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Today’s relational database management systems are made up of many complex components
and managing these presents a growing challenge for database administrators. Every runtime
environment can require different configurations to deliver adequate performance. Even within
the same environment, demands can shift over time when workloads change. Keeping up with
these demands requires continuous effort from the DBA. The goal of a modern DBMS must
be to support the DBA in his work with automated processes and workflows that allow him to
make quick and precise decisions. This work aims at describing and partially implementing a
supportive system that will analyse the current DBMS configuration together with its workload
to give recommendations on how to improve its performance and efficiency.

Die Komplexität aktueller relationaler Datenbank Management Systeme stellt eine immer grö-
ßere Herausforderung an Datenbankadministratoren dar. Jede Laufzeitumgebung benötigt eine
für sie angepasste Konfiguration, um performant zu operieren. Selbst innerhalb einer Umge-
bung können sich die Anforderungen im Laufe der Zeit ändern und eine erneute Anpassung er-
fordern. Dies zwingt den DBA sich kontinuierlich und intensiv mit dem System zu beschäftigen.
Das Ziel eines modernen DBMS muss die Unterstützung des DBAs sein, um seine Arbeit mit
automatisierten Prozessen und Handlungsabläufen zu erleichtern und ihm so stets schnelle und
prezise Entscheidungen zu ermöglichen. Diese Arbeit zielt auf die Beschreibung und teilweise
Umsetzung eines unterstützenden Systems, das die aktuelle DBMS Konfiguration zusammen
mit dem aktuellen Anfrageverhalten analysiert und dem DBA Vorschläge unterbreitet, wie sich
die Performanz und Effizienz des Systems verbessern lässt.
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1. Introduction

In the last decade the ratio of hardware costs to human costs has changed dramatically. While
hardware is becoming constantly cheaper the investment in qualified personnel represents the
main part of most company’s expenses (see e.g. [Hab03] and [IDC07]). With this background
even relatively easy tasks become more and more expensive when highly qualified personnel
need to spend time on them. Intelligent software tries to mitigate this effect by automating
well-defined processes and by supporting the expert’s decision making process. For example,
a large number of supportive tools for system administrators is available such as tools to filter
log files because with the increasing number of systems to monitor, manually going through log
files becomes impractical. Pre-filtering based on heuristics dramatically reduces the quantity of
data to observe and helps the administrator to concentrate on real anomalies.
The same applies to database administrators (DBAs) – without a proper aggregation of informa-
tion the DBA is kept busy with constantly screening the system losing valuable time to actually
maintain it. The complexity of a database management system creates the challenge of finding
the best configuration for a given environment and workload. The DBA has to manually mon-
itor the system over time to decide what needs to be done to either increase performance or to
keep the performance at a constant level under given environmental restrictions.
Other than the application developer the DBA has no influence on the design of SQL queries
that are executed on the database. He is limited to the configuration of the DBMS and the phys-
ical design of the database. These performance factors include DBMS settings such as caching
and other memory options, the creation of secondary indexes and column statistics, finding the
best storage structure for a table and the partitioning of tables. For all these options there is no
universally best answer – there is a virtually infinite number of combinations that need to be in-
vestigated for one single environment and workload to find the appropriate contextual settings.
The choice of the right configuration is driven by additional objectives, e.g. getting the highest
possible performance at the cost of adding more hardware resources, finding the most efficient
utilisation of available resources or even minimising the load and freeing resources.
To be able to perform such a model-based operation of a DBMS a far-reaching knowledge of its
usage profile is required. The workload must be analysed over a period of time and evaluated
to decide what might be beneficial to fulfill the requirements. It might even be necessary to
apply certain changes to see the reaction of the system and to decide whether the change was
beneficial or not. This is where automation can help to reduce the human effort allowing the
expert to concentrate on numerically fewer but more important problems.
This work describes the concept of an advisory tool for the relational database management
system Ingres that is able to monitor the workload of the DBMS and to recommend changes to
the configuration that are believed to improve overall performance of the system. This design
analyser was partially implemented with a number of changes in the DBMS core to monitor the
system, a daemon tool to collect the data and a client to analyse the data and present recom-
mendations to the DBA.
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1. Introduction

1.1. Motivation

The complexity of many of today’s DBMS setups, often with auto-generated database schemes
containing dozens or even hundreds of tables, makes it nearly impossible to maintain a system
without a certain degree of automation. With abstraction layers such as Hibernate1 or appli-
cation frameworks like Ruby on Rails2 that create their database schemes automatically the
application developer can loose sight of the database and DBMS and may not even think about
an efficient database design. Most of the commonly used commercial DBMS products today
provide tools and features either to automate processes or parts of processes to support DBAs
in their work.
Although Ingres, as one of the first relational database management systems, was a very innova-
tive system for a long time – e.g. being the first DBMS to use histograms for more precise cost
estimates ([Koo80]) – it has suffered from a slowdown in active development lasting for more
than a decade until recently. Hence, it is lacking features to automate processes and most of the
DBA work still has to be done manually. Expanding Ingres with an advisor tool to recommend
configuration and design changes will greatly enhance the value the DBMS offers to DBAs and
developers. The fact that the Ingres source code has been released under the terms of the GNU
Public License Version 2 makes it easy to develop new features for the DBMS and to contribute
them to the project.

1.2. Scope

The main objective of this work is to describe the concept of a supportive system that enables
Ingres to collect statistical data and to process this data to give recommendations on how to
improve the physical database design of the system.

Figure 1.1: Three-Schema DBMS Architecture

1http://www.hibernate.org/
2http://www.rubyonrails.com/
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1. Introduction

Following the Three-Schema architecture shown in figure 1.1 the physical database design de-
scribes the internal level of the DBMS – the organisation and structure of data storage and the
access methods (indexes, partitions, etc) on that data. This work will describe how information
can be collected on both levels one and two, how it can be analysed and presented to the DBA
who then can act on the recommendations provided by the system. The scope of this work is
limited to the basics of what kind of information is of interest and how it may be retrieved and
processed. Many sections of this work are focused on only one or a few parts of the whole to
describe them in greater detail. The implementation of the system is experimental and should
be considered as a proof-of-concept.

1.3. Structure of the Work

The rest of this work is structured as follows: Chapter 2 gives an introduction to the concepts
behind Ingres and the principles of database tuning both manually and automatically. Chapter
3 presents research work and existing advisor tools in other systems and analyses how they
perform. In chapter 4, the architecture of the proposed advisor is discussed in detail followed
by the description of its implementation in chapter 5. Chapter 6 shows how the tool performs
currently and chapter 7 provides an outlook on possible enhancements in future versions of the
advisor.

2008-10-01/117/IN03/2254 4



2. Fundamentals

2.1. Ingres

Ingres originated at the University of California, Berkeley where Michael Stonebraker and Eug-
ine Wong started a research project on implementing a relational database management system
based on Edgar Codd’s work ([Sto86], [Cod70]). Their first prototype was completed in 1974
and at that time the source code was available on tape so that Ingres could spread through the
academic world. With the foundation of Relational Technology, Inc. in 1980, which was re-
named to Ingres Corporation later, Stonebraker commercialised Ingres and started selling his
DBMS. First acquired by ASK Corporation in 1990 and then by Computer Associates in 1994,
Ingres’ active development was slowed down for years until Ingres Corporation came back as
an independent company in 2005. The latest version, Ingres 2006, was released under the terms
of the GNU General Public Licence Version 2. A more detailed look at Ingres’ history can be
found in [Pee07].
As [Thi08] already gives a detailed view on the internal architecture of the Ingres 2006 DBMS,
this work will only briefly talk about the basics to give an understanding of Ingres’ structure.

2.1.1. Architecture

Figure 2.1: Ingres Code Architecture [Thi08]

Figure 2.1 shows the conceptual structure of Ingres. The DBMS is divided into four main parts:
the front- and the back-end, the common part and the compatibility layer. The front-end holds
all the user facing interfaces such as the command line tools and the forms based and visual
tools. The back-end contains the actual DBMS with the parser, the optimiser, data storage, etc.

5



2. Fundamentals

Both parts share a number of functions in the common part which also includes the network
interfaces over JDBC, ODBC or .NET. The compatibility layer is responsible for transforming
Ingres’ internal function calls into platform specific system calls. This way, the DBMS code
itself can be kept platform independent and only the compatibility layer needs to be ported to
support other architectures.
With version 6 of Ingres, released in 1990, the original monolithic source code was rewritten
into a number of modules that should help to keep Ingres maintainable. Every code module rep-
resents a server facility that is responsible for a specific task – for example, there is an optimiser
facility, a data management facility, a communication facility, etc. The idea was that facilities
should only interact over a defined caller method to avoid cross-dependencies and side-effects.

2.1.2. Server Facilities

Figure 2.2: Ingres Server Control Flow [Thi08]

Figure 2.2 schematically shows the control flow between the most important server facilities
within Ingres. The general communications facility (GCF) connects the back-end to the outside
world passing all requests to and from the DBMS. The system control facility (SCF) is taking
over and then calls all the other facilities needed to process the query. The query storage facility
(QSF) acts as a global memory for the back-end holding all structures needed by more than
one facility. SCF places the query in QSF and calls the parser facility (PSF) which reads
the query from QSF and translates it into a parse tree. While parsing, PSF calls the relation
description facility (RDF) to get information about database objects such as tables, columns
and views. RDF itself calls the data management facility (DMF) to read the system catalogues
that contain the requested information. PSF also uses the abstract datatype facility (ADF) to
process constants and expressions in the query text. The parse tree is stored in QSF and PSF

2008-10-01/117/IN03/2254 6



2. Fundamentals

returns control to SCF. Next, the optimiser facility (OPF) is called to create an optimal execution
plan. OPF decides which indexes will be used and enumerates the possible join orders of tables
to find the cheapest way of executing the query. The resulting query execution plan is again put
back into QSF and SCF continues with calling the query execution facility (QEF). QEF uses
DMF to load and store data and ADF to compute results of expressions and functions. SCF
then returns the final resultset to GCF and back to the incoming user interface. ([Ink04])

2.1.3. Relational Concepts

Ingres was designed around the idea of a relational data management. Hence, nearly everything
in Ingres is handled as a relation. The system catalogues that contain all the meta data of
database objects such as existing tables, columns, users and much more, are in fact stored in
a database that can be accessed in the same way as any other database in Ingres. With this
concept Stonebraker and Wong tried to minimize the effort of internal data handling because
the DBMS can use its own data access and manipulation functionalities. Indexes are stored as
tables with a column containing the key and a TID column. Therefore, indexes can be used by
the optimiser by simply adding them to the list of joining tables. Even realtime monitoring data
and DBMS runtime settings can be accessed and controlled over an SQL interface as described
further below in section 2.1.5.

2.1.4. Optimisation

Query optimisation in Ingres is a three-phased process. First, the query is getting rewritten
and simplified by applying a set of rules such as eliminating NOTs with DeMorgan’s laws,
transforming boolean expressions into conjunctive normal form and flattening subselects into a
single statement. In this phase, the optimiser also adds the list of available indexes to the list of
joining tables.
In a second step, the optimiser enumerates all possible shapes of the execution tree and cal-
culates the cost of those trees to find the cheapest way to join the tables. Unlike most other
optimisers, Ingres doesn’t restrict the shape of the tree to only left- or right-deep ones but does
allow every possible shape as seen in figures 2.3a and 2.3b. This greatly improves the chance
to find an optimal plan, however, this also leads to a much larger search space and complexity
for the enumeration algorithm.

(a) Left-deep (b) Bushy

Figure 2.3: Binary Join Tree Variations [Thi08]

2008-10-01/117/IN03/2254 7



2. Fundamentals

As indexes are also tables the optimiser adds them to the enumeration process of table joins
which adds even more possible combinations. [Koo80] computes the upper bound of trees to
create to

∑|I|
i=0

(|I|
i

)
∗ (2∗n−2)!

(n−1)!
∗42∗n−2 where I is the set of available indexes and n is the number

of tables plus the number of used indexes i. This means that Ingres is enumerating all struc-
turally unique tree shapes and permutes the order of tables to be joined through all tree leaves –
this is done starting with no indexes added, then with one of the |I| indexes, cycling through all
available ones. Then with all possible sets of two indexes, then with three, etc, until the cost of
every combination of tree shape, table permutation and index set has been calculated or a given
timeout stops the enumeration. Ingres tries to reduce the search space by pre-filtering indexes
that do not represent a matching predicate (T.a = const) or a joining attribute (T.a = S.b) but
with a high number of tables to join this still makes it virtually impossible to find an optimal
plan in reasonable time. Since Ingres r3, released in 2004, the optimiser was enhanced with a
greedy algorithm ([Ink03]) that computes tree fragments of three tables at a time when handling
with ten tables or more which greatly reduces the number of possibilities but even though a high
number of indexes per statement can still lead to an extremely long runtime of the enumeration.
In newer releases of Ingres a default enumeration timeout was introduced. The optimiser stops
searching when the time it used so far exceeds the estimated execution time of the currently
cheapest plan.
After a plan was found that is either the cheapest plan overall or the cheapest plan that was con-
structed before enumeration timed out the optimiser continues with the code generation phase
in which the plan is being augmented with action and node headers. Action headers describe
what needs to be done on a node when the result from the lower subtree is being received such
as sorting the result or calculating an aggregate. Node headers, containing table and index con-
trol blocks, are added to nodes where disk access on tables is needed. The final query execution
plan (QEP) is then stored back in QSF and SCF calls the query execution facility to execute the
statement.

2.1.5. IMA

The Ingres Management Architecture (IMA) is a flexible framework that offers an extensible
relational interface to read and write internal DBMS data not only of the local Ingres instance
but also of remote servers. With IMA it is possible to dynamically access in-memory struc-
tures within the DBMS which is mostly used for realtime monitoring but also allows control of
servers and sessions. IMA can be accessed over SQL, however, while the system catalogues
are stored in a native database the IMA database (IMADB) is only a code construct simulating
relations that contain the requested data.
Figure 2.4 shows the structure of IMA. A client application is communicating with the DBMS
over a management protocol that primarily is SQL but can also be the simple network man-
agement protocol (SNMP) or the common management interface protocol (CMIP). The DBMS
provides a management information base (MIB) which forms a set of information objects that
can be monitored and manipulated. Depending on whether the IMA request is for a local or a
remote object the MIB server either passes the request on to the local management object (MO)
module which then calls internal code or the request is sent over the network using GCF to a
remote Ingres instance where it gets processed by the remote MO module.
IMA is using a class concept where a class is the description of a set of data points together
with methods to retrieve and store the data. Each class can have either one or more instances of

2008-10-01/117/IN03/2254 8



2. Fundamentals

Figure 2.4: Ingres Management Architecture

objects that contain the actual data. A global counter for all current locks in the DBMS would
have a single instance whereas a lock counter per session would have one instance per session.
All classes attached to the MO module can be registered in IMA to represent a table in IMADB
– details on how to create new IMA classes and objects are part of section 5.1.
IMA was created to allow fast and easy extension of monitoring tools for local and remote
command line and visual interfaces. Ingres already provides a huge number of single data
points from all the server facilities over IMA. The table ima mib objects in the IMADB lists all
available managed objects and currently contains thousands of rows. ([Bro93])

2.2. Performance Tuning

This section gives an introduction to DBMS performance tuning. It will start with a list of
principles that should be kept in mind while tuning a system. This is followed by a description
of factors that influence performance in a DBMS and a description of indicators that can be
used for monitoring a system’s performance. The last part of this section will then talk about
the idea of autonomous DBMS tuning.

2.2.1. Tuning Principles

Tuning in general can be described with a control loop as shown in figure 2.5: The subject to
tune needs to be observed to see how it currently acts. Based on the observed control variables
and their deviation from the target a decision has to be made how the actuating variable needs
to be adjusted. Then, the actual change is performed and observation of the subject continues.
In the same way the DBA tunes his DBMS – he watches indicators such as response time, disk
and CPU usage and can then choose from a number of control variables that may help to im-
prove the current situation. Those can be indexes, statistics, DBMS settings and others. The
DBA then implements the changes to see how the DBMS reacts and what changes he needs to
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Figure 2.5: Tuning Control Loop

do next.
A comprehensive view on database tuning can be found in [SB03]. From that book the follow-
ing principles can be derived:

1. The solution to high load on the DBMS in terms of high disk I/O, CPU or RAM does not
necessarily have to be additional hardware resources – it is more important to reveal the
cause of the load first to see if the problem can be resolved in software.

2. The time a statement takes to execute should always be considered together with its fre-
quency because a slow query that is executed only once or twice shouldn’t get more
attention than a slightly faster query that is executed dozens or even hundreds of times.

3. The components of a system are never under full load all at once – there is always one
component slowing down the rest. Finding and eliminating bottlenecks can speed up
things tremendously.

