Technische Universität Ilmenau Institut für Mathematik

Preprint No. M 07/15
The independence number in graphs of maximum degree three

Harant, Jochen; Henning, Michael A.; Rautenbach, Dieter; Schiermeyer, Ingo

The Independence Number in Graphs of Maximum Degree Three

Jochen Harant ${ }^{1}$
Michael A. Henning ${ }^{2}$
Dieter Rautenbach ${ }^{1}$
and
Ingo Schiermeyer ${ }^{3}$
${ }^{1}$ Institut für Mathematik, TU Ilmenau, Postfach 100565, D-98684 Ilmenau, Germany, email: jochen.harant@tu-ilmenau.de, dieter.rautenbach@tu-ilmenau.de
${ }^{2}$ School of Mathematical Sciences, University of Kwazulu-Natal, Pietermaritzburg, 3209 South Africa, email: henning@ukzn.ac.za
${ }^{3}$ Institut für Diskrete Mathematik und Algebra, Technische Universität Bergakademie Freiberg, 09596 Freiberg, Germany, email: schierme@math.tu-freiberg.de

Abstract

We prove that a K_{4}-free graph G of order n, size m and maximum degree at most three has an independent set of cardinality at least $\frac{1}{7}(4 n-m-\lambda-t r)$ where λ counts the number of components of G whose blocks are each either isomorphic to one of four specific graphs or edges between two of these four specific graphs and $t r$ is the maximum number of vertex-disjoint triangles in G. Our result generalizes a bound due to Heckman and Thomas (A New Proof of the Independence Ratio of Triangle-Free Cubic Graphs, Discrete Math. 233 (2001), 233-237).

Keywords. independence; triangle; cubic graph

We consider finite simple and undirected graphs $G=(V, E)$ of order $n(G)=|V|$ and size $m(G)=|E|$. The independence number $\alpha(G)$ of G is defined as the maximum cardinality of a set of pairwise non-adjacent vertices which is called an independent set.

Our aim in the present note is to extend a result of Heckman and Thomas [6] (cf. Theorem 1 below) about the independence number of triangle-free graphs of maximum degree at most three to the case of graphs which may contain triangles. With their very insightful and elegant proof, Heckman and Thomas also provide a short proof for the result conjectured by Albertson, Bollobás and Tucker [1] and originally proved by Staton [9] that every triangle-free graph G of maximum degree at most three has an independent set of cardinality at least $\frac{5}{14} n(G)$ (cf. also [7]). (Note that there are exactly two connected graphs for which this bound is best-possible $[2,3,5,8]$ and that Fraughnaugh and Locke [4] proved that every cubic triangle-free graph G has an independent set of cardinality at least $\frac{11}{30} n(G)-\frac{2}{15}$ which implies that, asymptotically, $\frac{5}{14}$ is not the correct fraction.)

In order to formulate the result of Heckman and Thomas and our extension of it we need some definitions.

Figure 1. Difficult blocks.
A block of a graph is called difficult if it is isomorphic to one of the four graphs K_{3}, C_{5}, K_{4}^{*} or C_{5}^{*} in Figure 1, i.e., it is either a triangle, or a cycle of length five, or arises by subdividing two independent edges in a K_{4} twice, or arises by adding a vertex to a C_{5} and joining it to three consecutive vertices of the C_{5}. A connected graph is called bad if its blocks are either difficult or are edges between difficult blocks.

For a graph G we denote by $\lambda(G)$ the number of components of G which are bad and by $\operatorname{tr}(G)$ the maximum number of vertex-disjoint triangles in G. Note that for triangle-free graphs G our definition of $\lambda(G)$ coincides with the one given by Heckman and Thomas [6]. Furthermore, note that $\operatorname{tr}(G)$ can be computed efficiently for a graph G of maximum degree at most three as it equals exactly the number of non-trivial components of the graph formed by the edges of G which lie in a triangle of G.

Theorem 1 (Heckman and Thomas [6]) Every triangle-free graph G of maximum degree at most three has an independent set of cardinality at least $\frac{1}{7}(4 n(G)-m(G)-\lambda(G))$.

Since every K_{4} in a graph of maximum degree at most three must form a component and contributes exactly one to the independence number of the graph, we can restrict our attention to graphs that do not contain K_{4} 's.

