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Small Perturbation of Selfadjoint and Unitary
Operators in Krein Spaces

Tomas Ya. Azizov, Peter Jonas and Carsten Trunk

Abstract. We investigate the behaviour of the spectrum of selfadjoint opera-
tors in Krein spaces under perturbations with uniformly dissipative operators.
Moreover we consider the closely related problem of the perturbation of uni-
tary operators with uniformly bi-expansive. The obtained perturbation results
give a new characterization of spectral points of positive type and of type π+

of selfadjoint (resp. unitary) operators in Krein spaces.

Mathematics Subject Classification (2000). Primary 47A55; Secondary 47B50,
46C20.

Keywords. Selfadjoint operators, unitary operators, perturbation by uniformly
dissipative operators, Krein spaces, perturbation by uniformly bi-expansive
operators.

Introduction

A real point λ of the spectrum of a closed operator in a Krein space (H, [., .]) is
called a spectral point of positive (negative) type, if for every normed approxima-
tive eigensequence (xn) corresponding to λ all accumulation points of the sequence
([xn, xn]) are positive (resp. negative), see Definition 1.1 below. These spectral
points were introduced by P. Lancaster, A. Markus and V. Matsaev in [18] for
a bounded operator A which is selfadjoint in the Krein space (H, [., .]), i.e. the
selfadjointness is understood with respect to [., .]. In [20] the existence of a local
spectral function was proved for intervals containing only spectral points of pos-
itive (negative) type or points of the resolvent set ρ(A). Moreover it was shown
that, if A is perturbed by a compact selfadjoint operator, a spectral point of pos-
itive type of A becomes either an inner point of the spectrum of the perturbed
operator or it becomes an eigenvalue of type π+. A point from the approximative
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point spectrum of A is of type π+ if the abovementioned property of approxima-
tive eigensequences (xn) holds only for sequences (xn) belonging to some linear
manifold of finite codimension (see Definition 1.2 below). Every spectral point of a
selfadjoint operator in a Pontryagin space with finite rank of negativity is of type
π+. For a detailed study of the properties of the spectrum of type π+ we refer to
[3] and [5].

It is the main aim of this paper to consider perturbations of selfadjoint opera-
tors (unitary operators) in some Krein spaces with uniformly dissipative operators
(resp. uniformly bi-expansive operators). Let A be a selfadjoint operator in the
Krein space H. Let λ0 be no accumulation point of the non-real spectrum of A
and let (a, b)\{λ0} consists of spectral points of positive type or of points from the
resolvent set of A only. In Section 2 below we show that λ0 belongs to the spec-
trum of positive type of A if and only if there exists a fixed open neighbourhood
U of λ0 such that for all sufficiently small uniformly dissipative operators B the
operator A + B has no spectrum inside the intersection of U and the open lower
half-plane. Moreover, the point λ0 belongs to the spectrum of type π+ if and only
if for all sufficiently small uniformly dissipative operators B the operator A+B has
at most finitely many normal eigenvalues inside the intersection of U and the open
lower half-plane. In particular, we are able to show that the sum of all spectral
multiplicities within U intersected with the open lower half-plane equals the rank
of negativity of κ−(E((a′, b′))H), where E(·) denotes the local spectral function
of A. On the other hand, if for every sufficiently small uniformly dissipative oper-
ator B the range of the Riesz-Dunford projector corresponding to A+B and the
intersection of U and the open lower half-plane is of infinite dimension, then λ0

does not belong to σπ+(A) ∪ ρ(A).
In Section 3 we show that the above arguments hold true in a similar way

for uniformly bi-expansive perturbations of unitary operators.
We view these perturbation results also as a new characterization of the

spectral points of positive (resp. negative) type and of type π+ (resp. π−) of
selfadjoint/unitary operators in Krein spaces. We mention that in the early work
of L.S. Pontryagin such arguments were used in a similar manner, cf. [22].

Sign type spectrum is used in the theory of indefinite Sturm-Liouville oper-
ators, e.g. [4, 6, 8, 17]. Moreover, it is used in the theory of mathematical system
theory, see e.g. [12, 13, 19] and in the study of PT -symmetric problems [9, 10, 21].