4. Every tuning measure causes costs – additional hardware costs money, creation of addi-
tional database objects costs disk space and time. Costs and benefits need to be weighted
against each other.

5. Objects such as indexes and materialised views require maintenance (when issuing up-
dates, inserts, deletes), therefore, unused objects have negative influence on performance
and should be considered for removal.

2.2.2. Performance Factors

Factors that influence the performance of a DBMS have already been mentioned in this work
without further explanation. Although this may be basic knowledge for most of the readers this
section gives a list of the most important factors together with a rationale why they influence a
DBMS in general and how they work for Ingres in special.

Secondary Indexes

The data in a table is organised along the primary key of the table. Depending on the underlying
structure of a table the primary key is used as the index of a tree or a hash map. A lookup on the
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primary key in a tree is fast and efficient because the tree is sorted in such a way that the DBMS
can easily find the requested key and its corresponding data page. For example, the primary key
of an employee table may be the employee number because most queries will use that number
to find an employee. However, queries on name or address can also be very common but since
the table is sorted by employee number a lookup for the last name requires a full scan of the
whole table. This is were secondary indexes (or for the ease of use just indexes) can help to
improve performance. An index is a pair of two values: The attribute that is being indexed –
in the employee example this would be the last name – and a tuple identifier (TID) which is a
pointer to the data page that contains the row that belongs to the last name. This index is sorted
by last name which enables the DBMS to answer queries for last names quickly.
As described in section 2.1.3, secondary indexes in Ingres are implemented as tables with two
columns for the attribute and the TID. As a consequence indexes can also have different storage
structures and can even directly be used in SQL statements. The Ingres optimiser as described
in section 2.1.4 uses indexes by adding them to the list of tables for which the enumeration will
find a join order – this is an important difference to most other DBMS. Other systems such as
the MS SQL Server optimiser (see [CN07]) explicitly request indexes to build a plan, so they
can have a large number of indexes to choose from. With the enumeration in Ingres, however,
a large number of indexes leads to a more than exponentially growing search space for a query
execution plan. Therefore, it is crucial to find the number of useful indexes without adding
too many of them. Even when no indexes are added explicitly by the DBA Ingres implicitly
creates them for constraints such as a unique column or a foreign key column so that checking
the constraint can be done efficiently.
To give an example: Given are the two tables

employee (emp id, name, last name, social no, dep id → department)
department (dep id, building, floor, director → employee).

The two foreign keys will create two secondary indexes. As mentioned before, an index on
employee.last name would make sense. The social security number is definitely a unique value
throughout the employee table – a unique constraint adds another index. In a normalised schema
department.building and department.floor are probably also foreign keys to other tables adding
two additional indexes to the picture. Using the formula provided by [Koo80] a join between
the two user tables and the six index tables has

∑6
i=0

(
6
i

)
∗ (2∗(2+i)−2)!

((2+i)−1)!
∗ 42∗(2+i)−2 ≈ 4.65 ∗ 1015

possible QEPs. This is a very simple example and the Ingres optimiser is smart enough to
exclude those indexes that are useless for the query so that the number of combinations in this
case may be much smaller but on more complex schemes and queries the number of user created
indexes and constraint indexes can be the cause for bad performance.
Therefore, finding the best index set for a database in Ingres means creating the right number of
indexes to speed up query execution without causing query compilation to exceed a reasonable
runtime. Even indexes that are not considered while creating a QEP can negatively influence
a system’s performance – as stated in tuning principle #5, modification on the indexed data by
inserts, updates and deletes requires an index to be updated accordingly. For indexes that are
never used by the optimiser this leads to an unnecessary overhead.

Statistics

[Koo80] proposed and implemented the use of histograms in Ingres to allow more accurate es-
timates of cardinalities. The knowledge of cardinalities supports the optimiser in his decision to
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efficiently join tables together. Let’s pretend, the employee table from the example above holds
500 rows while the department table has only 20 rows. Let’s also pretend that there are three
employees with last name Smith in the records. Without that knowledge the query

select department.dep id, employee.name
from employee, department
where employee.dep id = department.dep id

and employee.last name = ’Smith’
could be executed by first joining department and employee resulting in 500 ∗ 20 = 10000 rows
and then searching those 10000 rows for the occurrences of employees with last name Smith.
However, when the optimiser knows that there are only three Smiths in only 20 departments the
query would probably executed by first searching the 500 employees for Smith and then join
only those three results with the 20 departments touching only 500 + 60 = 560 rows instead of
10000.
With the use of table statistics based on histograms the optimiser knows the overall number of
tuples and the distribution of values in a table. In Ingres, statistics need to be created manu-
ally – for tables without statistics the optimiser assumes an equal distribution of all values and
estimates that an exact match (T.a = const) will always return 1% of the tuples and a range
qualifier (<,≤, >,≥) will always return 10%. Of course, those assumptions probably miss the
real distribution of values by far – here, the creation of statistics can heavily improve perfor-
mance.
Other than indexes, statistics require no active maintenance when the content of a table changes
– they remain static and do not cause additional overhead. However, this also means that when
the data distribution significantly changes over time the histogram becomes outdated and pro-
vides wrong estimates. If that is the case the statistics need to be updated or recreated to reflect
the new distribution.

Partitions

For a full table scan, partitioning of large tables into smaller chunks of data can help to distribute
I/O load on several hard disks taking advantage of multiple read heads scanning the table in par-
allel and is therefore a good way to eliminate bottlenecks as stated in principle #3. Partitioning
in Ingres can be done either by using a key column or with a random distribution. When using a
random distribution new rows are added to the different chunks randomly, however, no known
sort order means that the system needs to touch every partition chunk for every query. When
using a key column the decision in which chunk a new row is inserted depends on the value
of the column used to create the partition and therefore the system knows in which chunk the
requested rows are. A range distribution will put all values in the interval [v0, v1) into the first
chunk, values in [v1, v2) go to chunk two, and so on. With a list distribution every chunk is
associated with a user-defined list of values. New rows are inserted into the chunk where the
key column matches one of the values in the chunk’s list. The third key column method is a
hash distribution where every chunk has a hash value – key columns of new rows are being
hashed and put into the corresponding chunk.
As with indexes, the sort order of partitions only helps when the query is actually using the
sorted column – when that is not the case even the column key partitioning requires all partition
chunks to be read. This can be countered by the creation of secondary indexes on the partitioned
table.
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Materialised Views

A database view can help to make accessing a schema easier by hiding complex joins behind a
one-table query. It also allows adding an additional security level to the database by presenting
the user a different view on the real tables. However, computing the results of a view every time
it is referenced in a statement can be quite expensive. As a kind of cache, Oracle introduced the
concept of materialised views – the results of a view are computed once and stored in a separate
table which is then used instead of the view. The materialised view requires maintenance as it
becomes outdated when the underlying tables of the view change. Depending on the DBMS
and the settings the materialised view may be updated immediately, on a regular basis or even
manually. As with indexes, this overhead is worthwhile only when the materialised view is
actually used – if not, it should be removed.
The current release of Ingres doesn’t support the concept of materialised views, yet.

Storage Structures

The storage structure of a table can have significant influence on the performance. The default
structure for new tables in Ingres is a heap where new rows are simply appended to the end of
the file – hence, inserts in the table are fast, however, thinking of a lookup in the table the sys-
tem needs to scan the whole file every time because of a missing sort order. Also, freed space
after deletes can’t be reused until the table structure is getting reorganised. [Cora] recommends
heap only for very small tables or tables where no sort order is required. Heap is also the most
efficient structure for bulk loading of data.
A more sophisticated way of storing data is by using a key to determine the location of rows on
their data page on the disk. The simplest key structure in Ingres is the hash storage where the
value of the primary key of each row is getting hashed and put onto the corresponding page on
the disk. An exact match (T.a = const) can be processed most efficiently with a hash structure
as the value only needs to be hashed to know on which page the data is stored. However, range
queries or a LIKE operator with a wildcard can’t benefit from the hash and the system needs to
perform a full table scan again. Another disadvantage is the way hash reacts on growing tables
– when a page is full the system creates overflow pages to store new rows. Those overflow
pages form a linked list connected to the main page of the particular hash key – now even an
exact match forces a scan of the complete list. Overflow pages can be removed by reorganising
the table where the hash function will be adapted to address all pages directly.
Using the ISAM storage structure the data is organised in a static tree. The primary key is used
to build an index tree with the actual data in the leaf pages. The index allows efficient lookup
of exact matches as well as range scans and LIKE prefix searches (T.a like ′S%′), however, as
the index is static ISAM also uses overflow pages when the main data pages are full. As with
hash, a lookup on overflow pages becomes inefficient and the table needs to be reorganised
when there are too many.
The fourth storage structure available in Ingres is the B-Tree which is the most flexible kind of
structure. B-Tree uses an index similar to ISAM but it is not static which eliminates the problem
of overflow pages when the table grows. Instead, the tree is dynamically rebalanced when pages
get added or removed. The overhead that is added by an automatic reorganisation is outweighed
by the performance that is in most situations better than with the other storage structures.
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Configuration

While the configuration – or the settings – of the DBMS don’t necessarily belong to the physical
database design they still have a big impact on the system’s performance. A typical configu-
ration file of an Ingres installation holds more than 400 lines but there are even more settings
available. Every facility in Ingres provides a number of settings that range from simple and
straightforward things like the user connection limit to less transparent things like the threshold
for the logging facility that specifies when a log buffer is written to disk and when the disk ac-
cess will be delayed. Most settings can be changed by hand but some depend on other settings
and may be overwritten based on rules like the maximum number of users in OPF is 0.2 times
the user connection limit of the DBMS. Not all configuration settings are fully documented
and for most performance affecting settings there are only rules of thumb that apply to certain
environments.

2.2.3. Performance Indicators

Before the DBA can react on a performance problem, he needs to know that there actually is a
problem. To get to know about a system’s performance there is a number of indicators that can
be watched. This section lists the most promising performance indicators and how they can be
used with Ingres.

CPU Time and Disk Input/Output

While CPU time and disk I/O are two different indicators they can never be interpreted inde-
pendently – when one is in idle it is probably waiting for the other as stated in principle #3.
The experiments that will follow in chapter 3 have shown that a system can easily spend 80%
and more of its time with reading data from disk while the CPU is in idle state waiting for the
read to finish. The internal cost model of the Ingres optimiser is based on CPU time and disk
I/O – every action, a sort, a join, is associated with CPU costs and for every disk operation the
number of accessed pages is estimated to calculate the I/O costs. Those cost values can be seen
in the visualisation of a QEP (as described in appendix B) – part of every node in the tree are
two values prefixed with D and C representing the two individual cost estimates.

1 Cart-Prod
2 Heap
3 Tups 89235168165888.000 Pages 89235168165888.000
4 D137709846528.000 C892353249280.000
5 / \
6 Proj-rest Proj-rest
7 Heap Heap
8 Pages 1133493 Tups 1133493 Pages 971924 Tups 78725824
9 D141689 C11335 D98409 C787258

10 / /
11 protein neighboring_seq
12 Heap Heap
13 Pages 1133512 Tups 1133493 Pages 787273 Tups 78725824

Figure 2.6: QEP of a Cartesian Product
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Figure 2.6 shows an Ingres QEP of a cartesian product – as it can be seen, the estimated costs
of the cartesian product in the top node are higher in the order of magnitudes compared to the
costs of the lower nodes.
The less pages that need to be accessed on the disk the less disk I/O will block the system – the
number of pages may be reduced by an index that can replace the underlying table in a query
or a B-Tree structure where lookups can be performed without a full table scan. To reduce high
CPU time the QEP may be searched for expensive aggregates or unnecessary sorts caused for
example by a DISTINCT that often can be left out.

Outdated Statistics

As explained in section 2.2.2, statistics in Ingres are static and must be updated or renewed
manually when the data distribution of a table significantly changes. One possible indicator for
the need to renew the statistics can be a high number of inserts and updates on the table – the
probability is high that the distribution changed when a lot of new data was added or existing
data was modified. The Ingres trace point QE90 (see appendix B for the usage of trace points)
looks similar to a QEP but lists estimated and actual results per tree node.

1 ----------
2 HJOIN
3 at 0
4 et 9
5 ad 6
6 ed 11
7 ac 9
8 ec 684
9 ----------

10 / \
11 ---------- ----------
12 ORIG ORIG
13 at 478 at 12
14 et 9 et 39
15 ad 6 ad 0
16 ed 7 ed 4
17 ac 7 ac 0
18 ec 478 ec 157
19 ---------- ----------

Figure 2.7: Output of Trace Point QE90

Figure 2.7 shows a simplified example of QE90 with a join of two tables. The values in lines
with et, ed and ec show the estimated tuple count, disk I/O cost and CPU cost respectively. The
lines with a show the actual value that is known after execution of the query. As it can be seen,
the estimated number of tuples, especially in the left table, doesn’t match the actual result –
with the creation of statistics this situation can be improved.

Index Usage

As described above, indexes in Ingres can significantly improve performance when they are
used appropriately – but in the same way they can slow down a system dramatically. There are
only rules of thumb of where the border is between enough and too many indexes on a table or
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within a database so that a good knowledge of the workload is required to tune a system with
the creation of indexes. A QEP as in figure 2.6 will reveal what indexes Ingres has chosen to
execute a query – an index node will be marked with I(Table Name). In addition, trace point
OP161 prints the list of all tables and indexes that are considered for the execution of a query,
including indexes that are not part of the final QEP. This list can be taken as an indication for
indexes that are never used by the optimiser and therefore only slow down the enumeration
phase.

2.2.4. Autonomous Tuning

The manual tuning of a DBMS is a time-consuming task with the biggest part being the con-
stant observation of the system. Here, the DBMS can support the DBA with the automation of
reoccurring processes and even with automated changes in the system. When looking at em-
bedded systems where the DBMS is only one part of another application, hidden from the user,
there may not be a database administrator who can adapt the system to a changing workload
or environment. Autonomic computing ([KC03]) aims at creating self-managing applications
that know how to maintain, optimise and even heal themselves. Autonomous tuning as one part
of the autonomic computing still follows the same control loop as manual tuning does – the
system needs to be observed, problems need to be identified and decisions need to be made to
perform the necessary changes. For an automated system these steps can be separated in I) the
monitoring of the system, II) the collection of the monitored data over a period of time, III) the
analysis of this data and IV) the presentation or automatic implementation of changes based on
the analysis.
There are several approaches of autonomous database tuning that implement those four steps
at different levels. The most sophisticated approach certainly is the independence of human
intervention by building a self-sustaining and self-maintaining system. The internal layer, the
physical database design, of such a system is completely hidden from the user and the DBMS
controls storage structures, access methods and settings all by itself. The identification of prob-
lems, the decision how to solve the problems and the implementation of changes is completely
automated and done during normal operation of the system. Because there is an infinite number
of scenarios and environments a fully autonomous system must be either able to dynamically
react to unknown situations or it can only operate within a fixed environment. The first may pro-
duce a high load on the system caused by the overhead to find the best design for every possible
configuration – the latter will be impractical in many situations because of the large variety of
environments. Requirements, coming from users and applications either need to be formalised
in a way the system can turn them into design decisions or they will need to be guessed based
on heuristics with the risk of making wrong decisions.
In the next lower level of autonomous tuning the DBA doesn’t get replaced by the system but
instead he is supported in his day-to-day work. The human factor remains and the DBA can
keep maintaining the system based on informal knowledge. The DBMS offers semi-automated
support in form of scheduled maintenance tasks and event alerters. Most of the tasks can be
performed without intervention while for bigger tasks and problems the DBA is being alerted
and provided with details and possible solutions. Those systems can identify problems and
recommend changes to overcome them. To a certain degree, they also allow prediction and
prevention of problems by analysing trends in the data they monitor.
One step further below is the system which supports the DBA by offering wizards and advisors
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that are started manually to scan and analyse the DBMS. The DBA either waits for the problem
to happen or he needs to run the tools periodically to prevent problems.
The less automation the less overhead and resource consumption is caused in the day-to-day
usage of the system. However, when problems occur the automation in online systems leads to
quicker resolutions or it can even prevent problems beforehand while offline systems can only
report the past.
The tuning tools that are delivered with most of today’s commercial DBMS (as seen in the
next chapter) are somewhere between the lowest level of autonomous tuning in form of passive
wizards and the more sophisticated level of background tasks and automated information gath-
ering used to build alerters. All those tools offer a mixture of plain reporting of data, problem
prediction and automatic problem identification and solving.

