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Abstract

Magnetic field imaging (MFI) is a technique to record contactfree the magnetic field distribution and esti-
mate the underlying source distribution in the heart. Currently, the cardiomagnetic fields are recorded with
superconducting quantum interference devices (SQUIDs), which are restricted to the inside of a cryostat
filled with liquid helium or nitrogen. New room temperature optical magnetometers allow less restrictive
sensor positioning, which raises the question of how to optimally place the sensors for robust field recon-
struction.

The objective in this study is to develop a generic object-oriented framework for optimizing sensor ar-
rangements (sensor positions and orientations) which supports the necessary constraints of a limited search
volume (only outside the body) and the technical minimum distance of sensors (e.g. 1 cm). In order to test
the framework, a new quasi-continuous particle swarm optimizer (PSO) component is developed as well as
an exemplary goal function component using the condition number (CN) of the leadfield matrix. Generic
constraint handling algorithms are designed and implemented, that decompose complex constraints into
basic ones. The constraint components interface to an operational exemplary optimization strategy which is
validated on the magnetocardiographic sensor arrangementproblem. The simulation setup includes a three
compartment boundary element model of a torso with a fitted multi-dipole heart model.

The results show that the CN, representing the reconstruction robustness of the inverse problem, can
be reduced with our optimization by one order of magnitude within a sensor plane (the cryostat bottom) in
front of the torso compared to a regular sensor grid. Reduction of another order of magnitude is achieved
by optimizing sensor positions on the entire torso surface.Results also indicate that the number of sensors
may be reduced to 20-30 without loss of robustness in terms ofCN.

The original contributions are the generic reusable framework and exemplary components, the quasi-
continuous PSO algorithm with constraint support and the composite constraint handling algorithms.

Keywords: Magnetic sensor setup, constraint optimization, swarm intelligence, magnetometer, mag-
netocardiography
2000 Math. Subject Classification: 90C31, 90C56, 15A12, 92C50, 92C55



3

Contents

Symbols, Abbreviations and Terms 5

1 Introduction 7
1.1 Biomagnetism. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Magnetic Sensor Technologies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3 Magnetic Sensor Arrangements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4 Numerical Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.4.2 Source Models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.4.3 Forward Problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.4.4 Boundary Element Method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.4.5 Inverse Problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.4.6 Lead Field Theory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.5 Research Objective. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2 Goal Functions and Optimization Strategies 22
2.1 Reconstruction Accuracy and Robustness. . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2 Lead Field Matrix based Goal Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3 Further Goal Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4 Particle Swarm Optimization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4.1 Advantage of Swarm Intelligence. . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4.2 Standard PSO Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4.3 Modifications to the Standard Algorithm. . . . . . . . . . . . . . . . . . . . . . 25
2.4.4 Other Variants of PSO Optimization. . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Constraint Handling and Search Volumes 28
3.1 Constraint Types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 Penalty versus Fixing Strategy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3 Continuous Case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3.1 General Considerations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3.2 Continuous Search Volume Realization. . . . . . . . . . . . . . . . . . . . . . . 29
3.3.3 Limited Search Volume Constraint. . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3.4 Minimum Sensor Distance Constraint. . . . . . . . . . . . . . . . . . . . . . . . 34

3.4 Discrete Case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.4.1 General Considerations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.4.2 Discrete Search Volume Realization. . . . . . . . . . . . . . . . . . . . . . . . . 36
3.4.3 Limited Search Volume Constraint. . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.4.4 Minimum Sensor Distance Constraint. . . . . . . . . . . . . . . . . . . . . . . . 37
3.4.5 Limited Direction Constraint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 Object-Oriented Design and Development Process 39
4.1 Overview of SimBio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2 Optimizers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.3 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.4 Goal Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.5 Search Volumes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.6 Grid and Grid Generators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.7 Software Process Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5 Application to Magnetocardiography 52
5.1 Previous Sensor Optimization Approaches in Magnetocardiography . . . . . . . . . . . . 52
5.2 Experimental Setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.2.1 Clinical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.2.2 Data Preprocessing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.2.3 Volume Conductor Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53



4

5.2.4 Source Model of the Cardiac Field. . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.2.5 Sensor Type. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.2.6 Search Volumes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.2.7 PSO and Constraint Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.3 Optimization within a Square Sensor Plane. . . . . . . . . . . . . . . . . . . . . . . . . 58
5.4 Optimization within a Cryostat-bound Sensor Plane. . . . . . . . . . . . . . . . . . . . . 60
5.5 Optimization on the Torso Surface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.6 Comparison to Previous Findings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.7 Performance of PSO Optimizer and Constraints. . . . . . . . . . . . . . . . . . . . . . . 66

6 Conclusion 67

Acknowledgments 68

References 69

List of Figures 75

List of Tables 76

List of Algorithms 77



5

Symbols, Abbreviations and Terms

ρ In the spherical coordinate system, the distance from the origin to a given point
φ In the spherical coordinate system, the angle between the positive z-axis and

the line formed between the origin and a given point (zenith)
θ In the spherical coordinate system, the angle between the positive x-axis and

the line from the origin to a given point projected onto the xy-plane (azimuth)
~D electric flux density
~E electric field strength
~B magnetic flux density
~H magnetic field strength
Bj measured magnetic flux density at jth sensor
~m magnetic dipole
σ conductivity
σS conductivity of the volume containig the sources
σi conductivity when the field is intracellular
σe conductivity when the field is extracellular
σ−

j conductivity on the inner side of the surfaceSj

σ+
j conductivity on the outer side of the surfaceSj

σ−
k conductivity on the inner side of the surfaceSk

σ+
j conductivity on the outer side of the surfaceSk

µ0 permeability of free space
I0 total current of the point source at the origin
~J electric current density
~Jv volume current density
~Ji impressed current density
~JV
i impressed current density (vortex field)

~JF
i impressed current density (flow field)

~KV
s secondary current density (vortex field)

~KF
s secondary current density (flow field)

Φ scalar potential
Φ+ potential due to positive point source
Φ− potential due to negative point source
Φ0 potential from the source located at the origin
Φd total dipole field
Φi inner membrane potential
Φe outer membrane potential
∇′ nabla operator at the source point
~eR unit vector in the radial direction
~ed unit vector in the dipole direction
~n surface vector
~n(~r′) surface normal onSj

~r′ source point
~r field point
R radial distance
Sj , Sk surfaces
V volume
dv′ volume element in source region
Z, T coefficient matrices
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Vj potential difference at bipolar electric leadj
~LE

j electric lead vector field of bipolar leadj
~Lj magnetic lead vector field of magnetometerj
L magnetic lead field matrix
~d dipole current density amplitudes of all dipoles
~s magnetic flux density amplitudes of all magnetometers

λmax largest eigenvalue of a matrix
λmin smallest eigenvalue of a matrix
σmax largest singular value of a matrix
σmin smallest singular value of a matrix
κ2 condition number based onL2 norm
BEM Boundary element method
CN Condition number
CORBA Common object request broker architecture
CREW Concurrent read exclusive write shared memory model
CT Computer tomorgram
ECG Electrocardioogram
EEG Electroencephalogram
EREW Exclusive read exclusive write shared memory model
FEM Finite element method
fMCG Fetal magnetocardiogram
fMEG Fetal magnetoencephalogram
HTS High-temperature superconductivity
LTS Low-temperature superconductivity
MCG Magnetocardiogram
MEG Magnetoencephalogram
MFI Magnetic field imaging
MRI Magnetic resonance imaging
PCA Principle component analysis
PSO Particle swarm optimization
SQUID Superconducting quantum interference device
STL Standard template library, a generic C++ library of container classes, algo-

rithms and iterators
TS Tabu search

# ’Number of’, e.g. ’# sensors’ means ’number of sensors’
multiset A set of non-unique elements, as opposed to a set
search space The abstract, possibly high-dimensional and non-physical parameter space to

be searched, as opposed to search volume
search volume The three-dimensional, physical volume to besearched, as opposed to search

space
set A set of unique elements, as opposed to a multiset
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1 Introduction

1.1 Biomagnetism

Biomagnetism is concerned with the measurement, analysis and interpretation of magnetic fields produced
by electrically active living tissue [37]. The two main types of such tissue are nerve cells and muscles. Most
of the biomagnetic research has been conducted on the activity of the brain (neuromagnetism). The heart, a
muscle, and its excitation is the second area of broad research. Further topics of interest are the functional
state of the intestinal system or sceletal muscles.

The biomagnetic fields produced by living tissue are very weak compared to fields of the environment
(Figure 1). For example, the peak magnetic flux density on the torso surface close to the heart measures
around 50 pT [94] and at the scalp of the head the field of the brain is in the range of fT up to 1 pT [37]. This
is about 1 million times smaller than the earths magnetic field [98]. Typical disturbances for biomagnetic
measurements are an elevator in the same building or the close by tram or subway line. Such measurements
therefore require very sensitive technology and magnetic shielding.

Figure 1: Comparison of biomagnetic fields and environmental noise [98]

Cardiac Field Sources The heart pumps blood through the body by rhythmic contractions of the heart
muscle. These contractions are triggered by the self-excitatory sinus node (Figure 2), which is regulated by
sympatho-vagal nerves. The stimulus of the sinus node is first transmitted through the fast excitatory system
of the heart, which consists of the internodal pathways, theatrio-ventricular node, the bundle of His and the
Purkinje fibers. At rest the muscle cells are polarized with anegative intracellular potential compared to the
extracellular space [35].

If the stimulus from the excitatory system arrives, the muscle cells depolarize causing an action poten-
tial. Ions move across the cell membranes, the potential difference is inverted and a current flows. After
200-300ms the cells repolarize gain, while being refractory. The heart muscle acts as a function syncytium
due to the gap junctions. Therefore, the action potential istransmitted from cell to cell forming a wave front
starting from the cardiac septum and the apex and moving to the base. Because the currents at the wave
front are aligned, they sum up to a stronger current. These primary currents and the secondary volume cur-
rents caused by the primary fields produce a measurable electric and magnetic field (Figure 3) which give
valuable insight into the functional condition of the heart[57].
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Figure 2: Sinus node and Purkinje system of the heart (left) [35, p. 112] and relation between excitation and
ECG in sinus rhythm [16, p. 201]

Figure 3: 31-channel MCG of 1000 ms. The sensors are arrangedon the body surface above the heart. The
feet are in the direction to the left.

Field Measurement and Analysis The electrical current flows produce an electric field which propa-
gates through the human body. The conductivity of the body compartments moderates this propagation.
Non-invasively, the resulting potentials on the body surface can be measured with electrodes, producing
an Electrocardiogram (ECG) or an Electroencephalogram (EEG). This technique has been established in
clinical practice and standards of electrode positioning have been developed. For example, an anteroseptal
myocardial infarction can be differentiated from an anterolateral infarction by the particular ECG lead po-
sitions which show prominent infarction patterns, in this caseV2 andV3 and notV5 andV6 [21] (Figure 4).

The electrical currents, consisting of moving charges, produce a magnetic field which today is measured
contact-free with superconducting quantum interference devices (SQUIDs) [37], producing an Magneto-
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Figure 4: Wilson chest leads [16, p. 199]

cardiogram (MCG) or Magnetoencephalogram (MEG). In order to maintain the superconducting property
these sensor devices need to be cooled by liquid helium. New technologies, such as optically-pumped mag-
netometers [6], however will be more flexible to build and much easier to maintain. The magnetic sensor
locations are not standardized, rather each biomagnetic system has custom types of sensors usually arranged
regularly inside a dewar. An advantage of measuring the magnetic field instead of the electric one is that
the influence of the propagation medium, the human body, is weaker. The question of whether the MCG,
for example, contains more information than the ECG has caused much controversy. It was shown that the
amplitudes and morphological patterns in the MCG are different [86] and the magnetic lead fields can not
be produced by any combination of electric lead fields [75].

The goal of the analysis is not so much to categorize the patterns in the individual channels, but to
locate the electric current source inside the body. The multiple channels around the body can be understood
as spatial sampling of the three-dimensional field producedby the source. This requires two models: (1) the
parameterized source model and (2) the volume conductor model, which describes how the electric current
propagates through the body. The forward problem is to compute the magnetic flux density of a given source
at the sensor locations. The inverse, typically ill-posed,problem is to find parameters of the source model,
that explain the sensor readings.

1.2 Magnetic Sensor Technologies

The magnetic field strength or flux density can be measured indirectly through the effects it has on certain
materials under certain conditions. Thus, there is a range of detection methods, which differ in their mag-
netic flux density range and frequency range which can be detected reliably. For biomagnetic purposes the
minimum detectable magnetic flux density must be less than1 nT . A concise overview of techniques capa-
ble of measuring in this range is included in [37], which is summarized in this section.Figure 5summarizes
the respective sensitivities.

Coil-based Magnetometer A coil with one or more windings is positioned in the magneticfield. The
time-variant magnetic field causes a proportional electromotive force in the coil according to the law of
electromagnetic induction. The coil picks up the field component parallel to the normal vector on the coil
area, so it is a vectorial sensor.

Anisotropic Magnetoresistive Effect Some anisotropic ferromagnetic thin films have an electric resis-
tance that changes with the angle between the current density vector and the spontaneous magnetization.
These sensors are vectorial as well.

Fluxgates Fluxgates consist of magnetically soft cores around which two coils are arranged in opposite
orientation. A third field coil drives the cores into saturation periodically. If no external field exists, both
pick up coils cancel out each other. If a field exists, the vectorial component parallel to the cores produces
a deviation between both pick up coils.
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Figure 5: Current sensitivities of magnetic sensor technologies [71]

Proton Precession Magnetometer Just like magnetic resonance imaging (MRI), this magnetometer type
is based on the observation that the precession frequency (Larmor-frequency)of protons (hydrogen) changes
proportionally to the strength of an external magnetic field. Because the spin of protons is evenly distributed,
their very small magnetic moments cancel out each other. Therefore, the spin axes are aligned with a strong
homogeneous magnetic field. Once this field is switched off, the spin axes start scatter. The changing mag-
netic field causes an electromotive force in a pick up coil with the Larmor-frequency. Proton precession
magnetometer only measure the scalar magnetic flux density.

Optically Pumped Magnetometer Optically pumped magnetometer utilize the Zeeman effect. Helium
or an gaseous alkali metal (opaque), such as cesium or potassium, are polarized by circularly polarized light
of a wave length equal to the difference between two energy levelsEa andEb. Electrons, whose spins are
aligned with the rotational direction of the light, are shifted from the base levelEa to the instable levelEb.
These electrons fall down to an energy levelEc < Ea spontaneously while emitting a photon and changing
their spin. BecauseEa − Ec < Eb − Ea, the electrons can not absorb any new photons. BecauseEc is
more stable thanEb a balanced situation is reached whereEc is full andEa is depleted. The pumped metal
can not absorb any more photons, becomes transparent and thelight is detected on the other side of the glas
container by a light sensor. In the second phase, the gaseousmetal is depolarized by RF-radiation with a
frequency ofEa − Ec (Larmor frequency). The electrons are shifted toEa and the gas becomes opaque
again. An external magnetic field spreadsEc into several sublevels each having a distinct Larmor frequency
(Zeeman effect). This frequency shift is proportional to the scalar magnetic flux density.

Micromechanical Sensors Micromechanical sensors consist of a pivoted permanent magnet on top of a
base. This micromechanical torsion element is turned by an external magnetic field by a certain angle with
a certain force. Two electrodes at the bottom of the torsion element and on the base represent a capacitor. A
tunneling electrode at the base allows quantum tunneling, which has properties that are proportional to the
magnetic flux density. Vectorial field components can be measured.

Faraday-Effect-based Sensors The Faraday-effect refers to the observation that plane of polarization of
light is rotated inside optic fibre that is exposed to a magnetic field. The rotation angle is proportional to the
strength of the component of the magnetic field that is aligned with the light beam. Of course, the magnetic
flux density range is limited by the saturation threshold of the material.

Magnetostrictive Fiber-optic Sensors Some materials, such as metallic glas, change their physical di-
mensions under exposure of a magnetic field. This can be utilized by attaching an optic fiber to it, for



11

example by coating the fiber with metallic glas or winding thefiber around a metallic glas core. The change
in length of the fiber causes a phase-shift of the light passing through it which is proportional to the magnetic
flux density.

SQUID Sensors Superconducting quantum interference devices (SQUIDs) are the current standard sen-
sors in biomagnetic instrumentation. Superconductivity is the property of certain materials to loose their
electrical resistance below a certain temperature threshold. A SQUID sensor consists of a superconductive
ring in which one (rf-SQUID) or two (dc-SQUID) weakly superconductive connections (Josephson junc-
tions) are inserted (Figure 6). The electrons pair up to so called Cooper pairs, which all have the same
energy. Both electrons have opposite impulse and spin and thus do not interact with the grid. The electron
pairs condense into a single quantum state, which can be described through a macroscopic wave func-
tion. At the Josephson junctions, interference phenomena can be observed. Cooper pairs tunnel through the
barriers, causing a phase shift in the quantum-mechanical wave function. An external magnetic field is com-
pensated inside the superconductor (Meissner-Ochsenfeld- Effect) through a compensational current. This
current characterizes magnetic field strength. Additionally, the magnetic flux is quantized and the number
of quanta characterizes the magnetic field strength as well.In practice, the SQUID is included in a closed
loop which keeps the flux inside the SQUID (flux locked mode) constant or the compensation current in the
flux transformator (current locked mode)

Figure 6: Scheme of a dc-SQUID consisting of two Josephson junctions(JJ) in a superconducting loop of
inductance L and areaASQ [2, p. 105]

In order to efficiently inject the magnetic flux into the SQUID, antennas in the shape of coils are used.
A magnetometer can be implemented as shown inFigure 7on the left. A gradiometer consists of two loops
with opposite orientation (Figure 7right). An external magnetic field affects both coils equally and is thus
compensated. However, if the pick-up coil is close to the measured object, the influence on it will be stronger
than on the distant reference coil, which results in a flux. The main advantage of gradiometers is the noise
reduction.

The current industrial standard are integrated chips, suchas the one inFigure 8. In this example from
Elekta Neuromagc© two planar gradiometers measuring△Bz/ △ x and△Bz/ △ y are combined with
a magnetometer measuringBz . While the gradiometers have a focal sensitivity and a noisedensity of
2.7 fT/cm/

√
Hz, the magnetometer has a widespread one and a noise of3 fT/

√
Hz (white noise) [54, 2].

