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Abstract

We study graphs G = (V,E) containing a long cycle which for given integers a1,
a2, ..., ak ∈ N have an edge cut whose removal results in k components with vertex
sets V1, V2, ..., Vk such that |Vi| ≥ ai for 1 ≤ i ≤ k. Our results closely relate to
problems and recent research in network sharing and network reliability.
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1 Introduction

The problem we study in the present paper receives motivation from at least two sources:
network sharing and network reliability.

For a given graph G = (V, E) of order n one of the problems considered in the context
of network sharing is whether for every k ∈ N and every choice of integers a1, a2, ..., ak ∈ N
with n = a1 + a2 + ... + ak, the vertex set V of G can be partitioned into k sets V =
V1 ∪ V2 ∪ ... ∪ Vk such that |Vi| = ai and the subgraph G[Vi] induced in G by the set Vi

is connected for all 1 ≤ i ≤ k. Graphs having this property were called arbitrarily vertex
decomposable (AVD).

Trees which are AVD have been studied in some detail. No tree of maximum degree
at least five is AVD [2, 10] and while it is NP-complete to decide the AVD property for
general graphs (cf. [1]), the AVD trees homeomorphic to K1,3 or K1,4 can be recognized in
polynomial time [1, 2]. Since graphs with a Hamiltonian path are clearly AVD, Ore type
conditions implying a graphs to be AVD have been studied [13]. AVD graphs in which
almost all vertices lie in a unique and dominating cycle were studied in [4, 11].

The second source of motivation is related to the notion of restricted egde connectivity
which was proposed as a natural measure of network fault-tolerance or reliability [5, 6, 8].
The central problem considered in this context for a given connected graph G = (V, E) and
some integer a ∈ N concerns the existence and minimum cardinality of edge cuts S ⊆ E
whose removal from G results in a graph G− S = (V, E \ S) all components of which are
of order at least a. If such a cut S exists the corresponding graph is called λa-connected
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and if |S| is small the corresponding network can be considered vulnerable because the
removal of few edge can separate large parts. λa-connected graphs and the sizes of the
corresponding edge cuts have received notable attention [3, 9, 14, 15, 16, 17].

Being AVD is clearly an extremely restrictive property. A main reason for this is that the
number of parts k in the desired partitions is arbitrary. Therefore, it seems a natural idea
to study graphs which are arbitrarily vertex decomposable into a bounded number of parts
which corresponds to sharing a network among a bounded number of parties.

For a minimal edge cut S whose removal from a connected graph G results in a graph
all components of which are at least of some given order, the graph G−S will always have
exactly two components. Here it seems natural to consider the existence and minimum
cardinality of edges cuts whose removal creates a given number of components which are
all at least of some given order. Graphs which have such a cut of small cardinality can
easily be split into many large parts.

These last two observations motivate to study graphs G = (V, E) which for given
integers a1, a2, ..., ak ∈ N have an edge cut S whose removal results in k components with
vertex sets V1, V2, ..., Vk such that |Vi| ≥ ai for 1 ≤ i ≤ k. There are beautiful theorems
due to Győri [7] and Lovász [12] which imply that k-connectivity forces the existence of
such an edge cut provided the obvious necessary condition that the order of G is at least
a1 + a2 + ... + ak. We call graphs which have such an edge cut λa1,a2,...,ak

-connected and
study conditions which imply this property for graphs which contain a long cycle. The
structure of these graphs is similar to the graphs studied in [4, 11]. Our main tools are
results about cyclic sums (Theorems 2.1 and 2.5) which we feel to be interesting on their
own right.

2 Results

In our first result we consider the following question: Given n positive integers arranged in
a cycle; which values can we realize as the sum of cyclically consecutive integers? We give
a best-possible condition implying that all values between 1 and the sum of all integers are
realizable up to some specified error as such a cyclic sum.

Theorem 2.1 Let p ∈ N, r ∈ N0 and x0, x1, ..., xp−1 ∈ N. For y ∈ N let Ny = {i | 0 ≤ i ≤
p− 1, xi = y} and ny = |Ny|.

If ∑
y≤r+1

yny ≥ 1 +
∑

y≥r+2

(y − r − 2)ny,

then for all X ∈ {1, 2, ..., x0 + x1 + ... + xp−1} there are indices 0 ≤ i, j ≤ p− 1 such that

X ≤ xi + xi+1 + ... + xi+j ≤ X + r,

where the indices of the xi’s are taken modulo p.
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Proof: We call a term of the form xi +xi+1 + ...+xi+j a cyclic sum. Since
∑

y≤r+1 yny ≥ 1,
some integer between 1 and 1 + r is a cyclic sum.

Now let X ∈ {2 + r, 3 + r, ..., x0 + x1 + ... + xp−1}. We will prove that some integer
between X and X + r is a cyclic sum. For every i ∈

⋃
y≤r+1 Ny let f(i) ∈ {0, 1, ..., p − 1}

be such that

xi + xi+1 + ... + xf(i)−1 ≤ X − 1

and xi + xi+1 + ... + xf(i) ≥ X.