Autonomous Tuning in Ingres

Except the basic monitoring, as described in section 2.1.5, Ingres does not yet offer the features
that are needed for an autonomous database tuning. It lacks a more comprehensive monitoring,
the collection and persistent storage of the captured data and a way to process and analyse this
data. This work aims at describing a concept to expand Ingres with these features to initially
allow the creation of a passive advisor tool but also to provide the data that is needed to imple-
ment the next steps of problem prediction and automatic problem solving. Code contributions
of this work will be I) an enhanced workload monitoring that records not only plain statements
but also details such as estimated and actual execution costs and much more, II) a data collector
that allows long-term storage of the monitored data and III) an advisor tool that performs analy-
sis on the data to recommend changes to the physical database design to improve the workload
performance.
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This chapter looks at existing approaches of autonomous database tuning as described in section
2.2.4. First, an overview on past and current research in the area of autonomous tuning will be
given. Then, three different implementations of autonomous tuning in commercially available
DBMS will be presented.

3.1. Research

The research area of autonomous database tuning is a field of growing interest both in the aca-
demic world and in the industry. Early work dates back to the 1970’s when [CH76] proposed a
concept for a self-adaptive database management system that was able to recommend secondary
indexes on single-relation queries. The system was monitoring access patterns on the database
to gather statistics that were then used to predict the need of indexes. [RS91] and [FON92] then
used the today most common approach of recording a real workload during normal operation of
the system to “find a good physical database design, i.e. one as good as one that a competent
human database designer with the same information would produce”.
While early works such as [BPS90] created their own cost model to identify an optimal con-
figuration, this task was later turned over to the internal optimiser of the DBMS. The What-If
approach ([CN98], [LL02], [Sch06]) allowed the instrumentation of the optimiser by feeding
it with hypothetical – not yet materialised – physical structures. Accurate cost estimates were
now possible without having to copy or imitating the cost model of the DBMS in an external
tool.
With a growing dependency on automatic designing there is also the risk of making wrong de-
cisions. [CBTM05] bemoans the lack of meaningful benchmarks for auto-tuning systems and
states that most works show the efficiency of their tool itself but not the usefulness of its design
recommendations. [GA08] describes the risks of a What-If or optimiser-based approach as de-
sign recommendations closely depend on the estimates of the optimiser which could be far off
the real costs and which would therefore lead to wrong decisions. He tries to find a metric for a
physical design to measure its quality and to minimise the risks.
The following is a small selection of noteable research projects based on current database man-
agement systems.

Microsoft AutoAdmin

Since the mid 1990’s the Microsoft Research project AutoAdmin is the origin of features for the
autonomous database tuning in the Microsoft SQL Server. It started as an index recommender
based on the creation of What-If indexes and was later expanded to the physical structures of
materialised views and table partitions. The selection of index candidates is done by intercept-
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ing the explicit index requests in the MS SQL optimiser and augmenting the query execution
plan with details about these requests. This plan is finally translated into an AND/OR tree that
contains all index requests of a single query where orthogonal requests are AND’ed and mutual
exclusive requests are OR’ed. The trees of all queries in a workload are then AND’ed to result
in an overall index request tree that can be used to find an optimal index set ([BC06]). A look
at the development of the AutoAdmin project and its more recent state can be found in [CN07].
This work also discusses the different tuning models described in section 2.2.4: The offline
tuning with a passive advisor tool which is how the AutoAdmin project began, an alerter model
that continuously monitors the system and alerts the DBA when action is needed and the online
tuning in which the system automatically decides and performs the tuning all by itself.

DB2 – SMART and QUIET

The DB2 SMART project is part of IBM’s vision of an autonomic computing ([KC03]). It
does not only focus on the physical database design but also includes advisors and wizards for
the system configuration, maintenance and task scheduling, system health and data recovery
([LL02]). Instead of looking at indexes, materialised views and partitions one after each other,
the DB2 design advisor incorporates dependencies between the various physical structures to
get better results. A materialised view itself is stored in a table so that creating an index on it
makes sense or the view can even be partitioned. The advisor defines strong and weak depen-
dencies between the features that are used to form the search space for possible tuning measures
on a given workload ([ZRL+04]).
The QUIET approach ([SGS03], [SGS04]) aims at the fully automated management of indexes
by monitoring the workload, finding and evaluating index candidates and then creating them
online during normal operation of the DBMS. The work mentions an idea of [Gra00] with the
possibility of exploiting full table scans to create indexes on the fly while executing a query.

Oracle Automatic SQL Tuning

As presented in [DDD+04], Oracle aimed at including all the tuning features right into the in-
ternal optimiser that is controlled by special SQL commands. The optimiser can be put into
a tuning mode where it has more time than usual to find an optimal execution plan and also
includes tree shapes that otherwise wouldn’t be considered (see figures 2.3a, 2.3b). The tun-
ing includes the already known What-If approach but with the concept of SQL Profiles, Oracle
added a new way of performance optimisation. Table statistics do not always lead to an optimal
execution plan because the optimiser may still be wrong with estimates in intermediate results.
An SQL Profile is a set of statistics specific for one single statement. These special statistics
are collected by partially executing the statement and gathering cardinalities of inner nodes of
the plan. The Profile is then transparently used by the optimiser everytime the statement is exe-
cuted.
Oracle also suggests to restructure statements when it detects badly written SQL based on
heuristics. These include syntax issues, that prevent certain optimisations of the statement,
semantic issues, that can cause poor performance and design issues, where the developer prob-
ably used the wrong SQL.
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PostgreSQL

Because the PostgreSQL code is open source there is quite a number of academic projects that
aim at adding features for autonomous tuning. [Sti04] and [Sch06] discuss the implementation
of virtual or soft indexes that allow the application of the What-If approach by feeding the inter-
nal PostgreSQL optimiser with hypothetical structures. [Lue06] then focuses on the automatic
selection and creation of these soft indexes following the idea of a self-sustaining system.
Similar to the SMART project, [ML05] suggests a global tuning system for PostgreSQL that
respects side-effects and interdependencies between tuning measures instead of tuning only lo-
cally and risking an overall performance drop when changes conflict. Sensors throughout the
system perform a local monitoring of a single DBMS component and report problems when the
observed data differs from the expected target. A central coordinator then either has the global
knowledge to decide for the cause and solution of the problem or he passes the alert to software
agents that are local in the several components. The knowledge is distributed amongst those
agents which then suggest possible solutions to the same problem and the central coordinator
decides which solution wins.

3.2. Commercial Systems

This section will show design advisors in commercial database management systems and their
ability to improve the system’s performance. The ones that were looked at are Oracle 11g,
Microsoft SQL Server 2005, and IBM DB2 9.5. All three DBMS include features to monitor the
system, record the workload, analyse the data and recommend changes to the physical design
of the database. The available tools were tested for their effectiveness by analysing a given
workload to improve the performance of the system.

3.2.1. Experimental Setup

The machine that was tested on was a Windows Server 2003 R2 desktop system with a two-core
Intel Pentium D processor with three gigahertz clock frequency, four gigabytes of main memory
and a 150 gigabyte hard drive.
The advisor tools were tested against a database populated with data from the Non-Redundant
Reference Protein (NREF) database as described in [CBTM05]. The schema consists of six
tables filled with a total of 100 millions of rows of real, non-synthetic data. As plain text files
the NREF database takes about 6.5 gigabytes. In the DBMS, depending on the storage structure,
it takes up to 20 gigabytes or more, making sure that the database is significantly larger than
the system’s main memory. For this experiment a mixture of the NREF2J and NREF3J query
sets with 50 simple structured selects was used1, measuring the time needed to execute those
statements on the DBMS. For each test all queries were executed in one batch. This batch was
repeated three times to minimise influence of local anomalies. The tests were first performed
on the initial load of the NREF data with only primary keys applied. Then again after the
implementation of the recommendations provided by the advisor tools. As a reference, the tests

1The query set and other necessary files to reproduce the tests can be found at
http://www.thiem-net.de/ida/
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were executed a third time on the initial load but with a predefined set of 33 indexes proposed
by [CBTM05]. Every DBMS was left at its default settings. After a default installation there
were no changes being made to the configuration other than creating a database and filling it
with the NREF data. Not only because of that the results of these tests can not be used for a
comparison between the various DBMS but only for indicating a relative change resulting from
the advisor tools. Therefore, there will be no confrontation of results at the end of the chapter.

3.2.2. Oracle

Founded by Lawrence Ellison, Robert Miner and Edward Oates in 1977, Software Development
Laboratories, later known as Relational Software, Inc. and then as Oracle Corporation, released
its first official version of Oracle called Oracle V2 in 1979. Oracle 10g, released in 2003,
introduced a new feature set for workload monitoring to perform automatic and semi-automatic
changes to the database to improve the performance.

Monitoring and Data Collection

Based on the Automatic Workload Repository (AWR) which is used to collect statistics of
the current workload, Oracle 10g and up are able to monitor the system in the background
by recording data such as the usage of database objects, connection and scheduling statistics
to identify time expensive tasks. The Automatic Database Diagnostic Monitor (ADDM) uses
that data to make snapshots of the system every hour keeping them over a period of seven
days to enable analyses of the workload in different time frames. Two different snapshots
can be compared to identify changes and trends. This can be used to find causes of possible
performance bottlenecks by analysing, for example, CPU and memory load together with the
top n most expensive SQL statements.

Analysis

The two tuning tools that were used to test Oracle’s tuning capabilities are the SQL Tuning
Advisor and the SQL Access Advisor. Both analyse a given workload coming from either
AWR/ADDM or from an SQL Tuning Set (STS) that represents a static group of statements.
The advisors can be used directly from the SQL command prompt but Oracle also provides
easy-to-use wizards included in its Oracle Enterprise Management (OEM) webinterface.
To be able to compare the effectiveness of the advisors the NREF queries were executed be-
fore optimisation as described in section 3.2.1 resulting in an average execution time of 13924
seconds on an Oracle 11g database.

SQL Tuning Advisor

The Oracle SQL Tuning Advisor takes one or more SQL statements from an STS, from a time
period between two ADDM snapshots or from current AWR data, being the last n executed
queries that are still in the cache. Recommendations include creation of statistics and indexes,
restructuring the SQL statement and creation of SQL Profiles. The SQL Tuning Advisor only
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looks at one statement at a time without considering the context and workload the query is being
executed in.
To test the SQL Tuning Advisor an SQL Tuning Set was created with the 50 NREF queries. The
Tuning Advisor can either be run in limited (no SQL Profiles being created) or comprehensive
mode (SQL Profiles included). The time limit for optimisation was set to 15000 seconds and a
five minute limit per query but the task was already completed after about 6300 seconds.

Figure 3.1: Oracle SQL Tuning Advisor Recommendations

Figure 3.1 shows a part of the recommendations that were created on the given STS. The user
is presented with the list of queries together with possible changes that may help to improve
the performance. In total, the Oracle SQL Tuning Advisor recommended the creation of nine
distinct indexes, 19 SQL Profiles and statistics on all tables.

Figure 3.2: Oracle SQL Tuning Advisor Details
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Figure 3.2 exemplarily shows the recommendation details for one of the NREF queries. The
user can see the estimated benefits for each recommendation together with a rationale of the
suggested change. It is even possible to compare the query execution plans before and after
the implementation of the change. In this case, the advisor expects the creation of an index to
improve performance of this single query by over 88%.
After implementing all of the nine recommended indexes, six of the SQL Profiles and creating
statistics on the six NREF tables the size of the database has grown from 17 to over 28 gigabytes.
The tests were repeated resulting in an average execution time of 7263 seconds which is a
performance win of about 48%.
As the SQL Tuning Advisor is designed to analyse only one query at a time the user has to select
every single recommendation to decide what he wants to implement. With a large workload this
becomes very unhandy and the user risks losing overview on what indexes and statistics already
have been created.

SQL Access Advisor

The Oracle SQL Access Advisor is a second tool to scan a workload to get recommendations
about how to improve the performance. Other than the SQL Tuning Advisor the Access Advisor
tries to get a more global view on the database and does not only focus on a single statement.
The advisor recommends the creation of indexes, partitions, materialised views and materialised
view logs. A materialised view log is used by Oracle to incrementally update a materialised
view after the master table has changed instead of re-creating the view from scratch.

Figure 3.3: Oracle SQL Access Advisor Options
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As shown in figure 3.3, the SQL Access Advisor wizard offers a number of options to choose
from. For example, it is possible to provide space restrictions to limit the disk space used by
new database objects or to get a list of unused objects that may be dropped from the database.
The time limit for the optimisation process was defaulted to 10000 minutes giving the advisor
nearly seven days time to analyse the workload. However, even after several tests the advisor
completed its work after approximately 20 seconds.

Figure 3.4: Oracle SQL Access Advisor Results

Figure 3.5: Oracle SQL Access Advisor Recommendations
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Figures 3.4 and 3.5 show the results of the SQL Access Advisor run. The user is presented with
the estimated performance improvements together with a detailed breakdown of each suggested
change. On the given workload the advisor recommended a total of 13 indexes, 13 materialised
views, six materialised view logs and one partition that were all implemented and again enlarged
the database to about 28 gigabytes. The resulting execution time was cut down to an average of
1721 seconds - a performance win of 88%.

Results

Run # Non-optimised Optimised
(SQL Tuning Advisor)

Optimised
(SQL Access Advisor)

Reference

1 14149 s 7353 s 1727 s 1489 s
2 13519 s 7219 s 1717 s 1531 s
3 14105 s 7217 s 1721 s 1485 s

Average 13924 s 7263 s 1721 s 1501 s

Figure 3.6: Oracle Advisor Results

Figure 3.6 gives an overview of the results observed in this experiment. Although the concept
of SQL Profiles with statement-specific statistics promised to be a good way of improving
the performance of queries it seems that the approach of the SQL Access Advisor leads to
better results by trying to find a set of recommendations for the whole workload and including
materialised views and partitions.
Both advisor tools can be controlled from within the Oracle Enterprise Management interface
so that the user doesn’t need to handle the complex SQL that needs to be created to start the
tools. The results are presented in great detail and the user can decide to see either only a
summary or all information even down to a comparison of query execution plans. Even with
materialised views and partitions the 33 reference indexes couldn’t be beaten, however, creating
those enlarged the database from 17 to over 36 gigabytes on the disc taking nearly 10 gigabytes
more than the recommendations of the Access Advisor which led to an only slightly longer
execution time.

Other Tools

Oracle offers a number of additional tools that either provide the user with recommendations
or automatically perform changes in the background. The Automatic Optimizer Statistics Col-
lection is a DBMS task that is scheduled to automatically gather statistics on tables with no or
outdated statistics. The Automatic Shared Memory Management takes care of memory alloca-
tion. There are other advisor tools such as the Segment Advisor which analyses the fragmen-
tation of database files or the Undo Advisor that gives recommendations about Oracle’s undo
system. Detailed information about the various possibilities in the current version of Oracle can
be found at [Corb].
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3.2.3. MS SQL Server

The first release of the Microsoft SQL Server is dated back in 1989 with version 1.0 for OS/2
and the first 32-Bit Windows NT based release followed in 1993. Until 1994, Microsoft was
partnering with Sybase keeping more or less the same code line for Unix and VMS on the one
side and Windows and OS/2 on the other. Version 6 of the SQL Server was then released in 1995
without work of Sybase. In 1999, version 7 introduced tools based on the AutoAdmin project
such as the MS SQL Server Profiler for monitoring the database, the Query Analyzer which is
used for performance analyses of queries and the Index Tuning Wizard which recommends a
set of indexes for a given workload. With the SQL Server 2005 the Index Tuning Advisor was
replaced by the Database Engine Tuning Advisor (DTA) which now also recommends to drop
unused indexes as well as the creation of partitions and of materialised views.

Monitoring and Data Collection

The MS SQL Server Profiler monitors all activities on a database and records the workload.
However, other than the Automatic Workload Repository in Oracle, the Server Profiler needs
to be started and controlled manually. While running the tests the profiler recorded a trace file
containing all statements that were executed.

Analysis and Presentation

The resulting trace file can then be used with the Database Engine Tuning Advisor.

Figure 3.7: MS SQL Server DTA Options
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Figure 3.7 shows the options available for DTA. As with Oracle’s advisor tools, the user can
decide what objects will be recommended and he can set a limit to the disk space required by
those objects.

Figure 3.8: MS SQL Server DTA Recommendations

Figure 3.9: MS SQL Server DTA Reports

Although giving a time limit of one hour, the advisor was already done after about eight minutes.
In figures 3.8 and 3.9 the results of the advisor run can be seen. DTA offers a number of detailed
reports on the optimisation that should help the DBA to decide which recommendations to
implement if he doesn’t want to apply them all.
For the test all recommended changes were applied. MS SQL Server created four indexes, 13
statistics, two materialised views and one partition enlarging the size of the database from about
13 to 17 gigabytes.
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Results

In figure 3.10, the results of the MS SQL Server tests can be seen. On an unoptimised MS
SQL Server 2005 database the NREF query set took an average of 12102 seconds to complete.
DTA was able to cut down the average execution time by 60% by creating indexes, materialised
views and partitions. As with Oracle, the 33 reference indexes doubled the size of the database
and could speed up execution only a few percent over the advisor results. The advisor is being
controlled over a simple, self-explaining graphical interface but there seems to be no option to
go into a more detailed view as it was with Oracle where the user was even able to compare
execution plans.

