# Technische Universität Ilmenau Institut für Mathematik 

Preprint No. M 08/11
Cohabitation of independent sets and dominating sets in trees

Löwenstein, Christian; Rautenbach, Dieter

2008

## Impressum:

Hrsg.: Leiter des Instituts für Mathematik
Weimarer Straße 25
98693 Ilmenau
Tel.: +49 3677693621
Fax: +493677 693270
http://www.tu-ilmenau.de/ifm/

# Cohabitation of Independent Sets and Dominating Sets in Trees 

Christian Löwenstein and Dieter Rautenbach<br>Institut für Mathematik, TU Ilmenau, Postfach 100565, D-98684 Ilmenau, Germany, emails: \{christian.loewenstein, dieter.rautenbach\}@tu-ilmenau.de


#### Abstract

We give a constructive characterization of trees that have a maximum independent set and a minimum dominating set which are disjoint and show that the corresponding decision problem is NP-complete for general graphs.


Keywords. domination; independence; inverse domination
AMS subject classification. 05C69

## 1 Introduction

We consider finite, undirected and simple graphs $G=(V, E)$ with vertex set $V$ and edge set $E$. A set $I \subseteq V$ of vertices is an independent set of $G$, if no two vertices from $I$ are adjacent in $G$. The maximum cardinality of an independent set of $G$ is the independence number $\alpha(G)$ of $G$. A set $D \subseteq V$ of vertices is a dominating set of $G$, if every vertex in $V \backslash D$ has a neighbour in $D$. The minimum cardinality of a dominating set of $G$ is the domination number $\gamma(G)$ of $G$.

Minimum independent and maximum dominating sets are among the most fundamental and well-studied graph theoretic concepts [7]. As early as 1978 Bange, Barkauskas, and Slater [1] and Slater [10] characterized trees which have two disjoint minimum dominating sets and two disjoint maximum independent sets, respectively. In $[2,4,6]$ the problem of finding two minimum dominating sets of minimum intersection is studied while in [8] trees with two disjoint minimum independent dominating sets are characterized. In $[3,5,9]$ the minimum cardinality of a dominating set which lies in the complement of a minimum dominating set is studied.

Complementing this previous research we consider graphs $G=(V, E)$ that have a maximum independent set $I$ and a minimum dominating set $D$ which are disjoint. We call such a pair of sets $(I, D)$ an $(\alpha, \gamma)$-pair of $G$. Intuitively, two independent sets or two dominating sets compete for similar types of vertices while an independent set and a dominating set seem easiler to reconcile. After proving that the decision problem whether a given graph has an ( $\alpha, \gamma$ )-pair is NP-complete, we give a constructive characterization of trees with an $(\alpha, \gamma)$-pair.

Theorem 1 The problem to decide whether an input graph has an ( $\alpha, \gamma$ )-pair is NPcomplete.

Proof: For a 3SAT instance $\mathcal{C}$ with $n$ variables and $m$ clauses, we will describe a graph $G=(V, E)$ of order polynomial in $n$ and $m$ such that $\mathcal{C}$ is satisfiable if and only if $G$ has an ( $\alpha, \gamma$ )-pair.

For every boolean variable $x$ of $\mathcal{C}$, the graph $G$ contains a copy $H_{x}$ of the gadget shown in Figure 1 with two specified vertices $x$ and $\bar{x}$.


Figure 1: The gadget $H_{x}$.
For every clause $C$, the graph $G$ contains $3 n+1$ disjoint paths of length three

$$
P_{1}^{C}, P_{2}^{C}, \ldots, P_{3 n+1}^{C}
$$

In each of these paths $P_{i}^{C}$ we specify one endvertex $x_{i}^{C}$. If $C$ contains the literal $y$, then $G$ contains the edges $y x_{i}^{C}$ for $1 \leq i \leq 3 n+1$. The graph $G$ contains no further vertices or edges.

Clearly, every independent set of $G$ contains at most three vertices from every of the gadgets $H_{x}$ and at most two vertices from every of the paths $P_{i}^{C}$, i.e. $\alpha(G) \leq 3 n+2 m(3 n+$ 1). Since choosing three independent vertices from every of the gadgets $H_{x}$ and the vertices at distance one and three from $x_{i}^{C}$ from every of the paths $P_{i}^{C}$ yields an independent set of order $3 n+2 m(3 n+1)$, we have $\alpha(G)=3 n+2 m(3 n+1)$.

