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ZUSAMMENFASSUNG

In der vorliegenden Arbeit wurden Abwehrantworten und Reaktionen der Modellpflanze 

Medicago truncatula GAERTNER (gestutzter Schneckenklee, Fabaceae) auf verschiedene biotische 

Reize verglichen. Aus der Vielzahl der möglichen Vergleichsparameter wurden Mechanismen 

der direkten und indirekten Verteidigung gewählt, sowie Komponenten der Signaltransduktion. 

Besonderes Augenmerk wurde auf die Emission von Duftstoffen gerichtet, die von M. truncatula 

in hoher Vielfalt freigesetzt werden. Dabei wurden über 90 Substanzen detektiert, die in Reaktion 

auf verschiedene Stimuli differenziell emittiert werden.

Ein Vergleich der Abwehr gegen Herbivoren mit unterschiedlichem Fraßverhalten zeigte, daß 

kauende Arthropoden (Raupen der Gattung Spodoptera) und stechend-saugende Herbivoren 

(Spinnmilben, Tetranychus urticae KOCH) deutlich unterschiedliche Abwehrreaktionen hervorrufen. 

Die Muster der emittierten Duftstoffe waren eindeutig abweichend. Die Freisetzung dieser 

Substanzen stellt eine aktive Form der indirekten Verteidigung dar, wie durch Verhaltensstudien 

(mittels Y-Olfaktometer) an Raubmilben (Phytoseiulus persimilis ATHIAS-HENRIOT) belegt wurde. 

Allerdings diskriminierten die Räuber nicht zwischen den unterschiedlichen Duftmustern; sie 

wurden von spinnmilben- wie raupeninduziertem Duft gleichermaßen angelockt. Auch 

phytohormonelle Antworten zeigten klare Kontraste. Während in Reaktion auf Raupenfraß 

nur Jasmonsäure (JA) in nennenswertem Maße akkumulierte, scheint die Verteidigung gegen 

Spinnmilben durch JA und Salicylsäure (SA) kontrolliert zu werden. Beide Herbivoren induzierten 

die lokale Deposition von phenolischen Substanzen und eine Anreicherung von reaktiven 

Sauerstoffspezies (reactive oxygen species, ROS) an der Verwundungsstelle. Diese Reaktionen 

werden hauptsächlich mit der Abwehr von Pathogenen in Verbindung gebracht. Tatsächlich 

konnte eine vergleichbare Reaktion auch durch β-Glukane aus der Zellwand des phytopathogenen 

Oomyceten Phytophtora sojae KAUFMANN & GERDEMANN hervorgerufen werden, was auf eine 

Überschneidung der Abwehr gegen Fraßfeinde und Pathogene hinweist.

Auch die Zusammensetzung der Duftstoffe, die nach Behandlung mit dem Glukan-Elicitor freigesetzt 

wurde, ähnelte stark dem durch Raupen hervorgerufenen Muster. Daraufhin wurden weitere 

mikrobielle Oligosaccharide auf ihre Fähigkeit getestet, vergleichbare Reaktionen auszulösen. 

Neben den bereits erwähnten β-Glukanen wurden auch N,N’,N’’,N’’’-Tetraacetylchitotetraose (CH4, 

ein Bestandteil der pilzlichen Zellwand) und zwei Nod-Faktoren (von denen nur einer biologische 

Aktivität hinsichtlich der Induktion einer Nodulierungsantwort in M. truncatula aufweist) verwendet, 

um ihren jeweiligen Einfluß auf pflanzliche Verteidigungsmechanismen zu untersuchen. Auch 

in diesem Fall konnten distinkte Duftmuster in Reaktion auf die unterschiedlichen Elicitoren 

gemessen werden. Nur CH4 löste keine derartige Antwort aus. Ein Konzentrationsanstieg von 

JA konnte nach Behandlung mit den Oligosacchariden aus Pathogenen detektiert werden, nicht 

aber nach Kontakt mit Nod-Faktoren. Abschneiden der Pflanzen führte zu einem starken Anstieg 

des SA-Gehaltes, der durch Zugabe keines der getesteten Elicitoren weiter gesteigert werden 

konnte. Insgesamt wurde keine Korrelation zwischen Duftstoffemission und phytohormonellen 

Änderungen festgestellt. Überproduktion von ROS wurde durch alle getesteten Signalstoffe 

verursacht, außer durch alleinige mechanische Verwundung. Interessanterweise riefen alle 

Substanzen, die zu erhöhter Duftemission führten, auch die Akkumulierung von Stickoxid (NO) 

hervor.
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Des Weiteren wurde, um einen Einblick in multiple biotische Interaktionen zu erlangen, der 

Einfluß von Mykorrhizierung mit Glomus intraradices SCHENCK & SMITH auf herbivorieinduzierte 

Duftfreisetzung untersucht. Obwohl die Auswirkungen der Symbiose auf diese Abwehrantwort 

nicht sehr auffällig waren, konnten sie mittels multivariater statistischer Methoden veranschaulicht 

werden. Es war auch möglich, anhand des Duftmusters Vorhersagen über den physiologischen 

Status der jeweiligen Pflanze zu treffen. In dieser Teilstudie wurden zwei verschiedene Kultivare 

von M. truncatula verwendet (cv. Jemalong A17 und ein handelsübliches Gemisch aus cv. Paraggio 

und cv. Jemalong). Erstaunlicherweise waren die auf Mykorrhizierung zurückzuführenden Effekte 

in den beiden Genotypen genau entgegengesetzt. Während die Pflanzen des Kultivargemisches 

dazu tendierten, bestimmte Substanzen in höherem Maße freizusetzen, zeigten mykorrhizierte 

Pflanzen des cv. Jemalong A17 reduzierte Emission von raupeninduziertem Duft. Diese Wirkungen 

betrafen allerdings nur Komponenten, die ohnehin nur in geringen Mengen oder sogar nur in 

Spuren freigesetzt wurden. Es wurden aber auch zwei bislang unidentifizierte Substanzen 

gefunden, die in etwas größeren Mengen emittiert wurden und deren Freisetzung sich in beiden 

Kultivaren durch Mykorrhizierung vergleichbar änderte.

In Anbetracht der Vielfalt der von M. truncatula emittierten Duftstoffe und der hohen Spezifität 

der resultierenden Muster, wurden weitere Elicitoren biotischen (Alamethicin) und abiotischen 

(Kupfersulfat und Coronalon) Ursprungs, sowie die exogene Applikation von JA und SA auf ihr 

duftinduzierendes Potential hin getestet. Wieder konnten distinkte Duftmuster gemessen werden. 

Jede der getesteten Substanzen induzierte dabei sehr spezifische und klar unterscheidbare 

Duftmuster.

Des Weiteren zeigte sich, daß multivariate statistische Methoden geeignete Hilfsmittel zur 

Visualisierung und Klassifizierung von Duftmustern darstellen. Diese Verfahren könnten es 

ermöglichen, in Zukunft Signalkaskaden und Effekte auf andere Organismen mit spezifischen 

Duftmustern in Verbindung zu bringen, anstatt mit einzelnen Komponenten aus komplexen 

Mischungen.

Insgesamt scheinen sich die Antworten von M. truncatula auf biotische Stimuli in Hinsicht auf die 

qualitativen Merkmale stark zu ähneln. Trotzdem zeigten sich in der quantitativen und zeitlichen 

Entwicklung dieser Reaktionen große Unterschiede. Die induzierten Antworten dieser Pflanze in 

biotischen Interaktionen können daher als Variationen eines gemeinsamen Themas interpretiert 

werden. Obwohl die verwendeten Komponenten oft ähnlich waren, entstand durch diese 

leichten Variationen ein spezifisches Reaktionsmuster auf jeden der getesteten Reize. Außerdem 

konnten deutliche Unterschiede zwischen den herbivorieinduzierten Duftmustern verschiedener 

Kultivare festgestellt werden. Zusammen mit der Tatsache, daß einige der gemessenen 

Reaktionen in Widerspruch zu anderen in der Literatur belegten Studien stehen, weist dies auf 

hohe Abhängigkeit bestimmter Antworten von dem genetischen Hintergrund der Pflanze hin. Es 

scheint daher eindeutig sinnvoll, biotische Interaktionen anhand einer Modellart zu untersuchen, 

um prinzipielle Überlappungen und Unterschiede festzustellen. Allerdings zeigen die oben 

erwähnten Disparitäten die Notwendigkeit auf, diese grundlegenden Studien durch Vergleiche 

verschiedener Genotypen einer Art und anderer Spezies zu ergänzen. 
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SUMMARY

The present study aimed to compare the responses of the model legume Medicago truncatula 

GAERTN. to different biotic stimuli. It concentrated on direct and indirect defence reactions as well as 

some components of signal transduction, and thereby attempted to establish a model system for 

studying multiple biotic interactions. Special focus was placed on the emission of volatile organic 

compounds (VOCs) that proved to be released in high diversity, with more than 90 compounds 

being differentially emitted in response to varied stimuli.

A comparison of the responses of M. truncatula to herbivores with different modes of feeding 

revealed that chewing arthropods (lepidopteran larvae of the genus Spodoptera) and cell-content 

feeders (spider mites, Tetranychus urticae KOCH) induced clearly distinct defence reactions. The 

patterns of VOCs emitted after infestation differed strongly. The release of VOCs represents an 

active means of indirect defence in this instance, as ascertained by behavioural studies of predatory 

mites (Phytoseiulus persimilis ATHIAS-HENRIOT) using Y-tube olfactometer tests. The attraction of 

predators was not specific for the attacking herbivore though, as predatory mites were equally 

attracted by VOC blends induced by host and non-host organisms. Also the responses in terms 

of phytohormonal changes differed depending on the type of herbivore. While in the defence 

against Spodoptera spp. only jasmonic acid (JA) was found to accumulate in appreciable amounts, 

defence against spider mites seems to be mediated by both JA and salicylic acid (SA). Both 

phytophages induced the local deposition of phenolic compounds and the accumulation of 

reactive oxygen species (ROS), presumably as modes of direct defence. These reactions, mainly 

linked to defence against pathogens, were also detected in reaction to β-glucans from the cell 

wall of the phytopathogenic oomycete Phytophthora sojae KAUFMANN & GERDEMANN, and thus indicate 

overlapping defence responses to herbivores and pathogens.

The VOCs emitted in response to the latter also exhibited remarkable similarity to the blends 

detected after caterpillar feeding. Consequently, additional microbial oligosaccharides were tested 

for their potential to induce similar responses. Besides the aforementioned β-glucans, N,N’,N’’,N’’’-

tetraacetylchitotetraose (CH4, a component of the fungal cell wall), and two Nod-factors (of which 

only one induces the nodulation response in M. truncatula) were used to compare their respective 

impact on defensive traits. Again, distinct VOC emission patterns were recorded for each of the 

compounds tested, with only CH4 being inactive in inducing VOC release. JA accumulated only 

after induction with the pathogen-derived elicitors, but not in response to Nod-factors. Cutting 

the plants proved to strongly increase SA levels, which could not be further enhanced by adding 

any of the oligosaccharides. Thus, no correlation between VOC emission and phytohormonal 

changes can be stated. The overproduction of ROS could be detected in response to all signalling 

compounds tested, but not after mechanical damage alone. Interestingly, the capability of the 

elicitors to induce nitric oxide (NO) accumulation correlated with the induction of VOC emission.

A step towards the investigation of multiple interactions was taken by assessing the impact of 

mycorrhization with Glomus intraradices SCHENCK & SMITH on herbivore-induced VOC emission. 

Though the impact of the symbiotic state was not massive, it was traceable with multivariate 

statistical methods and even proved to be predictable to some extent. Strikingly, the effect on 

two different cultivars of M. truncatula (cv. Jemalong A17 and a commercially available mixture 

of cv. Paraggio and cv. Jemalong) was exactly the opposite: the cultivar mixture tended to emit 
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higher amounts of certain compounds, cv. Jemalong A17 exhibited reduced emissions. This 

effect, however, solely concerned substances emitted in minor amounts. But also the release 

of two so far unidentified compounds changed with mycorrhization and exhibited comparable 

alterations in both cultivars. Both substances were emitted in amounts notably higher than the 

other compounds affected.

Furthermore, in view of the multitude of VOCs emitted by M. truncatula and the high specificity 

of the respective patterns, several elicitors from biotic (alamethicin) and abiotic origin (copper 

sulphate and coronalon) along with exogenously applied JA and SA were tested for their potential 

to induce distinct VOC blends. Again, statistically distinguishable patterns of differential emission 

could be ascertained.

Finally, VOC emission patterns could be visualised and classified using multivariate statistical 

methods. Using this approach, it might be possible to link signalling events and observed effects 

on other organisms to specific VOC patterns rather than to particular components of a blend.

Altogether, data gathered on biotic interactions indicate that the response to different stimuli 

is often similar with respect to qualitative traits, though in terms of quantitative and temporal 

development, reactions showed clear distinctions. Responses to biotic stimuli thus seem to be 

made up of slight variations of a common theme in M. truncatula. Taken together, these variations 

in single parameters produce unique patterns of responses to distinct biotic stimuli. The recorded 

responses seem to be in part highly species specific, with respect to numerous contrasting studies 

found in the literature. Even between distinct cultivars, considerable differences were found in 

this study concerning herbivore-induced VOC emissions. Though it is clearly useful to compare 

diverse biotic interactions using one model plant in order to elucidate overlaps and distinctions, 

intraspecific as well as interspecific comparisons are essential.
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1   GENERAL INTRODUCTION

1.1 BIOTIC INTERACTIONS 

Just like all living organisms, plants are continuously confronted with a diverse range of challenges 

from their environment. These can be either abiotic, referring to any deviance of the physical or 

chemical environment that is adverse to the plant’s needs and integrity, or biotic. The latter means 

the interactions with other organisms, which can be beneficial or detrimental by their nature. As 

plants are very restricted in their motility, they cannot react by fleeing. But they are not merely 

patient sufferers, as they make us of an arsenal of physico-chemical opportunities to actively 

influence and participate in biotic interactions. In this complex net of interactions, all kinds of 

organisms are involved, ranging from bacteria to mammals; and of course this also includes 

interactions between plants, be it within one species or between different species (Figure 1-1).

Bacteria can be deleterious to plants as pathogens, or beneficial as symbionts, as for example 

nitrogen-fixing rhizobia. The same holds true for fungi, which as pathogens can oppose plants, 

but also can enter into close association with plants as in the example of mycorrhizal fungi. 

Likewise, the interactions with animals are diverse. On the one hand, plants as primary producers 

are consumed by a wide range of herbivores, including amongst others nematodes, arthropods, 

molluscs, and of course mammals. On the other hand, plants take advantage of animals, using 

them as pollinators, seed dispersers, defenders, and even as supplementation for their nutrition 

in the case of carnivorous plants.

As varied as those interactions are, as long could be any enumeration. In the following sections the 

emphasis will be placed on only some of them, namely interactions with herbivorous arthropods, 

and bacterial and fungal pathogens as well as symbionts.

1.1.1 Classification of plant defence mechanisms

Defence mechanisms of plants can generally be classified as constitutive and induced. Examples 

of constitutive defences are thorns or prickles that may deter bigger herbivores, massive cell walls 

and cuticles that hinder the penetration of bacteria or fungi, and trichomes that can constitute a 

mechanical barrier against smaller herbivores, and can also carry secretory structures, producing 

and storing antimicrobial compounds, feeding deterrents, or toxins.

In contrast to constitutive defences, induced mechanisms are activated only in situations of 

actual threat. In the following, the former will be neglected in favour of the treatise of induced 

defences.

Another separation allows defence responses to be classified as direct and indirect lines of action. 

The first is targeted directly at the offending organism. Such mechanisms include the induced 

accumulation of toxins and feeding deterrents, fortification of cell walls, and the hypersensitive 

reaction. The term “indirect defences” is mainly connected to the defence against herbivores. It 

refers to any opportunity the plant has to manipulate the behaviour of predators or parasitoids of 

an herbivore that increases protection of the plant. The mechanisms of indirect defence include 

the offer of accommodation to carnivores, as for example by domatia, and the offer of alternative 

food sources, like extrafloral and floral nectar or food bodies (Sitte et al., 2002). With the emission 
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Figure 1-1 Selected biotic interactions involving plants. 1, infection with pathogenic fungi; 2, herbivore attack; 2a, by chewing 
insects, e.g. lepidopteran larvae; 2b, by cell content feeders, e.g. spider mites; 3, attraction of parasitoids or predators by her-
bivore-induced volatiles; 3a, parasitoid wasps attracted to caterpillar-damaged plants; 3b, predatory mites attracted to spider 
mite-infested plants; 4, attraction of pollinators by floral volatiles and nectar; 5, animals may act as seed dispersers; 6, plant roots 
are often colonised by symbiotic arbuscular mycorrhizal fungi; 7, legumes can also enter into symbiosis with rhizobia, resulting 
in nodulation of the roots; 8, belowground herbivory, e.g. by nematodes.
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of VOCs (volatile organic compounds) the plant provides information for the location of food 

resources to predators or parasitoids (Dicke & Van Poecke, 2002; Kessler & Baldwin, 2002). Direct 

and indirect defences are represented in both constitutive and induced defence mechanisms.

Finally, an alternative way to cope with various stresses is by developing tolerance. Instead of 

investing in defences, sources can be allocated to compensatory growth, thus conferring 

tolerance.

1.2 INDUCED DEFENCES AGAINST HERBIVORES

Regarding direct defences of a plant against phytophagous attack, the first step usually consists 

of physical factors an herbivore has to overcome in order to reach its food source. In plants such 

defence mechanisms are represented by trichomes, thorns or prickles, lignification, and the 

overall plant habitus that might be unfavourable for certain herbivores. The production of toxins 

is a widespread strategy of plants to reduce herbivory. The effects produced by these chemically 

diverse substances comprise membrane disruption, inhibition of transport or signal transduction, 

impaired metabolism, and even disruption of hormonal control of development (Gatehouse, 

2002). Another way of coping with herbivore attack is the production of digestibility reducers. 

These include tannins, resins, proteinase inhibitors, and silica (Price et al., 1980; Sitte et al., 2002). 

By reducing the digestive efficiency of the herbivore, they delay its development; also lowered 

resistance to disease and reduced fecundity can be consequences of poor nutritional quality 

(Price et al., 1980). Most of the above-mentioned strategies can be either constitutive or inducible. 

In the case of chemical defence, the compounds used in both strategies are often the same within 

one given plant species. Many forms of induced defence are not restricted to local responses at 

the wounding site, but can be detected systemically throughout the plant.

As defined above, indirect defences are mechanisms a plant employs to attract predators or 

parasitoids of an attacking herbivore. It can indirectly reduce feeding pressure by eliminating 

the herbivores with natural enemies. By offering nutrients, plants can achieve a loose mutualism 

between themselves and certain carnivores. Secretions of nectar by extrafloral or floral nectaries 

as well as the offer of food bodies are well established examples for rewards given to potential 

protectors of the plant (Sitte et al., 2002; Heil et al., 2004). Furthermore, plants can provide housing 

for carnivores by certain anatomical structures such as domatia or hollow thorns (Sitte et al., 2002; 

Romero & Benson, 2005). Finally, with the emission of VOCs plants make valuable information 

available to predators and parasitoids about the location of potential food sources.

1.3 DEFENCE MECHANISMS AGAINST PATHOGENS

Plants are antagonised by a vast variety of pathogens, including fungi, bacteria, and viruses. They 

can enter a plant either by direct penetration, through natural openings, such as stomata or 

lenticels, or through wounds (Agrios, 1978). For successful infection pathogens need to evade 

or overcome the plant’s defences. In order to do so they can employ different strategies, as for 

example the production of toxins, the synthesis of phytohormones or analogous substances to 
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manipulate the physiology of the host, or the synthesis of suppressors of plant defence responses 

and hydrolytic enzymes (Sitte et al., 2002).

Plants counter these offences with multifaceted defence reactions. Basically, host and non-host 

interactions can be distinguished. The first is race-specific and occurs only in comparatively few 

cases between selective pathogens and their respective hosts (Dangl & Jones, 2001; Rathjen & 

Moffett, 2003). As any extensive description of this broad topic would be far beyond the scope of 

this introduction, the following will focus only on mechanisms of non-host resistance. 

As most plant pathogens have a rather limited range of potential hosts in which they can cause 

disease, most interactions are non-specific. Non-host disease resistance substantially overlaps 

with mechanisms of host resistance, though the attacking pathogen is not specifically recognised 

with regard to gene-for-gene interaction (Thordal-Christensen, 2003; Halim et al., 2006). Instead, 

recognition of non-host pathogens is mediated by general elicitors of plant defence. These 

compounds consist of breakdown products of the cell wall or membrane of either of the interacting 

organisms, resulting from lytic processes at the infection site. Structures like oligogalacturonic 

acid from the plant primary cell wall, flagellin fragments, chitin and glucan oligomers, fungal 

sterols, and glycopeptid fragments can have elicitor activity (Ebel & Mithöfer, 1998; Sitte et al., 

2002). In many aspects, those molecules share features of pathogen-associated molecular patterns 

(PAMPs), which are important for non-self recognition in the animal immune system (Nürnberger 

et al., 2004). The chemical structures of microbial elicitors are of considerable diversity, though the 

cellular effects caused by them share some similarities. The plant can react to those challenges 

with structural and chemical induced defences. Induced structural barriers include the formation 

of callose, a β-1,3-glucan, at the penetration site of the pathogen, fortification of the cell walls, and 

lignification. The chemical part of induced defences consists amongst others of the accumulation 

of phytoalexins, many of which are terpenoids or phenylpropanoids and are produced de novo in 

response to pathogen attack. Furthermore, the fast synthesis of toxins, especially phenolics, and 

pathogenesis-related proteins (PR-proteins), the oxidative burst, and programmed cell death are 

hallmarks of induced defences against pathogens (Ebel & Mithöfer, 1998).

Besides this armoury of local responses, plants also mount systemic defence in response to 

pathogen infection. After immediate local defence responses, systemic acquired resistance 

(SAR) develops. It implicates the accumulation of salicylic acid throughout the plant as well as 

the expression of PR-proteins, and renders the plant more resistant to subsequent infections 

(Glazebrook, 2001). Though it is agreed that there has to be a systemic signal that is mobile but 

not species specific, as demonstrated by grafting experiments, the nature of this signal remains 

elusive (Durrant & Dong, 2004).

The events illustrated above bear some striking analogies to processes related to innate immunity 

in animals, where the first action to control infection is non-specific (Menezes & Jared, 2002; Jones 

& Takemoto, 2004). First, the pathogen has to overcome preformed barriers, be they the cuticles 

or cell walls of plants, or the skin or mucous membranes of animals. Chemical barriers such as 

antimicrobial secondary metabolites or peptides are mirrored by biochemical and physiological 

barriers in animals, such as acidity of skin and stomach, body temperature, production of 

lysozyme, etc. If those preformed defences fail to confine pathogen invasion, the next defensive 

system is activated via the recognition of PAMPs. PAMPs are structures that are crucial for non-

self recognition, not present in the potential host, and essential for microbial fitness (Nürnberger 

et al., 2004). Upon the recognition of those general elicitors, plants activate different inducible 
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defences. Just to mention some examples, the generation of reactive oxygen species (ROS) 

during the hypersensitive response (HR) in plants exhibits many similarities to the oxidative 

burst in mammalian neutrophils (Cohn et al., 2001). The same holds true for the involvement of 

second messengers as signals that are conserved among most eukaryotes, including increased 

intracellular calcium levels, generation of nitric oxide (NO), and mitogen-activated protein kinase 

(MAPK) cascades (Nürnberger et al., 2004). The only conspicuous difference between immunity 

in plants and animals is the lack of an adaptive immune system in the former. A comparison of 

some analogies between plant and animal immunity is summarised in Table 1-1. Those similarities 

prompted agreement regarding the term “plant innate immunity”. It comprises both host and 

non-host resistance (Nürnberger & Kemmerling, 2006).

Table 1-1 Comparison of plant defence mechanisms and the animal immune system.

Plants Vertebrates

Preformed 
defences

Physical Cell wall
Wax layer
Bark

Skin
Mucous membranes

Physical

Chemical Secondary metabolites
(terpenoids, phenolic 
compounds, alkaloids …)
Anti-microbial enzymes

Temperature
Low pH
Lysozyme

Biochemical / 
physiological

Induced 
defences

Recognition PAMPs (pathogen-associated molecular patterns) Recognition

Pathogen Chitin-fragments, glucans, 
flagellin, peptides …

Lipopolysaccharides, 
peptidogycans, bacterial 
DNA, dsRNA …

Pathogen

Host Toll-family members
Intracellular protein kinases

Toll-family members
Intracellular protein kinases

Host

Signal transduction Ca2+, NO, ROS, SA, JA … ROS, NO, cytokines, 
chemokines

Signal 
transduction

Defence response HR, PR-proteins, 
phytoalexins, etc.

Necrosis, apoptosis, 
inflammation,
phagocytosis

Defence 
response

- -
antigen-specific T and B-
lymphocytes

Adaptive 
Immunity

1.4 SYMBIOTIC INTERACTIONS

1.4.1 Mycorrhiza

Mycorrhization is an enormously widespread symbiosis between roots of terrestrial plants and 

fungi belonging to the Glomeromycota; about 90 % of land plants are colonised by mycorrhizal 

fungi. The evolution of this symbiosis is assumed to date back at least 450 – 500 million years, 

where it may have aided plants during the colonisation of the land by supporting the uptake 

of mineral nutrients and water. This notion is substantiated by the fact that certain bryophytes 

and pteridophytes are still capable of forming mycorrhizal symbiosis (Strack et al., 2003). Today, 

the predominant hosts, however, are angiosperms; but also some gymnosperms, lycopods, and 
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the already mentioned mosses and ferns are able to enter into symbiosis with mycorrhizal fungi, 

whereas only few plant families withstand invasion by these symbionts. Although, for example, 

Brassicaceae, Cyperaceae, and Amaranthaceae do not enter into symbiosis with arbuscular 

mycorrhizal (AM) fungi, the latter have developed an obligate symbiotic life cycle (Sitte et al., 

2002). Among several types of mycorrhiza, arbuscular mycorrhiza is predominant, occurring in 

about 80 % of mycorrhizal plants (Strack et al., 2003); it is a form of endomycorrhiza, where the 

fungus enters the root cortex and also builds haustoria in the cells. In contrast, in ectomycorrhiza 

the fungus establishes a coat of hyphae around the root; though the mycelium also enters the 

root cortex, no haustoria are formed in plant cells (Sitte et al., 2002). 

In brief, colonisation of the roots by AM fungi commences with the germination of fungal spores, 

which is stimulated by plant root exudates and volatiles (Harrison, 2005); this is followed by only 

poorly understood signalling events leading to directed growth of the hyphae to the plant roots. 

The hyphae subsequently enter the roots, penetrate cortical cells, and finally build highly branched 

haustoria inside the cells, called arbuscules. These structures remain separated from the cytoplasm 

of the plant by the plasma membrane of the plant cell, building a periarbuscular membrane 

similar to the structures housing rhizobia. A net of hyphae outside of the plant root produced 

by the fungus greatly enhances the contact surface to the soil, thereby facilitating the uptake 

of nutrients and water. Thus, the fungus supports the plant in supplying the needs in mineral 

nutrients, mainly phosphate, and water. Conversely, the plant provides the fungus with sugars. As 

for the improved nutritional status of the plant, one of the most obvious effects of the symbiosis 

is enhanced growth and resistance against pathogenic fungi and nematodes (cf. Chapter 4).

