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Spectral properties of singular Sturm-Liouville
operators with indefinite weight sgn x

Illya Karabash and Carsten Trunk

(MS received ; )

We consider a singular Sturm-Liouville expression with the indefinite weight sgnx.
To this expression there is naturally a self-adjoint operator in some Krein space
associated. We characterize the local definitizability of this operator in a
neighbourhood of ∞. Moreover, in this situation, the point ∞ is a regular critical
point. We construct an operator A = (sgn x)(−d2/dx2 + q) with non-real spectrum
accumulating to a real point. The obtained results are applied to several classes of
Sturm-Liouville operators.

1. Introduction

We consider the singular Sturm-Liouville differential expression

a(y)(x) = (sgnx)(−y′′(x) + q(x)y(x)), x ∈ R, (1.1)

with the signum function as indefinite weight and a real potential q ∈ L1
loc(R). We

assume that (1.1) is in the limit point case at both −∞ and +∞. This differential
expression is naturally connected with a self-adjoint operator A in the Krein space
(L2(R), [., .]) (see e.g. [12]), where the indefinite inner product [·, ·] is defined by

[f, g] =
∫

R

fg sgnx dx, f, g ∈ L2(R).

The operator J : f(x) 7→ (sgnx)f(x) is a fundamental symmetry in the Krein
space (L2(R), [., .]). Let us define the operator L := JA. Then L = −d2/dx2 + q
is a self-adjoint Sturm-Liouville operator in the Hilbert space L2(R). It was shown
in [12] that if L is a non-negative operator in the Hilbert space sense then A is a
definitizable operator with ∞ as a regular critical point.

In general, the operator A may be not definitizable (in Section 3 we give a cri-
terion). However, under certain assumptions, A is still locally definitizable over an
appropriate subset of C. It seems that the first result of such type was obtained in
[5] for the operator y 7→ 1

w [(py′)′ + qy] with w as indefinite weight function. Note
that in [5] w may have many turning points, but rather strong assumptions on the
spectra of certain associated self-adjoint operators are supposed.

As a main result we show the equivalence of the semi-boundedness from below of
the operator L and the local definitizability of the operator A in a neighbourhood
of ∞. Moreover, we give a precise description of the domain of definitizability of
A. If L is semi-bounded from below, we show the existence of a decomposition
A = A∞+̇Ab such that the operator A∞ is similar to a self-adjoint operator in
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the Hilbert space sense and Ab is a bounded operator, that is, the point ∞ is a
regular critical point. Hence, the non-real spectrum of A remains bounded. But,
in contrast to the case of a non-negative operator L, now the non-real spectrum
may accumulate to the real axis. We prove in Section 4 the existence of an even
continuous potential q with a sequence of non-real eigenvalues of A accumulating
to a real point. This potential q can be chosen in such a way that A is definitizable
over C \ {0}.

Finally, in Section 5, we discuss the spectrum and the sets of definitizability of
A for various classes of potentials q.

Differential operators with indefinite weights appears in many areas of physics
and applied mathematics (see [4, 21, 28, 43] and references therein). Under certain
assumptions such operators are definitizable; this case was studied extensively (see
[8, 12, 13, 14, 15, 18, 19, 20, 32, 35, 36, 42, 44, 47] and references therein). In [5, 6,
7, 29, 31, 33, 34] certain classes of differential operators that contain definitizable
as well as not definitizable operators were considered.

Notation: Let T be a linear operator in a Hilbert space H. In what follows
dom(T ), ker(T ), ran(T ) are the domain, kernel, range of T , respectively. We denote
the resolvent set by ρ(T ); σ(T ) := C \ ρ(T ) stands for the spectrum of T . By
σp(T ) the set of eigenvalues of T is indicated. The discrete spectrum σdisc(T ) is the
set of isolated eigenvalues of finite algebraic multiplicity; the essential spectrum is
σess(T ) := σ(T ) \ σdisc(T ). We denote the indicator function of a set S by χS(·).

2. Sturm-Liouville operators with the indefinite weight sgn x

2.1. Differential operators

We consider the differential expression

`(y)(x) = −y′′(x) + q(x)y(x), x ∈ R (2.1)

with a real potential q ∈ L1
loc(R). Throughout this paper it is assumed that we have

limit point case at both −∞ and +∞. We set

a(y)(x) = (sgnx) (−y′′(x) + q(x)y(x)) , x ∈ R.
Let D be the set of all f ∈ L2(R) such that f and f ′ are absolutely continuous with
`(f) ∈ L2(R). On D we define the operators A and L as follows:

dom(A) = dom(L) = D, Ay = a(y), Ly = `(y).

We equip L2(R) with the indefinite inner product

[f, g] :=
∫

R
(sgnx)f(x)g(x)dx, f, g ∈ L2(R). (2.2)

Then (L2(R), [., .]) is a Krein space (for the definition of a Krein space and basic
notions therein we refer to [2]). A fundamental symmetry J in (L2(R), [., .]) is given
by

(Jf)(x) = (sgnx)f(x), f ∈ L2(R).
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Obviously,

A = JL

holds.
Since the differential expressions a(·) and `(·) are in the limit point case both at

+∞ and −∞, the operator L is self-adjoint in the Hilbert space L2(R). As A = JL,
the operator A is self-adjoint in the Krein space L2(R, [., .]).

Definition 2.1. We shall say that A is the operator associated with the differential
expression a(·).

2.2. Titchmarsh-Weyl coefficients

In the following we denote by C± the set {z ∈ C : ±Im z > 0}. Let cλ(x) and
sλ(x) denote the fundamental solutions of the equation

−y′′(x) + q(x)y(x) = λy(x), x ∈ R, (2.3)

which satisfy the following conditions

cλ(0) = s′λ(0) = 1; c′λ(0) = sλ(0) = 0.

Since the equation (2.3) is limit-point at +∞, the Titchmarsh-Weyl theory (see,
for example, [40]) states that there exists a unique holomorphic function m+(λ),
λ ∈ C+∪C−, such that the function sλ(·)−m+(λ)cλ(·) belongs to L2(R+). Similarly,
the limit point case at −∞ yields the fact that there exists a unique holomorphic
function m−(λ), λ ∈ C+∪C−, such that sλ(·)+m−(λ)cλ(·) ∈ L2(R−). The function
m+ (m−) is called the Titchmarsh-Weyl m-coefficient for (2.3) on R+ (on R−,
respectively).