The magnetometer dimensions are 2.1cm x 2.1cm.
A disadvantage of the SQUID technique is that the sensors need to be cooled below the superconduction

threshold. Typically, this requires them to be surrounded by liquid helium (low temperature SQUIDs) or
liquid nitrogen (high temperature SQUIDs). This is expensive and requires periodic refilling.

Current Research Optically pumped magnetometers are under active development. Recent advances
have been made in the sensitivity, which now reaches that of conventional SQUIDs [10] and is expected to
reach10−17T/

√
Hz [10]. The initially scalar optic magnetometers can be operatedto obtain vectorial field

information. One vectorial component is acquired by addinga bias field to the sensor in that direction. This
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Figure 7: Scheme of a flux transformer coupled to a SQUID (left) [2, p. 107] and a first-order axial gra-
diometer (right);Li = inductance of the input coil,L = inductance of the SQUID [2, p. 114]

Figure 8: Single triple-sensor thin-film element manufactured on a silicon chip using a photolithographic
technique [2, p. 133]

is done consecutively in all three dimensions. The band width of the magnetometer can be adjusted with the
laser beam intensity. An important criterion is the spatialresolution of the magnetometers which is limited
to their size. Newest technologies allow a sensor length in the millimetre scale [10].

The cost of a biomagnetic measurement system can be reduced significantly with optical magnetome-
ters, because they do not require cooling. For magnetocardiography, cesium vapor cells can be operated
at 30◦ C [5, 6, 51]. For magnetoencephalography potassium cells have been successfully operated at
180◦ C [102]. This requires heating, which is however significantly cheaper and easier to maintain than
helium cooling.

A recent review on advances in SQUID technology is [23]. The evolution of coil-based magnetome-
ters is discussed in [96]. The current state of solid-state magnetometers (magneto-resistance devices) is
described in [82].

1.3 Magnetic Sensor Arrangements

For biomagnetic measurements a number of different sensor arrangements exist. Theoretically, the sensor
arrangement is a spatial sampling of the continuous magnetic field around the measured organ. Therefore,
without knowing the nature of the field to be measured, the general design goal is to place many sensors as
close as possible to the measured organ. For particular biomagnetic problems, such as magnetocardiography,
it is possible to determine the confidence in a particular sampling width [50].

In practice, a number of constraints need to be considered. The sensors have a certain size, so they can
not be put arbitrarily close. In SQUID Systems, the sensors have a fixed configuration inside a crystat, also
called dewar. Therefore, the sensor arrangement can only becustomized to suit a particular body part, such
as the head, during the construction phase. The dewar needs to be customized to this setup. New systems,
which do not require cooling, will allow a much more flexible positioning of the sensors.

Another design issue is whether to support scalar or vectorial representations of the field. For vecto-
rial recordings it is then desirable to still be able to obtain Bz. Many sensor techniques support vectorial
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acquisition. An example of a vectorial system is the AtB Argos 200 system (Figure 9). Three orthogonal
components are measured in this case. In this section examples of different types of sensor arrangements
for different applications are introduced to illustrate concrete design implementations.

Magnetocardiography (MCG) For cardiologic investigations, the sensors need to be positions on the
body surface close to the heart. Typically, a flat, slightly bent or slightly concave layer of sensors is arranged
at the bottom of a cryostat with the same shape. An example is the AtB Argos 200 system (Advanced
Technologies Biomagnetics (AtB), Chieti, Italy) inFigure 9. The cryostat has a flexible mounting to provide
a limited positioning flexibility towards the heart. The cryostat can only be tilted by a limited degree of no
more than about 35-40◦ because of the liquid helium inside.
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Figure 9: Multi-layer sensor arrangement of the AtB Argos200 system for MCG (points indicate sensor
centers, lines indicate the normal vector on the sensor plain, layers are color-coded) and gantry for cryostat
positioning relative to human body

The Argos 200 system inFigure 9has 56 magnetometer triplets in the measurement layer. The magne-
tometers are as close to each other as possible, while truelymeasuring orthogonal field components [70].
The sensors have a square area of 8x8 mm each and are arranged on three sides of a cube which are adjacent
to a corner which is pointing towards the heart in z-direction. The noise level is≤ 7fT/

√
Hz at 10 Hz.

Reference magnetometers used for software noise reductionare arranged in three distant layers of 9.8 cm,
19.6 cm and 25.5 cm from the measurement plane. The cryostat is composed of fiberglas and has a diameter
of 23 cm. The distance of the closest layer to the surface of the cryostat is 1.8 cm.

Fetal magnetocardiography (fMCG) is also an active field of research [33]. Fetal MCGs can also be
recorded with MCG systems by positioning the sensor array onthe abdominal surface. The orientation of the
fetus can be determined with prior sonography. A standard for fMCG procedure has been developed [33].
The magnetic field of the fetus and the mother are superposed and are separated during data analysis.

Magnetoencephalography (MEG) A number of commercial MEG systems exist. An example is the
Magnes 3600 system (4-D Neuroimaging, San Diego, USA) inFigure 10. Typically, the sensors are ar-
ranged around the head, extending below the temporal lobe and the occipital lobe. Reference sensors
for noise reduction are positioned at a certain distance to the measurement sensors. The Magnes 3600
cryostat can be equipped with 248 MEG sensors, which can be all magnetometers or combinations with
gradiometers. The average inter-sensor distance is 2.2 cm.After noise cancelation white noise is below
5fT/

√
Hz [99].

A second example is the Elekta Neuromagc© helmet-shaped MEG (Elekta Neuromag Oy, Helsinki,
Finland) with 102 sensor components (Figure 8), each containing a magnetometer and two gradiometers.
The sensor arrangement is shown inFigure 11. The sensor positions are derived from anatomical data.
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Figure 10: Magnes 3600 WH dewar as cutaway drawing (left) showing the location of the reference channels
relative to the sensor coils and its positioning for a seatedstudy (right) [2, pp. 120-122]

Parallel EEG recordings with 64 or 128 electrodes are supported. Sampling rates up to 10kHz are possible.
The cryostat and mounting are depicted inFigure 11.

Fetal Magnetoencephalography (fMEG) can be conducted withnon-helmet devices, such as the Argos
200 system or the 62-channel twin-cryostat system by Philips (Philips, Hamburg, Germany) [88]. In the
Philips system each of the two cryostats holds a concave sensor array, which can be positioned indepen-
dently on the abdominal surface of the mother or the head surface of an adult or child. A customized fMEG
system is the CTF MEGTM (VSM MedTech Ltd., Vancouver, Canada) inFigure 12. The sensors are ar-
ranged to shape around the abdominal surface of the mother, covering the greatest possible area [84]. The
sensors are axial first-order gradiometers with a base line of 8 cm.

General Purpose Setups A general purpose sensor setup has been developed at the Physikalisch- Tech-
nische Bundesanstalt (PTB) in Berlin for use in the second Berlin Magnetically Shielded Room (BMSR-
2) [8]. The design goals were to be able to measure three components of the magnetic field at as many
positions in the cryostat volume as possible [87] and to be able to decompose it into identical sub mod-
ules. The resulting 4-layer setup with 304 SQUIDs inFigure 13accomplishes that with a small number of
sensors.

In order to measure all three components in one position, onesensor can be placed in the center of
each side of a cube. Opposite sensors can be used to determinethe vectorial component. In the PTB setup,
several layers of cubes are stacked, which enables reuse of the sensors. Because the field decays rapidly
with the distance, the second layer is close to the first one, while the others have a larger distance. Thus, we
have cuboids. Further, the opposing sensors can be moved away from the centers of the sides, as long as the
connection line passes through the cube center.

Using these design flexibilities, the setup was modularizedinto 19 vertical modules, each containing 16
SQUIDs. Each module is part of every layer. The modules are arranged parallel as a bundle. The lowest
layer is a hexagonal grid of 57 SQUIDs and base length 2.9 cm. The second layer contains a grid of four
SQUIDs per module and the third and fourth layer contain 3 SQUIDs per module.

The biomagnetic systems presented in this chapter are selected examples of different types of sensor
arrangements. For a comprehensive overview of current systems see [2].
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Figure 11: Helmet-shaped sensor arrangement of the Elekta Neuromagc© MEG (points indicate sensor
centers, lines indicate the normal vector on the sensor plain) and technical realization

Figure 12: CTF MEGTM system configuration for fetal MEG array [2, p. 130]
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Figure 13: Modular general purpose sensor arrangement at the PTB (points indicate sensor centers, lines
indicate the normal vector on the sensor plain, layers are color-coded)
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1.4 Numerical Modeling

1.4.1 Overview

The mathematical base for modeling the propagation of magnetic field inside and outside a volume con-
ductor has been described in the 1970s [29, 34, 30, 15]. In this section, the notion of a dipole is formally
introduced, the assumptions underlying forward and inverse solution and their implications are described
and the leadfield matrix is defined. The formal derivation follows most closely to Chapter 2 of [94], because
it is concise and yet exact. Relevant details from original publications have been added in several instances.

1.4.2 Source Models

The simplest, and in physics well-described, electro-magnetic source model is an electric dipole in infinite
space of homogeneous conductivity. To describe the nature of a dipole, we should start with a monopole.

Monopole Consider a very thin and very long insulated wire with one of its bare tips at the origin extend-
ing till infinity. Since the wire is very thin, its influence can be neglected. This construction approximates a
point-like current source at the origin, a monopole. The electric field strength around the monopole is given
by:

~E =
I0

4πσR2
~eR = −∇Φ (1.1)

whereσ is the conductivity,I0 is the magnitude of the monopole at the origin,~eR is a radial unit vector
and R is the distance to the point source. As Plonsey and Heppner [77] pointed out, the low frequency
(below 1kHz) time-varying electrophysiologic fields can betreated in the same way as static fields under
certain conditions. The electric field strength can therefore be defined as the gradient of a scalar potentialΦ.
Considering that for large distances the field only decays inradial direction, the gradient can be expressed
through the radial derivative:

− dΦ

dR
~eR =

I0

4πσR2
~eR (1.2)

We are interested in the potentialΦ, so we integrate with respect toR and yield:

Φ =
I0

4πσR
(1.3)

Equation 1.3describes the scalar potential generated by a monopole in a homogeneous infinite medium at
any point with distanceR from the monopole. The potential field generated by a set of monopoles is simply
the superposition of the individual fields:

Φ =
∑

i

Ii

4πσri
(1.4)

whereIi is the magnitude of sourcei andri is the distance.

Dipole A dipole is defined as two monopoles of same magnitude but withopposite sign, which are
infinitely close to each other. The dipolar potential field can thus be described as a superposition as in
Equation 1.4. Consider a dipole located at the origin of a cartesian coordinate system aligned with the z-
axis. Let the positive charge of magnitudeI0 bed/2 in positive z-direction and the negative charge with
magnitude−I0 be−d/2 in negative z-direction. In order to produce an interpretable definition of the dipo-
lar potentialΦd we describe the potential of the positive chargeΦ+ and of the negative chargeΦ− through
their first order taylor expansion at the origin:

Φ+ = Φ0 +
d

2

∂Φ(z′)

∂z′

∣

∣

∣

∣

z′=0

Φ− = −
(

Φ0 −
d

2

∂Φ(z′)

∂z′

∣

∣

∣

∣

z′=0

)

(1.5)

This means that the potential of the shifted source is approximated linearly by the sum of the potential of
the same source at the origin and the deviation resulting by shifting it by ±d/2 along the z-axis. This is
sufficient sinced is very small (d→ 0). The total dipolar field is then:

Φd = Φ+ + Φ− = d
∂Φ(z′)

∂z′

∣

∣

∣

∣

z′=0

(1.6)
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We generalize from a dipole at the origin aligned with the z axis to a dipole located at any position and
oriented in any direction by taking the scalar product of thepotential gradient∇′ at the position(x′, y′, z′)
and a unit vector~ed in the dipole direction:

Φd = ∇′Φ|x′=y′=z′=0 · ~edd (1.7)

Now we can substitute withEquation 1.3and bring the constants to the front:

Φd =
I0d

4πσ
∇′

(

1

R

)

· ~ed =
1

4πσ
∇′

(

1

R

)

· ~m =
1

4πσ

~eR · ~m
R2

(1.8)

Note that sinced → 0, we requireI0 → ∞ for the potential to remain finite. Therefore, the product
I0d~ed is combined to the vectorial dipole moment~m. As a third step, the gradient can be applied under the
assumptionR 6= 0. The vector~eR points from the source position(x′, y′, z′) to the field position(x, y, z).

The monopole and the dipole are actually only the first and second order terms of a general multipole ex-
pansion described formally in electrodynamics. For an introduction to general multipole expansion see [43]
and for a magnetocardiographyview see [94]. In reality, a biological source is not a single dipole. Therefore
several source models are used. We differentiate between focal and distributed source models. Focal models
are the single dipole, the superposition of dipoles and the superposition of multipoles. Distributed models
are regular distributions of dipoles, surface and volume sources and potential layers [37]. The most common
source models are single and multiple dipoles and distributed dipoles. Indeed, the dipole is the basic source
element of excitable tissue [94, 76].

1.4.3 Forward Problem

The electric and magnetic fields of the body are produced by transmembrane ionic flows. The primary fields
consist of two types. In the intracellular and extracellular volume the electric field~E is associated with a
current flow ~J obeying Ohm’s Law (~J = σ ~E) [76]. This part of the tissue is passive. In the membranes
however, diffusion and active transport mechanisms [35] generate active transmembrane currents, which
locally depolarize the membrane. This current is called theimpressed current~Ji(~r) as opposed to the pas-
sive volume current~Jv(~r). Between the depolarized area and the non-depolarized areaof the membrane a
potential difference is generated, which causes an intracellular current along the membrane. These micro-
scopic currents in many parallel muscle fibres or neuron dentrites sum up to a measurable current, which is
sometimes, ambiguously, also called the impressed currentin the literature [38]. The total current density
in the volume conductor is the sum of the volume current density and the impressed current density:

~J(~r) = ~Jv(~r) + ~Ji(~r) = σ(~r) ~E(~r) + ~Ji(~r) = −σ(~r)∇Φ(~r) + ~Ji(~r) (1.9)

The impressed currents can be further divided into a flow fieldJF
i and a vortex fieldJV

i [30]:

~Ji(~r) = ~JF
i (~r) + ~JV

i (~r) (1.10)

These volume currents, or back-flowing currents, can be thought of distorting the electric and magnetic
field.

A biologic volume conductor, such as the human body, may be seen as having an inhomogeneous
conductivity, which moderates the idealized electric and magnetic fields. These theoretical discontinuities
in the conductivity at the cellular and macroscopic level [76] produce secondary sources. The simplifying
assumption is made that the volume conductor is piecewise homogeneous. Then, the secondary sources
appear only at the boundaries between media of different conductivities. Therefore, the secondary sources
depend on the electrical field and the geometry. The electrical scalar potentialΦ(~r′) can then be expressed
as:

Φ(~r′) = − 1

4πσ







∫

v

∇ · ~Ji(~r)

| ~r′ − ~r | dv′ +
∑

j

∫

Sj

(σ′ − σ′′)Φ(~r)~n · ∇
(

1

| ~r′ − ~r |

)

dSj







(1.11)

whereσ is the local conductivity and~n is the unit normal vector of thejth boundary directed from the
region with conductivityσ′ to the region with conductivityσ′′. The first term in the braces represents the
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divergence of the primary impressed current, while the second term expresses the secondary currents due
to boundaries of inhomogeneities. The magnetic flux densitycan be expressed similarly, using the law of
Biot-Savart:

~B(~r′) = −µ0

4π







∫

v

∇× ~Ji(~r)

| ~r′ − ~r | dv′ −
∑

j

∫

Sj

(σ′ − σ′′)Φ(~r)~n×∇
(

1

| ~r′ − ~r |

)

dSj







(1.12)

where the first term in the braces models the curls of the primary impressed current and the second term
models possible secondary currents.

The electric potential is thus depended on the flow fields, whereas the magnetic field depends on the vor-
tex field directly and on the flow fields through secondary currents [46] (Figure 14). On the cellular level,
the ratio of secondary to primary source magnitudes was estimated to be107 − 1011 [76]. The directly
impressed current may thus be ignored. The sources of electric and magnetic fields are mostly of the sec-
ondary type. These sources themselves depend only on the boundary conditions on the electric field [76].
The question of whether electric and magnetic field contain identical information does not have proven
answer. However, Plonsey’s [76] formal argumentation advocates for both to be exchangeable.

Figure 14: Dependency of electric potentialΦ(~r) and magnetic flux density~B(~r) on impressed current
density~Ji [46, 94]

1.4.4 Boundary Element Method

The above formulas of the electric potential and magnetic flux density may be used for an analytical solution
of the forward problem. While this approach is fast, it is also numerically not very accurate [94]. With the
boundary element method (BEM) inhomogeneities can be modelled much more accurately.