1.4.2 Nodulation

Plants by themselves are not able to fix dinitrogen (N
2
) and to reduce it to ammonium. This capability 

is restricted to some eubacteria and cyanobacteria, and depends on the enzyme nitrogenase. 

Fabaceae, however, are able to enter into symbiosis with rhizobia. The term rhizobia refers to 

gram-negative bacteria belonging to the genera Azorhizobium, Bradyrhizobium, Mesorhizobium, 

Rhizobium, and Sinorhizobium. These bacteria are not obligate symbionts, but usually do not 

fix nitrogen under non-symbiotic conditions. All three subfamilies of the Fabaceae, namely 

Papilionoideae, Mimosoideae and Caesalpinioideae, include genera that are able to establish 

symbioses with rhizobia; however, the most primitive of them, Caesalpinioideae, contains 

comparatively many genera that do not nodulate, which indicates that this symbiosis developed 

quite late during legume evolution (Van Rhijn & Vanderleyden, 1995). Hence, this mutualism is 

considerably younger compared to mycorrhization, having only evolved as late as about 58 million 

years ago (Kistner & Parniske, 2002; Sprent, 2007).

The events leading to this association start with chemotactic attraction of free living rhizobia, 

caused by flavonoids secreted by the root. As a consequence, bacteria attach to the root surface 

and get entrapped by curling of young growing root hairs. Starting from a local lesion in the plant 

root cell wall, bacteria can enter into the root hair through a plant-derived infection thread, which 

can be figured as inwardly directed, reverse tip growth of the root hair. At the same time, cortical 

cells start to divide and form a nodule primordium (Van Rhijn & Vanderleyden, 1995; Esseling & 

Emons, 2004). The infection thread reaches this primordium, releasing the bacteria that always 

remain surrounded by the plant plasma membrane, which in this state is called the peribacteroid 
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membrane. Finally, after the bacteria have arrived in the nodule primordium, they undergo 

changes in shape and cell wall structure, and develop into so-called bacteroids that do not divide 

anymore but start to fix dinitrogen (Sitte et al., 2002) in a microaerobic environment, as nitrogenase 

is highly sensitive to oxygen. Low oxygen concentration is maintained by leghemoglobin, an 

oxygen-binding plant protein, along with bacterial respiration, making a relevant sink for oxygen 

(Buchanan et al., 2000). 

To achieve such a close association, a lot of preliminaries have to occur. One comparatively 

well studied part of the interaction is the primary recognition of the symbiotic partners. Upon 

the perception of root flavonoids, rhizobia activate a range of Nod-genes, many of which are 

responsible for the biosynthesis of Nodulation-factors (Nod-factors). These signalling compounds 

confer a major proportion of host specificity and selectivity, though the degree of host selectivity 

varies considerably depending on the rhizobial strain (Van Rhijn & Vanderleyden, 1995). Nod-

factors are usually composed of an oligomeric chitin backbone (with three to five units), with a 

fatty acid chain attached to it by an amide bond, and can additionally carry several modifications 

(for a comprehensive overview, see D’Haeze & Holsters, 2002). The structure of the fatty acid chain 

and other substituents is crucial for the host specificity (D’Haeze & Holsters, 2002; Limpens & 

Bisseling, 2003). Up to now, however, the subsequent events, including reception of the signal, its 

transduction, and evasion of plant defence responses, remain unclear.

To establish symbiosis with both AM fungi and rhizobia, the successful suppression of the plant’s 

defence responses is a crucial step. Like all microorganisms, they carry PAMPs. This term can be 

somewhat misleading, as substances summarised therein do not occur only in pathogens but in 

all bacteria and fungi, including plant symbionts such as mycorrhizal fungi and rhizobia. These 

structures are recognised irrespective of whether the organism detected is beneficial or harmful 

for plant health. Thus, plant defences have to be suppressed if a functional symbiosis is to be 

established. The mechanisms underlying this process remain elusive (Mithöfer, 2002). However, 

the containment of the symbionts within parts of the plant may play a central role: in the case 

of nodules, the release of bacteroids from the symbiosom leads to an immediate activation of 

defences in the plant. 

1.5 SIGNAL COMPONENTS MEDIATING INDUCED DEFENCE RESPONSES

1.5.1 Reactive oxygen species and nitric oxide

Reactive oxygen species (ROS) is the collective term for different highly reactive forms of oxygen, 

including amongst others superoxide anions (O₂•-), hydroperoxyl radicals (HO₂•), hydrogen peroxide 

(H₂O₂), and hydroxyl radicals (OH•) (Vranová et al., 2002). In healthy cells they are produced as 

products of normal metabolism, e.g. in mitochondria, chloroplasts, and peroxisomes, and highly 

effective antioxidant systems care for the maintenance of an equilibrium in order to prevent 

oxidative damage to the cell. Many biotic stresses not only disturb this equilibrium but also induce 

excessive production of ROS as active signal component.

The so-called oxidative burst, the rapid accumulation of ROS, is one of the earliest reactions induced 

by pathogen attack (Lamb & Dixon, 1997). The generation of ROS in this context is biphasic. First, 
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a rapid but transient accumulation of ROS occurs that seems to be a non-specific reaction. In the 

second phase, the oxidative burst is prolonged and more pronounced (Lamb & Dixon, 1997).

The main enzyme responsible for the enhanced production in the course of the oxidative burst 

is a NADPH-oxidase, localised in the plasma membrane (Vranová et al., 2002), and generating 

the short-lived O₂•-. Also cell wall-bound peroxidases and amine oxidases may contribute to 

the enhanced production of ROS (Bolwell, 1999). The major reactive species accumulating is 

H₂O₂, which is produced from O₂•- either by spontaneous or enzyme-mediated dismutation. It is 

comparatively long-lived, and able to diffuse through biological membranes. ROS can have several 

functions in the plant’s defence against pathogens. They may function as direct antimicrobial 

agents, contribute to structural defences via oxidative cross-linking of cell wall components, and 

constitute components of intra- and intercellular signal transduction (Lamb & Dixon, 1997). 

In animals, the pivotal role of NO in diverse physiological processes is a comparatively well 

understood phenomenon. It is involved in blood pressure regulation, neurotransmission, immune 

regulation, and in numerous pathological conditions (Valko et al., 2007). It also plays a role in 

oxygen-dependent defence mechanisms in the case of the respiratory burst in macrophages. 

For the sake of simplicity, the term NO here collectively refers to the nitrosyl radical (NO•), the 

nitroxyl (NO-), and the nitrosonium ion (NO+), as suggested by Nathan (2004). Reactive nitrogen 

intermediates (RNI) additionally include nitrite and higher oxides of nitrogen, S-nitrosothiols, 

peroxynitrite, and dinitrosyl-iron complexes (Nathan, 2004).

In plants, comparable importance of NO has been recognised during the past few years. It 

participates in processes of plant growth and development, regulation of stomatal conductance, 

and reactions to abiotic and biotic stresses (reviewed by Neill et al., 2003). Though its significance 

is well documented by now, its biosynthetic pathways remain elusive. Several sources exist or 

are suspected to exist in plants. Nitric oxide synthase (NOS)-activity has unequivocally been 

detected in plants in response to diverse stimuli. For the respective enzyme, this is not the case. 

Another source of NO in plants is nitrate reductase (NR). Normally, it converts nitrate to nitrite. 

But it is also able to further reduce nitrite to NO (Wendehenne et al., 2004). However, nitrate 

is a competitive inhibitor of nitrite reduction, which makes it rather unlikely that NR would 

produce appreciable amounts of NO under normal physiological conditions (Crawford, 2006). NO 

production may also take place via non-enzymatic mechanisms. Nitrite can be reduced to NO at 

low pH in the presence of reducing phenolic compounds as has been detected in the apoplast of 

barley aleurone layers (Bethke et al., 2004); furthermore, nitrogen dioxide may be converted to NO, 

catalysed by carotenoids (Neill et al., 2003). As for the action of NO, several ways to interfere with 

signal transduction are conceivable (Neill et al., 2003). Some major modifications of biomolecules 

produced by reactive nitrogen species are nitrosylation or nitrosation of heme iron or peptides, 

nitration of fatty acids and peptides, oxidation of peptides and bases of DNA as well as the 

deamination of DNA bases (Nathan, 2004). Only recently were S-nitrosylated proteins detected in 

Arabidopsis thaliana, providing the first evidence for NO-dependent protein modification in plants 

(Lindermayr et al., 2005).

By their nature, ROS and RNI are ideal candidates for influencing diverse signalling pathways. As 

such ubiquitous molecules per se are not very likely to be specific signals by themselves, they 

may exert effects by modifying proteins and thereby their respective activity. This certainly could 
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include transcription factors, thus linking ROS and RNI generation with changes in gene expression. 

The modification of other biomolecules can create pools of bioactive oxides of nitrogen, as in the 

case of nitrated fatty acids (Nathan, 2004; Schopfer et al., 2005; cf. Chapter 3).

1.5.2 The jasmonic acid pathway

Oxylipins are bioactive compounds that are produced from polyunsaturated fatty acids via oxidative 

processes. One of their most prominent representatives is jasmonic acid (JA); it is synthesised from 

linolenic acid via the 13-lipoxygenase (LOX) pathway. In this process, the fatty acid is oxygenated 

by LOX. The resulting 13-hydroperoxylinolenic acid is converted by allene oxide synthase and 

allene oxide cyclase into 12-OPDA (12-oxo-phytodienoic acid). It is then reduced by 12-OPDA 

reductase, with three rounds of subsequent β-oxidations finally yielding jasmonic acid (Figure 

1-2) (Howe & Schilmiller, 2002). Two branches in the biosynthetic pathway can also lead to the 

production of VOCs. Some green leaf volatiles can be produced from 13-hydroperoxylinolenic acid 

via the action of hydroperoxy lyase, and methylation of JA yields the volatile methyl jasmonate, 

which can be found in emitted VOC blends.

JA and related compounds are involved in signal transduction in responses to biotic and abiotic 

stresses and development (Creelman & Mullet, 1995; Creelman & Mullet, 1997; Turner et al., 2002). 

Mutants impaired either in the biosynthesis or in the perception of JA are severely compromised 

in their defence against insect attack and some pathogenic soil fungi (Halim et al., 2006).

����

����

OOH

����

�

����

�

����

�

����������������

����������������������������

���������������������������������

������������������������

���

�������������

���

���

���

����

���

�

���

������������������������

�������������

���

���������������

���

���������������

��

�������������

���������

���������������

����������

���

���

���

����������������������
�������������������

����������������
�����������
���������������������

Figure 1-2 Biosynthesis of jasmonic acid and fatty acid-derived green leaf volatiles. Dashed lines indicate multiple biosynthetic 
steps. Abbreviations: LOX, lipoxygenase; AOS, allene oxide synthase; AOC, allene oxide cyclase; ADH, alcohol dehydrogenase; iso, 
isomerization; GLVs, green leaf volatiles.



Introduction
10

in the onset of SAR, though its definite role is so far unknown.

Besides its function in defences against pathogens and the onset of SAR in plants, SA has some 

influence on other physiological properties; the most prominent of them being the calorigen 

in thermogenesis of floral parts of some plant species (Raskin, 1992). Moreover, SA might act as 

an allelopathic compound, maybe via interfering with membrane ion transport in roots (Raskin, 

1992).

1.5.4 Signal cross-talk at the level of phytohormones

In the literature, predominantly dichotomous approaches are used to explain the interactions 

between SA-dependent and JA/ethylene-dependent signalling pathway. It is generally assumed 

that while JA and ethylene act synergistically, they are antagonised by SA. For example, in defence 

against pathogens, SA and JA have been found to mutually inhibit the expression of many genes; 

only some genes can be induced both by exogenous SA and JA (Glazebrook, 2005).

As for their biological relevancy, SA seems to mediate the defence against biotrophic pathogens 

while JA is involved in the response to necrotrophic pathogens, herbivores, and wounding. 

However, regarding the defence against herbivores, a clear distinction seems to exist between 

those against chewing herbivores and those against insects with piercing-sucking mode of 

feeding. That is, the latter shows a clear participation of SA-dependent defences (Kessler & Baldwin, 

2002; to be discussed in more detail in Chapter 2). Regarding defences against pathogens, it is 

easily conceivable that an activation of HR and programmed cell death, as are thought to be 
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Figure 1-3 Proposed biosynthetic pathways of sali-
cylic acid. Dashed lines indicate multiple biosynthetic 
steps. Abbreviations: ICS, isochorismate synthase; IPL, 
isochorismate pyruvate lyase; PAL, phenylalanine am-
monia lyase; BA2H, benzoic-acid-2-hydroxylase.

1.5.3 The salicylic acid pathway

Though not irrevocably proven to date, two 

biosynthetic pathways seem to exist in plants. 

Salicylic acid (SA) synthesis might start as a branch 

of the shikimic acid pathway. After the conversion of 

shikimate to chorismate, synthesis can presumably 

proceed via two different pathways. Chorismate 

can be converted to phenylalanine and from this, 

amongst others by the action of phenylalanine 

ammonia lyase and benzoic-acid-2-hydroxylase, SA is 

produced. Alternatively, chorismate can be converted 

to isochorismate and this in turn to SA (Shah, 2003). 

The latter pathway was first found in some bacteria 

and seems to be also active in plants (Figure 1-3) 

(Wildermuth et al., 2001). Finally, as is the case for 

jasmonate biosynthesis, the SA pathway also plays 

a role in volatile production, as methyl salicylate is a 

compound commonly encountered in volatile blends 

of diverse plant species. Mutants defective in the 

SA pathway become more susceptible to pathogen 

attack. They are impaired in race-specific resistance 

and are also not able to mount SAR (Halim et al., 2006). 

Concerning the latter, SA is a well-established player 
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SA-dependent defences, would not be the ideal strategy to hinder infection with necrotrophic 

pathogens. They would in fact profit from that kind of defence. Thus, a different defensive 

pathway against those pathogens can be assumed (Glazebrook, 2005). In short, the effectiveness 

of the respective pathway strongly depends on the attacking organism (Ton et al., 2002). Though 

most reports are confined to the illustration of antagonistic interaction of the JA and SA pathway, 

some contradictory studies have been published. Concerning the question whether SAR and JA-

related induced systemic resistance (ISR) are mutually exclusive, it has been found recently that 

ISR does not affect the expression of SAR. On the contrary, SAR and ISR had an additive effect 

on the protection of Arabidopsis thaliana against Pseudomonas syringae pv. tomato. However, no 

significant cross-talk was detected (van Wees et al., 2000). Furthermore, it has been demonstrated 

that wounding with subsequent accumulation of JA and other oxylipins can increase resistance to 

following infection with rust fungi, which are biotrophic pathogens (Walters et al., 2006).

Undoubtedly, both the SA and the JA/ethylene pathways contribute to activating induced defence 

responses. Their actual role in diverse biotic interactions and the crosstalk that may occur between 

them to fine-tune defence responses are still under investigation. The somewhat contradictory 

results gathered so far are discussed in more detail in the Chapters 2 and 3.

1.6 PLANT-DERIVED VOLATILE ORGANIC COMPOUNDS

Volatile organic compounds emanate predominantly from three biosynthetic pathways: the 

terpenoid or isoprenoid pathway (Figure 1-4) (Dewick, 2002), the phenylpropanoid/benzenoid 

pathway, and fatty acid metabolism. To some extent, amino acid derivatives are also represented 

in volatile blends. The remarkable diversity of plant-derived volatiles, however, is also due to 

various modifications, such as hydroxylations, acetylations, and methylations, increasing volatility 

(Dudareva et al., 2006). Some compounds are quite common amongst many plant species, for 

example, green leaf volatiles, some terpenoids, and indole; others are rather specific (Gatehouse, 

2002).

The functions of plant volatiles are quite diverse. Amongst the most prominent are the potential to 

attract pollinators to scented flowers (Pichersky & Gershenzon, 2002), and the volatile compounds 

of fruits, giving them their characteristic aroma and smell. Besides visual clues, they contribute to 

the attraction of animals as seed dispersers. In addition, particularly in valuable reproductive parts, 

such as flowers and fruits, many volatiles may exert protective effects by their direct antimicrobial 

properties and thus help to prevent the loss of those costly plant parts (Dudareva et al., 2004). In 

other biotic interactions, VOCs are also of considerable importance. In plant-herbivore interactions 

they can act directly on the attacker by having deterrent or toxic properties. Moreover, they serve 

as semiochemicals, providing natural enemies of the herbivore with information on the location 

of potential prey. In the defence against pathogens, VOCs might contribute by their antimicrobial 

properties, thus representing means of direct defence in this instance. Finally, volatiles have been 

convincingly shown to be perceived in some way by plants neighbouring the respective emitter. It 

is supposed that this might serve as mode of communication; for example, in the case of herbivore-

induced volatiles, VOCs could serve as early warning signs of a nearby infestation. Indeed, volatiles 

have already been shown to induce resistance in plants. This may take place via direct elicitation 

or by priming, which leads to accelerated onset of defence responses in the case of subsequent 
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infestation (Farmer, 2001; Engelberth et al., 2004; Kessler et al., 2006). This mechanism acts both 

on a species level and also between different species. It is also possible that VOCs contribute to 

systemic signalling within one plant, mediating communication between distant plant parts (Bate 

& Rothstein, 1998; Kishimoto et al., 2005; Heil & Bueno, 2007). Moreover, roots also emit volatiles. In 

short, the compounds released may serve the same functions belowground as aboveground, but 

may play an allelopathic role as well.

Finally, not only does the abiotic environment influence VOC patterns as induced in biotic 

interactions (Takabayashi et al., 1994), but VOCs also are employed to cope with abiotic stresses. 

Isoprene emission seems to protect plants from heat- and ozone-induced damage (Pichersky & 

Gershenzon, 2002; Dudareva et al., 2006).

The chemical composition as well as the intensity of volatiles emitted might give a clue about the 

plant’s physiological status and the stresses it has been subjected to.
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Figure 1-4 Biosynthesis of terpenes. Two pathways are present in plants: the cytoplasmic mevalonic acid (MVA) pathway and the 
plastidal 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway. Dashed lines indicate multiple biosynthetic steps. 1, two steps of 
phosphorylation via mevalonate kinase and phosphomevalonate kinase; 2, mevalonate 5-diphosphate decarboxylase; 3, 4-di-
phosphocytidyl-2-C-methyl-D-erythritol synthase; 4, several, in part indeterminated biosynthetic steps; 5, isopentyl diphosphate 
isomerase; 6, isoprene synthase; 7, geranyl diphosphate syntase; 8, farnesyl diphosphate synthase; 9, geranylgeranyl diphosphate 
synthase. Terpenes are fi nally synthesised via diverse terpene synthases. ¹, monoterpenes and diterpenes are mainly synthesised 
in plastids via the MEP pathway; ², sesquiterpenes are predominantly synthesised in the cytosol and ER via the MVA pathway. 
Bold P indicate phosphate groups.
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1.7 MEDICAGO TRUNCATULA AS MODEL PLANT

Legumes are not only the third largest family of higher plants, they also are the second largest 

in terms of agricultural importance, topped only by Poaceae (Young et al., 2003). Fabaceae 

are important forage and pasture crops, and provide sources for vegetable protein in human 

nutrition. In contrast to other families of higher plants, legumes can be used for extensive studies 

of symbiosis, as they associate with both AM fungi and rhizobia. Moreover, they may serve as 

models for the elucidation of some metabolic pathways, like the biosynthesis of isoflavonoids 

and triterpene saponins, which are not present in model plants such as Arabidopsis thaliana (Bell 

et al., 2001). Also in defensive traits, some differences to this prevailing model plant are emerging 

(Frugoli & Harris, 2001).

Medicago truncatula GAERTNER is an omni-Mediterranean annual herb, also naturalized and cultivated 

in other regions of Mediterranean climate (Bataillon & Ronfort, 2006). This rather drought tolerant 

plant is mainly used for dryland grazing and crop rotation. It provides an effective disease break 

and improves soil fertility. M. truncatula is closely related to the world’s major forage legume, 

alfalfa (Medicago sativa L.), and to other important European legume crops such as pea (Pisum 

sativum L.), bean (Vicia faba L.), chickpea (Cicer arietinum L.), and clovers (Trifolium spp). But in 

contrast to most of those, being polyploid and allogamous, it has a small diploid genome (2 x 8 

chromosomes, approximately 500 Mbp), a comparatively fast generation time, and self-pollination 

is possible, all of which makes M. truncatula a feasible lab plant (MEDICAGO EU Consortium, 2002). 

Furthermore, the availability of genetic databases (Cannon et al., 2005) and the ever increasing 

knowledge about genetic traits make this species a suitable model system for legume genetics 

(Bell et al., 2001; Frugoli & Harris, 2001). Moreover, M. truncatula has some advantages for the study 

of biotic interactions. Like many legumes, it disposes of an armoury of chemical defences that 

to date have been poorly characterised. Furthermore, there seems to be considerable ecotypic 

variation within the species (Bataillon & Ronfort, 2006), and due to its agronomical importance, 

numerous cultivars are also available that vary with regard to their resistance to various pests and 

pathogens (Nair & Howie, 2006). In addition to the practical advantages listed above, this provides 

valuable tools for investigating the influence of slight genetic variation on defensive traits within 

one model species.

1.8 AIMS OF THE STUDY

We are still far away from detailed knowledge of the mechanisms that lead either to close 

symbiotic associations or to the activation of defence responses. The elucidation of single 

interactions is already complicated, but the problem even gets more intricate if considering that 

single interactions in nature are the exception rather than the rule. Thus, in order to peer into the 

black box of multiple interactions, it seems to be a reasonable approach to start with the use of 

one model plant to study those interactions. One prerequisite in this case is that the plant chosen 

reacts to all the challenges that are to be investigated. Members of the Fabaceae are favourable 

for such projects in the sense that they readily enter into symbiosis with rhizobia and mycorrhizal 

fungi. Like any plant, they fall prey to diverse pathogens and herbivores. From this point of view it 

is favourable to choose a member of this family.
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The overall aim of this study was to investigate overlaps and divergences of induced responses of 

plants in biotic interactions, using Medicago truncatula GAERTNER as a model plant. The strategy of 

the present study was to start with the analysis of single defensive traits of this plant. Chapter 2 

deals with a part of induced defences in response to herbivore attack. Two different phytophages, 

a chewing herbivore and a cell content feeder, were chosen to compare the impact of different 

modes of feeding on inducible defence responses. Furthermore, in view of the wider aim to 

compare multiple interactions, certain defensive traits that are described as typical for pathogen-

induced defences were included in this part of the study in order to assess a first line of potential 

overlaps between diverse defensive pathways.

The third chapter addresses the impact of different oligosaccharidic elicitors on plant defence 

components. Paralleling the approach of the previous section, responses thought to be unrelated 

to pathogen defence or symbiotic interactions were also considered. Different oligosaccharides 

have long been known to be perceived by plants and to induce specific responses, including 

compounds derived from detrimental as well as from beneficial microorganisms. Whether 

structurally related but functionally completely different signalling compounds can trigger 

the same defence responses in an experimental setup will be addressed in this chapter. The 

experiments are mere bioassays and offer a mechanistic approach to the question.

The first step further into the investigation of multiple interactions is taken in Chapter 4, where 

the influence of mycorrhization on defence against herbivores in M. truncatula is presented.

Finally, as mentioned earlier, it is crucial to characterise defence responses of a model organism 

to single stimuli before dealing with mixed effects. As is demonstrated, M. truncatula emits a 

multitude of different VOCs, such that it is of interest to characterise the biochemical potential 

of the plant more thoroughly, which is done in Chapter 6. In order to do so, different chemical 

elicitors known to induce VOC emission in other plant species were applied. The spectra recorded 

in reaction to those stimuli should further contribute to completing the profile of volatiles emitted 

by M. truncatula. Moreover, they offer the possibility to assess the potential specificity of VOC 

blends emitted in response to different stimuli in more detail.

Broadly speaking, the main question is, to what extent can overlaps in defence responses be 

found in plants? The ideas that general elicitors of plant defence may parallel PAMPs in animals, 

and that analogous mechanisms might be activated as in innate immunity in animals are not 

really new. An extension to that notion would be the assumptions that the innate immunity of 

plants extends to defence against herbivores and that reactions to abiotic stresses also fall into 

that category of responses.

As for components of signal transduction, it is commonly assumed that the reactions to 

different stimuli are mediated via distinct signal transduction pathways. For some well described 

components, such as SA, JA, ROS, and NO, this is to be verified for M. truncatula as a model.

Another question that is investigated throughout this study is to what extent the emission of 

VOCs can be used to diagnose a plant’s physiological or pathological state. 
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2   DEFENCES INDUCED BY PIERCING-SUCKING AND CHEWING 
HERBIVORES

2.1 INTRODUCTION

This section contains a comparison of defence reactions to herbivores with different ways of 

feeding. The evaluation includes traits of direct and indirect defence as well as components 

of signal transduction. Emitted volatiles, representing a mechanism of indirect defence, were 

measured and identified by gas chromatography/mass spectrometry (GC-MS). As elements of 

direct defence, the accumulation of phenolic compounds and of reactive oxygen species (ROS) was 

assessed using microscopic techniques. Jasmonic acid (JA) and salicylic acid (SA) concentrations 

were determined as putative components of signal transduction. Furthermore, the behavioural 

response of predatory mites to the VOCs emitted by Medicago truncatula was examined by means 

of Y-tube olfactometer experiments.

Besides several lines of defence a plant makes use of that act directly against the attacker (cf. 1 

General introduction), the emission of certain VOCs, for example in the case of herbivory, provides 

additional indirect defence involving a third trophic level by attracting natural enemies of the 

attacker of the plant (Takabayashi & Dicke, 1996; Gatehouse, 2002; Kessler & Baldwin, 2002).

Volatile emission seems to be at least in part mediated by changing concentrations of the 

phytohormones JA and SA (reviewed by Van Poecke & Dicke, 2004). Previous studies on tomato 

(Lycopersicon esculentum MILL.) suggest that a functional JA biosynthetic pathway is required for 

the induction of volatile release upon spider mite infestation (Ament et al., 2004). However, it has 

also been reported that in lima bean (Phaseolus lunatus L.) both salicylate- and jasmonate-related 

signal transduction pathways are essential for mounting an indirect defence against Tetranychus 

urticae KOCH, while volatile release in response to caterpillar feeding seems to be mainly controlled 

by JA concentrations (Ozawa et al., 2000).

Regarding the possible involvement of SA in defence against piercing-sucking insects (Ozawa et 

al., 2000; Walling, 2000; Arimura et al., 2002) and the relevance of SA in the resistance of plants to 

microbial pathogens (Delaney et al., 1994; Dempsey et al., 1999), it is tempting to speculate that 

there might be some other parallels in defence mechanisms against pathogens and herbivores. 

For example, the oxidative burst (the rapid production of ROS) is a well-described phenomenon 

occurring in reaction to pathogen attack at the onset of the hypersensitive response (HR) (Lamb 

& Dixon, 1997). Hydrogen peroxide, the most stable of the radicals produced, has been proposed 

to fulfil several roles in defence against pathogens. It might act via direct antimicrobial activity, 

as component of intra- and intercellular signal transduction pathways, or it might contribute to 

structural defence by oxidative cross-linking of the cell wall (reviewed by Lamb & Dixon, 1997). 