1. Preliminaries

Let (H, [., .]) be a Krein space. Let A be a closed operator in H. By Lλ(A) we
denote the root subspace of A corresponding to λ, i.e. Lλ(A) = ∪∞n=1ker (A− λ)n.
A point λ0 ∈ C is said to belong to the approximative point spectrum σap(A)
of A if there exists a sequence (xn) ⊂ D(A) with ‖xn‖ = 1, n = 1, 2, . . . , and
‖(A − λ0)xn‖ → 0 as n → ∞. The boundary points of the spectrum of a closed
operator belong to the approximative point spectrum. For a selfadjoint operator A
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in the Krein space (H, [., .]) all real points of the spectrum of A belong to σap(A)
(see e.g. [7, Corollary VI.6.2]).

The following definition is from [1]. In [18], [20] it was given for the case of a
bounded selfadjoint operator.

Definition 1.1. For a closed operator A in H a point λ0 ∈ σ(A) is called a spectral
point of positive (negative) type of A if λ0 ∈ σap(A) and for every sequence
(xn) ⊂ D(A) with ‖xn‖ = 1 and ‖(A− λ0)xn‖ → 0 as n→∞, we have

lim inf
n→∞

[xn, xn] > 0 (resp. lim sup
n→∞

[xn, xn] < 0).

We denote the set of all points of positive (negative) type of A by σ++(A) (resp.
σ−−(A)).

If the operator A is selfadjoint then the sets σ++(A) and σ−−(A) are con-
tained in R (cf. [20])

In a similar way as in Definition 1.1 we introduce now some subsets of σ(A)
containing σ++(A) and σ−−(A), respectively, which will play an important role in
the following (cf. [1] and for special case of a selfadjoint operator see [3]).

Definition 1.2. For a closed operator A in H a point λ0 ∈ σ(A) is called a spectral
point of type π+ (type π−) of A if λ0 ∈ σap(A) and if there exists a subspace
H0 ⊂ H with codimH0 <∞ such that for every sequence (xn) ⊂ H0 ∩ D(A) with
‖xn‖ = 1 and ‖(A− λ0)xn‖ → 0 as n→∞, we have

lim inf
n→∞

[xn, xn] > 0 (resp. lim sup
n→∞

[xn, xn] < 0).

We denote the set of all points of type π+ (type π−) of A by σπ+(A) (resp. σπ−(A)).
We call H0 of minimal codimension if for each subspace H1 ⊂ H with codimH1 <
codimH0 there exists a sequence (xn) ⊂ H1 ∩ D(A) with ‖xn‖ = 1 and ‖(A −
λ0)xn‖ → 0 as n→∞, such that

lim inf
n→∞

[xn, xn] ≤ 0 (resp. lim sup
n→∞

[xn, xn] ≥ 0).

Observe, that for a point λ0 ∈ σπ+(A) we have that λ0 ∈ σ++(A) if and only
if the subspace H0 from Definition 1.2 can be choosen as H0 = H.

Recall that an operator C in a Krein space (H, [., .]) is called uniformly dis-
sipative if there exists some α > 0 such that for x ∈ D(C) we have Im [Cx, x] ≥
α‖x‖2.

The second part of the following lemma is well-known, nevertheless we give
a proof for the sake of completeness.

We set C± := {z ∈ C| ± Im z > 0}.
Lemma 1.3. Let C be a closed uniformly dissipative operator in a Krein space
(H, [., .]). Then

σap(C) ∩ C− ⊂ σ−−(C).
If λ ∈ σp(C) ∩ C− then for each x ∈ Lλ(C), x 6= 0, it follows

[x, x] < 0.
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Proof. Let λ0 ∈ σap(C)∩C−. Then the first statement of Lemma 1.3 follows from
the fact that for every sequence (xn) ⊂ D(C) with ‖xn‖ = 1 and ‖(C−λ0)xn‖ → 0,
n→∞, we have

|Im [Cxn, xn]− Imλ0[xn, xn]| ≤ ‖(C − λ0)xn‖ → 0, n→∞.