The principle idea is to assume piecewise homogeneous conductivity and to discretize the boundaries
into elements of constant potential. Then we only require the potential at the boundaries, which can be
computed through an integral equation. We additionally assume that the permeabilityµ0 of the volume
is constant. Since we can assume the fields to be quasi-static[77], the simplified quasi-static Maxwell
equations explain the electromagnetic process:

∇× ~E = 0 (1.13)

∇× ~B = µ0 · ( ~Ji + ~Jv) (1.14)

∇ · ~D = 0 (1.15)

∇ · ~B = 0 (1.16)

As in the previous sections,~Ji is the impressed current density and~Jv is the volume current density. Ap-
plying ~E = −∇Φ and ~J = ~Ji + ~Jv = ~Ji + σ ~E to Equation 1.15, we can write for constant conductivity:

△ Φ =
∇ · ~Ji

σ
(1.17)

which is a Poisson equation with the following boundary conditions:

Φ1 = Φ2, σ1
∂Φ1

∂n
= σ2

∂Φ2

∂n
(1.18)
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At the outermost boundary of the body, the air is an isolator and thus its conductivity is zero. The second
boundary condition then simplifies to:

σ1
∂Φ1

∂n
= 0 (1.19)

The solution ofEquation 1.17in a piecewise homogeneous volume conductor with conductivity boundaries
Sj is defined by:

(

σ−
k + σ+

k

)

Φk(~r) = 2σsΦ∞(~r)− 1

2π

N
∑

j=1

(σ−
j − σ+

j )

∫

Sj

Φ(~r′) · ~r − ~r′

| ~r − ~r′ |3 d~Sj (1.20)

with σ−
k andσ+

k denoting the conductivities of the inner and outer side of the surfaceSk andσs denoting
the conductivity of the volume that the sources are in [9]. Vector~r′ points to the location of the source while
~r points to the field point.~n(~r′) denotes the normal on surfaceSj. The potential on any boundary is thus
determined by adding the secondary potentials of every boundary in the model to the potentialΦ∞(~r) in an
infinite homogeneous medium, which is itself given by:

Φ∞(~r) =
1

4πσ

∫

V

~Ji(~r) ·
~r − ~r′

| ~r − ~r′ |3 dv′ (1.21)

Following Geselowitz [30], the magnetic flux density is calculated through:

~B(~r) = ~B∞(~r) +
µ0

4π

N
∑

j=1

(σ−
j − σ+

j )

∫

Sj

Φ(~r′)~n(~r)× ~r − ~r′

| ~r − ~r′ |3 d~Sj (1.22)

The magnetic flux density in an infinite homogeneous medium isdetermined by the continuous Biot-Savart
law:

~B∞(~r) =
µ0

4π

∫

V

~Ji(~r
′)× ~r − ~r′

| ~r − ~r′ |3 dv′ (1.23)

To make the solution computationally feasible, the continuous boundaries are discretized into boundary
elements, which are assumed to have a constant potential. Since the number of boundary elements is finite,
the continuous model turns into a discrete one, which has a matrix representation:

~Φ = ~Φ∞ + Z · ~Φ, ~B = ~B∞ + T · ~Φ (1.24)

whereZ andT are coefficient matrices that moderate the propagation of the potential generated by each
boundary element to every other boundary element with respect to the concrete volume conductor model.
We can compute~Φ as (1 − Z)−1 · ~Φ∞ through matrix deflation, inversion based on factorizationand
dedeflation [52]. The solution can then be used to compute~B.

The question arises of which boundaries should be included in the boundary element model. Theoreti-
cally, the influence of the volume conductor is strongest at the boundaries between volume compartments
with a large difference in conductivity. The most importantsuch boundary is the body surface. Thus, mod-
eling only the body surface and assuming homogeneous conductivity inside significantly improves the ac-
curacy of the propagation model. Numerically, the assumption of homogenity allows us to use the boundary
element method. The model can be further improved by definingthe boundary of organs with a conductiv-
ity different from the conductivity of normal tissue [39, 40]. These are mainly the air-filled lungs with low
conductivity and the heart with higher conductivity. The accuracy gain from the body surface is however
most drastic [79, 94]. Also, the deeper the source is inside the body, the more critical is an accurate volume
conductor model. In practice, the boundaries can be segmented from a magnetic resonance image (MRI) or
computer tomogram (CT) of the individual patient.

The finite element method (FEM) additionally allows to modelfinegrained inhomogeneities and aniso-
tropies of the volume conductor, which has a further positive effect on the reconstruction accuracy [100,
101]. Disadvantages are the computation time and the problem ofdetermining or rather defining the local
conductivities and anisotropies of the various body compartments and tissue types correctly.
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1.4.5 Inverse Problem

The inverse problem is concerned with determining the parameters of the source model that best fit the
measured data. For this task, electrical data derived usingelectrodes can supplement the magnetic readings.
Typically, the solution to this problem is not unique, because the problem is either overdetermined for focal
sources or underdetermined in case of distributed sources.Additionally, the solution is highly sensitive to
small changes in the signal, such as noise [37].

The resulting source model is often referred to as the equivalent dipole because the physiological source
does not actually consist of one or several dipoles. It is possible to either use electric current dipoles in the
source model, or magnetic ones. The common choice are the electric dipoles, which have been introduced in
the previous sections. Their advantage is a close relation to realistic electrophysiological conditions. Their
disadvantage is their complexity. Magnetic dipoles are rarely used today.

In the case of focal sources, non-linear optimization algorithms are applied, which iteratively adjust the
model parameters, position, orientation and magnitude of the dipoles, to match the model sensor readings
and the real sensor recordings. This is computationally expensive, because a forward solution has to be made
in every iteration to obtain the model sensor amplitudes. Various deterministic optimization techniques can
be used for this task. The most common deterministic ones arethe Levenberg-Marquardt method [63],
the Nelder-Mead-Simplex method [78]. Among the non-deterministic ones, simulated annealing,genetic
algorithms and evolutionary strategies [19] have been used.

For distributed sources, minimum norm techniques are applied. Common are the L1 and L2 norm [36].
Regularization is used to tackle the problem of underdetermination, such as Tikhonov-Philips regulariza-
tion [95]. Common variants are the low resolution tomography (LORETA) [73].

1.4.6 Lead Field Theory

The lead field theory was first described for electric leads measuring the electric field [62], but equally
applicable to magnetic recordings. Consider a single electric dipole in a linear ohmic volume conductor of
inhomogeneous conductivity. A unipolar lead picks up the potential at the body surface. The relationship
between the dipole magnitude and the lead potential is linear and may thus be expressed in a 3D transfer
vector. A bipolar lead measures the potential difference between two unipolar leads. The combination of
both tranfer vectors is called the lead vector of that bipolar lead. The lead vector thus describes the sensitivity
of the electrode to a current source at a particular positionin space. This vector is dependent on the electrode
and dipole positions as well as the volume conductor. If we generalize the lead vector to all dipole positions,
we have a continuous vector field, called the lead vector field, or shorter the lead field [62]. The potential
differenceVj of the bipolar leadj can thus be expressed as [42]:

Vj =

∫

V

~LE
j (~r) · ~J(~r)dv (1.25)

This electrode-sensor relationship can also be interpreted reciprocally. If we pass a unit current to the
electrical lead, an electric field is produced inside the volume conductor. The current density then has
exactly the same form as the lead field. This is why the sensitivity vector field is called "lead field" [62].
If we apply this lead field theory to magnetic sensors, such asmagnetometerj, we have a very similar
sensitivity relationship [42]:

Bj =

∫

V

~Lj(~r) · ~J(~r)dv (1.26)

For practical applications, we discretize the lead-vectorfield down to the configurations of the dipoles of
our source model. The lead vector field for each sensor, turnsinto a vector of sensitivity coefficients, one
for each dipole. These coefficient vectors are combined to a matrix (one sensor per row), called the leadfield
matrix L [37], which describes the linear relation between source dipole current density amplitudes~d and
sensor amplitudes~s:

~s = L · ~d, ~s ∈ R
# sensors, ~d ∈ R

# dipole sources (1.27)

The leadfield matrix contains the information about the particular volume conductor, sensor setup and
source model. Once the leadfield matrix is known, the forwardsolution reduces to a matrix-vector mul-
tiplication.
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1.5 Research Objective

Motivation Magnetic field imaging (MFI) is a technique to record contactfree the magnetic field dis-
tribution and estimate the underlying source distributionin the heart [57] and the brain [42]. Today, these
biomagnetic fields are recorded with SQUIDs [2]. SQUIDs are restricted in their positioning to cryostats,
since they require liquid helium (low temperature superconductors) or nitrogen (high temperature supercon-
ductors) cooling. Recent advances of optical magnetometers [10, 6, 102] which operate at room temperature
make less restrictive sensor positioning feasible. Therefore, the general question arises of how to optimally
place the sensors obeying a technical minimum distance due to the sensor size.

Objectives The critical points of this task are the optimization constraints and the efficient goal functions.
The first constraint is that the sensor must be outside the body, while the optimal positions are inside the
body. Secondly, the sensors have a certain size, which induces the minimum sensor distance constraint. The
goal function needs to be evaluated frequently. Performingan inverse solution every time and assessing
its accuracy is too time-consuming. Efficient goal functions, for example based on the leadfield matrix
(Section 1.4.6) need to be investigated. The primary objectives of this study are:

1. To develop a generic optimization framework for sensor arrangements (position and orientation) that
supports an arbitrary search volume and a minimum distance constraint,

2. To implement example components (one optimizer, one constraint handling technique and one goal
function) which represent a full optimization strategy,

3. To apply this strategy to the settings of magnetocardiography.

The optimizer component is particle swarm [22, 1] based and the goal function component implements the
condition number of the leadfield matrix. Lateron, these components can be further developed, customized
and combined with new components that implement the genericinterfaces. The secondary objective is to
integrate them into the biomedical simulation environmentSimBio [24].

Forward and inverse calculations are carried out with SimBio using a boundary element model of the
human torso. A theoretical source model of the heart [17] and subsequently a more realistic source model
derived from an MCG recording of a test person is used.

Overview This work is directed to two audiences, computer scientistsand biomedical engineers, and is
structured accordingly. From the computer scientists perspective, Chapters2 and3 resemble the problem
analysis and algorithmic design including evaluation of alternatives, performance and asymptotic runtime.
Chapter 4describes the object-oriented design of the software and maps the algorithms to particular data
structures and classes. For SimBio developers the integration into and changes to the SimBio framework
are documented.Chapter 5demonstrates the achieved goals and generic structure by application to magne-
tocardiography. Interesting results for biomedical engineering are documented in this chapter.

Original Contribution This study was conducted as Diploma Thesis (German "Diplomarbeit"). This
document has been written by Stephan Lau. Any content that does not have a literature reference attached
to it, is an original contribution. In particular, Stephan Lau contributed:

1. the constraint optimization problem analysis (Chapter 3),

2. the algorithmic design (all algorithms exceptAlgorithm 1),

3. the time and memory complexity analysis of the algorithms(Chapter 3),

4. the object-oriented design and integration into SimBio (Chapter 4),

5. the implementation in C++ and testing (Chapter 4),

6. the construction of the BEM, the source model and the search volumes (Chapter 5),

7. the acquisition and interpretation of optimization results (Chapter 5).

Selected results have been presented at the 16th International Conference on the Computation of Elec-
tromagnetic Fields (COMPUMAG) in June 2007 [56] and will be presented at the 41st Annual Conference
of the German Society for Biomedical Engineering (DGBMT) inSeptember 2007 [55].
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2 Goal Functions and Optimization Strategies

2.1 Reconstruction Accuracy and Robustness

A goal function for the optimization of sensor arrays needs to quantify the reconstruction accuracy and
robustness against noise. The reconstruction accuracy maybe expressed experimentally in the distance
of the position of a physical dipole to the position of an equivalent dipole reconstructed from measuring
the physical dipole [59]. The robustness can be estimated by adding noise to the recording and repeating
the reconstruction. However, in biomedical practice we do not know the nature of the sources. In fact,
measurable dipole moments are only produced by the superposition of microscopic intracellular dipole
moments. So the assumption of the existence of few individual dipoles is a simplification already. We are
therefore interested in the stability of the reconstructedsource model in presence of noise which can be
estimated by repeated simulation [17].

Theoretically, each goal function evaluation of a sensor setup could involve in a set of representative
inverse solutions with varying added noise. However, with the current computational resources an inverse
solution requires a significant amount of time. Each inversesolution itself is an optimization process, which
is implemented as the solution of linear equation system (distributed sources) or the iterative optimization
of the goodness of fit of a candidate dipole set to the field measurements (focal sources). For focal sources
we need to perform a forward solution to obtain the goodness of fit every time. It is therefore necessary to
develop simple approximate measures of the reconstructionaccuracy and robustness.

2.2 Lead Field Matrix based Goal Functions

A suitable representation of the coupling between sensors and dipoles, mediated by the volume conductor,
is the leadfield matrix, which was introduced inSection 1.4.6. The leadfield matrix represents the linear
transformation of a vector of dipole amplitudes to the according vector of sensor amplitudes. While this
matrix can be used for fast forward calculations, its structure is more interesting because it represents the
sensitivity of each sensor to each dipole.

Condition Number The condition number of the matrixA is a measure of the conditioning of the linear
equation system represented by it:

Ax = b (2.1)

A well-conditioned equation system reacts to a small changein the right hand sideb with a small change
in the result vectorx. An ill-conditioned equation system instead reacts with a large change in the result
vector. If we solve an ill-conditioned system, we can only trust the solution to a certain degree (number of
digits) [45]. Consider a disturbancedb of b. Then the changedx in the solution vector can be denoted by

(dx) = A−1(db) (2.2)

Applying a matrix norm, which by definition fulfils the inequality ‖ A · B ‖ ≤ ‖ A ‖ ‖ B ‖, to both
equations, yields

‖ A ‖ ‖ x ‖ ≥ ‖ b ‖ (2.3)

and
‖ dx ‖ ≤ ‖ A−1 ‖ ‖ db ‖ (2.4)

which can be combined to define an upper bound of the relative change of the solution vector

‖ dx ‖
‖ x ‖ ≤ ‖ A ‖ ‖ A−1 ‖ ‖ db ‖

‖ b ‖ (2.5)

The relative change in the right hand side is magnified by at most‖ A ‖ ‖ A−1 ‖, which is defined to be the
condition numberκ

κ = ‖ A ‖ ‖ A−1 ‖ (2.6)

If the L2 norm is chosen and the matrix is symmetric, the condition number is the ratio of maximum to
minimum eigenvalue:

κ2 =‖ A ‖2 ‖ A−1 ‖2 =
λmax

λmin
(2.7)
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If the matrix is not symmetric,κ can be expressed as ratio between maximum and minimum singular value:

κ2 =
σmax

σmin
(2.8)

The condition number of the identity matrix is one. The computation of the condition number requires more
operations than solving the equations by elimination. Efficient approximations of the condition number in
cases where certain factorizations of the matrix exist are reviewed in [32]

For our purposes the condition number is suitable as a measure of inverse solution robustness. A low
condition number indicates that a small change in a dipole amplitude results in a small change in the sensor
readings. The inverse problem condition is more robust, thelower the condition number is. An intuitive
interpretation of the condition number is the slope of the sorted singular values. The condition number has
been used for optimal sensor sensor selection before [67].

Further Figures of Merit The goal functions applicable to the optimization of sensorsetups are com-
monly referred to as figures of merit, because initially these measures were used to assess and compare the
quality of existing or planned sensor arrangement designs.Due to the helium cooling, the SQUIDs needed
to be fixed in their arrangement and the cryostat needed to be designed to suit the SQUID array or vice
versa. Recently proposed leadfield matrix based figures of merit are lower error bounds [80] and measures
based on the projecting of solution space basis vectors of one matrix onto the solution space of another
one [81, 28].

2.3 Further Goal Functions

Goal functions that have been used already for body surface potential maps (BSPM) in the 1970’s are the
root mean square error between a selection of electrical leads and the full BSPM, the mean correlation
coefficient and the error to signal power ratio [61, 25]

Several approaches based on Shannon’s theory of communication [90] exist. The channel capacity [89]
has been theoretically investigated [36]. A second measure, called total information [68, 69, 93], is based on
transforming measured data into virtual channels and summing up the power signal to noise ratios without
making assumptions of the source currents.

2.4 Particle Swarm Optimization

2.4.1 Advantage of Swarm Intelligence

The task of optimizing sensor arrangements is similar to optimizing dipole arrangements (inverse solution)
in that they both modify the linear mapping between dipole and sensor amplitudes. A difference is that the
dipole amplitudes are optimized, while the sensors are onlyoptimized in position and orientation. Secondly,
a source model commonly consists of few dipoles, while a sensor setup typically has a larger number of
sensors to sample the field.

The typical optimization techniques for dipole fitting are the Levenberg-Marquardt method [63, 58] and
the Nelder-Mead-Simplex [78] method. Both techniques are strongly gradient oriented and thus prone to
local minima in the goal function and dependent on a sensiblestart solution. While for few dipoles this may
still work, it is a critical limitation for a larger set of sensors. Additionally, the sensors have a certain size,
so a minimum sensor distance needs to be considered as constraint.

Therefore, in this study particle swarm optimization (PSO)[48, 22] will be adapted and applied to
sensor optimization. The advantage of PSO is that not one current solution is iteratively adjusted towards
the optimum, but a swarm of solutions, the particles. Each particle is guided not only by the gradient
information of itself but of the other particles at other locations as well. This technique is thus much more
robust against local minima or disturbances in the goal function.

2.4.2 Standard PSO Algorithm

One of the first authentic PSO algorithms was presented by Kennedy and Eberhart in 1995 [47]. Since then
many modifications to the method itself (Section 2.4.4) and customizations to particular problems have
been developed. To be able to compare variants and customizations to a non-modified version, a standard
PSO algorithm has been defined in 2006 and validated by main researchers in the field. The standard PSO
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algorithm is similar to the original one of Kennedy and Eberhart [47], but includes improvements based on
recent developments. This standard is freely available [1] and is used in this study as the base algorithm to
which modifications are made.

The standard PSO algorithm is formally described inAlgorithm 1. First, the positions are initialized
randomly within the limits of each dimension. The velocities are initialized by picking a random position
and using the half the vector from the particle position to that position. In the first iteration, the information
links are established randomly in a way that informants may be chosen more than once. SoK is only the
maximum possible number of informants. Every time an iteration does not yield a improvement in the goal
function value, the information links are re-initialized.

Algorithm 1 : Particle swarm optimization (Standard)
Data : SxD matrixP of positions ofS particles inD-dimensional space;

SxD matrixB of best position so far for all particles; global best particle b;
SxD matrixV of velocities; number of goal function evaluations so farnEval
SxS matrixL of boolean information link existences

Input : # particlesS; maximum # informants per particleK; cognitive coefficientsw, c;
Dimension limit vectorsxmin ∈ R

D andxmax ∈ R
D; goal functiong();

Maximum number of goal function evaluationsE; desired goal function valueǫ
Output : Result vectorr ∈ R

D

foreachparticlep and dimensiond do // initialization1

P(p, d)← rand(xmin(d), xmax(d)) ; // uniformly random2

B(p, d)← P(p, d);3

V(p, d)← (rand(xmin(d), xmax(d))− P(p, d))/2 ; // non-uniformly random4

b← particle with minimum goal function valueg(P(b, :));5

e← g(P(b, :));6

while e ≥ ǫ and # goal function evaluations≤ E do7

if current errore ≥ previous errorthen // re-initialize information link topology8

L ← 0;9

foreachparticlep do10

L(p, p)← true ; // each particle informs itself11

for k ∈ [1, K] do12

p′ ← rand(1, S);13

L(p, p′)← true ; // links are one way only14

foreachparticlep do15

i← informant particle with minimal goal function valueg(B(i, :));16

foreachdimensiond do // update velocities and move particles17

V(p, d)← w·V(p, d)+rand(0, c)·(B(p, d)−P(p, d))+rand(0, c)·(B(i, d)−P(p, d));18

P(p, d)← P(p, d) + V(p, d);19

foreachdimensiond do // restore lower and upper limits20

if P(p, d) < xmin then P(p, d)← xmin; V(p, d)← 0;21

if P(p, d) > xmax then P(p, d)← xmax; V(p, d)← 0;22

if g(P(p, :)) < g(B(p, :)) then B(p, :)← P(p, :); // update individual best23

if g(P(p, :)) < g(B(b, :)) then b← p; // update global best24

e← g(B(b, :)) ; // update error25

r ← B(b, :));26

In each iteration all particles move along a certain velocity vector. This vector is composed of the
previous velocity weighted withw, the vector from the current position to the individual bestone so far,
and the vector from the current position to the best positionwithin the informants (Line 18). The last two
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components are both weighted with a random number in the intervall [0, c]. So the movement is non-
deterministic. Note that the new individual best and the newposition are available to the particles moving
subsequently already.

