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1School of Mathematical Sciences
University of KwaZulu-Natal

Pietermaritzburg, 3209 South Africa
email: henning@ukzn.ac.za

2Institut für Mathematik
TU Ilmenau, Postfach 100565
D-98684 Ilmenau, Germany

emails: {christian.loewenstein, dieter.rautenbach}@tu-ilmenau.de

Abstract

We solve a number of problems posed by Hedetniemi, Hedetniemi, Laskar, Markus,
and Slater concerning pairs of disjoint sets in graphs which are dominating or indepen-
dent and dominating.

Keywords: domination; independence; inverse domination
AMS subject classification: 05C69

1 Introduction

We consider finite, simple and undirected graphs G = (V,E) with vertex set V and edge set
E. A set of vertices D ⊆ V of G is dominating, if every vertex in V \D has a neighbour in
D. The minimum cardinality of a dominating set is the domination number γ(G) of G. A
set of vertices I ⊆ V of G is independent, if no two vertices in I are adjacent. The maximum
cardinality of an independent set is the independence number α(G) of G.

Dominating and independent sets are among the most well-studied graph sets. The
literature on this subject has been surveyed and detailed in the two books by Haynes,
Hedetniemi, and Slater [10, 11]. While much of the related research is devoted to γ(G) and
α(G), the problem of partitioning the vertex set into dominating sets [3, 7, 4] and even more
the problem of partitioning the vertex set into independent sets, i.e. vertex colourings, have
been extensively studied.

∗Research supported in part by the South African National Research Foundation and the University of
KwaZulu-Natal.
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Quite recently several authors have studied pairs of disjoint dominating sets. Kulli and
Sigarkanti [14] introduced the inverse domination number γ−1(G) of a graph G as the min-
imum cardinality of a dominating set whose complement contains a minimum dominating
set of G. Motivated by a false proof for the inequality γ−1(G) ≤ α(G) that appeared in [14],
several authors [5, 8] studied this parameter. A classical result in domination theory due
to Ore [15] is that if D is a minimal dominating set of a graph G with no isolated vertex,
then V \ D is also a dominating set of G. Thus every such graph G contains two disjoint
dominating sets. In [13] Hedetniemi et al. initiate the study of the minimum cardinality
γγ(G) = |D1|+ |D2| of the union of two disjoint dominating sets D1 and D2 of a graph G
with no isolated vertex. Similarly, they defined γi(G) as the minimum cardinality |D1|+ |I2|
of the union of two disjoint dominating sets D1 and I2 of G for which I2 is independent and
they define ii(G) as the minimum cardinality |I1| + |I2| of the union of two disjoint inde-
pendent dominating sets i1 and I2 of G. Various graph theoretic and algorithmic properties
of these parameters are presented in [13].

For notation and graph theory terminology we in general follow [10]. Specifically, let
G = (V,E) be a graph with vertex set V of order n = |V | and edge set E of size m = |E|,
and let v be a vertex in V . The open neighborhood of v is the set NG(v) = {u ∈ V |uv ∈ E}
and the closed neighborhood of v is NG[v] = {v}∪NG(v). For a set S of vertices, the closed
neighborhood of S is defined by NG[S] = ∪v∈SNG[v]. If X, Y ⊆ V , then the set X is said to
dominate the set Y if Y ⊆ NG[X]. In particular if X dominates V , then X is a dominating
set of G. For a set S ⊆ V , the subgraph induced by S is denoted by G[S].

2 Nine Problems posed in [13]

In this section, we list nine problems posed by Hedetniemi et al. in [13].

A) Characterize the graphs G for which γγ(G) = 2γ(G), i.e., characterize the graphs
which have two disjoint minimum dominating sets. (Problem 1 in [13].)

B) Under what conditions does ii(G) exist? (Problem 10 in [13].)

C) When is γγ(G) = γi(G)? (Problem 11 in [13].)

D) When is γi(G) = ii(G)? (Problem 12 in [13].)

E) Is the calculation of γγ(G) NP-complete for bipartite graphs? (Problem 17 in [13].)

F) What is the complexity of the decision problem corresponding to γi(G)? (Problem 13
in [13].)

G) For which class of trees T of order n ≥ 2 is γγ(T ) = 2(n + 1)/3? (Problem 8 in [13].
Note that it is shown in [13] that γγ(T ) ≥ 2(n + 1)/3 for all trees T of order n ≥ 2.)

H) Conjecture. A tree T satisfies γγ(T ) = 2γ(T ) if and only if no vertex of T belongs
to every minimum dominating set of T . (Problem 7 in [13].)
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I) Does every tree of order n ≥ 2 have a minimum dominating set whose complement
contains an independent dominating set of T? (Problem 21 in [13].)

