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Abstract. We prove that a K4-free graph G of order n, size m and maximum degree
at most three has an independent set of cardinality at least 1

7
(4n−m− λ− tr) where λ

counts the number of components of G whose blocks are each either isomorphic to one
of four specific graphs or edges between two of these four specific graphs and tr is the
maximum number of vertex-disjoint triangles in G. Our result generalizes a bound due to
Heckman and Thomas (A New Proof of the Independence Ratio of Triangle-Free Cubic
Graphs, Discrete Math. 233 (2001), 233-237).

Keywords. independence; triangle; cubic graph

1



We consider finite simple and undirected graphs G = (V,E) of order n(G) = |V | and size
m(G) = |E|. The independence number α(G) of G is defined as the maximum cardinality
of a set of pairwise non-adjacent vertices which is called an independent set.

Our aim in the present note is to extend a result of Heckman and Thomas [6] (cf.
Theorem 1 below) about the independence number of triangle-free graphs of maximum
degree at most three to the case of graphs which may contain triangles. With their very
insightful and elegant proof, Heckman and Thomas also provide a short proof for the result
conjectured by Albertson, Bollobás and Tucker [1] and originally proved by Staton [9] that
every triangle-free graph G of maximum degree at most three has an independent set of
cardinality at least 5

14
n(G) (cf. also [7]). (Note that there are exactly two connected

graphs for which this bound is best-possible [2, 3, 5, 8] and that Fraughnaugh and Locke
[4] proved that every cubic triangle-free graph G has an independent set of cardinality at
least 11

30
n(G)− 2

15
which implies that, asymptotically, 5

14
is not the correct fraction.)

In order to formulate the result of Heckman and Thomas and our extension of it we
need some definitions.
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Figure 1. Difficult blocks.

A block of a graph is called difficult if it is isomorphic to one of the four graphs K3, C5,
K∗

4 or C∗
5 in Figure 1, i.e., it is either a triangle, or a cycle of length five, or arises by

subdividing two independent edges in a K4 twice, or arises by adding a vertex to a C5 and
joining it to three consecutive vertices of the C5. A connected graph is called bad if its
blocks are either difficult or are edges between difficult blocks.

For a graph G we denote by λ(G) the number of components of G which are bad and
by tr(G) the maximum number of vertex-disjoint triangles in G. Note that for triangle-free
graphs G our definition of λ(G) coincides with the one given by Heckman and Thomas
[6]. Furthermore, note that tr(G) can be computed efficiently for a graph G of maximum
degree at most three as it equals exactly the number of non-trivial components of the graph
formed by the edges of G which lie in a triangle of G.

Theorem 1 (Heckman and Thomas [6]) Every triangle-free graph G of maximum de-
gree at most three has an independent set of cardinality at least 1

7
(4n(G)−m(G)− λ(G)).

Since every K4 in a graph of maximum degree at most three must form a component
and contributes exactly one to the independence number of the graph, we can restrict our
attention to graphs that do not contain K4’s.
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Theorem 2 Every K4-free graph G of maximum degree at most three has an independent
set of cardinality at least 1

7
(4n(G)−m(G)− λ(G)− tr(G)).

Proof: For a graph G we denote the quantity 4n(G) − m(G) − λ(G) − tr(G) by ψ(G).
We wish to show that 7α(G) ≥ ψ(G). For contradiction, we assume that G = (V,E) is a
counterexample to the statement such that tr(G) is smallest possible and subject to this
condition the order n(G) of G is smallest possible. If tr(G) = 0, then the result follows
immediately from Theorem 1. Therefore, we may assume tr(G) ≥ 1. Since α(G) and ψ(G)
are additive with respect to the components of G, we may assume that G is connected.
Furthermore, we may clearly assume that n(G) ≥ 4.

Claim 1. Every vertex in a triangle has degree three.

Proof of Claim 1: Let x, y and z be the vertices of a triangle. We assume that dG(x) = 2.
Clearly, the graph G′ = G[V \ {x, y, z}] is no counterexample, i.e., 7α(G′) ≥ ψ(G′). Since
for every independent set I ′ of G′, the set I ′ ∪ {x} is an independent set of G, we have
α(G) ≥ α(G′) + 1. The triangle xyz is vertex-disjoint from all triangles in G′, and so
tr(G) ≥ tr(G′) + 1.

