Technische Universität Ilmenau Institut für Mathematik

Preprint No. M 08/18
On spanning tree congestion

Löwenstein, Christian; Rautenbach, Dieter;
Regen, Friedrich

2008

Impressum:

Hrsg.: Leiter des Instituts für Mathematik
Weimarer Straße 25
98693 Ilmenau
Tel.: +49 3677693621
Fax: +493677 693270
http://www.tu-ilmenau.de/ifm/

On Spanning Tree Congestion

Christian Löwenstein, Dieter Rautenbach and Friedrich Regen

Institut für Mathematik, TU Ilmenau, Postfach 100565, D-98684 Ilmenau, Germany, emails: \{christian.loewenstein, dieter.rautenbach, friedrich.regen\}@tu-ilmenau.de

Abstract

We prove that every connected graph G of order n has a spanning tree T such that for every edge e of T the edge-cut defined in G by the vertex sets of the two components of $T-e$ contains at most $n^{\frac{3}{2}}$ many edges which solves a problem posed by Ostrovskii (Minimal congestion trees, Discrete Math. 285 (2004), 219-226.)

Keywords. Congestion; edge cut; cutwidth; Gomory-Hu tree; layout; embedding

1 Introduction

Let $G=\left(V, E_{G}\right)$ be a connected graph and let $T=\left(V, E_{T}\right)$ be a tree on the same set of vertices. For an edge $e \in E_{T}$ of T we consider the congestion $c(e,(G, T))$ of e with respect to (G, T) as the number of edges $u v \in E_{G}$ of G for which e lies on the path in T from u to v, i.e. $c(e,(G, T))$ is the cardinality of the edge-cut defined in G by the vertex sets of the two components of $T-e$. The maximum congestion $\max \left\{c(e,(G, T)) \mid e \in E_{T}\right\}$ is denoted by $c(G, T)$.

Following Ostrovskii [10] we consider the tree congestion of G

$$
t(G)=\min \left\{c(G, T) \mid T=\left(V, E_{T}\right) \text { is a tree }\right\}
$$

and spanning tree congestion of G

$$
s(G)=\min \left\{c(G, T) \mid T=\left(V, E_{T}\right) \text { is a tree with } E_{T} \subseteq E_{G}\right\} .
$$

In [10] he proves that $t(G)$ always equals the maximum number of edge-disjoint paths connecting two vertices of G which is also a consequence of the existence of Gomory-Hu trees [5]. Furthermore, he studies the rate of growth of the maximum possible value of $s(G)$ for graphs of order n

$$
\mu(n)=\max \{s(G)|G=(V, E),|V|=n\} .
$$

He proves that $s(G)<\left\lfloor\frac{n^{2}}{4}\right\rfloor$ for connected graphs $G=(V, E)$ with $n=|V| \geq 6$ and for all odd $k \in \mathbb{N}$ he constructs connected graphs G_{k} of order $n_{k}=3 k^{2}-2 k$ with $s\left(G_{k}\right) \geq \frac{1}{4} k^{3}$, i.e. $s\left(G_{k}\right)=\Omega\left(n_{k}^{\frac{3}{2}}\right)$. As the main open problem he asks for more precise estimates on the rate of growth of $\mu(n)$. In the present paper we prove that $\mu(n) \leq n^{\frac{3}{2}}$. In view of the graphs G_{k} this determines the growth rate of $\mu(n)$ quite accurately.

The reader should be aware that $t(G)$ and $s(G)$ are two special examples of the numerous graph embedding and layout problems which were considered in connection with applications to networking and circuit design. Restricting T to paths, $t(G)$ corresponds exactly to the very well studied cutwidth [4]. Several other host graphs instead of trees such as cycles [3], grids [1] and binary trees [2] were considered. In [7] Hruska determines the exact values of $t(G)$ and $s(G)$ for several special graphs and we refer the reader to [7, 10] for further references.

2 Results

Before we proceed to our main result, we recall a great theorem due to Győri [6] and Lovász [8] concerning highly connected graphs.

Theorem 1 (Győri [6], Lovász [8]) For $k \in \mathbb{N}$ with $k \geq 2$ let $G=(V, E)$ be a k connected graph of order n. If $v_{1}, v_{2}, \ldots, v_{k} \in V$ are k distinct vertices of G and the integers $n_{1}, n_{2}, \ldots, n_{k} \in \mathbb{N}$ are such that $n_{1}+n_{2}+\ldots+n_{k}=n$, then there exists a partition $V=$ $V_{1} \cup V_{2} \cup \ldots \cup V_{k}$ such that v_{i} lies in $V_{i},\left|V_{i}\right|=n_{i}$ and $G\left[V_{i}\right]$ is connected for all $1 \leq i \leq k$.