3 Results

Our aim in this paper is to solve the nine problems listed in Section 2.

3.1 Problem A

While trees with two disjoint minimum dominating sets were constructively characterized
in [1] (cf. also [2, 6, 9, 12]), we give a somewhat negative ‘solution’ to Problem A by showing
that the corresponding decision problem is NP-hard. We do not know whether this problem
is actually in NP.

Theorem 1 It is NP-hard to decide whether a given graph has two disjoint minimum dom-
inating sets.

Proof. Given a 3Sat instance C we will construct a graph G whose order is polynomially
bounded in the size of C such that C is satisfiable if and only if G has two disjoint minimum
dominating sets.

For every boolean variable x occurring in C we introduce a copy Gx of the gadget shown
in the left part of Figure 1 which contains two specified vertices x and x̄. Furthermore, for
every clause C of C we introduce a copy GC of the gadget shown in the right part of Figure
1 which contains one specified vertex C.

t t
t
t
t
t
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A
A�

�
�

x x̄
t t

t
tC
A
A
A�

�
�

Figure 1. The gadgets Gx and GC .

If the literal x occurs in clause C we connect the specified vertex x in Gx with the specified
vertex C in GC . (For an example see Figure 2 where C = {x ∨ ȳ ∨ z, x ∨ z ∨ u}.) Let G
denote the resulting graph.
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x x̄ ȳy z̄z ūu
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Figure 2. The graph G for C = {x ∨ ȳ ∨ z, x ∨ z ∨ u}.

Let C use n boolean variables and contain m clauses. Note that the order of G is 6n+4m.
Every dominating set of G contains at least two vertices from every gadget Gx and at least
one vertex from every gadget GC . Conversely, choosing the two vertices at distance 1 and
3 from the endvertex in every gadget Gx and the dominating vertex in every gadget GC

yields a dominating set of G. This implies that γ(G) = 2n + m.

If C is satisfiable, then we consider a satisfying truth assignment for C. The set of vertices
corresponding to the true literals together with the neighbour of the endvertex in every
gadget Gx and one of the two vertices of degree 2 in every gadget GC yields a minimum
dominating set D of G. Furthermore, choosing the two vertices at distance 0 and 3 from
the endvertex in every gadget Gx and the dominating vertex in every gadget GC yields a
minimum dominating set of G which is disjoint from D.

Conversely, we assume now that G has two disjoint minimum dominating sets D1 and D2.
By the above reasoning, each of D1 and D2 contains exactly one vertex from each gadget
GC . This implies that for every gadget GC the specified vertex C must be dominated within
one of D1 and D2 by a vertex not contained in GC . Furthermore, for every gadget Gx the
set D1 ∪ D2 contains at most one of the two specified vertices x and x̄. Therefore, the
vertices in D1 ∪ D2 corresponding to literals indicate a satisfying truth assignment for C.
Note that the truth value of a variable x for which neither x nor x̄ is in D1 ∪D2 can be set
arbitrarily. (The two minimum dominating sets indicated in Figure 2 correspond to setting
x, y and z false and u true.) This completes the proof. �

3.2 Problem B

As with Problem A, our ‘solution’ to Problem B is a hardness result.
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Theorem 2 It is NP-complete to decide whether a given graph has two disjoint independent
dominating sets.

Proof. The given decision problem is clearly in NP. Given a 3Sat instance C we will
construct a graph G whose order is polynomially bounded in the size of C such that C is
satisfiable if and only if G has two disjoint independent dominating sets.

For every boolean variable x occurring in C we introduce a copy Gx of the gadget shown
in the left part of Figure 3 which contains two specified vertices x and x̄. Furthermore, for
every clause C of C we introduce a copy GC of the gadget shown in the right part of Figure
3 which contains one specified vertex C.
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Figure 3. The gadgets Gx and GC .

If the literal x occurs in clause C we connect the specified vertex x in Gx with the specified
vertex C in GC . (For an example see Figure 4 where C = {x ∨ ȳ ∨ z, x ∨ z ∨ u}.) Let G
denote the resulting graph.
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Figure 4. The graph G for C = {x ∨ ȳ ∨ z, x ∨ z ∨ u}.

Let C use n boolean variables and contain m clauses. Note that the order of G is 4n+6m.
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If C is satisfiable, then we consider a satisfying truth assignment for C. Choosing in every
gadget Gx the endvertex and the vertex corresponding to the true literal and choosing in
every gadget GC an endvertex different from C and the neighbour of the other endvertex
different from C yields an independent dominating set I of G. Furthermore, choosing in
every gadget Gx the neighbour of the endvertex and choosing in every gadget GC the vertex
C and the two vertices not adjacent to C or contained in I yields an independent dominating
set of G disjoint from I.