We put

M±(λ) := ±m±(±λ) .

Definition 2.2. The function M+(·) (M−(·)) is said to be the Titchmarsh-Weyl
coefficient of the differential expression a(·) on R+ (on R−).

It is easy to see that for λ ∈ C+ ∪ C− the functions

ψ±λ (x) :=

{
s±λ(x)−M±(λ)c±λ(x), x ∈ R±
0, x ∈ R∓

(2.4)

belongs to L2(R). Moreover, the following formula (see [40]) for the norms of ψ±λ
in L2(R) holds true

‖ψ±λ (x)‖2 =
ImM±(λ)

Imλ
, λ ∈ C \ R. (2.5)

A holomorphic function G : C+ ∪ C− → C is called Nevanlinna function or of
class (R), see e.g. [27], if G(λ) = G(λ) and Imλ · ImG(λ) ≥ 0 for λ ∈ C+ ∪ C−. It



4 Illya Karabash and Carsten Trunk
follows easily from (2.5) that the functions M+ and M− (as well as m± ) belong to
the class (R). Moreover, the functions M± have the following asymptotic behavior

M±(λ) = ± i√±λ +O

(
1
|λ|

)
, (λ→∞, 0 < δ < arg λ < π − δ) (2.6)

for δ ∈ (0, π
2 ), see [17]. Here and below

√
z is the branch of the multifunction on

the complex plane C with the cut along R+, singled out by the condition
√−1 = i.

2.3. The non-real spectrum of A

In the following we identify functions f ∈ L2(R) with elements
( f+

f−

)
, where

f± := f ¹R±∈ L2(R±). Similarly we write q± := q ¹R±∈ L1
loc(R±). Note that the

differential expressions

− d2

dx2
+ q+ and

d2

dx2
− q−

in L2(R+) and L2(R−) are both regular at the endpoint 0 and in the limit point
case at the singular endpoint +∞ and −∞, respectively. Therefore the operators

A+
minf+ = −f ′′+ + q+f+ and A−minf− = f ′′− − q−f−

defined on
domA±min =

{
f± ∈ D±max : f±(0) = f ′±(0) = 0

}
,

with

D+
max =

{
f+ ∈ L2(R+) : f+, f ′+ absolutely continuous, − f ′′+ + q+f+ ∈ L2(R+)

}
,

D−max =
{
f− ∈ L2(R−) : f−, f ′− absolutely continuous, f ′′− − q−f− ∈ L2(R−)

}
,

are closed symmetric operators in the Hilbert spaces L2(R+) and L2(R−), respec-
tively, cf. [45, 46], with deficiency indices (1, 1). The adjoint operators (A±min)∗ in
the Hilbert space L2(R±) are the usual maximal operators defined on D±max.

We introduce the operators

A+
0 f+ = −f ′′+ + q+f+ and A−0 f− = f ′′− − q−f−

defined on
domA±0 =

{
f± ∈ D±max : f ′±(0) = 0

}
,

Evidently, A±0 are self-adjoint extensions of A±min in the Hilbert spaces L2(R+) and
L2(R−), respectively, cf. [45, 46]. In the following we consider domA±min as subsets
of L2(R). Then above considerations imply the following lemma.

Lemma 2.3. Let domAmin := domA+
min ⊕ domA−min and let the operator Amin be

defined on domAmin,

Amin :=
(
A+

min 0
0 A−min

)
,
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with respect to the decomposition L2(R) = L2(R+)⊕L2(R−). Then Amin is a closed
symmetric operator in the Hilbert space L2(R) with deficiency indices (2, 2). More-
over, we have

Amin = A ¹dom Amin , A = A∗min ¹D,

where

D = dom(A) =

=
{
f =

( f+
f−

) ∈ dom(A+
min)∗ ⊕ dom(A−min)∗ : f+(0) = f−(0), f ′+(0) = f ′−(0)

}
.

In the following proposition we collect some spectral properties of A.

Proposition 2.4. Let A be the operator associated with the differential expression
a(·). Then:

(i) {λ ∈ C \ R : M+(λ) = M−(λ)} = σp(A) \ R;

(ii) {λ ∈ C \ R : M+(λ) 6= M−(λ)} = ρ(A) \ R;

(iii) ρ(A) 6= ∅.
(iv) The essential spectrum σess(A) of A is real and

σess(A) = σess(A+
0 ) ∪ σess(A−0 ).

The sets σp(A)∩C± are at most countable with possible limit points belonging
to σess(A) ∪ {∞}.

For a proof of Proposition 2.4 we refer to [34, Proposition 2.5] and [30, 31]. We
mention only that the statements (iii) and (iv) follow from the first and second
statement and (2.6).

3. Criterions for definitizability

3.1. Definitizable and locally definitizable operators

Let (H, [., .]) be a Krein space and let A be a closed operator in H. We define
the extended spectrum σe(A) of A by σe(A) := σ(A) if A is bounded and σe(A) :=
σ(A)∪{∞} if A is unbounded. We set ρe(A) := C\σe(A). A point λ0 ∈ C is said to
belong to the approximative point spectrum σap(A) of A if there exists a sequence
(xn) ⊂ dom(A) with ‖xn‖ = 1, n = 1, 2, . . . , and ‖(A− λ0)xn‖ → 0 if n→∞. For
a self-adjoint operator A in H all real spectral points of A belong to σap(A) (see
e.g. [9, Corollary VI.6.2]).

First we recall the notions of spectral points of positive and negative type.
The following definition was given in [37], [39] (for bounded self-adjoint opera-

tors).

Definition 3.1. For a self-adjoint operator A in H a point λ0 ∈ σ(A) is called a
spectral point of positive (negative) type of A if λ0 ∈ σap(A) and for every sequence
(xn) ⊂ dom(A) with ‖xn‖ = 1 and ‖(A− λ0)xn‖ → 0 for n→∞, we have

lim inf
n→∞

[xn, xn] > 0 (resp. lim sup
n→∞

[xn, xn] < 0).
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The point ∞ is said to be of positive (negative) type of A if A is unbounded and
for every sequence (xn) ⊂ dom(A) with limn→∞ ‖xn‖ = 0 and ‖Axn‖ = 1 we have

lim inf
n→∞

[Axn, Axn] > 0 (resp. lim sup
n→∞

[Axn, Axn] < 0).