With this tool at hand, we can proceed to our main result.
Theorem 2 If $G=\left(V, E_{G}\right)$ is a connected graph of order n, then $s(G) \leq n^{\frac{3}{2}}$.
Proof: If G has a vertex of degree at least $n-2$, then G has a spanning tree T which arises by subdividing at most one edge of a star. In this case $c(G, T) \leq \max \{n-1,2(n-2)\} \leq n^{\frac{3}{2}}$. Hence we may assume that G has no such vertex which implies that G has at most $\frac{\bar{n}(n-3)}{2}$ edges. Since for every tree T, we have $c(G, T) \leq\left|E_{G}\right|$ and for $n \leq 9$, we have $\frac{n(n-3)}{2} \leq n^{\frac{3}{2}}$, the result holds for $n \leq 9$. We may assume that $n \geq 10$ and prove the result by an inductive argument considering two cases.

Case $1 G$ has a cutset of cardinality at most \sqrt{n}.
Let Y be a cutset of minimum cardinality and let Z denote the vertex set of a smallest component of $G[V \backslash Y]$. If $X=V \backslash(Y \cup Z)$, then the subgraph $G[X \cup Y]$ induced by $X \cup Y$ is connected, $x=|X| \geq z=|Z|, y=|Y| \leq \sqrt{n}$, and there is no edge between X and Z.

Let $T(X \cup Y)$ be a spanning tree of the subgraph $G[X \cup Y]$ with

$$
c(G[X \cup Y], T(X \cup Y)) \leq(x+y)^{\frac{3}{2}}
$$

and let $T(Z)$ be a spanning tree of $G[Z]$ with

$$
c(G[Z], T(Z)) \leq z^{\frac{3}{2}}
$$

Let $u v \in E_{G}$ with $u \in Y$ and $v \in Z$ and let

$$
T=\left(V, E_{T(X \cup Y)} \cup\{u v\} \cup E_{T(Z)}\right) .
$$

Note that there are at most $y z$ edges between $X \cup Y$ and Z. This implies that, if $e \in$ $E_{T(X \cup Y)}$, then

$$
c(e,(G, T)) \leq(x+y)^{\frac{3}{2}}+y z=(n-z)^{\frac{1}{2}} \cdot(n-z)+y z \leq \sqrt{n} \cdot(n-z)+\sqrt{n} \cdot z=n^{\frac{3}{2}}
$$

if $e \in E_{T(Z)}$, then

$$
c(e,(G, T)) \leq z^{\frac{3}{2}}+y z=z \cdot(\sqrt{z}+y) \leq \frac{1}{2} n \cdot(\sqrt{n}+\sqrt{n})=n^{\frac{3}{2}}
$$

and, finally, if $e=u v$, then $c(e,(G, T)) \leq y z<n^{\frac{3}{2}}$. Altogether, $c(G, T) \leq n^{\frac{3}{2}}$ which completes the proof in this case.

Case $2 G$ has no cutset of cardinality at most \sqrt{n}, i.e. G is $(\lfloor\sqrt{n}\rfloor+1)$-connected.
Let u be a vertex of degree at least $d=\lfloor\sqrt{n}\rfloor+1$ and let $v_{1}, v_{2}, \ldots, v_{d}$ be d neighbours of u. If $a, b \in \mathbb{N}_{0}$ with $0 \leq b \leq\lfloor\sqrt{n}\rfloor$ are such that $n=a \cdot(\lfloor\sqrt{n}\rfloor+1)-b$, then

$$
a=\frac{n}{\lfloor\sqrt{n}\rfloor+1}+\frac{b}{\lfloor\sqrt{n}\rfloor+1}<(\lfloor\sqrt{n}\rfloor+1)+1=\lfloor\sqrt{n}\rfloor+2,
$$

i.e. $a \leq \sqrt{n}+1$. This implies that, if $n=n_{1}+n_{2}+\ldots+n_{d}$ and $\left|n_{i}-n_{j}\right| \leq 1$ for $1 \leq i<j \leq d$, then $n_{i} \leq \sqrt{n}+1$.