Conversely, we assume now that G has two disjoint independent dominating sets I1 and
I2. Since in every gadget GC the two vertices at distance two from C are necessarily in
I1 ∪ I2, the neighbour of C in GC is not in I1 ∪ I2. This implies that C is dominated
within one of the two sets I1 or I2 by a vertex not contained in GC . Clearly, at most one
of the two vertices x and x̄ in every gadget Gx can be in I1 ∪ I2. Therefore, the vertices
in I1 ∪ I2 corresponding to literals indicate a satisfying truth assignment for C. Again, the
truth value of a variable x for which neither x nor x̄ is in I1 ∪ I2 can be set arbitrarily.
(The two independent dominating sets indicated in Figure 4 correspond to setting x, y and
z false and u true.) This completes the proof. �

3.3 Problems C and D

As with Problems A and B, yet further hardness results.

Theorem 3 Given a graph G the following two problems are NP-hard.

(i) Decide whether G satisfies γγ(G) = γi(G).

(ii) Decide whether G satisfies γi(G) = ii(G).

Proof. Given a 3Sat instance C we will construct two graphs G and G′ whose order is
polynomially bounded in the size of C such that C is satisfiable if and only if γγ(G) = γi(G)
if and only if γi(G′) = ii(G′).

For the construction of G we proceed as follows. For every boolean variable x occurring
in C we introduce a copy Gx of the gadget shown in the left part of Figure 5 which contains
two specified vertices x and x̄. Furthermore, for every clause C of C we introduce a copy
GC of the gadget shown in the middle part of Figure 5 which contains one specified vertex
C.
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Figure 5. The gadgets Gx, GC and G′
C .

If the literal x occurs in clause C we connect the specified vertex x in Gx with the specified
vertex C in GC . (For an example see Figure 6 where C = {x ∨ ȳ ∨ z, x ∨ z ∨ u}.)

For the graph G′ we proceed exactly as above using the gadget G′
C shown in the right

part of Figure 5 instead of GC .

u u u uu u u u
u u u u
u u u u
u u u u
u u u u

A
A
A

A
A
A

A
A
A

A
A
A�

�
�

�
�
�

�
�
�

�
�
�
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Figure 6. The graph G for C = {x ∨ ȳ ∨ z, x ∨ z ∨ u}.

Let C use n boolean variables and contain m clauses. Note that the orders of G and G′

are 6n + 8m. Every dominating set of G contains at least two vertices from every gadget
Gx and at least two vertices from every gadget GC . Conversely, choosing in every gadget
the vertices as indicated in Figure 5 yields two disjoint minimum dominating sets, i.e.,
γγ(G) = 2γ(G) = 4n + 4m. Similarly, γi(G′) = 2γ(G′) = 4n + 4m.

If C is satisfiable, then we consider a satisfying truth assignment for C. We choose the
two disjoint minimum dominating sets described above such that from every gadget Gx the
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vertex corresponding to the true literal is in one of the two sets. Furthermore, in every
gadget GC we choose vertices as indicated in Figure 6. This yields two disjoint minimum
dominating sets one of which is independent, i.e., γγ(G) = γi(G). Similar arguments yield
γi(G′) = ii(G′).

Conversely, we assume now that G satisfies γγ(G) = γi(G). Let D1 and I2 be two disjoint
dominating sets such that I2 is independent and |D1| + |I2| = γγ(G) = γi(G) = 2γ(G),
i.e., D1 and I2 are both minimum dominating. By the above reasoning, each of D1 and
I2 contains exactly two vertices from each gadget GC . This easily implies that in every
gadget GC the specified vertex C is dominated within one of D1 and I2 by a vertex not
contained in GC . Furthermore, for every gadget Gx the set D1 ∪ I2 contains at most one
of the two specified vertices x and x̄. Therefore, the vertices in D1 ∪ I2 corresponding to
literals indicate a satisfying truth assignment for C. (The two minimum dominating sets
indicated in Figure 6 correspond to setting x, y and z false and u true.) Again, if we assume
that G′ satisfies γi(G′) = ii(G′), then the same train of thought implies that C is satisfiable.
This completes the proof. �

3.4 Problems E and F

In [13] it is shown that the calculation of γγ(G) is NP-hard even when restricted to chordal
graphs. In Problem E, the authors in [13] ask about the complexity for the class of bipartite
graphs, while in Problem F they ask about the complexity of the decision problem corre-
sponding to γi(G). We prove that the corresponding decision problems are NP-complete.
Note that Theorem 2 and the statement made about ii(G) in Theorem 4 that follows do
not imply each other.