We denote the set of all points of σe(A) of positive (negative) type by σ++(A) (resp.
σ−−(A)). We shall say that an open subset δ of R (= R ∪ ∞) is of positive type
(negative type) with respect to A if

δ ∩ σe(A) ⊂ σ++(A) (resp. δ ∩ σe(A) ⊂ σ−−(A)).

An open set δ of R is called of definite type if δ is of positive or negative type with
respect to A.

The sets σ++(A) and σ−−(A) are contained in R. The non-real spectrum of A
cannot accumulate at a point belonging to an open set of definite type.

Recall, that a self-adjoint operator A in a Krein space (H, [., .]) is called defini-
tizable if ρ(A) 6= ∅ and there exists a rational function p 6= 0 having poles only in
ρ(A) such that [p(A)x, x] ≥ 0 for all x ∈ H. Then the non-real part of the spectrum
of A consists of no more than a finite number of points. Moreover, A has a spec-
tral function E defined on the ring generated by all connected subsets of R whose
endpoints do not coincide with the points of some finite set which is contained in
{t ∈ R : p(t) = 0} ∪ {∞} (see [38]).

A self-adjoint operator in a Krein space is definitizable if and only if it is defini-
tizable over C in the sense of the following definition (see e.g. [24, Definition 4.4]),
which localizes the notion of definitizability.

Definition 3.2. Let Ω be a domain in C such that

Ω is symmetric with respect to R, Ω ∩ R 6= ∅, (3.1)

and the domains Ω ∩ C+, Ω ∩ C− are simply connected. (3.2)

Let A be a self-adjoint operator in the Krein space (H, [., .]) such that σ(A)∩(Ω\R)
consists of isolated points which are poles of the resolvent of A, and no point of Ω∩R
is an accumulation point of the non-real spectrum σ(A) \ R of A. The operator A
is called definitizable over Ω, if the following holds.

(i) For every closed subset ∆ of Ω∩R there exist an open neighbourhood U of ∆
in C and numbers m ≥ 1, M > 0 such that

‖(A− λ)−1‖ ≤M(|λ|+ 1)2m−2|Imλ|−m (3.3)

for all λ ∈ U \ R.

(ii) Every point λ ∈ Ω ∩ R has an open connected neighbourhood Iλ in R such
that both components of Iλ \ {λ} are of definite type (cf. Definition 3.1) with
respect to A.

A self-adjoint operator definitizable over Ω where Ω is as in Definition 3.2 pos-
sesses a local spectral function E. For the construction and the properties of this
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spectral function we refer to [24] (see also [23]). We mention only that E(∆) is de-
fined and is a self-adjoint projection in (H, [., .]) for every union ∆ of a finite number
of connected subsets ∆i, i = 1, . . . , n, of Ω∩R, ∆i ⊂ Ω∩R, such that the endpoints
of ∆i belong to intervals of definite type. A real point λ ∈ σ(A) ∩ Ω belongs to
σ++(A) if and only if there exists a bounded open interval ∆ ⊂ Ω, λ ∈ ∆, such
that E(∆)H is a Hilbert space (cf. [3]). A point t ∈ R ∩ Ω is called a critical point
of A if there is no open subset ∆ ⊂ Ω of definite type with t ∈ ∆. The set of critical
points of A is denoted by c(A). A critical point t is called regular if there exists an
open deleted neighbourhood δ0 ⊂ Ω of t such that the set of the projections E(δ)
where δ runs through all intervals δ with δ ⊂ δ0 is bounded. The set of regular
critical points of A is denoted by cr(A). The elements of cs(A) := c(A) \ cr(A) are
called singular critical points.

We will make use of the following perturbation result, see [6].

Theorem 3.3. Let T1 and T2 be self-adjoint operators in the Krein space H, let
ρ(T1) ∩ ρ(T2) ∩ Ω 6= ∅ and assume that

(T1 − λ0I)−1 − (T2 − λ0I)−1

is a finite rank operator for some λ0 ∈ ρ(T1) ∩ ρ(T2). Then T1 is definitizable over
Ω if and only if T2 is definitizable over Ω.

Moreover, if T1 is definitizable over Ω and ∆ ⊂ Ω ∩ R is an open interval with
end point η ∈ Ω∩R and ∆ is of positive type (negative type) with respect to T1, then
there exist open interval ∆′, ∆′ ⊂ ∆, with endpoint η such that ∆′ is of positive
type (resp. negative type) with respect to T2.

3.2. Definitizability of A

In this section we will give conditions which ensures the definitizability of the
operator A from Definition 2.1. The following definition is needed below.

Definition 3.4. We shall say that the sets S1 and S2 of real numbers are separated
by a finite number of points if there exists a finite ordered set {αj}N

j=1, N ∈ N,

−∞ = α0 < α1 ≤ · · · ≤ αN < αN+1 = +∞,

such that one of the sets Sj, j = 1, 2, is a subset of
⋃

k is even

[αk, αk+1] and another

one is a subset of
⋃

k is odd

[αk, αk+1].

The operator A+
0 ⊕A−0 , where A±0 are defined as in Section 2.3, is fundamentally

reducible (cf. [22, Section 3]) in the Krein space (L2(R), [., .]) (cf. (2.2)). Hence the
following lemma is a easy consequence of Definitions 3.1 and 3.2.

Lemma 3.5. Let λ ∈ R. Then λ ∈ σ++(A+
0 ⊕ A−0 ) (λ ∈ σ−−(A+

0 ⊕ A−0 )) if and
only if λ ∈ σ(A+

0 ) \ σ(A−0 ) (λ ∈ σ(A−0 ) \ σ(A+
0 ), resp.). The operator A+

0 ⊕ A−0
is definitizable if and only if the sets σ(A+

0 ) and σ(A−0 ) are separated by a finite
number of points.

It follows from Proposition 2.4 and σ(A+
0 ⊕A−0 ) ⊂ R that ρ(A)∩ρ(A+

0 ⊕A−0 ) 6= ∅.
Let λ0 ∈ ρ(A)∩ρ(A+

0 ⊕A−0 ). The operators A+
0 ⊕A−0 and A are extensions of Amin
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and dim

(
dom(A+

0 ⊕A−0 )/dom(Amin)
)

= dim (dom(A)/dom(Amin)) = 2. This
implies that

(A+
0 ⊕A−0 − λ0I)−1 − (A− λ0I)−1

is an operator of rank 2. Then [25] and Lemma 3.5 imply the following theorem.