Clearly, every dominating set of $G$ contains at least two vertices from every of the gadgets $H_{x}$ and at least one vertex from every of the paths $P_{i}^{C}$. Hence $\gamma(G) \geq 2 n+$ $m(3 n+1)$. Furthermore, since choosing $x, \bar{x}$ and the neighbour of the endvertex from every of the gadgets $H_{x}$ and the vertex at distance two from $x_{i}^{C}$ from every of the paths $P_{i}^{C}$ yields a dominating set of order $3 n+m(3 n+1)$, we have $\gamma(G) \leq 3 n+m(3 n+1)$.

If $\mathcal{C}$ has a satisfying truth assignment, then choosing three independent vertices containing the false literal among $x$ and $\bar{x}$ from every of the gadgets $H_{x}$ and the vertices at distance one and three from $x_{i}^{C}$ from every of the paths $P_{i}^{C}$ yields a maximum independent set $I$. Furthermore, choosing the true literal among $x$ and $\bar{x}$ and the neighbour of the endvertex from every of the gadgets $H_{x}$ and the vertex at distance two from $x_{i}^{C}$ from every of the paths $P_{i}^{C}$ yields an dominating set $D$ of order $2 n+m(3 n+1)$. Hence $(I, D)$ is an $(\alpha, \gamma)$-pair of $G$.

Conversely, if $G$ has an $(\alpha, \gamma)$-pair $(I, D)$, then we may assume that $D$ contains exactly one of the two vertices $x$ and $\bar{x}$ from every of the gadgets $H_{x}$. If one of the vertices $x_{i}^{C}$ from some path $P_{i}^{C}$ is not dominated by a vertex from one of the gadgets $H_{x}$, then $D$ must contain at least two vertices from every of the $3 n+1$ paths $P_{i}^{C}$ and at least one vertex from every of the remaining paths. Hence $|D| \geq 3 n+1+m(3 n+1)$ which is a contradiction. Therefore, all of the vertices $x_{i}^{C}$ from every of the paths $P_{i}^{C}$ are dominated by a vertex
from one of the gadgets $H_{x}$. Hence the literals contained in $D$ define a satisfying truth assignment for $\mathcal{C}$ and the proof is complete.

## 2 Trees with an $(\alpha, \gamma)$-pair

In this section we will describe a polynomial time procedure to decide whether a given tree has an $(\alpha, \gamma)$-pair. We describe suitable reductions and explain how these reductions yield a constructive characterization of trees with an $(\alpha, \gamma)$-pair.

The first lemma deals with some small trees.
Lemma 2 (i) For $2 \leq n \leq 6$ the path $P_{n}: u_{1} u_{2} \ldots u_{n}$ has the following $(\alpha, \gamma)$-pair $\left(I_{n}, D_{n}\right):$

$$
\begin{aligned}
& \left(I_{2}, D_{2}\right)=\left(\left\{u_{1}\right\},\left\{u_{2}\right\}\right) \\
& \left(I_{3}, D_{3}\right)=\left(\left\{u_{1}, u_{3}\right\},\left\{u_{2}\right\}\right) \\
& \left(I_{4}, D_{4}\right)=\left(\left\{u_{1}, u_{4}\right\},\left\{u_{2}, u_{3}\right\}\right) \\
& \left(I_{5}, D_{5}\right)=\left(\left\{u_{1}, u_{3}, u_{5}\right\},\left\{u_{2}, u_{4}\right\}\right) \\
& \left(I_{6}, D_{6}\right)=\left(\left\{u_{1}, u_{3}, u_{6}\right\},\left\{u_{2}, u_{5}\right\}\right) .
\end{aligned}
$$

(ii) The tree $T^{*}=\left(V^{*}, E^{*}\right)$ with

$$
\begin{aligned}
V^{*} & =\left\{u_{0}, u_{1}, v_{0}, v_{1}, v_{2}, w_{0}, w_{1}, w_{2}, w_{3}, x\right\} \\
E^{*} & =\left\{u_{0} u_{1}, u_{1} x, v_{0} v_{1}, v_{1} v_{2}, v_{2} x, w_{0} w_{1}, w_{1} w_{2}, w_{2} w_{3}, w_{3} x\right\}
\end{aligned}
$$

has the ( $\alpha, \gamma$ )-pair

$$
\left(\left\{u_{0}, v_{0}, w_{0}, v_{2}, w_{2}\right\},\left\{u_{1}, v_{1}, w_{1}, x\right\}\right) .
$$

Proof: It is very easy to check that the given sets are maximum independent sets and minimum dominating sets which are disjoint.


Figure 2 The trees $P_{2}, P_{3}, \ldots, P_{6}$ and $T^{*}$.