Theorem 2 Every K_{4}-free graph G of maximum degree at most three has an independent set of cardinality at least $\frac{1}{7}(4 n(G)-m(G)-\lambda(G)-\operatorname{tr}(G))$.

Proof: For a graph G we denote the quantity $4 n(G)-m(G)-\lambda(G)-\operatorname{tr}(G)$ by $\psi(G)$. We wish to show that $7 \alpha(G) \geq \psi(G)$. For contradiction, we assume that $G=(V, E)$ is a counterexample to the statement such that $\operatorname{tr}(G)$ is smallest possible and subject to this condition the order $n(G)$ of G is smallest possible. If $\operatorname{tr}(G)=0$, then the result follows immediately from Theorem 1. Therefore, we may assume $\operatorname{tr}(G) \geq 1$. Since $\alpha(G)$ and $\psi(G)$ are additive with respect to the components of G, we may assume that G is connected. Furthermore, we may clearly assume that $n(G) \geq 4$.

Claim 1. Every vertex in a triangle has degree three.
Proof of Claim 1: Let x, y and z be the vertices of a triangle. We assume that $d_{G}(x)=2$. Clearly, the graph $G^{\prime}=G[V \backslash\{x, y, z\}]$ is no counterexample, i.e., $7 \alpha\left(G^{\prime}\right) \geq \psi\left(G^{\prime}\right)$. Since for every independent set I^{\prime} of G^{\prime}, the set $I^{\prime} \cup\{x\}$ is an independent set of G, we have $\alpha(G) \geq \alpha\left(G^{\prime}\right)+1$. The triangle $x y z$ is vertex-disjoint from all triangles in G^{\prime}, and so $\operatorname{tr}(G) \geq \operatorname{tr}\left(G^{\prime}\right)+1$.

Suppose $\min \left\{d_{G}(y), d_{G}(z)\right\}=2$. Then $\max \left\{d_{G}(y), d_{G}(z)\right\}=3$, since G is not just a triangle. Furthermore, by the definition of a bad graph, we have $\lambda\left(G^{\prime}\right)=\lambda(G)$ and obtain

$$
\begin{aligned}
7 \alpha(G) & \geq 7 \alpha\left(G^{\prime}\right)+7 \\
& \geq \psi\left(G^{\prime}\right)+7 \\
& =4 n\left(G^{\prime}\right)-m\left(G^{\prime}\right)-\lambda\left(G^{\prime}\right)-\operatorname{tr}\left(G^{\prime}\right)+7 \\
& \geq 4(n(G)-3)-(m(G)-4)-\lambda(G)-(\operatorname{tr}(G)-1)+7 \\
& \geq \psi(G)-12+4+1+7 \\
& =\psi(G)
\end{aligned}
$$

which implies a contradiction. Therefore, we may assume $d_{G}(y)=d_{G}(z)=3$. Let $N_{G}(y)=$ $\left\{x, y^{\prime}, z\right\}$ and $N_{G}(z)=\left\{x, y, z^{\prime}\right\}$. Regardless of whether $y^{\prime}=z^{\prime}$ or not, we have $\operatorname{tr}(G) \geq$ $\operatorname{tr}\left(G^{\prime}\right)+1$.

If $y^{\prime}=z^{\prime}$, then G^{\prime} is connected, y^{\prime} is a vertex of degree one in G^{\prime} and thus $\lambda\left(G^{\prime}\right)=$ $\lambda(G)=0$. If $y^{\prime} \neq z^{\prime}$ and $\lambda\left(G^{\prime}\right) \geq 2$, then $\lambda\left(G^{\prime}\right)=2$ and G is a bad graph itself, i.e., $\lambda(G)=1$. Therefore, in both cases $\lambda\left(G^{\prime}\right) \leq \lambda(G)+1$ and we obtain

$$
\begin{aligned}
7 \alpha(G) & \geq 7 \alpha\left(G^{\prime}\right)+7 \\
& \geq \psi\left(G^{\prime}\right)+7 \\
& =4 n\left(G^{\prime}\right)-m\left(G^{\prime}\right)-\lambda\left(G^{\prime}\right)-\operatorname{tr}\left(G^{\prime}\right)+7 \\
& \geq 4(n(G)-3)-(m(G)-5)-(\lambda(G)+1)-(\operatorname{tr}(G)-1)+7 \\
& \geq \psi(G)-12+5-1+1+7 \\
& =\psi(G)
\end{aligned}
$$

which implies a contradiction and the proof of the claim is complete.