Suppose min{dG(y), dG(z)} = 2. Then max{dG(y), dG(z)} = 3, since G is not just a
triangle. Furthermore, by the definition of a bad graph, we have λ(G′) = λ(G) and obtain

7α(G) ≥ 7α(G′) + 7

≥ ψ(G′) + 7

= 4n(G′)−m(G′)− λ(G′)− tr(G′) + 7

≥ 4(n(G)− 3)− (m(G)− 4)− λ(G)− (tr(G)− 1) + 7

≥ ψ(G)− 12 + 4 + 1 + 7

= ψ(G),

which implies a contradiction. Therefore, we may assume dG(y) = dG(z) = 3. Let NG(y) =
{x, y′, z} and NG(z) = {x, y, z′}. Regardless of whether y′ = z′ or not, we have tr(G) ≥
tr(G′) + 1.

If y′ = z′, then G′ is connected, y′ is a vertex of degree one in G′ and thus λ(G′) =
λ(G) = 0. If y′ 6= z′ and λ(G′) ≥ 2, then λ(G′) = 2 and G is a bad graph itself, i.e.,
λ(G) = 1. Therefore, in both cases λ(G′) ≤ λ(G) + 1 and we obtain

7α(G) ≥ 7α(G′) + 7

≥ ψ(G′) + 7

= 4n(G′)−m(G′)− λ(G′)− tr(G′) + 7

≥ 4(n(G)− 3)− (m(G)− 5)− (λ(G) + 1)− (tr(G)− 1) + 7

≥ ψ(G)− 12 + 5− 1 + 1 + 7

= ψ(G),

which implies a contradiction and the proof of the claim is complete. �
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Claim 2. No two triangles of G share an edge, i.e., G does not contain K4 − e.

Proof of Claim 2: Let x, y, y′ and z be such that xyy′ and yy′z are triangles. Let
G′ = G[V \ {y′}]. Clearly, α(G) ≥ α(G′), tr(G) ≥ tr(G′) + 1 and G′ is connected. Note
that, by Claim 1, both x and z have degree 3 in G and thus x, y and z are all of degree 2
in G′.

If G′ is bad, then x, y and z are three consecutive vertices in a block of G′ isomorphic
to C5. Since the corresponding block in G is isomorphic to C∗

5 , the graph G is also bad.
Conversely, if G is bad, then x, y, y′ and z belong to a block of G isomorphic to C∗

5 . Since
the corresponding block in G′ is isomorphic to C5, the graph G′ is also bad.

Therefore, λ(G′) = λ(G) and we obtain

7α(G) ≥ 7α(G′)

≥ ψ(G′)

= 4n(G′)−m(G′)− λ(G′)− tr(G′)

≥ 4(n(G)− 1)− (m(G)− 3)− λ(G)− (tr(G)− 1)

≥ ψ(G)− 4 + 3 + 1

= ψ(G),

which implies a contradiction and the proof of the claim is complete. �

Note that, by Claim 2, adding an edge to a subgraph of G cannot create a K4.
Let xyz be a triangle in G. By Claim 1, we have NG(x) = {x′, y, z}, NG(y) = {x, y′, z}

and NG(z) = {x, y, z′} and, by Claim 2, x′, y′ and z′ are all distinct. Let G′ = G[V \
{x, y, z}].

Claim 3. The set {x′, y′, z′} is independent.

Proof of Claim 3: For contradiction, we assume that x′y′ ∈ E. For every independent set I ′

of G′ either I ′∪{x} or I ′∪{y} is an independent set of G which implies α(G) ≥ α(G′)+1.
Since G′ has at most two components, we have λ(G′) ≤ λ(G) + 2. Furthermore, n(G′) =
n(G)− 3, m(G′) = m(G)− 6, tr(G) ≥ tr(G′) + 1 and we obtain a similar contradiction as
before which completes the proof of the claim. �

Claim 4. There are two edges e and f in {x′y′, y′z′, x′z′} such that λ(G′ + e) ≤ λ(G) + 1
and λ(G′ + f) ≤ λ(G) + 1.

Proof of Claim 4: For contradiction, we assume that λ(G′ +x′y′) ≥ λ(G)+2. This implies
that G′ consists exactly of two bad components and that G itself is not a bad graph.
Hence x′y′ can not be an edge between two difficult blocks, since otherwise G would be
a bad graph. Thus both G′ + x′z′ and G′ + y′z′ are connected and the claim follows for
{e, f} = {x′z′, y′z′}. �
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Claim 5. If λ(G′ + e) = λ(G′ + f) = λ(G) + 1, then either tr(G′ + e) ≤ tr(G) − 1 or
tr(G′ + f) ≤ tr(G)− 1.