If a particle passes a dimension limit, its position value inthat dimension is put back to the limit and the
velocity is set to zero. This assumes that the search volume limit marks the edge of sensible solutions. Thus
the swarm should not be directed there.

The default settings for this PSO implementation are summarized in Table 1. The swarm size must
be chosen to suit the number of dimensions. Here, the number of informants is very small. Recent re-
search [49, 64] also advocates fully-informed swarms. The parametersw andc adjust the degree of adaption
to the current best individual and informant solution as well as the movement energy of the particles. The
number of evaluations is chosen to be sufficient for 1000 iterations. A number of repetitions are suggested
to eliminate initialization errors.

Symbol Meaning Default
S swarm size 10 + 2 ·

√
D

K number of informants 3
w first cognitive coefficient 1/(2 · ln(2))
c second cognitive coefficient 0.5 + ln(2)
E maximum number of evaluations S · 1000
R number of repetitions 50

Table 1: Default parameter values for standard PSO [1]

2.4.3 Modifications to the Standard Algorithm

The task of sensor optimization involves two constraints. First we have a limited search volume in which the
sensors are allowed to move. In particular, they are not allowed to move inside the body surface, even though
this is where the optimal positions can be expected. Secondly, the sensors have a certain size, which induces
a minimum distance of the sensor centers. Depending on the particular application other constraints may
apply. Additionally, there is not just one strategy to handle any of these constraints. It is therefore desirable
to add a support for arbitrary constraints into the algorithm.

Since we do not know the particular nature of the constraint,we separate the definition of the constraint
from the optimization algorithm and assume an interface that provides us the necessary operations. These
operations are to obtain a set of parameters that is random within the search space induced by the constraint
definition, to check the constraint satisfaction of given parameter set and to fix a parameter set so that if
fulfills the constraint. The particular constraint definitions and operations used in this study are described in
detail inSection 3.

Initialization of Positions The most common approach is to initialize the positions randomly within the
constrained search space. It is also possible of course to make use of any a priori information. A generic way
to obtain a nearly random position within an arbitrary search volume is to sample the volume with a fine
enough sampling width. This results in a regular grid of positions within the search volume. Each grid point
can be thought of as center of a cube. The set cubes approximates the search volume. One can then pick a
random grid point and within the cube of this grid point a random position. The particular implementation
is deferred to the constraint which is representing the search volume (Line 2 in Algorithm 2). So if the
search volume is a geometric object, such as a sphere, a random position may be obtained much simpler,
e.g. through a random sperical coordinate.

Initialization of Velocities The velocities however pertain to PSO and not to optimizers in general. Their
initialization should therefore be implemented in the PSO algorithm using the constraint interface. The
velocities should be in relation to the size of the search volume. To determine the approximate dimensions
of the volume, we sample it through 50 random parameter sets from the constraint interface. We obtain an
interval for each dimension and pick a random number between+ and - half of the interval length (Line 10).
In the standard implementation, half of the interval lengthis used. However, since we underestimate the
limits of the search space, we do not need this.
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Information Link Topology The information topology was changed so that each particle has exactlyK
informants, not counting itself (Line 19). This enables us to use a fully informed swarm [49] or to control
the degree of interconnection.

Algorithm 2 : Modified particle swarm optimization
Data : SxD matrixP of positions ofS particles inD-dimensional space;

SxD matrixB of best position so far for all particles; global best particle b;
SxD matrixV of velocities; number of goal function evaluations so farnEval;
SxS matrixL of boolean information link existences

Input : # particlesS; maximum # informants per particleK; cognitive coefficientsw, c;
Constraint interfaceI; goal functiong(); velocity adjustment factorλ ∈ [0, 1];
Maximum number of goal function evaluationsE; desired goal function valueǫ

Output : Result vectorr ∈ R
D

→ foreachparticlep do // initialization of positions1

→ P(p, :)← random solution obtained from the constraint interface I;2

→ xmin ←∞; xmax ← −∞;3

→ for i = 1, 2, .., 50 do // get dimensions of search space by sampling4

→ p← random solution obtained from the constraint interface I;5

→ foreachdimensiond do6

→ if p(d) < xmin(d) then xmin(d)← p(d);7

→ if p(d) > xmax(d) then xmax(d)← p(d);8

→ foreachparticlep and dimensiond do // initialization of velocities9

→ V(p, d)← (xmax(d)− xmin(d)) · rand(−0.5, 0.5);10

b← particle with minimum goal function valueg(P(b, :));11

e← g(P(b, :));12

while e ≥ ǫ and # goal function evaluations≤ E do13

if current errore ≥ previous errorthen // re-initialize information link topology14

L ← 0;15

foreachparticlep do16

L(p, p)← true ; // each particle informs itself17

for k ∈ [1, K] do18

→ p′ ← random particle that is not an informant yet;19

L(p, p′)← true ; // links are one way only20

foreachparticlep do21

i← informant particle with minimal goal function valueg(B(i, :));22

foreachdimensiond do // update velocities and move particles23

V(p, d)← w·V(p, d)+rand(0, c)·(B(p, d)−P(p, d))+rand(0, c)·(B(i, d)−P(p, d));24

P(p, d)← P(p, d) + V(p, d);25

→ foreachparticlep do // restore constraint and adjust velocities26

→ p′ ← fix constraint inP(p, :) using interfaceI;27

→ V(p, :)← V(p, :)− λ · (p′ − P(p, :));28

→ P(p, :)← p′;29

if g(P(p, :)) < g(B(p, :)) then B(p, :)← P(p, :); // update individual best30

if g(P(p, :)) < g(B(b, :)) then b← p; // update global best31

e← g(B(b, :)) ; // update error32

r ← B(b, :));33
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Velocity Adjustment due to Constraint From the perspective of the optimizer the restoration of the
constraints in each iteration is a deviation d of the currentposition in high-dimensional space. The current
velocity vector describing the individual direction in which the global optimum is expected should then be
adjusted as shown inFigure 15. The new velocity should be the sum of the old velocity and thenegative
scaled deviation vector (Line 28). Theλ ∈ [0, 1] may be chosen heuristically.λ = 0 or λ = 1 are also
valid alternatives.λ = 1 assumes that the length of the velocity vector is approximately the distance to the
expected global optimum.λ = 0 assumes that the deviations caused by the constraint are small enough to
be ignored, where small enough means that they are compensated by the randomization of the weightc.

Figure 15: Adjustment of the velocity of the particles afterthe shift caused by the constraint restoration.
The blue dot and arrow indicates the old particle position and velocity in high-dimensional search space.
The new velocity (green) is obtained by subtracting the scaled deviation vector. Note that particles encode
multiple sensor positions and directions.

In the standard PSO algorithm each dimension of the velocityvector that lies outside the search volume
is set to zero. This assumes that the search volume marks the limit of sensible solutions. This is not true in
our case. A sensor inside the body, or even the heart muscle, would significantly improve the goal function
value. The search volume is a technical constraint, which modifies the optimization problem. Therefore,
in our algorithm the velocity pointing outside is kept. Thisallows other particles to be informed about the
direction of the expected optimum.

2.4.4 Other Variants of PSO Optimization

There is a whole range of PSO customizations available for particular problems [22, 13, 97]. Key points
of design are the information topologies [49, 64], the memory of the particles [11], the types of informa-
tion exchanged, the dynamic adaptation of the cognitive coefficients and multiple objectives [14]. Discrete
PSO algorithms have been proposed by Clerc et al. [12] using the traveling salesman problem as example.
This discretization is however different from our quasi-continuous approach, in that our optimizer does
not do a combinatorical search. PSO applications in electromagnetics exist for other problems than sensor
optimization [83].
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3 Constraint Handling and Search Volumes

3.1 Constraint Types

In the optimization of sensor arrangements two constraintsneed to be considered. First, the sensors have to
be placed outside the object under investigation, e.g. the human body. This is non-trivial, because theoreti-
cally and practically the ideal sensor positions are insideand close to the source volume, e.g. the heart [65]
or the somatosensory cortex of the brain [20]. A physical search volume needs to be defined, which con-
strains each triplet{x, y, z} of positions of one sensor, respectively. The overall search space is limited by
a composite boundary.

The second constraint is the minimum sensor distancem caused by the size of the sensors themselves.
This causes the high-dimensional sensor position search space to be occluded with patches of invalid sensor
arrangements. First, consider two sensorss1 ands2 in one-dimensional space. Ifs1 < s2 thens1 can never
jump acrosss2 without coming too close tos2. In 1D space, the minimum distance constraint induces
compartments of valid sensor configurations. Now consider the 2D case with 2 sensors: Ifx (s1) < x (s2),
then it is always possible to move both sensors continuouslyobeying minimum distance with the help of the
second dimension, so thatx (s1) > x (s2). With two or more physical dimensions the valid search space
induced by the minimum distance constraint consists of onlyone compartment.

In general, for each physical dimensiond ∈ [1, D] with D ≥ 2 and each pair of sensors out ofn an
invalid subspace is induced which extends infinitely inD · n − 1 dimensions, sinced (s2) ∈ [d (s1) −m,
d (s1) + m]. The number of such subspaces is:

D ·
(n

2

)

= D · n!

(n− 2)! · 2!
=

D

2
· n · (n− 1) ∈ Θ

(

D · n2
)

(3.1)

For our purposes,D = 3 and we haveΘ
(

n2
)

subspaces. These subspaces overlap each time three or more
sensors clash, merging all of them into one subspace. Thus, the invalid search space also consists of only
one compartment. Valid and invalid search space are interwoven.

When both constraints are combined, the number of sensors must be chosen less than the maximum
number of sensors the search volume can fit. For realistic optimizations, which operate only inside the valid
search volume, the number of sensors should be significantlylower than the maximum number of sensors.

3.2 Penalty versus Fixing Strategy

There are two principle ways of handling such constraints. The first and simplest is to adjust the goal
function with a penalty. To keep sensors outside the measured object for example, an exponential increase
in the goal function towards the boundary of the search spacecould be added. If the sensor arrangement as
a whole is penalized, the information of which sensor(s) violates the constraint is not used. A good setup
with a minor violation may be lost. For the search volume constraint is would also be possible to have a
separate penalty for each sensor.

With a minimum distance, the case is more complex. A minimum distance violation inherently involves
more than one sensor. Infact, one sensor at one position can be valid or invalid depending on the current
positions of the other sensors. If we would penalize each sensor individually, we would disregard the in-
teraction with other sensors. For example, if two sensors move towards one optimum, they would both be
penalized and would thus both have to move away and the optimum would never be identified.

The penalty approach disregards information about how the constraint is violated and how the arrange-
ment can be made to satisfy the constraint easily. An advantage on the other hand is that boundaries are soft,
so that an optimizer may tunnel through a thin barrier in the goal function. The penalty strategy is suitable
for problems with few parameters, which have global constraints.

Fix Strategy The second approach of handling the constraints is to fix the minor violations caused by
one iteration step directly after that step. The initial solution satisfies the constraint by definition. In each
iteration the sensors are modified slightly in position and direction, which causes slight localized constraint
violations. Knowing the details about individual violations enables us to fix them with minimal impact on
the overall solution. For example, if one sensor is moved across the boundary of the physical search space,
only this sensor is moved back onto the boundary. All other sensors remain unchanged and the constraint
is satisfied. Additionally, the minor violations can not multiply over successive iterations. Because the goal
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function is computed after fixing the current parameter, there is no deviation in the goal function. However,
optimizers with memory of previous steps may need to consider the local changes due to fixing. The fixing
strategy is suitable for problems with localized constraints and supports large numbers of parameters.

For the task of optimizing sensor arrangements the fixing strategy is the better choice, because the
number of parameters is very high and the constraints are localized. For example, an arrangement of 50
sensors has 250 parameter, three for the x, y, and z coordinates and two forφ andθ, the spherical angles of
the direction, respectively. Therefore, the fixing strategies outlined in this chapter will be used in this study.

3.3 Continuous Case

3.3.1 General Considerations

The continuous case applies to the Levenberg-Marquardt andNelder-Mead-Simplex technique and to par-
ticle swarm optimization. The physical space within the search volume is continuous as well as the two-
dimensional space of sensor directions.

3.3.2 Continuous Search Volume Realization

A realistic application, such as magnetocardiography, requires a custom search volume, such as a volume
around a human torso. We wish to be able to place the sensors asclose as possible to the body. Such a
search volume is defined by a triangulation of its surface, which is also a usual representation in a boundary
element model of the human body for forward and inverse solutions. The simplest way to produce this
search volume is therefore to first apply a dilation operatorand to invert boundary element model. Second,
this inverted model can be dilated and the difference between to the first step can be used as search volume,
again enclosed in triangulated boundary. The typical operations needed in our optimization are the check
of whether a given position is inside the volume or not (Algorithm 3) and to obtain the projection on the
boundary to any given point (Algorithm 4).

Inside Search Volume Check In order to define inside and outside, we need to know for each triangle
which side is facing inside. We use the following rule: A triangle t with the vertex triplet{~v1, ~v2, ~v3} is
oriented inside, if its normal vector using the right hand rule ((~v2 − ~v1)× (~v3 − ~v1)) points inside. This
information can be saved in a boolean array during initialization. To determine the orientations efficiently
and automatically, the orientation of one triangle needs tobe determined and spread recursively to all
its neighbor triangles. Under the assumption that the boundary is closed, the first triangle can be found
by selecting a random point outside the bounding box and projecting it on the surface. The side of the
projection triangle on which the point is is outside. The initial recursive spread requiresΘ (#triangles)
sequential time and memory in the general case. The asymptotic runtime ofAlgorithm 3 is identical to that
of Algorithm 4.

Algorithm 3 : Test whether a position is inside a triangulated boundary

Data : map: trianglet→ vertex triplet{~v1, ~v2, ~v3};
orientation of each triangle (((~v2 − ~v1)× (~v3 − ~v1)) points inside?)

Input : position~s ∈ R
3

Output : true/false

find boundary trianglet ∈ N on which the projection of~s lies (Algorithm 4);1

determine distanced of ~s to the plane defined byt using the right hand rule;2

if t oriented insidethen3

if d ≥ 0 then return true ; // boundary counts as inside4

else return false;5

else6

if d ≤ 0 then return true ; // boundary counts as inside7

else return false;8



30

Projection on Boundary The projection on the triangulated search volume boundary (Algorithm 4) is the
central method of the search volume implementation. It works in two steps. First, the closest vertex of the
triangulation to any given position is determined using theruntime-optimized strategy ofAlgorithm 5. This
reduces the set of candidate triangles to the ones adjacent to the closest vertex. Second, the triangle with the
largest solid angle as seen from the given position is selected. Under the assumption that the triangles are
of same size, this yields the closest triangle. Then it only remains to determine the closest point inside this
triangle. The projection of the given position into the plane of the triangle can fall into one out of the seven
cases inFigure 16. In case I we keep the projection. In cases II, IV and VI we takethe adjacent vertex, and
in cases III, V and II we project onto the edge of the triangle.

Algorithm 4 : Projection on triangulated search volume boundary

Data : continuous search volumeV ⊆ R
3

Input : position~s ∈ R
3

Output : projection point~s′ ∈ V on boundary; triangle numbert′ ∈ N

find closest boundary grid node~b to ~s (Algorithm 5);1

maxSolidAngle← 0 ; // maxSolidAngle = max. solid angle so far2

foreach triangle t with~b as one of its verticesdo3

compute solid anglea of t seen from~s;4

if | a |> maxSolidAngle then5

t′ ← t;6

maxSolidAngle← a;7

determine projection~p of ~s on the plane defined by trianglet′;8

determine closest position~s′ to ~p inside trianglet′ (Figure 16);9

By searching for the closest vertex instead of the closest triangle the performance is increased signif-
icantly, but we accept a minor error in a certain rare case. Ifthe search volume is concave and the given
position is very close to the middle, a vertex of one side may be closer than any of the vertices of the correct
triangle on the other side but further away than the correct triangle itself. Then the given position is pro-
jected onto the first side, not the second one. This is very minor, because it can only happen if the position
is very close to the middle, in which case it does not matter onwhich side it is projected.

Figure 16: Cases in finding the closest position within a triangle

Efficiency Considerations The problem with a non-analytic search volume is that non-optimized oper-
ation on it require us to touch every point or triangle. We therefore need to define an efficient grid data
structure and efficient operations on it. The two generic operations we need are to find the closest grid node
to any given position and to find all grid nodes within distance range. In order to narrow down the number
of grid nodes to be checked, we would ideally like to sort the grid nodes according to some one-dimensional
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distance measure. A good approximation of the distance is for example the x-coordinate. If we are looking
for grid nodes in theǫ-environment of a given position~s, it is sufficient to check all grid nodes~g with
x (~g) ∈ [x (~s)− ǫ, x (~s) + ǫ] because for the remaining grid nodes~g′ | ~g′ − ~s |≥| x (~g′)− x (~s) |> ǫ.

The only pitfall is that volume grids, which we use for the discrete search volume later, are regular
and thus a large number of grid nodes would have identical x-,y- or z-coordinates, respectively. We would
then have to check whole set of nodes with one identical coordinate within the distance range. These node
sets would be slices of the search volume, in our case irregularly shaped bands arround the torso. A simple
solution is to rotate the coordinate system around the z-axis by a small angle and use the new coordinate
xrot as sort value. Under the assumption of a regular grid, the ideal angle is:

α = tan−1

(

1

# samples in y dimension

)

(3.2)

In the worst case the given position is exactly in the middle between two slices. Without rotation we would
have to check both slices. If we rotate byα, half of each of the slices is moved out of the search range. Since
we only need the rotated coordinatexrot for sorting, we define our sort dimension as:

v ([x, y, z]) = xrot = cos (α) · x− sin (α) · y (3.3)

If the grid is not regular, we could also use the first principal axis of a PCA of the grid nodes as heuristic
sort dimension.

