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Small Perturbation of Selfadjoint and Unitary
Operators in Krein Spaces

Tomas Ya. Azizov, Peter Jonas and Carsten Trunk

Abstract. We investigate the behaviour of the spectrum of selfadjoint opera-
tors in Krein spaces under perturbations with uniformly dissipative operators.
Moreover we consider the closely related problem of the perturbation of uni-
tary operators with uniformly bi-expansive. The obtained perturbation results
give a new characterization of spectral points of positive type and of type 7+
of selfadjoint (resp. unitary) operators in Krein spaces.

Mathematics Subject Classification (2000). Primary 47A55; Secondary 47B50,
46C20.

Keywords. Selfadjoint operators, unitary operators, perturbation by uniformly
dissipative operators, Krein spaces, perturbation by uniformly bi-expansive
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Introduction

A real point X of the spectrum of a closed operator in a Krein space (H,[-,]) is
called a spectral point of positive (negative) type, if for every normed approxima-
tive eigensequence (x,,) corresponding to A all accumulation points of the sequence
([xn,x,]) are positive (resp. negative), see Definition 1.1 below. These spectral
points were introduced by P. Lancaster, A. Markus and V. Matsaev in [18] for
a bounded operator A which is selfadjoint in the Krein space (M, [, ]), i.e. the
selfadjointness is understood with respect to [-,-]. In [20] the existence of a local
spectral function was proved for intervals containing only spectral points of pos-
itive (negative) type or points of the resolvent set p(A). Moreover it was shown
that, if A is perturbed by a compact selfadjoint operator, a spectral point of pos-
itive type of A becomes either an inner point of the spectrum of the perturbed
operator or it becomes an eigenvalue of type m. A point from the approximative
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point spectrum of A is of type m if the abovementioned property of approxima-
tive eigensequences (x,) holds only for sequences (z,) belonging to some linear
manifold of finite codimension (see Definition 1.2 below). Every spectral point of a
selfadjoint operator in a Pontryagin space with finite rank of negativity is of type
4. For a detailed study of the properties of the spectrum of type 71 we refer to
[3] and [5].

It is the main aim of this paper to consider perturbations of selfadjoint opera-
tors (unitary operators) in some Krein spaces with uniformly dissipative operators
(resp. uniformly bi-expansive operators). Let A be a selfadjoint operator in the
Krein space H. Let Ag be no accumulation point of the non-real spectrum of A
and let (a,b)\ {\o} consists of spectral points of positive type or of points from the
resolvent set of A only. In Section 2 below we show that A\g belongs to the spec-
trum of positive type of A if and only if there exists a fixed open neighbourhood
U of \g such that for all sufficiently small uniformly dissipative operators B the
operator A + B has no spectrum inside the intersection of & and the open lower
half-plane. Moreover, the point Ag belongs to the spectrum of type my if and only
if for all sufficiently small uniformly dissipative operators B the operator A+ B has
at most finitely many normal eigenvalues inside the intersection of & and the open
lower half-plane. In particular, we are able to show that the sum of all spectral
multiplicities within U intersected with the open lower half-plane equals the rank
of negativity of x_(E((a’,b'))H), where E(-) denotes the local spectral function
of A. On the other hand, if for every sufficiently small uniformly dissipative oper-
ator B the range of the Riesz-Dunford projector corresponding to A + B and the
intersection of U and the open lower half-plane is of infinite dimension, then A
does not belong to o, (4) U p(A).

In Section 3 we show that the above arguments hold true in a similar way
for uniformly bi-expansive perturbations of unitary operators.

We view these perturbation results also as a new characterization of the
spectral points of positive (resp. negative) type and of type w4 (resp. m_) of
selfadjoint /unitary operators in Krein spaces. We mention that in the early work
of L.S. Pontryagin such arguments were used in a similar manner, cf. [22].

Sign type spectrum is used in the theory of indefinite Sturm-Liouville oper-
ators, e.g. [4, 6, 8, 17]. Moreover, it is used in the theory of mathematical system
theory, see e.g. [12, 13, 19] and in the study of PT-symmetric problems [9, 10, 21].