Proof of Claim 5: We may assume that e = x′z′ and f = y′z′. For contradiction, we
assume that tr(G′ + e), tr(G′ + f) ≥ tr(G). This implies that x′ and z′ have a common
neighbour x′′ in G′ and that y′ and z′ have a common neighbour y′′ in G′. If possible, we
choose x′′ = y′′. Clearly, this implies that G′ is connected. Furthermore, since the vertices
x, y, z, x′, y′, z′, x′′, y′′ all lie in one block of G which cannot be a bad block, the graph G
can not be a bad graph. Since λ(G′ + e) = λ(G′ + f) = λ(G) + 1, both G′ + e and G′ + f
must be bad graphs.

If the triangle x′z′x′′ forms a difficult block in G′ + e, the edge x′x′′ forms a block in
G′ + f which does not connect two difficult blocks. This implies that G′ + f can not be
bad which is a contradiction. Therefore, by symmetry, we may assume that the triangle
x′z′x′′ is contained in a difficult block Be in G′ + e which is isomorphic to C∗

5 and that also
the triangle y′z′y′′ is contained in a difficult block Bf in G′ + f which is isomorphic to C∗

5 .
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First, we assume x′′ = y′′. If e = x′z′ is not the edge shared by the two triangles of Be,
then either x′ and x′′ or z′ and x′′ have a common neighbour in G′. This implies that y′

is adjacent to either x′ or z′ which contradicts Claim 3. Hence the edge e = x′z′ must be
the edge shared by the two triangles of Be. Now, G′ contains the configuration shown in
Figure 2. Clearly, all six vertices in Figure 2 belong to one block of G′ + f which can not
be a difficult block. Therefore, G′ + f can not be a bad graph which is a contradiction.

Next, we assume that x′′ 6= y′′. By the choice of x′′ and y′′, this implies that no vertex
in G′ is adjacent to all of x′, y′ and z′. If e = x′z′ is the edge shared by the two triangles
of Be, then x′ and z′ must have a common neighbour in G′ different from x′′. This implies
that y′′ is adjacent to all of x′, y′ and z′ which is a contradiction. Hence x′z′ is not the
edge shared by the two triangles of Be. If x′x′′ is the edge shared by the two triangles
of Be, then the block of G′ + f which contains x′ contains two vertex-disjoint triangles.
Therefore, G′ + f can not be a bad graph which is a contradiction. We obtain that z′x′′ is
the edge shared by the two triangles of Be which implies the existence of a vertex z′′ such
that G contains the configuration shown in Figure 3.
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Since G[{x, y, z, x′, y′, z′, x′′, y′′, z′′}] is not a counterexample, the vertex z′′ has degree three.
Now the graph G′′ = G[V \{x, y, z, x′, y′, z′, x′′, y′′, z′′}] satisfies α(G) ≥ α(G′′)+3, n(G) =
n(G′′) + 9, m(G) = m(G′′) + 14, λ(G′′) ≤ λ(G) + 1 and tr(G) ≥ tr(G′′) + 2 which implies
a similar contradiction as before and completes the proof of the claim. �

Note that tr(G′ +x′z′) ≤ tr(G′)+1 = tr(G). Therefore, by Claims 4 and 5, we can assume
that either λ(G′ + x′z′) ≤ λ(G) and tr(G′ + x′z′) ≤ tr(G) or λ(G′ + x′z′) = λ(G) + 1 and
tr(G′+x′z′) ≤ tr(G)−1 both of which imply that λ(G′+x′z′)+tr(G′+x′z′) ≤ λ(G)+tr(G).
Similarly as above, for every independent set I ′ of G′ + x′z′ either I ′ ∪ {x} or I ′ ∪ {z} is
an independent set of G which implies α(G) ≥ α(G′) + 1. Since n(G′ + e) = n(G)− 3 and
m(G′ + e) = m(G) − 5, we obtain a similar contradiction as above which completes the
proof. �

Note that Theorem 2 is best-possible for all bad graphs, all graphs which arise by adding
an edge to a bad graph and further graphs such as for instance the graph in Figure 4.
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Figure 4

In [5] Heckman characterized the extremal graphs for Theorem 1. Similarly, it might be
an interesting yet challenging task to characterize the extremal graphs for Theorem 2.
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