Closest Grid Node This sorting dimension is used to find the closest grid node toa given position in
Algorithm 5. The idea is to start at the first grid node with at least the sort value of the position and to
search in both directions. We keep the closest node so far andits distance. Once we reached the current
minimum distance in both directions we’re done. Interestingly, the search range gets smaller each time we
find a closer node and may even fall below one of the ends of the already searched range (Lines 17- 18).

Algorithm 5 : Fast retrieval of closest grid node

Data : list L of {valuevj , node indexij} pairs sorted according tovj

Input : position~s ∈ R
3

Output : indexi′ ∈ N of grid node closest to~s

determine sort valuev of ~s;1

determine indexi of the first element inL with L [i] .v ≥ v (Algorithm 6) ; // start index2

lower ← min (max (i, 0) , | L | −1) ; // select first lower candidate3

upper← max (min (i + 1, | L | −1) , 0) ; // select first upper candidate4

d←∞ ; // minimum distance so far5

while true do6

if lower > −1 then7

if | ~s−G[L[lower].i] |< d then8

d←| ~s−G[L[lower].i] | ;9

i′ ← L[lower].i;10

lower ← lower − 1 ; // move one further11

if upper <| L | then12

if | ~s−G[L[upper].i] |< d then13

d←| ~s−G[L[upper].i] | ;14

i′ ← L[upper].i;15

upper← upper + 1 ; // move one further16

if (lower = −1 or L [lower] .v < (v − d)) and17

(upper =| L | or L [upper] .v > (v + d)) then18

return ;19

The cost of initialization is dominated by sorting the grid nodes along the sort dimension. The sort algo-
rithm of the STL used here implements introsort [66]. The introsort algorithm has a worst case sequential
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time complexity ofO (n log (n)) for n elements and is at least as fast as quicksort on average. The compu-
tation of the sort value and the creation of the sorted list are each accomplished inO (n) sequential time. If
a sufficient number of processors is available, the sorting time can be theoretically reduced toO (log (n))
with O (n log (n)) operations (Corollary 4.5 in [44, p.173]).

The runtime ofAlgorithm 5depends on the concrete structure of the grid and the slices.Let us consider
the case of a full regular cubic volume grid. The sequential time for finding the closest node is reduced to
checking the two adjacent slices. Forn grid nodes in a cube, the number of nodes per slice isn2/3. Thus
the sequential runtime ofAlgorithm 5isO

(

n2/3
)

. The time of the trivial full search isO (n). Forn = 106

Algorithm 5 is thusn1/3 = 102 = 100 times faster. The rotation improves the concrete runtime, not the
asymptotic one.

If a surface grid is considered, such as the torso surface, the number of grid nodes is moderate (20000-
30000 torso triangulation nodes with4 mm side length). To estimate the complexity, we simply the torso
to a cube that is aligned with the coordinate system. Each side containsn/6 nodes. So if the closest node
is on the left or right we find an upper bound ofO (n). However, the real number of node comparisons is
still reduced belown/6. In the case of top, bottom, front or back side we only need to search a slice in the
shape of an empty square. This is very fast, since the cube side length has

√

n/6 nodes only. We thus only
have to check4 ·

√

n/6 ∈ O(
√

n) nodes.
Algorithm 5may be parallelized well, knowing the grid widthw. In this case, it is sufficient to check all

grid nodes~g with x (~g) ∈
[

x (~s)−
(

w/2 ·
√

3
)

, x (~s) +
(

w/2 ·
√

3
)]

becausew/2 ·
√

3 is the maximum
distance of any position inside the grid to the closest grid node. All candidates are independent and can be
checked concurrently. If the position is outside the grid, this search will not succeed and we can revert to
Algorithm 5.

First Candidate Finding the first element with sort value of at least the givenvalue (Algorithm 6) is
an internal operation used byAlgorithm 5 andAlgorithm 7. It is implemented with logarithmic search in
O (log (n)) sequential time withn being the size of the presorted list. Withp ≤ n processors this operation
can be completed inc · logp+1 (n) time with an EREW simply by dividing the current search rangeinto
p + 1 equal sections and checking thep separators.

Algorithm 6 : Find first entry in sorted list with sort valuev ≥ a given value

Data : list L of {valuevj , node indexij} pairs sorted according tovj

Input : sort valuev ∈ R

Output : indexi′ in L of first element withvi′ ≥ v

lowerLimit← 0 ; // lower limit of index search range1

upperLimit←| L | −1 ; // upper limit of index search range2

if v ≤ L [lowerLimit] .v then3

i′ ← lowerLimit; return ; // below valid range4

if v L [upperLimit] .v then5

i′ ← upperLimit + 1; return ; // above valid range6

while true do7

i← lowerLimit + ⌊(upperLimit− lowerLimit)÷ 2⌋ ; // pick the middle8

if L [i] .v < v then9

lowerLimit← i + 1 ; // search in upper half10

else11

if L [i− 1] .v < v then12

i′ ← i; return ; // found it13

else14

upperLimit← i− 1 ; // search in lower half15
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Nodes Within Distance Range The third grid algorithm is the search for all nodes within a certain dis-
tance range to a given position (Algorithm 7). This is for example required inAlgorithm 6. The idea, similar
to the closest node search, is to start at the first grid node with at least the sort value of the position and to
search in both directions. The asymptotic time complexity depends on the search range.

Algorithm 7 : Find nodes within distance range

Data : list L of {valuevj , node indexij} pairs sorted according tovj

Input : position~s ∈ R
3; distance range{dmin, dmax} ∈ R

+ × R
+ with dmin ≤ dmax

Output : set of grid nodes indicesG′ ⊆ [0, | G | −1]
determine sort valuev of ~s;1

determine indexi of the first element inL with L [i] .v ≥ v (Algorithm 6) ; // start index2

lower ← min (max (i, 0) , | L | −1) ; // select first lower candidate3

upper← max (min (i + 1, | L | −1) , 0) ; // select first upper candidate4

while true do5

if lower > −1 then6

if dmin ≤| ~s−G[L[lower].i] |≤ dmax then G′ ← G′ ∪ {L[lower].i};7

lower ← lower − 1 ; // move one further8

if upper <| L | then9

if dmin ≤| ~s−G[L[upper].i] |≤ dmax then G′ ← G′ ∪ {L[upper].i};10

upper← upper + 1 ; // move one further11

if (lower = −1 or L [lower] .v < (v − dmax)) and12

(upper =| L | or L [upper] .v > (v + dmax)) then13

return ;14

3.3.3 Limited Search Volume Constraint

The physical search volume consists of a continuous 3D volume defined by its boundary, which may consist
of an inner and an outer part. For realistic applications an arbitrary volume is defined by a triangulation of
its surface as it is done in a boundary element model. The constraint of a limited search volume is violated
if a sensor is positioned outside. The boundary itself is considered to be inside. To fix this violation, the
sensor needs to be moved back inside, but causing minimum deviation. Thus, we need to find the closest
position on the boundary and move the sensor to it (Algorithm 8). The projection point on the boundary
implicitely computed inLine 2of Algorithm 8can be cached and reused inLine 5.

Algorithm 8 : Constraint violation fix for continuous search volume

Data : continuous search volumeV ⊆ R
3

Input : multisetS ⊆ R
3 of element positions

Output : multisetS′ ⊆ V of element positions

foreach~s ∈ S do1

if ~s ∈ V (Algorithm 3) then2

S′ ← S′ ∪ {~s};3

else4

find projection on boundary~s′ of ~s (Algorithm 4);5

S′ ← S′ ∪ {~s′};6

An important question is whether and how the elements can move along the boundary. In practice, this
is important because the ideal sensor position for MCG is inside the heart muscle, thus inside the body. The
optimization process must thus be able to move the sensors onthe body surface to some optimum. With
the penalty approach the goal function value would increaseclose to the boundary, so an optimizer would
either not let an element cross the boundary or move it back inside, depending on the type of optimizer.
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With the fixing strategy outlined above, the optimizer wouldmove the element across the boundary. The
fixing would move it back inside, however along the boundary normal instead of the path it came. Thus after
fixing, the sensor would be at another position on the boundary, which is closer to the desired position than
the previous one. The elements thus move along the boundary.The elements are moved out of the search
volume by the optimizer in the direction of the expected optimum and are moved back inside to another
position by the constraint. Any barrier in the goal functionon the boundary between the exit and entry point
is tunneled by this step.

3.3.4 Minimum Sensor Distance Constraint

The magnetometer available for biomagnetic instrumentation have a certain size. The Argos 200 System for
example has square 8x8mm sensors [70], the Elekta Neuromag MEG has integrated chips of 21x21mm side
length [54]. The currently available optic magnetometers contain cells of cesium vapor of 20mm length [6].
Newer technologies will however allow sensors diameters ofwell below 1 cm [10]. The minimum distance
is thus a necessary constraint and needs to be parameterizedto an arbitrary minimum distance.

The task of resolving all distance violations while causingminimum deviation is in itself an optimization
problem. However, it is not practical nor necessary to applya generic optimization technique with its own
parameters. Instead, we shall define a simple iterative approach. To understand the problem of minimum
distance violations, it is necessary to look at typical scenarios.

Minimum Distance in Infinite Space A simple scenario is that two or few elements follow a gradient
and only cross each others path. No fixing is strictly neccessary since we really only want the final solution
to satisfy the minimum distance. However, violations can build up across iterations, so we should fix this
violation in each iteration. We can however introduce a distance tolerance level to smooth this process.
Here, the advantage of fixing over penalty is apparent. We areable to use the information of which element
exactly causes the violation and make a local minimum-impact fix.

A second scenario is that elements accumulate in one area. This may be due to the goal function and
would then be a recurring problem across iterations. A natural approach here is to choose a representative,
e.g. the one with the maximum number of violations, and to move the remaining elements away, e.g. radially
(Figure 17). This would improve the situation, but not fix all minimum distance violations. We need to repeat
this step several times.

Figure 17: Restoring the minimum distance by radial movement. Black dots indicate sensor positions, red
circles and connection lines mark clashes. Large circles indicate the minimum distance of each sensor, the
shaded large circle for the representative of the cloud. Exemplary two new sensor positions are indicated by
small dotted circles.

This approach is formalized inAlgorithm 9. The method stops once all violations are eliminated. The
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constraint violation severity is measured by the mean of allviolations, each within(0, m]. Because the
violation severity reduction is strong only in the first iterations, the number of iterations is limited toî
(Line 2). Later iterations fix micro violations, which is unnecessary and time consuming. The constraint is
considered satisfied if the mean violation is below a tolerance threshold oft ·m with t ∈ [0, 1) (Line 14).
After the last iteration, a zero-tolerance fix is performed.Theorectially, an oscillation between three or
more collinear elements may occur. Such oscillations woulddisperse relatively quickly by themselves,
because the elements are spread appart. To eliminate the possiblility of longer oscillations, a random angular
deviation of the otherwise radial movement vector is added in Line 9.

Algorithm 9 : Constraint violation fix for minimum distance

Parameter: m ∈ R
+ \ {0} = min. distance;t ∈ [0, 1) = rel. tolerance;

î ∈ N \ {0} = max. #iterations;̂α ∈ [0, pi] = max. angular dispersion;
ξ ∈ [0, 1] = influence of max. violation;

Input : multisetS ⊆ R
3 of element positions

Output : setS′ ⊆ R
3 of element positions with distances within tolerance

i← 0 ; // iteration count1

while mean violation inS > 0 andi < î do2

find one~s ∈ S with max. # clashing elementsC ⊆ S \ {~s};3

let δmax ∈ [0, m] be the max. violation of all~c ∈ C;4

S′ ← S \ C ; // carry over remaining elements5

foreach~c ∈ C do6

if ~c = ~s then ~d← random vector with length 1;7

else ~d← (~c− ~s) / | ~c− ~s | ; // ~d = normalized direction of movement8

add random angular deviation≤ α̂ to ~d ; // to disperse oscillations, if any9

l← ξ · δmax + (1− ξ) · (m− | ~c− ~s |) ; // l = length of movement vector10

~c′ ← ~c + l · ~d ; // move clashing element away11

S′ ← S′ ∪ {~c′};12

S ← S′; i← i + 1;13

if mean violation ofS′ > t ·m then abort;14

For the length of the movement vector, two extremes exist. Onone hand, we could move all clashing
elements to exactly the minimum distance (ξ = 0). This would cause minimal deviation, but two clashing
positions may come closer to each other. On the other hand, wecould move all clashing elements away by
the maximum violationδmax within the clashing elements (ξ = 1). This would at least maintain distances
within the group of clashing positions. But it would cause stronger deviation from the input configuration.
In Line 10we use a combination of both.

A third scenario is that of a densely filled search volume. If the number of elements inside the search
volume is close to, or even more than half of, the number of elements that the search volume can fit consid-
ering the minimum distance, minimum distance violations are unavoidable. The fixing reduces to spreading
elements evenly.Algorithm 9 is suitable for this case as well.

Minimum Distance Inside Search Volume The combination of a limited search volume and a minimum
distance constraint creates the additional scenario that fixing one constraint causes violations of the other.
For example, if a number of elements accumulate in one area onor close to the boundary, then taking the
central element and moving the others away may push some across the boundary. The search volume fix may
in turn violate the minimum distance constraint. This can beresolved simply by giving nodes close to the
boundary precedence in the selection of the representative. The combined fixing strategy is (Algorithm 10)
is identical toAlgorithm 9except that elements with boundary distance of less thanm are given precedence
in the representative selection (Lines 4-6) and that the limited search volume condition is enforced initially
(Line 1) and in each iteration (Line 16).
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Algorithm 10 : Constraint violation fix for continuous search volume withminimum distance

Parameter: m ∈ R
+ \ {0} = min. distance;t ∈ [0, 1) = rel. tolerance;

î ∈ N \ {0} = max. #iterations;̂α ∈ [0, pi] = max. angular dispersion;
ξ ∈ [0, 1] = influence of max. violation;

Input : multisetS ⊆ R
3 of element positions

Output : setS′ ⊆ R
3 of element positions with distances within tolerance

→ fix search volume constraint inS (Algorithm 8);1

i← 0 ; // iteration count2

while mean violation inS > 0 andi < î do3

→ find multiset of elementsB ⊆ S with distance to boundary< m ;4

→ if B 6= ∅ then pick ~s ∈ B with max. # clashing elementsC ⊆ S \ {~s} ;5

→ else pick ~s ∈ S with max. # clashing elementsC ⊆ S \ {~s} ;6

let δmax ∈ [0, m] be the max. violation of all~c ∈ C;7

S′ ← S \ C ; // carry over remaining elements8

foreach~c ∈ C do9

if ~c = ~s then ~d← random vector with length 1;10

else ~d← (~c− ~s) / | ~c− ~s | ; // ~d = normalized direction of movement11

add random angular deviation≤ α̂ to ~d ; // to disperse oscillations, if any12

l← ξ · δmax + (1− ξ) · (m− | ~c− ~s |) ; // l = length of movement vector13

~c′ ← ~c + l · ~d ; // move clashing element away14

S′ ← S′ ∪ {~c′};15

→ fix search volume constraint inS′ (Algorithm 8);16

S ← S′; i← i + 1;17

if mean violation ofS′ > t ·m then abort;18

3.4 Discrete Case

3.4.1 General Considerations

The discrete case is necessary for sensor arrangement optimization for two reasons. First, in each iteration
of the optimization we need to compute at least one goal function value which is very time-consuming in
the continuous case. The goal function computation requires a full forward solution with arbitrary sensor
positions. This is significantly accelerated by defining a finite grid of valid sensor positions and directions
and precomputing the forward solution for all position-direction combination once. In the concrete case
of leadfield matrix based goal functions, each sensor position is represented by one row in the leadfield
matrix. Thus the leadfield matrix of a set of sensor positionson the discrete grid can determined simply be
concatenating the rows of the respective sensor positions.

The second reason for a discrete search space is that discrete optimization algorithms, such as tabu
search, require it. The discrete case thus applies to all of the optimization techniques. The continuous
optimizers are run in a quasi-continuous fashion. The distance between grid nodes should therefore be
significantly smaller than the minimum distance.

3.4.2 Discrete Search Volume Realization

The discrete search volume is realized as a finite grid of positions. A regular grid can be derived from a
continuous search volume by obtaining its bounding box and scanning this bounding box with a defined
sampling width. For each candidate position, we determine whether it is inside the continuous search vol-
ume (Algorithm 3) and if so add it to the grid. The check whether an arbitrary position is inside reduces
to checking whether it is identical to its closest grid node (Algorithm 5). The projection on the boundary
operation also reduces to finding the closest grid node. A special case is a single layer of grid nodes around
the body surface. This case is also covered with this approach.
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3.4.3 Limited Search Volume Constraint

A limited search volume violation can be detected by comparing the current position to its closest grid
node (Algorithm 5). Here, the efficient implementation ofAlgorithm 5 yields a significant performance
gain, because this test is done for every position in every iteration of the optimization. To fix a violation,
we simply snap back to the grid (Algorithm 11). The deviation caused by the constraint fix depends on the
sampling width of the grid. A finer grid yields a smaller deviation but also makes an efficient implementation
all the more necessary.

Algorithm 11 : Constraint violation fix for discrete search volume

Data : discrete search gridG ⊆ R
3

Input : multisetS ⊆ R
3 of element positions

Output : multisetS′ ⊆ G of element positions

foreach~s ∈ S do1

find closest grid node~s′ ∈ G to ~s (Algorithm 5);2

S′ ← S′ ∪ {~s′};3

3.4.4 Minimum Sensor Distance Constraint

The problem of minimum sensor distance by itself inSection 3.3.4remains valid for the discrete case
as well. We therefore only need to modifyAlgorithm 10and yieldAlgorithm 12. We enforce the limited
discrete search volume condition initially (Line 1) and in each iteration (Line 14). Second, we handle the
case that an element that was moved away from the cloud representative is moved back below minimum
distance due to the grid width. For every such element, we simply pick the closest grid node that satisfies
the minimum distance (Lines 15- 20).