However, little attention has been paid to the question of whether oxidative responses also play 

a role in defence against herbivores. There is one report by Bi & Felton (1995) demonstrating 

significant increases in lipid peroxidation and OH·- formation, elevated activity of oxidative enzymes 

and depletion of cellular antioxidants in soybean (Glycine max (L.) MERR.) in reaction to caterpillar 

feeding. Additionally, the general relevance of ROS as an important defensive factor involved in 

various forms of stress responses has been suggested recently (Mithöfer et al., 2004).
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Concomitantly with the HR, the accumulation of phenolic compounds has been described as 

a mechanism plants use to resist pathogens (Dixon & Paiva, 1995; Kuc, 1995; Dixon et al., 2002) 

and some animal pests (Ollerstam et al., 2002). Reports on the latter are mainly restricted to 

more sedentary organisms such as nematodes, mites, galling insects, bark beetles, adelgids, and 

siricids (Fernandes, 1990; Ollerstam et al., 2002). Although elevated concentrations of phenolic 

compounds were detected upon feeding by mobile herbivores (Bi et al., 1997a), so far no evidence 

has been provided for the localised accumulation of these feeding deterrents.

It is known that different herbivores induce different volatile profiles (for an overview, see Van 

Poecke & Dicke, 2004), but there are few reports on comparative analyses of volatiles induced by 

herbivores with distinct feeding behaviours (Turlings et al., 1998; Ozawa et al., 2000). This chapter 

addresses the parallels and differences in the modes of defence a plant uses against different types 

of herbivores. For the first time, the model legume barrel medic (Medicago truncatula GAERTN.) was 

used to investigate components of signal transduction as well as direct and indirect defences 
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Figure 2-1 Gas chromatograms of volatiles emitted by Medicago truncatula. (a) Volatiles induced by Spodoptera littoralis feeding. 
(b) Volatiles induced by Tetranychus urticae infestation. (c) Control. For identification of the compounds, see Table 2-1. IS, internal 
standard (100 µg ml-¹  n-bromodecane). Asterisks mark contaminations of abiotic origin (plasticiser).
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against either chewing or piercing-sucking herbivores, in this case  cotton leafworm (Spodoptera 

littoralis BOISDUVAL) and two-spotted spider mite (Tetranychus urticae KOCH), respectively.

As limited information is available on the occurrence of localised direct defences, such as the 

oxidative burst and the deposition of phenylpropanoid metabolites in the context of herbivory, 

one aim of this study was to assess the accumulation of ROS and phenolic compounds at the 

wounding sites caused by S. littoralis and T. urticae. Moreover, in light of the growing importance 

of M. truncatula as a model organism (Cook et al., 1997; Oldroyd & Geurts, 2001) and the increasing 

insights being gained into the value of indirect defences, another aim was to characterise the 

volatiles emitted by the vegetative plant parts in reaction to herbivory.

Finally, regarding the specific differences encountered in volatile blends emitted after caterpillar 

or spider mite infestation, the attractiveness of the respective combinations to predatory mites 

was evaluated.

2.2 RESULTS

2.2.1 VOC emission

The collection of volatiles upon herbivory in M. truncatula revealed a considerable variety of 

compounds emitted. These included different classes of hydrocarbons such as alkanes, alkenes, 

aldehydes, alcohols, esters, and aromatics, although the compounds most abundantly present 

were terpenoids. Figure 2-1 shows examples of gas chromatograms depicting volatile blends 

after caterpillar and spider mite feeding. These chromatograms illustrate the general picture for 

most substances emitted, although without the separation of all sesquiterpenoids. Compounds 

(Table 2-1) were identified according to their fragmentation pattern (MS) and in addition, as far as 

standard substances were available, by calculation and comparison of retention indices on two 

different columns with different polarity (see 7.2.2, Identification of VOCs and determination of 

retention indices, and Appendices I and II for details).

Comparing the blends emitted after feeding by S. littoralis and T. urticae, some differences 

become apparent (Figure 2-1, Table 2-1). Overall, fewer substances were released upon spider 

mite feeding. The total lack of homoterpenes, as well as alkanes and alkenes, in the spectrum 

is remarkable. Similarly, no emission of methyl salicylate (MeSA) was induced by spider mite 

infestation. Moreover, the relative amounts of some of the sesquiterpenoids emitted differed, 

particularly for cyclosativene and α-copaene after spider mite infestation. Although the overall 

diversity of sesquiterpenoids induced by T. urticae was lower than for S. littoralis, γ-himachalene 

and γ-humulene were found exclusively after attack by this herbivore and thus represented 

the only substances that could be detected after spider mite feeding, but not after caterpillar 

feeding.

2.2.2 Phytohormone levels

Clear differences were also observed in salicylate and jasmonate concentrations after caterpillar 

and spider mite infestations. In the comparison drawn here, local and systemic responses, as well 

as early and late responses, were examined separately. Because attack by different herbivores 

damages plants at different rates, the comparison presented here is based on measurements at 
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Compound¹
No in 

Fig. 2-1
S. littoralis T. urticae

Alkanes n-Pentadecane +
Alkenes 3-Octanone +

2,6-Dimethyl-1,3,5,7-octatetraene (E)² +
Aldehydes Benzaldehyde +

n-Decanal + +
2-Ethyl hexanal³ 1 + +
n-Nonanal 4 + +

Alcohols 2,6-Dimethyl-3,5,7-octatrien-2-ol (E)² 7 +
6-Methyl-1-heptanol + +
1-Octen-3-ol 2 +++ +

Esters cis-3-Hexenylacetate 3 ++ +
Aromatics Cresol +

3,5-Dimethoxytoluene +
3,5-Dimethylanisole +
Methyl salicylate +
Trimethylbenzene + +

Monoterpenes 3-Carene +
Limonene +
α-Pinene + +

Sesquiterpenoids allo-Aromadendrene 15 +
α-Bisabolol +
Cadalene +
β-Caryophyllene 11 +++ +
α-Copaene 10 +++ +
β-Copaene 12 +
Cyclosativene 8 +++ +
β-Farnesene +
α-Himachalene 13 + +
β-Himachalene +
γ-Himachalene 24 + +
β-Himachalol 20 ++ +
α-Humulene 14 +
γ-Humulene +
β-Ionone +
α-Muurolene 17 +
Longicyclene 23 + +
E-Nerolidol 18 ++
α-Ylangene 9 ++ ++
unidentified sesquiterpene  (RI 1481) 16 +++ +++

Homoterpenes 4,8-Dimethyl-1,3,7-nonatriene (DMNT ) 5 +++
3E,7E-4,8,12-Trimethyltrideca-1,3,7,11-tetraene 

(TMTT ) 19 ++

N- or S- containing 1,2-Benzisothiazole 21 + ++
compounds 2-sec-Butyl-3-methoxypyrazine 6 +

Cyclohexylisothiocyanate 22 + +

1 For identification of the compounds (MS and linear retention indices) see Appendices I and II.
2 Artefacts generated from (E)-ocimene during adsorption to the charcoal trap (Kaiser, 1993).
3 Contamination of abiotic origin.
+, relative abundance below 25%; ++, relative abundance between 25 and 50%; +++, relative abundance above 50%.

Table 2-1 List of compounds identified in the volatile blends emitted by Medicago truncatula upon Spodoptera littoralis or  
Tetranychus urticae infestation.
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a given time for caterpillar feeding and at a certain stage of symptom development for spider 

mite infestation. Thus, the data sets were divided into early and late stages of infestation. In the 

case of caterpillar feeding, the early and late stages of infestation were taken to be 6 and 48 h 

after the onset of feeding, respectively (larvae were allowed to feed on the plants for 4 h). After 

spider mite infestation, samples representing the early stages of damage were collected following 

the appearance of yellowish spots, while samples representing the late stages of damage were 

collected when initially infested leaves yellowed. This classification of samples ensured that the 

degree of damage was very similar for caterpillar feeding and spider mite infestation (in terms of 

leaves affected). However, secondary infections by opportunistic pathogens could not be fully 

excluded, particularly in light of the long incubation time. Thus, leaves were screened for infections 

diagnosable by microscopic means, such as fungal infections, which could then be excluded. A 

virus infection of the leaves via a herbivore vector, as described for whitefly Bemisia argentifolii 

(BELLOWS & PERRING) (Mayer et al., 2002), is very unlikely as Ortlob (1968) showed that T. urticae is 

unable to transmit viruses. Samples for determining local SA and JA concentrations were taken 

from damaged leaves; systemic concentrations were measured using the uppermost undamaged 

leaves of the infested plants. Control samples were taken from undamaged, healthy plants.

At early stages of infestation, feeding by S. littoralis caused a marked increase of local JA 

concentrations, up to 8.4-fold of the control values, while JA concentrations after T. urticae 

infestation did not exceed baseline values. Conversely, systemic concentrations of JA were only 

slightly increased early after caterpillar feeding (3.5 times), whereas the response to T. urticae 

attack was relatively strong, with an average rise up to 6.2-fold of the control values, although the 

result in the latter case was not significant (Figure 2-2 a). At later stages, the situation changed; JA 

concentrations increased (4.0 – 4.5-fold) after both types of herbivory in local tissue, indicating a 

transient increase after caterpillar feeding and a late increase after spider mite infestation.
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Figure 2-2 Jasmonic acid concentrations in Medicago truncatula. (a) JA concentrations at early stages of infestation (for Spodop-
tera littoralis, 6 h after the onset of feeding; for Tetranychus urticae, after the appearance of yellowish spots). (b) JA concentrations 
at late stages of infestation (for S. littoralis, 48 h after the onset of feeding; for T. urticae, after yellowing of the initially infested 
leaves of M. truncatula). Data are the mean ± standard deviation for three independent experiments. Asterisks indicate a statisti-
cally significant increase of JA values for the particular treatment group (p < 0.05; Student’s t-test) compared with the control. 
syst., systemic.
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Regarding systemic tissue, concentrations rose strongly in plants damaged by caterpillar feeding 

(14.2-fold), but no changes could be observed in spider-mite-infested plants with respect to the 

concentrations measured at early stages (Figure 2-2 b).

For SA concentrations, the alterations with time were notably different. In tissue local to the 

wounding site there was no accumulation of SA after S. littoralis feeding, neither at early nor at 

late stages. Conversely, concentrations were elevated in systemic tissue after S. littoralis and T. 

urticae infestation, as well as locally after T. urticae attack at early stages (2.0 – 2.8-fold; Figure 

2-3 a). After 48 h, SA concentrations were very similar in caterpillar-damaged and control plants, 

while both local and systemic tissues of spider-mite-infested plants at late stages showed a large 

accumulation of SA (3.1- and 5.2-fold increases, respectively; Figure 2-3 b).

Thus, it appears that feeding by S. littoralis produces a transient increase of JA locally in wounded 

tissue, whereas systemic concentrations are already elevated 6 h after the onset of feeding and 

continue to rise up to 48 h. In wounded tissue, no increase of SA concentrations could be detected, 

whereas a moderate increase took place in systemic tissue 6 h after wounding.

After spider mite infestation, the local response with regard to JA concentrations appeared late and 

was only moderate. In systemic tissue, there was a clear increase in JA concentration; the onset of 

this rise is likely to occur at the stage at which the leaves begin to yellow, thus the high standard 

deviation might indicate that samples were taken during the main period of JA accumulation. 

Regarding SA determination, a persistent increase in local as well as systemic tissues was found, 

although the response was not as strong in local tissue as in systemic tissue.

2.2.3 Direct defences

2.2.3.1 Deposition of phenolic compounds

The detection of phenolic compounds after caterpillar feeding (Figure 2-4, a – c) revealed a two-

phasic, time-dependent deposition of these autofluorescent compounds around the bite zone. 

Immediately after wounding, a bright yellow fluorescent edge at the bite zone could be seen.  
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Figure 2-3 Salicylic acid concentrations in Medicago truncatula. (a) SA concentrations at early stages of infestation (for  
Spodoptera littoralis, 6 h after the onset of feeding; for Tetranychus urticae, after the appearance of yellowish spots). (b) SA con-
centrations at late stages of infestation (for S. littoralis, 48 h after the onset of feeding; for T. urticae, after yellowing of the initially 
infested leaves of M. truncatula). Data are the mean ± standard deviation for three independent experiments. Asterisks indicate 
a statistically significant increase of SA values for the particular treatment group (p < 0.05; Student’s t-test) compared with the 
control. syst., systemic.
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Six hours after wounding, the area adjacent to the wounding zone became blue fluorescent with 

excitation at 365 nm. This localised fluorescence subsequently spread around the wounding 

site. The widespread faint blue fluorescence after 48 h might also in part be attributable to the 

reduced autofluorescence of chlorophyll as a consequence of yellowing around the wounding 
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Figure 2-4 Detection of phenolic compounds (a - i) and reactive oxygen species (ROS) (j - l) at wounding sites in Medicago 
truncatula. (a - c) Autofluorescence at the bite zone after feeding by Spodoptera littoralis: (a) immediately after wounding; (b) 6 
h after wounding; (c) 48 h after wounding. (d - f ) Autofluorescent phenolics around cells damaged by Tetranychus urticae: (d) at 
the stage of limited lesions; (e) at the onset of yellowing of the leaf; (f ) after almost the entire leaf has yellowed. (g - i) Deposition 
of phenolic compounds after mechanical wounding (control): (g) immediately after wounding; (h) 4 h after wounding; (i) 48 h 
after wounding. (j - l) Detection of ROS using an iodine-starch stain: (j) 48 h after mechanical damage; (k) 48 h after feeding by 
S. littoralis; (l) after feeding by T. urticae (at the onset of yellowing of the leaf ). vb, vascular bundle; t, basal cell of trichome (filled 
with autofluorescent compounds).
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site (Figure 2-4 c). Similarly, a weak yellow fluorescence was present after spider mite infestation 

at the stage of limited necrotic lesions (Figure 2-4 d). At the time of expansion of the lesions, 

yellow to blue fluorescence spread from the wounding site, which was mainly localised to the 

cell wall (Figure 2-4 e). At the final stage, in almost entirely yellowed leaves, a strictly localised 

blue fluorescence around the wounding site remained (Figure 2-4 f ). As a control, leaves were 

mechanically damaged with a pin (Figure 2-4, g – i). Immediately after wounding and up to 24 h 

afterwards, no increased autofluorescence could be seen around the wounding site. Starting at 24 

h, and increasing up to 48 h, blue autofluorescence was seen locally around the wounding sites 

(Figure 2-4 i) that resembled the reactions seen after feeding by S. littoralis after 6 h. 

Because the reactions described above were originally described as defence mechanisms against 

pathogen invasion (Dixon & Paiva, 1995; Kuc, 1995; Dixon et al., 2002), a pathogen-derived elicitor 

(branched β-1,3-β-1,6-glucans from the cell wall of Phytophthora sojae, cf. 3 Oligosaccharidic 

elicitors) was applied to wounds on the leaf to serve as positive control. As can be seen in Figure 

2-5 (a – d), the pattern of autofluorescence around the elicited wounds was very similar to that 

observed after herbivory, but the accumulation of phenolics was clearly stronger after elicitor 

application. Again, a rather strong yellow fluorescence could be observed one hour after application 

of the elicitor (Figure 2-5 a). Later, this fluorescence spread along the cell walls, presumably due 

to fortification of cell walls and impregnation with defensive compounds (Figure 2-5 b). From 

48 h after elicitation onwards, two cases could be observed. In some instances, necrotic lesions 

spread around the wounding site that were surrounded by cells filled with autofluorescent 

blue compounds. In other cases, the elicited wound was surrounded by cells with strongly blue 

fluorescent cell walls.

Thus, it may be stated that the accumulations of phenolic compounds in reaction to herbivory 

and pathogen-derived elicitors are indeed rather similar in the qualitative aspect, although they 

clearly differ in the quantitative dimension.

2.2.3.2 Accumulation of reactive oxygen species

The principle of the iodine-starch stain used to detect ROS is the oxidation of iodide in the presence 

of ROS to iodine, which forms a coloured complex with starch. As can be seen in Figure 2-4 ( j – l), 

mechanical wounding did not cause the accumulation of ROS, whereas both damage caused by 

S. littoralis and that caused by T. urticae induced the production of ROS around the wounding site. 

Interestingly, staining appeared only in the late stages of damage from herbivore feeding, with 

the first positive results not appearing before 24 h after the start of caterpillar feeding (weakly), 

or at the beginning of the yellowing of the leaves during spider mite infestation. In the case of 

caterpillar feeding, clear staining did not appear until 48 h. 

Again, elicitation with β-glucans (cf. 2.2.3.1 Deposition of phenolic compounds) served as a positive 

control. For this comparison, however, an alternative staining method using 3,3’-diaminobenzidine 

(DAB) was applied. Experiments with wounding and caterpillar feeding were also repeated using 

this method in order to ensure comparable results. As can be seen in Figure 2-5 (e – g), the 

patterns of ROS accumulation observed after wounding and herbivore feeding were the same as 

those seen with the iodine-starch stain. 48 h after β-glucan elicitation, a ring of cells producing 

ROS could be detected (Figure 2-5 g). The area of cells affected coincided with expanding necrotic 

lesions around the wounds (cf. Figure 2-5 c). For experiments involving β-glucan elicitation, staining 

with DAB turned out to be advantageous, as due to the rather widespread but weak staining, the 
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bleaching applied after the iodine-starch stain was not strong enough to yield a sufficient contrast for 

photography. However, results also were the same using this method. In summary it may be said that 

regarding the production of ROS, a quite similar pattern was observed after herbivory and elicitation 

with a pathogen-derived elicitor.
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Figure 2-5 Detection of phenolic compounds (a - d) and reactive oxygen species (ROS) (e - g) at wounding sites in Medicago 
truncatula. (a - d) Autofluorescence at wounding sites treated with a pathogen-derived β-glucan elicitor: (a) 1 h after the applica-
tion of the elicitor; (b) 4 h after elicitation; (c) 72 h after elicitation; (d) 48 h after elicitation. (e - g) Detection of ROS using DAB-
staining: (e) 30 min after mechanical damage; (f ) 48 h after caterpilar feeding; (g) 48 h after elicitation with β-glucan elicitor.
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2.2.4 Attraction of predatory mites to different VOC blends

In the Y-tube olfactometer experiments, four different combinations were tested: uninfested 

plants were offered combined with empty vials, spider-mite-infested, and caterpillar-damaged 

plants. Finally, the attractiveness of caterpillar- and spider-mite-infested plants to predatory mites 

(Phytoseiulus persimilis ATHIAS-HENRIOT) was compared.

As shown in Figure 2-6, undamaged plants were more attractive to predatory mites than an empty 

vial, with 39 individuals out of 60 choosing the former odour source (p < 0.05, binomial test). Both, 

the volatiles emitted by spider-mite-infested plants as well as those from caterpillar-damaged 

plants were able to attract predatory mites. With a total of 80 individuals tested, 61 were attracted 

by the volatiles emitted by spider-mite-infested plants (p < 0.001, binomial test). In the case of 

caterpillar-damaged plants, 53 out of 80 predatory mites preferred plants damaged by S. littoralis 

over control plants (p < 0.01, binomial test). However, comparing the behavioural responses of 

predatory mites in those two experiments, no significant differences were found depending on 

whether the plants were infested with host or non-host organisms (p > 0.05, contingency table 

analysis, Fisher’s exact test). At last, when offered the choice between caterpillar- and spider-

mite-infested plants, predatory mites were not able to locate the plant bearing its host (p > 0.05, 

binomial test).

��� �� � �� ���

������������� ����������

����������

����������

���������� ����������

�������������

����������

���������������������������

��������

��������

��������

��������

����

�

��

���

����

Figure 2-6 Choices of the predatory mite Phytoseiulus persimilis between the volatiles emitted by Tetranychus urticae infested 
and Spodoptera littoralis damaged Medicago truncatula plants. Statistical analysis was done using a binomial test for single choice 
tests and Fisher’s exact test for the comparison between different experiments. n.s., p > 0.05; *, p < 0.05; **, p < 0.01; ***, p < 
0.001.

2.3 DISCUSSION

Amongst the group of piercing-sucking arthropods there is a clear distinction, in terms of the 

responses of plants, between phloem-feeding herbivores and herbivores that feed on cellular 

contents; spider mites belong to the latter group (Walling, 2000). Phloem-feeding herbivores, 

such as aphids, leafhoppers, and whiteflies, cause only minor tissue damage and seem to induce 

defence signalling pathways largely resembling those activated against pathogens. However, 

these herbivores can induce unique volatile blends (Du et al., 1998; Birkett et al., 2000). Mites that 
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lacerate cells cause more extensive tissue damage, and thus the response of plants to these mites 

is more similar to their response to chewing herbivores (Walling, 2000). Nevertheless, there are 

some substantial differences in plant reactions to chewing and cell-content-feeding herbivores. 

Regarding volatile release in M. truncatula, the quantitative composition of the blends clearly 

differed depending on the type of herbivory (Figure 2-1; Table 2-1). This is in accordance with 

previous findings that the blend emitted specifically attracts predators or parasitoids of the 

attacker (Takabayashi & Dicke, 1996; De Moraes et al., 1998; Du et al., 1998; Birkett et al., 2000; 

Shimoda et al., 2002; Horiuchi et al., 2003). There were relatively small qualitative differences, but 

it is remarkable that MeSA, TMTT (3E,7E-4,8,12-trimethyltrideca-1,3,7,11-tetraene) and E-nerolidol 

were not found in the chromatograms recorded after spider mite infestation, as MeSA and TMTT 

have been suggested to be spider-mite-inducible volatiles in lima bean (Dicke et al., 1999) as well 

as in tomato (Kant et al., 2004). Moreover, all three compounds have been described as typical 

constituents of volatile blends produced by tomato in reaction to spider mites, being absent only 

in plants with impaired JA accumulation (Ament et al., 2004). This is clearly not the situation in 

barrel medic, as elevated concentrations of JA were detected in this study, although the measured 

concentrations fluctuated greatly. This might have been a result of the sampling mode, in which 

symptoms were used as a measure. JA concentrations seem to rise during the expansion of localised 

necrotic lesions. Nevertheless, it is useful to establish comparisons in this way, because the time 

courses of damage development are very distinct after caterpillar and spider mite infestation. 

Furthermore, the time that elapsed before the first symptoms of disease became visible after the 

onset of spider mite feeding differed considerably in various infestations, and it therefore seemed 

preferable to use damage symptoms as criteria for sampling (in accordance with Kant et al., 2004). 

Finally, the sampling time might matter more than first assumed. An ongoing re-evaluation of 

volatiles emitted after spider mite infestation, this time with sampling dependent on the time 

after the onset of feeding, indicates drastic changes of the volatile pattern emitted with the time 

after infestation. 

The fact that previously described attractants of predatory mites (De Boer et al., 2004; Kappers 

et al., 2005) were not emitted by spider-mite-infested plants was a sound reason to test the 

effectiveness of VOCs emitted by M. truncatula in tritrophic interactions. The results of the 

olfactometer experiments provided evidence that these compounds are able to attract predatory 

mites to the wounded plants. However, the behavioural response was not specific to a certain 

volatile blend. This is unsurprising when some ecological details as well as the experimental setup 

are taken into account.

As spider mites are rather polyphagous herbivores and each plant species has its own repertoire 

of volatiles, predatory mites would profit from being able to detect some of the more common 

volatile compounds or a multitude of different compounds. It is thus rather unlikely that only 

the homoterpenes DMNT and TMTT, E-nerolidol, and MeSA are powerful attractants. Still, those 

compounds are quite commonly encountered substances in volatile blends emitted by damaged 

plants. M. truncatula emits a considerable number of different compounds, yet there are still a 

lot of other candidates that may be responsible for attracting predatory mites to damaged M. 

truncatula plants.

Regarding the experimental setup, it has to be stressed that only inexperienced predatory 

mites (reared on lima bean infested with spider mites) were used in all experiments. As control 
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experiments, predatory mites were given the choice between undamaged and spider-mite-

infested lima bean plants (data not shown). They were strongly attracted to the infested plants, 

and a comparison of the attraction to damaged M. truncatula plants revealed a significantly lower 

attraction to the latter (contingency table analysis, Fisher’s exact test), which could be due to a 

learning effect resulting from the predatory mites’ rearing history (De Boer et al., 2005).

Finally, it has to be considered that this study was working with a generalist system. Both S. littoralis 

and T. urticae are polyphagous herbivores and thus a generalised defence reaction on the side 

of the plant seems plausible. Furthermore, M. truncatula reacts with volatile emission to a wide 

range of stimuli (cf. Chapter 5 Volatile profiling). Thus, the response by itself cannot be considered 

specific. However, from the point of view of a predatory mite feeding on a generalist herbivore, 

any stressed plant merits recognition to increase the probability of encountering prey. The fact 

that predatory mites also were able to detect undamaged plants when offered with empty glasses 

can be explained by the emission of green leaf volatiles from undamaged plants as well.

Clear differences were found in phytohormone concentrations depending on the type of herbivory 

(Figures 2-2 and 2-3). In contrast to results obtained for Helicoverpa zea BODDIE larvae feeding on 

cotton (Bi et al., 1997b), concentrations of SA were largely unaffected by caterpillar feeding on M. 

truncatula; JA concentrations rose markedly. For spider mite infestation, enhanced production 

of both JA and SA was detected. Similar effects have recently been demonstrated for lima bean 

(Arimura et al., 2002), although no assessment of differences between local and systemic reactions 

was carried out. It is noteworthy that in M. truncatula a generally greater accumulation in systemic 

tissue than in local tissue at the feeding sites was observed. Furthermore, up-regulation of genes 

activated via the JA and SA pathways has been shown after spider mite infestation of tomato 

(Kant et al., 2004). Thus, it can be concluded that caterpillar feeding mainly activates JA-related 

signalling pathways, whereas spider mites induce reactions involving JA as well as SA. These 

differences might be connected to the specific volatiles released, as JA treatment mimics the 

effect of caterpillar feeding with respect to the attraction of specific predators (Van Poecke & Dicke, 

2002), whereas a combination of JA and MeSA is able to attract natural enemies of herbivorous 

mites (Shimoda et al., 2002).

The clear involvement of SA in the defence against spider mite infestation calls into question 

the hypothesis that SA signalling contributes to herbivore-induced pathways only if there is 

very limited tissue damage, as in the case of phloem feeders (Walling, 2000). These doubts are 

supported by another recent report showing that the puncture-feeding Tupiocoris notatus DISTANT 

not only induced defences similar to those induced by SA, but also repressed the expression of 

JA-induced genes in Nicotiana attenuata TORREY EX WATSON (Heidel & Baldwin, 2004).