Lemma 3 Let $T$ contain a path $P: u_{0} u_{1} \ldots u_{5}$ such that $d_{T}\left(u_{0}\right)=1$ and $d_{T}\left(u_{1}\right)=$ $d_{T}\left(u_{2}\right)=d_{T}\left(u_{3}\right)=d_{T}\left(u_{4}\right)=2$.
(i) $\alpha\left(T^{\prime}\right)+2 \leq \alpha(T) \leq \alpha\left(T^{\prime}\right)+3$ for $T^{\prime}=T-\left\{u_{0}, u_{1}, \ldots, u_{4}\right\}$.
(ii) If $\alpha(T)=\alpha\left(T^{\prime}\right)+3$, then $T$ has an $(\alpha, \gamma)$-pair if and only if $T^{\prime \prime}=T-\left\{u_{0}, u_{1}\right\}$ has an $(\alpha, \gamma)$-pair, $\alpha(T)=\alpha\left(T^{\prime \prime}\right)+1$ and $\gamma(T)=\gamma\left(T^{\prime \prime}\right)+1$.
(iii) If $\alpha(T)=\alpha\left(T^{\prime}\right)+2$, then $T$ has an ( $\alpha, \gamma$ )-pair if and only if $T^{\prime \prime \prime}=T-\left\{u_{0}, u_{1}, u_{2}\right\}$ has an $(\alpha, \gamma)$-pair, $\alpha(T)=\alpha\left(T^{\prime \prime \prime}\right)+1$ and $\gamma(T)=\gamma\left(T^{\prime \prime \prime}\right)+1$.


Figure 3 The trees $T, T^{\prime}, T^{\prime \prime}$ and $T^{\prime \prime \prime}$.
Proof: (i) The first inequality follows, since for every independent set $I^{\prime}$ of $T^{\prime}$ the set $I^{\prime} \cup$ $\left\{u_{0}, u_{2}\right\}$ is an independent set of $T$. The second inequality follows, since every independent set $I$ of $T$ contains at most three of the vertices in $\left\{u_{0}, u_{1}, \ldots, u_{4}\right\}$ and $I \backslash\left\{u_{0}, u_{1}, \ldots, u_{4}\right\}$ is an independent set of $T^{\prime}$.
(ii) Let $\alpha(T)=\alpha\left(T^{\prime}\right)+3$. Note that this implies that every maximum independent set of $T$ contains $u_{0}, u_{2}$ and $u_{4}$. Therefore, if $T$ has an $(\alpha, \gamma)$-pair $(I, D)$, then $u_{0}, u_{2}, u_{4} \in I$ and hence $u_{1}, u_{3} \in D$. Clearly, $\alpha\left(T^{\prime \prime}\right) \leq \alpha\left(T^{\prime}\right)+2$. Since $I \backslash\left\{u_{0}\right\}$ is an independent set in $T^{\prime \prime}$, we have $\alpha\left(T^{\prime \prime}\right) \geq \alpha(T)-1=\alpha\left(T^{\prime}\right)+2$ and thus $\alpha(T)=\alpha\left(T^{\prime}\right)+3=\alpha\left(T^{\prime \prime}\right)+1$. Clearly, $\gamma(T) \leq \gamma\left(T^{\prime \prime}\right)+1$. Since $D \backslash\left\{u_{1}\right\}$ is a dominating set in $T^{\prime \prime}$, we have $\gamma\left(T^{\prime \prime}\right) \leq \gamma(T)-1$ and thus $\gamma(T)=\gamma\left(T^{\prime \prime}\right)+1$. Now $\left(I \backslash\left\{u_{0}\right\}, D \backslash\left\{u_{1}\right\}\right)$ is an $(\alpha, \gamma)$-pair of $T^{\prime \prime}$.

Conversely, if $T^{\prime \prime}$ has an $(\alpha, \gamma)$-pair $\left(I^{\prime \prime}, D^{\prime \prime}\right), \alpha(T)=\alpha\left(T^{\prime \prime}\right)+1$ and $\gamma(T)=\gamma\left(T^{\prime \prime}\right)+1$, then $\left(I^{\prime \prime} \cup\left\{u_{0}\right\}, D^{\prime \prime} \cup\left\{u_{1}\right\}\right)$ is an $(\alpha, \gamma)$-pair of $T$.
(iii) Let $\alpha(T)=\alpha\left(T^{\prime}\right)+2$. If $T$ has an $(\alpha, \gamma)$-pair $(I, D)$, then we may assume without loss of generality that $u_{0}, u_{3} \in I$ and $u_{1}, u_{4} \in D$. Clearly, $\alpha\left(T^{\prime \prime \prime}\right) \leq \alpha\left(T^{\prime}\right)+1$. Since $I \backslash\left\{u_{0}\right\}$ is an independent set in $T^{\prime \prime \prime}$, we have $\alpha\left(T^{\prime \prime \prime}\right) \geq \alpha(T)-1=\alpha\left(T^{\prime}\right)+1$ and thus $\alpha(T)=\alpha\left(T^{\prime}\right)+2=\alpha\left(T^{\prime \prime \prime}\right)+1$. Clearly, $\gamma(T) \leq \gamma\left(T^{\prime \prime \prime}\right)+1$. Since $D \backslash\left\{u_{1}\right\}$ is a dominating
set in $T^{\prime \prime \prime}$, we have $\gamma\left(T^{\prime \prime \prime}\right) \leq \gamma(T)-1$ and thus $\gamma(T)=\gamma\left(T^{\prime \prime \prime}\right)+1$. Now $\left(I \backslash\left\{u_{0}\right\}, D \backslash\left\{u_{1}\right\}\right)$ is an $(\alpha, \gamma)$-pair of $T^{\prime \prime \prime}$.