Theorem 4 Given a bipartite graph G and given an integer k the following three problems
are NP-complete.

(i) Decide whether G has two disjoint dominating sets D1 and D2 with |D1|+ |D2| ≤ k.

(ii) Decide whether G has two disjoint dominating sets D1 and D2 with |D1| + |D2| ≤ k
such that D2 is independent.

(iii) Decide whether G has two disjoint independent dominating sets D1 and D2 with |D1|+
|D2| ≤ k.

Proof. The three decision problems are clearly in NP. Given a 3Sat instance C we will
construct a graph G whose order is polynomially bounded in the size of C and specify
an integer k also polynomially bounded in the size of C such that if C is satisfiable, then
ii(G) ≤ k and if γγ(G) ≤ k, then C is satisfiable. This clearly implies the desired statements.

For every boolean variable x occurring in C we introduce a copy Gx of the gadget shown
in the left part of Figure 7 which contains two specified vertices x and x̄. Furthermore,
for every clause C of C we introduce a copy GC of the gadget shown in the right part of
Figure 7 which contains two specified vertices C and C̄.
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If the (unnegated) variable x occurs in clause C we connect the specified vertex x in Gx

with the specified vertex C in GC . Similarly, if the negated variable x̄ occurs in clause C we
connect the specified vertex x̄ in Gx with the specified vertex C̄ in GC . Note that this way
of adding edges to the disjoint union of the bipartite gadgets results in a bipartite graph.
(For an example see Figure 8 where C = {x ∨ ȳ ∨ z, x ∨ z ∨ u}.) Let G denote the resulting
graph.
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Figure 8. The graph G for C = {x ∨ ȳ ∨ z, x ∨ z ∨ u}.

Let C use n boolean variables and contain m clauses. Note that the order of G is 12n+8m.
Let k = 8n + 5m.

First we assume that C is satisfiable and describe how to obtain two disjoint dominating
sets D1 and D2 of G with |D1|+ |D2| ≤ k. Consider a satisfying truth assignment for C. We
choose in every gadget Gx the vertices for the sets D1 and D2 as indicated in the left part
of Figure 7 or its mirror image such that D1 contains the vertex corresponding to the true
literal among x or x̄. Since the truth assignment is satisfying, at least one of the vertices
C or C̄ in every gadget GC is dominated in D1 by a vertex not contained in V (GC). This
implies that the two sets D1 and D2 can be extended as indicated in Figure 8 using a total
of five vertices in each of the gadgets GC . Hence, |D1|+ |D2| = k.

9



Next, we assume that G has two disjoint dominating sets D1 and D2 such that |D1| +
|D2| ≤ k. In every gadget Gx, the set V (Gx) ∩ (D1 ∪D2) contains at least eight vertices in
order to dominate the ten vertices on the path Gx−{x, x̄}. Furthermore, if V (Gx)∩(D1∪D2)
contains exactly eight vertices, then at least one of x and x̄ is not contained in D1 ∪D2.

If for some gadget GC neither C nor C̄ are dominated by a vertex in D1∪D2 not contained
in V (GC), then V (GC)∩(D1∪D2) contains at least six vertices. (One possible configuration
is shown in the right part of Figure 7.) Furthermore, if for some gadget GC one or both of C
and C̄ are dominated by vertices in D1∪D2 not contained in V (GC), then V (GC)∩(D1∪D2)
contains at least five vertices.

Since |D1| + |D2| ≤ 8n + 5m, we obtain that for every gadget Gx at most one of x and
x̄ is contained in D1 ∪ D2 and for every gadget GC one of C and C̄ is dominated by a
vertex in D1 ∪ D2 not contained in V (GC). This implies that the vertices contained in
D1 ∪D2 corresponding to literals indicate a satisfying truth assignment for C and the proof
is complete. �

3.5 Problem G

As remark earlier, it is shown in [13] that γγ(T ) ≥ 2(n+1)/3 for all trees T of order n ≥ 2.
In Problem G, the authors ask for a characterization of the trees achieving equality in this
bound.

Theorem 5 If T = (V,E) is a tree of order n, then γγ(T ) ≥ 2(n+1)/3 with equality if and
only if V can be partitioned into two sets D and R such that D induces a perfect matching
and R is an independent set all vertices of which have degree 2 in T .