Theorem 3.6 ([30, 31]). The operator A is definitizable if and only if the sets
σ(A+

0 ) and σ(A−0 ) are separated by a finite number of points.

Example 3.7. Let q be a constant potential, q(x) ≡ c, c ∈ R. It is easy to calculate
that σ(A+

0 ) = [c,+∞) and σ(A−0 ) = (−∞,−c]. Thus, Corollary 3.6 implies that the
operator (sgnx)(−d2/dx2 + c) is definitizable in the Krein space L2(R, sgnx dx) if
and only if c ≥ 0.

3.3. Local definitizability of A

In this subsection we consider Sturm-Liouville operators defined as in Section 2
and we prove that the operator A is a definitizable operator in a certain neighbour-
hood of ∞ (in the sense of the Krein space (L2(R), [., .])) if and only if the operator
L is semi-bounded from below (in the sense of the Hilbert space L2(R)).

Remark 3.8. Clearly, L ≥ η0 > −∞ whenever q(x) ≥ η0 > −∞, x ∈ R.

The operator A+
0 ⊕A−0 is a self-adjoint operator both in the Hilbert space L2(R)

and in the Krein space (L2(R), [., .]), cf. (2.2).

Lemma 3.9. The following statements are equivalent:

(i) The operator L is semi-bounded from below.

(ii) There exists R > 0 such that the operator A+
0 ⊕ A−0 is definitizable over the

domain {λ ∈ C : |λ| > R}.
Proof. (i) ⇒ (ii). Since A+

0 ⊕ A−0 is a self-adjoint operator in the Hilbert space
L2(R), we see that

σ(A+
0 ⊕A−0 ) ⊂ R and (3.3) holds for all λ ∈ C \ R with m = 1. (3.4)

Assume that L ≥ η0. The operator L is a self-adjoint extension of A+
min⊕(−A−min),

hence the operator A+
min is semi-bounded from below, A+

min ≥ η0, and A−min is semi-
bounded from above, A−min ≤ −η0 The operators A±0 are self-adjoint extensions
in L2(R±) of the symmetric operators A±min with deficiency indices (1,1). Hence
the spectrum of A+

0 (A−0 ) lies, with the possible exception of at most one normal
eigenvalue, in [η0,∞) (in (−∞,−η0], respectively), see e.g. [1, Section VII.85].

Choose R := η0. Lemma 3.5 implies that the set (R,+∞), with the possible
exception of at most one eigenvalue, is of positive type and the set (−∞,−R), with
the possible exception of at most one eigenvalue, is of negative type with respect
to A+

0 ⊕A−0 . Thus, the operator A+
0 ⊕A−0 is definitizable over {λ ∈ C : |λ| > R}.

(i) ⇐ (ii) Obviously, the Sturm-Liouville operator A+
0 (A−0 ) is not semi-bounded

from above (below, resp.). That is,

supσ(A+
0 ) = +∞, inf σ(A−0 ) = −∞. (3.5)
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Assume that L is not semi-bounded from below. Then A+

min or −A−min is not
semi-bounded from below. Thus, inf σ(A+

0 ) = −∞ or supσ(A−0 ) = +∞.
Consider the case

inf σ(A+
0 ) = −∞. (3.6)

It follows from (3.6), (3.5) and Lemma 3.5 that

(−∞,−r) ∩ σ++(A+
0 ⊕A−0 ) 6= ∅ and (−∞,−r) ∩ σ−−(A+

0 ⊕A−0 ) 6= ∅
for all r > 0. Thus, by definition, the operator A+

0 ⊕ A−0 is not definitizable over
{λ ∈ C : |λ| > r} for arbitrary r > 0 . The case supσ(A−0 ) = +∞ can be
considered in the same way.

The following theorem is one of the main results.

Theorem 3.10. The following assertions are equivalent:

(i) The operator L is semi-bounded from below.

(ii) There exists R > 0 such that the operator A is definitizable over the domain
{λ ∈ C : |λ| > R}.

Proof. It follows from Proposition 2.4 (iii) and σ(A+
0 ⊕A−0 ) ⊂ R that ρ(A)∩ρ(A+

0 ⊕
A−0 ) 6= ∅. Let λ0 ∈ ρ(A)∩ρ(A+

0 ⊕A−0 ). The operators A+
0 ⊕A−0 and A are extensions

of Amin and dim
(
dom(A+

0 ⊕A−0 )/dom(Amin)
)

= dim (dom(A)/dom(Amin)) = 2.
This implies that

(A+
0 ⊕A−0 − λ0I)−1 − (A− λ0I)−1 (3.7)

is an operator of rank 2. Combining Lemma 3.9 and Theorem 3.3, Theorem 3.10 is
proved.

By Theorem 3.10, the semi-boundedness of L implies the definitizability of A over
some domain. Now we give a precise description of the domain of definitizability of
A in terms of the spectra of A+

0 and A−0 .
Let T be an operator such that σ(T ) ⊂ R. Let us introduce the sets σleft(T )

and σright(T ) by the following way: a point λ ∈ R (= R ∪ ∞) is said to belong
to σleft(T ) (σright(T )) if there exists an increasing (resp. decreasing) sequence
{λn}∞1 ⊂ σ(T ) such that limn→∞ λn = λ.

Note that

σleft(T ) ∪ σright(T ) ⊂ σess(T ) ∪ {∞}. (3.8)

For differential operators A±0 , equality holds in (3.8) since every point of σess(A±0 )
is an accumulation point of σ(A±0 ).

We put

SA :=
(
σleft(A+

0 ) ∩ σleft(A−0 )
) ∪ (

σright(A+
0 ) ∩ σright(A−0 )

)
. (3.9)

Theorem 3.11. Let Ω be a domain in C such that (3.1)-(3.2) are fulfilled. Then
the operator A = (sgnx)(−d2/dx2+q) is definitizable over Ω if and only if Ω ⊂ ΩA,
where ΩA := C \ SA.
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Proof. Arguments from the proof of Theorem 3.10 show that it is enough to prove
the theorem for the operator A+

0 ⊕A−0 .
Let λ ∈ SA and let Iλ be an open connected neighbourhood of λ. Then (3.9) and

Lemma 3.5 imply that one of the components of Iλ \ {λ} is not of definite type. So
if A+

0 ⊕A−0 is definitizable over Ω, then λ 6∈ Ω.
Conversely, if SA 6= R, then condition (ii) from Definition 3.2 is fulfilled for

ΩA = C \ SA. Taking (3.4) into account, we see that A+
0 ⊕A−0 is definitizable over

ΩA.