Let λ ∈ σp(C) ∩ C−. It follows from [2, Ch. 2, Corollary 2.17] that for each
y ∈ Lλ(C) we have [y, y] ≤ 0. Assume that there exists an x ∈ Lλ(C), x 6= 0, with
[x, x] = 0. Then we have [x, y] = 0 for all y ∈ Lλ(C). Hence

0 = Im [(C − λ)x, x],

which is a contradiction to the assumption that C is uniformly dissipative. ¤

2. Uniformly dissipative perturbations of selfadjoint operators in
Krein spaces

Let A be a selfadjoint operator in the Krein space (H, [., .]), that is, A = A+. Let
B be a bounded uniformly dissipative operator in the Krein space (H, [., .]). Then
the operator A+B, which is defined on D(A), is uniformly dissipative.

Lemma 2.1. Let A be a selfadjoint operator and let B be a bounded uniformly
dissipative operator in H. Then

R ⊂ ρ(A+B).

Proof. Set C := A + B. We choose α > 0 such that Im [Bx, x] ≥ α‖x‖2, x ∈ H.
We have D(C) = D(A) = D(C+) and, therefore, for λ ∈ R and x ∈ D(C), x 6= 0,
it follows

‖x‖‖(C − λ)x‖ ≥ |[(C − λ)x, x]| ≥ |Im [Bx, x]| ≥ α‖x‖2
and

‖(C+ − λ)x‖ ≥ α‖x‖.
As C is a closed operator the point λ belongs to ρ(C). ¤

Lemma 2.2. Let µ ∈ σ++(A). Then there exists a δ > 0 and an ε > 0 such that
for all bounded uniformly dissipative operators in H with ‖B‖ ≤ ε it follows that
the intersection of C− and the disc around µ with radius δ belongs to ρ(A+B).

Proof. Assume that the assertion of Lemma 2.2 is not true. Then there exist a
sequence of bounded uniformly dissipative operators (Bn) in H with ‖Bn‖ → 0,
n→∞, and a sequence (λn) in σ(A+Bn)∩C− which converges to µ, µ ∈ σ++(A).
We assume λn ∈ σap(A+Bn), n ∈ N. In view of Lemma 2.1 this is no restriction. By
Lemma 1.3 there exists a sequence (xn), xn ∈ D(A+Bn) = D(A) with ‖xn‖ = 1,
[xn, xn] < 0 and ‖(A+Bn−λn)xn‖ ≤ 1

n , n ∈ N. Then lim infn→∞[xn, xn] ≤ 0 and

(A− µ)xn = (A+Bn − λn)xn + (λn − µ)xn −Bnxn → 0, n→∞,

which contradicts µ ∈ σ++(A). ¤



Small Perturbation of Selfadjoint and Unitary Operators 5

Proposition 2.3. Let A be a selfadjoint operator. Assume that λ0, λ0 ∈ (a, b), is
not an accumulation point of the non-real spectrum of A and that

(a, b) \ {λ0} ⊂ σ++(A) ∪ ρ(A) (2.1)

holds. Let a < a′ < λ0 < b′ < b. Then there exists a δ′ > 0 such that the strip

{λ ∈ C− : a′ ≤ Reλ ≤ b′,−δ′ ≤ Imλ < 0}
belongs to the resolvent set of A. Moreover, if γδ′ denotes the closed oriented curve
in the complex plane which consists of the line segments connecting the points
b′, b′ − iδ′, a′ − iδ′, a′ and b′ then there exists an ε0 > 0 such that for all bounded
uniformly dissipative operators B in H with ‖B‖ ≤ ε0 we have

γδ′ ⊂ ρ(A+B). (2.2)

Proof. The first statement of Proposition 2.3 follows from [20] (or [3]). In order to
show (2.2) we choose ε0 > 0 so small that, cf. Lemma 2.2, for all bounded uniformly
dissipative operators B inH with ‖B‖ ≤ ε0 the line segments connecting the points
b′ and b′ − iδ′ and the points a′ and a′ − iδ′ belong to ρ(A + B). Moreover, we
choose ε0 so small that

ε0 <
1

maxλ∈Γ ‖(A− λ)−1‖
holds, where Γ is the line segment connecting the points b′ − iδ′ and a′ − iδ′. As
A + B − λ = (I + B(A − λ)−1)(A − λ), Γ is a subset of ρ(A + B). Moreover, by
Lemma 2.1, R ⊂ ρ(A+B), hence Proposition 2.3 is proved. ¤

The following theorem can be considered as the main result of this paper.
Recall that for a selfadjoint operator satisfying (2.1) there exists a local spectral
function E defined on subintervals of (a, b) with endpoints not equal to a, b or λ0, cf.
[3], [15]. In particular there exists the spectral projection E((a′, b′)) corresponding
to the interval (a′, b′) with a < a′ < λ0 < b′ < b.