Conversely, if $T^{\prime \prime \prime}$ has an $(\alpha, \gamma)$-pair $\left(I^{\prime \prime \prime}, D^{\prime \prime \prime}\right), \alpha(T)=\alpha\left(T^{\prime \prime \prime}\right)+1$ and $\gamma(T)=\gamma\left(T^{\prime \prime \prime}\right)+1$, then $\left(I^{\prime \prime \prime} \cup\left\{u_{0}\right\}, D^{\prime \prime \prime} \cup\left\{u_{1}\right\}\right)$ is an $(\alpha, \gamma)$-pair of $T$.

Combining Lemma 2 (i) with Lemma 3 it is easy to check that the only paths $P_{n}$ with an $(\alpha, \gamma)$-pair satisfy $n \in\{2,3,4,5,6,7,8,10\}$.

Lemma 4 Let $T$ contain a path $P: u_{0} u_{1} \ldots u_{r} w v_{s} v_{s-1} \ldots v_{0}$ with $r, s \geq 0$ such that $d_{T}\left(u_{0}\right)=d_{T}\left(v_{0}\right)=1, d_{T}\left(u_{i}\right)=2$ for $1 \leq i \leq r$ and $d_{T}\left(v_{j}\right)=2$ for $1 \leq j \leq s$.


Figure 4 The path $P: u_{0} u_{1} \ldots u_{r} w v_{s} v_{s-1} \ldots v_{0}$.
(i) If $r=2 k$ and $s=2 l$ for some $0 \leq k, l \leq 1$ with $k \geq l$, then $T$ has an $(\alpha, \gamma)$-pair if and only if $T^{\prime}=T-\left\{u_{i} \mid 0 \leq i \leq 2 k\right\}$ has an $(\alpha, \gamma)$-pair, $\alpha(T)=\alpha\left(T^{\prime}\right)+k+1$ and $\gamma(T)=\gamma\left(T^{\prime}\right)+k$.
(ii) If $r=2 k+1$ and $s=0$ for some $0 \leq k \leq 1$, then $T$ has an $(\alpha, \gamma)$-pair if and only if $T^{\prime}=T-\left\{u_{i} \mid 0 \leq i \leq 2 k+1\right\}$ has an $(\alpha, \gamma)$-pair, $\alpha(T)=\alpha\left(T^{\prime}\right)+k+1$ and $\gamma(T)=\gamma\left(T^{\prime}\right)+1$.
(iii) If $r=s=1$, then $T$ has an $(\alpha, \gamma)$-pair if and only if $T^{\prime}=T-\left\{u_{0}, u_{1}\right\}$ has an $(\alpha, \gamma)$-pair.
(iv) If $r=s=3$, then $T$ has an ( $\alpha, \gamma$ )-pair if and only if $T^{\prime}=T-\left\{u_{0}, u_{1}, u_{2}, v_{0}, v_{1}, v_{2}\right\}$ has an $(\alpha, \gamma)$-pair and $\alpha(T)=\alpha\left(T^{\prime}\right)+2$.
(v) If $r=1, s=2$ and $d_{T}(w)=3$, then $T$ has an $(\alpha, \gamma)$-pair if and only if $T^{\prime}=T-V(P)$ has an ( $\alpha, \gamma$ )-pair.
(vi) If $r=1, s=3$ and $d_{T}(w)=3$, then $T$ has an $(\alpha, \gamma)$-pair if and only if $T^{\prime}=$ $T-\left\{u_{0}, u_{1}\right\}$ has an ( $\alpha, \gamma$ )-pair.
(vii) If $r=2, s=3$ and $d_{T}(w)=3$, then $T$ has an $(\alpha, \gamma)$-pair if and only if $T^{\prime}=$ $T-\left\{u_{0}, u_{1}, v_{0}, v_{1}, v_{2}, v_{3}\right\}$ has an ( $\alpha, \gamma$ )-pair.