Remark 3.12. Note that ΩA ∩ R = ∅ is equivalent to σess(A+
0 ) = σess(A−0 ) = R.

In the converse case, (3.1)-(3.2) are fulfilled for ΩA and it is the greatest domain
over which the operator A is definitizable.

The following statement is a simple consequence of Theorem 3.10, Theorem 3.11,
and (3.8).

Corollary 3.13. Assume that L is semi-bounded from below. Then the operator A
is definitizable over the set C \ (σess(A+

0 ) ∩ σess(A−0 )).

3.4. Regularity of the critical point ∞
In the sequel we will use a result which follows easily from [12, Lemma 3.5 (iii)]

and [12, Theorem 3.6 (i)].

Proposition 3.14. If the operator L̃ := −d2/dx2+ q̃(x), for some real q̃ ∈ L1
loc(R),

defined on D is nonnegative in the Hilbert space L2(R), then the operator Ã :=
(sgnx)L̃ is definitizable and ∞ is a regular critical point of Ã.

The following theorem can be considered as the main result of this note.

Theorem 3.15. Assume that assertions (i), (ii) of Theorem 3.10 hold true. Then
there exists a decomposition

A = A∞+̇Ab (3.10)

such that the operator A∞ is similar to a self-adjoint operator in the Hilbert space
sense and Ab is a bounded operator.

Remark 3.16. The conclusion of Theorem 3.15 is equivalent to the regularity of
critical point ∞ of the operator A.

Proof of Theorem 3.15. Assume that A is an operator definitizable over {λ ∈ C :
|λ| > R}, R > 0. By Theorem 3.10, this is equivalent to the fact that L ≥ η0 for
certain η0 ∈ R.

Denote by EA the spectral function of A. Choose r > R such that σ(A) \ R ⊂
{λ ∈ C : |λ| ≤ r} and EA(R \ (−r, r)) is defined. Then A decomposes,

A = A1+̇A0, A1 := A ¹ dom(A) ∩ (EA(R \ (−r, r))L2(R)),

A0 := A ¹ dom(A) ∩ ((I − EA(R \ (−r, r)))L2(R))

and the following statements holds (cf. [22, Theorem 2.6]):
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A1 is a definitizable operator in the Krein space (EA(R \ (−r, r))L2(R), [., .]);

A0 is a bounded operator and σ(A0) ⊂ {λ : |λ| ≤ r}.
Let us show that ∞ is not a singular critical point of A1.
Consider the operator A2 defined by A2 = A1+̇ 0, where the direct sum is con-

sidered with respect to the decomposition

L2(R) = EA(R \ (−r, r))L2(R)+̇(I − EA(R \ (−r, r)))L2(R),

and 0 is the zero operator in the subspace ran(I − EA(R \ (−r, r))). Since A0 is a
bounded operator, we have

dom(A2) = domA.

It is easy to see that A2 is a definitizable operator in the Krein space (L2(R), [., .]).
Moreover, ∞ is not a singular critical point of A2 if and only if ∞ is not a singular
critical point of A.

Now we prove that ∞ is not a singular critical point of A2. Let η1 < η0. Since
L ≥ η0, we see that L − η1I is a uniformly positive operator in the Hilbert space
L2(R) (i.e., L− η1I ≥ δ > 0). Therefore Ã := J(L− η1I),

Ãy(x) = (sgnx)(−y′′(x) + q(x)y(x)− η1y(x)), dom(Ã) = dom(A),

is a definitizable nonnegative operator in the Krein space (L2(R), [., .]). By Propo-
sition 3.14, ∞ is not a singular critical point of Ã. The Ćurgus criterion of the
regularity of critical point ∞, see [11, Corollary 3.3], implies that ∞ is not a sin-
gular critical point of the operator A2. So ∞ is not a singular critical point of
A1.

It follows from L ≥ η0 and Lemma 3.5 that for sufficiently large r1 > 0 the set
(−∞,−r1] is of negative type and the set [r1,+∞) is of positive type with respect
to A+

0 ⊕A−0 . Combining this with Theorem 3.3, we obtain that there exists r2 ≥ r1
such that (−∞,−r2] is of negative type and the set [r2,+∞) is of positive type
with respect to the operator A. Evidently, we obtain the desired decomposition

A = A∞+̇Ab, A∞ := A ¹ dom(A) ∩ (EA(R \ (−r2, r2))L2(R)),

Ab := A ¹ dom(A) ∩ ((I − EA(R \ (−r2, r2)))L2(R)),

where Ab is a bounded operator and A∞ is similar to a self-adjoint operator in the
Hilbert space sense.

4. Accumulation of non-real eigenvalues to a real point

By Proposition 2.4 (i), the non-real spectrum σ(A) \R of A consists of eigenvalues.
Let SA be the set defined by (3.9). The following proposition is a consequence of

Theorems 3.11 and 3.10.

Proposition 4.1. If λ is an accumulation point of σ(A) \ R, then λ ∈ SA. In
particular, if the operator L = −d2/dx2 + q(x) is semi-bounded from below, then
non-real spectrum of A is a bounded set.
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The goal of this subsection is to show that there exists a potential q continuous in

R such that the set of non-real eigenvalues of the operator A = (sgnx)(−d2/dx2 +
q(x)) has a real accumulation point.

It is well known (e.g. [40]) that M+, the Titchmarsh-Weyl m-coefficient for (2.3)
(see Subsection 2.2), admits the following integral representation

M+(λ) =
∫

R

dΣ+(t)
t− λ

, λ ∈ C \ R,

where Σ+(·) is a nondecreasing scalar functions such that
∫
R(1+ |t|)−1dΣ+(t) <∞.

The function Σ+ is called a spectral function of the boundary value problem

−y′′(x) + q+(x)y(x) = λy(x), y′(0) = 0, x ∈ [0,+∞). (4.1)

This means that the self-adjoint operator A+
0 introduced in Subsection 2.3 is unitary

equivalent to the operator of multiplication by the independent variable in the
Hilbert space L2(R, dΣ+(t)). This fact obviously implies

σ(A+
0 ) = supp(dΣ+), (4.2)

where supp dτ denotes the topological support of a Borel measure dΣ+ on R (i.e.,
supp dΣ+ is the smallest closed set Ω ⊂ R such that dΣ+(R \ Ω) = 0).