In this context, it is intriguing to ask whether other parallels can be found in reaction known to be 

involved in defence against pathogens and protection against herbivory. Localised deposition of 

phenolic compounds has been described after pathogen attack (Bennett et al., 1996; Silva et al., 

2002) and after the feeding of some sedentary herbivores (reviewed in Fernandes, 1990; Ollerstam 

et al., 2002) in species such as Lactuca spp. (in reaction to Bremia lactucae REGAL, downy mildew 

fungus), Coffea spp. (in reaction to Hemileia vastatrix BER. & BR., orange rust), Solanum dulcamara 

L. (in reaction to Eriophyes cladophthirus NAL., a gall mite), and Salix viminalis L. (in reaction to 

Dasineura marginemtorquens BREMI, the gall midge). Also, increased production of defensive 



Defence against herbivores
27

compounds was demonstrated in reaction to caterpillar feeding (Bi et al., 1997a). In the course of 

this study it was possible to show a localised accumulation of phenolic compounds in M. truncatula 

surrounding the wounding site resulting from both types of herbivory that was distinct from 

the reaction seen after mechanical wounding (Figure 2-4, a – i). This is consistent with findings 

that transcripts of an enzyme involved in phenylpropanoid phytoalexin biosynthesis, isoflavon-3’-

hydroxylase, accumulate after Spodoptera exigua HÜBNER feeding on M. truncatula leaves (Liu et al., 

2003). The progression of deposition of phenolic compounds appears to be two-phasic, similar to 

that reported for pathogen infection (Bennett et al., 1996) and treatment with pathogen-derived 

elicitors (Figure 2-5, a – d). In contrast, mechanical damage induces only the accumulation of 

blue fluorescent compounds, which occurs later than that induced by herbivores. Thus, the data 

presented here accord with a report on potato (Solanum tuberosum L.) demonstrating more rapid 

accumulation of the mRNAs of defence-related genes induced by herbivory compared with simple 

wounding (Korth & Dixon, 1997). It may be concluded that the second phase is a general reaction 

to wounding, perhaps with the purpose of preventing opportunistic microbes using wounds 

as penetration sites, while the first phase seems to be specific for biotic interactions. Further 

confirming of this assumption will certainly require identifying the respective compounds.

As for the similarities of some components of plant defences against diverse attackers, it was 

intriguing to learn that production of ROS, as is typical after pathogen attack, can also be found 

after herbivory (Figure 2-4, j – l). It has already been reported that wounding induces ROS 

production, at least in some species. For example, in Zinnia elegans L. (Olson & Varner, 1993), 

ROS production upon wounding has been shown using the same method as in this study. Yet 

another interesting report by Orozco-Cardenas & Ryan (1999) demonstrated that the production 

of ROS upon mechanical damage does not occur in all species. For example, the species tested 

belonging to the families Solanaceae, Cucurbitaceae, and Poaceae showed wound-inducible H₂O₂ 

accumulation, whereas only one of the five legume species tested, Pisum sativum L., tested positive 

for this trait. This finding is consistent with the results presented above, which showed that mere 

mechanical damage did not induce the accumulation of ROS in M. truncatula, but that herbivore 

feeding did. However, the late occurrence of ROS after arthropod feeding is an argument against 

their involvement in signal transduction. Instead they may play a role in propagating cell death or 

acting against other potential invaders at the wounding site. Nevertheless, it cannot be ruled out 

that the method applied was not sensitive enough to detect an early, transient increase in ROS 

concentrations.

To summarise the results presented in this section, it can be stated that M. truncatula emitted 

a large variety of volatile substances in reaction to herbivory, differing in their quantitative and 

qualitative composition depending on the attacking organism. However, the behavioural response 

of predatory mites to these different volatile blends was not specific, as they were attracted to all the 

damaged M. truncatula plants tested. Furthermore, the response in terms of the phytohormones JA 

and SA clearly differed with the type of herbivory, with a greater involvement of SA in the reaction 

to spider mite feeding and a different time course for the accumulation or JA. Both spider mite 

and caterpillar infestation induced the deposition of phenolic compounds around the wounding 

site in a seemingly two-phase manner, in contrast to mechanical wounding, which caused only 

the respective second phase. ROS production occurred in the late stages of infestation, whereas 

wounding did not affect this defensive trait. Defences against herbivores are distinct from 
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reactions to mechanical wounding, and different types of herbivores are also recognised. While 

some responses seem to be more general, even being produced in defence against pathogens, 

others are clearly specific to the reaction to a particular attacker. The components of signal 

transduction, which shape the recognition and differentiation of the attacking organism, remain 

to be determined. Furthermore, a thorough investigation of VOCs able to attract predatory mites 

to damaged M. truncatula plants would certainly be of interest.
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3   THE IMPACT OF MICROBIAL OLIGOSACCHARIDE SIGNALS ON 
DEFENSIVE TRAITS

3.1 INTRODUCTION

As outlined in the general introduction, plants are able to recognise a multitude of chemical signals 

from their environment and to react appropriately to diverse challenges. Some of these signalling 

compounds act as general elicitors of defence reactions (Ebel & Cosio, 1994; Boller, 1995). They 

are perceived at low concentrations and comprise diverse structures, including carbohydrates, 

(glyco-) proteins, lipids, and sterols (Ebel & Cosio, 1994; Boller, 1995; Nürnberger et al., 2004). The 

relevant compounds are in general evolutionarily conserved amongst microorganisms (not only 

pathogens), not present in the potential host plant, and important for the fitness of the microbe; 

thus, they parallel pathogen-associated molecular patterns (PAMPs) important for non-self 

recognition in the animal immune system (Gomez-Gomez, 2004; Nürnberger et al., 2004; Zipfel 

& Felix, 2005). Elicitor-induced defence responses include the oxidative burst, the strengthening 

of cell walls, the hypersensitive reaction, and the activation of genes encoding for pathogenesis-

related (PR) proteins and enzymes of phytoalexin synthesis (Ebel & Mithöfer, 1998). Interestingly, 

beneficial microorganisms like rhizobia that might primarily be perceived as intruders, take 

advantage of compounds structurally related to certain elicitors, i.e. nodulation factors (Nod-

factors), to communicate their presence to the plant. In fact, while Nod-factors induce root hair 

deformations, cortical cell divisions, and in some cases even complete nodule-like structures in 

their host plants, they are able to cause reactions that occur in the context of pathogen defence 

in non-host plants (Staehelin et al., 1994; Baier et al., 1999; Bueno et al., 2001) and in host plant cell 

cultures (Savouré et al., 1997).

Although plants’ reactions to pathogen attack are mostly seen as distinct from plant-insect-

interactions, the induced defence reactions against both arthropods and pathogens intersect 

considerably. For instance, plants’ defences against certain sedentary herbivores (e.g. galling 

insects or mites) include reactions that are typical for the response to pathogen attack, such 

as the hypersensitive response and the accumulation of phenolic compounds (Fernandes, 1990; 

Fernandes & Negreiros, 2001; Ollerstam et al., 2002). These similarities might be due to the minor 

tissue damage those pests inflict on the plant (Walling, 2000). But even lepidopteran larvae 

induce defence reactions that so far have only been reported to occur after pathogen attack 

or the application of pathogen-derived elicitors, such as the local accumulation of defensive 

compounds at the wounding site or hydrogen peroxide production (cf. Chapter 2, Defences 

induced by piercing-sucking and chewing herbivores; Maffei et al., 2006).

In this context it was intriguing to search for further potential parallels in the defences against 

pathogens and herbivores. Based on the observations presented in Chapter 2, the emission of 

VOCs as well as changes in the levels of the phytohormones jasmonic acid (JA) and salicylic acid 

(SA) were obvious candidates for further comparison.

The release of VOCs is a trait typically associated with defence against herbivores. However, in 

some studies volatile emission has also been reported after infection by different strains of the 

bacterial pathogen Pseudomonas syringae in tobacco (Nicotiana tabacum L.) or bean (Phaseolus 



Microbial oligosaccharides
30

vulgaris L.) (Croft et al., 1993; Huang et al., 2003). In peanut plants (Arachis hypogaea L.), the white 

mold (Sclerotium rolfsii SACC.) has been reported to induce VOC release upon infection (Cardoza et 

al., 2002). These results give rise to the question, what kinds of elicitors confer this property.

The accumulation of phytohormones is generally separated into pathogen- and herbivore-

induced responses. The JA pathway is thought to be involved in the activation of defences against 

herbivores and necrotrophic pathogens, whereas the SA-mediated pathway contributes to the 

defence against biotrophic pathogens (Gatehouse, 2002; Kessler & Baldwin, 2002; Glazebrook, 

2005). If rhizobia are regarded simplistically as intruders of the plant, the question arises how 

stress-associated phytohormone levels change during the establishment of symbiosis. Indeed, 

previous studies showed that for successful nodulation to occur, it is crucial to suppress the 

activation of signalling cascades involving the SA and the JA pathways. In contrast to interaction 

with wild type rhizobia, SA accumulates in the roots of Medicago sativa L. inoculated with mutants 

of Sinorhizobium meliloti that are incapable of synthesising Nod-factors, while at the same 

time nodulation is clearly reduced (Martínez-Abarca et al., 1998). Furthermore, the exogenous 

application of SA or JA inhibits nodulation (Martínez-Abarca et al., 1998; Sun et al., 2006).

Thus, in order to gain deeper insight into general and specific traits of reactions to biotic 

stressors of a plant, several microbial oligosaccharidic signalling compounds (Figure 3-1) were 

used in this part of the study and their impacts on defensive traits of the plant were compared. 

Besides pathogen-derived elicitors (β-glucans and N,N’,N’’,N’’’-tetraacetylchitotetraose), Medicago 

truncatula GAERTN. cv. Jemalong A17 was challenged with symbiotic signalling substances (Nod-

factors), and the responses in terms of VOC emission and phytohormone levels were evaluated. 

For better comparability, the effect of damage caused by Spodoptera spp. was also included in the 

determination of phytohormone levels. In addition, some results on the involvement of reactive 

oxygen species (ROS) and nitric oxide (NO) in signal transduction are presented, in an attempt to 

link the induced stress responses observed to level of ROS-mediated reactions.

Figure 3-1 Chemical structures of the 
signalling compounds used in this study.
(a) β-(1,3)-β-(1,6)-glucan from the oomyc-
ete Phytophthora sojae cell wall as an 
example for an elicitor structure that is 
active in legumes; (b) N,N’,N’’,N’’’-tetra-
acetylchitotetraose (CH4); (c) LCO-IV 
(C16:2, S) & LCO-IV (C16:2); Nod-factors. 
Both molecules diff er only in the presence 
or absence of the sulphate group (marked 
grey) that provides for host specifi city in 
LCO-IV (C16:2, S).
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3.2 RESULTS

3.2.1 VOC emission

Certain oligosaccharides are well-known signalling compounds of microbial origin, which 

are often involved in plant-microbe interactions. Out of these structurally diverse elicitors, 

branched β-(1,3)-β-(1,6)-glucans from the phytopathogenic oomycete Phytophthora sojae as well 

as N,N’,N’’,N’’’-tetraacetylchitotetraose (CH4) were used in this study to simulate pathogen attack 

(Figure 3-1 a, b).

Treating M. truncatula plants with the β-glucan elicitor strongly induced the emission of VOCs 

compared to control plants that were cut and placed in tap water (Figures 3-2 & 3-3, a, c). Thirteen 

sesquiterpenoids, and the homoterpenes 3E,7E-4,8,12-trimethyltrideca-1,3,7,11-tetraene (TMTT) 

and 4,8-dimethyl-1,3,7-nonatriene (DMNT) were found to be induced, but no monoterpenoids 

could be detected. The VOC blend emitted was similar to that found after herbivore feeding in M. 

truncatula (cf. Figures 2-1 and 3-2). The qualitative composition of the blends was almost identical, 

except for some minor differences concerning compounds found in trace amounts. Regarding the 

quantitative aspect, there was a slight trend towards higher emission rates after herbivore attack. 

In contrast to the substantial induction of volatiles by β-glucans, CH4 was inactive in this respect. 

No significant differences were found between volatile blends of control plants and those treated 

with CH4, except for an elevated emission of n-tetradecane (Figure 3-3 b).

Furthermore, two Nod-factors that are involved in Sinorhizobium meliloti – M. truncatula 

symbiosis were tested for their ability to induce the emission of VOCs. These molecules share 

the chitotetraose backbone with a fatty acid chain (C16:2) attached to it by an amide bond. But 
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Figure 3-2 Gas chromatograms of volatiles released by Medicago truncatula in reaction to β-glucans. (a) control (detached plant 
placed in tap water); (b) volatiles induced in plants treated with 200 µg ml-¹ β-glucans. For identification of the compounds,  
see Table 3-1.
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while the lipochitooligosaccharide LCO-IV (C16:2, S) carries a sulphate group, providing for activity 

and host specificity, LCO-IV (C16:2), which lacks this substituent, is unable to induce nodulation 

in M. truncatula (Figure 3-1 c) (D’Haeze & Holsters, 2002). Strikingly, both compounds induced 

volatile release by M. truncatula (Figure 3-3 d, e). Though the quantity of VOCs emitted varied 

highly within each treatment group, the blends were qualitatively clearly distinct from the control. 

Figure 3-3 (previous page) Box-plots representing the relative quantification of volatiles induced by treatment with microbial 
oligosaccharides. (a) control (detached plant placed in tap water); (b) 100 µM N,N’,N’’,N’’’-tetraacetylchitotetraose; (c) 200 µg ml-1 
β-glucan elicitor; (d) 10 µM LCO-IV (C16:2); (e) 10 µM LCO-IV (C16:2, S). n = 6 for control and Nod-factors; n = 5 for β-glucan and 
CH4. Small letters indicate significant differences as determined by the Newman-Keuls post hoc test (for results of the one-way 
ANOVA, see Table 3-1). Abbreviations: DMOT-ol, 2,6-dimethyl-3,5,7-octatrien-2-ol; RI 1481, unidentified sesquiterpene with RI 
1481; Cylcohexyl-ITC, cylcohexylisothiocyanate.

Table 3-1 Summary of compounds identified in the volatile blends emitted by Medicago truncatula in response to elicitation with  
microbial oligosaccharides, numbered according to Figure 3-2, and results of one-way ANOVA analysis (overall difference of 
means; for pairwise comparison see Figure 3-3).

Compound1 No in Fig. 3-2 p (ANOVA)

Alkanes/Alkenes n-Pentadecane *
n-Tetradecane **
1-Tetradecene *

Aldehydes Benzaldehyde *
2-Ethyl hexanal² 1 ns
n-Decanal 8 ns
n-Nonanal 6 ns
n-Octanal 4 ns

Alcohols 2,6-Dimethyl-3,5,7-octatrien-2-ol (E)3 ns
6-Methyl-1-heptanol 3 ns
1-Octen-3-ol 2 **

Esters cis-3-Hexenylacetate 5 ns
Aromatics Cresol ns

Trimethylbenzene ns
Monoterpenoids Linalool ns

α-Pinene ns
Sesquiterpenoids β-Caryophyllene 13 *

α-Copaene 12 **
Cyclosativene 10 **
β-Farnesene ns
Geranylacetone **
α-Himachalene 14 **
γ-Himachalene 15 *
β-Himachalol 19 *
α-Humulene **
Longicyclene **
unidentified sesquiterpene (RI 1481) 16 **
E-Nerolidol 17 ns
α-Ylangene 11 *

Homoterpenes 4,8-Dimethyl-1,3,7-nonatriene (DMNT ) 7 ns
3E,7E-4,8,12-Trimethyltrideca-1,3,7,11-tetraene (TMTT ) 18 ns

N- or S-containing 
compounds

Benzo(iso)thiazole
Cyclohexylisothiocyanate 9

ns
ns

1 for identification of the compounds (MS and linear retention indices) see Appendices I and II.
² contamination of abiotic origin.
³ artefact generated from E-ocimene during adsorption to the charcoal trap (Kaiser, 1993).
ns, not significant; *, p < 0.05; **, p < 0.01.
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However, due to the above-mentioned variability of VOC emission, hardly any of those differences 

were statistically significant using analysis by ANOVA and Newman-Keuls post hoc test. Still, there 

was a trend towards the emission of certain sesquiterpenoids in higher abundance, namely α-

copaene, cyclosativene, α-ylangene, and the unidentified sesquiterpene (RI 1481) for both Nod-

factors, γ-himachalene after treatment with LCO-IV (C16:2), and E-nerolidol after treatment with 

LCO-IV (C16:2, S). Furthermore, some of the changes in the emission pattern seemed to be rather 

specific, as for example the emission of geranylacetone that could be found only after treatment 

with LCO-IV (C16:2, S) and the higher level of emission of benzaldehyde compared to the 

treatment with LCO-IV (C16:2). In contrast, the emission patterns observed after treatment with 

LCO-IV (C16:2) seemed to be concentrated between control and β-glucan treatment without any 

specific differences. Additionally, in contrast to induction with pathogen-derived elicitors, small 

amounts of monoterpenoids were detected: α-pinene in the case of LCO-IV (C16:2) treatment and 

linalool upon LCO-IV (C16:2, S) treatment. Again, however, these differences were not statistically 

significant using ANOVA analysis. In conclusion, it can be noted that M. truncatula emits numerous 

compounds in response to certain oligosaccharides. All substances detected in these volatile 

blends are listed in Table 3-1, which also includes the p-value summary of the one-way ANOVA 

analysis (overall difference of means) and the numbering according to Figure 3-2.
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Figure 3-4 Non-metric multidimensional scaling (NMDS) plots of VOC patterns in response to microbial oligosaccharides using  
square root transformed data and Euclidean distance as a dissimilarity measure. Stress, 9.04. Open circles indicate the relative 
location of single volatile samples in ordination space. The size of the circles represents the goodness of the fit into the model 
for each particular sample. The centroids are given by the intersection of the spiderweb-like lines within each treatment group; 
the groups’ standard errors are given by filled ellipses. The size of the ellipse can be interpreted as a measure of consistency for 
the respective group. The relative distances between any sample or substance shown represent similarities, and positive (low 
distances) or negative (high distances) correlations, respectively. Variables are plotted according to their weighted averages.
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factor, LCO-IV (C16:2), resulted in strongly varying emission patterns, but roughly spanning the 

area between control and β-glucan treatment. It was striking, however, to find that in terms of the 

qualitative composition of the VOC blends detected, the overlap between effects produced by 

β-glucans and the active Nod-factor was bigger than between β-glucans and the inactive Nod-

factor (Table 3-2). As a consequence, a binomial variant of NMDS was calculated as completion, 

based on a probabilistic distance measure, hence disregarding relations between concentrations 

of certain compounds, but emphasising qualitative traits of volatile blends. The results of this 

analysis were clearly distinct from those gained using Euclidean distance, and showed increased 

grouping performance in contrast to originally scaled measurements (Figure 3-5), as evaluated by 

a slightly lower stress of 8.26. To give but one example, the formerly rather broad group of β-glucan 

treatments got more pronounced and well shaped. The remaining groups were configured more 

distinct, with resolved overlaps. This could be interpreted that only regarding qualitative traits 

of volatile patterns results in good separability of the different treatments. It also showed that 

treatment with both Nod-factors produced rather variable effects: about half of the plants tested 

responded to the treatment, whereas the other half remained largely unaffected. In conclusion, 

qualitative and quantitative aspects of the volatile blends emitted gave different pictures and it 

remains to be answered whether quantity or quality matters more in the biological context. 
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Longicyclene x

α-Himachalene x

α-Humulene x

1-Tetradecene x x

Geranylacetone x x

E-Nerolidol x x

TMTT x x

γ-Himachalene x x

α-Ylangene x x x

Cyclosativene x x x

α-Copaene x x x

C15H24 (RI 1481) x x x x

n-Octanal x x x x

n-Tetradecane x x x x

Table 3-2 Comparison of qualitative differences in 
volatile blends induced by microbial oligosaccha-
rides. Any substance that was found in controls was 
excluded from the list.

However, for the description of complex volatile 

patterns, multivariate statistical methods might be 

superior to univariate ones. Furthermore, considering 

the low number of samples, methods depicting single 

samples might be advantageous. Hence, non-metric 

multidimensional scaling (NMDS) was used to visualise 

multivariate patterns. In the first line of analysis, square 

root transformed data and Euclidean distance as a 

dissimilarity measure were used (Figure 3-4). With a 

stress of 9.04 the fit of the model was fairly good. The 

results were largely in line with those of ANOVA and 

post hoc test. Treatment with β-glucans resulted in the 

emission of clearly distinct VOCs, such that this group 

could easily be distinguished from the others. However, 

there was a large overlap between the effects of the 

active Nod-factor, LCO-IV (C16:2, S), and the control, 

though a part of the analysed samples displayed fairly 

distinct patterns. The inactivity of CH4 with respect to 

its impact on VOC emission is depicted very clearly; 

in comparison to all other treatments, including the 

control, the variation between single samples was the 

smallest by far. Finally, treatment with the inactive Nod-
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3.2.2 Phytohormone levels

Two classical phytohormones involved in plants’ defence responses are SA and JA: Conventionally, 

SA is seen to be mainly linked to defence reactions upon pathogen attack, whereas JA is usually 

implicated in defence against herbivores (Bostock et al., 2001). Here, the levels of both hormones 

were determined in response to elicitation with microbial oligosaccharides. Hardly any significant 

differences in SA levels between any of the treatments and the control were detected within the 

first 24 h after elicitation (Figure 3-6 a, b). Only two samples deviated from control values. These 

were taken 8 h after CH4 treatment and 2 h after treatment with LCO-IV (C16:2). These variations 

might be attributed to a Type I error due to the small sample number, as the rest of the data fit 

perfectly in the control curve. When parallel measurements on the effect of caterpillar feeding 

were included, it became clear that the rise of SA concentrations was due only to the detachment 

of the plant. Even substantial tissue damage as induced by feeding Spodoptera spp. did not cause 

SA levels to rise, as long as the stem was not cut. (Figure 3-6 b). It is noteworthy that a transient 

increase of SA levels by caterpillar feeding was detected in systemic tissue, as demonstrated in 

Chapter 2 (Figure 2-3). This slight augmentation might be leveled by measuring the SA content 
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Figure 3-5 Non-metric multidimensional scaling (NMDS) plots of VOC patterns in response to microbial oligosaccharides using  
square root transformed data and binomial distance as a dissimilarity measure. Stress, 8.26. Open circles indicate the relative 
location of single volatile samples in ordination space. The size of the circles represents the goodness of the fit into the model 
for each particular sample. The centroids are given by the intersection of the spiderweb-like lines within each treatment group; 
the groups’ standard errors are given by filled ellipses. The size of the ellipse can be interpreted as a measure of consistency for 
the respective group. The relative distances between any sample or substance shown represent similarities, and positive (low 
distances) or negative (high distances) correlations, respectively. Variables are plotted according to their weighted averages.
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of entire plant. Furthermore, it cannot be excluded that feeding lepidopteran larvae influence 

phytohormone levels by mechanisms that differ from the impact of simple wounding.

In contrast, JA levels rose markedly though transiently after treatment with both β-glucans and 

CH4, showing the highest concentration within the first 60 minutes, whereas neither of the Nod-

factors caused the JA levels to rise above those found in the control (Figure 3-6 c, d). Astoundingly, 

also JA levels after caterpillar feeding did not differ from those in the control. Again, these results 

differ from those shown in Chapter 2, demonstrating that feeding Spodoptera spp. do indeed 

induce the accumulation of JA. As mentioned for SA levels, instead of picking just two sampling 

times, a complete time course was assessed in this row of experiments; furthermore, local and 

systemic tissues were not separated, but the phytohormone levels of the entire damaged plant 

were determined. These methodological differences might explain the results to some extent. 

But the accumulation of JA was still drastically higher (up to about 8-fold) after treatment with 

pathogen-derived elicitors, even if taking the maximal values of the determinations presented in 

Chapter 2 (cf. Figure 2-2) for comparison.

��������

��
���
��
��
���
���

��

��������

��
���
��
��
���
���

��

�

��

�

�

� � � � � ��
�

���

���

���

���

����

����

�� ��

��

��

� � � � � ��
�

���

���

���

���

����

����

�� ��

�� �

���

���

��������

��
���
��
��
���

���
��
��

��������

��
���
��
��
���
���

��

�

� � � � � ��
�

���

���

���

���

���

���

�� ��

� � � � � ��
�

���

���

���

���

���

���

�� ��

�

�� �� ��

���

���

Figure 3-6 Salicylic acid (SA) levels (a, b) and jasmonic acid (JA) levels (c, d) after treatment with microbial oligosaccharides.
(a) SA levels in control plants (cut and placed into tap water, ), plants treated with 200 µg ml-1 β-glucan ( ), and plants treated 
with 100 µM N,N’,N’’,N’’’-tetraacetylchitotetraose ( ). (b) SA levels of plants treated with 10 µM LCO-IV (C16:2) (inactive Nod- 
factor, ), 10 µM LCO-IV (C16:2, S) (active Nod-factor, ), and after feeding by Spodoptera sp. ( ).
(c) JA levels in control plants (cut and placed into tap water, ), plants treated with 200 µg ml-1 β-glucan ( ), and plants treat-
ed with 100 µM N,N’,N’’,N’’’-tetraacetylchitotetraose ( ). (d) JA levels of plants treated with 10 µM LCO-IV (C16:2) (inactive Nod- 
factor, ), 10 µM LCO-IV (C16:2, S) (active Nod-factor, ), and after feeding by Spodoptera sp. ( ).
The results shown are the mean ± standard deviation of three independent experiments. Asterisks indicate statistically signifi-
cant differences as determined by two-tailed t-test. *, p < 0.05; **, p < 0.01.
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Figure 3-7 (right) Cross-section of a stem of Medicago 
truncatula with astra blue and safranin staining (cellulose 
stained blue, lignified cell walls stained red). p, parenchyma; 
sc, sclerenchyma; ph, phloem; c, cambium; x, xylem; prx, pro-
toxylem.

Figure 3-8 (below) Detection of ROS in cross-sections of  
Medicago truncatula in reaction to microbial oligosaccharides 
using Nitroblue tetrazolium (NBT, purple-blue staining).
Each column shows the reaction to a certain elicitor; each 
row depicts the temporal development of ROS production.
control, plants cut and placed in tap water; CH4, treatment 
with 100 µM N,N’,N’’,N’’’-tetraacetylchitotetraose; β-glucan, 
elicitation with 200 µg ml-1 β-glucans; LCO-IV (C16:2), treat-
ment with 10 µM inactive Nod-factor; LCO-IV (C16:2, S), treat-
ment with 10 µM active Nod-factor. Scaling bars represent 
50 µM.
Only samples of the control were taken immediately after 
wounding; the first samples of any other treatment were 
analysed 15 minutes after elicitation.
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Figure 3-9 Detection of nitric oxide (NO) in cross-sections of Medicago truncatula stems in reaction to microbial oligosaccha-
rides using 4,5-diaminofluorescein diacetate (DAF 2-DA, green fluorescence). Pictures are overlays of the fluorescence signals 
produced by DAF 2-DA and chlorophyll autofluorescence.
Each column shows the reaction to a certain elicitor; each row depicts the temporal development of NO production.
control, plants cut and placed in tap water; CH4, treatment with 100 µM N,N’,N’’,N’’’-tetraacetylchitotetraose; β-glucan, elicitation 
with 200 µg ml-1 β-glucans; LCO-IV (C16:2), treatment with 10 µM inactive Nod-factor; LCO-IV (C16:2, S), treatment with 10 µM 
active Nod-factor. Scaling bars represent 50 µM.
Only samples of the control were taken immediately after wounding; the first samples of any other treatment were analysed 15 
minutes after elicitation.

3.2.3 Accumulation of reactive oxygen species and nitric oxide

Besides the fact that the results with herbivory were somewhat contradictory to the data gathered 

earlier, the fact that VOC emission and phytohormone levels could not be correlated was fairly 

puzzling. In order to find a link between the primary stimulus and VOC emission, the accumulation 

of ROS and NO were assessed using microscopic techniques.

