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Spectralizable Operators

Vladimir A. Strauss and Carsten Trunk

Abstract. We introduce the notion of spectralizable operators. A closed oper-
ator A in a Hilbert space is called spectralizable if there exists a non-constant
polynomial p such that the operator p(A) is a scalar spectral operator in
the sense of Dunford. We show that such operators belongs to the class of
generalized spectral operators and give some examples where spectralizable
operators occur naturally.

Mathematics Subject Classification (2000). Primary 47B40; Secondary 47A60,
47B50.

Keywords. Generalized spectral operators, spectral functions, definitizable op-
erators.

1. Introduction

Spectral operators (see [11]) are operators which possess a spectral resolution with
properties comparable to the spectral function of self-adjoint operators in Hilbert
spaces. In particular, this resolution is bounded, that is, a spectral operator has
no spectral singularities.

One of the important directions of the development of modern operator the-
ory is related to find spectral resolutions for more general classes of operators. Op-
erators with spectral singularities belong to the class of the so-called generalized
spectral operators [9]. This class is actively investigated [2, 3, 4, 5, 13, 24, 25, 26].
It is well known that for many concrete operator classes these resolutions exist in
a generalized sense only thanks to some spectral singularities. In the well-known
monograph of Colojoară and Foiaş [9] it is shown (Chapter 5, Corollary 5.7) that
J-unitary and J-self-adjoint operators in Pontryagin spaces are examples of gen-
eralized spectral operators. This is based on two following facts:

1. a π-self-adjoint J-non-negative operator represents a generalized scalar spec-
tral operator with the unique singularity in zero;
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2. for every π-self-adjoint operator A there exists a non-constant polynomial p
that maps A to a π-non-negative operator.

Let us note that this is also correct for so-called definitizable operators in Krein
spaces. For the basic theory of definitizable operators we refer to [20].

Another class of operators with spectral singularities was considered by Naimark
[27]. There non-self-adjoint differential operators of second order on the semi-axis
are studied. These investigations were continued by Lyance in [21] and [22]. There
is a large number of papers connected with these problems including different kinds
of differential and difference operators from mathematical physics and other areas.
We mention here only [8, 12, 19, 23, 28]

The aim of our work is the investigation of the class of spectralizable opera-
tors.

Definition 1.1. A bounded operator A in a Hilbert space is called a spectralizable
operator if there exists a non-constant polynomial p such that the operator p(A) is a
scalar spectral operator. The polynomial p is then called a spectralizing polynomial
for A.

Spectralizable operators arise in many different problems, see, e.g., [7, 14,
15, 16, 31, 32, 33]. We mention that the term spectralizable was used first in
[30] in a very special setting, where, in particular, one can find an example of a
non-self-adjoint difference operator with a self-adjoint square. For operators with
an identity iteration, see, e.g., [18]. In [6] operators are studied which have the
property that the closure of its square is similar to some self-adjoint operator.

In this work we study spectral properties of spectralizable operators. It is easy
to see (by some simple examples) that a spectralizable operator has in general a
spectral function with singularities. There is some kind of similarity between these
two classes of spectralizable and definitizable operators. This gives the expectation
that the theory of spectralizable operators can be developed in a similar direction
as the theory of definitizable operators.

We proceed as follows. In Section 2 we provide the main definitions and in 3
we prove the main result of this paper, i.e. that spectralizable operators possesses
an eigen spectral function. In Section 4 we give an example of a spectralizable
operator with an unbounded spectral function and in Section 5 we give some more
examples of spectralizable operator. Finally, in Section 6 we construct with the
help of the results from Section 3 an eigen spectral function for bounded operators
A in Krein spaces which have the property that p(A) is J-non-negative. For this
we do not assume that A is J-self-adjoint or J-unitary.

2. Main Definitions

Let A be a bounded operator in a Hilbert space H. Denote, as usual, by L(H) the
set of all bounded operators in H.
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Spectral operators (see [11]) possess a spectral function with properties com-
parable to the spectral function of self-adjoint operators in Hilbert spaces. We
introduce now the notion of a spectral function with a set of peculiar points.

Definition 2.1. Let Λ = {λk}n
1 be a finite set of complex numbers and let

RΛ := {X ⊂ C : X is a Borel set with ∂X ∩ Λ = ∅} , (2.1)

where ∂X is the boundary of X in C. Let

E : RΛ → L(H)

be a countably additive (with respect to weak topology) function, that maps RΛ

to a commutative algebra of projections with E(C) = I. The function E is called
a spectral function on C with the set Λ of peculiar points.