1. Preliminaries

Let (H,[,-]) be a Krein space. Let A be a closed operator in H. By L1(A) we
denote the root subspace of A corresponding to A, i.e. L)(A) = U ker (A — \)™.
A point A € C is said to belong to the approzimative point spectrum ocgq,(A)
of A if there exists a sequence (z,) C D(A) with ||z,]] = 1, n = 1,2,..., and
[[(A — Xo)zn] — 0 as n — oo. The boundary points of the spectrum of a closed
operator belong to the approximative point spectrum. For a selfadjoint operator A
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in the Krein space (H, [, -]) all real points of the spectrum of A belong to o, (A)
(see e.g. [7, Corollary VI.6.2]).

The following definition is from [1]. In [18], [20] it was given for the case of a
bounded selfadjoint operator.

Definition 1.1. For a closed operator A in H a point A\g € o(A) is called a spectral
point of positive (negative) type of A if Ao € 0qp(A) and for every sequence
(xn) C D(A) with ||z,|| =1 and ||(A — Xo)zn|| = 0 as n — oo, we have

liminf [z,,z,] >0 (resp. imsup [z,,z,] < 0).

n—oo n—00

We denote the set of all points of positive (negative) type of A by o4 (A) (resp.
o__(A)).

If the operator A is selfadjoint then the sets o, (A) and o__(A) are con-
tained in R (cf. [20])

In a similar way as in Definition 1.1 we introduce now some subsets of o(A)
containing 044 (A) and o__(A), respectively, which will play an important role in
the following (cf. [1] and for special case of a selfadjoint operator see [3]).

Definition 1.2. For a closed operator A in H a point A\g € o(A) is called a spectral
point of type w1 (type m_) of A if \g € 04p(A) and if there exists a subspace
Ho C H with codimHy < oo such that for every sequence (x,) C Ho N D(A) with
|zn]l =1 and ||[(A — Xo)xn|| — 0 as n — oo, we have

liminf [x,,z,] >0 (resp. limsup [z,,z,] <0).

n—0oo n— o0

We denote the set of all points of type 1 (type n_) of A by o, (A) (resp. o5_(A)).
We call Hy of minimal codimension if for each subspace Hi C H with codim H; <
codim M there exists a sequence (x,) C Hi N D(A) with ||z,]| = 1 and ||(A —
Ao)Zn|| — 0 as n — oo, such that

liminf [z,,z,] <0 (resp. limsup [x,, z,] > 0).

n—00 n— oo

Observe, that for a point Ag € o, (A) we have that A\g € 041 (A) if and only
if the subspace Hy from Definition 1.2 can be choosen as Hg = H.

Recall that an operator C' in a Krein space (H, [-,-]) is called uniformly dis-
sipative if there exists some o > 0 such that for x € D(C) we have Im [Cz,z] >
allz|?.

The second part of the following lemma is well-known, nevertheless we give

a proof for the sake of completeness.
We set C* := {z € C| £ Imz > 0}.

Lemma 1.3. Let C' be a closed uniformly dissipative operator in a Krein space
(H,[-,-]). Then

0ap(C)NC™ Co__(C).
If A € 0,(C)NC™ then for each x € L(C), x # 0, it follows

[z, 2] < 0.
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Proof. Let Mg € 04p(C)NC~. Then the first statement of Lemma 1.3 follows from
the fact that for every sequence (z,) C D(C) with ||z, | = 1 and ||(C—Xo)z, || — 0,
n — oo, we have

Im [Cxzy, 2] — Im Ag[2n, 20| < ||(C — Xo)zy| — 0,n — 0.

Let A € 0,(C)NC~. It follows from [2, Ch. 2, Corollary 2.17] that for each
y € Lx(C) we have [y,y] < 0. Assume that there exists an x € £,(C), x # 0, with
[z, 2] = 0. Then we have [z,y] = 0 for all y € £,(C). Hence

0=Im[(C — Nz, ],

which is a contradiction to the assumption that C' is uniformly dissipative. O

2. Uniformly dissipative perturbations of selfadjoint operators in
Krein spaces

Let A be a selfadjoint operator in the Krein space (H, [-,-]), that is, A = AT. Let
B be a bounded uniformly dissipative operator in the Krein space (H, [, ]). Then
the operator A + B, which is defined on D(A), is uniformly dissipative.

Lemma 2.1. Let A be a selfadjoint operator and let B be a bounded uniformly
dissipative operator in H. Then

R C p(A+ B).

