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Abstract. We prove that a Ky-free graph G of order n, size m and maximum degree
at most three has an independent set of cardinality at least 1 (4n —m — X — tr) where
counts the number of components of G whose blocks are each either isomorphic to one
of four specific graphs or edges between two of these four specific graphs and tr is the
maximum number of vertex-disjoint triangles in GG. Our result generalizes a bound due to
Heckman and Thomas (A New Proof of the Independence Ratio of Triangle-Free Cubic
Graphs, Discrete Math. 233 (2001), 233-237).
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We consider finite simple and undirected graphs G = (V, E) of order n(G) = |V| and size
m(G) = |E|. The independence number a(G) of G is defined as the maximum cardinality
of a set of pairwise non-adjacent vertices which is called an independent set.

Our aim in the present note is to extend a result of Heckman and Thomas [6] (cf.
Theorem 1 below) about the independence number of triangle-free graphs of maximum
degree at most three to the case of graphs which may contain triangles. With their very
insightful and elegant proof, Heckman and Thomas also provide a short proof for the result
conjectured by Albertson, Bollobds and Tucker [1] and originally proved by Staton [9] that
every triangle-free graph G of maximum degree at most three has an independent set of
cardinality at least 2n(G) (cf. also [7]). (Note that there are exactly two connected
graphs for which this bound is best-possible [2, 3, 5, 8] and that Fraughnaugh and Locke
[4] proved that every cubic triangle-free graph G has an independent set of cardinality at
least %n(G) — 115 which implies that, asymptotically, % is not the correct fraction.)

In order to formulate the result of Heckman and Thomas and our extension of it we
need some definitions.
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Figure 1. Difficult blocks.

A block of a graph is called difficult if it is isomorphic to one of the four graphs K3, Cs,
K} or Cf in Figure 1, i.e., it is either a triangle, or a cycle of length five, or arises by
subdividing two independent edges in a K, twice, or arises by adding a vertex to a Cs and
joining it to three consecutive vertices of the C's. A connected graph is called bad if its
blocks are either difficult or are edges between difficult blocks.

For a graph G we denote by A(G) the number of components of G which are bad and
by tr(G) the maximum number of vertex-disjoint triangles in G. Note that for triangle-free
graphs G our definition of A\(G) coincides with the one given by Heckman and Thomas
[6]. Furthermore, note that ¢r(G) can be computed efficiently for a graph G of maximum
degree at most three as it equals exactly the number of non-trivial components of the graph
formed by the edges of G which lie in a triangle of G.

Theorem 1 (Heckman and Thomas [6]) Every triangle-free graph G of mazimum de-
gree at most three has an independent set of cardinality at least 1 (4n(G) — m(G) — X(G)).

Since every K, in a graph of maximum degree at most three must form a component
and contributes exactly one to the independence number of the graph, we can restrict our
attention to graphs that do not contain Kj’s.
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Theorem 2 Fvery K,-free graph G of maximum degree at most three has an independent
set of cardinality at least : (4n(G) — m(G) — MG) — tr(G)).

Proof: For a graph G we denote the quantity 4n(G) — m(G) — A(G) — tr(G) by ¥(G).
We wish to show that 7a(G) > ¥(G). For contradiction, we assume that G = (V, E) is a
counterexample to the statement such that ¢r(G) is smallest possible and subject to this
condition the order n(G) of G is smallest possible. If tr(G) = 0, then the result follows
immediately from Theorem 1. Therefore, we may assume tr(G) > 1. Since a(G) and ¥(G)
are additive with respect to the components of (G, we may assume that G is connected.
Furthermore, we may clearly assume that n(G) > 4.

Claim 1. Every vertex in a triangle has degree three.

Proof of Claim 1: Let x, y and z be the vertices of a triangle. We assume that dg(x) = 2.
Clearly, the graph G’ = G[V \ {z,y, z}] is no counterexample, i.e., Ta(G’) > ¥(G"). Since
for every independent set I’ of G, the set I’ U {z} is an independent set of GG, we have
a(G) > a(G’) + 1. The triangle zyz is vertex-disjoint from all triangles in G’, and so
tr(G) > tr(G") + 1.