Theorem 2.4. Let A be a selfadjoint operator in the Krein space H. Assume that
λ0, λ0 ∈ (a, b), is not an accumulation point of the non-real spectrum of A and
that

(a, b) \ {λ0} ⊂ σ++(A) ∪ ρ(A). (2.3)
Let a′, b′, δ′, ε0 and γδ′ be as in Proposition 2.3. Then the following assertions
are valid.

(i) The point λ0 belongs to σ++(A) ∪ ρ(A) if and only if there exists an ε1 > 0
such that for every uniformly dissipative operator B acting in H with ‖B‖ <
ε1 the operator A+B has no spectrum inside the curve γδ′ .

(ii) The point λ0 belongs to σπ+(A) if and only if there exists an ε1 > 0 such
that for every uniformly dissipative operator B acting in H with ‖B‖ < ε1
the spectrum of A+B inside the curve γδ′ consists of at most finitely many
normal eigenvalues λ1, λ2, . . . , λk such that

M− := span {Lλj (A+B) : 1 ≤ j ≤ k}
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is of finite dimension. Moreover, in this case, the dimension of M− is equal to
the rank of negativity κ−(E((a′, b′))H) of the Pontryagin space E((a′, b′))H,
that is

dimM− = κ−(E((a′, b′))H).
(iii) The point λ0 does not belong to σπ+(A) ∪ ρ(A) if and only if there exists an

ε1 > 0 such that for every uniformly dissipative operator B acting in H with
‖B‖ < ε1 the range of the Riesz-Dunford projector corresponding to A + B
and γδ′ is of infinite dimension.

Proof. Let a′, b′, δ′, ε0 and γδ′ be as in Proposition 2.3. Set K := (I−E((a′, b′)))H.
Then the space H decomposes

H = E((a′, b′))H [
.
+]K, (2.4)

where [
.
+] denote the direct sum of spaces which are orthogonal with respect to

[., .]. Moreover,

A =
[
A0 0
0 A1

]
and B =

[
B0 B01

B10 B1

]

with respect to the decomposition (2.4). The operators B0 and B1 are uniformly
dissipative operators in E((a′, b′))H and K, respectively. As E is the spectral
function of A, we have

σ(A0) ⊂ [a′, b′] and σ(A1) ⊂ R \ (a′, b′).

By assumption, a′ and b′ belong to σ++(A)∪ρ(A). Lemma 2.2 implies the existence
of δ > 0 and ε > 0 such that for all bounded uniformly dissipative operators in H
with ‖B‖ ≤ ε it follows that the intersection of C− and the discs around a′ and b′

with radius δ belong to the resovent set of the operator[
A0 0
0 A1

]
+

[
B0 0
0 B1

]
.

Denote by Γδ′ the open set in C which has as its boundary the curve γδ′ , that
is Γδ′ = {λ ∈ C : a′ < Reλ < b′,−δ′ < Imλ < 0}. It follows from [16, IV.§3.1]
that there is an ε1 > 0, ε1 < min{ε, ε0}, such that for all uniformly dissipative
operators B acting in H with ‖B‖ < ε1 we have

σ(A0 +B0) ⊂ {λ ∈ C : dist (λ, [a′, b′]) < min{δ, δ′}} (2.5)

and
Γδ′ ⊂ ρ(A1 +B1). (2.6)

Then Lemma 2.1, Proposition 2.3 and (2.5) imply that for all uniformly dissipative
operators B with ‖B‖ < ε1

σ(A0 +B0) ∩ C− ⊂ Γδ′ . (2.7)

Now we assume that λ0 belongs to σπ+(A). Then (E((a′, b′)), [., .]) is a Pon-
tryagin space with a finite rank of negativity and, if λ0 ∈ σ++(A), it is even a
Hilbert space (cf. [3, Theorems 23 and 24]). An application of [11, Theorem 11.6]
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implies that σ(A0 + B0) ∩ C− consists of at most finitely many eigenvalues and
that

M− := span {Lλ(A0 +B0) : λ ∈ σ(A0 +B0) ∩ C−}
is a maximal uniformly negative subspace of E((a′, b′))H invariant under A0 +B0.
Therefore

dimM− = κ−(E((a′, b′))H)

and relations (2.7) and (2.6) imply that the operator A + B has the properties
stated in assertions (i) and (ii) if B01 = B10 = 0. If B01 6= 0 or B10 6= 0 we
consider the operators

[
A0 0
0 A1

]
+

[
B0 tB01

tB10 B1

]
,

where t runs through [0, 1]. Then by [16, IV.§3.4], Lemma 1.3 and Proposition 2.3
the operator A+B has the properties stated in assertions (i) and (ii).

