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Cohabitation of Independent Sets and

Dominating Sets in Trees

Christian Löwenstein and Dieter Rautenbach
Institut für Mathematik, TU Ilmenau, Postfach 100565, D-98684 Ilmenau, Germany,

emails: {christian.loewenstein, dieter.rautenbach}@tu-ilmenau.de

Abstract. We give a constructive characterization of trees that have a maximum indepen-
dent set and a minimum dominating set which are disjoint and show that the corresponding
decision problem is NP-complete for general graphs.
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1 Introduction

We consider finite, undirected and simple graphs G = (V, E) with vertex set V and edge
set E. A set I ⊆ V of vertices is an independent set of G, if no two vertices from I are
adjacent in G. The maximum cardinality of an independent set of G is the independence
number α(G) of G. A set D ⊆ V of vertices is a dominating set of G, if every vertex in
V \ D has a neighbour in D. The minimum cardinality of a dominating set of G is the
domination number γ(G) of G.

Minimum independent and maximum dominating sets are among the most fundamental
and well-studied graph theoretic concepts [7]. As early as 1978 Bange, Barkauskas, and
Slater [1] and Slater [10] characterized trees which have two disjoint minimum dominating
sets and two disjoint maximum independent sets, respectively. In [2, 4, 6] the problem of
finding two minimum dominating sets of minimum intersection is studied while in [8] trees
with two disjoint minimum independent dominating sets are characterized. In [3, 5, 9]
the minimum cardinality of a dominating set which lies in the complement of a minimum
dominating set is studied.

Complementing this previous research we consider graphs G = (V, E) that have a
maximum independent set I and a minimum dominating set D which are disjoint. We
call such a pair of sets (I, D) an (α, γ)-pair of G. Intuitively, two independent sets or
two dominating sets compete for similar types of vertices while an independent set and a
dominating set seem easiler to reconcile. After proving that the decision problem whether
a given graph has an (α, γ)-pair is NP-complete, we give a constructive characterization of
trees with an (α, γ)-pair.

Theorem 1 The problem to decide whether an input graph has an (α, γ)-pair is NP-
complete.
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Proof: For a 3SAT instance C with n variables and m clauses, we will describe a graph
G = (V, E) of order polynomial in n and m such that C is satisfiable if and only if G has
an (α, γ)-pair.

For every boolean variable x of C, the graph G contains a copy Hx of the gadget shown
in Figure 1 with two specified vertices x and x̄.

u uuu
u
@@

u

��
x x̄

j
j

Figure 1: The gadget Hx.

For every clause C, the graph G contains 3n + 1 disjoint paths of length three

PC
1 , PC

2 , . . . , PC
3n+1.

In each of these paths PC
i we specify one endvertex xC

i . If C contains the literal y, then
G contains the edges yxC

i for 1 ≤ i ≤ 3n + 1. The graph G contains no further vertices or
edges.

Clearly, every independent set of G contains at most three vertices from every of the
gadgets Hx and at most two vertices from every of the paths PC

i , i.e. α(G) ≤ 3n+2m(3n+
1). Since choosing three independent vertices from every of the gadgets Hx and the vertices
at distance one and three from xC

i from every of the paths PC
i yields an independent set

of order 3n + 2m(3n + 1), we have α(G) = 3n + 2m(3n + 1).
Clearly, every dominating set of G contains at least two vertices from every of the

gadgets Hx and at least one vertex from every of the paths PC
i . Hence γ(G) ≥ 2n +

m(3n + 1). Furthermore, since choosing x, x̄ and the neighbour of the endvertex from
every of the gadgets Hx and the vertex at distance two from xC

i from every of the paths
PC

i yields a dominating set of order 3n + m(3n + 1), we have γ(G) ≤ 3n + m(3n + 1).

If C has a satisfying truth assignment, then choosing three independent vertices containing
the false literal among x and x̄ from every of the gadgets Hx and the vertices at distance
one and three from xC

i from every of the paths PC
i yields a maximum independent set I.