The excessive production of ROS and NO is a trait that has been described in the plant’s reaction 

to pathogen attack and elicitation with pathogen-derived elicitors (Lamb & Dixon, 1997; Durner 

& Klessig, 1999). In preliminary studies for NO detection using elicited leaves, hardly any reaction 

could be observed. Only in a few cases, where vascular bundles were uncovered by smashing the 

leaf, could the staining of this tissue after the treatment with β-glucans be seen (data not shown). 

This led to the assumption that there might be strong tissue specificity of NO production. Thus, in 

all following experiments, cross-sections of the stem were used for microscopic analysis. On the 

one hand, effects concerning vascular bundles could easily be visualised using this experimental 
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setup, and on the other hand this procedure better fit the results presented above, as the site of 

action of the elicitors was kept comparatively constant. However, morphological studies showed 

that the tissue treated with elicitors in the experiments on VOC emission and phytohormone 

levels still belonged to the root (stems were cut directly at the soil surface), whereas the plant 

parts used to assess ROS accumulation were actually stems (Figure 3-7).

For all experiments only examples of vascular bundles are presented, as all observable effects were 

restricted to this tissue and its near surroundings. The accumulation of ROS was assessed with 

nitroblue tetrazolium (NBT), producing purple to blue precipitate in the presence of ROS (Figure 

3-8). Regarding controls, some precipitates could be observed in all samples. Slight staining of 

the xylem in all samples can, however, be regarded as “background” due to lignification in that 

region; but the phloem also exhibited faint staining. The responses observed to the treatments 

with all oligosaccharides tested were considerably stronger. All substances applied induced the 

pronounced accumulation of ROS. Phloem and cortical parenchyma were particularly affected; 

in some cases the staining also extended to the inner parenchyma. However, no pronounced or 

consistent differences between the different elicitors could be observed.

The detection of NO gave a much more distinct picture of effects induced by the different 

oligosaccharides (Figure 3-9). Wounding and treatment with CH4 did not bring about any 

pronounced production of NO, though in some cases, slight staining of the phloem and parenchyma 

tissue could be observed. Considerably stronger effects could be detected after elicitation with β-

glucans. After 60 minutes, distinct staining became visible in phloem and meristematic tissue; the 

signal increased with time, yielding strong staining after 180 minutes, again concerning phloem 

and cambium and in some cases also parts of the cortical parenchyma.

Also, both Nod-factors induced NO accumulation. Though the temporal development of the 

reaction in response to the inactive Nod-factor, LCO-IV (C16:2), was highly variable, NO accumulation 

could consistently be shown after 180 minutes, affecting the phloem and cambium, comparable 

to β-glucan treatment, though the staining was of somewhat lower intensity. An entirely different 

pattern was observed for the active Nod-factor. In this case, staining was observed as early as 

15 minutes after application, mostly in the cortical parenchyma, and thereafter it was drastically 

decreased. However, again after 180 minutes, pronounced staining was visible in the phloem, 

cambium, and cortical parenchyma, in several cases as pronounced as the staining shown for β-

glucans. Altogether, the intensity of the effects observed varied greatly after all treatments. This 

was particularly prominent for the two Nod-factors. However, this variation is consistent with the 

high variability of the effects observed on induced VOC emission.

Sections for the detection of ROS and NO were done not only directly at the contact site between 

the wounded stem and the elicitor solution, but also 1 cm above. Results were basically the same 

within this distance. That is, the observed effects can be considered not to be strictly localised 

to the wounding site and independent of the immediate contact with the elicitor. In summary, 

the combined results on ROS and NO accumulation in reaction to different oligosaccharides 

gave three distinct patterns: for the control, no increased production, of ROS or of NO, could be 

detected. Although ROS accumulated in response to CH4 treatment, this elicitor failed to induce 

excessive NO production. Finally, β-glucans as well as both Nod-factors induced overproduction 

of ROS and NO, though the latter accumulated in differing temporal and spatial patterns.



Microbial oligosaccharides
41

3.3 DISCUSSION

Signal perception systems for pathogen-derived β-glucan elicitors, chitin fragments, and Nod-

factors have been convincingly shown to be present in Medicago species (Côté et al., 2000; Felle 

et al., 2000; Cullimore et al., 2001). However, investigation of subsequent reactions predominantly 

concentrated on traits that were in close connection either with the activation of defence 

responses or with the establishment of a functional symbiosis.

So far, the possibility that plants may respond to those stimuli with the synthesis and emission 

of VOCs has largely escaped notice. That M. truncatula is in principle able to produce and emit 

these compounds has been shown in several studies. Gomez and co-workers (Gomez et al., 

2005) described the transcript induction of two putative mono- or diterpene and two putative 

sesquiterpene synthases after jasmonate application and herbivory. Moreover, about 30 triterpene 

saponins have been identified in M. truncatula cell cultures, some of which are induced by JA 

(Huhman & Sumner, 2002; Suzuki et al., 2005). The emission of a variety of VOCs in reaction to 

herbivory was demonstrated in Chapter 2. Finally, with the results presented above, VOC emission 

could be shown after elicitation with microbial oligosaccharidic signals.

NMDS represents a straightforward and robust exploratory tool for visualising volatile blends 

in response to diverse induction treatments in a reduced multidimensional space suitable for 

direct interpretation (cf. Chapters 4 & 5); both qualitative and quantitative patterns can readily 

be evaluated using different levels of abstraction of data, i.e. originally scaled, or only with regard 

to the presence or absence of certain compounds. As each sample is depicted individually, the 

method is also applicable to small sample sizes. Treatments can be studied in direct connection 

to each other; mapped substances can also be interpreted in conjunction with the treatments 

they are most likely to correlate with, as any compound is directly projected onto the ordination. 

Thus, patterns could be found, which univariate methods would have been unable to capture. 

Furthermore, as the volatile patterns detected were rather distinctive in this set of experiments, it 

might be expected that they can also be classified or used for prediction. This question, however, 

will be considered in the next Chapter.

The emission of volatiles induced by herbivory has often been causally linked with elevated levels 

of JA (Walling, 2000; Gatehouse, 2002; Ament et al., 2004). In the present study, no conclusive 

correlation between JA levels and VOC release could be found, as treatment with CH4 resulted not 

in volatile emission but in the accumulation of JA, whereas both Nod-factors induced VOC emission 

but not increased JA levels. Only elicitation with β-glucans gave rise to enormous accumulation 

of JA and accordingly to the highest level of volatile emission. Also, increases in SA levels cannot 

be interpreted as responsible for volatile release, as the pattern of accumulation was the same 

in treated and in control plants. As these results make clear, working with detached plants is not 

favourable in this context. Cutting the plant led to an increase in SA concentration that was not 

further enhanced by the application of any of the elicitors tested. In contrast, even the substantial 

tissue damage a caterpillar inflicts on a plant was not sufficient to enhance SA accumulation, as 

long as the stem remained intact.

These results are in line with previous reports indicating that neither of the two phytohormones 

is responsible of VOC emission in reaction to bacterial pathogen attack in tobacco (Huang et al., 

2003). In a succeeding study, the impact of ethylene on volatile emission was assessed (Huang 
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et al., 2005). But again, no sound evidence was found that changing levels of any of the studied 

phytohormones were somehow linked to alterations in volatile emission.

In the studies of Huang and co-workers (Huang et al., 2003; Huang et al., 2005) different strains of 

Pseudomonas syringae were used to induce VOC release. These pathogens produce several toxins, 

amongst them coronatine, which is known to mimic JA functionally and to induce secondary 

metabolism (Weiler et al., 1994); the presence of coronatine may explain volatile release 

independent of phytohormonal changes in this case. Still, further studies with other bacterial 

(Buonaurio & Servili, 1999) and fungal (Cardoza et al., 2002) pathogens strengthened the idea 

that volatile release may be a general reaction of plants to pathogen attack. Yet, no conclusive 

results on causal relationships concerning the mode of induction were found, though the study 

conducted by Buonaurio & Servili (1999) suggests an involvement of the lipoxygenase pathway.

However, recent studies questioned the essential role of JA in the induction of secondary 

metabolism (Zhao et al., 2005). For example, treating Petroselinum crispum cell cultures with 

inhibitors of JA accumulation did not influence phytoalexin production or PR gene expression in 

response to elicitation (Hahlbrock et al., 2003); in soybean cell cultures, elicitation with β-glucans 

induced phytoalexin accumulation, while endogenous levels of JA, OPDA, and SA remained at the 

resting level (Fliegmann et al., 2003); treating Hyoscyamus muticus root cultures with either methyl 

jasmonate or a fungal elicitor resulted in the induction of sesquiterpenes in quantitatively and 

qualitatively different patterns (Singh et al., 1998).

Even though CH4 induced higher JA levels compared to herbivory, it failed to induce the release 

of VOCs. Conversely, both Nod-factors, the biologically active as well as the inactive, did not 

influence JA or SA levels but led to slightly elevated sesquiterpene emissions. Still, in the case of 

β-glucan elicitation, elevated JA levels and increased VOC emission coincided, which might be 

regarded as incidental given the other results. Finally, the divergence of the results concerning 

herbivory in Chapters 2 and 3 might be attributed to the different modes of sampling.

In view of the inconsistencies outlined above, an alternative hypothesis needs to be stated.

First, a multitude of other oxylipins exists that is only poorly described regarding their biological 

activities and physiological roles (Blee, 2002; Schulze et al., 2006). Furthermore, the involvement of 

the lipoxygenase pathway is not inevitably required for the induction of secondary metabolism. 

Yet another way to link the interactions with pathogens and symbionts to volatile emission is via 

the production of ROS. The oxidative burst is a well-described phenomenon in the context of the 

hypersensitive response (Lamb & Dixon, 1997). Also, β-glucans (Mithöfer et al., 1997) and chitin 

fragments (Yamaguchi et al., 2005) have been shown to induce ROS production. Still, elevated 

levels of ROS have not only been detected after pathogen attack or elicitor challenge, but they 

have proved to be a rather common trait of plants’ responses to other biotic threats such as 

herbivory or abiotic stresses (Mithöfer et al., 2004). Finally, ROS can even be detected in roots 

after the application of Nod-factors (Ramu et al., 2002) and in root nodules (Santos et al., 2001). 

As shown in Figures 3-8 and 3-9, ROS and NO can also be detected in response to elicitation with 

certain microbial oligosaccharides, displaying distinct patterns of accumulation depending on 

the respective induction treatment.

Amongst the variety of effects produced by ROS in a cell, radical-mediated lipid peroxidation can 

lead to the formation of cyclic oxylipins independent of enzymatic participation. These linolenic 

acid-derived compounds, namely phytoprostanes, can be induced by wounding, heavy metals, 
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and pathogen attack via the production of ROS (Imbusch & Mueller, 2000; Thoma et al., 2003). 

Moreover, the physiological role of NO in plants has gained increasing attention in the last few 

years. However, its mode of action is still largely unknown. Only recently have S-nitrosylated 

proteins been identified in Arabidopsis thaliana, paralleling the well-described posttranslational 

modifications in animals (Lindermayr et al., 2005; Lindermayr et al., 2006). Furthermore, it has been 

demonstrated lately that in animal systems nitrated fatty acids might be important signalling 

compounds (Baker et al., 2005; Schopfer et al., 2005). Analogous reactions are clearly possible in 

plant cells and would presume the existence of another class of signal components in plants that 

has so far escaped notice. As the occurrence of nitrated compounds, particularly fatty acids, in 

plants has not yet been investigated, the analysis of such putative signalling compounds is an 

interesting target for further investigation. Finally, the hypothesis stated by Mithöfer et al. (2004), 

regarding ROS as link in mediating diverse stress responses, may also be extended by the impact 

of NO and to some cases of beneficial biotic interactions too.

Besides open questions regarding signalling cascades leading to the emission of VOCs, 

physiological and ecological functions remain to be discussed. In the case of pathogen attack 

or induction with pathogen-derived elicitors, the problem has already been addressed, and the 

antimicrobial properties of certain emitted compounds have been confirmed. These compounds 

belong to the class of lipid-derived volatiles from the lipoxygenase pathway such as (Z)-3-hexenol, 

(E)-2-hexenal, and (Z)-3-hexenyl acetate; the monoterpenoid linalool and methyl salicylate have 

also been shown to inhibit pathogen growth (Croft et al., 1993; Wright et al., 2000; Cardoza et al., 

2002; Kishimoto et al., 2006). Consequently, the emission of VOCs might represent means of direct 

defence in this respect. On the other hand, volatile release could contribute to the engagement 

of host resistance mechanisms, both systemically or in plant-to-plant communication (Farmer, 

2001; Holopainen, 2004). The ability of certain VOCs (terpenoids and C6 components) to trigger 

the onset of resistance has already been shown in Arabidopsis thaliana (Bate & Rothstein, 1998; 

Kishimoto et al., 2005), lima bean (Arimura et al., 2000; Arimura et al., 2001), and tomato (Farag 

& Pare, 2002; He et al., 2006). The situation is somewhat more complicated in the case of Nod-

factors. On the one hand, it has been proposed that the establishment of a functional symbiosis 

could rely on the suppression of the plant’s defence response (e.g. Mithöfer, 2002). This could 

imply the initiation of certain defence reactions before the onset of an effective suppression 

or an incomplete suppression of these defences. On the other hand, emitted volatiles could be 

employed as signals mediating the interaction between the host plant and the microbial symbiont. 

In a recent study, Horiuchi and co-workers (Horiuchi et al., 2005) showed that in response to plant-

derived volatiles the soil nematode Caenorhabditis elegans transfers the nodulating bacterium 

Sinorhizobium meliloti to the rhizosphere of M. truncatula. Finally, elevated emission of VOCs could 

be a symptom of induced resistance as has been proposed to be an effect of interaction with 

beneficial microorganisms.

In summary, it was possible to demonstrate that M. truncatula emits a variety of VOCs in 

reaction to pathogenic and symbiotic oligosaccharidic signals. From a mechanistic point of 

view it is intriguing that diverse, though structurally related molecules induce similar responses 

albeit seemingly via different signal pathways. Those signalling nets, however, remain elusive. 

Furthermore, the biological relevance of VOCs in different biotic interactions still needs to be 

thoroughly investigated and defined.
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4   THE INFLUENCE OF MYCORRHIZATION ON HERBIVORE-INDUCED 
VOLATILE EMISSION

4.1 INTRODUCTION

Colonisation of a plant with arbuscular mycorrhizal (AM) fungi is associated with drastic changes 

of the physiology and ecology of the plant. Out of the multitude of effects produced by AM fungi, 

two are the major objects of this part of the study: Plants associated with AM fungi undergo radical 

changes in secondary metabolism, and become more resistant to all kinds of pests, pathogens as 

well as phytophages. Both phenomena are well documented, though the reports on the latter are 

in part rather inconsistent.

Several effects on secondary metabolism have been documented so far. In Medicago truncatula 

GAERTN. and Medicago sativa L., patterns of flavonoid accumulation and correlating biosynthetic 

enzymes change during the establishment of mycorrhizal symbiosis. While the phytoalexin 

medicarpin is transiently increased in early phases of symbiosis and thereafter decreases below 

control levels, accumulation of other flavonoids clearly increases in AM roots (Harrison & Dixon, 

1993). In Medicago sativa, those changes have been shown to depend not only on the temporal 

progression of the interaction but also on the fungal species involved (Larose et al., 2002). Cell-wall-

bound phenolics increase with the duration of symbiosis in onion (Allim cepa L.) (Grandmaison 

et al., 1993); in cucumber (Cucumis sativus L.), three triterpenoids were found to be induced 

by mycorrhizal colonisation (Akiyama & Hayashi, 2002). In barley (Hordeum vulgare L.), levels of 

hydroxycinnamic acid amides transiently increase in mycorrhizal roots (Peipp et al., 1997), and the 

continuous accumulation of apocarotenoids in AM roots seems to be a widespread phenomenon 

(Fester et al., 2002). Furthermore, in most cases studied the transcript levels of phenylalanine 

ammonia lyase and chalcone synthase increase in AM roots, as do the transcripts of the key 

enzymes of the methylerythritol phosphate (MEP) pathway, 1-deoxy-D-xylulose 5-phosphate 

synthase (DXS) and 1-deoxy-D-xylulose 5-phosphate reductoisomerase (DXR); the latter correlates 

with the accumulation of apocarotenoids in AM roots (Walter et al., 2000). Finally, jasmonates, 

which are often associated with changes in secondary metabolism, and related biosynthetic 

enzymes occur at elevated levels in arbuscule-harbouring cells (Hause et al., 2002).

Though most of these reports concentrated on changes that occur in the roots, changes in secondary 

metabolites in aboveground plant parts have also been described. For example, changes in the 

concentration of essential oils have been reported in three genotypes of oregano (Origanum vulgare 

L.) and in Ocimum basilicum L. var. Genovese; in the latter case these changes correlated with an 

increased number of peltate glandular trichomes, though the qualitative composition of essential 

oils was not altered (Copetta et al., 2006; Khaosaad et al., 2006). Furthermore, mycorrhization of 

Citrus jambhiri LUSH leads to an induced accumulation of leaf sesquiterpenoid volatiles (cited in 

Strack et al., 2003).

Mycorrhization also seems to entail a certain degree of bioprotection against different biotic and 

abiotic stresses. Protective capacities have been shown against root-feeding nematodes (Castillo 

et al., 2006; de la Pena et al., 2006) and certain pathogens (Cordier et al., 1996; Bodker et al., 1998; 

Fritz et al., 2006), presumably via enhanced tolerance (Kjoller & Rosendahl, 1996). The interaction 
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of mycorrhization with herbivores has been studied in depth, but the results so far are still quite 

inconsistent. As summarised by Gehring & Whitham (2002), some chief motifs can be stated: In 

the majority of the cases studied, aboveground herbivores reduce mycorrhizal colonisation and 

alter the mycorrhizal fungi community composition, which could be due to the reduced ability of 

the attacked plant to supply the fungus with nutrients. However, belowground herbivores have 

been reported to facilitate fungal colonisation for Agrostis capillaris (Currie et al., 2006). Conversely, 

influences of mycorrhizal fungi on the performance of aboveground herbivores have been 

observed. The quality of this impact, however, ranges from positive over neutral to negative. This 

substantial variation can to some extent be attributed to the species involved in the interaction, 

including fungal and herbivore species. For example, the performance of chewing and leaf-mining 

insects is predominantly negatively affected by AM symbiosis of the host plant, whereas sucking 

insects seem to profit from this interaction (Gange & West, 1994); counter-examples, however, 

also exist (Goverde et al., 2000). Another tendency indicates that AM plants are favourable for 

specialist herbivores and detrimental for generalists. But although this effect was observed for 

chewing herbivores, it was not detected for sucking herbivores (Gange et al., 2002). The effects 

of mycorrhization on parasitoids of herbivores have been assessed as well. Interestingly, in field 

experiments parasitism of herbivores was reduced on mycorrhized plants (Gange et al., 2003). In 

the lab, this effect turned out to be strongly dependent on the fungal species associated with the 

plant. Both herbivore damage to the plant and parasitism on the herbivore were either reduced 

or remained unchanged by AM fungi, depending on the fungal species involved in the interaction 

(Gange et al., 2003). But consistently, AM symbiosis did not improve the searching efficiency of the 

parasitoid. It has been reasoned that this could be due to increased plant size, which may impede 

the search of the parasitoid for its host (Gange et al., 2003). But changes in induced volatile patterns 

as an effect of mycorrhization have not been considered as explanation.

Other mutualists have also been shown to be affected by the symbiotic state of the plant, as 

pollinators were more strongly attracted to flowers of mycorrhized fireweed (Chamerion 

angustifolium L.) than to those of non-mycorrhized fireweed (Wolfe et al., 2005). In this study 

it has been argued that the observed effect could correlate with the development of larger 

inflorescences by mycorrhized plants, because other floral traits, such as nectar production or 

composition, were not influenced in this species. Again, the putative impact of changes in volatile 

emission has not been examined.

In regard to these heterogeneous reports on the impact of AM symbiosis on plant-herbivore and 

tritrophic interactions, this study aimed to further investigate what components could contribute 

to the effects observed. In order to do so, VOC release was assessed in non-mycorrhized and 

mycorrhized Medicago truncatula GAERTN. plants. Both the emission by intact plants and the 

emission by plants damaged by generalist lepidopteran larvae (Spodoptera spp.) were monitored. 

Whether mycorrhization alone could change volatile profiles of undamaged plants or whether 

the VOC pattern was altered when induction by herbivore attack occurred was the focus of 

the investigation. Furthermore, two different cultivars of Medicago truncatula were used in this 

study to evaluate the influence of subtle changes in the host, yet another possible reason for the 

inconsistencies of previous reports. Finally, measured VOC blends were used to assess whether 

classification and prediction of volatile patterns are possible, and thus may serve as indicators of 

the physiological state of the plant.
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Figure 4-1 Box plots representing relative quantifi cation of volatiles emitted by non-mycorrhized and mycorrhized Medicago 
truncatula cv. Jemalong A17 plants in reaction to herbivory. (a) control (non-mycorrhized), unwounded; (b) control, damaged 
by Spodoptera sp.; (c) mycorrhized, unwounded; (d) mycorrhized, wounded by Spodoptera sp. n = 9 - 10. Small letters indicate 
signifi cant diff erences between the diff erent treatments as determined by ANOVA and Newman-Keuls post hoc test. Abbrevia-
tions: unidentifi ed compounds are given by their respective retention index; DMNT, 4,8-dimethylnona-1,3,7-triene; TMTT, (3E,7E)-
4,8,12-trimethyltrideca-1,3,7,11-tetraene; 2-s-But-3-methoxypyr, 2-sec-butyl-3-methoxypyrazine.
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4.2 RESULTS

4.2.1 VOC emission by Medicago truncatula cv. Jemalong A17

As demonstrated in Chapter 2, M. truncatula reacts to herbivory by emitting a great variety of 

volatile compounds. These experiments were repeated with non-mycorrhized plants that were 

grown under the same culture conditions as the mycorrhized ones (cf. Material and Methods, 7.1.5) 

as well as with plants inoculated with Glomus intraradices SCHENCK & SMITH. Volatiles were collected 

from nine to ten plants for each treatment group. These groups were non-mycorrhized control 

plants, non-mycorrhized plants damaged by Spodoptera spp. larvae, undamaged mycorrhized 

plants, and mycorrhized, herbivore-wounded plants.

As can be seen in Figure 4-1, the results presented in Chapter 2 could approximately be reproduced. 

Herbivore damage induced the emission of several VOCs, in which sesquiterpenoids were the 

group of compounds most abundantly present. The overall pattern of VOC emission was quite 

similar in mycorrhized and non-mycorrhized plants for both damaged and undamaged plants. 

Most changes in the volatile pattern could be attributed to herbivore attack. However, some 

subtle differences between mycorrhized and non-mycorrhized plants could also be observed. 

These variations mainly concerned substances found in rather low abundance or even only trace 

amounts, with exception of two compounds that have not yet been identified. These substances 

exhibited an emission pattern that specifically changed with mycorrhization. One of them, RI 

10381, was emitted at significantly higher levels in mycorrhized plants, be they wounded or not, 

whereas the emission RI 1112 was clearly reduced in mycorrhized plants (Figure 4-2 a, b). For 

all other compounds, whose release seemed to be somehow influenced by mycorrhization, the 

overall tendency was a reduced emission of the respective compounds in reaction to herbivory 

by mycorrhized plants. The compounds affected were α-gurjunene, α-himachalene, E-nerolidol, 

dihydroactinidiolide, and 3,5-dimethoxytoluene (representing this pattern, the relative abundance 

of α-gurjunene emitted is shown in Figure 4-2 c). Only n-tridecane showed a slight trend to 

elevated emission after herbivore attack in mycorrhized plants.
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Figure 4-2 Examples of volatile compounds emitted by Medicago truncatula cv. Jemalong A17, whose release seems to be in-
fluenced by mycorrhization. (a) unidentified compound, RI 1038; (b) unidentified compound, RI 1112; (c) α-gurjunene. 1, control,  
unwounded; 2, control, wounded by Spodoptera sp.; 3, mycorrhized, unwounded; 4, mycorrhized, wounded by Spodoptera sp.
n = 9 - 10. Small letters indicate significant differences as determined by ANOVA and Newman-Keuls post hoc test.
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Figure 4-3 Box plots representing relative quantifi cation of volatiles emitted by non-mycorrhized and mycorrhized Medicago 
truncatula plants (mixed cultivars) in reaction to herbivory. (a) control (non-mycorrhized), unwounded; (b) control, damaged 
by Spodoptera sp.; (c) mycorrhized, unwounded; (d) mycorrhized, wounded by Spodoptera sp. n = 7 - 10. Small letters indicate 
signifi cant diff erences between the diff erent treatments as determined by ANOVA and Newman-Keuls post hoc test. Abbrevia-
tions: unidentifi ed compounds are given by their respective retention index; RI 1479 combined, combined quantifi cation of 
germacrene D and γ-muurolene; DMNT, 4,8-dimethylnona-1,3,7-triene; TMTT, (3E,7E)-4,8,12-trimethyltrideca-1,3,7,11-tetraene; 
2-s-But-3-methoxypyr, 2-sec-butyl-3-methoxypyrazine; MeJA, methyl jasmonate; MeSA, methyl salicylate.
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Surprisingly, some substances detected in these experiments have not been found before after any 

induction treatment in this cultivar, including caterpillar feeding. For example, 7αH-silphiperfol-

5-ene and 7βH-silphiperfol-5-ene have not been found in any other set of experiments. The same 

holds true for both the unidentified compounds, RI 1038 and RI 1112. The latter case is particularly 

puzzling as this substance was found in rather high abundance in undamaged as well as damaged 

non-mycorrhized plants.

4.2.2 VOC emission in a cultivar mixture of Medicago truncatula

Besides M. truncatula cv. Jemalong A17 a mixture of cultivars (including cv. Jemalong but without 

definition of the line, and cv. Parragio), was used for experiments paralleling those described 

above (Figure 4-3).

First of all it was striking that though the differences between those cultivars cannot be assumed 

to be very high in terms of VOC emission patterns, some clear discrepancies could be observed 

regardless of the symbiotic state of the plants (cf. Figures 4-1 and 4-3). These variations, however, 

did not affect the main components that were found to be induced by herbivory. But while no 

monoterpenoids were found to be induced in the cultivar Jemalong A17 at all, a considerable 

amount of linalool and low levels of limonene were emitted by the other cultivar. Furthermore, 

the blend of sesquiterpenoids detected differed to a certain extent. Moreover, in Jemalong A17 

all compounds that seemed to be somehow affected by mycorrhization were released to a lower 

extent after caterpillar feeding, whereas it was the other way round in this case. The emission 

of several sesquiterpenoids, such as β-copaene, α-himachalene, RI 1457, germacrene D and γ-

muurolene (not thoroughly separable under the GC-conditions used, thus quantified together 

as RI 1479), and 2-sec-butyl-3-methoxypyrazine (Figure 4-4 c) turned out to be induced more 

strongly in mycorrhized caterpillar-damaged plants than in non-mycorrhized ones. Still, one 

clear parallel regarding the effect of mycorrhization was found in the emission patterns of RI 

1038 and RI 1112 (Figure 4-4 a, b). Those substances showed more or less the same increase or 

reduction, respectively, in reaction to mycorrhization as observed with the cultivar Jemalong A17. 
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Figure 4-4 Examples of volatile compounds emitted by Medicago truncatula (mixed cultivars), whose release seems to be influ-
enced by mycorrhization. (a) unidentified compound, RI 1038; (b) unidentified compound, RI 1112; (c) 2-sec-butyl-3-methoxy-
pyrazine 1, control,  unwounded; 2, control, wounded by Spodoptera sp.; 3, mycorrhized, unwounded; 4, mycorrhized, wounded 
by Spodoptera sp. n = 7 - 10. Small letters indicate significant differences as determined by ANOVA and Newman-Keuls post hoc 
test.
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The characteristics were, however, not very pronounced, as drastic deviations occurred in some 

samples (excluded from statistical analysis).