Suppose min{dg(y),dg(z)} = 2. Then max{ds(y),ds(z)} = 3, since G is not just a
triangle. Furthermore, by the definition of a bad graph, we have A(G') = A(G) and obtain

7a(Q) Ta(G)+ 7

V(G + 7

In(G") —m(G") = NG —tr(G') + 7

4(n(G) = 3) — (m(G) —4) = X\G) — (tr(G) = 1) + 7
WG —12 44+ 147

= (@),

which implies a contradiction. Therefore, we may assume dg(y) = dg(z) = 3. Let No(y) =
{z,y', 2z} and Ng(z) = {z,y,2'}. Regardless of whether ¢/ = 2’ or not, we have tr(G) >
tr(G') + 1.

If ¥ = 2/, then G’ is connected, y' is a vertex of degree one in G and thus \(G’) =
MG) =0. If ¢y # 2 and A(G') > 2, then A(G') = 2 and G is a bad graph itself, i.e.,
AG) = 1. Therefore, in both cases A\(G") < A(G) + 1 and we obtain

AVARLY,

(AVARAVS

Ta(G) > Ta(G)+7
> Y(E)+7
= 4n(G") —m(G) = NG —tr(G") + 7
> 4n(G) =3) = (m(G) =5) = (MG) +1) = (tr(G) = 1) +7
> (@) —1245—1+1+47

(@),

which implies a contradiction and the proof of the claim is complete. []
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Claim 2. No two triangles of GG share an edge, i.e., G does not contain K, — e.

Proof of Claim 2: Let x, y, vy and z be such that xyy and yy'z are triangles. Let
G' = GV \{y'}]. Clearly, a(G) > a(G’), tr(G) > tr(G') + 1 and G’ is connected. Note
that, by Claim 1, both x and z have degree 3 in G and thus z, y and z are all of degree 2
in G'.

If G’ is bad, then z, y and z are three consecutive vertices in a block of GG’ isomorphic
to C5. Since the corresponding block in G is isomorphic to C¥, the graph G is also bad.
Conversely, if G is bad, then z, y, ¥ and 2z belong to a block of G isomorphic to CZ. Since
the corresponding block in G’ is isomorphic to C5, the graph G’ is also bad.

Therefore, A\(G') = A\(G) and we obtain

7a(G) > Ta(G)
> P(@)
= 4n(G") — m(G') — NG — tr(G")
> 4(n(G) —1) = (m(G) —3) = A(G) — (tr(G) — 1)
> Y(G)—4+3+1
= Y(G),

which implies a contradiction and the proof of the claim is complete. [

Note that, by Claim 2, adding an edge to a subgraph of GG cannot create a Kj.

Let zyz be a triangle in G. By Claim 1, we have Ng(z) = {2/, y, 2}, Na(y) = {z,v/, 2}
and Ng(z2) = {x,y,2'} and, by Claim 2, 2/, ' and 2’ are all distinct. Let G' = G[V \
{z,y,2}].

Claim 3. The set {2,/ 2’} is independent.

Proof of Claim 3: For contradiction, we assume that 'y’ € E. For every independent set I’
of G' either I'U{x} or I"'U{y} is an independent set of G which implies a(G) > a(G’) + 1.
Since G’ has at most two components, we have A\(G') < A\(G) + 2. Furthermore, n(G') =
n(G) — 3, m(G") = m(G) — 6, tr(G) > tr(G') + 1 and we obtain a similar contradiction as
before which completes the proof of the claim. [

Claim 4. There are two edges e and f in {z'y/,y'2’, 2’2’} such that \(G' +¢) < \(G) + 1
and A(G'+ f) < AG) + 1.

Proof of Claim 4: For contradiction, we assume that A\(G' 4+ 2'y’) > A(G) + 2. This implies
that G’ consists exactly of two bad components and that G itself is not a bad graph.
Hence 2'y’ can not be an edge between two difficult blocks, since otherwise G would be
a bad graph. Thus both G’ + 2’2 and G’ 4+ 3z’ are connected and the claim follows for

{e, f} ={a'2,y/2'}. O



Claim 5. If A(G' +¢e) = MG + f) = MG) + 1, then either tr(G' +¢) < tr(G) — 1 or
tr(G'+ f) <tr(G) — 1.