Furthermore, choosing the true literal among x and x̄ and the neighbour of the endvertex
from every of the gadgets Hx and the vertex at distance two from xC

i from every of the
paths PC

i yields an dominating set D of order 2n+m(3n+1). Hence (I, D) is an (α, γ)-pair
of G.

Conversely, if G has an (α, γ)-pair (I, D), then we may assume that D contains exactly
one of the two vertices x and x̄ from every of the gadgets Hx. If one of the vertices xC

i

from some path PC
i is not dominated by a vertex from one of the gadgets Hx, then D must

contain at least two vertices from every of the 3n+1 paths PC
i and at least one vertex from

every of the remaining paths. Hence |D| ≥ 3n + 1 + m(3n + 1) which is a contradiction.
Therefore, all of the vertices xC

i from every of the paths PC
i are dominated by a vertex
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from one of the gadgets Hx. Hence the literals contained in D define a satisfying truth
assignment for C and the proof is complete. �

2 Trees with an (α, γ)-pair

In this section we will describe a polynomial time procedure to decide whether a given tree
has an (α, γ)-pair. We describe suitable reductions and explain how these reductions yield
a constructive characterization of trees with an (α, γ)-pair.

The first lemma deals with some small trees.

Lemma 2 (i) For 2 ≤ n ≤ 6 the path Pn : u1u2 . . . un has the following (α, γ)-pair
(In, Dn):

(I2, D2) = ({u1}, {u2})
(I3, D3) = ({u1, u3}, {u2})
(I4, D4) = ({u1, u4}, {u2, u3})
(I5, D5) = ({u1, u3, u5}, {u2, u4})
(I6, D6) = ({u1, u3, u6}, {u2, u5}).

(ii) The tree T ∗ = (V ∗, E∗) with

V ∗ = {u0, u1, v0, v1, v2, w0, w1, w2, w3, x}
E∗ = {u0u1, u1x, v0v1, v1v2, v2x, w0w1, w1w2, w2w3, w3x}

has the (α, γ)-pair
({u0, v0, w0, v2, w2}, {u1, v1, w1, x}).

Proof: It is very easy to check that the given sets are maximum independent sets and
minimum dominating sets which are disjoint. �
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Figure 2 The trees P2, P3, . . . , P6 and T ∗.
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Lemma 3 Let T contain a path P : u0u1 . . . u5 such that dT (u0) = 1 and dT (u1) =
dT (u2) = dT (u3) = dT (u4) = 2.

(i) α(T ′) + 2 ≤ α(T ) ≤ α(T ′) + 3 for T ′ = T − {u0, u1, . . . , u4}.

(ii) If α(T ) = α(T ′) + 3, then T has an (α, γ)-pair if and only if T ′′ = T − {u0, u1} has
an (α, γ)-pair, α(T ) = α(T ′′) + 1 and γ(T ) = γ(T ′′) + 1.

(iii) If α(T ) = α(T ′) + 2, then T has an (α, γ)-pair if and only if T ′′′ = T − {u0, u1, u2}
has an (α, γ)-pair, α(T ) = α(T ′′′) + 1 and γ(T ) = γ(T ′′′) + 1.
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α(T ) = α(T ′) + 3 α(T ) = α(T ′) + 2

Figure 3 The trees T , T ′, T ′′ and T ′′′.

Proof: (i) The first inequality follows, since for every independent set I ′ of T ′ the set I ′ ∪
{u0, u2} is an independent set of T . The second inequality follows, since every independent
set I of T contains at most three of the vertices in {u0, u1, . . . , u4} and I \ {u0, u1, . . . , u4}
is an independent set of T ′.