Proof. Set C := A+ B. We choose o > 0 such that Im [Bz,z] > ofz|?, z € H.
We have D(C') = D(A) = D(C™") and, therefore, for A € R and z € D(C), = # 0,
it follows

Iz[ll[(C = Nzl = [(C = Nz, ]| = [Im [Bz, ]| > afjz|®

and
(CF = Nz|| = a|z|.
As C' is a closed operator the point A belongs to p(C). O

Lemma 2.2. Let i € 041 (A). Then there exists a 6 > 0 and an € > 0 such that
for all bounded uniformly dissipative operators in H with ||B| < e it follows that
the intersection of C~ and the disc around p with radius 6 belongs to p(A + B).

Proof. Assume that the assertion of Lemma 2.2 is not true. Then there exist a
sequence of bounded uniformly dissipative operators (B,,) in H with ||B,| — 0,
n — oo, and a sequence () in 0(A+ B,,) NC~ which converges to p, u € 014 (4).
We assume A, € 0qp(A+By,), n € N. In view of Lemma 2.1 this is no restriction. By
Lemma 1.3 there exists a sequence (), 2, € D(A + B,,) = D(A) with ||z,|| =1,
[T, 2n] < 0and [|(A+ By, — Ap)zn|| < 2, n € N. Then liminf,—, o [#,, 2,] < 0 and

n

(A— )z, =(A4+ By — \p)zn + (N, — )y — Bpazp, — 0, n— o0,
which contradicts pu € o4 (A). O
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Proposition 2.3. Let A be a selfadjoint operator. Assume that Ao, Ao € (a,b), is
not an accumulation point of the non-real spectrum of A and that

(@,0)\ Do} C o4 (4) U p(A) (1)
holds. Let a < a’ < Ag < b < b. Then there exists a &' > 0 such that the strip
{INeC™ :d <ReXA<V,-8 < Im) <0}

belongs to the resolvent set of A. Moreover, if vs: denotes the closed oriented curve
in the complex plane which consists of the line segments connecting the points
b,b —id',a’ —id',a’ and V' then there exists an 9 > 0 such that for all bounded
uniformly dissipative operators B in H with ||B| < o we have

s C p(A + B). (2.2)

Proof. The first statement of Proposition 2.3 follows from [20] (or [3]). In order to
show (2.2) we choose g9 > 0 so small that, cf. Lemma 2.2, for all bounded uniformly
dissipative operators B in H with || B|| < g¢ the line segments connecting the points
b and b — i’ and the points @’ and @’ — i§’ belong to p(A + B). Moreover, we
choose ¢ so small that

1

maxer [[(A = A)~!|

holds, where T" is the line segment connecting the points b’ — 76" and a’ — id’. As
A+B—-X= I+ B(A-X\)"1)(A- ), T is asubset of p(A+ B). Moreover, by
Lemma 2.1, R C p(A + B), hence Proposition 2.3 is proved. O

go <

The following theorem can be considered as the main result of this paper.
Recall that for a selfadjoint operator satisfying (2.1) there exists a local spectral
function E defined on subintervals of (a, b) with endpoints not equal to a, b or Ag, cf.
[3], [15]. In particular there exists the spectral projection E((a’,b’)) corresponding
to the interval (a/,b") with a < a’ < Ag < < b.

Theorem 2.4. Let A be a selfadjoint operator in the Krein space H. Assume that
Ao, Ao € (a,b), is not an accumulation point of the non-real spectrum of A and
that

(a,5)\ {Ao} € 0+ (4) U p(A), (2.3)
Let o', V', &', €9 and s be as in Proposition 2.3. Then the following assertions
are valid.

(i) The point Ao belongs to o44(A) U p(A) if and only if there exists an €1 > 0
such that for every uniformly dissipative operator B acting in H with ||B|| <
€1 the operator A+ B has no spectrum inside the curve 7yg .

(i) The point Ao belongs to o, (A) if and only if there exists an €1 > 0 such
that for every uniformly dissipative operator B acting in H with |B]|| < &1
the spectrum of A+ B inside the curve 75 consists of at most finitely many
normal eigenvalues A1, Aa, ..., A\g such that

M_ :=span{Ly,(A+B):1<j <k}
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is of finite dimension. Moreover, in this case, the dimension of M _ is equal to
the rank of negativity k_(E((a’,b"))H) of the Pontryagin space E((¢’,b"))H,
that is
dimM_ = k_(E((d,b"))H).

(iii) The point Ao does not belong to o, (A) U p(A) if and only if there exists an
€1 > 0 such that for every uniformly dissipative operator B acting in H with
IB|| < €1 the range of the Riesz-Dunford projector corresponding to A+ B
and vs: is of infinite dimension.