It remains to consider the case λ0 /∈ σπ+(A). Assume that the range of
the Riesz-Dunford projector P− corresponding to A0 + B0 and γδ′ is of finite
dimension. Then, by Lemma 1.3, it is a uniformly negative subspace of E((a′, b′))H.
Moreover the range of the Riesz-Dunford projector P+ corresponding to A0 +B0

and σ(A0 +B0) ∩ C+ is a nonnegative subspace (cf. [2]) and we have

E((a′, b′))H = P+E((a′, b′))H[
.
+]P−E((a′, b′))H.

We claim that P−E((a′, b′))H is a maximal uniformly negative subspace of the
Krein space E((a′, b′))H. Indeed, assume that there exists a maximal uniformly
negative subspace M̃− with P−E((a′, b′))H ⊂ M̃− and there exists some x, x ∈
M̃−\P−E((a′, b′))H. Then [x−P−x, x−P−x] < 0 holds. But this is a contradiction
to x− P−x = P+x ∈ P+E((a′, b′))H.

Therefore the Krein space E((a′, b′))H has a finite dimensional maximal uni-
formly negative subspace, hence E((a′, b′))H is a Pontryagin space. But this is
impossible as λ0 /∈ σπ+(A) (cf. [3, Theorem 24]) and the operator A + B has the
properties stated in assertions (iii) if B01 = B10 = 0. If B01 6= 0 or B10 6= 0 then
a similar reasoning as above shows that assertion (iii) holds and Theorem 2.4 is
proved. ¤

Corollary 2.5. Let λ0, λ0 ∈ (a, b), belongs to σπ+(A) \ σ++(A) and choose H0 as
in Definition 1.2 such that H0 is of minimal codimension. Assume that λ0 is not
an accumulation point of the non-real spectrum of A and that (2.1) holds. Let a′,
b′, ε1 and M− be as in Theorem 2.4. Then we have for every uniformly dissipative
operator B acting in H with ‖B‖ < ε1

codimH0 ≤ dimM− = κ−(E((a′, b′))H). (2.8)

Moreover, let

kerA = N0[
.
+]N+[

.
+]N− and Lλ0(A) = L0[

.
+]L+[

.
+]L−
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be fundamental decompositions of kerA and Lλ0(A), respectively, that is, N0 =
kerA ∩ (kerA)[⊥], L0 = Lλ0(A) ∩ (Lλ0(A))[⊥], N+, L+ are positive subspaces of
E((a′, b′))H and N−, L− are negative subspace of E((a′, b′))H. We have equality
in (2.8), that is,

codimH0 = dimM− = κ−(E((a′, b′))H)

if and only if
dimN0 + dimN− = dimL0 + dimL−.

In this case we have

dimN0 + dimN− = dimL0 + dimL− = codimH0 = dimM− = κ−(E((a′, b′))H).

Proof. Choose a fundamental decomposition for the Pontryagin space E((a′, b′))H,
E((a′, b′))H = Π+ [

.
+] Π−. Then Π+ [

.
+] (I − E((a′, b′)))H is of finite codimension

in H and an easy calculation shows that (2.8) holds. The remaining statements of
Corollary 2.5 follows from [5, Theorem 3.6]. ¤

We refer to [5] for an example such that the inequality in (2.8) is strict.

3. Uniformly bi-expansive perturbations of unitary operators in
Krein spaces

A bounded operator U in a Krein space (H, [., .]) is called unitary if U is surjective
and [Ux,Ux] = [x, x] for all x ∈ H.