Lemma 4.2. Assume that q is an even potential, q(x) = q(−x), x ∈ R. If ε > 0,
then iε ∈ σp(A) if and only if ReM+(iε) = 0.

Proof. Since q is even, we get m+(λ) = m−(λ), λ ∈ C\R. So M−(iε) = −M+(−iε).
Since M+ is a Nevanlinna function, we see that M+(−iε) = M+(iε). Thus,

M+(iε)−M−(iε) = M+(iε) +M+(iε) = 2ReM+(iε).

Proposition 2.4 completes the proof.

The following lemma follows easily from the Gelfand–Levitan theorem (see e.g.
[41, Subsection 26.5]).

Lemma 4.3. Let Σ(t), t ∈ R, be a nondecreasing function such that

∫ T1−0

−∞
dΣ(t) = 0 and (4.3)

∫ s−0

−∞
dΣ(t) =

∫ s

0

1
π
√
t
dt

(
=

2
π

√
s

)
for all s > T2. (4.4)

with certain constants T1, T2 ∈ R, T1 < T2. Then there exists a potential q+ contin-
uous in [0,+∞) such that Σ(t) is a spectral function of the boundary value problem

−y′′(x) + q+(x)y(x) = λy(x), y′(0) = 0, x ∈ [0,+∞).

Lemma 4.4. There exist a nondecreasing function Σ(t), t ∈ R, with the following
properties:
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(i) Σ(t) = Σ1(t) + Σ2(t), where

Σ1 ∈ ACloc(R), Σ
′
1(t) =

{
0, t ∈ (−∞, 1),

1
π
√

t
, t ∈ (1,+∞), (4.5)

and the measure dΣ2 has the form

dΣ2(t) =
+∞∑

k=1

hkδ(t− sk),

hk > 0, sk ∈ (−1, 1), k ∈ N;
+∞∑

k=1

hk <∞, (4.6)

(here δ(t) is the Dirac delta-function).

(ii) Conditions (4.3)-(4.4) are valid for Σ with T1 = −1 and T2 = 1.

(iii) There exists a sequence εk > 0, k ∈ N, such that limk→∞ εk = 0 and r(εk) = 0,
k ∈ N, where the function r(ε), ε > 0, is defined by

r(ε) := Re
∫

R

1
t− iε

dΣ(t) =
∫

R

t

t2 + ε2
dΣ(t).

Proof. Let hk = 2−k+1/π. Then

∞∑

k=1

hk = 2/π. (4.7)

Now, if sk ∈ (−1, 1) for all k ∈ N, then Σ possesses property (ii). We should only
choose {sk}∞1 ⊂ (−1, 1) such that statements (iii) holds true.

Consider for ε ≥ 0 the functions

r0(ε) =
∫ ∞

1

t

t2 + ε2
dΣ1(t)

and

rn(ε) :=
∫ ∞

1

t

t2 + ε2
dΣ1(t) +

n∑

k=1

skhk

s2k + ε2
, n ∈ N.

Let sk 6= 0 for all k ∈ N. Then rn are well-defined and continuous on [0,+∞).
Besides, limn→∞ rn(ε) = r(ε) for all ε > 0. It is easy to see that limε→∞ rn(ε) = 0,
n ∈ N. Since rn are continuous on [0,+∞), we see that

SUPn := sup
ε∈[0,+∞)

|rn(ε)| <∞, n ∈ N.

Now we give a procedure to choose sk ∈ (−1, 1) \ {0}.
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Let s1 be an arbitrary number in (−1, 0) such that

s1h1

s21 + ε2

∣∣∣∣
ε=|s1|

=
1
π

1
2s1

< −SUP0 − 1,

in other words, − 1
2π(SUP0 + 1)

< s1 < 0.

Then

r1(|s1|) = r0(|s1|) +
s1h1

s21 + ε2

∣∣∣∣
ε=|s1|

< r0(|s1|)− sup
ε∈[0,+∞)

|r0(ε)| − 1 < −1. (4.8)

Let

{sk}∞2 ∈ (−b1, b1) \ {0} with certain b1 ∈ (0, |s1|/2). (4.9)

Let us show that we may choose a number b1 such that (4.9) implies

r(|s1|) < 0. (4.10)

Indeed, (4.8) and (4.7) yield

r(|s1|) = r1(|s1|) +

[ ∞∑

k=2

skhk

s2k + ε2

]

ε=|s1|
<

< −1 +
∞∑

k=2

hk|sk|
s2k + s21

< −1 +
b1
s21

∞∑

k=2

hk < −1 +
2b1
πs21

and therefore (4.10) is valid whenever 0 < b1 < πs21/2.
Similarly, there exist s2 ∈ (0, b1) such that

s2h2

s22 + ε2

∣∣∣∣
ε=s2

=
1
2π

1
2s2

> SUP1 + 1,

and therefore

r2(s2) > 1.

Further, there exist b2 ∈ (0, s2/2) such that {sk}∞3 ⊂ (−b2, b2) \ {0} implies that
r(s2) > 0.

Continuing this process, we obtain a sequence {sk}∞1 ⊂ (−1, 1) \ {0} with the
following properties:

sk ∈ (−1, 0) if k is odd, sk ∈ (0, 1) if k is even,

|s1| > |s1|
2

> |s2| > |s2|
2

> |s3| > ... > |sk| > |sk|
2

> |sk+1| > ... , (4.11)

r(|sk|) < 0 if k is odd, r(|sk|) > 0 if k is even. (4.12)

It is easy to show that r is continuous on (0,+∞). Combining this with (4.12), we
see that there exists εk ∈ (|sk−1|, |sk|) such that r(εk) = 0, k ∈ N. Besides, (4.11)
implies lim |sk| = lim εk = 0.
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Theorem 4.5. There exist an even potential q̂ continuous on R and a sequence
{εk}∞1 ⊂ R+ such that

(i) the operator Â defined by the differential expression

(sgnx)
(
− d2

dx2
+ q̂(x)

)
(4.13)

on the natural domain D (see Subsection 2.1) is a self-adjoint operator in the
Krein space L2(R, [., .]);