Proof. Let a’, b, ¢', g9 and 5 be as in Proposition 2.3. Set K := (I-E((a’,V)))H.
Then the space H decomposes

H = FE((d,V)H[+]K, (2.4)

where [+] denote the direct sum of spaces which are orthogonal with respect to

[-,-]- Moreover,
o AO 0 o Bo B01
A—[ 0 A1:| and B_[Blo By

with respect to the decomposition (2.4). The operators By and Bj are uniformly
dissipative operators in E((a’,b'))H and K, respectively. As E is the spectral
function of A, we have

o(Ag) C [d/,b] and o(A4;) C R\ (V).

By assumption, o’ and b’ belong to o1 (A)Up(A). Lemma 2.2 implies the existence
of 6 > 0 and € > 0 such that for all bounded uniformly dissipative operators in ‘H
with || B|| < ¢ it follows that the intersection of C~ and the discs around a’ and ¥’
with radius § belong to the resovent set of the operator

Ay O + By 0
0 A 0 B |’
Denote by I'ss the open set in C which has as its boundary the curve 4/, that
isTyy ={AeC:d <Rel <V,-¢ <ImA < 0}. It follows from [16, IV.§3.1]
that there is an €1 > 0, &1 < min{e, g}, such that for all uniformly dissipative
operators B acting in H with || B|| < e; we have
o(Ag + Bo) C {\ € C: dist (\, [¢,b]) < min{d,d'}} (2.5)
and
L5 C p(A1 + By). (2.6)
Then Lemma 2.1, Proposition 2.3 and (2.5) imply that for all uniformly dissipative
operators B with ||B]| < &1
O'(Ao + Bo) NC™ CTy. (27)

Now we assume that Ao belongs to o, (A). Then (E((a’,V")),[,-]) is a Pon-
tryagin space with a finite rank of negativity and, if Ay € 044 (A), it is even a
Hilbert space (cf. [3, Theorems 23 and 24]). An application of [11, Theorem 11.6]
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implies that o(Ag + Bp) N C~ consists of at most finitely many eigenvalues and
that

M_ :=span {,C)\(Ao + Bo) A E O'(Ao + Bo) N (C_}

is a maximal uniformly negative subspace of E((a’,b"))H invariant under Ag+ By.
Therefore

dimM_ = k_(E((d,b'))H)

and relations (2.7) and (2.6) imply that the operator A 4+ B has the properties
stated in assertions (i) and (ii) if Bgy = Bip = 0. If Bg; # 0 or Byg # 0 we

consider the operators
AO 0 + BO tB()l
0 A tBig Bi1 |’

where ¢ runs through [0, 1]. Then by [16, IV.§3.4], Lemma 1.3 and Proposition 2.3
the operator A + B has the properties stated in assertions (i) and (ii).

It remains to consider the case Ao ¢ o, (A). Assume that the range of
the Riesz-Dunford projector P_ corresponding to Ag + By and ~s is of finite
dimension. Then, by Lemma 1.3, it is a uniformly negative subspace of E((a’, b)) H.
Moreover the range of the Riesz-Dunford projector P, corresponding to Ag + By
and o(Ap + By) N CT is a nonnegative subspace (cf. [2]) and we have

E((d',b))H = Py E((d,b)YH[+]P_E((d’,b))H.

We claim that P_FE((a’,b'))H is a maximal uniformly negative subspace of the
Krein space E((a’,b"))H. Indeed, assume that there exists a maximal uniformly
negative subspace M_ with P_E((d',b'))H C M_ and there exists some z, z €
M_\P_E((d’,b')yH. Then [z—P_z, z— P_z] < 0 holds. But this is a contradiction
tox — P_x=Pyx € PyE((d,V))H.

Therefore the Krein space E((a’,b’))H has a finite dimensional maximal uni-
formly negative subspace, hence F((a’,b’))H is a Pontryagin space. But this is
impossible as A\g & o, (A) (cf. [3, Theorem 24]) and the operator A + B has the
properties stated in assertions (iii) if Bgy = Big = 0. If Bp1 # 0 or Byg # 0 then
a similar reasoning as above shows that assertion (iii) holds and Theorem 2.4 is
proved. O