3.4.5 Limited Direction Constraint

A practical representation of a direction vector are spherical coordinates. Since only the orientation is impor-
tant and not the length, it is sufficient to store the two anglesφ ∈ [0, π] (zenith) andθ ∈ [0, 2π] (azimuth). A
regular grid of angles may be defined by scanningφ andθ with 45◦, 30◦, 15◦ etc. step width. The resulting
list of valid directions needs to be indexed. The north and south pole may get the indices 0 and 1, and the
remaining directions can be numbered from north to south continuing in positiveθ direction.

The two conversion methods indexToDirection and directionToIndex both only requireO (1) time, be-
cause they are analytical. DirectionToIndex additionallybringsφ andθ back into the valid range and snaps
them to the grid. The constraint fix (Algorithm 13) snaps the continuous directions to the grid by reusing
both conversion methods. Since all directions are independent this may be parallelized with a speed up∼ #
processors on an EREW.

The combination of the constraints for limited search volume, minimum distance and limited directions
is simple, because position constraints are decoupled fromthe direction constraint. They can be executed
one after the other. An adjustment of the direction with respect to the movement of the sensor by the position
constraints can not generally be made, because the direction represents the vectorial field component to be
measured.Algorithm 13may even be executed concurrently toAlgorithm 12on an EREW.
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Algorithm 12 : Constraint violation fix for discrete search volume with minimum distance

Parameter: m ∈ R
+ \ {0} = min. distance;t ∈ [0, 1) = rel. tolerance;

î ∈ N \ {0} = max. #iterations;̂α ∈ [0, pi] = max. angular dispersion;
ξ ∈ [0, 1] = influence of max. violation;

Input : multisetS ⊆ R
3 of element positions

Output : setS′ ⊆ R
3 of element positions with distances within tolerance

→ fix search volume constraint inS (Algorithm 11);1

i← 0 ; // iteration count2

while mean violation inS > 0 andi < î do3

pick ~s ∈ S with max. # clashing elementsC ⊆ S \ {~s};4

let δmax ∈ [0, m] be the max. violation of all~c ∈ C;5

S′ ← S \ C; C′ ← ∅;6

foreach~c ∈ C do7

if ~c = ~s then ~d← random vector with length 1;8

else ~d← (~c− ~s) / | ~c− ~s | ; // ~d = normalized direction of movement9

add random angular deviation≤ α̂ to ~d ; // to disperse oscillations, if any10

l← ξ · δmax + (1− ξ) · (m− | ~c− ~s |) ; // l = length of movement vector11

~c′ ← ~c + l · ~d ; // move clashing element away12

S′ ← S′ ∪ {~c′};13

→ fix search volume constraint inC′ (Algorithm 11);14

→ foreach~c′ ∈ C′ do15

→ if | ~c′ − ~s |< m then16

→ find closest search volume node~c′′ to~c′ with | ~c′′ − ~s |≥ m (Algorithm 7);17

→ S′ ← S′ ∪ {~c′′} ;18

else19

→ S′ ← S′ ∪ {~c′} ;20

S ← S′; i← i + 1;21

if mean violation ofS′ > t ·m then abort;22

Algorithm 13 : Constraint violation fix for discrete directions

Parameter: n ∈ N \ {0, 1} = # grid nodes within[0, π] inducing grid of directions
G ⊂ [0, π]× [0, 2π]

Input : multisetD ∈ R
2 of {φ, θ} pairs

Output : multisetD′ ∈ G of {φ, θ} pairs

foreachd ∈ D do1

d′ ← indexToDirection(directionToIndex(d));2

D′ ← D′ ∪ {d′};3
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4 Object-Oriented Design and Development Process

4.1 Overview of SimBio

SimBio [24] is a generic distributed simulation environment. Its objective is the improvement of clinical
and medical practices by introducing large-scale numerical simulation capabilities to bio-medical prob-
lems. It comprises subsystems for the representation of thephysical problem, numerical solutions, inverse
problem solving, optimization and visualization. Its key feature is the ability to use individual patient data
as input for modeling and simulation. Example applicationsare the localization of electromagnetic sources
inside the human brain or bio-mechanical simulations and prosthesis design. In general, SimBio is suitable
for non-invasive diagnosis and pre-operative planning. The software framework consists of several server-
based subsystems, which are connected to a graphical user interface at the application site through CORBA
middleware. The computationally expensive simulation algorithms are designed to utilize parallel hardware.

Inverse Toolbox The subsystem of interest is the inverse toolbox. The objective of the inverse toolbox is
to provide a collection of inverse procedures and algorithms for error assessment. The design is intended to
be as generic as possible, supporting interoperation with external programs. To date, two types of problems
are supported: (1) problems with a continuous parameter space and (2) problems with a discrete parameter
space. In the continuous case, fitting single or multiple, fixed, rotating or moving dipoles is implemented
through non-linear optimization. In the discrete case, dipole positions are assumed to be fixed. Both, electric
and magnetic field recordings are supported.

The inverse toolbox consists of a number of generic classes,such as optimizers and goal functions.
Because their direct usage by a client is too complex, three user interface (UIF) layers have been defined.
The classUIF1_c provides functions for all typical usage scenarios and accesses the toolbox classes di-
rectly. UIF2_c provides functions with file names for input and output whichcall UIF1_c . Finally, UIF3
is a command line interpreter callingUIF2_c . UIF1_c instantiates several toolbox objects and an analyzer
object (Figure 18), which encapsulates a particular task requested by a user.For exampleanAnalyzer-

InverseDipoleFit_c creates the necessary objects to do a dipole fit. The analyzerinstantiates several
more toolbox objects, such as an optimizer and a goal function. Both,UIF1_c and the analyzer classes
implement the Facade [27, p. 185] design pattern. They provide a simplified interfaceto a more complex
subsystem by delegating tasks to a set of hidden objects.Figure 19shows an example of a setup of toolbox
components to perform a moving dipole fit. The respective UIF1 function creates and initializes the objects
with data and links and finally tells the analyzer to run the optimization. The optimizer makes use of the
goal function iteratively, which in turn utilizes more components.

System-wide Conventions Data are typically stored in utility classes, which areutVector_t , utMa-

trix_t andutBlock_t . These classes define standard mathematical vector and matrix operations, such
as cross product or matrix multiplication. All three are parameterized in their number format using C++
templates. The coding standard defines the class name prefixes ”an” for analysis and ”ut ” for utilities, as
well as postfixes ”_c ” for class, ”_t ” for template class and ”_s ” for struct. Class members are prefixed
with ”m_”.

4.2 Optimizers

The role of the optimizer classes derived fromanAbstractOptimizer_c (Figure 20) is to implement
different numerical optimization techniques. Their inputis a two dimensional set (utMatrix_c ) of param-
eters, representing the initial solution. Typically, eachrow defines one dipole or sensor in terms of position
and orientation. But the optimizers are generic, so that they work on any set of parameters. The optimiza-
tion process minimizes the goal function value of the current solution by modifying it. In order to support
any kind of goal function, a protected reference of typeanAbstractGoalFunction_c is used. In each
iteration, the current solution is passed to the goal function object, which returns the goal function value.
The output is a parameter matrix of the same dimension as the input representing the result.

Settings and stop criteria are passed in form of autVector_t<double> , which allows to define the
same get and set methods in the abstract base class. Additionally, the number of settings of a concrete
optimizer may be increased by adding functionality, without needing to change the interface. As in most of
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Figure 18: Analyzer abstraction hierarchy (showing operations of abstract classes only)
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Figure 19: Object diagram of setup for a moving dipole fit using electrical and magnetic sensors.

the SimBio classes, the methodgetTypeName(): std::string is defined, which simplifies output of
information and error messages.

Independent Constraint The definition of the optimization problem in general consists of two parts: the
goal function and the definition of the, possibly constrained, search space. The pre-existing SimBio imple-
mentation only supported one type of constraint: a limited physical search volume, typically a sphere fitted
to model the human brain. This constraint was hardcoded intoanAbstractGoalFunctionEEGMEG_c

through a penalty strategy using ananAbstractSearchVolume_c reference. This of course limited the
use of this constraint to this particular application.

The new classanAbstractConstraint_c (Figure 20) is the independent generic representation of a
constrained search space definition. The optimizer can use the constraint interface to check and restore the
validity of the constraint without knowing its particular structure. The usage of a constraint consists of two
steps: (1) callisSatisfied() and/orfix() on the initial guess to enforce a valid initial solution and
(2) call fix() after each iteration step to obtain a close valid solution. This design decouples the problem
definition from the optimization approach and also the constraint definition from the goal function. Thus
any optimizer can minimize any goal function inside any constrained search space. In particular, we can
also fit dipoles, thus performing an inverse solution, with the new PSO optimizer. Additionally, application-
specific goal functions and constraint definitions or generic optimization techniques can be added without
recompiling the other two components, respectively.

Default Constraint In order to support the unconstrained search space and to be fully compatible with
the various pre-existing client classes ofanAbstractOptimizer_c , the referencem_constraint is ini-
tialized to an instance ofanConstraintEmpty_c (Figure 22) by default if no constraint is passed in the
constructor. This is implemented by the very simple static factory methodcreateDefaultConstraint()

in anAbstractOptimizer_c . Thus, the pre-existing optimizersanOptimizerMarquardt_c andan-
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Figure 20: Optimizer abstraction hierarchy (showing operations and attributes of abstract classes and oper-
ations ofanOptimizerSwarm_c )

OptimizerSimplex_c do not need to be touched to run as they did till now. They only need to be instru-
mented to make use of the new constraint.

Particle Swarm Optimizer The new classanOptimizerSwarm_c implements the particle swarm op-
timization outlined inSection 2.4. The publicly available standard PSO [1] algorithm was restructured in
the following way: C arrays were replaced withutMatrix_t andutVector_t objects. The interface of
anAbstractOptimizerContinuous_c was implemented. Parameters and stop criteria are managed only
through the set and get method. Many global variables were put in their proper scope. The two dimensional
parameter set used in SimBio is linearized internally and conversion methods were introduced for interac-
tion with the goal function and the constraint. The linearization includes support for arbitrary definitions
of unused parameter. Unused parameter are not altered by theoptimizer, but are used to compute the goal
function and fix the constraint (seeSection 4.3).

The initial solutions of the particles are determined usingthe methodcreateRandomParameter()
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of the constraint. The random initialization is thus delegated to the constraint, whose responsibility it is.
After each iteration the methodfix() of the constraint is called to turn the current solution intoa close
valid solution. Since this moves some particles inside the search space, the respective velocities may need
to be adjusted accordingly. Three strategies have been implemented, which can be chosen through a setting.
In the current implementation, these strategies are pragmatically chosen by a setting. Much more generic
would be the application of the Strategy [27, p. 315] design pattern. A concrete strategy could be a small
class derived from an abstract velocity strategy base class. Then strategies could be added without changing
the optimizer code and the definition of the valid settings range. A disadvantage would be the computational
overhead during runtime.

4.3 Constraints

The role of a constraint class is to represent the high-dimensional search space induced by a particular
combination of basic constraints and to provide the methodsnecessary to integrate it into the optimization
process. The four central interface methods (Figure 21) areisSatisfied() to check whether a parameter
set satisfies the constraint,fix() to modify it so that it satisfies the constraint,penalize() to compute
a penalty to add to the goal function andcreateRandomParameter() to obtain a parameter set that is
random within the possibly complex search space and satisfies the constraint. The methodsfix() and
penalize() are alternative constraint handling techniques, which both pertain to the definition of the con-
straint. The methodcreateRandomParameter() is necessary to generate initial guesses. It is also closely
tied toanAbstractConstraint_c , because it requires full access to the definition of the constraint.

Figure 21: Constraint interface sections

Not in all constraint cases all interface methods will be simple to implement. And not in all application
cases, all interface methods will be strictly necessary. Therefore, default implementations, so called hook
methods, are provided in the abstract base class, throwing and exception with an appropriate error message.
This allows incremental development of new constraint classes. For example, for sensor optimization we
have many sensors, sopenalty() does not work well, so we do not implement it Another developer may
wish to use the same constraints for 2-3 dipoles, e.g. to separate thalamic and cortical activities in the brain.
(S)he can implementpenalty() any time later without needing to change the interface or recompile any
optimizers.

Multiple Virtual Inheritance The nature of application-specific constraints is that theycan be decom-
posed into a set of basic constraints. Each of the basic constraints has its own data structures and methods.
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If two constraints are combined, data structures and methods of both should be reused. The natural way is to
inherit from both of the basic constraints and to reimplement only the interface methods that realize the com-
bination of both constraints. This can be done repeatedly tocombine more than two constraints. For exam-
ple, the classanConstraintVolMinDistCont_c (Figure 22), which defines the minimum distance within
a continuous search volume, inherits fromanConstraintVolumeContinuous_c andanConstraint-

MinDistCont_c . Protected internal minimum distance methods, such asfixPosition() which actually
moves the elements away from one cloud representative (Lines 6- 12of Algorithm 9), are reused without
any changes. Others, such asnextPositionToFix() are reimplemented in the derived class, because ele-
ments close to the volume boundary need to be preferred to others. The methodfix() of anConstraint-

VolumeContinuous_c is even reused as is by calling it with the proper scope operator inside fix()

of anConstraintVolMinDistCont_c . The combination of the resulting class withanConstraint-

DirectionContinuous_c is even simpler, because both parent constraints only touchdistinct parameter
sets: positions and directions. The methodfix() of anConstraintVolMinDistDirCont_c only calls
both base class implementations one after the other.

The second requirement is that all constraints inherit fromanAbstractConstraint_c (Figure 22)
to be exchangeable amongst each other and compatible to any optimizer. This is achieved by diamond-
type inheritance [92, p. 399]. If we would choose non-virtual inheritance, two ormore anAbstract-

Constraint_c -segments would be allocated in memory for each instance of the derived class. However,
we want the settings and the used parameter definition to exist only once per constraint object. We therefore
choose virtual multiple inheritance.

Settings Access Template The multiple virtual inheritance requires us to think aboutthe settings vector. If
two constraints are combined to one new derived class with only one settings vector, we need to concatenate
the settings of both base classes in the getSettings method and we need to check the validity of all settings,
ideally by reusing base class code. Additionally, we need toprevent that constraint algorithms access the
settings vector directly, because once we concatenate the settings, they are not in the same element of the
settings vector any more.

The solution is to encapsulate the settings vector and to provide only controlled access to it, which
is shown inFigure 21. We first make them_Settings private so that no derived class code can ac-
cess it directly. We then apply and extend the template method [27, p. 325] design pattern. The method
setSettings() is implemented non-virtual inanAbstractConstraint_c as a template. It first calls
the methodcheckSettings() which is pure virtual, so that the derived class developer has to implement
it. If the settings are valid, the template method calls the pure virtual methodapplySettings() , which
copies the settings to respective named class attributes. Only these attributes are accessible to the derived
class code. With this design a validity check is enforced andno direct access to the unnamed settings is pos-
sible. The template method is parameterized with the two virtual methods. The same technique is used for
the non-virtualsetDefaultSettings() . The method getSettings is implemented non-virtual to enforce
a hard copy of the settings vector.

Now, in the case of multiple virtual inheritance, each classwith two base classes only needs to im-
plementcheckSettings() andapplySettings() (Figure 22) in the way that both base class versions
are called sequentially on subsets of the input settings vector using the scope operator. New settings of the
derived class can be appended at the end of the settings vector and checked and applied as third step. This
results in complete reuse of base class functionality.

Encapsulation and Support of Used Parameter Definition The definition of used parameters is stored
in a utMatrix_t<bool> and defines for each parameter, cartesian coordinates of position and spherical
coordinates of direction, whether it is variable (used) or constant (unused). A particular constraint may
impose additional restrictions on the used parameter definition. For example, inanConstraintVolume-

Continuous_c we only want to allow to make whole position triplets to be either used or unused. To en-
force this we again apply the template method [27, p. 325]. The methodsetUsedParameter() (Figure 21)
is implemented non-virtual, which calls the virtualcheckUsedParameter() to make the custom check.

The used parameter definition pertains to the definition of the constraint, because it directly restricts the
search space by eliminating complete dimensions. However,the optimizer depends on this definition to be
able to optimize only the used parameter. But we do not want a second copy to exist in the optimizer. So
we make the used parameter definition private inanAbstractConstrainţ to encapsulate it and provide
efficient access methods to it.
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Figure 22: Constraint abstraction hierarchy (omitted attributes of anAbstractConstraint_c and all
members of both search volume classes)
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The developer of a particular constraint may decide to not allow unused parameters at first through
checkUsedParameter() . (S)he may then develop support for particular sets of unused parameter and al-
low them by modifyingcheckUsedParameter() . Thus, constraints can be developed incrementally. The
used parameter support turns out not to be very difficult. Forsearch volume constraints, we only allow whole
positions to be switched off and simply do not alter them within fix() andcreateRandomParameter() .
For minimum distance constraints, we prefer unused positions in the selection of the cloud representative,
which is not moved. And in direction constraints we only needto ignore the unused directions.

The support of a used parameter definition in the constraintsactually extends the application area of
SimBio. So far only a continuous parameter space with all parameters used and a discrete paramete space
with all positions fixed was supported. Now we can switch of any selection of positions and directions
in the continuous and discrete case. For example, we may fix some a priori sensors or dipoles and fit
the remaining ones. Or we may fix all sensors or dipoles and only optimize their direction. We can also
fix all directions and optimize the positions only. This may be of theoretical interest, since we can either
choose the same direction for all sensors or dipoles or a balanced number of sensors/dipoles for each spatial
dimension. Furthermore, the used parameter definition is not bound to dipoles or sensors any more, but can
be customized to any type of optimization constraint.

Shared Parameter Responsibility The combination of several constraints operating on the same param-
eter matrix requires us to think about which constraint is responsible for which subset of the matrix. Of
course, the search volume constraints manage the cartesianposition coordinates, e.g. rows one to three. The
direction constraints manage the directions, e.g. rows four and five. But when we callcreateRandom-

Parameter() of anConstraintVolMinDistDirCont_c , we wish to pass the subtask to base class im-
plementations. Therefore,createRandomParameter() of anConstraintDirectionContinuous_c

is passed a matrix of initial parameters already processed by anConstraintVolumeContinuous_c and
overrides only the direction parameters in row four and five.To be generic,createRandomParameter()

of anConstraintVolumeContinuous_c is also only responsible for position parameters and leavesdi-
rection values as they are. Thus, every constraint has a defined set of parameters, it is responsible for. For
the particular use with sensors or dipoles, we define for every constraint the rows which it is responsible
for and what the content of the rows is. We can parameterize the row indices used, simply through set-
tings. For example,anConstraintDirectionContinuous_c (Figure 22) has the membersm_RowPhi

andm_RowTheta which hold the respective row indices. Consequently,createRandomParameter() of
anConstraintEmpty_c returns the parameter matrix as is.