(ii) Let α(T ) = α(T ′) + 3. Note that this implies that every maximum independent set
of T contains u0, u2 and u4. Therefore, if T has an (α, γ)-pair (I, D), then u0, u2, u4 ∈ I
and hence u1, u3 ∈ D. Clearly, α(T ′′) ≤ α(T ′) + 2. Since I \ {u0} is an independent set in
T ′′, we have α(T ′′) ≥ α(T )−1 = α(T ′)+2 and thus α(T ) = α(T ′)+3 = α(T ′′)+1. Clearly,
γ(T ) ≤ γ(T ′′) + 1. Since D \ {u1} is a dominating set in T ′′, we have γ(T ′′) ≤ γ(T ) − 1
and thus γ(T ) = γ(T ′′) + 1. Now (I \ {u0}, D \ {u1}) is an (α, γ)-pair of T ′′.

Conversely, if T ′′ has an (α, γ)-pair (I ′′, D′′), α(T ) = α(T ′′) + 1 and γ(T ) = γ(T ′′) + 1,
then (I ′′ ∪ {u0}, D′′ ∪ {u1}) is an (α, γ)-pair of T .

(iii) Let α(T ) = α(T ′) + 2. If T has an (α, γ)-pair (I, D), then we may assume without
loss of generality that u0, u3 ∈ I and u1, u4 ∈ D. Clearly, α(T ′′′) ≤ α(T ′) + 1. Since
I \ {u0} is an independent set in T ′′′, we have α(T ′′′) ≥ α(T ) − 1 = α(T ′) + 1 and thus
α(T ) = α(T ′)+2 = α(T ′′′)+1. Clearly, γ(T ) ≤ γ(T ′′′)+1. Since D \{u1} is a dominating
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set in T ′′′, we have γ(T ′′′) ≤ γ(T )−1 and thus γ(T ) = γ(T ′′′)+1. Now (I \{u0}, D \{u1})
is an (α, γ)-pair of T ′′′.

Conversely, if T ′′′ has an (α, γ)-pair (I ′′′, D′′′), α(T ) = α(T ′′′)+1 and γ(T ) = γ(T ′′′)+1,
then (I ′′′ ∪ {u0}, D′′′ ∪ {u1}) is an (α, γ)-pair of T . �

Combining Lemma 2 (i) with Lemma 3 it is easy to check that the only paths Pn with an
(α, γ)-pair satisfy n ∈ {2, 3, 4, 5, 6, 7, 8, 10}.

Lemma 4 Let T contain a path P : u0u1 . . . urwvsvs−1 . . . v0 with r, s ≥ 0 such that
dT (u0) = dT (v0) = 1, dT (ui) = 2 for 1 ≤ i ≤ r and dT (vj) = 2 for 1 ≤ j ≤ s.

u u u u u
u

u u u u u u u
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�
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u0 u1 ur

w

vs vs−1 v0v1

. . . . . .

Figure 4 The path P : u0u1 . . . urwvsvs−1 . . . v0.

(i) If r = 2k and s = 2l for some 0 ≤ k, l ≤ 1 with k ≥ l, then T has an (α, γ)-pair if
and only if T ′ = T − {ui | 0 ≤ i ≤ 2k} has an (α, γ)-pair, α(T ) = α(T ′) + k + 1 and
γ(T ) = γ(T ′) + k.

(ii) If r = 2k + 1 and s = 0 for some 0 ≤ k ≤ 1, then T has an (α, γ)-pair if and only
if T ′ = T − {ui | 0 ≤ i ≤ 2k + 1} has an (α, γ)-pair, α(T ) = α(T ′) + k + 1 and
γ(T ) = γ(T ′) + 1.

(iii) If r = s = 1, then T has an (α, γ)-pair if and only if T ′ = T − {u0, u1} has an
(α, γ)-pair.

(iv) If r = s = 3, then T has an (α, γ)-pair if and only if T ′ = T − {u0, u1, u2, v0, v1, v2}
has an (α, γ)-pair and α(T ) = α(T ′) + 2.

(v) If r = 1, s = 2 and dT (w) = 3, then T has an (α, γ)-pair if and only if T ′ = T−V (P )
has an (α, γ)-pair.