Corollary 2.5. Let Ao, Ao € (a,b), belongs to o, (A) \ 044 (A) and choose Hy as
in Definition 1.2 such that Hy is of minimal codimension. Assume that \g is not
an accumulation point of the non-real spectrum of A and that (2.1) holds. Let o,
b, e1 and M_ be as in Theorem 2.4. Then we have for every uniformly dissipative
operator B acting in H with ||B|| < &1

codimHy < dimM_ = k_(E((d',V))H). (2.8)
Moreover, let

ker A = No[+HN, [HN_  and Ly, (A) = Lo[+] L4 [+H] L
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be fundamental decompositions of ker A and Ly,(A), respectively, that is, Ny =
ker AN (ker A)H, Lo = Ly, (A) N (Lag (AN, Ny, Ly are positive subspaces of
E((a/,V))H and N_, L_ are negative subspace of E((a’,b'))H. We have equality
n (2.8), that is,
codimHy = dimM_ = k_(E((a’,b"))H)
if and only if
dim Ny + dimN_ = dim Lo + dim L_.

In this case we have
dimNy + dimN_ = dim Ly + dim L_ = codim Hy = dim M_ = k_(E((d’,b"))H).

Proof. Choose a fundamental decomposition for the Pontryagin space E((a’,b'))H,

E((¢/,V))H = II4 [+]II_. Then II; [+] (I — E((¢/,')))H is of finite codimension
in H and an easy calculation shows that (2.8) holds. The remaining statements of
Corollary 2.5 follows from [5, Theorem 3.6]. O

We refer to [5] for an example such that the inequality in (2.8) is strict.

3. Uniformly bi-expansive perturbations of unitary operators in
Krein spaces

A bounded operator U in a Krein space (H, [+, ]) is called unitary if U is surjective

and [Uz,Uzx] = [z, z] for all z € H.

A bounded operator V is said to be bi-expansive if both V and V1 are
noncontractive with respect to [, -], that is,

[Va,Vz] > [z,2] and [VTz,VTz] > [z,2] forall ze€H.

The operator V' is called uniformly bi-expansive if the operator V is bi-
expansive and there is an ay > 0 such that [Vz,Vz] > [z,2] + ay|z||?. If V is
uniformly bi-expansive then also VT is uniformly bi-expansive and ay+ = ay .

For every uniformly bi-expansive operator V we have

T c p(V), (3.1)

where T denote the unit circle T = {\ | |A| = 1} (see, e.g., [2, Theorem 2.4.31]).
The operator

A=i(V+1)(V-1)"" (3.2)

is called the Caley-Neumann transformation of V. If V' is a uniformly bi-expansive
operator then we have for x € H with y := (V — 1)z,

Im[Ay,y] =Re ([(V + Dz, (V —1z]) = Re ([Va,Vz] + [z, Va] — [Vz,z] — [z, 2])
= [Va,Vz] — [z, z]

and A is uniformly dissipative.
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It is well-known that the classes of selfadjoint and unitary operators (as
well as the classes of bounded uniformly dissipative operators and uniformly bi-
expansive operators) are closely connected via Caley-Neumann transformation. It
is a natural idea to prove similar results as in the previous sections using Caley-
Neumann transformation for bi-expansive perturbations of unitary operators. But
this does not work in general since the image of an unbounded uniformly dissipative
operator A + B need not to be a uniformly bi-expansive operator. Because of
this in this section we follow the same ideas as in the previous sections replacing
dissipative perturbations of selfadjoint operators by bi-expansive perturbations of
unitary operators.

The following lemma is an analog of Lemma 1.3. Let D denotes the open unit

disc,

D:={XeC|A <1}
Lemma 3.1. Let V' be a uniformly bi-expansive operator in a Krein space (H,|[-,-]).
Then

oap(V)ND Co__(V);
If X\ € 0,(V) ND then for each x € LA(V),  # 0, it follows [z,z] < 0.

Proof. Let A\g € 04p(V) ND. Let (x,) be a sequence with ||z,| =1, n € N, and
(V= Xo)zn, — 0 as n — oo. Since

[V(En, V:En] - |>‘0‘2[‘rnv xn] = [(V - )‘O)xnv Vxn} + >\0 [‘rnv (V - )‘O)xn}v

we have

0 = liminf[Va,, Va,] — [Xo|* liminf[z,, 2,] > (1 — |A\o|?) lim inf[x,, x,] + ay.
Hence

lim inf[z,,, 2,] < @ < 0.

n—o00 - 1-— |)\0‘2
Now we show that £,(V) is a negative subspace, i.e. [z,z] < 0 for all non-zero
x € L,(V).By (3.1), 1 € p(V) and we consider the Caley-Neumann transformation
A of V, cf. (3.2). The operator A is uniformly dissipative. Since L£x(V) = L, (A)
for p = i%7 the statement follows from Lemma 1.3. ]
Lemma 3.2. Let U be a unitary operator and let p € o414+ (U). Then |u| = 1 and
there exist a § > 0 and an € > 0 such that for all uniformly bi-expansive operators
V with ||I — V|| < e it follows that the intersection of D and the disc around u
with radius 0 belongs to p(UV).

