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On Spanning Tree Congestion
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Abstract. We prove that every connected graph G of order n has a spanning tree T
such that for every edge e of T the edge-cut defined in G by the vertex sets of the two
components of T − e contains at most n

3
2 many edges which solves a problem posed by

Ostrovskii (Minimal congestion trees, Discrete Math. 285 (2004), 219-226.)
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1 Introduction

Let G = (V,EG) be a connected graph and let T = (V,ET ) be a tree on the same set of
vertices. For an edge e ∈ ET of T we consider the congestion c(e, (G, T )) of e with respect
to (G, T ) as the number of edges uv ∈ EG of G for which e lies on the path in T from u to
v, i.e. c(e, (G, T )) is the cardinality of the edge-cut defined in G by the vertex sets of the
two components of T − e. The maximum congestion max{c(e, (G, T )) | e ∈ ET} is denoted
by c(G, T ).

Following Ostrovskii [10] we consider the tree congestion of G

t(G) = min{c(G, T ) | T = (V,ET ) is a tree}

and spanning tree congestion of G

s(G) = min{c(G, T ) | T = (V,ET ) is a tree with ET ⊆ EG}.

In [10] he proves that t(G) always equals the maximum number of edge-disjoint paths
connecting two vertices of G which is also a consequence of the existence of Gomory-Hu
trees [5]. Furthermore, he studies the rate of growth of the maximum possible value of
s(G) for graphs of order n

µ(n) = max{s(G) | G = (V,E), |V | = n}.

He proves that s(G) <
⌊

n2

4

⌋
for connected graphs G = (V,E) with n = |V | ≥ 6 and for all

odd k ∈ N he constructs connected graphs Gk of order nk = 3k2 − 2k with s(Gk) ≥ 1
4
k3,

i.e. s(Gk) = Ω
(
n

3
2
k

)
. As the main open problem he asks for more precise estimates on

the rate of growth of µ(n). In the present paper we prove that µ(n) ≤ n
3
2 . In view of the

graphs Gk this determines the growth rate of µ(n) quite accurately.
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The reader should be aware that t(G) and s(G) are two special examples of the nu-
merous graph embedding and layout problems which were considered in connection with
applications to networking and circuit design. Restricting T to paths, t(G) corresponds
exactly to the very well studied cutwidth [4]. Several other host graphs instead of trees
such as cycles [3], grids [1] and binary trees [2] were considered. In [7] Hruska determines
the exact values of t(G) and s(G) for several special graphs and we refer the reader to
[7, 10] for further references.

2 Results

Before we proceed to our main result, we recall a great theorem due to Győri [6] and Lovász
[8] concerning highly connected graphs.

Theorem 1 (Győri [6], Lovász [8]) For k ∈ N with k ≥ 2 let G = (V,E) be a k-
connected graph of order n. If v1, v2, ..., vk ∈ V are k distinct vertices of G and the integers
n1, n2, ..., nk ∈ N are such that n1 + n2 + ... + nk = n, then there exists a partition V =
V1 ∪ V2 ∪ ... ∪ Vk such that vi lies in Vi, |Vi| = ni and G[Vi] is connected for all 1 ≤ i ≤ k.

With this tool at hand, we can proceed to our main result.

Theorem 2 If G = (V,EG) is a connected graph of order n, then s(G) ≤ n
3
2 .

Proof: If G has a vertex of degree at least n−2, then G has a spanning tree T which arises
by subdividing at most one edge of a star. In this case c(G, T ) ≤ max{n−1, 2(n−2)} ≤ n

3
2 .

Hence we may assume that G has no such vertex which implies that G has at most n(n−3)
2

edges. Since for every tree T , we have c(G, T ) ≤ |EG| and for n ≤ 9, we have n(n−3)
2
≤ n

3
2 ,

the result holds for n ≤ 9. We may assume that n ≥ 10 and prove the result by an
inductive argument considering two cases.

Case 1 G has a cutset of cardinality at most
√
n.

Let Y be a cutset of minimum cardinality and let Z denote the vertex set of a smallest
component of G[V \Y ]. If X = V \ (Y ∪Z), then the subgraph G[X∪Y ] induced by X∪Y
is connected, x = |X| ≥ z = |Z|, y = |Y | ≤

√
n, and there is no edge between X and Z.

Let T (X ∪ Y ) be a spanning tree of the subgraph G[X ∪ Y ] with

c(G[X ∪ Y ], T (X ∪ Y )) ≤ (x+ y)
3
2

and let T (Z) be a spanning tree of G[Z] with

c(G[Z], T (Z)) ≤ z
3
2 .