4.2.3 Visualisation and classification of volatile patterns

As introduced in Chapter 3, multivariate patterns of VOC emission were again visualised by 

means of Non-metric Multidimensional Scaling (NMDS). In the first place, emission patterns were 

compared within each batch of plants used (Figures 4-5 & 4-6). Basically, using this approach 

it was shown that herbivore-induced volatile blends are clearly distinct from those measured 

from undamaged plants. The changes due to colonisation by AM fungi, however, are too subtle 

to be perceivable in this kind of data representation. Though there seems to be some variation, 

particularly in the mixed cultivars (Figure 4-6), the overall pattern is essentially the same. In 

view of the obvious differences between the VOC blends emitted by the different cultivars, it 

was interesting to compare the influence of the plants’ genetic background (Figures 4-7 & 4-8). 

Regarding undamaged plants of both plant batches, including mycorrhized and non-mycorrhized 

plants, no compelling differences in the basal level of VOC emission could be observed (Figure 4-7). 
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Figure 4-5 Non-metric multidimensional scaling (NMDS) plots of VOC blends emitted by Medicago truncatula cv. Jemalong A17 
in response to mycorrhization and feeding by Spodoptera sp. using square root transformed data and Euclidean distance as a 
dissimilarity measure. Stress, 9.12. Open circles indicate the relative location of single volatile samples in ordination space. The 
size of the circles represents the goodness of the fit into the model for each particular sample. The centroids are given by the 
intersection of the spiderweb-like lines within each treatment group; the groups’ standard errors are given by filled ellipses. The 
size of the ellipse can be interpreted as a measure of consistency for the respective group. The relative distances between any 
sample or substance shown represent similarities, and positive (low distances) or negative (high distances) correlations, respec-
tively. Variables are plotted according to their weighted averages.
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The non-mycorrhized control group of the mixed cultivars spans the entire range of variation. This 

is not very surprising considering that the cultivar Jemalong was also present in the mixture; the 

high variability may thus be due to the heterogenous genetic background of the plants tested. 

But it is remarkable that mycorrhized plants of the cultivar mixture somehow differed from cv. 

Jemalong. This could have been due to some peculiar effect of mycorrhization in this instance or 

by chance only plants of cv. Parragio were picked for those experiments. But when plants were 

damaged by lepidopteran larvae, the induced VOC blends differed drastically (Figure 4-8). The 

differences between mycorrhized and non-mycorrhized plants proved to be minor, with some 

slight changes in cv. Jemalong A17; the different cultivars, however, could be easily separated 

by means of the induced VOC blends. Still, no distinction between mycorrhized and non-

mycorrhized plants could be depicted. In the results presented above, NMDS was calculated using 

Euclidean distance as a dissimilarity measure. Binomial NMDS led to the same results, as there 

were no qualitative differences in the VOC blends of mycorrhized and non-mycorrhized plants 

(data not shown; cf. Chapter 3). Nevertheless, from the basic data it was obvious that at least a 

slight influence is perceivable in the quantitative aspect. That these discrepancies could not be 

depicted using NMDS is not surprising. This is an exploratory method that aims only to depict 
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Figure 4-6 Non-metric multidimensional scaling (NMDS) plots of VOC blends emitted by Medicago truncatula (mixed cultivars) 
in response to mycorrhization and feeding by Spodoptera sp. using square root transformed data and Euclidean distance as a 
dissimilarity measure. Stress, 10.94. Open circles indicate the relative location of single volatile samples in ordination space. The 
size of the circles represents the goodness of the fit into the model for each particular sample. The centroids are given by the 
intersection of the spiderweb-like lines within each treatment group; the groups’ standard errors are given by filled ellipses. The 
size of the ellipse can be interpreted as a measure of consistency for the respective group. The relative distances between any 
sample or substance shown represent similarities, and positive (low distances) or negative (high distances) correlations, respec-
tively. Variables are plotted according to their weighted averages.
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Figure 4-7 Non-metric multidimensional scaling (NMDS) plots of VOC blends emitted by different Medicago truncatula cultivars 
in response to mycorrhization using square root transformed data and Euclidean distance as a dissimilarity measure. Stress, 
15.54. Open circles indicate the relative location of single volatile samples in ordination space. The size of the circles represents 
the goodness of the fit into the model for each particular sample. The centroids are given by the intersection of the spiderweb-
like lines within each treatment group; the groups’ standard errors are given by filled ellipses. The size of the ellipse can be in-
terpreted as a measure of consistency for the respective group. The relative distances between any sample or substance shown 
represent similarities, and positive (low distances) or negative (high distances) correlations, respectively. Variables are plotted 
according to their weighted averages.

complex patterns in a low-dimensional space, so that the interitem distances between any points 

represent the original similarities (or dissimilarities) observed as well as possible. NMDS is mainly 

a way to visualise multivariate patterns and does not search for any disparities. Thus, in order 

pinpoint those dissimilarities, linear discriminant analysis (LDA) was tested for its applicability 

to this problem. In contrast to NMDS, the underlying algorithm of LDA tries to produce a low-

dimensional representation of the data that yields maximal separation of the given groups; thus, 

it serves to describe differences between certain groups (McLachlan, 1992; Venables & Ripley, 

2002). The first attempts to use this method, however, were not very successful due to the high 

multicollinearity of the data sets (for a glossary of statistical terms, see Appendix III). This refers 

to the fact that a range of variables, i.e. compounds detected, carry the same information, as for 

example several sesquiterpenes show highly similar emission patterns in response to herbivory. 

This problem can be overcome by eliminating collinear variables, for instance using stepwise 

classification. It is important to note that with this approach, the biological relevance of complete 

VOC blends remains in the background; the resulting rules of classification are quite artificial and 

to some extent replaceable, as only parts of the data are considered. In fact, several models with 

approximately the same level of significance have been calculated; in the following only two 
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examples, one for each batch of plants, will be presented; in both cases, selection of variables was 

performed using the Wilk’s lambda as criterion.

For the cultivar Jemalong, 10 out of 32 compounds were selected; namely, α-copaene, RI 1112, 

α-gurjunene, RI 1457, 7βH-silphiperfol-5-ene, geranylacetone, 7αH-silphiperfol-5-ene, RI 1038, n-

tridecane, and n-pentadecane. Using those variables as predictors, quite distinct grouping of all 

treatment classes can be achieved (Figure 4-9). The resulting model was statistically significant 

with a Wilk’s lambda of 0.011, and an overall p-value < 0.0001 (8.42-14). Evaluation of the model 

using cross-validation revealed an error rate of 11.41 % (Figure 4-9). The proportion of classification, 

i.e. which samples were allocated to which group during cross-validation, can be read from a 

confusion matrix (Figure 4-9). All groups could be predicted with reasonable success; errors 

occurred predominantly in the classification of undamaged, non-mycorrhized plants. 

In the case of the mixed cultivar, classification could be achieved with only 6 out of 31 compounds 

(Figure 4-10). The VOCs selected were 2-sec-butyl-3-methoxypyrazine, β-caryophyllene, RI 1112, RI 

1038, MeSA, and 1-tetradecene. To test the level of significance of the model, the same analyses as 

those used for cv. Jemalong A17 were performed. With a value for Wilk’s lambda of 0.023 and an 

overall p-value < 0.0001 (2.19-13) this model also prove to be significant. The error rate, as determined 
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Figure 4-8 Non-metric multidimensional scaling (NMDS) plots of VOC blends emitted by different Medicago truncatula cultivars 
in response to feeding by Spodoptera sp. and mycorrhization using square root transfomed data and Euclidean distance as a 
dissimilarity measure. Stress, 16.20. Open circles indicate the relative location of single volatile samples in ordination space. The 
size of the circles represents the goodness of the fit into the model for each particular sample. The centroids are given by the 
intersection of the spiderweb-like lines within each treatment group; the groups’ standard errors are given by filled ellipses. The 
size of the ellipse can be interpreted as a measure of consistency for the respective group. The relative distances between any 
sample or substance shown represent similarities, and positive (low distances) or negative (high distances) correlations, respec-
tively. Variables are plotted according to their weighted averages.
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by cross-validation, was 11.36 % (Figure 4-10). Misclassification occurred mainly between non-

mycorrhized unwounded and wounded plants, and between unwounded mycorrhized and non-

mycorrhized plants (Figure 4-10).

Taken together, these results indicate that mycorrhizal fungi do influence herbivore-induced VOC 

emission, though not very conspicuously. Still, these slight differences are sufficient to create 

classification rules, and to distinguish plants with distinct physiological status. Thus, in this 

instance, VOC blends can indeed be used as diagnostic criteria. Strikingly, only a small proportion 

of the compounds detected was sufficient to build up rules of classification.

4.3 DISCUSSION

The results presented in this section again showed that herbivory induces the emission of VOCs 

in Medicago truncatula. It is noteworthy, however, that the volatile blends in this second row of 

experiments were not identical to those formerly detected (cf. Chapter 2). This could, for example, 

be due to minor variations in the growth conditions of the plants (cf. Material and Methods). 

Still, the high abundance of some of these compounds was rather surprising; in the case of trace 
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Figure 4-9 Results of Linear Discriminant Analysis (LDA) for volatile blends emitted by Medicago truncatula cv. Jemalong A17 in 
response to mycorrhization and feeding by Spodoptera sp. The table represents the proportions of classification as determined 
by cross-validation (left). For visual inspection of the grouping, the first two linear discriminants were plotted (right).
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Figure 4-10 Results of Linear Discriminant Analysis (LDA) for volatile blends emitted by Medicago truncatula (mixed cultivars) in 
response to mycorrhization and feeding by Spodoptera sp. The table represents the proportions of classification as determined 
by cross-validation (left). For visual inspection of the grouping, the first two linear discriminants were plotted (right).
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components, it could easily be argued that those were overlooked in previous experiments. 

Furthermore, some striking differences between the two cultivars used were detected. The VOCs 

released constitutively by healthy plants were more or less the same, but the blends emitted in 

response to herbivory were clearly distinct in the different batches of plants used. Although the 

main herbivore-inducible sesquiterpenoids were emitted in a similar manner, several compounds 

could be detected that were present only in one of the cultivars. It was particularly striking that 

no compounds derived from the MEP pathway could be found in cv. Jemalong A17, whereas both 

monoterpenoids and diterpenoids were detected in VOC blends emitted by the mixed cultivars.

Overall, the effects of mycorrhization on VOC emission were not very prominent. No qualitative 

changes could be detected, though a certain divergence in the quantitative aspect was recorded. 

Although in the cultivar Jemalong A17 some of the herbivore-induced VOCs were reduced in 

mycorrhized plants, plants of the mixed cultivar tended to emit higher amounts of certain VOCs 

when mycorrhized. In this context it is remarkable to find in cultivar descriptions that cv. Paraggio 

is generally more resistant to all kinds of stresses than is cv. Jemalong (Nair & Howie, 2006). For 

example, cv. Jemalong is susceptible to different species of aphids and boron, whereas Paraggio 

resists or at least moderately resists all those stresses. One can assume that in nature plants are 

predominantly mycorrhized; thus, that one genotype reduces its indirect defence under these 

circumstances whereas the other one exhibits increased VOC emission may be important. Whether 

this trend extends to other induced defences as well would be interesting to know. In addition, 

the qualitative differences in the composition of defensive compounds might also influence the 

resistance to diverse stressors.

However, the results are in line with previous findings, namely that mycorrhization influences 

the content of secondary metabolites in aboveground plant parts, and that these changes are 

somehow dependent on the genetic background of the plant (Khaosaad et al., 2006). The latter 

furthermore gives a possible reason for the fact that the observed effects on herbivores vary so 

much. The fungal and herbivore species involved in the interaction have been shown to greatly 

influence the outcome (Goverde et al., 2000; Gange et al., 2002; Gange et al., 2003). To what degree 

the plant species control these interplays is, however, only poorly understood.

In the quest for possible reasons for the observed effects, two modes of explanation might be 

taken into consideration: AM fungi basically have to evade the plant’s defence responses in order 

to successfully colonise the roots. Thus, as suggested for the interaction with rhizobia, it is often 

assumed that these symbionts are able to suppress the plant’s defence mechanisms, which could 

in part explain why induced defences are reduced in cv. Jemalong A17. This is, however, not very 

conclusive, as on the other hand it is considered as a basic fact that mycorrhization increases 

the plant’s resistance to diverse stressors. A systemic suppression of induced defences would 

therefore be quite counterproductive. However, in the case of the mixed cultivars, the slightly 

enhanced emission of certain VOCs may be a symptom of increased resistance or priming by AM 

fungi.

Anyway, changes in volatile patterns, be they increased or decreased emissions, are plausible 

causes for changed behaviour of plant mutualists. Most of the changes detected were, however, 

so small that their influence on such interactions seems improbable. Only the amounts of the two 

unidentified compounds (RI 1112 and RI 1038) varied to a large extent, and they were present in 

an abundance that may lend support to their putative physiological and ecological roles. In order 

to carry out any investigation on that topic, the identification of those compounds is mandatory.



Mycorrhization
57

But our knowledge about the importance of trace compounds is limited. Chemical detection 

limits do not necessarily transport crucial information about biological importance, as they do not 

take into account the sensitivity of biological perception systems.

Although the differences observed in volatile emission are only marginal, classification is clearly 

possible. This theoretical consideration is certainly of some interest, demonstrating that the 

VOCs emitted by Medicago truncatula are specific enough to allow discrimination of different 

stimuli, even if the influences seem to be only minor. With regard to practical applicability, the 

problem gets more complicated. All experiments were conducted under highly controlled 

conditions. As only VOCs of one plant at a time were analysed, no problems with normalisation 

were encountered. Because the culture conditions were kept as constant as possible, variation 

due to the abiotic environment can assumed to be negligible. Also, care was taken to prevent 

any infection or infestation prior to the experiments, so that life history traits would not influence 

emission patterns in any way. Finally, differences in the genetic background were comparatively 

low. In short, any influence that could alter the plants’ emission patterns was reduced as much 

as possible. It is easily imaginable that the parameters listed above, and probably many more, 

severely impede successful discrimination of VOC blends in the natural environment. Regarding 

the statistical methods used, there is a clear need for further tests. Though the results gained with 

LDA are quite satisfactory, other methods that are more robust with regard to multicollinearity, 

and do not rely on linear correlations (e.g. neural networks, learning vector machines, etc.) could 

be expected to perform better. Indeed, several methods have been compared for other problems, 

such as classification of aromas, that bear some similarity from the statistical point of view (Baroni 

et al., 2006; González-Arjona et al., 2006).

Finally, the commonplace notion that insight into multiple interactions is substantially hindered 

by the fact that every organism involved has a drastic influence on the outcome seems to be the 

conclusion. Thus, general effects are very likely to be difficult to find, as the data available to date 

indicate that even the slightest variation in one of the partners of any interaction considerably 

changes the overall consequences.

Footnotes
1 Unidentified compounds were all classified by their linear retention index on an EC-5 column under 

temperature programmed conditions.
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5   PROFILING VOLATILE EMISSION BY MEDICAGO TRUNCATULA

5.1 INTRODUCTION

In previous sections of this thesis, emission of volatile organic compounds (VOCs) has received 

a sizeable share of attention. It has already been demonstrated that Medicago truncatula GAERTN. 

releases VOCs in response to diverse stimuli, and that the blends detected in part exhibit 

considerable specificity. Hence, adding to the profile of volatiles emitted by this species by testing 

the release of VOCs in response to varied modes of chemical elicitation seemed appropriate. 

Therefore, different substances that had tested positively for their ability to induce volatile emission 

in other species were examined for their capacity to do so in M. truncatula. The compounds used 

as elicitors of VOC emission were alamethicin (ALA), copper sulphate, coronalon, jasmonic acid 

(JA), and acetylsalicylic acid (acetyl-SA). 

Alamethicin is a mixture of antibiotic peptides originally isolated from cultures of the fungus 

Trichoderma viride. It exerts its effects via voltage-dependent insertion into membranes and 

formation of oligomeric pores of varying sizes (Duclohier & Wróblewski, 2001). Regarding its 

antibiotic activity, like other antimicrobial peptides with high α-aminoisobutyric acid content, 

it is assumed to lead to membrane permeabilisation and consequently to cell lysis (Duclohier & 

Wróblewski, 2001). ALA has also been shown to act on plants; it induces tendril coiling in several 

plant species and leads to induced volatile emission (Engelberth et al., 2001). The latter has been 

studied in more detail in lima bean (Phaseolus lunatus L.); there, it was striking that the diversity 

of VOCs emitted in response to ALA treatment was reduced compared to the blends detected 

in reaction to herbivory or JA treatment. Only the two homoterpenes 4,8-dimethylnona-1,3,7-

triene (DMNT) and 4,8,11-trimethyltrideca-1,3,7,11-tetraene (TMTT), and methyl salicylate (MeSA) 

were emitted. A finely tuned interplay of the octadecanoid pathway and SA seemed to mediate 

the highly specific response in terms of VOC emission. While JA was only transiently induced, 

SA accumulation correlated with enhanced MeSA emission. Also, pre-treatment with acetyl-SA 

abolished JA accumulation but did not influence the increase of OPDA levels (Engelberth, 2000; 

Engelberth et al., 2001). 

Heavy metal ions represent one form of abiotic stress plants may encounter in nature. Induction 

of certain secondary metabolites in reaction to heavy metal stress has been observed in several 

plant species (summarised by Mithöfer et al., 2004). Moreover, though emission of VOCs is usually 

associated with defence against herbivores or at most with defences against biotic stresses, it 

has been demonstrated that certain heavy metal ions also induce volatile release in lima bean 

(Schulze, 2005). Interestingly, the VOC blends induced by all of the active metals closely resembled 

those detected after ALA treatment. Again, accumulation of endogenous SA was detected in 

connection with increased volatile emission. In this case, however, JA remained at the resting 

level and only OPDA increased. This would be consistent with the notion that SA inhibits the 

JA pathway downstream of OPDA biosynthesis (Schulze, 2005) and could contribute to the 

explanation of similarities reported in VOC emission in response to ALA and heavy metals. The 

most potent elicitor for VOC emission in lima bean, copper sulphate, was chosen to serve as an 

elicitor in this study.
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Coronalon is a structural mimic of coronatine (Figure 5-1, a, b). This phytotoxin is produced by 

several pathovars of the bacterial phytopathogen Pseudomonas syringae VAN HALL and has been 

shown to mimic the effect of octadecanoid signal compounds in plants to some extent, without 

inducing endogenous accumulation of JA (Weiler et al., 1994). Although coronatine is a profitable 

tool for investigating plants’ stress responses, its synthesis is quite complicated due to its 

complex stereochemistry (Schüler et al., 2004). In comparison, indanoyl isoleucine conjugates are 

synthesised much more easily and share some of the eliciting properties of coronatine. One of the 

most potent analogues found is the 6-ethyl indanoyl isoleucine conjugate coronalon (2-[(6-ethyl-

1-oxo-indane-4-carbonyl)-amino]-3-methyl-pentanoic acid methyl ester). It induces VOC release 

and tendril coiling, promotes fruit and leaf drop, and stimulates the synthesis and accumulation 

of secondary metabolites in several plant species (Schüler et al., 2001; Schüler et al., 2004; Mithöfer 

et al., 2005), and thus can be used to mimic effects of coronatine in bioassays. 

Although SA (Figure 5-1, d) is generally thought to be uninvolved in the induction of secondary 

metabolism in planta, it has been demonstrated in several experimental systems that exogenous 

application of this phytohormone (or derivatives such as acetyl-SA or MeSA) can lead to the 

induced accumulation of certain defensive compounds (Zhao et al., 2005). Often acetyl-SA has 

been applied, which seems to rapidly decompose to SA in aqueous solution and basically induces 

the same effects (Raskin, 1992). As VOC emission is viewed mainly as a response to herbivory, it is 

interesting to note that herbivore feeding, particularly feeding by sucking insects or cell content 

feeders, also increases endogenous SA levels (cf. Chapter 2; Van Poecke & Dicke, 2004); Moreover, 

the combined application of JA and MeSA yields the emission of different volatile blends compared 

to the application of JA alone (Van Poecke & Dicke, 2004). Finally, SA seems to play a role in the 

regulation of VOC emission in response to ALA and heavy metal ions (see above).

In contrast to SA, JA (Figure 5-1, c) ranges amongst the usual suspects when it comes to naming 

the compound responsible for mediating VOC emission. It has been shown in numerous studies 

that exogenous application of JA up-regulates secondary metabolism (including VOC emission), 

and that VOC emission correlates with an increase of endogenous JA levels (Van Poecke & Dicke, 

2004; Zhao et al., 2005). Furthermore, the VOC blends emitted in reaction to JA largely resemble 

those induced by herbivory (Boland et al., 1995) and are able to attract carnivores to the damaged 

plant, though not as efficiently as herbivore-induced volatiles (Dicke et al., 1999).

Figure 5-1 Chemical structures of some elicitors.  
(a) Coronatine and (b) its structural analogue coro-
nalon; (c) jasmonic acid; (d) salicylic acid.

Figure 5-2 (next page) Relative quantification of 
volatiles emitted by Medicago truncatula in response 
to chemical elicitation. (a) 10 µg ml-¹ alamethicin; (b) 
1 mM copper sulphate; (c) 100 µM coronalon; (d) 1 
mM jasmonic acid; (e) 1 mM acetylsalicylic acid; (f ) 
control. n = 3 for all treatments. Abbreviations: DMOT, 
2,6-dimethyl-1,3,5,7-octatetraene; DMOTol, 2,6-dime-
thyl-3,5,7-octatrien-2-ol; CyclohexylITC, cyclohexyl-
istothiocyanate; 2-s-But-3-methoxypyr, 2-sec-butyl-
3-methoxypyrazine; RI 1479, combined, combined 
quantification of germacrene D and γ-muurolene. 
Unidentified sesquiterpenoids are indicated with 
their respective retention index.
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Due to their prior characterisation with regard to induced VOC emission, and their rather distinct 

patterns of elicitation, the above-mentioned compounds were considered particularly suitable 

for a more detailed survey of VOCs emitted by M. truncatula. The biochemical potential and the 

putative specificity of VOCs emitted in response to different elicitors were especially interesting. 

5.2 RESULTS

All of the compounds tested induced some emission of VOCs (Figure 5-2). Though only three 

samples per treatment were tested, the effects were consistent. It is striking that every substance 

tested induced distinct VOC blends, which is already apparent if merely considering compound 

classes for comparison. Pronounced emission of alkanes and alkenes was induced only by 

elicitation with coronalon (Figure 5-2, c). Emission of aldehydes was most effectively caused 

by acetyl-SA (Figure 5-2, e), which altogether produced a VOC pattern obviously different from 

any other induction treatment. In particular, the highest amounts of aldehydes, alcohols, and 

aromatics were detected after induction with acetyl-SA. Another potent elicitor of release of 
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Figure 5-3 Non-metric multidimensional scaling (NMDS) plots of VOC blends emitted by Medicago truncatula in response to 
chemical elicitation using square root transformed data and Euclidean distance as a dissimilarity measure. Stress, 10.47. Open 
circles indicate the relative location of single volatile samples in ordination space. The size of the circles represents the good-
ness of the fit into the model for each particular sample. The centroids are given by the intersection of the spiderweb-like lines 
within each treatment group; the groups’ standard errors are given by filled ellipses. The size of the ellipse can be interpreted as 
a measure of consistency for the respective group. The relative distances between any sample or substance shown represent 
similarities, and positive (low distances) or negative (high distances) correlations, respectively. Variables are plotted according to 
their weighted averages.
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the elicitors induced some compounds specifically or at least with only minor overlaps (Table 

5-1). Besides these clear qualitative differences, the overall patterns of VOCs induced were very 

distinctive for each individual treatment (Figure 5-3), as visualised by ordination using Non-metric 

Multidimensional Scaling (NMDS). Here, Euclidean distance was employed as a dissimilarity 

measure. Although only three measurements per treatment were available for comparison, 

separate groups were discernible. With a stress of 10.47 the fit of the model is fairly good. When 

using binomial NMDS to depict qualitative differences, as introduced in Chapter 3, the picture did 

not change much (data not shown). This indicates that the dissimilarity observed is mainly due to 

the qualitative differences, which were indeed very conspicuous. 

In summary, each of the tested elicitors caused volatile emission with considerable specificity. 

Though certain overlaps were detected, particularly concerning induction with ALA, JA, and 

copper sulphate, the overall compositions of the VOC blends emitted were quite characteristic for 

the respective elicitation. 

Finally, it is noteworthy that oligogalacturonic acid and linolenoyl glutamine were also tested 

for their ability to induce VOC emission in M. truncatula. Strikingly, these elicitors, along with 

Table 5-1 Qualitative comparison of volatiles emitted in 
reaction to different induction treatments.

A
la
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et

h
ic

in

C
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O
₄

C
or

on
al

on

JA SA

β-Farnesene x

Methyl benzoate x x

1-Decanol x x

β-Himachalol x x

C15H24 (RI 1381) x x

α-Himachalene x x

3,5-Dimethoxytoluene x x

Carene x x

2-Himachalen-7β-ol x x

C15H24 (RI 1481) x x

γ-Himachalene x x

α-Ylangene x x

2-sec-Butyl-3-Methoxypyrazine x

2-Pentylfuran x

4-Ketoisophorone x

β-Ionone epoxide x

C15H24 (RI 1521) x

n-Tridecane x

Germacrene D & γ-Muurolene x x

Methyl 2-methylundecanoate x

Methyl jasmonate x

n-Octanal x

Ethyl benzoate x

Ethyl salicylate x

aromatic compounds was ALA (Figure 5-2, 

a), though again the evoked patterns were 

clearly distinct from those observed after 

acetyl-SA treatment. As for sesquiterpenoids 

(including homoterpenes), usually the 

substance class most abundantly present in 

VOC blends emitted by M. truncatula, some 

characteristics are notable. Some of the 

compounds were commonly encountered in 

volatile blends. β-caryophyllene, α-copaene, 

cyclosativene, and DMNT are emitted after 

most of the induction treatments tested; 

this also includes herbivory (cf. Chapter 2), 

glucan- and Nod-factor treatment (cf. Chapter 

3). The only exceptions are elicitation with 

chitotetraose, acetyl-SA, and of course the 

control, although even there β-caryophyllene 

was detected in some cases in minor 

amounts. Moreover, the above-mentioned 

compounds were present in the highest 

quantities. Induction of other terpenoids 

varied both qualitatively and quantitatively 

with the respective treatment. It is 

remarkable, however, that copper sulphate, 

which induces a very narrow spectrum of 

volatiles in lima bean, elicited a considerable 

variety of sesquiterpenoids in M. truncatula 

compared to the other treatments. Looking 

more closely, it becomes evident that all of 
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chitotetraose (cf. Chapter 3), were the only compounds tested in the course of the study that 

prove to be unable to induce VOC release in M. truncatula.