Proof of Claim 5: We may assume that e = 2’2’ and f = ¢'2’. For contradiction, we
assume that tr(G’' + e),tr(G' + f) > tr(G). This implies that 2’ and 2’ have a common
neighbour z” in G’ and that ¢’ and 2’ have a common neighbour y” in G'. If possible, we
choose 2 = 3”. Clearly, this implies that G’ is connected. Furthermore, since the vertices
x,y,z, 2,y 2" 2" y" all lie in one block of G which cannot be a bad block, the graph G
can not be a bad graph. Since \(G' +¢) = A(G' + f) = A(G) + 1, both G’ + ¢ and G' + f
must be bad graphs.

If the triangle x’'z'z” forms a difficult block in G' + e, the edge 2’z” forms a block in
G’ + f which does not connect two difficult blocks. This implies that G’ + f can not be
bad which is a contradiction. Therefore, by symmetry, we may assume that the triangle

IV w/)

a'2'z" is contained in a difficult block B, in G’ + e which is isomorphic to CZ and that also
the triangle y'2'y" is contained in a difficult block By in G’ + f which is isomorphic to C?.

Figure 2

First, we assume 2" = ¢”. If e = 2’2’ is not the edge shared by the two triangles of B.,
then either 2’ and z” or 2’ and z” have a common neighbour in G’. This implies that ¢/’
is adjacent to either ' or 2z’ which contradicts Claim 3. Hence the edge e = 2’z must be
the edge shared by the two triangles of B.. Now, G’ contains the configuration shown in
Figure 2. Clearly, all six vertices in Figure 2 belong to one block of G’ 4+ f which can not
be a difficult block. Therefore, G’ + f can not be a bad graph which is a contradiction.

Next, we assume that z” # y”. By the choice of 2" and y”, this implies that no vertex
in G’ is adjacent to all of 2/, 3/ and 2’. If e = 2’2’ is the edge shared by the two triangles
of B,, then 2/ and 2z’ must have a common neighbour in G’ different from 2”. This implies
that y” is adjacent to all of 2/, 3y’ and 2’ which is a contradiction. Hence 2’2’ is not the
edge shared by the two triangles of B.. If 2’z” is the edge shared by the two triangles
of B., then the block of G’ + f which contains 2’ contains two vertex-disjoint triangles.
Therefore, G’ + f can not be a bad graph which is a contradiction. We obtain that z'z” is
the edge shared by the two triangles of B, which implies the existence of a vertex z” such
that G contains the configuration shown in Figure 3.



ZI/

Figure 3

Since G[{x,y, z,2',y, 2, 2", y", 2" }] is not a counterexample, the vertex z” has degree three.
Now the graph G” = G[V \{z,y, z, 2", ¢, 2/, 2", y", 2"}] satisfies a(G) > a(G") + 3, n(G) =
n(G")+9, m(G) = m(G") + 14, A(G") < AM(G) + 1 and tr(G) > tr(G”) + 2 which implies
a similar contradiction as before and completes the proof of the claim. [J

Note that tr(G'+2'2") < tr(G")+1 = tr(G). Therefore, by Claims 4 and 5, we can assume
that either A(G' + 2'2') < A(G) and tr(G' + 2'2') < tr(G) or A(G' +2'2") = A\(G) + 1 and
tr(G'+2'2") < tr(G)—1 both of which imply that A\(G'+2'2")+tr(G'+2'2") < MG)+tr(G).
Similarly as above, for every independent set I’ of G’ 4+ 22’ either I' U {z} or I' U {z} is
an independent set of G which implies a(G) > a(G’) + 1. Since n(G' +¢e) = n(G) — 3 and
m(G’ + e) = m(G) — 5, we obtain a similar contradiction as above which completes the
proof. [J

Note that Theorem 2 is best-possible for all bad graphs, all graphs which arise by adding
an edge to a bad graph and further graphs such as for instance the graph in Figure 4.

X

Figure 4

In [5] Heckman characterized the extremal graphs for Theorem 1. Similarly, it might be
an interesting yet challenging task to characterize the extremal graphs for Theorem 2.
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