Claim 2. No two triangles of G share an edge, i.e., G does not contain $K_{4}-e$.
Proof of Claim 2: Let x, y, y^{\prime} and z be such that $x y y^{\prime}$ and $y y^{\prime} z$ are triangles. Let $G^{\prime}=G\left[V \backslash\left\{y^{\prime}\right\}\right]$. Clearly, $\alpha(G) \geq \alpha\left(G^{\prime}\right), \operatorname{tr}(G) \geq \operatorname{tr}\left(G^{\prime}\right)+1$ and G^{\prime} is connected. Note that, by Claim 1, both x and z have degree 3 in G and thus x, y and z are all of degree 2 in G^{\prime}.

If G^{\prime} is bad, then x, y and z are three consecutive vertices in a block of G^{\prime} isomorphic to C_{5}. Since the corresponding block in G is isomorphic to C_{5}^{*}, the graph G is also bad. Conversely, if G is bad, then x, y, y^{\prime} and z belong to a block of G isomorphic to C_{5}^{*}. Since the corresponding block in G^{\prime} is isomorphic to C_{5}, the graph G^{\prime} is also bad.

Therefore, $\lambda\left(G^{\prime}\right)=\lambda(G)$ and we obtain

$$
\begin{aligned}
7 \alpha(G) & \geq 7 \alpha\left(G^{\prime}\right) \\
& \geq \psi\left(G^{\prime}\right) \\
& =4 n\left(G^{\prime}\right)-m\left(G^{\prime}\right)-\lambda\left(G^{\prime}\right)-\operatorname{tr}\left(G^{\prime}\right) \\
& \geq 4(n(G)-1)-(m(G)-3)-\lambda(G)-(\operatorname{tr}(G)-1) \\
& \geq \psi(G)-4+3+1 \\
& =\psi(G),
\end{aligned}
$$

which implies a contradiction and the proof of the claim is complete.
Note that, by Claim 2, adding an edge to a subgraph of G cannot create a K_{4}.
Let $x y z$ be a triangle in G. By Claim 1, we have $N_{G}(x)=\left\{x^{\prime}, y, z\right\}, N_{G}(y)=\left\{x, y^{\prime}, z\right\}$ and $N_{G}(z)=\left\{x, y, z^{\prime}\right\}$ and, by Claim 2, x^{\prime}, y^{\prime} and z^{\prime} are all distinct. Let $G^{\prime}=G[V \backslash$ $\{x, y, z\}]$.

Claim 3. The set $\left\{x^{\prime}, y^{\prime}, z^{\prime}\right\}$ is independent.
Proof of Claim 3: For contradiction, we assume that $x^{\prime} y^{\prime} \in E$. For every independent set I^{\prime} of G^{\prime} either $I^{\prime} \cup\{x\}$ or $I^{\prime} \cup\{y\}$ is an independent set of G which implies $\alpha(G) \geq \alpha\left(G^{\prime}\right)+1$. Since G^{\prime} has at most two components, we have $\lambda\left(G^{\prime}\right) \leq \lambda(G)+2$. Furthermore, $n\left(G^{\prime}\right)=$ $n(G)-3, m\left(G^{\prime}\right)=m(G)-6, \operatorname{tr}(G) \geq \operatorname{tr}\left(G^{\prime}\right)+1$ and we obtain a similar contradiction as before which completes the proof of the claim.

Claim 4. There are two edges e and f in $\left\{x^{\prime} y^{\prime}, y^{\prime} z^{\prime}, x^{\prime} z^{\prime}\right\}$ such that $\lambda\left(G^{\prime}+e\right) \leq \lambda(G)+1$ and $\lambda\left(G^{\prime}+f\right) \leq \lambda(G)+1$.

Proof of Claim 4: For contradiction, we assume that $\lambda\left(G^{\prime}+x^{\prime} y^{\prime}\right) \geq \lambda(G)+2$. This implies that G^{\prime} consists exactly of two bad components and that G itself is not a bad graph. Hence $x^{\prime} y^{\prime}$ can not be an edge between two difficult blocks, since otherwise G would be a bad graph. Thus both $G^{\prime}+x^{\prime} z^{\prime}$ and $G^{\prime}+y^{\prime} z^{\prime}$ are connected and the claim follows for $\{e, f\}=\left\{x^{\prime} z^{\prime}, y^{\prime} z^{\prime}\right\}$.