Run # Non-optimised Optimised Reference
1 12215 s 4867 s 4089 s
2 12207 s 4757 s 4036 s
3 11884 s 4785 s 4042 s

Average 12102 s 4803 s 4055 s

Figure 3.10: MS SQL Server Advisor Results

Other Tools

Besides the Database Engine Tuning Advisor there are no other advisory tools integrated in MS
SQL Server version 2005 but in the new version 2008 Microsoft included more self-tuning and
advisory features to support the DBA such as a best practice design alerter that can help to avoid
typical design issues for common usage patterns. More information about performance tuning
in MS SQL Server 2005 can be found in [WIG+06].

3.2.4. IBM DB2

Developed for IBM’s MVS mainframe in the early 1980s, DB2 is directly based on the 1970’s
research project System R which tried to implement Codd’s ideas of a relational model for
databases. The first version of DB2 was released in 1983 and during the 1990s IBM ported the
DBMS to other non-mainframe platforms. In version 6.1, IBM added the DB2 Advisor which
was capable of recommending multi-column indexes. In version 8.2, this was replaced by the
DB2 Design Advisor which can also recommend materialised views, partitions and multidi-
mensional clustering tables which are mostly used for data warehousing.

Workload Obtaining

The Design Advisor can be invoked with a single statement or with a set of statements in a
file or a database table. This allows analysis of a static and maybe theoretical workload. To
work with the actual workload the advisor can be sourced with the DB2 statement cache or the
Query Patroller that comes with the data warehousing edition of DB2. When working with a
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large amount of queries in the workload the Design Advisor can compress it by merging similar
queries to reduce the time required for the analysis.

Analysis

DB2 again allows the user to set a disk space limit for the new database objects that will be
recommended as well as the kind of objects to recommend as seen in figure 3.11. The DB2
9.5 test installation had problems with the NREF query set. One query took an extreme of
more than 72 hours to complete, hence it was removed from the set. The remaining queries
took an average of 9233 seconds. The analyser results can be seen in figure 3.12. On the
NREF workload the Design Advisor recommended 11 indexes but no materialised views or
multidimensional clustering tables. Creating those indexes added about 1.5 gigabytes to the
database enlarging it from 8.2 to 9.7 gigabytes on the disk.

Figure 3.11: IBM DB2 Design Advisor

Figure 3.12: IBM DB2 Advisor Recommendations
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Results

The DB2 Design Advisor could cut down the execution time to 6324 seconds. As with MS SQL
Server and Oracle the recommendations of the Design Advisor couldn’t beat the set of reference
indexes however the 33 indexes doubled the size of the database to about 17 gigabytes while
performing only slightly better than the recommended smaller index set.

Run # Non-optimised Optimised Reference
1 9241 s 6360 s 5590 s
2 9135 s 6242 s 5078 s
3 9325 s 6370 s 5594 s

Average 9233 s 6324 s 5420 s

Figure 3.13: IBM DB2 Design Advisor Results

Other Tools

DB2 also includes a Configuration Advisor which can recommend changes to DBMS and
database settings for a specific usage scenario. As seen in figure 3.14, the user is guided through
a wizard describing the usage pattern in terms of the ratio between selects and inserts, the num-
ber of applications and users on the database or the required isolation level. The advisor then
recommends cache settings, buffer sizes, settings for parallelism, etc.

Figure 3.14: IBM DB2 Configuration Advisor

With the DB2 Performance Expert IBM offers another tool to monitor the DBMS. It includes
a large number of data points from throughout the system that can be monitored in realtime or
recorded for long-term analysis. The Performance Expert also allows the definition of excep-
tions to alert the DBA in problematic situations.
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This chapter describes the proposed design analyser in detail. The first section will cover the
basic decisions that were made to design the concept. The second section will then give an
overview of the system architecture followed by descriptions of the three work phases. Chapter
5 will then cover the implementation of the system.

4.1. Design Decisions

The system was designed as a three-layered architecture where all layers are physically inde-
pendent of each other and only communicate indirectly over SQL. This makes it possible to
easily change or even replace one layer without breaking the rest of the system. The three
layers correspond to the three steps of monitoring, storing and analysing data as described in
section 2.2.4.
For the monitoring the approach of an online workload recording was chosen to allow the analy-
sis of the most current data. Every statement is logged automatically as soon as the DBMS starts
operating. The data collection that is persistently storing the workload data over a longer time
period was designed to use a delayed writing mechanism keeping the overhead of disk accesses
as low as possible. For the analysis a rules-based approach was chosen with a predefined set of
rules that map specific data constellations to possible problems and solutions. The What-If con-
cept of hypothetical physical structures is used to feed the internal DBMS optimiser with virtual
objects to find optimal execution plans without materialising the new structures. This way, the
internal cost model of the DBMS can be utilised making sure that recommended changes will
actually be used by the optimiser later on. Results of the analysis are shown as textual and
graphic reports and the DBA still needs to implement changes by himself. However, an active
alerting mechanism already allows automatic reaction on user-defined events.

4.2. Architecture

Following the concept of the tuning control loop, figure 4.1 shows the order of events for mon-
itoring, analysing and tuning the DBMS. (1) While running in normal state the user interacts
with the DBMS as always – his work is not being influenced by the monitor as all operations
have no or very little overhead. (2) When running a query the optimiser is utilised to collect
realtime data about the statement such as the time it takes to find a QEP, which tables and
columns are being accessed and if statistics are available or not. This short-term data is put into
an internal DBMS structure that resides in main memory for the lifetime of the DBMS process.
No additional disk access is required. The structure is attached as a managed object to IMA
and is therefore available through the IMADB. (3) The monitor which is running as a daemon
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Figure 4.1: System Architecture

process is periodically waking up and querying IMADB to read the collected data. After a
given number of polls on IMADB the monitor performs a first aggregation and condensation
of the raw data (4) and the result is appended to a workload database which acts as a persistent
storage for statistical data. As this only happens once every given timespan, this delayed way of
storing the data on disk is believed to have only a very small impact on the DBMS load with no
noticeable influence on the user database. During normal operation of the DBMS the workload
database is filled continuously up to a predefined maximum and then wraps around to form a
moving window of statistical data. The workload database is a standard Ingres database and can
therefore be expanded with triggers and procedures which allow the implementation of alerting
mechanisms that can react when an attribute drops below or exceeds a certain threshold. (5)
The DBA then decides, maybe after receiving an alert, to run the design analyser. This step
is recommended when the database that will be analysed is not in use as the tool runs tests to
confirm the benefit of new database objects. The analyser starts with scanning the workload to
find problems and to identify the need of indexes, table statistics and more. (6) The resulting
recommendations are then presented to the DBA. (7) For all recommended changes to database
objects such as indexes the analyser provides SQL statements to implement them and the DBA
can decide to use them all or only a subset of them. After that, the DBMS can continue with
normal operation and monitoring.
As both monitor and analyser use SQL to communicate with the DBMS, it is possible to run
them on remote machines – even the workload database can reside on a separate Ingres instance.
However, for the saved resource capacities on the DBMS machine there will be additional net-
work traffic added which may be more expensive than the system load.
In the next three sections the three work phases of the system are being described in greater
detail.
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4.3. Monitor

The goal of the monitoring phase is to collect as much as possible data during the day-to-day
usage of the DBMS with very little or no impact on the system’s load, response time and perfor-
mance. Because of that, the DBMS core will only be used to collect data that is known anyway
throughout processing a statement without adding too many new features that can cause a de-
crease in performance. As mentioned in section 2.1.5, IMA already contains a huge amount of
attributes from all of Ingres’ server facilities that can serve as indicators for performance tuning.
This section describes the order of events for the monitoring phase as shown in figure 4.2.

 : User Database

 : Monitor Daemon

 : IMA  : Workload DB

 : User

: push statistics()

: ...

: ...
: pull statistics()

: process()

: pull statistics()

: ...

: ...

: query()

: ...

: ...

: ...

: ...

: append()

: ...
: ...

Figure 4.2: Sequence Diagram of the Monitor Phase

4.3.1. Preconditions and Data Collection

The operation of the system begins when the DBMS is started – from that point every query
on a user database will cause data to be logged in IMA. The collected data can be separated
into three main categories: I) Catalogue information, II) workload information and III) system
statistics. The first includes information that can be found in the system catalogues about the
database schema such as the tables and their attributes. The workload information contains the
actual workload on the database with the statements that were executed. The system statistics
are a collection of DBMS-wide data points that can serve as indicators for resource problems
or bad configuration of the system.
The different data points of all categories are as follows:

Catalogue Information

This information is read from the system catalogues. These values change slowly over time
when database objects are altered or the content of tables significantly changes. The informa-
tion about database objects is needed to give accurate recommendations for physical design
changes.
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• Tables

– Storage structure, main data pages and overflow pages
As described in section 2.2.2, the two storage structure types hash and ISAM use
overflow pages when the main data pages are full. More pages need to be touched to
find the requested data and the performance drops. The number of main and over-
flow pages per table can be used as an indicator for tables that should be considered
for restructuring.

– Actual and estimated cost and cardinality
As described in section 2.2.3, Ingres provides the estimated and actual values for
CPU and disk I/O cost and the number of tuples per node in a QEP. The values for
table nodes are stored and can be used as an indicator for outdated or missing table
statistics.

• Attributes

– Statistics
The Ingres optimiser explicitly requests statistics from the system catalogues. When
no statistics are available a uniform data distribution is assumed. This event is being
logged to create a list of attributes that have no statistics.

• Indexes

– Storage structure, main data pages and overflow pages
Because indexes in Ingres are also stored as tables the same information can be
collected here.

Workload Information

This information is read from the parser, the optimiser and the execution facility while queries
are processed. Values here are only valid for the time the statement is being processed and
may change each time the same statement is executed. Information about the workload on the
database can be logged over time to record the usage pattern of the system.

• Statements

– Statement text
Each statement is logged as plain text to allow later identification when presenting
the analyser results.

– Cost values
CPU and disk I/O cost values are logged for the time the statement is being opti-
mised and the time it is executed. For complex selects with joins over many tables
the enumeration phase where the optimiser searches for the cheapest QEP can take
as long as the actual execution of the query. Logging the time in OPF helps to find
these cases. OPF and QEF cost together can be used to identify the most expensive
statements.
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– Cost estimates
The CPU and disk I/O cost estimates as returned by the optmiser help to find state-
ments where actual and estimated costs don’t match which may be caused by miss-
ing or outdated statistics.

• References

– Tables, Attributes, Indexes
For each statement that is being executed the list of database objects used in the
statement is logged.

– Frequency
For each database object the number of uses in the workload is logged. This al-
lows prioritisation of objects during the analysis. In addition, with a list of used
indexes the system can find out which indexes are not needed and therefore should
be considered for removal.

System Statistics

A large amount of system statistics from throughout the DBMS is offered over IMA. Most of
these values constantly change and can be used to identify and – to a certain degree – also
to predict problems with system resources. The observation of values over time can reveal
changing demands or anomalies in the system usage.

• Variable values

– Runtime statistics
Values such as the number of users that are currently on the system or the current
number of locks in use can be collected to perform trend analyses and to identify
changing demands on the system.

• Static values

– System settings
Configuration settings such as the maximum number of connections on the DBMS
or the maximum number of locks per transaction allow identification of misconfig-
uration and anomalies in the runtime statistics.

All those data points are made available in IMA so that the monitor can pull them easily from
the DBMS to process them and store them in the workload DB. Figure 4.3 shows the table
schemes in IMADB that contain the collected data.
The Workload table contains the actual workload history with information of when was which
query executed and what cost values are associated. With that, a complete history of the
database usage can be created. The References table is the connection between a statement
and the database objects the statement uses. With this table the system can see what tables are
in the FROM clause of the statement, which indexes OPF has chosen and what table attributes
were used.
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“Statements”
Column Description
Database The name of the user database
Hash The hash value of the query text
Query text The statement in plain text
Frequency A counter of how often the query has been executed
Time A timestamp when the query was last executed

“Workload”
Column Description
Database The name of the user database
Hash The hash value of the query text
OPF CPU The cpu time the query spends in OPF
OPF I/O The disk I/O needed in OPF
QEF CPU The cpu time the query spends in QEF
QEF I/O The disk I/O needed in QEF
Estimated CPU The estimated overall cpu time
Estimated I/O The estimated overall disk I/O
Pages touched The estimated number of touched data pages
Time A timestamp when this query was executed
Wallclock time The time the query took to execute

“Tables”
Column Description
Database The name of the user database
ID The internal ID of the table
Name The name of the table
Frequency A counter of how often the table has been referenced
Structure The storage structure of the table
Data The number of data pages
Overflow The number of overflow pages
Time A timestamp when the table was last seen

“Attributes”
Column Description
Database The name of the user database
ID The internal ID of the attribute
Table ID The ID of the table the attribute is in
Name The name of the attribute
Frequency A counter of how often the attribute has been referenced
Statistics A boolean that is true when statistics exist
Time A timestamp when the attribute was last seen
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“Indexes”
Column Description
Database The name of the user database
ID The internal ID of the index
Name The name of the index
Table ID The ID of the table the index is created on
Attribute ID The ID of the attribute the index is created on
Frequency A counter of how often the index has been used
Structure The storage structure of the table
Data The number of data pages
Overflow The number of overflow pages
Time A timestamp when the index was last seen

“References”
Column Description
Database The name of the user database
Hash The hash key of the statement
Type The type of the referenced object
Object ID The table, attribute or index ID of the referenced object
Table ID The table ID needed to find the correct attribute
Time A timestamp when this reference was seen

“Statistics”
Column Description
Connections The number of connected users on the system
Sessions The number of active sessions in the system
Maximum sessions The maximum number of allowed sessions
Total rows The total number of rows returned since the DBMS is running
Selects processed The total number of selects since the DBMS is running
Locks per transaction The maximum number of locks being hold per transaction
Maximum locks The maximum number of locks in total
Locks used The number of locks being currently used
Deadlocks The number of deadlocks that occurred
Escalated locks The number of locks that need to be escalated to table locks
Lock waits The number of pending locks that are blocked by other locks

Figure 4.3: IMADB Table Schemes

Because IMA objects reside in main memory there is no additional disk access required to store
those IMA tables, however, to avoid constantly growing memory allocation the tables need to be
implemented as ring buffers. It is believed that because of the finite number of database objects
the Tables, Attributes and Indexes tables may not have to be limited in size, however, the State-
ments, Workload, References and Statistics tables may become very big over time. Therefore,
a maximum number of rows for all tables will be defined after which the content wraps around
and new entries overwrite the oldest entries.
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4.3.2. Invocation of the Monitor

While the collection of data is started as soon as the DBMS is running and processing queries,
the monitor needs to be invoked by the DBA because even when it is designed to be a lightweight
application it may still produce unwanted load on a system. The monitor is implemented as
a daemon that is started with the target database as its argument. It periodically wakes up
and queries IMADB to get the newest workload statistics of the target database. Because of
the volatility of the data in IMA the time between wake-ups must be short enough to capture
changes in a detailed data resolution – but to reduce overhead on the DBMS and to allow time
to process the data from IMA the period must not be too short. An interval of 30 seconds is
believed to be enough to get a proper data resolution without stressing IMADB too much.

4.3.3. Processing and Storing the Data

The monitor daemon polls IMADB for a given number of times to get the most current data.
The default was chosen to be ten times resulting in a five minute time window of IMA data
to process. The data from the Statistics table is processed depending on the meaning of the
value. Some values are averaged, of some other the maximum will be taken. This will lower
the amount of data without losing too much accuracy. The monitor then appends the collected
and processed IMA data to the workload database.
The workload database is a native Ingres database that contains the same schema as the one used
in IMADB. Rows in the Statements, Tables, Attributes and Indexes tables are updated when the
timestamp in IMADB is greater than the one in the workload database. Updates on the Work-
load and Statistics tables will not overwrite existing entries and will be appended instead – this
allows trend analysis over the timespan of the monitored data. As with the IMADB, the amount
of data in the workload DB needs to be limited as the tables would infinitely grow. Instead of a
defined maximum of rows as for the IMA tables, a time window approach was chosen for the
workload DB. All entries are kept for seven days if their timestamps are not updated during that
time.
Because the workload DB is in fact a user database it is possible to create triggers and proce-
dures to automatically react on changes such as exceeding a given threshold for a chosen data
point. With that, the monitor daemon also provides an active alerting mechanism that informs
the DBA in case of a defined database event such as reaching the maximum number of users on
the system.