Definition 2.2. A spectral function E with the set Λ of peculiar points is called
the eigen spectral function of an operator A if the following holds for all X ∈ RΛ.

a) E(X)A = AE(X), σ(A|E(X)H) ⊂ X;
b) if X ∩ Λ = ∅ then the operator AE(X) is a scalar spectral operator and

AE(X) =
∫

X

ξE(dξ);

c) if X ∩ Λ 6= ∅ then AE(X) is not a scalar spectral operator.

The following is a consequence of [13].

Theorem 2.3. The eigen spectral function with the set Λ of peculiar points of an
operator is unique.

Later, in Section 4, we will give an example where the spectral function is
unbounded in a neighbourhood of a peculiar point. For this situation we introduce
the following notion.

Definition 2.4. Let E be a eigen spectral function of A with the set of peculiar
points Λ. If λ ∈ Λ then λ will be called a peculiarity or a peculiar point (of A).
The peculiarity λ is called regular if for a fixed neighbourhood X, X ∈ RΛ, the
operator family {E(X ∩ Y )}Y ∈RΛ is bounded. The peculiarity λ is called singular
in the opposite case.

Let us note that the notion of regular and singular peculiarity does not depend
on the choice of X.

3. Main Results

In this section we show that spectralizable operators possesses an eigen spectral
function. It is the main result of our paper.
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Theorem 3.1. Let A be a spectralizable operator and let p be its spectralizing polyno-
mial. Then A has the eigen spectral function E with a finite number of peculiarities,
moreover the peculiar set Λ is a subset of the set of roots of p′, where p′ is the
derivative of p.

Proof. If p′ equals a constant then A is a scalar spectral operator and Theorem
3.1 is proved. Therefore, we assume that p′ is not equal to a constant. We divide
the proof in several steps.

1. Let ξ0 ∈ σ(A) with p′(ξ0) 6= 0. We show that there exists the neighborhood
U(ξ0) of ξ0 with the properties

p′(ξ) 6= 0 for every ξ ∈ U(ξ0), where U(ξ0) is the closure of U(ξ0)
and there is a projection EA(U(ξ0)) commuting with A such that
A|EA(U(ξ0)H is a scalar spectral operator with

σ(A|EA(U(ξ0))H) ⊂ U(ξ0) and σ(A|(I−EA(U(ξ0)))H) ⊂ C\U(ξ0).

(3.1)

Let V (ξ0) be an open ball with centre ξ0 and

p′|
V (ξ0)

6= 0.

Due to the inverse function theorem there are a neighborhood W (p(ξ0)) of the
point p(ξ0) and a continuous function p^ inverse to p,

p^ : W (p(ξ0)) → V (ξ0) with p^(p(ξ0)) = ξ0.

We will denote this extension by p^ also. As an abbreviation we will write in the
following

W := W (p(ξ0)).
The pre-image of the polynomial p, p−1(W ) = {x ∈ C : p(x) ∈ W}, has at most
finitely many connected components. Hence, by choosing V (ξ0) sufficiently small,
it is no restriction to assume that the closure of p^(W ) is isolated in the closure
of p−1(W ).

Let Ep(A) be the spectral resolution of p(A). Then (see [11], Corollary XV.3.7)
A commutes with Ep(A), therefore the subspace Ep(A)(W )H is invariant with
respect to A. So, due to the theorem of spectral mapping we obtain

σ(A|Ep(A)(W )H) ⊂ p−1
(
σ(p(A)|Ep(A)(W )H)

) ⊂ p−1(W ).

and
σ(A|(I−Ep(A)(W ))H) = p−1

(
σ(p(A)|(I−Ep(A)(W ))H)

) ⊂ p−1(C\W ).
Denote by Qw,

Qw : Ep(A)(W )H → Ep(A)(W )H,

the Riesz-Dunford projection of the operator A|Ep(A)(W )H in Ep(A)(W )H which
corresponds to the spectral set

σ(A|Ep(A)(W )H) ∩ p^(W ).

Now we define

U(ξ0) := p^(W ) and EA(U(ξ0)) := QwEp(A)(W ).
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By the construction of EA(U(ξ0)) the polynomial p is a one-to-one map of the set
σ(A|EA(U(ξ0))H) onto the set σ(p(A)|Ep(A)(W )H). As p^ is analytic on W we have

A|EA(U(ξ0))H = p^(p(A)|EA(U(ξ0))H).

Since p(A)|EA(U(ξ0))H is a spectral operator of type 0 (i.e., a scalar spectral op-
erator, see [11], Section XV.5 for details), A|EA(U(ξ0))H is also a scalar spectral
operator (see [11, Corollary XV.5.7]) and (3.1) is proved.