Proof: (i) Note that every maximum independent set $I$ of $T$ satisfies $I \cap V(P)=\left\{u_{2 i} \mid 0 \leq\right.$ $i \leq k\} \cup\left\{v_{2 j} \mid 0 \leq j \leq l\right\}$.

Therefore, if $T$ has an $(\alpha, \gamma)$-pair $(I, D)$, then $u_{2 i} \in I$ for $0 \leq i \leq k, v_{2 j} \in I$ for $0 \leq j \leq l$, $u_{2 i+1} \in D$ for $0 \leq i \leq k-1$ and $v_{2 j+1} \in D$ for $0 \leq j \leq l-1$. Clearly, $\alpha(T) \leq \alpha\left(T^{\prime}\right)+k+1$.

Since $I \backslash\left\{u_{2 i} \mid 0 \leq i \leq k\right\}$ is an independent set in $T^{\prime}$, we have $\alpha\left(T^{\prime}\right) \leq \alpha(T)-(k+1)$ and thus $\alpha(T)=\alpha\left(T^{\prime}\right)+k+1$. Clearly, $\gamma(T) \leq \gamma\left(T^{\prime}\right)+k$ - note that $k=0$ implies $l=0$ and $w \in D$. Since $D \backslash\left\{u_{2 i+1} \mid 0 \leq i \leq k-1\right\}$ is a dominating set in $T^{\prime}$, we have $\gamma\left(T^{\prime}\right) \leq \gamma(T)-k$ and thus $\gamma(T)=\gamma\left(T^{\prime}\right)+k$. Now ( $I \backslash\left\{u_{2 i} \mid 0 \leq i \leq k\right\}, D \backslash\left\{u_{2 i+1} \mid 0 \leq i \leq k-1\right\}$ ) is an $(\alpha, \gamma)$-pair of $T^{\prime}$.

Conversely, if $T^{\prime}$ has an $(\alpha, \gamma)$-pair $\left(I^{\prime}, D^{\prime}\right), \alpha(T)=\alpha\left(T^{\prime}\right)+k+1$ and $\gamma(T)=\gamma\left(T^{\prime}\right)+k$, then in view of $l \leq 1$ we may assume that $v_{2 l} \in I^{\prime}$. Hence $w \notin I^{\prime}$ and $\left(I^{\prime} \cup\left\{u_{2 i} \mid 0 \leq i \leq\right.\right.$ $\left.k\}, D^{\prime} \cup\left\{u_{2 i+1} \mid 0 \leq i \leq k-1\right\}\right)$ is an ( $\alpha, \gamma$ )-pair of $T$.
(ii) If $T$ has an $(\alpha, \gamma)$-pair, then it has an $(\alpha, \gamma)$-pair $(I, D)$ such that $v_{0} \in I, w \in D$, $\left|I \cap\left\{u_{i} \mid 0 \leq i \leq 2 k+1\right\}\right|=k+1$ and $\left|D \cap\left\{u_{i} \mid 0 \leq i \leq 2 k+1\right\}\right|=1$. Similarly, if $T^{\prime}$ has an $(\alpha, \gamma)$-pair, then it has an $(\alpha, \gamma)$-pair $\left(I^{\prime}, D^{\prime}\right)$ such that $v_{0} \in I$ and $w \in D$. This easily implies that $\alpha(T)=\alpha\left(T^{\prime}\right)+k+1, \gamma(T)=\gamma\left(T^{\prime}\right)+1$ and that $T$ has an $(\alpha, \gamma)$-pair if and only if $T^{\prime}$ has an $(\alpha, \gamma)$-pair.
(iii) If $T$ has an $(\alpha, \gamma)$-pair, then it has an $(\alpha, \gamma)$-pair $(I, D)$ such that $v_{0} \in I$ and $v_{1} \in D$. Similarly, if $T^{\prime}$ has an $(\alpha, \gamma)$-pair, then it has an $(\alpha, \gamma)$-pair $\left(I^{\prime}, D^{\prime}\right)$ such that $v_{0} \in I$ and $v_{1} \in D$. This easily implies that $\alpha(T)=\alpha\left(T^{\prime}\right)+1, \gamma(T)=\gamma\left(T^{\prime}\right)+1$ and that $T$ has an $(\alpha, \gamma)$-pair if and only if $T^{\prime}$ has an $(\alpha, \gamma)$-pair.
(iv) Note that every minimum dominating set of $T$ contains $w, u_{1}$ and $v_{1}$. Similarly every minimum dominating set of $T^{\prime}$ contains $w$. This easily implies that $\alpha(T)=\alpha\left(T^{\prime}\right)+2$, $\gamma(T)=\gamma\left(T^{\prime}\right)+2$ and that $T$ has an $(\alpha, \gamma)$-pair if and only if $T^{\prime}$ has an $(\alpha, \gamma)$-pair.
(v) It is easy to see that $\alpha(T)=\alpha\left(T^{\prime}\right)+3$ and $\gamma(T)=\gamma\left(T^{\prime}\right)+2$. If $T$ has an $(\alpha, \gamma)$-pair, then it has an $(\alpha, \gamma)$-pair $(I, D)$ such that $u_{0}, v_{0}, v_{2} \in I$ and $u_{1}, v_{1} \in D$. This easily implies that $T$ has an $(\alpha, \gamma)$-pair if and only if $T^{\prime}$ has an $(\alpha, \gamma)$-pair.
(vi) It is easy to see that $\alpha(T)=\alpha\left(T^{\prime}\right)+1$. Similarly, since $T^{\prime}$ has a minimum dominating set containing $w$, we have $\gamma(T)=\gamma\left(T^{\prime}\right)+1$ which again implies the desired result.
(vii) Note that $T$ has a maximum independent set containing $u_{2}$ and a minimum dominating set containing $w$. This easily implies that $\alpha(T)=\alpha\left(T^{\prime}\right)+3$ and $\gamma(T)=\gamma\left(T^{\prime}\right)+2$ which again implies the desired result.