Clearly, f(i) is well-defined for every i ∈
⋃

y≤r+1 Ny.
If xi + xi+1 + ... + xf(i) ≤ X + r, then it is a cyclic sum between X and X + r. Hence

we may assume that xi + xi+1 + ... + xf(i) ≥ X + r + 1 which implies that

xf(i) =
(
xi + xi+1 + ... + xf(i)

)
−

(
xi + xi+1 + ... + xf(i)−1

)
≥ (X + r + 1)− (X − 1) = r + 2

and hence f(i) ∈
⋃

y≥r+2 Ny for every i ∈
⋃

y≤r+1 Ny, i.e.

f :
⋃

y≤r+1

Ny →
⋃

y≥r+2

Ny.

If there are i1, i2, ..., iq ∈
⋃

y≤r+1 Ny and j ∈ Nz for some z ≥ r + 2 with cyclic order
i1, i2, ..., iq, j and f(i1) = f(i2) = ... = f(iq) = j, then

X ≤ (X + r + 1)− xiq

≤ (xiq + xiq+1 + ... + xj)− xiq

= xiq+1 + xiq+2 + ... + xj

≤ (xi1 + xi1+1 + ... + xiq + xiq+1 + ... + xj)− (xi1 + xi2 + ... + xiq)

= (xi1 + xi1+1 + ... + xj−1) + z − (xi1 + xi2 + ... + xiq)

≤ (X − 1) + z − (xi1 + xi2 + ... + xiq).

If xi1 + xi2 + ... + xiq ≥ z − r − 1, then xiq+1 + xiq+2 + ... + xj is a cylic sum between X
and X + r. Hence xi1 + xi2 + ... + xiq ≤ z − r − 2, i.e. for every j ∈ Nz with z ≥ r + 2
the sum of the xi over the preimages i of j under f is at most z − r − 2. This implies the
contradiction ∑

y≤r+1

yny ≤
∑

y≥r+2

(y − r − 2)ny

and the proof is complete. 2

The choice x0 = x1 = ... = xp−1 = r+2 clearly implies that the condition given in Theorem
2.1 is best-possible.

If we want all possible values to be realized exactly as a cyclic sum, the condition from
Theorem 2.1 can actually be simplified as follows.
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Corollary 2.2 If p, x0, x1, ..., xp−1 ∈ N and

x0 + x1 + ... + xp−1 ≤ 2p− 1,

then for all X ∈ {1, 2, ..., x0 + x1 + ... + xp−1} there are indices 0 ≤ i, j ≤ p− 1 such that

X = xi + xi+1 + ... + xi+j,

where the indices of the xi’s are taken modulo p.

Proof: For y ∈ N let Ny = {i | 0 ≤ i ≤ p − 1, xi = y} and ny = |Ny|. The condition
x0 + x1 + ... + xp−1 ≤ 2p − 1 is easily seen to be equivalent to the condition n1 ≥ 1 +∑

y≥2(y − 2)ny and the result follows from Theorem 2.1 for r = 0. 2

From Theorem 2.1 we can derive a sufficient condition for a graph of large enough order
containing a cycle long enough to be λa,b-connected. Note that graphs corresponding to
the example given immediately after the proof of Theorem 2.1 show that the following
result is best-possible.

Corollary 2.3 Let a, b, p ∈ N and r ∈ N0 with p ≥ 3 and a ≤ b. Let G = (V, E) be a
connected graph of order n ≥ a+ b+ r which contains a cycle C of length p. Let G−E(C)
contain exactly ni components of order i for i ∈ N.

If
∑

y≤r+1 yny ≥ 1 +
∑

y≥r+2(y − r − 2)ny, then G is λa,b-connected.

Proof: By Theorem 2.1, the graph G is λa′,n−a′-connected for some a ≤ a′ ≤ a + r. Since
n− a′ ≥ n− a− r ≥ b, the desired result follows. 2

Similarly, we can derive a graph-theoretic consequence from Corollary 2.2.

Corollary 2.4 Let a, b, p ∈ N with p ≥ 3 and a + b ≤ 2p− 1. If G = (V, E) is a connected
graph of order n ≥ a + b which contains a cycle of order p, then G is λa,b-connected.

Proof: Clearly, the graph G has a spanning subgraph G′ with a unique cycle C of order p.
If p > a + b, then G is obviously λa,b-connected. Hence we may assume that p ≤ a + b.
By iteratively deleting endvertices from G′, we obtain a connected subgraph G′′ of order
exactly a+ b which contains C. Corollary 2.2 implies that G′′ is λa,b-connected. Therefore,
also G is λa,b-connected. 2

Now we consider the problem to split a graph with a long cycle into more than two large
parts. As before, the main tool is a result about cyclic sums. While Theorem 2.1 was
best-possible, we were not able to obtain a similarly strong result in this situation.

