let e = e(2; —1,—1). For j' = 1,2 we have

VBe(l i) = (1P (1P ()
= () () (1) = (1) (1) ()

= V2e(x1,29;5) wherej=3—j':

ec(2;—1,—1) is a real eigenvector for C', A = —1.
Note that in these four cases the absolute value of all components of the eigenvectors
. 1
found is the same, namely, o
Now assume g to be non-real. Fix p € {1,2} and consider the pair g, @: for both,

A= (=1)»"1 |1+ 01 + 02 |. By Theorem 1,

e(u; 0) = {01 05> uj(; @) | (w1, 22) € X(A),j € {1,2}}.

Recall from IL3:  u(p; @) = (it e~ i#'e™) where a = jo(@) = jarg(1+ o1 + 02)-

This implies wi(p;0) = uz—;(u;0) = (=1 tu;(u; 0),
u(ue) = (=1)*'u(p;e), thus
e(;0) = (1" 'e(u; 0).
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1 2mi ki+ko 2mi

Let ¢ = HeL T then c/c = 2¢* = ea kith) 0102, C = C0102, C = c0102. The

linear combination

e =ce(u; 0) + (1) 'ce(; 0) = ce(; 0) + ce(u; 0)
is a real eigenvector for A, its norm is ||e*|| = ||e|| = A = 4rs.

We have

!

e*(zh, 7 7") = coi osuy(p; @) + (—1)" 160" 0,y (1; @)

—x1—1 —x2—1 1

= Cc0 0o (=D us_j (s 0) + co1 ™

r1—1 ~ —x2

02 uz_ji(1; 0)

= 0102 - 01" 02" (—1)" uy(p; @) + Cor02 - 07 057w (1; @)
r1 X2

= (=1)"'e- 01" 0™ u;(p; @) + ¢+ 07 052ui(1; 0)

= €*(x1,12;]).

This implies that e} is an eigenvector for C, A = (=1)* 1 |1+ 01+ 02 |, p=1,2.
Every component of the 4rs eigenvectors of C' so found occurs exactly twice as a

component of its parent; as a consequence, as the eigenvectors e, e* of S(C') used are

pairwise orthogonal, so are their offsprings ec, e; whose common norm is half the norm

of their parents, i.e., equal to 2rs. The result:

Theorem 5. Given the parameters r,s,t of a (3,6)—cage C, equations (16) and the pro-
cedure described above allow to write down explicitly the spectrum and a complete system
of orthonormal real eigenvectors for C'.

In particular, the characteristic polynomial of C' is

fe)=A=3)0+1* [ W =1+a+ef)
0€R*(C)

where R*(C) is a complete set of non-real solutions of the basic equations for C (see

equations (16)) such that if o € R*(C) then o ¢ R*(C).
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Zero is an eigenvalue of C' if and only if it is an eigenvalue of S(C) (its multiplicity
is me(0) = $mgcy(0)); this is the case if and only if a1 —ay = 2s = 0 and by — by =

—t — 3r =0, mod 3 (Theorem 4). This yields

Theorem 6. Zero is an eigenvalue of a (3,6)—cage [r, s, t], necessarily of multiplicity 2,

if and only if s =t =0, mod 3.

I11.3 Generalization

The toroidal 6-cages having a (3, 6)—cage as a divisor are all of a special kind: the entries
of the matrices A defining them are all even. However, in [3] the concept of a (0, 3, 6)—cage,
generalizing that of a (3, 6)—cage, is defined, and it turns out that every (0, 3, 6)—cage has
some toroidal 6-cage on twice as many vertices as a cover, and, conversely, every toroidal
6-cage has some (0, 3,6)—cage on half as many vertices as a divisor. This completes and
thus rounds off the investigations. The whole theory developed in the preceding sections
carries over to (0,3, 6)—cages; in particular, Fowler’s conjecture generalized for (0, 3,6)—

cages (Conjecture 7.1 in [3]) can so be proved.

Concluding Remark

The methods developed in Part I immediately generalize to weighted and/or directed
periodic graphs and toroidal graphs in the euclidean space of any dimension. In the case
of directed graphs, the coefficients matrix of the reduced eigenvalue problem (4) need
no longer be Hermitean, thus the geometric multiplicity of an eigenvalue may be smaller
than its algebraic multiplicity.

Mutatis mutandis, the results also hold for the spectra and eigenvectors of graph
matrices other than the adjacency matrix A, e.g., the Laplacean L. = D — A where D is

the degree matrix.
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