Lemma 5 Let T contain three internally vertex disjoint paths $P: u_{0} u_{1} x, Q: v_{0} v_{1} v_{2} x$ and $R: w_{0} w_{1} w_{2} w_{3} x$ such that $d_{T}\left(u_{0}\right)=d_{T}\left(v_{0}\right)=d_{T}\left(w_{0}\right)=1, d_{T}\left(u_{1}\right)=d_{T}\left(v_{1}\right)=d_{T}\left(v_{2}\right)=$ $d_{T}\left(w_{1}\right)=d_{T}\left(w_{2}\right)=d_{T}\left(w_{3}\right)=2$ and $d_{T}(x)=4$, then $T$ has an $(\alpha, \gamma)$-pair if and only if $T^{\prime}=T-\left\{u_{0}, u_{1}, v_{0}, v_{1}, w_{0}, w_{1}, w_{2}, w_{3}\right\}$ has an $(\alpha, \gamma)$-pair.

Proof: Note that $T$ has a maximum independent set $I$ such that $I \cap(V(P) \cup V(Q) \cup V(R))=$ $\left\{u_{0}, v_{0}, w_{0}, v_{2}, w_{2}\right\}$ and a minimum dominating set $D$ such that $D \cap(V(P) \cup V(Q) \cup V(R))=$ $\left\{u_{1}, v_{1}, w_{1}, x\right\}$. This easily implies that $\alpha(T)=\alpha\left(T^{\prime}\right)+4$ and $\gamma(T)=\gamma\left(T^{\prime}\right)+3$.

If $T$ has an $(\alpha, \gamma)$-pair, then $T$ has an $(\alpha, \gamma)$-pair $(I, D)$ such that $I \cap(V(P) \cup V(Q) \cup$ $V(R))=\left\{u_{0}, v_{0}, w_{0}, v_{2}, w_{2}\right\}$ and $D \cap(V(P) \cup V(Q) \cup V(R))=\left\{u_{1}, v_{1}, w_{1}, x\right\}$. In this case $\left(I \backslash\left\{u_{0}, v_{0}, w_{0}, w_{2}\right\}, D \backslash\left\{u_{1}, v_{1}, w_{1}\right\}\right)$ is an $(\alpha, \gamma)$-pair of $T^{\prime}$. Conversely, if $T^{\prime}$ has an ( $\alpha, \gamma$ )-pair, then $T^{\prime}$ has an ( $\alpha, \gamma$ )-pair $\left(I^{\prime}, D^{\prime}\right)$ such that $v_{2} \in I^{\prime}$ and $x \in D^{\prime}$. In this case $\left(I^{\prime} \cup\left\{u_{0}, v_{0}, w_{0}, w_{2}\right\}, D^{\prime} \cup\left\{u_{1}, v_{1}, w_{1}\right\}\right)$ is an $(\alpha, \gamma)$-pair of $T$ which completes the proof.