Proof. Let T be a tree of order n and let D1 and D2 be two disjoint dominating sets of
T such that γγ(T ) = |D1| + |D2|. We assume that |D1| ≥ |D2|. Let D = D1 ∪D2 and let
R = V \D. Since every vertex in R has a neighbour in D1 and a neighbour in D2 and every
vertex in D1 has a neighbour in D2, counting the edges of T yields

n− 1 ≥ 2|R|+ |D1| ≥ 2|R|+ |D|/2 = 2(n− γγ(T )) + γγ(T )/2,

which implies γγ(T ) ≥ 2(n + 1)/3.

If γγ(T ) = 2(n + 1)/3, then equality holds throughout the above inequality chain. This
implies that |D1| = |D2|, every vertex in R has exactly one neighbour in D1 and one
neighbour in D2, every vertex from D1 has exactly one neighbour in D2 and the three sets
D1, D2 and R are independent. Since every vertex of D2 has at least one neighbour in D1,
the set D induces a perfect matching and the structure of T is as described in the statement
of the result.

Conversely, we assume now that V can be partitioned into two sets D and R such that
D induces a perfect matching and R is an independent set all vertices of which have degree
2 in T . We will prove by induction on the order n of T that γγ(T ) = 2(n + 1)/3. More
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specifically, we prove that D can be partitioned into two independents sets D1 and D2

which are both dominating. Note that, by the assumptions, such sets D1 and D2 satisfy
|D1| + |D2| = 2(n + 1)/3. If n = 2, then the statement is trivial. Hence, we may assume
that n ≥ 3. Let uv be an edge which corresponds to an endvertex of the tree which arises
from T by contracting all edges of the perfect matching induced by D. Note that after
these contractions all vertices in R are still of degree 2. This implies that we may assume
that u is an endvertex of T and v has degree 2 in T . Let w be the neighbour of v different
from u. Clearly, w ∈ R. The vertex set V \ {u, v, w} of the tree T ′ = T − {u, v, w} can be
partitioned into two sets D′ = D \ {u, v} and R′ = R \ {w} such that D′ induces a perfect
matching and R′ is an independent set all vertices of which have degree 2 in T ′. Hence, by
induction, D′ can be partitioned into two independent sets D′

1 and D′
2 both of which are

dominating in T ′. We may assume that the neighbour of w different from v belongs to D′
1.

Now the two sets D1 = D′
1 ∪ {u} and D2 = D′

2 ∪ {v} are independent and dominating in T
and partition D which completes the proof. �

3.6 Problem H

In Problem H the authors conjecture that for a tree T the equality γγ(T ) = 2γ(T ) is
equivalent to the property that no vertex of T belongs to every minimum dominating set
of T . While this property is obviously necessary, we describe an example disproving the
conjecture.

Observation 6 There are trees T for which no vertex belongs to every minimum dominat-
ing set of T and which do not have two disjoint minimum dominating sets, i.e., γγ(T ) >
2γ(T ).

Proof. The tree two copies of which are shown in Figure 9 has domination number 7 and
the two indicated minimum dominating sets show that no vertex belongs to every minimum
dominating set of T . On the other hand it is easy to see that the union of every two disjoint
dominating sets of T contains at least five vertices in each of the indicated rectangular boxes
which implies that one of the sets cannot be minimum. �
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Figure 9. A counterexample to the conjecture posed in Problem H.
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3.7 Problem I

In Problem I, it is asked whether every tree of order n has a minimum dominating set
whose complement contains an independent dominating set. We answer this question in
the affirmative. For this purpose, given a rooted tree T , a set D of vertices of T and
a vertex v ∈ D, we define an external D-private child of v in T to be a child of v in
NT (v) \NT [D \ {v}]. Hence if u is an external D-private child of v in T , then u 6∈ D, u is
a child of v in T , and NT (u) ∩D = {v}.

Theorem 7 Every tree of order at least two has a minimum dominating set and an inde-
pendent dominating set which are disjoint.

Proof. Let u be an endvertex of T . Let D be a minimum dominating set containing a
neighbour r of u such that

f(D) :=
∑
v∈D

distT (v, r)

is minimum. Root T at r. Note that u is an external D-private child of r in T . If some
vertex v ∈ D \ {r} has no external D-private child in T , then the parent w of v is not
in D. Now the set D′ = (D \ {v}) ∪ {w} is a minimum dominating set of T containing
r with f(D′) = f(D) − 1, which is a contradiction. Hence all vertices in D have external
D-private children in T . Clearly, a set I containing exactly one external D-private child of
every vertex in D is an independent set and a maximal independent subset of V \D which
contains I is a dominating set of T . This completes the proof. �
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