Claim 5. If $\lambda\left(G^{\prime}+e\right)=\lambda\left(G^{\prime}+f\right)=\lambda(G)+1$, then either $\operatorname{tr}\left(G^{\prime}+e\right) \leq \operatorname{tr}(G)-1$ or $\operatorname{tr}\left(G^{\prime}+f\right) \leq \operatorname{tr}(G)-1$.

Proof of Claim 5: We may assume that $e=x^{\prime} z^{\prime}$ and $f=y^{\prime} z^{\prime}$. For contradiction, we assume that $\operatorname{tr}\left(G^{\prime}+e\right), \operatorname{tr}\left(G^{\prime}+f\right) \geq \operatorname{tr}(G)$. This implies that x^{\prime} and z^{\prime} have a common neighbour $x^{\prime \prime}$ in G^{\prime} and that y^{\prime} and z^{\prime} have a common neighbour $y^{\prime \prime}$ in G^{\prime}. If possible, we choose $x^{\prime \prime}=y^{\prime \prime}$. Clearly, this implies that G^{\prime} is connected. Furthermore, since the vertices $x, y, z, x^{\prime}, y^{\prime}, z^{\prime}, x^{\prime \prime}, y^{\prime \prime}$ all lie in one block of G which cannot be a bad block, the graph G can not be a bad graph. Since $\lambda\left(G^{\prime}+e\right)=\lambda\left(G^{\prime}+f\right)=\lambda(G)+1$, both $G^{\prime}+e$ and $G^{\prime}+f$ must be bad graphs.

If the triangle $x^{\prime} z^{\prime} x^{\prime \prime}$ forms a difficult block in $G^{\prime}+e$, the edge $x^{\prime} x^{\prime \prime}$ forms a block in $G^{\prime}+f$ which does not connect two difficult blocks. This implies that $G^{\prime}+f$ can not be bad which is a contradiction. Therefore, by symmetry, we may assume that the triangle $x^{\prime} z^{\prime} x^{\prime \prime}$ is contained in a difficult block B_{e} in $G^{\prime}+e$ which is isomorphic to C_{5}^{*} and that also the triangle $y^{\prime} z^{\prime} y^{\prime \prime}$ is contained in a difficult block B_{f} in $G^{\prime}+f$ which is isomorphic to C_{5}^{*}.

Figure 2
First, we assume $x^{\prime \prime}=y^{\prime \prime}$. If $e=x^{\prime} z^{\prime}$ is not the edge shared by the two triangles of B_{e}, then either x^{\prime} and $x^{\prime \prime}$ or z^{\prime} and $x^{\prime \prime}$ have a common neighbour in G^{\prime}. This implies that y^{\prime} is adjacent to either x^{\prime} or z^{\prime} which contradicts Claim 3. Hence the edge $e=x^{\prime} z^{\prime}$ must be the edge shared by the two triangles of B_{e}. Now, G^{\prime} contains the configuration shown in Figure 2. Clearly, all six vertices in Figure 2 belong to one block of $G^{\prime}+f$ which can not be a difficult block. Therefore, $G^{\prime}+f$ can not be a bad graph which is a contradiction.

Next, we assume that $x^{\prime \prime} \neq y^{\prime \prime}$. By the choice of $x^{\prime \prime}$ and $y^{\prime \prime}$, this implies that no vertex in G^{\prime} is adjacent to all of x^{\prime}, y^{\prime} and z^{\prime}. If $e=x^{\prime} z^{\prime}$ is the edge shared by the two triangles of B_{e}, then x^{\prime} and z^{\prime} must have a common neighbour in G^{\prime} different from $x^{\prime \prime}$. This implies that $y^{\prime \prime}$ is adjacent to all of x^{\prime}, y^{\prime} and z^{\prime} which is a contradiction. Hence $x^{\prime} z^{\prime}$ is not the edge shared by the two triangles of B_{e}. If $x^{\prime} x^{\prime \prime}$ is the edge shared by the two triangles of B_{e}, then the block of $G^{\prime}+f$ which contains x^{\prime} contains two vertex-disjoint triangles. Therefore, $G^{\prime}+f$ can not be a bad graph which is a contradiction. We obtain that $z^{\prime} x^{\prime \prime}$ is the edge shared by the two triangles of B_{e} which implies the existence of a vertex $z^{\prime \prime}$ such that G contains the configuration shown in Figure 3.