(ii) {iεk}∞1 ⊂ σp(Â), i.e., iεk, k ∈ N, are non-real eigenvalues of Â;

(iii) limk→∞ εk = 0;

(iv) the operator Â is definitizable over the domain C \ {0}.
Proof. (i) Let Σ and {εk}∞1 be from Lemma 4.4. Then, by Lemma 4.3, Σ is a
spectral function of the boundary value problem (4.1) with a certain potential
q̂+. Let us consider an even continuous potential q̂(x) = q̂+(|x|), x ∈ R, and the
corresponding operator Â = (sgnx)

(
− d2

dx2 + q̂(x)
)

defined as in Subsection 2.1.
It is well known that if equation (2.3) is in the limit-circle case at +∞ then M+(·)

is a meromorphic function on C and the spectral function Σ+ is a step function with
jumps at the poles of M+(·) only (see e.g. [10, Theorem 9.4.1]). As Σ+(t) = Σ(t),
t > 0, this condition does not hold for the function Σ since Σ satisfies (4.4). Indeed,
(4.4) means that Σ′(t) = 1

π
√

t
for t > T2 = 1 and therefore Σ is not a step function.

So (2.3) is limit-point at +∞.
Since the potential q̂ is even, the same is true for −∞. Thus, Â is a self-adjoint

operator in the Krein space L2(R, [., .]), see Subsection 2.1.
(ii) and (iii) follow from Lemma 4.2 and statement (iii) of Lemma 4.4.
(iv) Let Â±0 be the self-adjoint operators in the Hilbert spaces L2(R±) defined

by the differential expression (4.13) in the same way as in Subsection 2.3 where
q is replaced by q̂. By (4.2), σ(Â+

0 ) = {sk}∞1 ∪ [1,+∞). Since q̂ is even, one gets
σ(Â−0 ) = {−sk}∞1 ∪ (−∞,−1]. It follows from {sk}∞1 ⊂ (−1, 1) and limk→∞ sk = 0
that

minσess(Â+
0 ) = maxσess(Â−0 ) = 0

and Theorem 3.13 concludes the proof.

5. Some classes of Sturm-Liouville operators

As an illustration of the results from the previous sections, we discuss in this
section various potentials q ∈ L1

loc(R) such that the differential operator A =
(sgnx)(−d2/dx2 + q) is definitizable over specific subsets of C. As before it is sup-
posed that the differential expression (2.1) is in limit point case at +∞ and at −∞
(for instance, the letter holds if lim inf |x|→∞

q(x)
x2 > −∞, see e.g., [47, Example

7.4.1]).
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5.1. The case q(x) → −∞

In this subsection we assume that for someX > 0 the potential q has the following
properties on the interval (X,+∞):

q′, q′′ exist and are continuous on (X,+∞), q(x) < 0, q′(x) < 0, (5.1)
q′′(x) is of fixed sign, i.e., q′′(x1)q′′(x2) ≥ 0 for all x1, x2 > X, (5.2)

lim
x→+∞

q(x) = −∞,

∫ +∞

X

|q(x)|−1/2dx = ∞, and lim sup
x→+∞

|q′(x)|
|q(x)|p <∞, (5.3)

where p ∈ (0, 3/2) is a constant.
Then the well-known result of Titchmarsh (see e.g. [40, Theorems 3.4.1 and 3.4.2])

states that (2.1) is in the limit point case at +∞ and σ(A+
0 ) = R. Hence the set

SA defined by (3.9) coincides with σess(A−0 ) ∪∞. By Theorem 3.11, there are two
cases:

(i) Let σess(A−0 ) 6= R. Then the greatest domain over which A is definitizable is
ΩA := C \ σess(A−0 ) (note that ∞ 6∈ ΩA).

(ii) Let σess(A−0 ) = R. Then ΩA ∩ R = ∅ and there exists no domain Ω in C such
that A is definitizable over Ω. In particular, the letter holds if the analogues
of assumptions (5.1)-(5.3) are fulfilled for x ∈ (−∞, 0].

Example 5.1. Let us consider the operator A = (sgnx)(−d2/dx2 − x). By [45,
Theorem 6.6] the differential expression −d2/dx2 − x is in limit point case at +∞
and −∞. Assumptions (5.1)-(5.3) hold for x ∈ (0,+∞), hence σess(A+

0 ) = σ(A) =
R. On the other hand, σess(A−0 ) = ∅ (see Subsection 5.2 and [40, Section 3.1]).
Therefore the operator A is definitizable over C and there exists no domain Ω in
C with ∞ ∈ Ω such that A is definitizable over Ω. By Proposition 4.1, the only
possible accumulation point for non-real spectrum of A is the point ∞.

5.2. The case q(x) → +∞
Let us assume that the following conditions holds with certain constants X, c > 0:

q(x) ≥ c for x > X, and for any ω > 0, lim
x→+∞

∫ x+ω

x

q(t)dt = +∞. (5.4)

Molčanov proved (see e.g., [40, Lemma 3.1.2] and [41, Subsection 24.5]) that (5.4)
yields σess(A+

0 ) = ∅, i.e., the spectrum of the operator A+
0 is discrete. Besides,

(5.4) implies that A+
0 is semi-bounded from below. It follows from the results of

Subsection 3.3 that the operator A is definitizable over C. More precisely,

(i) Let the operator A−0 be semi-bounded from above. Then the operator A is
definitizable, ∞ is a regular critical point of A (cf. [12]), and A admits de-
composition (3.10).

(ii) Let A−0 be not semi-bounded from above. Then A is definitizable over C and
there exists no domain Ω in C with ∞ ∈ Ω such that A is definitizable over
Ω. The only possible accumulation point for non-real spectrum of A is the
point ∞.

Note that A−0 is not semi-bounded from above if limx→−∞ q(x) = −∞.
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5.3. Summable potentials

We denote by qneg(x) := min{q(x), 0}, x ∈ R.

Assumption 5.2.
∫ t+1

t

|qneg(x)|dx→ 0 as |t| → ∞.

If Assumption 5.2 is fulfilled then the differential expression −d2/dx2 + q is in
limit point case at +∞ and −∞, cf. [46, Satz 14.21]. By [45, Theorem 15.1], A+

0 is
semi-bounded from below, A−0 is semi-bounded from above with

σess(A+
0 ) ⊂ [0,+∞) and σess(A−0 ) ⊂ (−∞, 0].