5.3 DISCUSSION

Assessment of VOC emission in reaction to chemical elicitation confirmed the remarkable diversity 

of compounds emitted by Medicago truncatula. Conspicuously, every stimulus applied yielded 

a different pattern of VOCs emitted. This is in stark contrast to results gained from lima bean. 

There, not only is the diversity of VOCs emitted much lower, but also the blends do not differ as 

drastically. For example, as outlined in the introduction, the blends induced by ALA and copper 

sulphate are highly similar in lima bean, whereas JA and coronalon elicit VOCs comparable to 

those emitted in response to herbivory. In M. truncatula, however, VOCs induced by the above-

mentioned compounds are at first glance quite similar. Looked at in more into detail, it becomes 

clear that all the compounds induce distinct blends of VOCs. It seems not to hold true that ALA and 

copper sulphate triggered VOC emission is mediated via a crosstalk comparable to that postulated 

for lima bean (Engelberth, 2000; cf. 5.1 Introduction). Otherwise the comparative likeness of JA 

treatment with those two stimuli would be hard to explain. Furthermore, acetyl-SA induced a VOC 

pattern that deviates completely from the other elicitors. Remarkably, the aromatic compounds 

ethyl benzoate and ethyl salicylate were emitted in considerable amounts, whereas MeSA was 

released only in minor quantities. The fact that substances structurally related to SA are emitted in 

reaction to treatment with this phytohormone might indicate a plant’s mechanism for eliminating 

superfluous signalling compounds and regaining physiological balance in this instance. Coming 

back to the comparison of effects in lima bean and in barrel medic, some parallels are noteworthy: 

in response to acetyl-SA treatment lima bean also emits ethyl benzoate, ethyl salicylate, and MeSA, 

though in this case MeSA is the compound released in highest amounts (unpublished data, A. 

Mithöfer). Moreover, MeSA is emitted in response to ALA treatment in higher abundance than in 

response to any other treatment. Regarding control of VOC emission by the phytohormones JA 

and SA, however, the correlations stated by Engelberth et al. (2001) did not apply to any of the 

cases studied, because cutting of the stem of M. truncatula increased endogenous levels of SA 

(cf. Chapter 3), which again is in contrast to results gathered from experiments with lima bean 

(Engelberth et al., 2001). Hence, the emission of MeSA or changes in VOC patterns can hardly 

be ascribed to SA. Although phytohormone levels were not determined in reaction to most of 

the compounds used here, it can be assumed that the response with regard to SA levels may 

be the same as described in Chapter 3 (confirmed only for coronalon). Taken together, the data 

indicate that SA neither reduces the diversity of VOC blends emitted nor inhibits VOC release in 

M. truncatula. The notion that increased JA levels are necessarily linked with altered VOC emission 

patterns in a causal relation can virtually be excluded with respect to the results presented earlier 

(Chapters 2 & 3). Thus, it still remains to be answered how the formation of those intricate VOC 

patterns is regulated in this species.



Discussion
65

6   GENERAL DISCUSSION

In the present study, components of direct and indirect defence in reaction to a range of biotic 

stimuli as well as elements of signal transduction were compared using the model legume 

Medicago truncatula. Defence against different herbivores was assessed along with the impact of 

microbial oligosaccharides, both of bacterial and fungal origin. Those compounds were derived 

from organisms both beneficial and detrimental for plant health. Furthermore, the impact of 

mycorrhization on herbivore-induced VOC emission was monitored, as a step towards the 

investigation of multiple interactions. As data on direct comparisons of distinct biotic interactions 

is still sparse in the literature, this provides an opportunity to match several parameters assessed 

within one species in order to elucidate specificities and general phenomena of plants’ responses 

in biotic interactions.

As Medicago truncatula prove to emit numerous VOCs in reaction to the majority of biotic 

stimuli applied, another aspect of this study aimed to complete the profile by adding the VOC 

patterns caused by elicitation with abiotic stimuli and exogenous application of phytohormones. 

Thereby, insight can be gained into the high apparent specificity of VOCs emitted under diverse 

physiological conditions.

When the qualitative distribution of all parameters assessed throughout this study, i.e. the presence 

or absence of a certain response, is summarised, the overlaps and distinctions in plants’ defence 

responses can be easily viewed (Table 6-1). Conspicuous resemblance was found in the plants’ 

reactions to different forms of herbivory and elicitation with the pathogen-derived β-glucans. The 

overlap extended to virtually all parameters assessed, with exception the of SA levels that could 

not be reliably determined with the induction methods used for elicitation by β-glucans. Though 

all responses were traceable after these stimuli, the quantitative as well as the spatio-temporal 

patterns differed considerably. Regarding the other elicitors of biotic origin, more distinctions 

became clear. Notably, all organisms adverse to plants’ health or elicitors thereof induced elevated 

levels of JA. In contrast, both Nod-factors as well as mechanical wounding (as control) failed 

to do so. Only the local accumulation of phenolics and of ROS seemed to represent general 

phenomena. The most dissimilar responses, however, were recorded with regard to VOC emission, 

accumulation of SA, and overproduction of NO. Possible implications of these discrepancies will 

be discussed in the following subsections.

VOCs JA SA phenolics ROS NO

Spodoptera spp. + + +1 + + +

Tetranychus urticae + + + + + n.d.

β-glucans + + n.d. 3 + + +

Chitotetraose - + n.d. 3 n.d. + -

LCO-IV (C16:2, S) +/- 2 - n.d. 3 n.d. + +

LCO-IV (C16:2) +/- - n.d. 3 n.d. + +

wounding / control - - + 3 + 4 - -

n.d., not determined; 1 transient increase in systemic leaves; 2 highly variable responses; 3 SA accumulation was induced 
by cutting the stem. SA levels were not further influenced by the addition of any elicitors and are thus referred to as not 
determined; 4 accumulation only detected late after wounding with clearly differing patterns.

Table 6-1 Qualitative comparison of defensive traits recorded in Medicago truncatula in reaction to biotic stimuli.
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6.1 VOLATILE EMISSION

As demonstrated throughout the present study, Medicago truncatula emits a sizeable number 

of VOCs in response to various stimuli, with more than 90 compounds found to be differentially 

emitted. Almost all induction treatments tested led to elevated levels of VOC release, whereas few 

elicitors failed to evoke this reaction. 

VOC emissions can serve multiple functions (Dudareva et al., 2006; cf. 1.6 Plant-derived volatile 

organic compounds). Regarding the data gathered for VOC patterns in Medicago truncatula, the 

most evident is the direct impact on the attacking organisms. Though reports on the impact of 

essential oils or VOCs on organisms interacting with plants are quite scarce, literature concerning 

their medicinal properties abounds. Many uses have been known for ages, e.g. the use of essential 

oils as insect repellents or as medicine due to their antimicrobial properties, though comparable 

specifications of the bioactivity of particular oils are wanting (Schneider & Hiller, 1999; Cseke et 

al., 2006). However, broad range antimicrobial activity has been reported for many compounds, 

which suggests that the respective substances may exert the same effects in planta. In fact, this 

has been shown for Phytophthora infestans, using essential oils of various aromatic plants (Soylu et 

al., 2006). Interestingly, the antimicrobial impact was stronger when the oomycete was exposed 

to VOCs (Soylu et al., 2006). Another intriguing point is that combinations of compounds often 

have more potent levels of bioactivity than do single substances (Muroi & Kubo, 1993; Wink, 2003; 

Koutsoudaki et al., 2005; Spelman et al., 2006). The use of synergistic effects is substantially aided 

by multi-product biosynthetic enzymes that offer enormous catalytic flexibility by producing 

numerous compounds with different functionalities and kinds of bioactivity (Spelman et al., 2006; 

Tholl, 2006). Taken together, these phenomena may explain the often high variety of compounds 

present in one plant. By fine-tuning the emitted profile of VOCs in reaction to diverse stimuli, 

the plant may additionally enhance the effectiveness of its defence. These considerations may 

help explain the relevance of VOC emission in reaction to pathogen-derived elicitors, such as β-

glucans, and to herbivory. But why certain pathogen-derived elicitors (CH4) do not induce VOC 

release, whereas Nod-factors do, remains to be answered.

Indirect defences, i.e. the attraction of natural enemies of herbivores, might mechanistically be 

based on the same approach as direct defences. By emitting a multitude of compounds, a plant 

is more likely to reach a variety of predators and parasitoids, with regard to the sensory capacities 

of different arthropod species. The synergistic effects of attractants should also be taken into 

account (Hammack, 2001). These considerations conveniently explain the variety of compounds 

emitted by Medicago truncatula, and furthermore account for the attraction of predatory mites 

to damaged plants, irrespective of whether they are infested with host or non-host organisms  

(cf. Chapter 2).

Interestingly, evidence is accumulating that many herbivores locate their host plants not by means 

of specific compounds, but rather by the perception and integration of combinations of substances 

with widespread occurrence; the ratio of the compounds emitted seems to play a crucial role for 

preference and avoidance (Bruce et al., 2005). Since the biochemistry of plants is highly variable, 

and not only depends on the genetic background but also varies with environmental conditions, 

this offers an opportunity to selectively choose appropriate host plants (Renwick, 2001). It 

seems reasonable to deduce that the same might hold true for natural enemies of phytophages.  
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As certain plant-derived compounds may negatively influence the performance of predators, 

parasites, or parasitoids (Ode, 2006), they could prefer or avoid certain volatile blends. In the 

end, varying volatile patterns would be a tremendous way to fine-tune tritrophic interactions. 

This supports the importance of establishing reliable procedures for pattern recognition in this 

context; employing such methods would render it possible to correlate changing behaviour of 

herbivores and / or their natural enemies with specific volatile patterns. This field of research 

remains enormously challenging, particularly with regard to additional effects linked to specialist 

or generalist interactions, learning behaviour of herbivores and their natural enemies, and the 

involvement of more trophic levels such as symbionts or pathogens.

Finally, VOCs may also serve as means of communication between plants or between distant plant 

parts. This function has been reported in several instances (Bate & Rothstein, 1998; Engelberth et 

al., 2004; Kessler et al., 2006; Kishimoto et al., 2006; Heil & Bueno, 2007). Regarding the diversity 

of VOC patterns emitted by Medicago truncatula in response to various stimuli, it would be of 

interest to investigate the respective responses in neighbouring plants. Direct defences may be 

a major function of VOC emission, and functionality of indirect defence has been ascertained at 

least for one tritrophic system in Medicago truncatula. Studies on interplant communication might 

contribute to the explanation of VOC functions in connection with symbiosis, i.e. the relevance of 

Nod-factor-induced volatiles and changed VOC patterns in response to mycorrhization. It would 

also be of considerable interest to compare the responses not only of neighbouring plants but also 

of other organisms involved in the trophic network to such subtle changes in volatile patterns.

In summary, Medicago truncatula emits VOCs in response to all kinds of stimuli. This response may 

not be as specific as widely assumed but rather may represent a byproduct of the up-regulation 

of secondary metabolism in the first place, perhaps with direct defence as the major function. As 

many substances that are emitted in reaction to pathogen or herbivore attack are per se deterrent 

to or toxic for the adverse organism, this could be a plausible explanation. The multiple functions, 

particularly the role in communication, can presumably be seen as secondary developments.

The volatile blends detected in Medicago truncatula exhibited in part striking specificity depending 

on the preceding elicitation. Whether these slight differences, compared to the complex natural 

background, are crucial for overall effects remains to be answered. This implies that those patterns 

are specific from the chemical point of view, but not necessarily in terms of biological activity. For 

theoretical considerations, however, this specificity is of considerable interest. As demonstrated in 

the Chapters 3, 4, and 5, volatile patterns can be visualised and discriminated using multivariate 

statistical methods. The problem is trivial in instances where substantial differences in the 

qualitative composition of the blends were recorded (cf. Chapter 5). The problem becomes more 

complicated if considering that only slight quantitative differences may be decisive for distinction 

in certain cases, as demonstrated for the effect of mycorrhization on VOC emission (Chapter 4). 

Though these differences are traceable under controlled conditions in the laboratory, this poses 

a major obstacle for the applicability in the field, where an enormous “background” of VOCs can 

be presumed to disturb any classification attempts. Additionally, other environmental factors also 

influence VOC patterns (Takabayashi et al., 1994). As a result, the variability of VOC blends under 

natural conditions would have to be taken into account when classification rules are created.
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Considering the statistical methods used it can be concluded that NMDS offers a robust and reliable 

method to depict VOC patterns. As it does not rely on linear responses and can handle data with 

only few samples, it is an adequate method to analyse VOC patterns. In contrast, the applicability 

of LDA is not unquestionably optimal. In the first place, it cannot handle multicollinear data, which 

is quite disadvantageous for volatile profiles that usually consist of highly correlated variables. 

However, this problem can be overcome if stepwise classification is used. Although this approach 

disregards the biological importance of complete VOC blends, it can be successfully applied for 

the determination of compounds that are useful as discriminants (Chapter 4). The results are 

satisfactory but still can only be seen as approximations, since LDA relies on linear correlations, 

which are not necessarily given in the response of plants to VOC-inducing stimuli. The advantages 

of the method lie in its comparatively low computational efforts and plain algorithm. The use 

of non-parametric methods that can also manage multicollinear data, as for example k-nearest 

neighbour or learning vector quantization, could improve the performance of VOC classification. 

Further amelioration can be assumed to result from the use of non-linear models, such as neural 

networks or support vector machines (Venables & Ripley, 2002 and references therein).

Besides methodological considerations, it is promising that volatile blends can be distinguished at 

all. This might facilitate the elucidation of signalling networks, offering a measure to link differential 

signalling to specific output in terms of VOC emission. However, the volatile patterns of different 

plant species have to be stringently evaluated in order to assess whether this high specificity is a 

general phenomenon. Finally, the physiological and ecological relevance of such distinctive VOC 

patterns remains to be determined. An accurate description of patterns could help determine 

how far changing ratios of volatiles emitted (but also of other non-volatile metabolites) influence 

biotic interactions.

6.2 PHYTOHORMONAL CHANGES

The JA content of plants exposed to different herbivores and oligosaccharidic elicitors was 

determined in the course of this study. Conspicuously, only herbivory and induction with 

pathogen-derived elicitors caused JA accumulation, whereas Nod-factors did not increase JA 

levels. However, the patterns of JA accumulation differed, depending on the stimulus applied. 

These results are not strictly comparable, as it seems that the affected tissue highly influences 

the reaction. More specifically, wounding the stem seems to produce different effects than leaf 

damage does. For this reason, the recorded patterns of SA accumulation do not provide much 

information, except that Medicago truncatula accumulates this phytohormone when the stem is 

wounded. This is in contrast to the situation in lima bean, where cutting the stem has been shown 

to influence neither SA nor JA levels (Engelberth et al., 2001).

Even though accumulation of JA is manifestly not solely responsible for the VOC profiles detected, 

it may add to patterns measured. Although it is critical to deduce the endogenous role of a 

certain compound from the effects of its exogenous application, particularly if the concentrations 

administered are far beyond the physiological range, JA was found to induce VOCs that are, in 

the broadest sense, comparable to those found after herbivore feeding (Boland et al., 1995). But 

as demonstrated in Chapter 5, the effects of exogenous JA applied alone are quite specific in 
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Medicago truncatula. Regarding the endogenous levels of JA in response to the stimuli applied in 

the course of this study, this phytohormone alone is clearly not sufficient to explain the outcome 

in terms of defence responses (cf. Chapter 3). Thus, a correlation between induction of secondary 

metabolism and JA accumulation could not be unequivocally shown in this study, which is in line 

with some previous reports calling the essential role of JA in this context into question (Zhao et 

al., 2005; see 3.3 Discussion for examples).

As aforementioned, the data gathered on the role of SA in plant defence responses are not very 

conclusive, because SA accumulates in Medicago truncatula in response to simple wounding of 

the stem. This is contrary to the reactions reported for lima bean, where wounding alone did not 

evoke any changes in the levels of SA (Engelberth et al., 2001). This rise, however, seemed not to 

interfere with VOC emission; otherwise, in all cases where cut plants were used for the detection 

of VOCs, patterns comparable to those found in lima bean after elicitation with copper sulphate 

or alamethicin could be expected (Engelberth, 2000; Schulze, 2005). But completely unlike lima 

bean, Medicago truncatula emits very distinct volatile blends in reaction to each of those elicitors. 

Thus, it is unlikely that signalling events comparable to those postulated for lima bean mediate 

VOC emission in Medicago truncatula. That VOC emission is suppressed by increased SA levels 

is especially questionable. On the contrary, SA could be suspected to support VOC emission in 

this instance. Taking into account that one of the earliest roles described for SA is its function 

as calorigen in certain flowers, assisting the volatilisation of odorous compounds (Raskin, 1992), 

it could function similarly in the emission of volatiles by vegetative plant parts. Indeed, in the 

case of viral infection, local temperature increase has been detected in infected tobacco leaves, 

a non-thermogenic tissue. Also exogenous application SA can increase leaf temperature in this 

species (Chaerle, 2000). Moreover, Schmelz et al. (2001) demonstrated that in Zea mays detached 

leaves emitted higher amounts of VOCs when induced with JA or volicitin compared to intact 

plants. Unfortunately, endogenous SA levels were not determined, but it is within the bounds of 

possibility, though very speculative, that changes in SA levels contribute to this effect. Besides, 

SA seems to play a role in the regulation of VOC emission in certain plant species (Van Poecke & 

Dicke, 2004).

Eventually, the emerging picture seems to warn against underrating species specificity in 

phytohormonal action. As mentioned above, Medicago truncatula and lima bean, though both 

belong to the family of Fabaceae, react differently to the same stimulus. It is worth mentioning 

that JA accumulates in reaction to the excision of leaves in maize which is not further enhanced 

by application of volicitin (Schmelz et al., 2003a). Conversely, JA levels do not increase in reaction 

to wounding in barrel medic (cf. Chapter 3) and only marginally in lima bean (Koch et al., 1999). 

Additionally, plant species vary in their resting levels of phytohormones (Schmelz et al., 2003b), 

so that different sensitivities can be assumed, and consequently threshold levels for physiological 

reactions might also differ.

Clearly, both JA and SA are insufficient to explain the effects observed in terms of VOC emission. 

Regarding the multifaceted interactions plants are involved in and the high variability of volatile 

emission in Medicago truncatula, it seems unlikely that a two-component system would be 

adequate to regulate the complex outcome. Extensive profiles of phytohormonal responses and 

other signalling components would certainly help answer the remaining questions about the 

induction pathways leading to volatile release.
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But in the case of defence against herbivores, Medicago truncatula seems to fit the established 

picture, namely, mounting JA-related defences predominantly in defence against chewing 

herbivores and both JA- and SA-mediated defences in response to sucking phytophages or cell 

content feeders, as mirrored by the respective phytohormone levels (Chapter 2).

6.3 REACTIVE OXYGEN SPECIES AND NITRIC OXIDE

In the course of this study it could be shown that any stimulus applied induced the accumulation 

of ROS in Medicago truncatula, with exception of mechanical damage. It thus seems to be a general 

trait in many biotic interactions. But with regard to the temporal development of the reaction, 

it seems unlikely that its primary role is to be found in signal transduction, at least not in the 

defence against herbivores. However, the applied detection method may not have been sensitive 

enough to get a hold of an early, transient increase of ROS. In connection with elicitation by 

microbial oligosaccharides, a contribution to signal transduction is more imaginable, as enhanced 

ROS production was detected as early as 15 minutes after application of the respective elicitor (cf. 

Chapter 3). Nevertheless, it may be reasonable to suspect that ROS play a role in direct defences, 

i.e. as direct antimicrobial agents, given their widespread occurrence in response to diverse stimuli 

and their prolonged overproduction in some instances (cf. Chapter 2). This of course does not 

contradict their additional involvement in signal transduction. However, again certain species 

specificity can be assumed, as other species, in contrast to Medicago truncatula, react with ROS 

overproduction to mechanical damage as well (Orozco-Cardenas & Ryan, 1999).

A more selective pattern was found for the accumulation of NO. Strikingly, NO accumulation and 

VOC emission coincided in all instances where both parameters were assessed. NO production 

was induced by Nod-factors, β-glucans, and also to some extent by caterpillar feeding (data not 

shown). Only CH4, which also proved to be unable to elicit volatile emission, did not increase 

NO production, along with controls (mechanical damage). This correlation might be merely 

incidental, and the data do not support solid causal links, but this point is certainly worth further 

investigation; particularly regarding the increasing awareness of possible roles of NO in diverse 

signalling cascades, not only in animals but also in plants (Grün et al., 2006).

6.4 ACCUMULATION OF PHENOLIC COMPOUNDS

The local accumulation of phenolics at the wounding site, as assessed by microscopic means, can 

be regarded as a direct mode of general defence, as far as can be judged from the measurements 

conducted in the course of this study. Phenolics have been detected in all instances assessed, 

including in responses to herbivory, pathogen-derived elicitors, and wounding, though with 

slightly varying patterns. This response has long been known in connection with defence against 

pathogens (Dixon & Paiva, 1995; Kuc, 1995; Dixon et al., 2002). In this case, phenolics are used in 

cell wall fortification, and serve as direct antimicrobial agents. For the action against herbivores, 

feeding deterrent or toxic properties would be obvious candidates for an explanation of the 

function. Regarding mechanical damage and the late accumulation of phenolics, it can be argued 
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that protection against secondary infections by opportunistic pathogens is the main function. 

A major drawback of the data gathered in this study is the lack of analytical determination of 

the compounds involved. The spatial patterns of accumulation clearly differed depending on the 

inducing stimulus, and also the intensity of fluorescence, i.e. the amounts of phenolics accumulated, 

seemed to be different. A thorough chemical analysis of the compounds accumulated, with 

respect to qualitative and quantitative composition, would substantially aid the interpretation of 

this phenomenon. Superficially, the reaction seems to be a general trait of direct defence against 

a broad range of organisms, but certain specificities might be revealed by more detailed analysis. 

Particularly, the spatial differences, i.e. the enhanced fluorescence located on the cells or on the 

cell walls, suggest distinct compounds involved in the different interactions.

6.5 COMPARING INDUCED DEFENCES IN BIOTIC INTERACTIONS

On a larger scope, this study aimed to find overlaps and divergences between responses to diverse 

biotic stimuli. For single parameters, this comparison was done in the previous subsections; here, 

some conclusions based on the observed patterns are to be summarised.

Considering only qualitative traits, i.e. presence or absence of a certain monitored responses, 

substantial overlaps between the reactions to diverse stimuli were detected (Table 6-1). If the spatio-

temporal patterns are also regarded, the resulting configurations gained certain distinctiveness. 

More specifically, none of the overall patterns recorded in reaction to any of the applied stimuli 

was identical with another. Thus, it may eventually be concluded that the defence responses are 

made up of a variable range of possible outcomes, using the same components that are slightly 

modified depending on the inducing agent, rather than of distinct and specific responses. The 

manifold signalling nets, of which only a glimpse was caught of in the present study, still leave 

sufficient capacities to make the overall reaction seemingly unique. The tendency to interpret 

those differences as specific or targeted responses might be somewhat misleading and disregards 

biological and physiological gradients.

Plants dispose of an arsenal of defensive weapons that are active against a broad range of 

organisms. This applies to generalist herbivores and non-host pathogens, but general defences 

might fail to detain specialised attackers. Yet, the idea that general defence responses of plants 

resemble innate immunity in animals seems quite plausible (Nürnberger et al., 2004). Attributing 

all the observed reactions to simple general defence responses would still oversimplify the 

problem. Some reactions appear to be common traits of pants’ defensive systems. The patterns of 

these responses, however, vary depending on the eliciting stimulus. It remains to be seen how far 

the slight variations of common responses contribute to the overall success of defence, and how 

these divergences are regulated.

Comprehensive data supporting the notion of innate immunity in plants were gathered in the 

course of this study for one model species. The profit thus clearly lies in one comparable system, 

examples of which are still sparse in literature. The data partially contradict previously published 

investigations, presumably due to species-specific differences. Such a discrepancy in results 

indicates the urgent need to consider several plant species among multiple families before stating 

general phenomena and mechanisms, if this is possible at all. Physiological effects can easily vary 

given the genetic diversity of plants. For primary investigations, model species are indispensable. 
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But based on such studies, conclusions leading to universally valid mechanisms might be 

somewhat precipitate. Hence, the discrepancies may be attributed to an under-representation 

of interspecific comparisons. These might finally lead to a deeper understanding of common 

phenomena in the plant kingdom and physiological disparities due to genetic and environmental 

variation. Reductionist approaches are clearly necessary to get a first idea of certain mechanisms 

but definitely will fail to reveal the complexity underlying plants’ impressive defensive capacities.
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7   MATERIAL AND METHODS

7.1 BIOLOGICAL MATERIAL AND INDUCTION METHODS USED

7.1.1 Medicago truncatula

Medicago truncatula GAERTN. cv. Jemalong A17 seeds were provided by Dr. J. M. Prosperi (INRA-SGAP, 

Montpellier, France) and Dr. T. Huguet (INRA, Toulouse, France). Seeds were allowed to germinate 

in the dark for four days, then the seedlings were grown in the greenhouse at 18°C – 23°C with a 

light period from 7 a.m. to 9 p.m. Humidity was kept at 60 – 70%.

7.1.2 Spodoptera spp.

In all experiments either larvae of Spodoptera littoralis (BOISDUVAL, 1833) or Spodoptera exigua (HÜBNER, 

1808) were used.

The larvae were kept on an artificial diet (500 g chopped beans, 9 g ascorbic acid, 9 g 4-ethylbenzoic 

acid, 0.7 g vitamin E and 4 ml formaldehyde per litre water are mixed with approximately 650 ml of 

a 7.5% agar-solution) at 23°C with a light period from 7 a.m. to 9 p.m.

7.1.3 Tetranychus urticae

For experiments on volatile emission, determination of phytohormone levels, and detection of 

ROS and phenolics, Tetranychus urticae KOCH (two-spotted spider mites) were reared on Medicago 

truncatula plants under the same conditions as described for the plant growth.

The mites used for volatile induction in the behavioural studies (olfactometer experiments) were 

reared on lima bean plants (Phaseolus lunatus L. cv. Sieva) at 25 ± 5 °C, 50 – 70% humidity and a 16 

h / 8 h light-dark rhythm.

7.1.4 Phytoseiulus persimilis

The predatory mites (Phytoseiulus persimilis ATHIAS-HENRIOT) were reared on lima bean leaves infested 

with T. urticae at 23 ± 1 °C, 50 – 70% humidity, and permanent light.

For all experiments adult females were used. Prior to an experiment, they were kept individually in 

1.5 ml reaction tubes for 2 h.

7.1.5 Mycorrhization

Mycorrhized M. truncatula plants were supplied by Dr. B. Hause (Leibniz-Institut für Pflanzenbiochemie, 

Halle/Saale, Germany). Two different batches of seeds were used in the experiments. One was 

obtained from AustraHort Pty Ltd (Cleveland, Australia) with a mixture of cultivars, including 

Medicago truncatula cv. Jemalong (without further specification of the line) and cv. Paraggio. 

The other one was M. truncatula cv. Jemalong A17. Seeds were sterilised in H₂SO₄, rinsed several 

times in water, transferred to moist filter paper, and kept at 4°C for 3 days. Afterwards, they were 

allowed to germinate in the dark for one day before being transferred to the greenhouse at 22°C. 