Overloading Methods for Index Support The discrete constraints have a finite number of valid con-
figurations, which can be numbered sequentially. For example,anConstraintVolumeDiscrete_c rep-
resents a finite set of positions, which need to be stored sequentially in memory anyways. The class
anConstraintDirectionDiscrete_c holds a finite set of directions. A discrete optimizer, such as tabu
search, may wish to operate on indices rather than the parameter values. Additionally, a discrete goal func-
tion, such asanGoalFunctionConditionNumber_c (Figure 23) holds a finite number of goal function
values for a finite set of element configurations. If this goalfunction is passed parameter values, it needs
to convert them to indices of valid goal function sampling points every time. If matching indices would be
used, a discrete optimizer could pass indices directly instead of values.

Because both modes are alternatives describing identical information, it is natural to overload the meth-
ods isSatisfied() , fix() , penalize() andcreateRandomParameter() with input and output of
type utMatrix_t<int> instead ofutMatrix_t<double> (Figure 21). Both versions, may be imple-
mented separately or one may call the other depending on the nature of the constraint. Note that in the
index mode we still use a matrix, not a vector, because of the shared parameter responsibilities. The vol-
ume constraint has position indices and the direction constraint has indices as well. Both parts do not know
about each other. In our particular application case, we have an index matrix with two rows. For other ap-
plications, different numbers of index rows are supported by the design. We however need to make explicit
definitions which row contains what by settings. We define hook methods inanAbstractConstraint_c ,
which throw an exception with an appropriate error message.The constraint developer can then add in-
dex support and/or value support incrementally depending on the requirements at hand. In our case, only
the discrete branch of the constraints has both alternatives implemented (Figure 22), while the continuous
branch has only value support.
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Mapping of Algorithms to Classes and Methods The fix for a limited continuous search volume of
Algorithm 8 is implemented inanConstraintVolumeContinuous_c::fix() . The minimum distance
in an infinite volume ofAlgorithm 9is implemented inanConstraintMinDistCont_c . The algorithm is
decomposed into a number of methods to support code reuse in derived classes. The methodfix() imple-
ments the outer loop. The representative choice inLine 3is implemented generically innextPositionTo-

Fix() which callsmaxClashPosition() in the concrete implementation.Lines 6- 12are implemented
in fixPosition() . The augmentations ofAlgorithm 10 in Lines 1 and 16are included in the reimple-
mentedfix() of anConstraintVolMinDistCont_c andLines 4- 6are integrated by reimplementing
nextPositionToFix() . Algorithm 11 is implemented byfix() in the classanConstraintVolume-

Discrete_c . Algorithm 12 is represented byfix() of the classanConstraintVolMinDistDiscr_c .
Lines 15- 20are implemented by the new methodfixSequentialErrors() , which is called within
fix() . The discrete direction fix ofAlgorithm 13is implemented infix of anConstraintDirection-

Discrete_c .

4.4 Goal Functions

The role ofanAbstractGoalFunction_c (Figure 23) is to declare the interface of goal functions. The
central method iscomputeGoalFunction() which computes the goal function value of a particular pa-
rameter set. The computation of the Jacobi matrix of partialderivatives also pertains to the goal function.
It is however only used by the Levenberg-Marquardt optimization technique and is therefore optional and
hasJacobiMatrix() is provided to check whether it is supported.

To be able to test the optimizer classes under controlled conditions, thus without the new goal func-
tions, we implemented Rastrigin’s function inanGoalFunctionRastrigin() as a test goal function.
Rastrigin’s function is a typical benchmark function for optimization techniques with the following for-
mula:

r (~x) = 10 ·d+x2
1 +x2

2 + ..+x2
d−10 · (cos (2πx1) + cos (2πx2) + .. + cos (2πxd)) (~x ∈ R

d) (4.1)

Its special properties are that it only has one global minimum, but many regularly arranged local minima
and maxima. Close to the global minimum the difference between local minima and the global minimum is
very small. But it increases quadratically with increasingdistance.

For the optimization of sensors based on measures of the leadfield matrix, we designed and implemented
anAbstractGoalFunctionLeadfield_c (Figure 23). Its role is to provide the functionality to manage
the leadfield matrix and to convert position-direction configurations given as parameter values or indices
into global indices that map directly to one row of the leadfield matrix. Since the leadfield matrix implies a
fixed global indexing sequence, it also provides the methodgetSensors() to obtain the full list of sensor
configurations in the sequence of the leadfield matrix rows.

Since an index matrix passed to the goal function by the optimizer should use the same indexing as the
leadfield matrix,anAbstractGoalFunctionLeadfield_c reuses the indexing of the respective con-
straint. Now, since we are by definition using a leadfield matrix, the set of positions and orientations
must be discrete. For the optimizer to work on this search space, it requires a constraint that inherits
from anConstraintVolumeDiscrete_c andanConstraintDirectionDiscrete_c . But we do not
know which concrete class this would be. So we store two pointers to the constraint object, one of type
anConstraintVolumeDiscrete_c and one of typeanConstraintDirectionDiscrete_c . The con-
straint class may for example be aanConstraintVolMinDistDirDiscrete_c . But it may also be any
anConstraintVol *** DirDiscrete_c . The optimizer knows the same object only through a reference
of typeanAbstractConstraint_c .

The concrete leadfield matrix based goal functions, such asanGoalFunctionConditionNumber_c ,
can now be created simply by deriving a class which accesses the leadfield matrix provided by the base
class functionality and implementscomputeGoalFunction() (Figure 23).

4.5 Search Volumes

The search volumes (Figure 24) are an integral part of the volume constraints. Until now SimBio only sup-
ported continuous search volumes, whose interface was defined in anAbstractSearchVolume_c . The
interface sections particular to continuous search volumes have been split off into a derived classanAb-

stractSearchVolumeContinuous_c and anAbstractSearchVolumeDiscrete_c has been added,
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Figure 23: Goal function hierarchy (omitted members of pre-existing classes, constraints andutMatrix_t )



49

which extends the interface with index based methods (Figure 24). All previous references toanAbstract-

SearchVolume_c only need to be replaced withanAbstractSearchVolumeContinuous_c . The meth-
odsrandomInsidePosition() was added to the whole hierarchy andprojectionOnSurface() to the
continuous branch. Both have a concrete use increateRandomParameter() and fix() of the volume
dependent constraints.

Figure 24: Search volume abstraction hierarchy (omitted operations of pre-existing classes and attributes of
Grid_c )

The two new classes areanSearchVolumeSurfaceGrids_c andanSearchVolumeGrid_c . The first
represents a set of surface grids, just like the ones a BEM model consists of. One surface can be selected as
current search volume.Algorithm 3 of Section 3.3.2is implemented inisInsideSearchVolume() and
Algorithm 4 in projectionOnSurface() .

The classanSearchVolumeGrid_c represents a discrete search volume, which can be thought ofas
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a grid, basically. One design option would be to inherit fromGrid_c as well. However, the pre-existing
grid generator concept which decouples the representationof a grid from the construction process is not
compatible with that.anSearchVolumeGrid_c is therefore a proxy class as outlined by the Proxy [27,
p. 207] design pattern. The search volume class provides controlled access to a hidden Grid, it is a so called
protection proxy. Additional methods, such asisInsideSearchVolume() , are implemented, while other
non-related methods ofGrid_c are not accessible. An advantage is that the method names aretranslated
into the search volume context. This facilitates reuse and reduces errors.

4.6 Grid and Grid Generators

The grid generators (Figure 25) in SimBio are an interesting design, because they implement a simplified
version of the Builder [27, p. 97] design pattern. Grids appear in many places in the SimBio design. They
may represent the surface grid of a BEM model, or a volume gridof a FEM, or a search volume for sensors
or dipoles. The construction of the particular grid is different every time and is complex. Therefore, the
construction of the grid is separated from its representation. The abstract base classanAbstractGrid-

Generator_c provides the interface of the builder classes, namely a method to execute the building pro-
cess and a method to retrieve the product. The derived classes implement different construction processes.
For our purposes,anBEMGridGeneratorASA_c is relevant, because it creates a triangulated BEM model
surface by reading positions and triangles from an input file. This surface representation is neccessary for
the continuous search volume constraint.anGridGeneratorVolumeInsideBoundary_c can be reused
to obtain a regular volume grid from a continuous search volume definition, which is itself a triangulated
surface. This provides a simple method to derive the discrete search volume for our discrete constraints.

The classGrid_c is our representation of the continuous and discrete searchvolume and is thus where
the fast operations defined inSection 3.3.2belong.Algorithm 5 is implemented infindClosestNode() ,
Algorithm 6 is implemented insortedIndexOfFirstNodeWithAtLeastX() andAlgorithm 7 is imple-
mented infindNodesWithinDistanceRange() . The sorted list is implemented by an STL vector or
C++ structs containing node, sort value pairs.

4.7 Software Process Model

An incremental development process [7, 91] was applied for the new components and the modifications of
existing structures outlined in this chapter. The requirements in terms of constraint algorithms, compatibil-
ities between optimizers, constraints and goal functions,types of optimizers and goal functions, types of
search volumes, etc. were defined fairly completely in the beginning. The constraint hierarchy design was
an early strategic decision [7], which provided the skeleton for the incremental development.

Incrementally classes were added. The increments were a newoptimizer class, a new constraint and
so on. Because the execution of an optimization requires an optimizer, a goal function and an constraint to
cooperate, the finished increments were run with placeholder components. For example, Rastrigin’s function
was used as placeholder goal function and existing analytical search volumes, such as a sphere, were used
as placeholder for the search volume defined by a triangulated search volume. Successively, placeholders
were replaced by finished components which could be described as a bootstrap process. In this way the new
component and its interaction with the system could be tested after each increment and experiences could
be fed into the design early. High priority components, suchasanConstraintMinDistCont_c which is
the most critical part of the constraints, could be delivered early and thus received more testing.

The individual implementation, performance optimizationand testing stages are not documented sep-
arately, because the focus of this study is not solely the software development, but also on the application
and verification of the algorithms in the biomedical setting. These stages did, however, pose a number of
concrete implementation issues, such as the limited numeric precision in continuous calculations. For ex-
ample, if we compute a vector between two positions which arevery close to each other inAlgorithm 9,
the resulting movement vector may have a strong deviation inspatial direction due to the limited precision.
The integration into SimBio required support for marking specific parameter as unused and only optimizing
the rest while still keeping the unused parameter for the goal function evaluation, etc. Please refer to the
commented C++ source code for full implementation details.
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Figure 25: Grid class and the grid generator hierarchy (omitted attributes and operations of pre-existing,
unrelated grid generators)
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5 Application to Magnetocardiography

5.1 Previous Sensor Optimization Approaches in Magnetocardiography

Efforts to determine the number of sensors necessary to capture the electric field of the myocardium and
their positioning have been made already in the 1970’s. Lux et al. [61] collected body surface potential
maps (BSPM) of 132 test persons and evaluated subsets of these leads in terms of the root mean square error
between limited leads and the total lead map, the mean correlation coefficient and the error to signal power
ratio [61]. They concluded that 30-35 selected leads yield low enougherror values. However, they could not
find a unique lead arrangement with this property, but set of different ones. A further principle component
analysis of BSPMs [60] uncovered 12 principle components of the electric field captured by BSPMs. Barr
et al. [4] found a 24 out of 150 leads to be sufficient. A recent investigation [25] also concludes with 32
leads being sufficient.

Magnetic sensor optimization in cardiology has come into focus more recently. Nalbach and Dössel [67]
used the condition number of the leadfield matrix as optimization criterion for both ECG and MCG. In their
study, a FE model of a torso with lungs and heart was generated. 990 radial magnetometers were arranged
around the torso in a tube shape. The combinatorial optimization consisted simply in successively eliminat-
ing sensors that do not increase the CN. They determined setups of 32, 64 and 99 sensors and compared
them to commercial sensor setups. They found that the optimization of magnetic sensors and electric ones
individually can increase the reconstruction robustness.As a compromise to the cryostat technology they
suggest to place a second patch of sensors in a second cryostat at the back of the torso.

Kim et al. [50] reviewed the sampling theory to determine a setup of their tangential magnetometers,
which fulfills the Nyquist- theorem. Their finding is that fortangential sensors 99% of the spatial spectral
power at distancez from the source in Z-direction is below1/2z. They thus conclude that a sampling width
of z is sufficient. They approximatez with 4 cm, since the heart lies at least3 cm from the torso surface
and the cryostat requires another1 cm. The resulting setup is a regular grid with4 cm width.

A number of studies exist, which propose criteria for assessing given setups. These criteria may be used
as goal functions in the future. For example, Di Rienzo et al.[17, 3] investigated the gain in reconstruction
robustness by considering all three vectorial components of the field in each sensor position instead of
just one. As evaluation criteria they used the RMS error, themean correlation coefficient and lower error
bounds [80].

A more theoretic optimization of sensor positions is proposed by Rouve et al. [85]. They assume a
multipole source model and optimize the sensor positions byminimizing the condition number of the matrix
of spherical harmonics influences on the sensors. The optimization approach is a genetic algorithm. The
sensor search volume is a sphere around the source and the number of sensors used in their theoretic example
is 5 (10 parameters).

5.2 Experimental Setup

5.2.1 Clinical Data

The clinical application of magnetocardiographywould be the diagnosis of various functional pathologies of
the heart. In order to optimize a sensor setup for this task, MCG recordings of patients with these pathologies
should be used to guide the optimization. The acquisition ofa representative set of patient recordings and
the derivation of a complex cardiac field model is beyond the scope of this study. We would rather like to
present a proof of concept, using one recording of a test person with a non-trivial cardiac excitation pattern.

The test person is male and was 72 years old at the day of the recording. He had coronary artery
disease with a 50% stenosis of the R. interventricularis anterior and a 70% stenosis of the R. circumflexus.
The test person has a sinus rhythm, but the excitation pattern in the ECG and MCG shows a prolonged
(>100 ms) QRS complex with two peaks indicating some kind of right ventricular excitation delay or a
possible incomplete right bundle branch block (Figure 26, Figure 27). This causes the excitation front to
move across the myocardium non-uniformly.

An MCG at rest of 5 minutes duration was made with the Argos200System introduced earlier. Subse-
quently, an MRI (T1-weighted) of the complete torso was madewith 1 mm resolution. In both procedures
the patient positioning unit (PPU) was placed on the test person. The PPU consist of three coils arranged in
a right-angle triangle on a non-magnetic base. These landmarks can be identified in the MCG and the MRI
and thus both datasets can be mapped geometrically.
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Figure 26: Electric Frank leads in orientations X (top), Y (middle) and Z (bottom)

5.2.2 Data Preprocessing

Prior to data analysis the three vectorial components measured per triplet were transformed into the com-
ponentsBx, By andBz in the center point of the cube formed by the rectangular sensors. The sensor-plane
is the xy-plane and the z-dimension is the normal pointing away from the test person. The heart beat times
were determined by template matching and averaged channelwise.

5.2.3 Volume Conductor Model

From the T1-weighted MRI (1 mm resolution) of the test personthe torso surface, both lungs and the
blood volume inside the heart and the aortic arch were segmented using Curry Version 4.6 (NeuroScan
Compumedics, El Paso, USA). The surfaces of these four compartments we triangulated with a triangle
side length of 6 mm for the blood mass (1413 nodes), 10 mm for both lungs (889 + 843 nodes) and 14 mm
for the torso (2600 nodes). This resolution has been shown tobe a good compromise between computational
speed and reconstruction accuracy [40]. We assumed a homogeneous conductivity of 0.2S/m for the torso
including the heart muscle, 0.04S/m for both lungs and 0.6S/m for the blood mass [40].

To be able to compare our results to previous investigations[17], we also include this preexisting volume
conductor, source model and sensor search space (Figure 29) in our study. This model is used for initial
theoretic inquiries, while the new recording and volume conductor is used for realistic optimization.
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Figure 27: Position Plot of theBz component of the average heart beat of the test person

Even though both volume conductor models consist of five compartments, we only use the torso and
both lungs, because currently SimBio only supports three compartments. The torso and lung surfaces have
the strongest impact due to the large differences in conductivity. The ventricles are useful for determining
the dipole positions of the source model.

5.2.4 Source Model of the Cardiac Field

The propagation of the excitation in the myocardium is complex. Durrer et al. [18] in 1970 produced a
detailed isochronic representation. (Figure 30). In particular, we can see that the action potential front is not
solely moving tangentially to the myocardium but also radially. Which may give rise to radially arranged
dipoles, such as inFigure 29.

Because the magnetic field of the heart is rather a superposition of distributed dipole moments, a dis-
tributed source model is a sensible choice. This is particularly true, if we are trying to accommodate irregular
excitation patterns, e.g. caused by weakly conducting infarction scars. A number of dipoles is spread evenly
across the myocardium. Because the left ventricle is the dominating field source, often only the left ven-
tricle is used [17]. Each dipole represents the dipole moments in its vicinity. Thus, the distributed field is
discretized.

Apart from models with large numbers of dipoles, several different approaches of placing the dipoles
exist. Purcel et al. [79] suggested a 7 dipole model, where one dipole is placed at (1)the sinus node and
left atrium, (2) the His-bundle, (3) the septum, (4) the mid-posterior left ventricle, (5) the mid-anterior right
ventricle, (6) the right atrium and (7) the apex. This model was extended by Hren et al. [41] with 10 more
dipoles arranged regularly around the atrioventricular ring [26]. The purpose was to model the different
types of the Wolf-Parkinson-White syndrome. More recently, Di Rienzo et al. [17] applied a 13 dipole
model (Figure 29) and a 39 dipole model. Twelve dipole positions are arrangedregularly in three rings
around the left ventricle and one is placed at the apex. To obtain the 39 dipoles, three orthogonal dipoles
are placed at each of the positions.
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Figure 28: Compartments of the boundary element model from outside to inside: torso surface (top, left),
boundary element model (top, right), lungs and blood masses(bottom, left) and enlarged right and left
ventricular blood mass (bottom, right)

Figure 29: Sensor area in front of boundary element model of torso, lungs and ventricular blood mass. The
source model consists of 13 dipoles [17].