2. The spectrum of A is a compact set, therefore it is sufficient to define the
eigen spectral function E of A for bounded sets. We set

Λ0 := {ξ ∈ C : p′(ξ) = 0}
and define RΛ0 in the same way as in (2.1) where we replace Λ by Λ0. Let X ∈ RΛ0

be a bounded set which does not contain any zeros of p′. Then its closure X has
the same property and X is a compact set. Therefore, there exists finitely many
points ξ1, . . . , ξN for some N ∈ N and neighborhoods U(ξj) of ξj , j = 1, . . . , N ,
which satisfy (3.1) with

X ⊂ ∪N
j=1U(ξj).

As A|EA(U(ξj))H, 1 ≤ j ≤ N , is a spectral operator, the projection EA(U(ξj) ∩
U(ξk)) is defined for 1 ≤ k ≤ N and

EA(U(ξj) ∪ U(ξk)) := EA(U(ξj)) + EA(U(ξk))− EA(U(ξj) ∩ U(ξk))

is defined as usual. In a similar way, we define EA(∪N
j=1U(ξj)). Then the operator

A|EA(∪N
j=1U(ξj))H is a spectral operator. Therefore EA(X) is defined for all X ∈

RΛ0 with X ∩ Λ0 = ∅.
3. Let X ∈ RΛ0 and let {λl}L

l=1, L > 0, be the set of roots of p′ in X, where
all roots are different, i.e. we don’t take into account the multiplicity of the roots.
Let Z(λj), 1 ≤ j ≤ L, be a bounded neighborhood of the point λj such that every
pair of the closure of these neighborhoods contains disjoint elements. Then

Z := X \ ∪L
j=1Z(λj) ∈ RΛ0 with Z ∩ Λ0 = ∅.

By the second step of this proof, A|EA(Z)H is a spectral operator. Denote by
EA(∪L

j=1Z(λj)) the Riesz-Dunford projector of the operator A|(I−EA(Z))H corre-
sponding to the spectral set ∪L

j=1Z(λj). Then we define

EA(X) := EA(Z) + EA(∪L
j=1Z(λj)).

4. By the first three steps, EA is a spectral function with the set Λ0 of peculiar
points. Moreover, a), b) and c) of Definition 2.2 are satisfied for all X ∈ RΛ0 .
If for some λ ∈ Λ0 there exists a neighborhood U(λ) of λ such that there is
a projection EA(U(λ)) such that A|EA(U(λ)H is a scalar spectral operator with
σ(A|EA(U(λ))H) ⊂ U(λ), then, using the construction above, E can be extended
to all Borel sets containing λ in their boundary in such a way that a), b) and c)
of Definition 2.2 remains valid. Hence, we choose Λ to be the set of all ξ ∈ Λ0

with the property that there exists no neighborhood U(ξ) of ξ such that there
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exists a projection EA(U(λ)) with A|EA(U(λ)H is a scalar spectral operator with
σ(A|EA(U(λ))H) ⊂ U(λ). Theorem 3.1 is proved. ¤

4. Singularities of the spectral function

It is shown in Theorem 3.1 that a spectralizable operator has a spectral function
with peculiar points. In this section we give a simple example for a singular peculiar
point.

Example. LetH be the Hilbert space of all square summable sequences,H = l2(N).
Define

C : H → H by C(xn)n∈N = (n−2xn)n∈N
and set

B :=
[

0 I
C 0

]
.

We have

B2 =
[

C 0
0 C

]
,

hence B2 is a self-adjoint operator and B is spectralizable with spectralizing poly-
nomial p(t) = t2. Therefore it follows from Theorem 3.1 that zero is the only
possible peculiar point. We will show that the spectral function is unbonded near
zero. Denote by en, n ∈ N, the sequence (δn

k )k∈N. A simple computation shows

± 1
n
∈ σp(B) with eigenvector

1√
1 + 1

n2

(
en

± 1
nen

)
.

The spectral projection E([m−1, 1]), m ∈ N, of B corresponding to the interval
[m−1, 1] is given by

E([m−1, 1])
(

(xn)n∈N
(yn)n∈N

)
=

m∑
n=1

(
1
2 (xnen + nynen)

1
2

(
n−1xnen + ynen

)
)

.

From this it is easily seen that the norm of E([m−1, 1]) tends to infinity as m →∞.

5. Examples

It turns out that a large class of operators is spectralizable. We illustrate this with
some examples.