A bounded operator V is said to be bi-expansive if both V and V + are
noncontractive with respect to [., .], that is,

[V x, V x] ≥ [x, x] and [V +x, V +x] ≥ [x, x] for all x ∈ H.
The operator V is called uniformly bi-expansive if the operator V is bi-

expansive and there is an αV > 0 such that [V x, V x] ≥ [x, x] + αV ‖x‖2. If V is
uniformly bi-expansive then also V + is uniformly bi-expansive and αV + = αV .

For every uniformly bi-expansive operator V we have

T ⊂ ρ(V ), (3.1)

where T denote the unit circle T = {λ | |λ| = 1} (see, e.g., [2, Theorem 2.4.31]).
The operator

A := i(V + 1)(V − 1)−1 (3.2)

is called the Caley-Neumann transformation of V . If V is a uniformly bi-expansive
operator then we have for x ∈ H with y := (V − 1)x,

Im [Ay, y] = Re ([(V + I)x, (V − I)x]) = Re ([V x, V x] + [x, V x]− [V x, x]− [x, x])

= [V x, V x]− [x, x]

and A is uniformly dissipative.



Small Perturbation of Selfadjoint and Unitary Operators 9

It is well-known that the classes of selfadjoint and unitary operators (as
well as the classes of bounded uniformly dissipative operators and uniformly bi-
expansive operators) are closely connected via Caley-Neumann transformation. It
is a natural idea to prove similar results as in the previous sections using Caley-
Neumann transformation for bi-expansive perturbations of unitary operators. But
this does not work in general since the image of an unbounded uniformly dissipative
operator A + B need not to be a uniformly bi-expansive operator. Because of
this in this section we follow the same ideas as in the previous sections replacing
dissipative perturbations of selfadjoint operators by bi-expansive perturbations of
unitary operators.

The following lemma is an analog of Lemma 1.3. Let D denotes the open unit
disc,

D := {λ ∈ C | λ| < 1}.
Lemma 3.1. Let V be a uniformly bi-expansive operator in a Krein space (H, [., .]).
Then

σap(V ) ∩ D ⊂ σ−−(V );
If λ ∈ σp(V ) ∩ D then for each x ∈ Lλ(V ), x 6= 0, it follows [x, x] < 0.

Proof. Let λ0 ∈ σap(V ) ∩ D. Let (xn) be a sequence with ‖xn‖ = 1, n ∈ N, and
(V − λ0)xn → 0 as n→∞. Since

[V xn, V xn]− |λ0|2[xn, xn] = [(V − λ0)xn, V xn] + λ0[xn, (V − λ0)xn],

we have

0 = lim inf
n→∞

[V xn, V xn]− |λ0|2 lim inf
n→∞

[xn, xn] ≥ (1− |λ0|2) lim inf
n→∞

[xn, xn] + αV .

Hence
lim inf
n→∞

[xn, xn] ≤ − αv
1− |λ0|2 < 0.

Now we show that Lλ(V ) is a negative subspace, i.e. [x, x] < 0 for all non-zero
x ∈ Lλ(V ). By (3.1), 1 ∈ ρ(V ) and we consider the Caley-Neumann transformation
A of V , cf. (3.2). The operator A is uniformly dissipative. Since Lλ(V ) = Lµ(A)
for µ = iλ+1

λ−1 , the statement follows from Lemma 1.3. ¤

Lemma 3.2. Let U be a unitary operator and let µ ∈ σ++(U). Then |µ| = 1 and
there exist a δ > 0 and an ε > 0 such that for all uniformly bi-expansive operators
V with ‖I − V ‖ ≤ ε it follows that the intersection of D and the disc around µ
with radius δ belongs to ρ(UV ).

Proof. First we show that |µ| = 1. Assume the contrary: |µ| 6= 1. Let ‖zn‖ = 1,
n ∈ N, and (U − µ)zn → 0 as n→∞. Since