In this study we adopt the 13 dipole model. We set the dipole positions according to the same scheme.
However, we do not assume radial dipoles. Instead we performa rotating dipole fit (minimum norm with L-
curve regularization and sLORETA [74, 72] noise normalization using CURRY 4.6) over the averaged heart
beat (PQRST) using all three components (Bx, By, Bz) of the vectorial recording. The resulting model
explained the variance of the recording to more than 99.5%. The resulting dipole orientations (Figure 31)
to a large degree tangential, but also have radial components.Figure 32shows the dipole amplitudes at the
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Figure 30: Three-dimensional isochronic (5 ms) representation of the activation of a human heart [18, p.
903]

first R-peak. The strongest dipole amplitudes are in the septal and posterior region.

Figure 31: Source model consisting of 13 dipoles (uniform length shown) around the left ventricle (orien-
tations fitted with minimum norm, L-curve regularization and sLORETA noise normalization)

In subsequent sections, we will denote the combination of the BE model and radial dipoles from the
literature [17] with "model A" and the combination of the newly developed BEmodel with the fitted dipoles
with "model B".

5.2.5 Sensor Type

For our optimizations we assume a sensor with a spherical outer bound of diameter1 cm. This is approxi-
mately the size of current integrated SQUIDs chips (e.g.8x8 mm in the Argos200 system) and well above
the size that current developments of optical magnetometers are targeted at [10]. Research-type SQUID sys-
tems can reach a coil-diameter of less than1 mm [53], which allows sensor distances of a few millimeters.

The sensor is assumed to pick up the field component in the normal direction to the coil area. For the
field simulations in SimBio we use a single winding and a coil area of(0.5 cm)2 ∗ π = 0.7854 cm2.

For the initial investigations with the pre-existing source model and BE model, we used a sensor size of
2 cm. This sensor size accommodates existing optical magnetometers [6].
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Figure 32: Current density distribution at the first R-peak using the 13 dipole model ofFigure 31

5.2.6 Search Volumes

In this study three search volumes are tested. For the initial investigations with the radial dipole model we
use the same square sensor area in front of the torso as in [17] (Figure 29). This square is discretized to
85x85 regular positions (2.5 mm distance) and and the directional space is discretized witha width of 30◦,
resulting in 62 orientations per position.

Secondly, we create a search volume within the pick-up sensor area of the Argos200 system during the
recording (Figure 33). This search volume fills the bottom of the cryostat with a radius of12.5 cm. The
area is discretized to a regular grid with2 mm sampling width. The directional space is discretized with
36◦ (42 orientations per position). The full leadfield matrix thus has about half a million lines. This search
volume enables us to make a cryostat bound optimization. Theresulting sensor setup can thus be realized
with SQUIDS.

Figure 33: Circular sensor search area (12281 regular positions) with diameter25 cm positioned over the
heart

The third search volume is derived from the torso surface, looking like a vest (Figure 34). Positions
are the nodes of the triangulation (4 mm side length) of the dilated (14 mm = triangle side length of the
torso triangulation) torso surface. The directional spaceis discretized with 30◦ width (62 orientations per
position). The full leadfield matrix in this case has roughly1.2 million lines. This search volume enables us
to show the gain by removing the cryostat limitation and allowing free placement of sensors.
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Figure 34: Sensor search volume (19759 positions) around the torso surface omitting connections to arms,
neck and lower body. Positions are the nodes of a triangulation (4 mm side length) of the dilated (14 mm)
torso surface.

5.2.7 PSO and Constraint Settings

For the simulations described in subsequent sections the PSO settings inTable 2and the constraint settings
in Table 3have been used unless stated otherwise. The number of sensors is denoted withN . Each sensor
has five parameters, its three cartesian coordinates and twospherical angles for the orientation. So the
dimension of the optimization problem is5 · N . A nearly fully informed swarm is used. The number of
iterations, 3000 in this case, is set via the number of goal function evaluations. Since in each iteration each
particle consumes one evaluation, we need to multiply the number of iterations with the number of particles
to yield the number of evaluations. We limit the resources for one optimization to 1 million goal function
evaluations. Thus, the optimization is repeated as many times as the resources allow.

Symbol Meaning Value
S swarm size 10 + 2 ·

√
5 ·N

K number of informants ⌊S · 0.95⌋
w first cognitive coefficient 1/3
c second cognitive coefficient 2
λ velocity adjustment factor 0
E maximum number of evaluations per execution S · 3000
R number of repetitions ⌊106/E⌋

Table 2: PSO parameter settings for sensor optimization inAlgorithm 2

5.3 Optimization within a Square Sensor Plane

The first set of optimizations was run with model A, the sensorarea with square border (Figure 29) from
the literature [17] and a minimum distance of 2 cm. We usedS = 2

√
5N particles and 1500 iterations,λ

was set to 0.5. The optimization was run for a range of numbersof sensors (Figure 35).
To validate the results of the PSO optimization, we applied adiscrete tabu search (TS) optimizer (de-

scribed in [56, 55]) to an adapted version of the same problem (green line inFigure 35). We discretized
the same sensor area with a grid width of2 cm (11x11) to implicitely enforce the minimum distance.
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Symbol Meaning Value
m minimum distance 1 cm
ξ influence of max. violation 0.05 (5%)
α̂ max. random angular deviation 0.02 · 360◦ = 7.2◦

î max. number of iterations 50
t relative tolerance to mean min. distance violation 0.02 (2%)

Table 3: Constraint parameter settings for sensor optimization in Algorithm 12

The directional space was discretized with a width of 45◦ (26 orientations). The TS optimizer then does a
combinatorial search on the given set of sensor configurations.
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Figure 35: Condition Numbers of optimized and regular grid setups within a square area in front of model
A (X = all sensors aligned with positive X-axis, etc.) for a range of numbers of sensors

Regular and optimized setups The CN of the optimized setups is significantly lower than theCNs of
regular grids on the same surface with the same number of aligned sensors. In these noise-free simulations,
the optimal number of sensors is around 20 - 30 for both TS and PSO. The optimal number of sensors for
the regular grids is between 36 (6x6) and 49 (7x7). The strongest gain from regular to optimized setups is
achieved for low numbers of sensors. This is expected because the lower the number of sensors available
the higher the information gain when optimal sensor positions are used [56].

Between the sensor orientations of the regular grids are significant differences. As expected the Z-
direction sensors have a better CN than X- and Y-direction. When Z-direction sensors are combined with X
or X and Y sensors, even lower CNs are obtained. This conformsto findings in the literature [3].

PSO versus TS results TS and PSO produce very similar CNs for less than 45 sensors. For denser sensor
setups, TS performs a bit better. The higher CNs for PSO at higher numbers of sensors can be explained
by the difficulties PSO encounters in moving sensors in a densely populated search volume. Moreover,
slight differences between the two optimization approaches can be explained by the fact that the direction
discretization was different for PSO (30◦) and TS (45◦). Thus, the in reality continuous optimal sensor
directions could be better explained by one or the other discretization.
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Optimized Sensor Positioning The sensors of optimized setups tend to be placed in areas of strong
magnetic field gradient. TS and PSO optimized setups show similar positions and orientations of sensors
(Figure 36) [56]. Many of the optimal sensor positions are close to the boundary of the search volume. This
indicates that the search volume might not have been large enough.
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Figure 36: PSO (blue bars) optimized setup of 45 sensors in square sensor area and magnetic field map of
the X component (thin solid lines). The sensor grid is positioned centrally in front of the torso (Figure 29).

5.4 Optimization within a Cryostat-bound Sensor Plane

The second set of optimizations was run with model A and the circular search area (Figure 33) modeling
the bottom of the cryostat of the Argos200 system used for theoriginal recording. The optimization result
would still be compatible with the current SQUID technology.

Condition Number Magnitude The absolute CNs of the optimized setups (green inFigure 37) with less
than 45 sensors have a magnitude (x·102 instead ofx·103 for regular setups) similar to the CNs of optimized
setups within the square search area in front of model B (blue). This indicates that the results obtained in
both simulations pertain to the magnetocardiographic problem, rather than the individual volume conductor
model and source model.

The CNs of the circular area are however consistently a bit lower (green inFigure 37) than the CNs
of the square area. This is expected since the minimum distance is only1 cm instead of2 cm. In areas of
strong gradient, which offer most information, the field canbe sampled with half the sampling width of the
previous simulation. Additionally, the sensor area is the same as that of the Argos200 system during the
recording. The sensor area is arranged as close to the heart as possible and parallel to the body surface.

The observation that the CN for the second search volume increases much less than that of the first one,
can also be attributed to the smaller minimum distance. For the same number of sensors there are much less
minimum distance violations. So the sensors can move relatively freely through the search volume. This
also means that if there are more sensors that necesssary to capture the field, the redundant ones can move
to positions that have a minimum impact on the goal function value.

Required Number of Sensors Considering that the cardiac field only has a certain degree of complexity,
there must be an according number of sensors which is sufficient to capture it. The optimized setup of 35



61

13 20 30 40 50 60 70 80 90
0

50

100

150

200

250

300

350

# sensors

co
nd

iti
on

 n
um

be
r 

of
 le

ad
fie

ld
 m

at
rix

PSO optimized setups

 

 
square sensor plane, model A (m = 2cm)
circular sensor plane, model B (m = 1cm)
torso surface, model B (m = 1cm)

Figure 37: Condition numbers of optimized setups of all three search volumes for a range of numbers of
sensors

sensors inFigure 38for example shows a fairly distributed pattern with severalgroupings of sensors at the
edge of the search space. This may indicate that there are better positions outside the search volume (the
cryostat) or that these sensors are redundant. In terms of the CN (green inFigure 37), the best setup would
be achieved with about 21 sensors. This setup (top right ofFigure 39) has a distributed pattern with no
grouping at the edge. Optimized setups with less, e.g. 13 (top left of Figure 39), sensors have an increased
CN because they can not capture the field robustly. Above 21 sensors the CN only increases marginally, but
the individual setups (Figure 39) are characterized by groupings of sensor on the edge of the search volume.

5.5 Optimization on the Torso Surface

For the third set of simulations we allowed the sensors to move freely on the torso surface (Figure 34). The
result of this optimization can be realized with optical magnetometers much more easily than with SQUIDs.
The number of repeated executions was set to 10 to reduce the computation time.

Lifting the cryostat-restriction results in a second remarkable drop of the condition number by another
order or magnitude (x · 101) to values around 17 (Figure 37). The CN decreases stronger from 13 to about
21. Above 21 there are only minor improvements in terms of CN by adding more sensors. The CN reaches
its lowest and stable values of around 17 for more than 60 sensors. The minimal setup with 13 sensors (top in
Figure 40) shows several lateral sensors, two superior ones, few leftposterior ones and several inferior ones.
Interestingly, these sensors are for the most part outside the flat sensor area of a cryostat. The essentially
robust setup with 21 sensors (center inFigure 40) has additional posterior and inferior sensors, but a similar
distribution. The 31 sensor setup adds right posterior sensors covering the whole back and several right
inferior sensors. In the 49 sensor setup (top inFigure 41) we can observe the formation of a band of sensors
remarkably similar to V1-V9 (Figure 4). Additionally a group of sensors accumulates at the inferior back
which continues for higher number sensors. For 63 and 93 sensors (Figure 41) the torso front and back are
samples more densely, while placing more sensors in the leftlateral band, similar to V1-V9.

In contrast to the flat sensor area, the number of sensors thatare useful for sampling the field is higher.
Thus, redundant sensors only accumulate for higher number of sensors.
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Figure 38: PSO optimized set of 35 sensors (out of 12281 regular positions) within a circular sensor area
(diameter25 cm) positioned over the heart (area identical to Argos200 sensor plane during MCG recording)

5.6 Comparison to Previous Findings

Number of Sensors The number of sensors of 20-30 found in this study are comparable to the findings
of Lux et al. [61] (30-35 sensors), Barr et al. [4] (24 sensors) and Finlay et al. [25] (32 sensors). This is
particularly interesting, since our evaluation criterionis the condition number of the leadfield matrix. The
leadfield matrix expresses whether a small change in dipole amplitude also causes a small change is sensor
amplitudes or not, disregarding the actual dipoles amplitudes. We are thus optimizing the robustness of the
reconstruction, whereas the mentioned studies compared concrete field maps at particular time steps of the
heart beat, which implicitely considers the dipole amplitudes.

Position and Orientation of Sensors The positions of the sensors show similarities to the Wilsonleads
V1-V9 through a band of sensors extending from the left postero-lateral area to the superior anterior torso
surface. This also implies that the flat cryostat-bound sensor arrays may not sample the field at the proper
positions. Additionally, the torso surface is sampled moredensely, the more sensors are used. In agreement
to previous findings [67] the left posterior torso surface is an important location for sensor placement as
well.

The orientations of the sensors vary within the positions. When several sensors are placed close to each
other, they tend to point in rather orthogonal directions. This means that particular and multiple vectorial
components of the field are relevant to the robustness of the reconstruction. This is in agreement to previous
findings [17, 3], which advocate for measurement of all three vectorial components.

Sensor Search Space This study extends existing sensor search spaces [67] in two ways. Firstly, the
complete detailed torso surface is considered. A fine grid ofpossible sensor positions is used. Secondly, the
orientation of the sensor is parameterized and optimized concurrently with the positions. This is important
since existing findings [17, 3] indicate that vectorial measurements contain more information.

Optimization Technique The finely grained, and thus flexible, high-dimensional search space suggests
the use of a gradient-based method that moves the sensors through the search space quasi-continuously,
instead of performing a combinatorial search which disregards spatial closeness relations and local goal
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Figure 39: PSO optimized setups of varying # sensors within circular sensor area seen from the same view
angle as inFigure 38

function gradients. The constraint PSO implementation presented in this study is such a method. Genetic
algorithms [85] and tabu search [56, 31] are alternative approaches, which should be investigatedfurther
and compared.

Sampling Density The sampling density in the optimized setups varies at different locations, according to
the influence of the dipoles. For the setups with 21 sensors, the distances to the respective closest neighbour
have two groups (Figure 42). The dominating distances are around25 mm (30 mm for torso surface), these
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Figure 40: PSO optimized setups of 13, 21 and 31 sensors on torso surface
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Figure 41: PSO optimized setups of 49, 63 and 93 sensors on torso surface
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are the closely sampled areas. The second group are larger distances around60 mm (100 mm for torso
surface). These represent the more coarsely samples areas.This observation implies that a minimum sensor
distance of20 mm, such as the one we assumed when optimizing on model A, would disturb the optimized
setup. A minimum distance of10 mm has a much weaker impact, since the sensor do not tend to be placed
that close. The first group of sensor distances can be interpreted in two ways. These shorter distances may
describe groups of sensors with different orientations, indicating field information in multiple vectorial
components at this location. A second reason for the existence of the first group may be the necessary
sampling width. A sampling width of25− 30 cm fits to the sampling width of40 mm for purely tangential
setups suggested by Kim et al. [50]. The sensors can be expected to lie closer than40 mm to each other,
because they are picking up separate vectorial components.
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Figure 42: Histogram of the distances to the closest neighboring sensor in the optimized 21 sensor flat setup
(top right inFigure 39) and in the 21 sensor torso surface setup (center inFigure 40). Minimum distance of
10 mm is marked in gray.

5.7 Performance of PSO Optimizer and Constraints

The results show that the PSO algorithm is effective for thisparticular optimization problem. The modifi-
cations made due to the constraints showed to be non-critical when the number of sensors is significantly
smaller (< 40%) than the number of sensors, the search space can fit. For the circular sensor area and
the torso for example we used a velocity adjustment ofλ = 0. The influence of the maximum violationξ
was set to a very small amount (5%) as well. For densely filled sensor search volumes, the constraint fix
increasingly interacts with the optimization. This is of cause neccessary to enforce the constraint during the
optimization process.

The minimum distance fix was frequently required. Still the tolerancet = 2% of minimum distance
violations was never exceeded, which means that every minimum distance fix was successful. The random
angular deviation during the minimum distance fix however did reduce the number of iterations required
to fix the constraint. The search volume constraint was required before each evaluation and within the
minimum distance fix. Therefore, the performance optimizedgrid node retrieval algorithms were essential
help to make the optimization feasible. Thus, the concept ofrestoring small violations in each iteration to
prevent them from building up was effective.
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6 Conclusion

The primary objective of this study was to develop a generic optimization framework for the arrangement of
sensors for biomagnetic investigations such as in cardiomagnetism. This goal was achieved by encapsulating
the components (optimizer, goal function, constraint, search volume, BEM, etc.) required to perform the
optimization and defining the interfaces between these components formally in abstract base classes of the
object-oriented design. The concrete components, such as the PSO optimizer and the CN goal function
only implement these interfaces and are thus exchangable and compatible to all future components. These
interfaces are integrated into the biomedical simulation environment SimBio to maximize reuse.

The second objective of producing example components has been reached by implementing and cus-
tomizing a particle swarm optimizer, a goal function computing the condition number and a generic hierar-
chy of basic constraints that can be and have been combined tomore complex constraints. The customization
of the PSO algorithm to quasi-continuous problems as well asthe algorithmic and object-oriented design
of the composite constraint handling are original contributions to the field of constraint optimization.

The effectiveness of the optimization strategy, resembledby the example components, has been demon-
strated on a realistic magnetocardiographic sensor arrangement problem. The capabilities of the framework
in terms of optimization flexibility and robustness and customizability of the search volume significantly
extend previous studies in the literature. The condition number dropped by one order of magnitude from
regular flat sensor setups (x · 103) to optimized flat setups (x · 102) and by another order of magnitude by
considering the torso surface (x · 101). Future work should reconfirm this finding in a larger set of patients.

For the design of biomagnetic measurement systems that means the future availability of small, non-
cryostat-bound optical magnetometers will allow a significant increase of the robustness of field reconstruc-
tion. At the same time a reduction of the number of sensors is possible without sacrificing this robustness.

Building on top of the generic framework a range of studies can be conducted. Goal functions can be
compared to each other, as well as optimization and constraint handling techniques and application specific
search spaces. The optimization interfaces are abstract inthat they do not make any assumption on what is
optimized. Therefore, the framework can be used to optimizeother parameterized problems, such as dipole
arrangements (inverse solution). The feature of locking arbitrary parameters during optimization can be
exploited to introduce a priori information. A subset of sensors may be predefined or only the directions of
some or all sensors may be optimized (rotating fit).
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