Proof. First we show that |u| = 1. Assume the contrary: |u] # 1. Let ||z,|| = 1,
n €N, and (U — p)z, — 0 as n — oo. Since

(1= 1) [zn, 2] = [Uzn, Uzn] = |ul? (205 20) = (U = 1)z, Uzn] + plzn, (U = 1) 2]
we have lim [z, z,] = 0 which contradicts to u € 044 (U).
n—oo

Assume now that the second assertion of the lemma is not true. Then there
exists a sequence of uniformly bi-expansive operators V,, in ‘H with V,, — I as



10 Tomas Ya. Azizov, Peter Jonas and Carsten Trunk

n — oo and a sequence (A,) C o(UV,) N D which converges to p € o4 (U).

In view of (3.1) it is no restriction if we assume that A, € 04,(UV,,), n € N.

By Lemma 3.1 there exists a sequence (x,) with ||z,|| = 1, [z,,7,] < 0 and

[(UVyn — M)z || < L. Then liminf, [z, ,] < 0 and as n — oo we have
(U—wa, =0V = A)xn + Ay — )z — UV, — D, — 0

which contradicts p € o4 (U). O

Assume
v, €10,2m), ¢ <9 and 4 € (0,1).

Denote by w,, , the open arc of the unit circle given by
wep = {A=¢€"]p<n<y},
by € 4.5 the part of the sector generated by wy, y,
Qoys={A=re"p<n<y, 1-§<r<1},
and by 7,45 the boundary of €, 4 5.

Proposition 3.3. Let U be a unitary operator. Assume \g = €0, \g € Wy, 18 NOL
an accumulation point of o(U) \ T and that

we,u \ {Ao} C 044 (U) Up(U). (3:3)
Let
p <@ <mo <P <y
Then there exists a 0' > 0 such that Qg 4 50 C p(U).

Moreover, there exists an €9 > 0 such that for all uniformly bi-expansive
operators V. with ||[I — V|| < g we have vy 450 C p(UV).

Proof. We omit the proof since it repeats similar arguments as we used in the
proof of Proposition 2.3 . (]

A unitary operator in a Krein space satisfying (3.3) has a local spectral
function E defined on subarcs of w,, , with endpoints not equal to ', e’ or Ao,
cf. [15]. In particular there exists the spectral projection E(w,s ) corresponding
to the subarc wy ¢ with ¢ < ¢’ <no <1’ <.

Theorem 3.4. Let U be a unitary operator in the Krein space H. Assume that
o = €0, \g € Wy, is not an accumulation point of o(U)\ T and that

wow \ Do} € 044 (U) U p(U):

Leta', V', 0", g and vy g 5 be as in Proposition 3.3. Then the following assertions
are valid.

(i) The point Ao belongs to o4 (U) U p(U) if and only if there exists an 1 >
0 such that for every uniformly bi-expansive operator V acting in H with
|I — V|| < &1 the operator UV has no spectrum inside the curve vy yr s -
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(i) The point Xg belongs to o, (U) if and only if there exists an €1 > 0 such that
for every uniformly bi-expansive operator V' acting in H with ||[I — V|| < &1
the spectrum of UV inside the curve v,y 50 consists of at most finitely many
normal eigenvalues A1, Ao, ..., A\p. Then

M_ :=span {EAJ(UV) 1< <k}

is of finite dimension and moreover, in this case, the dimension of M_
is equal to the rank of negativity k_(E(wy g )H) of the Pontryagin space
E(wy 4 )H, that is

dlm M7 = kK_ (E(wsal’w/)H).

(iii) The point Ao does not belong to o, (U) U p(U) if and only if there exists an
g1 > 0 such that for every uniformly bi-expansive operator V acting in H
with ||[I — V|| < &1 the range of the Riesz-Dunford projector corresponding to
UV and vy 4 5 95 of infinite dimension.

Proof. is similar to the proof of Theorem 2.4. O

We left it to the reader to formulate and to prove statements like Corollary
2.5 for operators UV, where U is a unitary and V is a bi-expansive operator.
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