For integers $k \geq 1$ and $d_{1} \geq d_{2} \geq \ldots \geq d_{k} \geq 1$ a tree $T$ is said to have a $\left(d_{1}, d_{2}, \ldots, d_{k}\right)$ tinsel $\left(P_{1}, P_{2}, \ldots, P_{k}\right)$ pending on $v$ if $P_{1}, P_{2}, \ldots, P_{k}$ are $k$ internally vertex disjoint paths in $T$ such that

$$
P_{i}: u_{i, 0} u_{i, 1} \ldots u_{i, d_{i}-1} v
$$

$d_{T}\left(u_{i, 0}\right)=1$ and $d_{T}\left(u_{i, j}\right)=2$ for $1 \leq i \leq k$ and $1 \leq j \leq d_{i}-1$ and $d_{T}(v)=k+1$. For integers $\partial d_{1}, \partial d_{2}, \ldots, \partial d_{k}$ with $0 \leq \partial d_{i} \leq d_{i}$ for $1 \leq i \leq k$, the tree

$$
T-\bigcup_{i=1}^{k} \bigcup_{j=0}^{\partial d_{i}-1}\left\{u_{i, j}\right\}
$$

is said to arise from the tree $T$ by $\left(\partial d_{1}, \partial d_{2}, \ldots, \partial d_{k}\right)$-cutting the $\left(d_{1}, d_{2}, \ldots, d_{k}\right)$-tinsel $\left(P_{1}, P_{2}, \ldots, P_{k}\right)$. Note that a tree $T$ which is not a path and is rooted at an endvertex of a longest path has a tinsel $\left(P_{1}, P_{2}, \ldots, P_{k}\right)$ pending on some vertex $v$ such that $k \geq 2$ and all vertices of the paths $P_{i}$ are either $v$ or descendants of $v$.

The next result summazies the reductions captured by Lemmas 3 through 5 and yields a constructive characterization of trees having an ( $\alpha, \gamma$ )-pair.

Theorem 6 Let $T=(V, E)$ be a tree which is not a path and different from the tree $T^{*}$. Let $\left(P_{1}, P_{2}, \ldots, P_{k}\right)$ be a $\left(d_{1}, d_{2}, \ldots, d_{k}\right)$-tinsel pending on $v$ with $k \geq 2$.

The tree $T$ has an $(\alpha, \gamma)$-pair if and only if the tree $T^{\prime}$ which arises from the tree $T$ by $\left(\partial d_{1}, \partial d_{2}, \ldots, \partial d_{k}\right)$-cutting the $\left(d_{1}, d_{2}, \ldots, d_{k}\right)$-tinsel $\left(P_{1}, P_{2}, \ldots, P_{k}\right)$ has an $(\alpha, \gamma)$-pair and $\left(\alpha(T)-\alpha\left(T^{\prime}\right), \gamma(T)-\gamma\left(T^{\prime}\right)\right)=(\partial \alpha, \partial \gamma)$ where
(i) if $d_{1} \geq 5$ and $\alpha(T)=\alpha\left(T-\left\{u_{1,0}, u_{1,1}, \ldots, u_{1,4}\right\}\right)+3$, then $\left(\partial d_{1}, \partial d_{2}, \ldots, \partial d_{k}\right)=$ $(2,0, \ldots, 0)$ and $(\partial \alpha, \partial \gamma)=(1,1)$.
(ii) if $d_{1} \geq 5$ and $\alpha(T)=\alpha\left(T-\left\{u_{1,0}, u_{1,1}, \ldots, u_{1,4}\right\}\right)+2$, then $\left(\partial d_{1}, \partial d_{2}, \ldots, \partial d_{k}\right)=$ $(3,0, \ldots, 0)$ and $(\partial \alpha, \partial \gamma)=(1,1)$.
(iii) if there are two indices $1 \leq i<j \leq k$ such that $d_{i}, d_{j} \in\{1,3\}$, then $\partial d_{i}=d_{i}, \partial d_{r}=0$ for $1 \leq r \leq k$ with $r \neq i$ and $(\partial \alpha, \partial \gamma)=\left(\frac{d_{i}+1}{2}, \frac{d_{i}-1}{2}\right)$.
(iv) if $d_{k}=1$ and there is an index $1 \leq i<k$ such that $d_{i} \in\{2,4\}$, then $\partial d_{i}=d_{i}, \partial d_{r}=0$ for $1 \leq r \leq k$ with $r \neq i$ and $(\partial \alpha, \partial \gamma)=\left(\frac{d_{i}}{2}, 1\right)$.
(v) if there are two indices $1 \leq i<j \leq k$ such that $d_{i}=d_{j}=2$, then $\partial d_{i}=d_{i}, \partial d_{r}=0$ for $1 \leq r \leq k$ with $r \neq i$ and $(\partial \alpha, \partial \gamma)=(1,1)$.
(vi) if there are two indices $1 \leq i<j \leq k$ such that $d_{i}=d_{j}=4$, then $\partial d_{i}=\partial d_{j}=3$, $\partial d_{r}=0$ for $1 \leq r \leq k$ with $r \notin\{i, j\}$ and $\partial \alpha=2$.
(vii) if $k=2$ and $\left(d_{1}, d_{2}\right)=(3,2)$, then $T^{\prime}=T-\left(V\left(P_{1}\right) \cup V\left(P_{2}\right)\right)$.
(viii) if $k=2$ and $\left(d_{1}, d_{2}\right)=(4,2)$, then $\left(\partial d_{1}, \partial d_{2}\right)=(0,2)$.
(ix) if $k=2$ and $\left(d_{1}, d_{2}\right)=(4,3)$, then $\left(\partial d_{1}, \partial d_{2}\right)=(4,2)$.
(x) if $k=3$ and $\left(d_{1}, d_{2}\right)=(4,3,2)$, then $\left(\partial d_{1}, \partial d_{2}, \partial d_{3}\right)=(4,2,2)$.