By Theorem 1, there is a partition $V=V_{1} \cup V_{2} \cup \ldots \cup V_{d}$ such that $v_{i} \in V_{i}$ and $G\left[V_{i}\right]$ is connected for $1 \leq i \leq d$. We may assume that $u \in V_{1}$. For $1 \leq i \leq d$ let T_{i} be an arbitrary spanning tree of $G\left[V_{i}\right]$ and let

$$
T=\left(V, E_{T}\right)=\left(V, E_{T_{1}} \cup \bigcup_{i=2}^{d}\left\{u v_{i}\right\} \cup E_{T_{i}}\right)
$$

Since for every edge $e \in E_{T}$ one component of $T-e=\left(V, E_{T} \backslash\{e\}\right)$ has at most $\sqrt{n}+1$ many vertices and $n \geq 10$, we obtain

$$
c(G, T) \leq \max _{1 \leq x \leq \sqrt{n}+1} x(n-x)=(\sqrt{n}+1)(n-\sqrt{n}-1)<n^{\frac{3}{2}}
$$

which completes the proof.
In view of the exact values of $s(G)$ and $t(G)$ for special graphs given in [7] and also as a possible strengthening of Theorem 1 one might be tempted to conjecture $\frac{s(G)}{t(G)}=O\left(n^{\frac{1}{2}}\right)$ for a connected G of order n. Nevertheless, considering random d-regular graphs it follows (cf. Theorem 6.4 in [9]) that there are d-regular graphs H_{d} of arbitrarily large order n_{d} with $s\left(H_{d}\right)>\frac{n_{d}-1}{d-1}\left(\frac{d}{2}-(1+o(1)) \sqrt{d}\right)$. Since $t\left(H_{d}\right) \leq d$ for these graphs, we see that $\frac{s(G)}{t(G)}$ can be linear in n and our next result is best possible.

Proposition 3 If $G=\left(V, E_{G}\right)$ be a connected graph of order n, then $s(G) \leq n t(G)$.
Proof: We prove the result by induction on the order of G. For $n \leq 2$ the result is trivial. Hence let $n \geq 3$.

Let $V_{1} \cup V_{2}$ be a partition of V such that $E\left(V_{1}, V_{2}\right)=\left\{u v \in E_{G} \mid u \in V_{1}, v \in V_{2}\right\}$ is a minimum edge cut of G, i.e. $\left|E\left(V_{1}, V_{2}\right)\right| \leq t(G)$. Since G is connected, the choice of $V_{1} \cup V_{2}$ implies that $G_{i}=G\left[V_{i}\right]$ is connected for $i=1,2$. Let T_{i} be a spanning tree of G_{i} with $c\left(G_{i}, T_{i}\right) \leq\left|V_{i}\right| t\left(G_{i}\right)$. If $u v \in E\left(V_{1}, V_{2}\right)$ and $T=\left(V, E_{T_{1}} \cup E_{T_{2}} \cup\{u v\}\right)$, then $c(G, T) \leq \max \left\{c\left(G_{2}, T_{2}\right), c\left(G_{2}, T_{2}\right)\right\}+\left|E\left(V_{1}, V_{2}\right)\right| \leq(n-1) t(G)+t(G)=t(G)$, which completes the proof.

Acknowledgement. We thank Diego Scheide for suggesting some simplifications.

References

[1] S.L. Bezrukov, J.D. Chavez, L.H. Harper, M. Röttger, and U.-P. Schroeder, The congestion of n-cube layout on a rectangular grid, Discrete Math 213 (2000), 13-19.
[2] D. Bienstock, On embedding graphs in trees, J. Combin. Theory, Ser. B. 49 (1990), 103-136.
[3] J.D. Chavez and R. Trapp, The cyclic cutwidth of trees, Discrete Appl. Math. 87 (1998), 25-32.
[4] F.R.K. Chung, Labelings of graphs, Selected Topics in Graph Theory, vol. 3, Academic Press, San Diego, 1988, 151-168.
[5] R.E. Gomory and T.C. Hu, Multi-terminal network flows, J. SIAM 9 (1961), 551-570.
[6] E. Győri, On division of graphs to connected subgraphs, Combinatorics (Proc. Fifth Hungarian Colloq., Keszthely, 1976), Vol I, pp. 485-494, Colloq. Math. Soc. János Bolyai, 18, North-Holland, Amsterdam-New York, 1978.
[7] S.W. Hruska, On tree congestion of graphs Discrete Math. 308 (2008), 1801-1809.
[8] L. Lovász, A homology theory for spanning trees of a graph, Acta Math. Acad. Sci. Hungar. 30 (1977), 241-251.
[9] B. Mohar, Isoperimetric numbers of graphs, J. Comb. Theory, Ser. B 47 (1989), 274291.
[10] M.I. Ostrovskii, Minimal congestion trees, Discrete Math. 285 (2004), 219-226.