4.3.4. Postconditions

The monitor daemon will run until the DBA sends a kill signal to stop its work. Because of the
small overhead, the monitor can keep running without having too much impact on the system
and therefore can collect a large amount of data that can be used for the analyser phase. The
monitor should be at least run long enough to record a full cycle of the typical workload on
the user database so that the workload DB contains a complete list of executed queries together
with statistical data from within that timeframe.
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4.4. Analyse

In the analyser phase the collected data in the workload DB will be processed. This ranges from
simple reporting of aggregated data to the automatic identification of performance problems
with recommendations to solve them as described in section 2.2.4. In a first step, the data
will be scanned based on a set of rules that are explained further below. In a second step, the
information gathered from the workload will be used to create a list of changes that can help
to improve performance. As a third step, some of the proposed changes are tested on the user
database to see if they have a positive effect. In the last step, the analyser will create a final list
of recommendations that will be shown to the DBA.
This section describes the order of events for the analyse phase as shown in figure 4.4.

 : Workload DB  : User Database

: process()

 : DBA
: pull statistics()

 : Analyser

: test()

: present()

Figure 4.4: Sequence Diagram of the Analyse Phase

4.4.1. Preconditions

The analyser depends on the content of the workload DB. Therefore, as a precondition, the
workload DB must have been filled by the monitor with enough data to cover the workload that
should be analysed. As part of the tests the analyser will perform, virtual indexes are created to
see if they would have a positive effect on the performance. The DBMS will prevent that those
virtual objects are used for a user query but they still require an exclusive lock on the table
which may interfer with other traffic on the database. Because of this, it is highly recommended
that the database is not in use while the analyser runs.

4.4.2. Invocation of the Analyser

The analyser is a client application that is started by the DBA. It takes arguments for the database
that should be analysed and an optional time interval when only a part of the collected data
should be processed. The analyser runs in the foreground for the time it computes the recom-
mendations.
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4.4.3. Processing the Workload

To prioritise the most stressing statements they are are ordered by their frequency times the
actual cost value of their QEP that was recorded during query execution. This way, both the
frequency and the overall cost of the statement are taken into consideration to find the queries
that should get the most attention. The tests and recommendations implemented in this first
version of the analyser are as follows:

• A statement is not using any secondary indexes – either no indexes are defined or the
query may have to be restructured to use an index.

• Actual and estimated costs of a query differ more than 20% – this may be caused by
missing or outdated statistics and the optimiser may not be able to find the cheapest plan.

• The query spends more than 50% of its overall time in OPF – this may be caused by a
high number of indexes that increase the number of plans to enumerate.

• An index is never been used in the given workload – the DBA should drop unused indexes
as they need to be maintained by the DBMS

• One or more attributes of a table have no statistics – the DBA should run optimizedb to
create them.

• A table has more than 10% overflow pages – the DBA should restructure the table or
modify it to storage structure B-Tree.

• There is more than one index defined on an attribute – the DBMS is only using one index,
the other only adds overhead and should be removed

• There are indexes on more than the half of all attributes in a table – as too many indexes
will decrease performance the DBA should try to remove some unnecessary indexes.

This set of rules and tests is very simple and may not fit to complex scenarios. For this to
achieve a more comprehensive approach of data interpretation is needed that is not yet part of
this work but will be discussed in chapter 7.
In addition to those tests, the analyser collects attribute candidates to recommend the creation
of new indexes. This is first done per statement. The attributes referenced in the statement are
ordered by their frequency and then new indexes are added up to a defined maximum of 50%
of attributes per table. The indexes are created as virtual database objects which means that the
system catalogues are updated to contain the new index but the data file is not filled with rows
so that the virtual index comes with a constant overhead of only a small catalogue operation,
no matter how big the underlying table is. The virtual index contains all the meta data needed
by the optimiser to decide whether it is useful for the statement or not. It contains the estimated
size of the index data file on disk to allow the computation of cost estimates and the creation of
a QEP. The analyser creates all the possibly useful indexes and then uses OPF to decide which
index will be used. Because 50% of all attributes in all tables used in the query will have an
index at this point the enumeration of execution plans can potentially require a long time to
complete – the longer OPF can scan through the possible plans the higher is the chance to find
the optimal plan containing those indexes that are most useful. However, to keep the analyser
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from running too long an enumeration timeout will be set after which OPF stops searching and
uses the so far best plan instead. After the query has been optimised the analyser requests the
new cost estimates and the list of virtual indexes used in the QEP over IMA. If the new plan
is cheaper than the original one the virtual indexes are turned into index recommendations.
After all statements have been tested and index recommendations have been collected for each
statement, the indexes are created again as virtual objects and the workload is optimised as a
whole to see the effect of all of the new indexes on all statements. This data is then used for the
presentation phase. Each recommendation during the analyser phase is being logged even when
it is a duplicate. This way, the DBA can prioritise the implementation of recommendations by
their frequency.

4.4.4. Postconditions

After the analyser is done with scanning the workload and testing new indexes, it has collected
a number of recommendations based on the rules explained above. It has also prepared the
DBMS statistics in the Statistics table to be displayed to the DBA. Virtual database objects have
been removed and the database is back in normal operation. The next section describes the
presentation of results.

4.5. Present

In the last phase, the results of the analyser are presented to the DBA to show him where
problems exist and to support him in his decisions what needs to be changed. The presentation
of results is done by the analyser client described above in form of a static report.

4.5.1. Presentation of the Results

The collected recommendations from the analyse phase are grouped by the affected database
object and the frequency how often the analyser recommended it. With this, a list of recom-
mendations for statements, tables, attributes and indexes is being created with a rationale and –
where possible – the SQL command that is needed to perform the change. Statistical data is pre-
sented in text and with diagrams that allow visual examination of DBMS conditions. Sections
5.3 and 6.1 will show examples of analyser reports and the diagrams shown there.

4.5.2. Postconditions

When the results have been presented, it is up to the DBA to decide what changes he wants to
implement as the report only lists plain recommendations. The analyser primarily prioritises by
frequency – changes that were recommended more often are believed to have greater influence
on the system’s performance. An index on an attribute that is used 100 times in the workload
may provide better results than an index on an attribute that is only used 10 times. This is still a
very naı̈ve approach as it does not take table sizes and other factors into consideration. Possible
improvements to the presentation are discussed in chapter 7.
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This chapter describes the implementation of the design analyser for Ingres. Since early 2008
the latest Ingres source is available to the public via Subversion1 at http://code.ingres.
com. The implementation in the DBMS core and of the monitor daemon was done using Ingres’
compatibility layer (see section 2.1.1) which should ensure the platform independence of the
code, however, the coding and testing was done only on 32-Bit Linux.
The next three sections will cover changes performed in the DBMS core, the implementation
of the monitor daemon and of the analyser client. References to directory paths are expressed
with environment variables where ING SRC is the directory containing the source code and
II SYSTEM is the directory containing the Ingres installation. For the platform independence
path separators are denoted as “!”. Code listings are simplified and may be presented as pseudo
code for better overview.

5.1. Core Changes

The DBMS core is used to collect data about the current workload on the system. The goal was
to get enough data needed for the analysis without adding too much overhead so that the system
isn’t slowed down while collecting statistics. Where possible, the collection was placed directly
at the origin of the data causing only constant overhead while keeping the number of loops over
large structures low. However, this first experimental implementation has still a high potential
of optimisation with hash tables and better placement in the code.

5.1.1. A New Subfacility

The monitoring code in the core has been placed in the system control facility. To keep the code
in one place a new subfacility called SCM (for SCF Monitor) has been created in the folder
ING SRC!back!scf!scm. Here, all files belonging to the monitoring code are located together
with the monitoring daemon described further below.
The scm folder contains the following files: scmmain.c, scmima.c and scmonitor.sc. The cor-
responding header files scm.h and scmonitor.h are located in ING SRC!back!scf!hdr. In scm.h
the structures to hold the workload data are defined as they were described in figure 4.3 while
scmmain.c implements the helper functions to log the data. Figure A.1 in the appendix shows
the SCM structure that contains arrays of all the other structures. The * idx members are used
for the ring buffer implementation that keeps the memory requirements at a constant level.
MAXMONITOR is a defined constant of how many statements and objects – tables, attributes,
indexes – to log at a maximum. For this experimental implementation the maximum was chosen

1http://subversion.tigris.org
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to be 500. The MAXWORKLOAD constant, which is set to 1000, is the maximum number of
statements that can be logged in the workload history. Given that the monitor daemon queries
IMA every 30 seconds this means that with these settings the DBMS can monitor at most 500
distinct statements and 1000 statements in total within a timeframe of 30 seconds. If there are
more then they either don’t get logged or the two constants would need to be adapted.

5.1.2. Log Functions

In this section the functions to log statements and the referenced database objects are described
in more detail.

Statements

Figure A.2 shows the structure to hold a statement. SCM STATEMENT entries are unique over
the database name and the query key. The workload history, which is the time when the state-
ment was executed together with the cost values, is stored in SCM WORKLOAD as shown in
figure A.3.
The function to log a statement – scm log stmt() – is called in scs sequencer() which is the
main function in SCF to pass a query through the various server facilities. The statement is
logged right after the call to PSF after which the query has been parsed. In figure 5.1 line seven
the session control block is returned. This structure contains information that is global for the
current session and which is used to get the statement text and the name of the database. The
SCM structure in line eight is placed in Sc main cb which is a server-wide global structure that
is persistent over session boundaries. This way, every session and every facility is able to ac-
cess the SCM structure to log data. The hash key in line 11 is computed by calling HSH char()
– an Ingres implementation of a simple hash function which is used to compute a unique key
of a statement string. Although the hash function trims leading and trailing whitespaces from
the string, the same query with different case or order of attributes and tables will produce a
different hash. Therefore, those statements will be treated as new ones which would need to
be changed in a later version of the implementation. The call to scm stmt lookup() returns a
pointer to an SCM STATEMENT structure containing the current query when it was already
executed and logged before or NULL if it wasn’t.

1 VOID
2 scm log stmt( VOID )
3 {
4 /* Variable declarations */
5 ...
6
7 scb = scm get scb();
8 scm = &Sc_main_cb->scm;
9 query_text = scb->cs_scb.cs_diag_qry;

10 db_name = scb->scb_sscb.sscb_ics.ics_dbname.db_db_name;
11 hashkey = scm hash(query_text);
12
13 statement = (SCM_STATEMENT*)scm stmt lookup(db_name, hashkey);

Figure 5.1: scm log stmt (scmmain.c) (1)
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As mentioned in section 4.3.1, the number of entries to log must be limited to avoid infinitely
growing memory requirements. The structures were implemented as ring buffers with a cy-
cling index pointing to the current position in the buffer. In line 18 in figure 5.2, the position
is checked against the maximum number of statements to log – if the number is exceeded the
index is set back to zero and old entries are overwritten. For the first MAXMONITOR state-
ments there is an additional overhead of attaching the SCM STATEMENT to IMA with the call
to MOattach() in line 28. Details about the handling of IMA structures are described in section
5.1.3 below. As soon as the full number of SCM STATEMENT structures is created and at-
tached there is no other overhead of memory allocation and the memory requirements become
constant over the complete runtime of the DBMS.

16 if (!statement)
17 {
18 if (scm->cur_stm_idx >= MAXMONITOR)
19 {
20 scm->cur_stm_idx = 0;
21 }
22 old_stm = scm->statements[scm->cur_stm_idx];
23 if (old_stm != NULL)
24 {
25 statement = old_stm;
26 } else {
27 statement = (SCM_STATEMENT*)MEreqmem(...);
28 MOattach(...);
29 scm->statements[scm->cur_stm_idx] = statement;
30 }
31 }
32 /* Fill struct with data */
33 ...
34 }

Figure 5.2: scm log stmt (scmmain.c) (2)

After the SCM STATEMENT struct has been either created (when the statement hasn’t been
logged before) or updated (when it has been logged) a new SCM WORKLOAD entry is cre-
ated, appending the statement to the workload history.
In line three of figure 5.3 the SCM WORKLOAD is attached to IMA and then initialised with
data. The wallclock time in line eight is set to -1 so that the monitor daemon later can see which
query is still being executed and therefore doesn’t get put into the workload DB, yet. In line
ten, a pointer to the current SCM WORKLOAD structure is placed in the session control block
so that the following logging functions can easily store their data.

1 ...
2 workload = (SCM_WORKLOAD*)MEreqmem(...);
3 MOattach(...);
4 scm->workload[scm->cur_wkl_idx] = workload;
5 }
6 workload->query_key = hashkey;
7 workload->time = now.TM_secs;
8 workload->wctime = -1;
9

10 scb->scm_current_stmt = workload;

Figure 5.3: scm log stmt (scmmain.c) (3)
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Functions such as scm log opf time(), shown in figure 5.4, are placed throughout the server
code to capture information. scm log opf time() is called in scs sequencer() after OPF is fin-
ished with building the QEP for the query. CPU and disk I/O costs are also logged for the call
to QEF – also in scs sequencer() – to see how long it took to execute the query. All those func-
tions contain a call to scm get cur stmt(), as seen in line seven, which then returns the current
SCM WORKLOAD.

1 VOID
2 scm log opf time(
3 TIMERSTAT *start,
4 TIMERSTAT *end )
5 {
6 SCM_WORKLOAD *stm;
7 stm = scm get cur stmt();
8 stm->opf_cpu = end->stat_cpu - start->stat_cpu;
9 stm->opf_dio = end->stat_dio - start->stat_dio;

10 }

Figure 5.4: scm log opf time (scmmain.c)

Tables

Figure A.4 shows the SCM TABLE structure containing table information. Entries are unique
over the database name and the ID of the table which is an internal sequence number used
in the system catalogues. The function to log tables – scm log table() – is placed in OPF in
opv parser() right after call to RDF which is responsible to get catalogue information for all
tables used in the query. The call is placed within the existing loop over tables so that no
overhead other than the actual logging is caused.
The table log function is very similar to scm log stmt() – the session control block and the
SCM structure are retrieved to perform a lookup for the table. If the table has already been
logged before then only its statistics are being updated. If it is a new table then either a new
SCM TABLE structure is being allocated and attached to IMA or an old one is overwritten in
the same way as it is done for statements. As it can be seen in figure 5.5, the code to look
up a table in the SCM structure is still quite expensive because it may need to loop over the
whole array of tables until a decision can be made. The costs have been tried to minimise
by moving the expensive string comparisons with STncmp() to the end of the test, however,
it is believed that this lookup should be implemented much more efficiently with for example
a hash map. But even with this approach the overhead remains within constant boundaries of
[1, MAXMONITOR] tests per function call.
In line 35 of figure 5.5, the call to scm log reference() creates a reference between the current
statement and the table that was being logged. The SCM REFERENCES structure, shown in
figure A.7, acts as a relation between the statement and the tables, attributes and indexes used
in the statement. With this, the analyser knows for example which attributes are used in a
statement and can then recommend the creation of new indexes.
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1 VOID
2 scm log table(
3 i4 table_id,
4 char *name,
5 i4 datapages,
6 i4 overflow,
7 i4 structure )
8 {
9 /* Variable declarations */

10 ...
11
12 scb = scm get scb();
13 db_name = scb->scb_sscb.sscb_ics.ics_dbname.db_db_name;
14 scm = &Sc_main_cb->scm;
15 i4 found = -1;
16
17 for (i = 0; i < MAXMONITOR; i++)
18 {
19 if (scm->tables[i] == NULL)
20 {
21 break;
22 } else if (
23 scm->tables[i]->table_id == table_id
24 &&
25 STncmp(scm->tables[i]->database, db_name, ↘

DB_MAXNAME-1) == 0 )
26 {
27 found = i;
28 break;
29 }
30 }
31 /* Code to allocate and attach */
32 ...
33 /* Fill the structure */
34 ...
35 scm log reference(SCM_TYPE_TABLE, table_id, 0);
36 }

Figure 5.5: scm log table (scmmain.c)

Attributes

The SCM ATTRIBUTE structure, as shown in figure A.5, contains information about attributes
used in the statement. Attributes are unique over the database name, the table ID and the
attribute ID. Both IDs are required because the attribute ID reflects only the position of the at-
tribute within the table. Attributes are logged in opz addatts() with a call to scm log attributes().
This is where OPF fills the list of attributes needed for the query execution. As with the table
logging, scm log attributes() is called right at the origin of the information to avoid additional
overhead while cycling over a list of attributes.