Let uv ∈ EG with u ∈ Y and v ∈ Z and let

T =
(
V,ET (X∪Y ) ∪ {uv} ∪ ET (Z)

)
.
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Note that there are at most yz edges between X ∪ Y and Z. This implies that, if e ∈
ET (X∪Y ), then

c(e, (G, T )) ≤ (x+ y)
3
2 + yz = (n− z)

1
2 · (n− z) + yz ≤

√
n · (n− z) +

√
n · z = n

3
2 ,

if e ∈ ET (Z), then

c(e, (G, T )) ≤ z
3
2 + yz = z ·

(√
z + y

)
≤ 1

2
n ·
(√

n+
√
n
)

= n
3
2

and, finally, if e = uv, then c(e, (G, T )) ≤ yz < n
3
2 . Altogether, c(G, T ) ≤ n

3
2 which

completes the proof in this case.

Case 2 G has no cutset of cardinality at most
√
n, i.e. G is (b

√
nc+ 1)-connected.

Let u be a vertex of degree at least d = b
√
nc+ 1 and let v1, v2, . . . , vd be d neighbours of

u. If a, b ∈ N0 with 0 ≤ b ≤ b
√
nc are such that n = a · (b

√
nc+ 1)− b, then

a =
n

b
√
nc+ 1

+
b

b
√
nc+ 1

< (b
√
nc+ 1) + 1 = b

√
nc+ 2,

i.e. a ≤
√
n + 1. This implies that, if n = n1 + n2 + . . . + nd and |ni − nj| ≤ 1 for

1 ≤ i < j ≤ d, then ni ≤
√
n+ 1.

By Theorem 1, there is a partition V = V1 ∪ V2 ∪ . . .∪ Vd such that vi ∈ Vi and G[Vi] is
connected for 1 ≤ i ≤ d. We may assume that u ∈ V1. For 1 ≤ i ≤ d let Ti be an arbitrary
spanning tree of G[Vi] and let

T = (V,ET ) =

(
V,ET1 ∪

d⋃
i=2

{uvi} ∪ ETi

)
.

Since for every edge e ∈ ET one component of T − e = (V,ET \ {e}) has at most
√
n + 1

many vertices and n ≥ 10, we obtain

c(G, T ) ≤ max
1≤x≤

√
n+1

x(n− x) =
(√

n+ 1
) (
n−
√
n− 1

)
< n

3
2 ,

which completes the proof. 2

In view of the exact values of s(G) and t(G) for special graphs given in [7] and also as a

possible strengthening of Theorem 1 one might be tempted to conjecture s(G)
t(G)

= O
(
n

1
2

)
for a connected G of order n. Nevertheless, considering random d-regular graphs it follows
(cf. Theorem 6.4 in [9]) that there are d-regular graphs Hd of arbitrarily large order nd

with s (Hd) > nd−1
d−1

(
d
2
− (1 + o(1))

√
d
)
. Since t(Hd) ≤ d for these graphs, we see that s(G)

t(G)

can be linear in n and our next result is best possible.
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Proposition 3 If G = (V,EG) be a connected graph of order n, then s(G) ≤ nt(G).

Proof: We prove the result by induction on the order of G. For n ≤ 2 the result is trivial.
Hence let n ≥ 3.

Let V1 ∪ V2 be a partition of V such that E(V1, V2) = {uv ∈ EG | u ∈ V1, v ∈ V2}
is a minimum edge cut of G, i.e. |E(V1, V2)| ≤ t(G). Since G is connected, the choice
of V1 ∪ V2 implies that Gi = G[Vi] is connected for i = 1, 2. Let Ti be a spanning tree
of Gi with c(Gi, Ti) ≤ |Vi|t(Gi). If uv ∈ E(V1, V2) and T = (V,ET1 ∪ ET2 ∪ {uv}), then
c(G, T ) ≤ max{c(G2, T2), c(G2, T2)} + |E(V1, V2)| ≤ (n − 1)t(G) + t(G) = t(G), which
completes the proof. 2
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[6] E. Győri, On division of graphs to connected subgraphs, Combinatorics (Proc. Fifth
Hungarian Colloq., Keszthely, 1976), Vol I, pp. 485-494, Colloq. Math. Soc. János Bolyai,
18, North-Holland, Amsterdam-New York, 1978.

[7] S.W. Hruska, On tree congestion of graphs Discrete Math. 308 (2008), 1801-1809.

[8] L. Lovász, A homology theory for spanning trees of a graph, Acta Math. Acad. Sci.
Hungar. 30 (1977), 241-251.

[9] B. Mohar, Isoperimetric numbers of graphs, J. Comb. Theory, Ser. B 47 (1989), 274-
291.

[10] M.I. Ostrovskii, Minimal congestion trees, Discrete Math. 285 (2004), 219-226.

4