(vi) If r = 1, s = 3 and dT (w) = 3, then T has an (α, γ)-pair if and only if T ′ =
T − {u0, u1} has an (α, γ)-pair.

(vii) If r = 2, s = 3 and dT (w) = 3, then T has an (α, γ)-pair if and only if T ′ =
T − {u0, u1, v0, v1, v2, v3} has an (α, γ)-pair.

Proof: (i) Note that every maximum independent set I of T satisfies I ∩V (P ) = {u2i | 0 ≤
i ≤ k} ∪ {v2j | 0 ≤ j ≤ l}.

Therefore, if T has an (α, γ)-pair (I,D), then u2i ∈ I for 0 ≤ i ≤ k, v2j ∈ I for 0 ≤ j ≤ l,
u2i+1 ∈ D for 0 ≤ i ≤ k−1 and v2j+1 ∈ D for 0 ≤ j ≤ l−1. Clearly, α(T ) ≤ α(T ′)+k +1.
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Since I \ {u2i | 0 ≤ i ≤ k} is an independent set in T ′, we have α(T ′) ≤ α(T )− (k +1) and
thus α(T ) = α(T ′) + k + 1. Clearly, γ(T ) ≤ γ(T ′) + k — note that k = 0 implies l = 0 and
w ∈ D. Since D\{u2i+1 | 0 ≤ i ≤ k−1} is a dominating set in T ′, we have γ(T ′) ≤ γ(T )−k
and thus γ(T ) = γ(T ′) + k. Now (I \ {u2i | 0 ≤ i ≤ k}, D \ {u2i+1 | 0 ≤ i ≤ k − 1}) is an
(α, γ)-pair of T ′.

Conversely, if T ′ has an (α, γ)-pair (I ′, D′), α(T ) = α(T ′)+k +1 and γ(T ) = γ(T ′)+k,
then in view of l ≤ 1 we may assume that v2l ∈ I ′. Hence w 6∈ I ′ and (I ′ ∪ {u2i | 0 ≤ i ≤
k}, D′ ∪ {u2i+1 | 0 ≤ i ≤ k − 1}) is an (α, γ)-pair of T .

(ii) If T has an (α, γ)-pair, then it has an (α, γ)-pair (I,D) such that v0 ∈ I, w ∈ D,
|I ∩ {ui | 0 ≤ i ≤ 2k + 1}| = k + 1 and |D ∩ {ui | 0 ≤ i ≤ 2k + 1}| = 1. Similarly, if T ′ has
an (α, γ)-pair, then it has an (α, γ)-pair (I ′, D′) such that v0 ∈ I and w ∈ D. This easily
implies that α(T ) = α(T ′) + k + 1, γ(T ) = γ(T ′) + 1 and that T has an (α, γ)-pair if and
only if T ′ has an (α, γ)-pair.

(iii) If T has an (α, γ)-pair, then it has an (α, γ)-pair (I, D) such that v0 ∈ I and
v1 ∈ D. Similarly, if T ′ has an (α, γ)-pair, then it has an (α, γ)-pair (I ′, D′) such that
v0 ∈ I and v1 ∈ D. This easily implies that α(T ) = α(T ′) + 1, γ(T ) = γ(T ′) + 1 and that
T has an (α, γ)-pair if and only if T ′ has an (α, γ)-pair.

(iv) Note that every minimum dominating set of T contains w, u1 and v1. Similarly
every minimum dominating set of T ′ contains w. This easily implies that α(T ) = α(T ′)+2,
γ(T ) = γ(T ′) + 2 and that T has an (α, γ)-pair if and only if T ′ has an (α, γ)-pair.

(v) It is easy to see that α(T ) = α(T ′)+3 and γ(T ) = γ(T ′)+2. If T has an (α, γ)-pair,
then it has an (α, γ)-pair (I, D) such that u0, v0, v2 ∈ I and u1, v1 ∈ D. This easily implies
that T has an (α, γ)-pair if and only if T ′ has an (α, γ)-pair.