Indexes

Index data is stored in the SCM INDEX structure shown in figure A.6. Entries in this structure
are unique over the database name and the index ID. Together with the members table ID and
attribute ID the index can be referenced back to the attribute it was created on. The call to
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scm log index() is placed in OPF in opv index() which is responsible for getting all possibly
useful indexes for the given query. If the index has been actually used in the QEP is not known
until the enumeration phase is completed. In opj joinop(), which passes the query through
the enumeration, an additional call to scm log used index() is placed to be able to tell which
indexes were considered and which ones were used. Figure 5.6 shows that in this case an
additional loop is required to get the needed information. After the call to opj enum in line one
the QEP is available with a list of all tables that will be used for execution – including indexes.
The upper bound for this list is the maximum number of tables that can be joined in Ingres but
in most cases this list should only contain a small number of entries so that this loop is not
believed to cause much overhead.

1 subqpp = opj enum(subqpp);
2
3 i4 i;
4 for (i = 0; i < global->ops_rangetab.opv_gv; i++)
5 {
6 RDR_INFO *rel;
7
8 rel = global->ops_rangetab.opv_base->opv_grv[i]->opv_relation;
9

10 /* Check if this is an index */
11 if (rel->rdr_rel->tbl_id.db_tab_index > 0)
12 {
13 scm log used index(
14 rel->rdr_rel->tbl_id.db_tab_index,
15 rel->rdr_rel->tbl_storage_type,
16 rel->rdr_rel->tbl_dpage_count,
17 rel->rdr_rel->tbl_opage_count );
18 }
19
20 }

Figure 5.6: Call to scm log used index (opjjonop.c)

5.1.3. IMA Handling

The concept of IMA has already been described in section 2.1.5. The MO module handles
data over class definitions – a class definition is a description of a variable or a structure mem-
ber whose instances can later be accessed as IMA objects. A definition includes a unique
name of the class, the space requirements, access rights and information on how to retrieve and
store the data. Figure 5.7 exemplarily shows the definition of the query hash key member in
SCM STATEMENT. The name of the class, exp.scf.scm.stm.query key, in fact only requires to
be a unique string within all IMA classes but following the naming convention of a tree-like
structure, this class is part of the experimental branch (as currently all other classes, too) and
part of SCF and its subfacility SCM. The permissions are set to MO READ which means that
objects of this class will be readonly. IMA allows a more granular rights management to enable
and disable read and write access for all or only certain users. MOuintget and MOnoset are
part of the MO standard functions for retrieving and storing data in IMA objects. Objects of
this class will provide unsigned integer values and cannot be set to a different value over IMA.
There are other functions such as MOstrget or MOptrget for retrieving strings and pointers.
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1 {
2 MO_CDATA_INDEX, "exp.scf.scm.stm.query_key",
3 MO_SIZEOF_MEMBER(SCM_STATEMENT, query_key), MO_READ, ↘

scm_stm_index_class,
4 CL_OFFSETOF(SCM_STATEMENT, query_key), MOuintget, MOnoset,
5 0, MOidata_index
6 },

Figure 5.7: IMA Class Definition (scmima.c)

A list of class definitions like this one can be put into an array which is passed to MOclassdef()
– with this call the classes are registered and structures or variables can be attached to IMA as
it can be seen in figure 5.8.

1 char buf[80];
2 MOptrout(0, (PTR)statement, sizeof(buf), buf);
3 MOattach(MO_INSTANCE_VAR, scm_stm_index_class, buf, (PTR)statement);

Figure 5.8: MOattach (scmmain.c)

This will create an IMA object pointing to this single instance of the statement variable. This
means that whenever the data in the statement variable respectively its member variables changes,
the new value is visible in IMA immediately without any additional effort. Of course, for this to
work the variable must be globally available so that it is not implicitly deallocated at the end of
a function. As the SCM structure resides in the global server-wide control block in Sc main cb
it never gets deallocated during the lifetime of a DBMS process.
To be able to access IMA objects from the outside they need to be registered as tables in a
database. This can be every database but as a convention all IMA tables are registered in
IMADB. Figure 5.9 shows the registration of a table called ima scm statements, containing
all the members of the SCM STATEMENT structure. Every column in the table points to one
of the IMA classes that were defined. After the registration, a select on this table will return one
row of data per every existing instance of the IMA class – in this case every SCM STATEMENT
structure that has been allocated and attached to IMA will produce a row.

1 register table ima scm statements (
2 server varchar(64) not null not default
3 is ’SERVER’,
4 database varchar(32) not null not default
5 is ’exp.scf.scm.stm.database’,
6 query_key integer4 not null not default
7 is ’exp.scf.scm.stm.query_key’,
8 query_text varchar(1000) not null not default
9 is ’exp.scf.scm.stm.query_text’,

10 frequency integer4 not null not default
11 is ’exp.scf.scm.stm.frequency’,
12 time integer4 not null not default
13 is ’exp.scf.scm.stm.time’
14 )
15 as import from ’tables’
16 with dbms = IMA,
17 structure = unique sortkeyed,
18 key = (server, query_key);

Figure 5.9: IMADB Table
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In scmima.c IMA class definitions for all of the structures used by SCM were created and the
corresponding tables in IMADB were registered plus an ima scm statistics table that contains
several IMA objects from throughout the server. How those tables are then read by the monitor
daemon is described in section 5.2.

5.1.4. Adding Virtual Indexes

To allow testing the performance improvement of new indexes, the DBMS core was expanded
with the ability to create virtual indexes similar to the ones described in [Thi08]. The index is
virtual because its data file is not populated with any rows. It is only an entry in the system
catalogues that contains the description of this data file with the estimated number of tuples that
a real index would have. This is enough for OPF to add the index to the enumeration and to
create a QEP containing this index. The resulting cost estimates can be used for a comparison
with the old QEP to see if creating this index would result in a cheaper plan.
A new keyword was added to the parser and virtual indexes can be created with:

create virtual index idx name
on table name(attribute name)
with structure = BTREE

The current implementation only contains tuple estimates for a B-Tree structure, therefore, all
virtual indexes must be created as B-Tree.

5.1.5. Adding a New Trace Point

Of course, virtual indexes cannot be used to execute a query and the DBMS would return an er-
ror when trying to access the non-existing index table. For this reason, the use of virtual indexes
has been disabled by default and a new trace point was added that tells the DBMS to optimise
using those indexes but not to execute the resulting QEP.
Trace points in Ingres allow the conditional execution of code based on decisions during run-
time. Every server facility defines a set of trace points which are mostly used for debugging
purposes. How to use a trace point in Ingres is shown in appendix B.
The trace point SC7 was added in SCF so that it is easily available in all server facilities. It is
getting checked right before OPF loads the virtual index for a given attribute in opv parser(). A
second check is performed in ops sequencer() to decide whether QEF will execute the query or
not. Without SC7 being set, the DBMS will operate as normal and as long as the user doesn’t
query the virtual index table explicitly it won’t interfer with user traffic. SC7 is a session-level
trace point which means that is has only effect within the session that set it.
The trace point is also used in SCM to decide whether a statement or database object is being
logged or not so that I) the workload statistics don’t get changed when running the analyser
and II) no virtual indexes are recorded in the workload DB. Instead of logging a statement to
the IMA structures described above, SC7 will cause the cost estimates being written to another
structure called SCM ANALYZE, shown in figure A.8. This structure has only a single instance
connected to IMA that is being filled with the estimates for the query that was last executed to-
gether with the list of virtual indexes used in its QEP. This way, the analyser can set trace point
SC7 to execute a query with virtual indexes and to get the new cost estimates back over IMA to
see if the new plan is using any of the new indexes and if it is cheaper than the old plan.
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5.2. The Monitor Daemon

In IMA only a small time window of data is presented. Server statistics are only snapshots of
the current situation and the logging of database objects is only done for a limited amount of
statements resulting in a short-term history. To be able to analyse more than just a small set of
data IMADB is being read on a regular base and the data is persistently stored in a dedicated
database. This section describes the tool that performs this action. It was implemented as an
Ingres database tool similar to createdb or optimizedb which means that the code of the tool
is included in the source code of the DBMS and that it can use the same infrastructure as the
DBMS core itself speaking of things like the memory management or the compatibility layer
functions that make the tool platform independent. The tool was called and is now referenced
as monitordb.

5.2.1. Writing a Database Tool

Figure 5.10 shows a most simple database tool. The EXsetclient() call tells the Ingres ex-
ception handling that this is a user tool running on a command line. With MEadvise() set to
ME INGRES ALLOC the internal Ingres memory management is used when memory func-
tions are called. The SIprintf then simply prints the string to stdout and PCexit exits the tool
with zero as the return value.

1 /* Include headers */
2 ...
3
4 i4
5 main(
6 i4 argc,
7 char *argv[] )
8 {
9 (void)EXsetclient(EX_INGRES_TOOL);

10 MEadvise(ME_INGRES_ALLOC);
11
12 SIprintf("Hello world!\n");
13 PCexit(0);
14 }

Figure 5.10: Hello World DB Tool

For monitordb an implementation with ESQL/C was chosen. ESQL/C allows the use of SQL
embedded in C and C++ as it can be seen in figure 5.11. All source code files with extension .sc
are passed through an ESQL/C preprocessor by the Ingres compile system and every exec sql
command gets translated into a number of C function calls against the Ingres library libq. The
resulting .c file is then compiled by the standard C compiler.
The code in figure 5.11 contains a declaration part in lines three to six. Only variables be-
tween those special ESQL commands can be used in ESQL statements as seen in line 12 where
:db name will be replaced by the value of the string variable. A cursor is getting declared for
the given statement and the resulting rows are then fetched into a structure that is here called
ESQL SCM STATEMENT. This and the other corresponding structures for tables, attributes,
etc, are more or less a copy of the the SCM * structures described in the previous section. How-
ever, because the structures need to be defined within an ESQL declare section and because of
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the fact that the scm.h header cannot be included twice in the code those new structures were
defined with an ESQL prefix.

1 exec sql include SQLCA;
2
3 exec sql begin declare section;
4 char db_name[DB_MAXNAME];
5 ESQL_SCM_STATEMENT statement;
6 exec sql end declare section;
7
8 exec sql connect imadb;
9

10 exec sql declare stm cursor for
11 select * from ima_scm_statements
12 where database = :db_name;
13
14 exec sql open stm for readonly;
15
16 for (;;)
17 {
18 exec sql fetch stm into :statement;
19 if (sqlca.sqlcode == 100) /* No rows left */
20 {
21 break;
22 }
23 /* Save content of statement */
24 ...
25
26 }

Figure 5.11: ESQL Example

5.2.2. monitordb

Figure 5.12 shows a simplified version of monitordb’s main() function. monitordb requires
one command line argument being the name of the database to monitor. A connection to this
database is being opened to validate if the database exists. monitordb then forks into the back-
ground continuing as a daemonised process until it is getting killed from the outside.
The tool enters the main loop and starts to query IMADB for the current content of the ima scm *
tables. This data is stored in the ESQL * structures and monitordb sleeps for a given period of
time which in the current implementation is set to 30 seconds. After ROUNDS number of
wakeups monitordb switches over to the workload DB session and stores the collected IMA
data. This is currently done every ten rounds resulting in an interval of five minutes. This way,
monitordb delays disk access on the workload DB to avoid constant interference with the user
traffic on the system.
The workload DB contains the same table schema as the one for SCM in IMADB except that
the statistics table is now growing over time storing the history of values. As described in
section 4.3.3, the workload DB needs to be limited in space and therefore only contains data
from within a specific timeframe. To implement this, monitordb in line 37 of figure 5.12 calls
a function to clean up old data from the workload DB. All rows with a timestamp of more than
seven days in the past are going to be deleted here – keeping the data from the last seven days
is believed to be enough to capture the significant workload and statistical data of a database.
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1 i4
2 main(
3 i4 argc,
4 char *argv[] )
5 {
6 STncpy(db_name, argv[1], DB_MAXNAME);
7 exec sql connect :db_name;
8 if (sqlca.sqlcode != 0)
9 {

10 PCexit(FAIL);
11 }
12 exec sql disconnect;
13
14 switch (pid = PCfork(&status))
15 {
16 case 0:
17 break;
18 default:
19 PCexit(OK);
20 }
21 exec sql connect workloaddb session 2;
22 exec sql connect imadb session 1;
23
24 while(1)
25 {
26 get ima content();
27
28 if (++round > ROUNDS)
29 {
30 round = 0;
31 exec sql set_sql(session = 2);
32
33 put content to workloaddb();
34
35 if (++delold > DELOLD)
36 {
37 delete old content in workloaddb();
38 delold = 0;
39 }
40 exec sql set_sql(session = 1);
41 }
42 PCsleep(SLEEP);
43 }
44 }

Figure 5.12: monitordb main() (scmonitor.sc)

Figure 5.13 exemplarily shows the put statements() function which stores the collected IMA
data in the workload DB. The select statement in line seven is used to first see if the statement
has already been inserted in the workload DB and second to see if the IMA entry is newer and if
the workload DB needs to be updated with more current statistics. The function to process the
data in ESQL SCM STATISTICS looks similar but instead of updating existing rows the data
is always appended to allow trend analyses.
monitordb can be started several times on different databases to monitor more than one database
at a time. The tool uses Ingres’ autocommit setting to avoid long lasting locks on the workload
DB. As IMADB tables are only virtual tables there are no locks and autocommit isn’t needed
for IMADB.
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1 VOID
2 put statements( VOID )
3 {
4 for (i = 0; i < scm->cur_stm_idx; i++)
5 {
6 statement = scm->statements[i];
7 exec sql select time
8 into :time
9 from statements

10 where database = :db_name
11 and query_key = :statement.query_key;
12
13 if (time > 0)
14 {
15 if (statement.time > time)
16 {
17 exec sql update statements
18 set
19 frequency = :statement.frequency,
20 where database = :db_name
21 and query_key = :statement.query_key;
22 }
23 } else
24 {
25 exec sql insert into statements
26 values (:statement);
27 }
28 }
29 }

Figure 5.13: put statements (scmonitor.sc)

How the data that is collected in the workload DB is being processed and analysed is described
in section 5.3.

5.2.3. Database Alerts

To alert the DBA in problematic situations, monitordb listens to database events. A database
event can be raised with an SQL command in, for example, a procedure as shown in figure 5.14.

1 create procedure alert
2 (text varchar(1000) not null) as
3 begin
4 raise dbevent monitor_alert :text;
5 end

Figure 5.14: Database Procedure alert()

This procedure can be called by a trigger (or a rule in Ingres) such as the one in figure 5.15
which is fired whenever the number of current sessions in the statistics table reaches the maxi-
mum number of sessions on the DBMS.
monitordb can be invoked with an additional command line argument that is an external exe-
cutable. The tool polls for raised events in its main loop and whenever an alert is detected, this
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1 create rule max_sessions after insert
2 of statistics
3 where new.current_sessions = new.max_sessions
4 execute procedure alert(’Maximum number of sessions reached!’)

Figure 5.15: Database Rule max sessions

external command is called with the text description that was passed on to the database proce-
dure as its argument. The external command could be the system’s mail program, so that any
alert is being sent as a mail to the DBA. With this alerting mechanism, monitordb allows active
observation of the system without having the DBA to manually watch critical values.

5.3. The Analyser Client

The analyser client is a stand alone application that is invoked by the DBA. For the implemen-
tation of the analyser the scripting language Python2 has been chosen for various reasons. It is
an easy-to-learn high-level language that offers object-orientation and a comprehensive set of
libraries, called modules. The script code itself is platform independent and the Python inter-
preter is available for a wide range of platforms. Ingres offers a database driver for Python and
there is a Python wrapper for gnuplot3 which was chosen for drawing diagrams.
The analyser client is considered as being highly experimental and as stated in section 4.4 most
of the implemented tests are still very naı̈ve. This first implementation of the client is meant to
exemplarily show potential ways to interpret the workload data and to present recommendations
to the DBA.
The Python code was separated into modules placed in ING SRC!front!misc!analyzedb: An-
alyze.py contains all the classes used to perform the tests and create the recommendations,
Present.py contains the code to create the result report, in Draw.py the gnuplot wrapper class
is defined, in Db.py the Ingres connection code is placed, Containers.py defines classes to hold
the workload data, functions.py contains some global help functions and Config.py defines the
default settings for the analyser. The entry point of the tool is in analyzedb.

5.3.1. analyzedb

analyzedb is being called by the DBA on the command line. It takes a number of arguments to
configure the analysis. The only required argument is the name of the database that should be
analysed. Optional arguments include the vnode, query limit and timeout. A vnode – or virtual
node – is used in Ingres to connect to a remote database. Per default the analyser connects
to vnode (local) but it can also connect to any other remote database that was compiled with
monitoring code. The query limit is per default set to -1 which means that the analyser processes
all statements in the workload. If that is too much it can be set to an absolute number of
statements. The timeout parameter sets the joinop timeout for the enumeration. This is the
maximum time OPF will spend to find the optimal QEP for a statement. The default is set to

2http://www.python.prg
3http://www.gnuplot.info
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300 seconds.
As the tool is written in Python and uses some external libraries is has some prerequisites:

• Python 2.5 or higher

• gnuplot 4.2 or higher with png support

• gnuplot-py 1.8 or higher

• Ingres Python DBI driver

In addition to that, Ingres must be set up with ODBC support as the current version of the
Python driver uses ODBC to communicate with the server.
All the prerequisites are available for most of Ingres’ supported platforms. On platforms that
don’t provide the necessary dependencies the tool can be used remotely on a different machine.