Example. Let A be a bounded self-adjoint operator in some Hilbert spaceH. Let B
and C be bounded operators in H which commutes with A such that the operators

A2 + BC and A2 + CB
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are scalar spectral operators. An easy calculation shows that
[

A B
C −A

]2

=
[

A2 + BC 0
0 A2 + CB

]

in the Hilbert space H×H, that is,
[

A B
C −A

]
is a spectralizable operator.

Example. Let A0 ∈ L(H) be a uniformly positive self-adjoint operator in some
Hilbert space H. Define

A0 :=

[
0 I

−A0 −A
1
2
0

]
.

An easy calculation shows that

A3
0 =

[
A0A

1
2
0 0

0 A0A
1
2
0

]
.

It is a self-adjoint operator in the Hilbert space H ×H and, hence, the operator
A0 is spectralizable. We mention that this operator is a special case of (in general
unbounded) operators considered in [14], [15], [32] and [33].

Example. Let A1 ∈ L(H) be a self-adjoint operator in some Hilbert space H.
Define

A1 :=
[

0 I
−A1 −I

]
.

An easy calculation shows that

A2
1 + A1 =

[ −A1 0
0 −A1

]
,

which is a self-adjoint operator in the Hilbert space H×H. Hence, A1 is a spectral-
izable operator. If, in addition, A1 is uniformly positive, then, as in the example
above, the operator A1 again fulfills the asumptions of [14], [15], [32] and [33].

Example. Let B ∈ L(H) be a self-adjoint operator in some Hilbert space H. Define

A :=
[

0 i(B + 1)
i(B + 1) B

]
.

An easy calculation shows that

A3 + 2A2 + A =
[ −(B + 2)(B + 1)2 0

0 −(B + 2)(B + 1)2

]
,

which is a self-adjoint operator in the Hilbert space H×H. Hence, A is a spectra-
lizable operator.
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6. Operators in Krein spaces

There is a well developed theory of J-self-adjoint and J-unitary operators in Krein
spaces (see [1] and [20] for details). Recall that a bounded self-adjoint operator A
in a Krein space (H, [., .]) is called definitizable if there exists a non-zero polynomial
p such that

[p(A)x, x] ≥ 0 for all x ∈ H. (6.1)

Then the spectrum of A is real or its non-real part consists of a finite number of
points, cf. [20]. A definitizable operator possesses a spectral function defined on
the ring generated by all connected subsets of R whose endpoints do not belong
to some finite set of so-called critical points (see [20]).

In what follows, we show that bounded operators in Krein spaces, which are
not necessarily J-self-adjoint or J-unitary, satisfying (6.1) possess a eigen spectral
function with a set of peculiar points in the sense of Definition 2.2.

Theorem 6.1. Let A be a bounded operator in a Krein space (H, [., .]). Assume
that there is a polynomial p such that the operator p(A) is J-non-negative. Then
A has the eigen spectral function E with finite number of peculiarities. Moreover
the peculiar set Λ is a subset of the union of the set of roots of p and the set of
roots of p′, where p′ is the derivative of p.

Proof. Let us consider the J-non-negative operator p(A) and its spectral func-
tion Ep(A) (see [20]). As it is well known, for every positive ε > 0 the operator
p(A)|(I−Ep(A)([−ε,ε]))H is a scalar spectral operator, hence, we can apply to it The-
orem 3.1. Thus, we need only to show how to construct projections corresponding
to the pre-image of p of small neighborhoods of zero. Let us consider the set
Uε := {ξ ∈ C : |p(ξ)| < ε} with ε > 0. For every ε this set is bounded, so its
closure is compact. Moreover the number of roots (without multiplicity) does not
exceed the degree of the polynomial p. There exists δ > 0 such that for every
0 < ε < δ the set Uε represents an union of disjoint neighborhoods of roots of p.
Each neighborhood contains only one root. Then for each neighborhood we can de-
fine a Riesz-Dunford projector similar as in step 2 of the proof of Theorem 3.1. By
a reasoning similar to the steps 3 and 4 of the proof of Theorem 3.1, we construct
the eigen spectral function E. ¤

Corollary 6.2. Let A be a bounded operator and p as in Theorem 6.1. Let E be
the eigen spectral function of A with the set of peculiar points Λ. If the closed set
X ∈ RΛ is such that p(ξ) > 0 for every ξ ∈ X and X ∩ Λ = ∅, then the subspace
E(X)H is uniformly positive, that is

(E(X)H, [., .]) is a Hilbert space..

Proof. The properties of the spectral function Ep(A) of the J-non-negative oper-
ator p(A) implies that (Ep(A)(p(X))H, [., .]) is a Hilbert space, cf. [20]. By con-
struction, E(X)H is a subspace of Ep(A)(p(X))H. ¤
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