(vi) It is easy to see that α(T ) = α(T ′) + 1. Similarly, since T ′ has a minimum
dominating set containing w, we have γ(T ) = γ(T ′) + 1 which again implies the desired
result.

(vii) Note that T has a maximum independent set containing u2 and a minimum dom-
inating set containing w. This easily implies that α(T ) = α(T ′) + 3 and γ(T ) = γ(T ′) + 2
which again implies the desired result. �

Lemma 5 Let T contain three internally vertex disjoint paths P : u0u1x, Q : v0v1v2x and
R : w0w1w2w3x such that dT (u0) = dT (v0) = dT (w0) = 1, dT (u1) = dT (v1) = dT (v2) =
dT (w1) = dT (w2) = dT (w3) = 2 and dT (x) = 4, then T has an (α, γ)-pair if and only if
T ′ = T − {u0, u1, v0, v1, w0, w1, w2, w3} has an (α, γ)-pair.

Proof: Note that T has a maximum independent set I such that I∩(V (P )∪V (Q)∪V (R)) =
{u0, v0, w0, v2, w2} and a minimum dominating set D such that D∩(V (P )∪V (Q)∪V (R)) =
{u1, v1, w1, x}. This easily implies that α(T ) = α(T ′) + 4 and γ(T ) = γ(T ′) + 3.

If T has an (α, γ)-pair, then T has an (α, γ)-pair (I,D) such that I ∩ (V (P ) ∪ V (Q) ∪
V (R)) = {u0, v0, w0, v2, w2} and D ∩ (V (P ) ∪ V (Q) ∪ V (R)) = {u1, v1, w1, x}. In this
case (I \ {u0, v0, w0, w2}, D \ {u1, v1, w1}) is an (α, γ)-pair of T ′. Conversely, if T ′ has an
(α, γ)-pair, then T ′ has an (α, γ)-pair (I ′, D′) such that v2 ∈ I ′ and x ∈ D′. In this case
(I ′ ∪ {u0, v0, w0, w2}, D′ ∪ {u1, v1, w1}) is an (α, γ)-pair of T which completes the proof. �
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For integers k ≥ 1 and d1 ≥ d2 ≥ . . . ≥ dk ≥ 1 a tree T is said to have a (d1, d2, . . . , dk)-
tinsel (P1, P2, . . . , Pk) pending on v if P1, P2, . . . , Pk are k internally vertex disjoint paths
in T such that

Pi : ui,0ui,1 . . . ui,di−1v,

dT (ui,0) = 1 and dT (ui,j) = 2 for 1 ≤ i ≤ k and 1 ≤ j ≤ di − 1 and dT (v) = k + 1. For
integers ∂d1, ∂d2, . . . , ∂dk with 0 ≤ ∂di ≤ di for 1 ≤ i ≤ k, the tree

T −
k⋃

i=1

∂di−1⋃
j=0

{ui,j}

is said to arise from the tree T by (∂d1, ∂d2, . . . , ∂dk)-cutting the (d1, d2, . . . , dk)-tinsel
(P1, P2, . . . , Pk). Note that a tree T which is not a path and is rooted at an endvertex of
a longest path has a tinsel (P1, P2, . . . , Pk) pending on some vertex v such that k ≥ 2 and
all vertices of the paths Pi are either v or descendants of v.

The next result summazies the reductions captured by Lemmas 3 through 5 and yields
a constructive characterization of trees having an (α, γ)-pair.

Theorem 6 Let T = (V, E) be a tree which is not a path and different from the tree T ∗.
Let (P1, P2, . . . , Pk) be a (d1, d2, . . . , dk)-tinsel pending on v with k ≥ 2.