5.3.2. Preparing the Analysis

Figure 5.16 shows the sequence of method calls to prepare and perform the analysis. First, the
connection to all of the involved databases is established. The connection to the workload DB
is set up with autocommit to avoid locking problems with the monitor daemon. As IMADB is
no real database it doesn’t need to be set up with autocommit. The connection to the user DB
is created without autocommit so that virtual indexes are being rolled back not only when the
analyser is completed but also in case of an error. However, this means that there may be locks
on the database that block other user traffic. Because of that, it is recommended that the user
database is not in use for the time analyzedb runs.

1 def start(self):
2
3 self.__userdb = DB(self.__config, self.__config.userdb)
4 self.__imadb = DB(self.__config, "imadb")
5 self.__workloaddb = DB(self.__config, "workloaddb", True)
6
7 """ Tell the DBMS we’re going to test now """
8 self.__userdb.execute("set trace point sc7")
9 self.__userdb.execute("set joinop timeout 300")

10
11 self.__load indexes()
12 self.__load attributes()
13 self.__load tables()
14 self.__load workload()
15 self.__load statements()
16
17 for statement in self.__statements:
18 self.__process statement(statement)
19
20 """ Get the cost of the new configuration """
21 self.__test configuration()
22
23 self.__process statistics()

Figure 5.16: start() (Analyze.py)
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In line eight, the new SCF trace point described in section 5.1.5 is set to enable the use of virtual
indexes for this session. In line nine, the joinop timeout for the session is set to an absolute value
so that OPF doesn’t stop searching for a cheaper plan when the time spent so far exceeds the
time of the currently cheapest plan. This way, OPF has more time to find the optimal plan that
may contain one of the new indexes.
For each table in the workload DB a class has been defined as a container. First, the table,
attribute and index containers are filled with all existing database objects in the user database.
Then, the list of entries in the workload history and the list of statements is filled – the analyser
filters all the selects from the workload as only they get processed. To every statement the list of
referenced tables is attached. For each table the list of referenced attributes and for each attribute
the list of defined indexes is attached. This way the analyser knows what tables, attributes and
indexes are used in a certain statement. As every variable in Python is internally handled as a
pointer this can be done efficiently without having many copies of the same object.

5.3.3. Performing the Analysis

Each statement is sent to process statement() where the actual analysis is being performed.
All the tests described in section 4.4.3 are implemented here and figure 5.17 shows some ex-
amples. In line five, the percentage of the time the statement spent in OPF is calculated. If this
is more than 50% then a recommendation is logged in line ten. Recommendation templates are
stored in a dictionary and accessed by keys such as the high opf cost used in this case.

1 def __process statement(self, statement):
2
3 """ Statement tests """
4
5 pct = 100 * (statement.opf_cpu + statement.opf_dio + 1) / \
6 (statement.opf_cpu + statement.opf_dio + \
7 statement.qef_cpu + statement.qef_dio + 1)
8
9 if pct > 50:

10 self.__recommend(statement, "high_opf_cost", (pct))
11
12 for table in statement.tables:
13
14 """ Table tests """
15
16 if table.overflow_pages > table.data_pages * 10 / 100:
17 self.__recommend(table, "overflow_pages", (table.name))
18
19 for attribute in table.attributes:
20
21 """ Attribute tests """
22
23 if len(attribute.indexes) > 1:
24 self.__recommend(attribute, "duplicate_index", \
25 (table.name, attribute.name))

Figure 5.17: process statement() (Analyze.py)

For each table used in the statement additional tests are performed. In line 16, the analyser
calculates the percentage of overflow pages over the number of data pages. If there are more
than 10% overflow pages then a recommendation is logged that will tell the DBA to modify the
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table to B-Tree. Tests for attributes include the search for duplicate indexes that will cause a
recommendation to drop all but one index on this attribute.

1 max_idx_count = len(table.attributes) / 2
2 if max_idx_count < 5:
3 max_idx_count = 5
4 idx_count = number_of_indexes_on_table
5
6 for attribute in table.attributes:
7 if idx_count < max_idx_count:
8 if len(attribute.indexes) == 0:
9 idx_count += 1

10 test_indexes.append(attribute)
11
12 for attribute in test_indexes:
13 self.__userdb.execute("create virtual index...")
14
15 self.__userdb.execute(statement.query_text)
16
17 result = self.__imadb.execute("select \
18 cpu, dio, vindexes from ima_scm_analyze")
19 cpu = result[0][0]
20 dio = result[0][1]
21 newcost = cpu + dio
22
23 if newcost < oldcost:
24 """ Recommend new indexes """
25
26 self.__userdb.rollback()

Figure 5.18: Find New Indexes (Analyze.py)

Per definition the analyser allows indexes on 50% of all attributes per table. For index rec-
ommendations the number of existing indexes is counted and the rest is filled up with virtual
indexes, created in line 13 of figure 5.18. In lines 15 and 17, the statement is executed and the
new cost estimates together with the list of used virtual indexes is read from IMADB. If the new
plan is cheaper than the old one recommendations for the used indexes are logged and the trans-
action is rolled back to remove the virtual indexes. After all statements have been processed
the analyser creates all the recommended (virtual) indexes at once and runs the whole workload
in one batch to get the final cost estimates. These values can then be used for a comparison
between the old overall performance and the estimated new one.

5.3.4. Presenting the Results

For this implementation a presentation using HTML has been chosen because of its ease of use
and flexibility. The output of the analyser is an HTML report with textual explanations and
diagrams created with gnuplot.
The first part of an example report can be seen in figure 5.19. The DBA is presented with
a set of general statistics about the database and diagrams that should help to identify and
even to forecast possible problems. The diagrams are shown as thumbnail graphics and can be
enlarged. Chapter 6 will show some example diagrams and discuss them. The report shows
the overall performance win as well as the average win per statement that is expected when all
recommended indexes are implemented. These numbers don’t take into account other changes
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Figure 5.19: Analyser Result Report – Statistics

such as the creation of statistics or the restructuring of tables so that the real performance win
will probably differ.
Figure 5.20 shows the recommendation part of the report. The cost diagram, also discussed in
the next chapter, compares actual cost to old and new cost estimates of the ten most expensive
statements. Here, the DBA can see where estimates don’t match the actual execution costs
and which of the expensive queries will benefit from the implementation of new indexes. A
complete list of queries is attached to the end of the report with query text and cost values.
The recommendations are presented in textual form grouped by statement, table, attribute and
index with the most frequent ones first. Statements are referenced with their hash key and the
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Figure 5.20: Analyser Result Report – Recommendations

DBA can click on the key to jump to the statement text. The DBA sees how often a change
has been recommended during the analysis together with a description of the change. Where
applicable, the SQL command to implement the change can be displayed.

5.4. Packaging

This section briefly describes how the design analyser was packaged with Ingres. The goal was
to integrate the analyser into the existing Ingres structure to avoid any additional manual instal-
lation step.
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The monitoring code is compiled into the DBMS core and therefore doesn’t need any spe-
cial handling. The IMA tables were added to the makimau.sql and makiman.sql scripts in
ING SRC!front!st!vdba that are executed to create the IMADB when installing the DBMS. The
workload database is also automatically created during the installation process through a call in
the DBMS installation script iisudbms. The monitor daemon and the analyser client are both
installed in II SYSTEM!ingres!bin which is in the PATH of the Ingres user. With that setup the
DBA can immediately start to use the design analyser by starting the monitor daemon on the
target database.
The HTML report of the analyser is per default placed in II SYSTEM!files!analyser but this
location can be overwritten with a parameter when calling the analyser. For example, when
there is an HTTP server on the system the analyser report could be written to its document root
and made available over the net.
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This chapter will now discuss the performance of the concept of the design analyser described
in this work. The next sections will cover use cases and possible interpretations of analyser
results, time and space consumption especially of the DBMS core changes and the monitor
daemon and a set of experiments showing the performance of the actual implementation shown
in the previous chapter.

6.1. Application

The monitoring of workload and statistical data in the DBMS is the tool. The correct usage
of this tool – the analysis of the data – is what makes the system useful. This section briefly
discusses some use cases and what the results of the design analyser can tell in these situations.
In section 6.3.2 the analyser and the actual performance win on a real workload is tested on the
example of the NREF database.

6.1.1. Reporting

The analyser creates a report on system statistics and usage patterns of the database. The current
implementation only presents a small subset of the statistical data that is available in the DBMS
core. The two main examples that were chosen are connections and sessions as well as the
locking system.
Figure 6.1 shows a scenario in which the number of open sessions on the DBMS has reached
the current maximum that is configured. The DBA can see that the number of users and sessions
was constantly rising and then hit the limit several times. This is where a trigger on the statistics
table in the workload DB could have alerted the DBA before the limit has been hit.
Statistics for the locking system can also help to identify problems. The locking graph shows
not only the maximum number of locks together with the number of currently used locks but
also the number of lock waits, escalated locks and deadlocks. Lock waits describe how often
a lock couldn’t be granted immediately but had to wait. Escalated locks are many page-level
locks that were turned into one table-level lock. The number of deadlocks that occurred is a
sign of problems with the application using the database. The DBMS has detected a circle in
the locking system that could only be resolved by aborting a transaction.
In figure 6.2 several problems can be seen. First, a high number of lock waits indicates that
many sessions on the system try to lock the same database objects. The DBMS also detected a
reoccurring and high number of deadlocks. The DBA can only see the anomalies but not what
actually happened. In addition to the locking problems, the graph also reveals that the number
of used locks is never near the configured limit so that the DBA can safely reduce the maximum
number of locks to free system resources.
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Figure 6.1: DBMS Connections

Figure 6.2: DBMS Locks

6.1.2. Recommendations

Recommendations are shown as a listing grouped by query, table, attribute and index together
with a diagram of the ten most expensive queries in the workload.
Figure 6.3a shows the results of an analyser run on an unoptimised database. The numbers on
the x axis are the query hash keys. Here, estimates of the original plan can be compared to the
estimates of the plan that would be used when the new indexes were created. OPF expects all of
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Figure 6.3: Top 10 Costs - Diagram

the query plans to become cheaper when the recommended indexes are in place. In addition to
that, the DBA can compare the actual costs of the plan to the estimated values. For example, the
estimates for the query with key 1348122 are significantly higher than what the DBMS actually
needed to execute it. This is an indication for false cardinality estimates where OPF probably
assumed that a lot more tuples need to be processed. This can be often encountered with the
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creation of statistics.
Figure 6.3b shows an analyser result of an already optimised database that has the necessary in-
dexes and table statistics. It can be seen that all the new estimates are equal to the old estimates
which means that OPF already had the optimal plans. But even with an optimised database
actual and estimated costs can still differ. This is where Oracle’s concept of SQL Profiles (de-
scribed in section 3.2.2) tries to deliver more accurate estimates by storing statement-specific
cardinalities instead of only table statistics.
Together with this cost diagram the analyser provides a textual list of all the recommendations
as for example:

“(Recommended 6 time(s))
Creating an index on neighboring seq(nref id 2) would be beneficial.”

Together with the SQL command:
“CREATE INDEX nref id 2 idx ON neighboring seq(nref id 2)
WITH STRUCTURE = BTREE \g”

For new indexes, the DBA sees the expected performance win and can easily decide to create it
or not. Other recommendations such as

“This statement spends 100 % of its time in the optimizer.
You should take a look at its QEP.”

are still very simple and generic. Here, the DBA needs to find the cause of the problem all by
himself by looking at the query and the QEP. This could be a query with many tables to join so
that OPF indeed requires too much time – it could also be a very simple query that is executed
in virtually no time. Such queries are not even sent to OPF but still the analyser reports this
recommendation.
Section 6.3.2 of this chapter will show the performance win when implementing all the recom-
mended changes with the example of the NREF database.

6.2. Time and Space Consumption

This section discusses the memory consumption and runtime of the implementation. While
the analyser client is intended to run only in a maintenance window while no other user is on
the database, the monitoring code in the DBMS core and the monitor daemon running in the
background are both designed to be lightweighted. How the implementation actually performs
can be seen in the experiments in section 6.3.

6.2.1. DBMS Core

The monitoring code in the DBMS core adds new functions that are called during the optimisa-
tion of a query. The function scm log stmt() is called once for every query and it contains the
generation of the query hash key, the lookup of the statement in the list of already known queries
and the possible allocation of a new statement structure in memory. The hash key generation
and the lookup are both linear to the text length respectively to the number of statements but
they are limited by their defined maxima. With the chosen limits of 1000 characters per state-
ment and 500 statements in memory scm log stmt() takes 1500 ∗ const computational steps in
the worst case. The overhead added by the other functions for logging tables, attributes and
indexes is also limited. The table and attribute functions are called right when the optimiser
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calls RDF to get the object descriptions. This again adds a maximum number of 500 ∗ const
steps to lookup the object in memory plus the additional constant number of steps to allocate
the new structure and to log the data. To log indexes an additional loop over the list of tables
was required so that this takes more steps but still has a defined limit as the number of tables in
a single statement itself is limited. The experiments in section 6.3 will show the real impact of
this overhead.
The same as for time consumption applies to the memory requirements. Every statement struc-
ture requires only a constant space in main memory. For the SCM STATEMENT structure a
space of 500 ∗ 1000 bytes plus a constant amount of additional bytes for the other members is
needed. The other structures such as SCM WORKLOAD or SCM TABLE each need between
50 and 100 bytes. With the current limits of maximum 500 database objects and 1000 statements
in the workload history the SCM structure that holds all the pointers to the other structures takes
about 17000 bytes. Adding all this, the whole monitoring takes about 815 kilobytes of main
memory which grows linear with higher maxima. With a maximum of 1000 database objects
and 10,000 statements in the history the memory consumption rises up to 2.2 megabytes and
with 10,000 objects and 100,000 statements 22 megabytes are needed. The number of objects
and statements that fit into the structures defines the data resolution of the monitoring code.
Given that the monitor daemon runs every 30 seconds, a maximum of 1000 statements in the
workload history means that up to 33 statements per second can be recorded. Everything above
that is not getting logged unless the monitor limits are increased.

6.2.2. Monitor Daemon

For the first part of the monitor daemon the memory consumption and runtime is similar to
the core changes. Again, a limited amount of structures with constant sizes is kept in memory.
The memory needs are higher as the daemon stores the data over several rounds. With the
current implementation the monitor daemon queries IMA five times before the data is written
to the workload DB. This means that the memory needed is five times the amount needed in the
DBMS core. As there are no locks, transactions or disk accesses on IMADB, querying IMA
data is also a constant computational task.
The second part of the daemon includes inserts and updates in a database which requires disk
accesses. While the number of inserts and updates is still limited by the maximum number
of statements and database objects that were logged, the disk access itself adds an unknown
number of computational steps. This can be the time to allocate new pages on the disk, the time
to load new pages to the cache, etc.
To minimise the impact of these varying requirements the number of inserts and updates has
been tried to reduce and the actual storage of data in the workload DB is done only every five
minutes. Section 6.3 will show experiments with and without the monitor daemon to see the
impact of the additional disk accesses.
The workload DB that is filled by the daemon grows over a period of seven days. At a constant
load of 33 statements per second the workload history table contains nearly three million rows
after one day and about 20 million rows in a week.
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6.2.3. Analyser Client

Although the implementation of the analyser client still tries to be efficient, it wasn’t designed
to be lightweighted as runtime and memory consumption weren’t considered to be a problem.
The analyser is intended to run only while no other load is on the database. The preparation of
the analysis depends on the amount of objects and statements in the workload DB. In the worst
case 20 million rows need to be scanned to find the most expensive statements. Depending on
the complexity of statements to analyse the most expensive part is the testing of virtual indexes
where the optimiser performs the enumeration of query plans with a possibly large number of
indexes. To keep a limit on the runtime the analyser sets an enumeration timeout after which
the optimiser stops searching.

6.3. Experiments

This section shows a set of experiments that were performed first to see the impact of the mon-
itoring on the DBMS and second to show the effect of the analyser results on the workload
performance. The test setup is the same as described in section 3.2.1 but with a Gentoo Linux
32-Bit installation instead of Windows. The Ingres binaries were self-compiled for both ver-
sions with and without the monitoring and both versions were compiled with debug symbols.
Because of that, the test results shown here cannot be taken as figures of a production system
and are again not comparable to the results in chapter 3. They can only be seen as relative
changes between different code versions of Ingres.