Figure 3
Since $G\left[\left\{x, y, z, x^{\prime}, y^{\prime}, z^{\prime}, x^{\prime \prime}, y^{\prime \prime}, z^{\prime \prime}\right\}\right]$ is not a counterexample, the vertex $z^{\prime \prime}$ has degree three. Now the graph $G^{\prime \prime}=G\left[V \backslash\left\{x, y, z, x^{\prime}, y^{\prime}, z^{\prime}, x^{\prime \prime}, y^{\prime \prime}, z^{\prime \prime}\right\}\right]$ satisfies $\alpha(G) \geq \alpha\left(G^{\prime \prime}\right)+3, n(G)=$ $n\left(G^{\prime \prime}\right)+9, m(G)=m\left(G^{\prime \prime}\right)+14, \lambda\left(G^{\prime \prime}\right) \leq \lambda(G)+1$ and $\operatorname{tr}(G) \geq \operatorname{tr}\left(G^{\prime \prime}\right)+2$ which implies a similar contradiction as before and completes the proof of the claim.

Note that $\operatorname{tr}\left(G^{\prime}+x^{\prime} z^{\prime}\right) \leq \operatorname{tr}\left(G^{\prime}\right)+1=\operatorname{tr}(G)$. Therefore, by Claims 4 and 5 , we can assume that either $\lambda\left(G^{\prime}+x^{\prime} z^{\prime}\right) \leq \lambda(G)$ and $\operatorname{tr}\left(G^{\prime}+x^{\prime} z^{\prime}\right) \leq \operatorname{tr}(G)$ or $\lambda\left(G^{\prime}+x^{\prime} z^{\prime}\right)=\lambda(G)+1$ and $\operatorname{tr}\left(G^{\prime}+x^{\prime} z^{\prime}\right) \leq \operatorname{tr}(G)-1$ both of which imply that $\lambda\left(G^{\prime}+x^{\prime} z^{\prime}\right)+\operatorname{tr}\left(G^{\prime}+x^{\prime} z^{\prime}\right) \leq \lambda(G)+\operatorname{tr}(G)$. Similarly as above, for every independent set I^{\prime} of $G^{\prime}+x^{\prime} z^{\prime}$ either $I^{\prime} \cup\{x\}$ or $I^{\prime} \cup\{z\}$ is an independent set of G which implies $\alpha(G) \geq \alpha\left(G^{\prime}\right)+1$. Since $n\left(G^{\prime}+e\right)=n(G)-3$ and $m\left(G^{\prime}+e\right)=m(G)-5$, we obtain a similar contradiction as above which completes the proof.

Note that Theorem 2 is best-possible for all bad graphs, all graphs which arise by adding an edge to a bad graph and further graphs such as for instance the graph in Figure 4.

Figure 4
In [5] Heckman characterized the extremal graphs for Theorem 1. Similarly, it might be an interesting yet challenging task to characterize the extremal graphs for Theorem 2.

References

[1] M. Albertson, B. Bollobás, and S. Tucker, The independence ratio and the maximum degree of a graph, Congressus Numerantium 17 (1976),43-50.
[2] B. Bajnok and G. Brinkmann, On the Independence Number of Triangle-Free Graphs with Maximum Degree Three, J. Combin. Math. Combin. Comput. 26 (1998), 237-254.
[3] S. Fajtlowicz, On the size of independent sets in graphs, Congressus Numerantium 21 (1978), 269-274.
[4] K.L. Fraughnaugh and S.C. Locke, 11/30 (Finding Large Independent Sets in Connected Triangle-Free 3-Regular Graphs), J. Combin. Theory, Ser. B 65 (1995), 51-72.
[5] C.C. Heckman, On the Tightness of the 5/14 Independence Ratio, manuscript 2007.
[6] C.C. Heckman and R. Thomas, A New Proof of the Independence Ratio of Triangle-Free Cubic Graphs, Discrete Math. 233 (2001), 233-237.
[7] K.F. Jones, Size and independendence in triangle-free graphs with maximum degree three, J. Graph Theory 14 (1990), 525-535.
[8] S.C. Locke, Bipartite Density and the Independence Ratio, J. Graph Theory 10 (1986), 47-53.
[9] W. Staton, Some Ramsey-type numbers and the independence ratio, Trans. Amer. Math. Soc. 256 (1979), 353-370.