(1− |µ|2)[zn, zn] = [Uzn, Uzn]− |µ|2[zn, zn] = [(U − µ)zn, Uzn] + µ[zn, (U − µ)zn]

we have lim
n→∞

[zn, zn] = 0 which contradicts to µ ∈ σ++(U).
Assume now that the second assertion of the lemma is not true. Then there

exists a sequence of uniformly bi-expansive operators Vn in H with Vn → I as
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n → ∞ and a sequence (λn) ⊂ σ(UVn) ∩ D which converges to µ ∈ σ++(U).
In view of (3.1) it is no restriction if we assume that λn ∈ σap(UVn), n ∈ N.
By Lemma 3.1 there exists a sequence (xn) with ‖xn‖ = 1, [xn, xn] < 0 and
‖(UVn − λn)xn‖ ≤ 1

n . Then lim infn→∞[xn, xn] ≤ 0 and as n→∞ we have

(U − µ)xn = (UVn − λn)xn + (λn − µ)xn − U(Vn − I)xn → 0

which contradicts µ ∈ σ++(U). ¤

Assume
ϕ,ψ ∈ [0, 2π), ϕ < ψ and δ ∈ (0, 1).

Denote by ωϕ,ψ the open arc of the unit circle given by

ωϕ,ψ := {λ = eiη | ϕ < η < ψ},
by Ωϕ,ψ,δ the part of the sector generated by ωϕ,ψ,

Ωϕ,ψ,δ := {λ = reiη | ϕ ≤ η ≤ ψ, 1− δ ≤ r < 1},
and by γϕ,ψ,δ the boundary of Ωϕ,ψ,δ.

Proposition 3.3. Let U be a unitary operator. Assume λ0 = eiη0 , λ0 ∈ ωϕ,ψ, is not
an accumulation point of σ(U) \ T and that

ωϕ,ψ \ {λ0} ⊂ σ++(U) ∪ ρ(U). (3.3)

Let
ϕ < ϕ′ < η0 < ψ′ < ψ.

Then there exists a δ′ > 0 such that Ωϕ′,ψ′,δ′ ⊂ ρ(U).
Moreover, there exists an ε0 > 0 such that for all uniformly bi-expansive

operators V with ‖I − V ‖ < ε0 we have γϕ′,ψ′,δ′ ⊂ ρ(UV ).

Proof. We omit the proof since it repeats similar arguments as we used in the
proof of Proposition 2.3 . ¤

A unitary operator in a Krein space satisfying (3.3) has a local spectral
function E defined on subarcs of ωϕ,ψ with endpoints not equal to eiϕ, eiψ or λ0,
cf. [15]. In particular there exists the spectral projection E(ωϕ′,ψ′) corresponding
to the subarc ωϕ′,ψ′ with ϕ < ϕ′ < η0 < ψ′ < ψ.

Theorem 3.4. Let U be a unitary operator in the Krein space H. Assume that
λ0 = eiη0 , λ0 ∈ ωϕ,ψ, is not an accumulation point of σ(U) \ T and that

ωϕ,ψ \ {λ0} ⊂ σ++(U) ∪ ρ(U).

Let a′, b′, δ′, ε0 and γϕ′,ψ′,δ′ be as in Proposition 3.3. Then the following assertions
are valid.

(i) The point λ0 belongs to σ++(U) ∪ ρ(U) if and only if there exists an ε1 >
0 such that for every uniformly bi-expansive operator V acting in H with
‖I − V ‖ < ε1 the operator UV has no spectrum inside the curve γϕ′,ψ′,δ′ .
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(ii) The point λ0 belongs to σπ+(U) if and only if there exists an ε1 > 0 such that
for every uniformly bi-expansive operator V acting in H with ‖I − V ‖ < ε1
the spectrum of UV inside the curve γϕ′,ψ′,δ′ consists of at most finitely many
normal eigenvalues λ1, λ2, . . . , λk. Then

M− := span {Lλj
(UV ) : 1 ≤ j ≤ k}

is of finite dimension and moreover, in this case, the dimension of M−
is equal to the rank of negativity κ−(E(ωϕ′,ψ′)H) of the Pontryagin space
E(ωϕ′,ψ′)H, that is

dimM− = κ−(E(ωϕ′,ψ′)H).

(iii) The point λ0 does not belong to σπ+(U) ∪ ρ(U) if and only if there exists an
ε1 > 0 such that for every uniformly bi-expansive operator V acting in H
with ‖I − V ‖ < ε1 the range of the Riesz-Dunford projector corresponding to
UV and γϕ′,ψ′,δ′ is of infinite dimension.

Proof. is similar to the proof of Theorem 2.4. ¤

We left it to the reader to formulate and to prove statements like Corollary
2.5 for operators UV , where U is a unitary and V is a bi-expansive operator.
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