The tree T has an (α, γ)-pair if and only if the tree T ′ which arises from the tree T by
(∂d1, ∂d2, . . . , ∂dk)-cutting the (d1, d2, . . . , dk)-tinsel (P1, P2, . . . , Pk) has an (α, γ)-pair and
(α(T )− α(T ′), γ(T )− γ(T ′)) = (∂α, ∂γ) where

(i) if d1 ≥ 5 and α(T ) = α(T − {u1,0, u1,1, . . . , u1,4}) + 3, then (∂d1, ∂d2, . . . , ∂dk) =
(2, 0, . . . , 0) and (∂α, ∂γ) = (1, 1).

(ii) if d1 ≥ 5 and α(T ) = α(T − {u1,0, u1,1, . . . , u1,4}) + 2, then (∂d1, ∂d2, . . . , ∂dk) =
(3, 0, . . . , 0) and (∂α, ∂γ) = (1, 1).

(iii) if there are two indices 1 ≤ i < j ≤ k such that di, dj ∈ {1, 3}, then ∂di = di, ∂dr = 0
for 1 ≤ r ≤ k with r 6= i and (∂α, ∂γ) =

(
di+1

2
, di−1

2

)
.

(iv) if dk = 1 and there is an index 1 ≤ i < k such that di ∈ {2, 4}, then ∂di = di, ∂dr = 0
for 1 ≤ r ≤ k with r 6= i and (∂α, ∂γ) =

(
di

2
, 1

)
.

(v) if there are two indices 1 ≤ i < j ≤ k such that di = dj = 2, then ∂di = di, ∂dr = 0
for 1 ≤ r ≤ k with r 6= i and (∂α, ∂γ) = (1, 1).

(vi) if there are two indices 1 ≤ i < j ≤ k such that di = dj = 4, then ∂di = ∂dj = 3,
∂dr = 0 for 1 ≤ r ≤ k with r 6∈ {i, j} and ∂α = 2.

(vii) if k = 2 and (d1, d2) = (3, 2), then T ′ = T − (V (P1) ∪ V (P2)).

(viii) if k = 2 and (d1, d2) = (4, 2), then (∂d1, ∂d2) = (0, 2).

(ix) if k = 2 and (d1, d2) = (4, 3), then (∂d1, ∂d2) = (4, 2).

7



(x) if k = 3 and (d1, d2) = (4, 3, 2), then (∂d1, ∂d2, ∂d3) = (4, 2, 2).

Furthermore, one of the cases (i)-(x) occurs.

Proof: If d1 ≥ 5, then, by Lemma 3 (i), 2 ≤ α(T )− α(T − {u1,0, u1,1, . . . , u1,4}) ≤ 3. Now,
by Lemma 3 (ii) and (iii), either (i) or (ii) occurs. Hence we may assume that d1 ≤ 4, i.e.
all di are at most 4. If there are two odd di’s, then, by Lemma 4 (i), the case (iii) occurs.
Hence we may assume that at most one of the di is odd. If dk = 1, then, by Lemma 4
(ii), the case (iv) occurs. Hence we may assume that all di are either 2, 3 or 4. If there
are two di’s equal to 2, then, by Lemma 4 (iii), the case (v) occurs. Hence we may assume
that at most one of the di is 2. If there are two di’s equal to 4, then, by Lemma 4 (iv),
the case (vi) occurs. Hence we may assume that at most one of the di is 4. If k ≥ 3, then
k = 3, (d1, d2, d3) = (4, 3, 2) and, by Lemma 5, the case (x) occurs. Hence we may assume
k = 2 and, by Lemma 4 (v) through (vii), one of the cases (vii) through (ix) occurs. This
completes the proof. �

Corollary 7 It is possible to decide in polynomial time whether a given tree of order at
least 2 has an (α, γ)-pair.

Proof: If T is a path of order at most 6 or the tree T ∗, then, by Lemma 2, T has an
(α, γ)-pair. If T is a path of order at least 7, then Lemma 3 allows to reduce the decision
problem to a smaller tree in polynomial time. If T is neigther a path not the tree T ∗, then
Theorem 6 allows to reduce the decision problem to a smaller tree in polynomial time. �
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