This implies that the negative spectrums of the operators A+
0 and −A−0 consist of

eigenvalues,
σ(±A±0 ) ∩ (−∞, 0) = {±λ±n }N±

1 ⊂ σp(±A±0 ),

where 0 ≤ N± ≤ ∞. Besides, limn→∞ λ±n = 0 if N± = ∞. Then, by Theorem 3.13,
A is definitizable over C \ {0}. Theorems 3.11 and 3.15 imply easily the following
statement.

Theorem 5.3. Let Assumption 5.2 be fulfilled. Then the operator
A = (sgnx)(−d2/dx2 + q) admits the decomposition (3.10). Moreover,

(i) If minσess(A+
0 ) > 0 or maxσess(A−0 ) < 0, then A is a definitizable operator

and ∞ is a critical point of A.

(ii) If minσess(A+
0 ) = maxσess(A−0 ) = 0 and N+ +N− < ∞, then A is a defini-

tizable operator, 0 and ∞ are critical points of A .

(iii) If minσess(A+
0 ) = maxσess(A−0 ) = 0 and N+ + N− = ∞, then the operator

A is not definitizable. It is definitizable over C \ {0}. In particular, 0 is the
only possible accumulation point of the non-real spectrum of A.

We mention (cf. [5]) that Assumption 5.2, and therefore the statements of The-
orem 5.3, hold true if q ∈ L1(R).

Remark 5.4. By Theorem 3.15 (see also [12]) we have that if the operator A =
(sgnx)(−d2/dx2 + q) is definitizable, then ∞ is its regular critical point. In the
case when A has a finite critical point, the question of the character of this critical
point is difficult (see [13, 14, 18, 19, 33, 34, 32] and references therein). Let us
mention one case. Assume that q is continuous in R and

∫
R(1 + x2)|q(x)|dx <

∞, then minσess(A+
0 ) = maxσess(A−0 ) = 0 and N+ < ∞ and N− < ∞ (see

[40] ). Therefore Theorem 5.3 (as well as [12, Proposition 1.1]) implies that A =
(sgnx)(−d2/dx2 + q) is definitizable. It was shown (implicitly) in [18] that 0 is a
regular critical point of A.

In the following case, more detailed information may be obtained.

Corollary 5.5. Suppose limx→∞ q(|x|) = 0. Then minσess(A+
0 ) = maxσess(A−0 ) =

0 and either the case (ii) or the case (iii) of Theorem 5.3 takes place. Moreover,
the following holds.
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(i) If lim infx→∞ x2q(|x|) > −1/4, then A is a definitizable operator and 0 and ∞

are critical points of A.

(ii) If lim supx→∞ x2q(|x|) < −1/4, then the operator A is not definitizable. It is
definitizable over C \ {0}.

Proof. The statement follows directly from [16, Corollary XIII.7.57], which was
proved in [16] for infinitely differentiable q. Actually, this proof is valid for bounded
potentials q. Finally, note that limx→∞ q(|x|) = 0 implies that q is bounded on
(−∞,−X] ∪ [X,+∞) with X large enough. On the other hand, L1 perturbations
of potential q on any finite interval does not change σess(A+

0 ), σess(A−0 ). Also such
perturbations increase or decrease N+, N− on finite numbers only due to Sturm
Comparison Theorem (see e.g., [47, Theorem 2.6.3]). This completes the proof.

Example 5.6. Let q(x) = − 1
1+|x| . Then Corollary 5.5 yields that the operator

A = (sgnx)(−d2/dx2 + q) is not definitizable. It is definitizable over C \ {0}.
It was shown above that under certain assumption on the potential q the operator

A = (sgnx)(−d2/dx2+q) is not definitizable, but it is definitizable over the domain
C\{λ0}, where λ0 ∈ R (λ0 = ∞ in Example 5.1 and λ0 = 0 in Example 5.6). In this
case, unusual spectral behavior may appear near points of the set c(A)∪ {λ0} only
(c(A) is the set of critical points, see Subsection 3.1). Indeed, a bounded spectral
projection EA(∆) exists for any connected set ∆ ⊂ R\{λ0} such that the endpoints
of ∆ do not belong to c(A) ∪ {λ0}. Note also that c(A) is at most countable and
that λ0 is the only possible accumulation point of the non-real spectrum of A.
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Theory Adv. Appl., Birkhäuser, Basel 106 (1998) 113-130.

[15] K. Daho, H. Langer, Sturm-Liouville operators with an indefinite weight function, Proc.
Roy. Soc. Edinburgh Sect. A 87 (1977) 161-191.

[16] N. Dunford, J.T. Schwartz, Linear operators. Part II: Spectral theory. Self adjoint operators
in Hilbert space, John Wiley & Sons, New York 1963.

[17] W.N. Everitt, On a property of the m-coefficient of a second-order linear differential equa-
tion, J. London Math. Soc. 4 (1971/72) no. 2, 443-457.

[18] M.M. Faddeev , R.G. Shterenberg, On similarity of singular differential operators to a
selfadjoint one, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 270,
Issled. po Linein. Oper. i Teor. Funkts. 28 (2000) 336–349 [russian]; English transl.: J.
Math. Sciences 115 (2003), no. 2, 2279–2286.

[19] M.M. Faddeev, R.G. Shterenberg, On similarity of differential operators to a selfadjoint
one, Math. Notes 72 (2002) 292-303.

[20] A. Fleige, Spectral theory of indefinite Krein-Feller differential operators, Mathematical
Research 98 Akademie Verlag, Berlin 1996.

[21] W. Greenberg, C.V.M. van der Mee, V. Protopopescu, Boundary value problems in abstract
kinetic theory, Oper. Theory Adv. Appl. 23 Birkhäuser, Basel 1987.
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[47] A. Zettl, Sturm-Liouville Theory, AMS, 2005.

Illya Karabash
Department of Partial Differential Equations
Institute of Applied Mathematics and Mechanics of NAS of Ukraine
R. Luxemburg str. 74
Donetsk 83114
Ukraine
karabashi@yahoo.com, karabashi@mail.ru

Carsten Trunk
Institut für Mathematik
Technische Universität Berlin
Sekretariat MA 6-3
Straße des 17. Juni 136
D-10623 Berlin
Germany
trunk@math.tu-berlin.de