Theorem 2.5 Let k, p ∈ N, r ∈ N0 and x0, x1, ..., xp−1 ∈ N. For y ∈ N let Ny = {i | 0 ≤
i ≤ p− 1, xi = y} and ny = |Ny|.
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If ∑
y≤r+1

yny ≥ 1 + k
∑

y≥r+2

(y − 1)ny,

then for all S1, S2, ..., Sk ∈ N with

1 ≤ S1 < S2 < ... < Sk ≤ x0 + x1 + ... + xp−1

there exist indices 0 ≤ i0, i1, i2, ..., ik ≤ p− 1 such that

Sj ≤ xi0 + xi0+1 + ... + xi0+ij ≤ Sj + r

for all 1 ≤ j ≤ k, where the indices of the xi’s are taken modulo p.

Proof: Let k, p, x0, x1, ..., xp−1, Ny, ny be as in the statement of the result. Furthermore, let∑
y≤r+1

yny ≥ 1 + k
∑

y≥r+2

(y − 1)ny.

Let S1, S2, ..., Sk ∈ N be such that 1 ≤ S1 < S2 < ... < Sk ≤ x0 + x1 + ... + xp−1.
For contradiction, we assume that indices 0 ≤ i0, i1, i2, ..., ik ≤ p− 1 with

Sj ≤ xi0 + xi0+1 + ... + xi0+ij ≤ Sj + r

for all 1 ≤ j ≤ k do not exist. For every i ∈
⋃

y≤r+1 Ny let l(i) ∈ {1, 2, ..., k} be minimum
such that there is no index 0 ≤ j ≤ p− 1 with

Sl(i) ≤ xi + xi+1 + ... + xi+j ≤ Sl(i) + r.

Furthermore, let f(i) ∈ {0, 1, ..., p− 1} be such that

xi + xi+1 + ... + xf(i)−1 ≤ Sl(i) − 1

and xi + xi+1 + ... + xf(i) ≥ Sl(i).

Clearly, l(i) and f(i) are well-defined for every i ∈
⋃

y≤r+1 Ny and xi + xi+1 + ... + xf(i) ≥
Sl(i) + r + 1 which implies that f(i) ∈

⋃
y≥r+2 Ny.

If there are i1, i2, ..., iq ∈ N1, l ∈ {1, 2, ..., k} and j ∈ Nz for some z ≥ 2 with cyclic
order i1, i2, ..., iq, j, l(i1) = l(i2) = ... = l(iq) = l and f(i1) = f(i2) = ... = f(iq) = j, then

Sl ≤ (Sl + r + 1)− xiq

≤ (xiq + xiq+1 + ... + xj)− xiq

= xiq+1 + xiq+2 + ... + xj

≤ (xi1 + xi1+1 + ... + xiq + xiq+1 + ... + xj)− (xi1 + xi2 + ... + xiq)

= (xi1 + xi1+1 + ... + xj−1) + z − (xi1 + xi2 + ... + xiq)

≤ (Sl − 1) + z − (xi1 + xi2 + ... + xiq)

5



which implies (xi1 + xi2 + ... + xiq) ≤ z− 1. (Note that we cannot conclude an upper bound
of z − r − 2 as in the proof of Theorem 2.1 because xiq+1 + xiq+2 + ... + xj ≤ X + r would
not imply a contradiction.)

Therefore for every tupel (l, j) ∈ {1, 2, ..., k} × Nz for some z ≥ 2 the sum of the xi

over all i with (l(i), f(i)) = (l, j) is at most z − 1. This implies the contradiction∑
y≤r+1

yny ≤ k
∑

y≥r+2

(y − 1)ny

and the proof is complete. 2

Again, we derive a result about exact realizations.

Corollary 2.6 Let k, p ∈ N and x0, x1, ..., xp−1 ∈ N.
If

x0 + x1 + ... + xp−1 <
k + 2

k + 1
p,

then for all S1, S2, ..., Sk ∈ N with

1 ≤ S1 < S2 < ... < Sk ≤ x0 + x1 + ... + xp−1

there exist indices 0 ≤ i0, i1, i2, ..., ik ≤ p− 1 such that

Sj = xi0 + xi0+1 + ... + xi0+ij

for all 1 ≤ j ≤ k, where the indices of the xi’s are taken modulo p.

Proof: Since the average value of the xi is less than k+2
k+1

, there are more than (k+1)y−(k+2)
different xi’s equal to 1 for every xj equal to y ≥ 2. Since (k + 1)y− (k + 2) ≥ k(y− 1) for
y ≥ 2, the result follows from Theorem 2.5 for r = 0. 2

We close with a corollary for graphs containing a long cycle.

Corollary 2.7 Let k, p, a1, a2, ..., ak ∈ N with k, p ≥ 2 and a1 + a2 + ... + ak < k+2
k+1

p. If
G = (V, E) is a connected graph of order n ≥ a1 + a2 + ... + ak which contains a cycle of
order p, then G is λa1,a2,...,ak

-connected.

Numerous questions motivated by our results are obvious and we just pose two: What
about λa1,a2,...,ak

-connected graphs which are neither highly connected nor have long cycles
or other nicely structures subgraphs along which the desired components can be cut? What
is a best-possible version of Theorem 2.5?
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