Furthermore, one of the cases (i)-(x) occurs.
Proof: If $d_{1} \geq 5$, then, by Lemma 3 (i), $2 \leq \alpha(T)-\alpha\left(T-\left\{u_{1,0}, u_{1,1}, \ldots, u_{1,4}\right\}\right) \leq 3$. Now, by Lemma 3 (ii) and (iii), either (i) or (ii) occurs. Hence we may assume that $d_{1} \leq 4$, i.e. all $d_{i}$ are at most 4 . If there are two odd $d_{i}$ 's, then, by Lemma 4 (i), the case (iii) occurs. Hence we may assume that at most one of the $d_{i}$ is odd. If $d_{k}=1$, then, by Lemma 4 (ii), the case (iv) occurs. Hence we may assume that all $d_{i}$ are either 2,3 or 4 . If there are two $d_{i}$ 's equal to 2 , then, by Lemma 4 (iii), the case (v) occurs. Hence we may assume that at most one of the $d_{i}$ is 2 . If there are two $d_{i}$ 's equal to 4 , then, by Lemma 4 (iv), the case (vi) occurs. Hence we may assume that at most one of the $d_{i}$ is 4 . If $k \geq 3$, then $k=3,\left(d_{1}, d_{2}, d_{3}\right)=(4,3,2)$ and, by Lemma 5 , the case ( x ) occurs. Hence we may assume $k=2$ and, by Lemma 4 (v) through (vii), one of the cases (vii) through (ix) occurs. This completes the proof.

Corollary 7 It is possible to decide in polynomial time whether a given tree of order at least 2 has an ( $\alpha, \gamma$ )-pair.

Proof: If $T$ is a path of order at most 6 or the tree $T^{*}$, then, by Lemma $2, T$ has an $(\alpha, \gamma)$-pair. If $T$ is a path of order at least 7 , then Lemma 3 allows to reduce the decision problem to a smaller tree in polynomial time. If $T$ is neigther a path not the tree $T^{*}$, then Theorem 6 allows to reduce the decision problem to a smaller tree in polynomial time.

## References

[1] D. W. Bange, A. E. Barkauskas, and P. J. Slater, A constructive characterization of trees with two disjoint minimum dominating sets, Congressus Numerantium 21 (1978), 101112.
[2] M.-S. Chang and C.-C. Hsu, On Minimum Intersection of Two Minimum Dominating Sets of Interval Graphs, Discrete Appl. Math. 78 (1997), 41-50.
[3] G.S. Domke, J.E. Dunbar, and L.R. Markus, The Inverse Domination Number of a Graph, Ars Combin. 72 (2004), 149-160.
[4] P. Eades, M. Keil, P.D. Manuel, and M. Miller, Two minimum dominating sets with minimum intersection in chordal graphs, Nordic J. Computing 3 (1996), 220-237.
[5] A. Frendrup, M.A. Henning, B. Randerath, and P.D. Vestergaard, On a Conjecture about Inverse Domination in Graphs, manuscript 2007.
[6] D.L. Grinstead and P.J. Slater, On minimum dominating sets with minimum intersection, Discrete Math. 86 (1990), 239-254.
[7] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of domination in graphs, Marcel Dekker, Inc., New York, 1998.
[8] T.W. Haynes and M.A. Henning, Trees with two disjoint minimum independent dominating sets, Discrete Math 304 (2005), 69-78.
[9] V.R. Kulli and S.C. Sigarkanti, Inverse domination in graphs, Nat. Acad. Sci. Lett. 14 (1991), 473-475.
[10] P.J. Slater, A constructive characterization of trees with at least $k$ disjoint maximum matchings, J. Comb. Theory, Ser. B 25 (1978), 326-338.