After five days, the seedlings were piqued and inoculated with Glomus intraradices SCHENCK & SMITH. 
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Thereafter, plants were kept at 23 – 25°C with a light-dark rhythm of 16 h / 8 h. Four weeks after 

inoculation, the degree of mycorrhization was approximately 36% and 59% for the mixed cultivars 

and M. truncatula cv. Jemalong A17, respectively.

7.1.6 Plant treatments, induction

7.1.6.1 Elicitors

β-Glucan elicitors were prepared from mycelia cell walls of the oomycete Phytophthora sojae 

KAUFMANN & GERDEMANN as described (Schmidt & Ebel, 1987) and applied in a concentration of 

200 µg ml-1. N,N’,N”,N’”-tetraacetylchitotetraose (CH4) was purchased from Sigma, Germany, and 

used at 100 µM. Nod-factors, the lipo-chitooligosaccharides LCO-IV (C16:2,S) and LCO-IV (C16:2), 

were synthesised as described (Rasmussen et al., 2004) and added at 10 µM. Alamethicin (Sigma, 

Germany) was applied at 10 µg ml-1. Jasmonic acid (obtained from its methyl ester, which was 

provided by Dr. R. Kaiser, Givaudan Company, Dübendorf, Switzerland, via saponification with 

K₂CO₃), acetylsalicylic acid (Sigma, Germany), and copper sulphate (Sigma, Germany) treatments 

were done with a concentration of 1 mM; Coronalon (synthesised as described by Schüler et al., 

2001; available in our department) was added at a concentration of 100 µM.

All substances were dissolved in water except for alamethicin (stock solution in methanol), LCO-IV 

(C16:2) (stock solution in DMSO), and coronalon (stock solution in DMSO). Dilution to the respective 

concentration for the treatments was done with tap water. Solvent controls using methanol and 

DMSO did not reveal any influence on volatile emission.

In all experiments involving chemical elicitation, 5 ml of the respective elicitor solution were 

used. Within about 24 h, these 5 ml were completely taken up by the plant, which was thereafter 

supplied with tap water.

7.1.6.2 Herbivore infestation

In all experiments dealing with Spodoptera spp. infestation, 10 – 15 larvae were allowed to feed on 

M. truncatula plants for a period of time as indicated in the results section.

The sampling times after infestation with Tetranychus urticae were judged according to symptom 

development in all experiments on volatile induction, determination of phytohormone levels, and 

detection of ROS and phenolics, in order to obtain comparable damage levels after caterpillar 

feeding and spider mite infestation. Symptoms were related to early and late stages of infestation. 

Samples representing the early stages of damage were collected after the appearance of yellowish 

spots; samples representing the late stages of damage were collected when initially infested leaves 

yellowed.

For behavioural tests using the Y-tube olfactometer, 50 spider mites were placed on one plant and 

were allowed to feed on it for 48 h prior to the Y-tube experiments. Fifteen S. littoralis larvae were 

placed on four plants and equally allowed to feed for 48 h on the plants, which were continuously 

kept under the conditions described above.
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7.2 ANALYSIS OF VOC EMISSION

7.2.1 Closed-loop stripping and GC-MS analysis

Volatiles were collected over a period of 48 h using the closed-loop stripping method as described 

by Donath & Boland (1995). Plants were enclosed in desiccators and connected to a circulation 

pump (Fürgut, Aitrach, Germany) containing a charcoal trap (1.5 mg of charcoal, CLSA-filter, Le 

Ruisseau de Montbrun, Daumazan sur Arize, France). By providing air circulation, emitted volatiles 

were continuously collected on charcoal filters. Finally, desorption was done using methylene 

chloride (2 x 20 µl) containing 100 µg ml-1 n-bromodecane (or 200 µg ml-1 in some experiments) as 

internal standard; the volatiles were analysed using GC-MS (TRACE 2000 series, Finnigan, U.K.). 

Plant treatments were done as described above (7.1.6 Plant treatments, induction). As controls 

both undamaged plants and plants cut and placed into tap water were used. Wounding plants by 

cutting did not induce elevated levels of volatile emission. Equally, for experiments on herbivore-

induced VOC release, a comparison of the emission pattern of cut and intact plants did not reveal 

any apparent differences. 

7.2.2 Identification of VOCs and determination of retention indices

The analysis of VOCs was done on a GC-MS (TRACE 2000 series, Finnigan, U.K.) equipped with an EC-

5 capillary (15 m x 0.25 mm x 0.25 µm; Alltech, Unterhaching, Germany). Helium was used as carrier 

gas at a constant flow of 1.5 ml min-1. Automatic injection of the samples (1 µl) was done with a 

split ratio of 1:10, the temperature of the injector was set to 220°C. The separation of compounds 

was achieved with an oven temperature program from 40°C for 2 min, and then increased at 10°C 

min-1 to 200°C, and finally at 30°C min-1 to 280°C, which was held for 1 min.

Compounds were identified according to their fragmentation pattern (MS) and by calculation and 

comparison of retention indices on an EC-5 capillary. For some compounds, retention indices were 

also determined on a second column with different polarity (DB 225MS, WiCom, Heppenheim, 

Germany) in order to confirm the prior identification (data not shown).

To compare mass spectra, the NIST/EPA/NIH Mass Spectral Library (Version 1998) and MassFinder 

(V 3.5; Dr. D. Hochmuth, Hamburg, Germany) were used.

The linear retention index (I) of all compounds detected was calculated according to the formula 

where t
Ri

 refers to the retention time of the compound of interest measured under conditions of 

temperature programming. z is the number of carbon atoms of the n-alkane eluting before the 

compound in question; accordingly, (z+1) is the number of carbon atoms of the n-alkane eluting 

after substance i, and t refers to the respective retention times.

The resulting values were compared either with those calculated from pure reference compounds 

or with literature data (Adams, 2001; Linstrom & Mallard, 2005 and references therein; retention 

indices of the compound in question measured under comparable conditions, i.e. temperature 

ramp, equivalent GC column etc.). Deviations of ± 2 for reference compounds and ± 5 for literature 

data were accepted for identical compounds in accordance with Hochmuth (2004). 
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7.2.3 Relative quantification of volatiles

In the case of chemically elicited plants, relative quantification of the compounds emitted was 

done by relating the respective peak areas to the peak area of the internal standard (100 µg 

ml-1 n-bromodecane) and to the fresh weight of the plants. In instances, where 200 µg ml-1 n-

bromodecane were added, the data were divided by two to yield comparable values.

Volatile emission by mycorrhized and non-mycorrhized plants was normalised only by the internal 

standard, as the fresh weight of the plants that were not detached could not be determined prior 

to the experiments. However, all plants tested were of the same age and thus the variation in 

biomass can be assumed to be rather low.

7.2.4 Statistics

The first line of statistical analysis was done using one-way ANOVA combined with the Newman-

Keuls post hoc test to compare the levels of single compounds emitted after the different treatments 

using square root transformed data.

In order to achieve exploratory mappings of different treatment effects in a mathematical space 

as defined by the volatile blends, a Non-metric Multidimensional Scaling (NMDS) ordination 

was carried out (Kruskal, 1964). NMDS is a method of multivariate statistics that is employed to 

analyse the structure of similarity or dissimilarity of data in multidimensional feature space. NMDS 

represents data as distances between points in a geometric space of low dimensionality (three 

or less). Therefore, only the configuration of points (samples) and their interitem distances count, 

i.e. points close to each other are likely to share some intrinsic properties, whereas distant points 

bear little or no similarity. NMDS maps observed dissimilarities non-linearly onto ordination space 

and can effectively handle non-linear responses of any shape. Therefore, the method does not rely 

on any particular relationship between variables and is commonly regarded as one of the most 

robust ordination methods in exploratory multivariate analysis, especially in ecology where data 

are often noisy and / or sparse (Minchin, 1987; Legendre & Legendre, 1998; Borg & Groenen, 2005). 

The analysis was performed in the way recommended by (Minchin, 1987), as implemented in the 

R package VEGAN (Oksanen et al., 2006).

Prior to analysis, the data were standardised using square root transformation and tested for proper 

standardisation using the Shapiro-Wilk test of normality (Royston, 1982). In the first line of analysis 

by NMDS, Euclidean distance was selected as dissimilarity measure. In order find out, if volatile 

blends can be separated in ordination using only binary responses (i.e. presence or absence of 

a particular compound in the sample), and hence disregarding any effect of concentration, data 

were reduced to the binomial form in some instances. A binary dissimilarity index was used in this 

respect.

The overall goodness of fit of the models was measured by the stress statistic, the correlation 

between fitted values and ordination distances (Venables & Ripley, 2002). This statistic gives the 

proportion of data not ideally depicted in the ordination.

As volatile blends proved to exhibit rather distinct patterns in NMDS, further approaches aimed to 

test whether certain treatments can be diagnosed by their respective volatile profiles.

Linear Discriminant Analysis (LDA) aims to find linear transformations of the variables that yield 

maximal separation of the given groups by maximizing between-class variance and minimizing 

within-class variance (McLachlan, 1992). In doing so, it helps to describe differential features of 
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observations, to sort objects into labelled classes, and to assign new observations to previously 

defined classes. For simple LDA, multicollinearity poses a major problem. This term refers to multiple 

variables, which carry basically the same information (cf. Appendix III, Glossary of statistical terms). 

This obstacle can be overcome by using stepwise selection of variables for classification. Here, 

forward variable selection was performed using the Wilk’s lambda criterion, as executed by the R 

package klaR (Mardia et al., 1979; Weihs et al., 2005). The value of Wilk’s lambda, which can range 

from zero to one, indicates whether the means of variables are different between groups. The 

smaller this value is, the more likely it is that the group means differ. The method used selects 

variables that minimize the Wilk’s lambda as long as the p-value still indicates statistical significance 

at the 0.9 significance level.

The quality of the resulting models is usually given by the estimated error of misclassification. 

This parameter was tested by 10-fold cross-validation. For that purpose, the actual measurements 

were split into a training set and a test set. The first is used to build up a classification rule, which 

in turn is used to predict the items in the test set, i.e. to allocate them to the appropriate group. 

This procedure is performed on 10 different subsets (Venables & Ripley, 2002); in order to achieve 

numerical stability, this test was repeated 99 times. The overall results, which give the proportions 

of classification and the error rates of the model in question, were summarised in a confusion 

matrix. Visual inspection of the model can be done by plotting the first few linear discriminants, 

i.e. the transformed variables.

7.3 ANALYSIS OF PHYTOHORMONE LEVELS

7.3.1 Extraction and quantification by GC-MS

Salicylate and jasmonate levels were determined according to the protocol for jasmonate 

quantification of Koch et al. (1999) with minor modifications. Briefly, plants were weighed and 

immediately frozen in liquid nitrogen. After the addition of 30 ml acetone:50 mM citric acid (7:3, 

v/v) and 150 ng [9,10-²H₂]-9,10-dihydro-JA and 500 ng [3,4,5,6-²H₄]-SA as internal standards, plants 

were homogenised using an ultra-turrax. The acetone was allowed to evaporate overnight at 

room temperature. Samples were cleared by filtration and subsequently extracted with 3 x 10 

ml diethyl ether. Extracts were then loaded on solid-phase extraction cartridges containing 500 

mg aminopropyl (Chromabond, Macherey-Nagel, Germany). After washing with 5 ml chloroform:

isopropanol (2:1, v/v), bound acids were eluted using 12 ml diethyl ether:formic acid (98:2, v/v). 

After the solvents had evaporated, the residues were methylated using excess diazomethane. The 

final sample volume was adjusted to 50 µl with dichloromethane and analysis was performed 

using GC-MS (TRACE 2000 series, Finnigan, U.K.) in the selective ion mode. The fragment ions were 

monitored at m/z = 120, 124 and 83 for SA, [3,4,5,6-²H₄]-SA and JA and [9,10-²H₂]-9,10-dihydro-

JA, respectively. The GC was equipped with an EC-5 capillary (15 m x 0.25 mm x 0.25 µm; Alltech, 

Unterhaching, Germany). Helium was used as carrier gas at a constant flow of 1.5 ml min-1. Automatic 

injection of the samples (1 µl) was done with a split ratio of 1:10, the temperature of the injector 

was set to 260°C. For the separation of compounds, the oven was operated with a temperature 

program starting at 80°C for 2 min, increasing at 8°C min-1 to 127°C, held for 5 min, then heated at 

30°C min-1 to 280°C, and held for 3 min.
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The endogenous concentrations of salicylate and jasmonate were calculated from the peak areas 

of the respective substance and its standard using calibration curves. [3,4,5,6-²H₄]-SA and [9,10-

²H₂]-9,10-dihydro-JA were synthesised as described by Engelberth et al. (2001) and Koch et al. 

(1999), respectively, and were readily available in our department. 

7.3.2 Statistics

Statistics were done using the Student’s t-test. All comparisons were done between treatments 

and the respective controls.

7.4 MICROSCOPY

7.4.1 Detection of reactive oxygen species

7.4.1.1 Iodine-starch stain

To detect reactive oxygen species (ROS) in entire leaves, an iodine-starch stain was conducted 

using the method described by Olson & Varner (1993) with slight modifications. The samples were 

covered with a staining solution containing 4% (w/v) starch and 0.1 M NaI, and incubated for 15 

– 30 min at room temperature. Samples were then rinsed with water and bleached overnight in 

ethanol (abs.). Slides were prepared using 70% ethanol and were viewed and documented using a 

light microscope (Axioskop, Zeiss, Germany) equipped with a digital imaging system (Spot, Visitron 

Systems, Germany).

7.4.1.2 3,3’-Diaminobenzidine

As an alternative method for the detection of hydrogen peroxide with light microscopic methods, 

staining with DAB was applied (Orozco-Cardenas & Ryan, 1999).

Branches of the plants were placed in a solution of 1 mg ml-1 3,3’-Diaminobenzidine (DAB; Sigma-

Aldrich), pH 3.8. The vessels with the plants were then put into desiccators that were slightly 

evacuated and incubated overnight under constant light. After induction treatments the plants 

were further incubated in DAB until sampling. After 48 h leaves were cut into pieces of adequate 

size and incubated for another 30 minutes in DAB solution. Afterwards, samples were bleached for 

10 min in boiling ethanol (abs.) and then left in ethanol for 4 h. To prepare the slides, samples were 

transferred to 80% lactic acid.

Slides were viewed and documented using a Nikon Eclipse E400 light microscope equipped with 

a Nikon coolpix 4500 digital camera.

7.4.1.3 Nitroblue tetrazolium 

For the detection of O₂.- nitroblue tetrazolium (NBT; Sigma-Aldrich) was used. A droplet of NBT 

solution (6 mM in deionised water) was spread on a microscope slide; fresh hand-cut cross-sections 

of M. truncatula stems were put onto the liquid and covered with a cover slip. After 10 – 15 min of 

incubation the sections were rinsed by sucking water through the preparation by means of filter 

paper.

The slides were viewed and documented using a light microscope (Axioskop, Zeiss, Germany) 

equipped with a digital imaging system (Spot, Visitron Systems, Germany).
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7.4.2 Detection of nitric oxide

To detect NO by microscopic means, the method described by Foissner et al. (2000) was applied 

with minor modifications.

As a probe, 4,5-diaminofluorescein diacetate (DAF-2 DA; Sigma-Aldrich) was used. A droplet of a 10 

µM solution (in 10 mM Tris/HCl, pH 7.2) was spread on a slide; fresh hand-cut cross-section of stems 

were put onto the liquid, covered with a cover slip, and left for about 10 min in the dark. Objects 

were washed by sucking buffer through the preparation with filter paper.

Staining can be viewed by means of fluorescence microscopy. The microscope (Axioskop, Zeiss, 

Germany) was operated with two different filters. For the visualisation of the fluorescein signal, a 

450 – 490 nm excitation filter and a 515 – 565 nm emission filter were used. For viewing chlorophyll 

autofluorescence, a band pass 546 (ex) / long pass 590 (em) filter was used. A digital imaging system 

was used for documentation (Spot, Visitron Systems, Germany). For the sake of comparability, 

exposure times were kept constant within one row of experiments.

Alternatively, entire leaves were tested for the suitability for NO-detection. Leaves were incubated 

in the staining solution described above for 30 min in the dark. Subsequently, samples were washed 

in fresh buffer to remove excess dye.

For time courses with low duration, intact leaves were stained and treated immediately prior to 

microscopic analysis. For measurements over a longer period of time, inducing treatments were 

conducted prior to the staining procedure.

The microscope used was an Olympus (Tokyo) FLUOview confocal scanning laser microscope 

operated with a Krypton / Argon laser at 488 nm and 568 nm. Images generated by the FLUOView 

software were analysed using the public domain NIH Image program (available on the Internet at 

http://rsb.info.nih.gov/ij/). 

7.4.3 Autofluorescence

For the detection of phenolic compounds, whole leaves were used without further preparation. 

The fluorescence microscope (Axioskop, Zeiss, Germany) was operated with a 365 nm band pass 

excitation filter and a 397 nm long pass emission filter. A digital imaging system was used for 

documentation (Spot, Visitron Systems, Germany).

7.5 BEHAVIOURAL STUDIES – Y-TUBE OLFACTOMETER EXPERIMENTS

In all experiments, the responses of the predatory mites were tested in a Y-tube olfactometer. As 

an odour source, 4 plants per treatment were put into the respective vial. Constant air flow was 

provided at 4 l min-1.

Individual predatory mites were observed in the olfactometer. Mites that did not choose one 

branch of the olfactometer within 5 min or did not reach the end of one branch within 10 min 

were recorded as “no choice”.

Experiments were repeated on several days with new odour sources and new groups of about 

20 mites in order to randomise individual variations in volatile emission and searching behaviour, 

respectively.
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APPENDIX I 

Retention indices of volatiles detected

in Medicago truncatula

The volatiles emitted by M. truncatula are listed in the order of their retention index (temperature 

programmed, EC-5). This list does not claim completeness; compounds detected only in trace 

amounts or found only randomly in a few samples were excluded.

Table A-1 Volatiles emitted by Medicago truncatula with retention indices (temperature programmed EC-5) measured 
in the samples, from pure reference compounds, and from literature data.

compound Is Ilit Iref comments

α-Pinene 931 939 931
Benzaldehyde 955 960 955
β-Pinene 972 973
1-Octen-3-ol 981 979 982
3-Octanone 986 984
6-Methylhept-5-en-2-one 986 986
2-Pentylfuran 991 993
6-Methyl-1-heptanol 992 tentative identification; MS
n-Decane 1000 1000 1000
Ethyl hexanoate 1000 998
n-Octanal 1001 999 1003
Carene 1005 1002 1006
cis-3-Hexenylacetate 1007 1005 1007
p-Methylanisol 1016 1019
Cymene 1020 1023
Limonene 1024 1029 1025
RI 1038; M 142, BP 109 1038 unidentified compound
E-β-Ocimene 1047 1050 1048
Cresol, o- 1057 1056
1-Octanol 1074 1072
Cresol, p- 1078 1077
Methyl benzoate 1090 1091
Linalool 1096 1097 1098
n-Undecane 1100 1100 1100
n-Nonanal 1103 1101 1105
β-Phenylethanol 1109 1107
RI 1112; M 198, BP 123 1112 unidentified compound
4,8-Dimethylnona-1,3,7-triene (DMNT ) 1116 1116
2,6-Dimethyl-1,3,5,7-octatetraene 1127 tentative identification; MS
4-Ketoisophorone 1140 1145
Ethyl benzoate 1166 1168
2-sec-Butyl-3-methoxypyrazine 1171 1172
Methyl salicylate 1193 1192 1193
Ethyl octanoate 1196 1197
n-Dodecane 1200 1200 1200
n-Decanal 1205 1202 1206
2,6-Dimethyl-3,5,7-octatriene-2-ol 1207 tentative identification; MS
1,2-Benzisothiazole 1215 tentative identification; MS
β-Cyclocitral 1216 1218
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Cyclohexylisothiocyanate 1226 1226
3,5-Dimethoxytoluene 1263 1264 1264
Ethyl salicylate 1265 1270
1-Decanol 1271 1270
n-Tridecane 1301 1300 1300
n-Undecanal 1303 1307
7αH-Silphiperfol-5-ene 1321 1322
7βH-Silphiperfol-5-ene 1340 1344
Cyclosativene 1362 1371 1364
Longicyclene 1366 1374 1366
α-Ylangene 1370 1375 1370
α-Copaene 1374 1377 1374
RI 1381; M204, BP 161 1381 unidentified sesquiterpene
β-Cubebene 1387 1388
1-Tetradecene 1389 1389
Ethyl decanoate 1393 1396
n-Tetradecane 1400 1400 1400
α-Gurjunene 1405 1410 1407
E-β-Caryophyllene 1417 1419 1418
RI 1417; M 204, BP 147; presumably a Pacifigorgiane 1417
β-Copaene 1427 1432 1428
α-Bergamotene 1432 1435
α-Himachalene 1447 1451 1446
α-Humulene 1451 1455 1451
Geranylacetone 1452 1455

RI 1457; M 204, BP 204 1457
δ-Patchoulene or Valerena-
4,7(11)-diene

β-Farnesene 1458 1457 1458
allo-Aromadendrene 1460 1460 1460
γ-Himachalene 1476 1475 1476
γ-Muurolene 1478 1480 1478
Germacrene D 1479 1485 1478
RI 1481; M 204, BP 91 1481 unidentified sesquiterpene
β-Ionone epoxide 1483 tentative identification; MS
β-Ionone 1488 1489 1489
α-Muurolene 1500 1500 1500
n-Pentadecane 1500 1500 1500
RI 1521; M 204, BP 109 1521 Trichodiene or β-Bazzanene
Ethyl 4-ethoxybenzoate 1524 tentative identification; MS
Dihydroactinidiolide 1524 1525
Methyl dodecanoate 1525 tentative identification; MS
RI 1532; M 196, BP 68 1532 unidentified compound
E-Nerolidol 1564 1563 1566
(3E ,7E)-4 ,8 ,12-Tr imethyltr ideca-1,3,7,11-tetraene 
(TMTT )

1578 1579 1579

Caryophyllene oxide 1579 1583 1579
RI 1587; M 222, BP 109 1587 Viridiflorol or Globulol
2-Himachalen-7β-ol 1637 1637
β-Himachalol 1645 1647
Methyl jasmonate 1643 1638
α-Santalol 1669 1675 tentative identification
α-Bisabolol 1679 1681 1686 tentative identification
RI 1806; M 272, BP 191 1806 unidentified diterpene
RI 1876; M 272, BP 191 1876 unidentified diterpene
RI 1983; M 272, BP 189 1983 unidentified diterpene

Table A-1, continued

compound Is Ilit Iref comments
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I
s
, linear retention index of compounds in VOC samples; I

lit
, retention index of the respective compound measured under 

comparable conditions, as found in the literature (Adams, 2001; Linstrom & Mallard, 2005 and references therein); I
ref

, 
retention index of authentic reference compounds measured under the same conditions as the volatile samples.
Deviations of ± 2 for reference compounds and ± 5 for literature data were still accepted as identity in accordance with 
Hochmuth (2004).



102



Appendix II
103

APPENDIX II

Mass spectra of volatiles detected in Medicago truncatula

The mass spectra of VOCs found to be emitted by M. truncatula are listed in the order of their 

retention index (temperature programmed, EC-5). This list does not claim completeness; compounds 

detected only in trace amounts or found only randomly in a few samples were excluded.
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APPENDIX III

Glossary of statistical terms

Terms in italics indicate cross-references

ANOVA (Analysis of Variance) serves the comparison of two or more normally distributed groups 

with equal variance. By comparing the variances, the test tells whether the group means are 

significantly different or not. It does not indicate which group is different from which group. For 

this, post hoc tests have to be applied.

Binomial tests are used to assess the probability of a result, if two mutually exclusive outcomes 

are to be compared, i.e. whether the outcome is strictly random or whether there is discrimination 

in favour of one of them.

Confusion matrices can be used to summarise the predictive accuracy of a Linear Discriminant 

Analysis as estimated by cross-validation. It specifies the proportion of cases in which a sample was 

correctly or falsely classified.

Contingency tables are tables of frequencies. They are used to summarise categorical data, 

revealing relationships between variables. Significance can be tested using Fisher’s exact test.

Cross-validation is a method to test the predictive accuracy of a model. A “learning set”, consisting 

of actually measured samples, is used to build up a model. Then, new samples, the “test set”, are 

allocated to the groups by the classification rules of the model in question. The results give the 

proportion of correct classification, which can be summarised in a confusion matrix.

Fisher’s exact test. Contingency tables can be analysed using Fisher’s exact test in order to tell 

whether the association between different variables is merely random or not. Small p-values 

indicate that the result is unlikely to be caused by chance.

Linear Discriminant Analysis (LDA) can be used both as exploratory method and for classification. 

It aims to determine which variables discriminate between given groups. To do so, multivariate 

observations are linearly combined and transformed, such that the derived populations are 

separated as much as possible.

Multicollinearity refers to cases in which one or more variables are linear functions of other 

variables, i.e. variables are linearly correlated. In such instances, it cannot be determined which of 

the variables accounts for the variance of the dependent variable (group).

Multidimensional Scaling (MDS) is an exploratory method that aims to map objects (samples) 

in a low-dimensional space so that the resulting representation reproduces the original distances 

or similarities as closely as possible. The distances between any data point in the ordination thus 

indicate the respective similarities or correlations.
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Multivariate data analysis. Altogether, methods of multivariate data analysis aim to extract 

relevant information from complex data. Thereby, hidden dynamics underlying the process 

might be revealed and represented in a simplified manner. The number of measurement types or 

variables is the dimension of the data set. Multivariate data analysis can be used for data reduction 

or structural simplification. This aims to find a representation as simple as possible without losing 

valuable information, which should make the interpretation easier. Furthermore, groups of similar 

objects or variables can be created based on measured characteristics. This also includes the 

investigation of dependencies among variables and mutual interrelationships of variables. Certain 

methods, moreover, allow predictions to be made, and thus facilitate hypothesis construction and 

testing. Basically, multivariate data analysis serves three purposes: exploratory methods provide a 

basis for visualisation of complex patterns; classification algorithms aim to find specific distinctions 

between given groups; such algorithms can also be used for allocation, that is, to assign new 

samples to previously defined groups.

Non-metric Multidimensional Scaling (NMDS) is a variant of Multidimensional Scaling. Instead of 

using original similarities, rank orders are used for scaling.

Ordination is a low-dimensional plot representing multivariate data.

post hoc tests are performed after significant differences of means have been found by ANOVA.  

All combinations of groups are compared in order to find which groups actually differ from each 

other. Several tests are available with varying degrees of stringency.

Shapiro-Wilk test is applied to assess normal distribution of data.

Stress statistics give a numerical measure for the closeness of the fit in Multidimensional Scaling. 

It indicates the proportion of the original data that is not ideally depicted in the calculated scale. 

The smaller the value, the better the fit.

t-test is a common test for the difference of means between two groups.

Type I error (α) occurs, if the null hypothesis is rejected when it is actually true. The type I error is 

defined by the significance level. It sets the probability of falsely rejecting the null hypothesis. The 

α-error is inversely related to the type II error. The smaller α gets, the larger is the chance for a type 

II error. 

Type II error (β) occurs, if the null hypothesis is not rejected even though it is false. It depends 

on the sample number, the degree of differences between groups, and the power of the statistical 

test applied.

Wilk’s lambda is a statistical test in multivariate analysis to determine whether there are differences 

of means between combinations of variables for specified groups.
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