6.3.1. Monitoring Tests

The experiments in this section should show the impact on the overall system performance
caused by the overhead of the monitoring code in the DBMS core and the monitor daemon.
It is expected that for a workload of expensive queries that take several seconds or minutes to
complete the impact of the monitoring is minimal and negligible because the additional function
calls in the core are all of subsecond runtime and are only executed once per query. The impact
of the monitoring daemon could already be visible because it wakes up periodically to read
data from IMA and write it to the workload DB. This adds additional disk accesses during the
execution of queries. With a higher throughput of queries a growing impact on the performance
is expected. For queries that execute in a fraction of a second the overhead of the monitoring
code becomes substantial. The overhead of the monitor daemon increases with the number of
rows that need to be written to the workload DB.

Test Setup

Three test setups were used to show the influence of the monitoring: I) One Ingres instance
compiled from the latest available source code without any of the changes described in this
work. All default settings were kept. The NREF database as described in section 3.2.1 was
created and filled with data using only primary keys and no other indexes. II) A second Ingres
instance with the monitoring code compiled in. Same DBMS configuration and NREF database.
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III) The same Ingres instance but with the monitor daemon running in the background.
These setups will show the influence of the monitoring code in the core alone and of the monitor
daemon running on the same machine.
On each of these setups three different tests were performed – first, the set of 50 NREF queries
that was used to test the other DBMS in chapter 3 was executed. Second, a set of 50,000 simple
joins of two tables was executed. All queries were in the form of

select p.nref id, sequence, ordinal
from protein p join organism o
on p.nref id = o.nref id

where p.nref id = ’NF00000001’
with the where clause cycling through 50,000 different nref ids forcing the monitor to log each
statement as a new one.
The third test was performed with 1,000,000 even simpler queries in the form of

select p.nref id
from protein p
where p.nref id = ’NF00000001’

to see how the monitor lowers the pure throughput of query processing.
All tests were repeated three times to minimise local anomalies. The results are presented with
the absolute time needed to complete the test and the ratio of queries per second for the last two
tests.

Results

Figure 6.4 shows the result matrix of the three tests on the three setups. The setups are called
Original, Monitoring and Daemon referring to the three Ingres instances described above. The
tests are called 50, 50k and 1m referring to the number of queries executed. For the 50 query
test the ratio of queries per second is far below one and therefore was left out.
The tests show that the monitoring code in the DBMS core has very little influence when ex-
ecuting complex and expensive queries. The DBMS needs several minutes to execute one of
the 50 NREF queries so that the overhead of the monitoring code becomes negligible and stays
far below 1%. A greater impact can be seen with the monitor daemon which is writing system
statistics to the disk during the query execution. However, the difference is still only at about
1%.
The 50k test with 50,000 simple joins shows an even smaller difference between the three se-
tups than the 50 query set. The 50 complex queries put a very high load on the disk because
many full table scans are required. This is not the case for these simple queries and the monitor
daemon doesn’t slow down the query execution as much as before. Still, it can be seen that the
DBMS without the daemon has a higher troughput of queries.
The 1m test eventually reveals the impact of the monitoring. The one million very simple
queries need about 11% more time to complete with the monitoring code and 17% more when
the daemon is running. It can be seen that the main part of the overhead here comes with the
monitoring code in the core as this is added for every single query while the daemon still only
wakes up every 30 seconds and writes to disk every five minutes. The data resolution of 33
queries per second has been exceeded by far so that the daemon always writes the same amount
of rows per interval, no matter how high the throughput in the DBMS is.
While the 50 NREF queries are intended to be a realistic workload that could be used in an
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application, the 50k and 1m tests are simple stress tests that should provoke a reaction of the
DBMS. Given that a significant performance drop could only be seen with 1,000 queries per
second it is believed that the overhead is tolerable for most real-life systems.
The next section will show how the analyser recommendations can help to improve the overall
performance of the workload.

Original Monitoring Daemon
Run # absolute query/s absolute query/s absolute query/s

50

1 8263 s – 8279 s – 8381 s –
2 8256 s – 8290 s – 8365 s –
3 8240 s – 8278 s – 8364 s –

Average 8253 s – 8282 s – 8370 s –

50k

1 4327 s 11.55 4339 s 11.52 4362 s 11.46
2 4320 s 11.57 4335 s 11.53 4360 s 11.46
3 4321 s 11.57 4331 s 11.54 4360 s 11.46

Average 4322 s 11.56 4335 s 11.53 4360 s 11.46

1m

1 731 s 1367.98 826 s 1210.65 876 s 1141.55
2 732 s 1366.12 832 s 1201.92 893 s 1119.82
3 734 s 1362.39 827 s 1209.18 888 s 1126.12

Average 732 s 1365.49 828 s 1207.72 885 s 1129.94

Figure 6.4: Monitoring Tests – Results
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6.3.2. Analyser Tests

The experiment in this section should show if the recommendations of the analyser are actually
useful to improve the performance of a system.

Test Setup

To test the usefulness of the analyser the two Ingres instances from the previous section were
used. The original instance with no code changes applied was manually optimised. The 33
indexes that were recommended by [CBTM05] were applied, statistics on all tables were created
and all tables were modified to B-Tree. The second instance with the monitoring code was
used to record the workload of the 50 NREF queries. The analyser client was executed to
scan the workload and to recommend changes. Those changes were applied to compare their
performance win with the one of the manual optimisation. It is expected that the performance
of both systems will be similar but due to the fact that the analyser recommends only a limited
number of indexes the size of the resulting database should be smaller.

Analyser Report

The analysis took about 40 seconds to scan the workload of 50 NREF queries and to test pos-
sible new indexes on the DBMS. For 31 queries the analyser reported that the estimated cost
values significantly differ from the actual cost to execute and suggested to run optimizedb on the
database. This was affirmed in the table section of the report that stated that none of the NREF
tables had statistics. In addition, all of the six tables had a high number of overflow pages and
the analyser recommended to modify them to B-Tree. In total, the analyser recommended 12
secondary indexes on the database and estimated an overall performance win of only 1% and an
average win per statement of 38% – which is only reflecting the ratio between estimated costs
with and without the recommended indexes and not taking into account other changes such as
the creation of statistics. Figure 6.5 shows the cost diagram of the ten most expensive queries
of this workload.

Figure 6.5: Analyser Tests - Cost Diagram
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While some of the queries show a high performance win many also are expected to stay the
same, i.e. will not benefit from new indexes.
To test the usefulness of the analyser all the recommended changes where implemented – all
tables where modified to B-Tree, the 12 recommended indexes were created and optimizedb
was executed.

Results

Figure 6.6 shows the results observed in this experiment. The manual optimisation of the NREF
database grew the size of the data files from 33 to 65 gigabytes while the time to execute the
query set was reduced to 4955 seconds which is a performance win of about 66%. The rec-
ommended changes of the analyser grew the size to 53 gigabytes, saving 12 gigabytes over
the manual optimisation with 33 indexes. The execution time was cut down to 5130 seconds
which is about 3% more than with the manual optimisation (without taking the overhead of the
monitoring into account) and corresponds to an overall performance win of 61% for the given
workload.

Original Design Analyser
Run # Non-optimised Optimised Non-optimised Optimised

1 8263 s 4954 s 8279 s 5139 s
2 8256 s 4957 s 8290 s 5125 s
3 8240 s 4954 s 8278 s 5126 s

Average 8253 s 4955 s 8282 s 5130 s

Figure 6.6: Analyser Tests – Results

The analyser mainly concentrates on the level of reporting of aggregated data and the identifica-
tion of common causes for performance problems. It makes presumptions such as that an index
that was recommended many times is more useful than an index that has less recommendations.
This – as some of the other rules – is only true for certain situations. But still, the presented
results of the analyser can already help to identify bottlenecks and to solve performance prob-
lems that otherwise could have caused time-consuming work for the DBA. While the creation
of statistics and the modification of table structures to B-Tree can be considered to be standard
tuning tasks the identification of an optimal index set for a given workload requires in-depth
knowledge about the system. The DBA easily risks to create too many indexes that could even
slow down the system. The experiment could show that the analyser was able to recommend
useful changes to the physical database design with a performance win that was comparable
to the manual optimisation. The recommended index set was only half as big as the reference
index set saving disk space of over ten gigabytes. However, the estimates of the analyser were
far off its actual optimisation results.
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The previous chapters have shown a basic concept and an initial implementation of a system
that enhances Ingres with features for an autonomous database tuning. Chapter 6 has shown that
this experimental implementation is already capable of recommending a set of changes to the
physical database design that can significantly improve the overall performance of the system
for a given workload. However, the proposed concept is in many ways still very simple as it
currently concentrates mostly on the creation of indexes and leaves out partitions as a possible
performance factor. The analysis also ignores dependencies between the various factors risking
to recommend conflicting changes. This chapter will discuss possible improvements and addi-
tions to the four steps of monitoring the data in the core, collection the data in the workload db,
analysing the workload and then presenting recommendations to the DBA.

7.1. Monitoring

As seen in chapter 6, the monitoring code performs well for queries that need several seconds to
execute but with a high number of queries per second the overhead starts to lower the throughput
of the DBMS noticeably. An improvement to the monitoring code could be the implementation
of a keyed or indexed storage of the logged database objects and statements to avoid the cur-
rently used serial search within the structures (see figure 5.5). Ingres offers methods to create
hash maps which could be evaluated for the use in SCM. This way, a lookup of a statement or
an object could be done efficiently and could save a significant part of the overhead.
The monitoring itself needs to be expanded to include more information about the DBMS and
the workload. For example, the current implementation does not include information about ta-
ble partitioning. The analyser does not know if a table is partitioned or not and therefore cannot
make recommendations about this physical structure. For this to add, more research is needed
to understand how Ingres handles partitions and when it benefits from partitioned tables.
Although secondary indexes are already included, the monitor does not yet support multi-
column indexes that span more than one attribute. Those indexes are in fact handled (and
logged) as one-column indexes at the moment which could result in wrong design decisions
later on.
Another valuable improvement for the monitoring would be the logging of query execution
plans. Based on the currently available data, the analyser can only tell the DBA that there are
expensive queries but not why. With the QEP being logged, the system could scan each tree
node for the most expensive actions (sorts, joins, etc) and could give targeted recommendations
to specific parts of a statement.
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7.2. Data Collection

The overhead of the data collection part of the monitor daemon is not believed to be critical.
The tool runs as its own process and doesn’t add its overhead to the actual query processing.
However, storing the data on disk can slow down the system noticeably – first, when a very
large number of statements and objects need to be written to the workload DB but also when
the user runs disk intensive queries where the monitor daemon disturbs the disk operation. This
effect could be mitigated by moving the workload DB to a physically separate disk but it is also
believed that the actual code to store the data could be improved to be more efficient.
Instead of having the montor daemon to be a stand-alone tool, it could also be included in the
DBMS core, merged with the monitoring code. It needs to be evaluated what resources can be
saved with this option and how it performs over the separated model.

7.3. Analysis

The analyser presented in this work is indented to be a proof-of-concept, showing a possible
way to process and present the data in the workload DB. For a valuable advisor tool, it needs a
more sophisticated approach of data analysis. Similar to [ZRL+04], the analyser needs to define
dependencies not only between the various physical structures but between all its recommen-
dations. Currently, all recommendations are based on a single and local decision. There is no
search for reasonable recommendations but only plain execution of rules. With a dependency
graph the analyser could actually search for an optimal set of recommendations that would fit
better to the given workload. As mentioned before, the analyser also needs to include table par-
titioning and multi-column indexes to benefit from all available physical structures in Ingres.
Currently, the analyser can only report estimated performance wins based on the creation of
virtual indexes. The experiment in section 6.3.2 has shown that these figures can be far off the
real win. In this case the win was expected to be only at 1% while it was actually at over 60%
– the DBA would probably never implemented the changes with such a low estimate. Even
worse, the estimate could be high but the changes could even slow down the system. The anal-
yser doesn’t take into account storage structures or table statistics that can greatly influence the
system performance. But it also ignores the costs of changes in form of time and disk space re-
quirements. All recommended changes need to be connected to cost and win values so that the
DBA can decide whether implementing the change is beneficial or not. It needs to be evaluated
what costs and wins can be taken from the internal optimiser and what needs to be provided by
an external cost model.
The current implementation of the analyser only processes selects and discards other statements
types, however, the Ingres optimiser doesn’t differentiate between access paths for selects or
updates and deletes. It is believed that the analyser can easily be changed to include other state-
ment types as well.
A design decision for the proposed concept was to monitor a real workload to allow an accurate
analysis but the DBA could also wish to analyse a theoretical workload so that expanding the
analyser with an import interface would be useful. This way, the DBA could prepare the sys-
tem for a future workload. However, static statements with no real cost values attached cannot
benefit from all of the analyser rules and the recommended changes may not as good as for a
real workload.
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7.4. Presentation

The report of the analyser in its current form is only a list of information and recommendations
put on a plain HTML page. The report needs to become more user-friendly in terms of clarity
and navigation. While creating the report as HTML has advantages such as its platform inde-
pendence and availablility over the network, the report could also be presented by a graphical
desktop application that would even allow interaction with the system such as the automatic
implementation of recommended changes.
The diagrams that are currently shown in the report need to be interpreted by the DBA. The
report could include written explanations and even interpretations of the values seen in the di-
agrams. These could range from simple observations such as a reached limit or threshold to
more predictive statements that warn of possible problems in the future.
A next step could then be the autonomous implementation of changes without interaction of
the DBA. For this to achieve, more efficient ways of creating physical structures are needed to
allow creating them online while the system is in normal operation without slowing down or
even blocking user traffic.
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Studies such as [Hab03] or [IDC07] state that today the smallest fraction of overall costs to
operate an IT system are costs for software and hardware. The by far biggest fraction is the
cost of personnel using and maintaining the system. Therefore, a selling point of growing
importance is the ability of software to keep the effort of maintenance as low as possible to
minimise the required amount of human work. Following the concept of autonomic computing
([KC03]), software systems become more and more self-sustaining and independent of human
intervention. Especially in the area of relational database management systems the topic of
self-management and self-optimisation is an area of high interest because of the ever growing
complexity of these systems. Not only the number of features, settings and possibilities to tune
a DBMS is increasing but also the data volume and logical design of databases is becoming big-
ger and more complex. Database administrators are faced with automatically created database
schemes where the implementation of an optimal configuration is no longer a trivial task. At
the same time, even the amount of data in end-user and desktop applications is reaching a point
where more and more software developers decide to embed a DBMS into their application.
These hidden systems need to maintain themselves as they would become slower over time
when the initial configuration no longer suits.
This work has provided background knowledge of factors that influence the performance of a
DBMS such as the physical structures of secondary indexes or partitions but also configuration
settings of the system. It has also shown performance indicators that can be used by the DBA to
identify problems. The principles of the autonomous tuning of databases were then presented as
a solution to support or even replace the DBA by monitoring the same indicators and applying
changes to the system automatically.
Together with a list of past and ongoing research in the area of autonomous database tuning this
work has discussed and tested the implementation of tuning features in a selection of modern
commercial DBMS.
The work has then presented a concept for an autonomous tuning in the relational database
management system Ingres that had not yet the features of monitoring, collecting and analysing
data to improve the performance of the system. For an evaluation, the proposed concept was
implemented in Ingres by expanding the DBMS core to monitor the workload on the system.
The continuous data collection is done through a monitoring daemon that is reading the data
from the DBMS and persistently storing it in a workload database. The third part of the im-
plementation is an analyser that is scanning the collected data to find possible performance
improvements but also to present reports on the current and past system state that should allow
problem prediction.
The experiments in this work could show that the overhead added by the monitoring is negli-
gible for complex queries that take several seconds or more to execute. The impact becomes
visible for subsecond queries where – at over 1000 queries per second – the throughput was
lowered by about 17%.
To test the usefulness of the concept the analyser was executed on a workload to see if the
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recommended changes could actually improve the performance of the system. The experiment
could show that the analyser results in a performance win that is comparable to a manual opti-
misation while using less disk space.
Throughout the work it was noted that the presented implementation and the concept of the
analyser are still experimental and should be considered as a proof-of-concept rather than ready
for production use. Possible ways to improve the existing concept were presented as well as
auto-tuning features that can be built upon the concept.
It is believed that implementing this concept to Ingres is of great value for the DBMS not only to
keep up with other modern systems but also to pave the way for ongoing research that eventually
leads to an autonomic relational system.
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1 typedef struct _SCM
2 {
3 SCM STATEMENT *statements[MAXMONITOR];
4 i4 cur_stm_idx;
5 SCM WORKLOAD *workload[MAXWORKLOAD];
6 i4 cur_wkl_idx;
7 SCM TABLE *tables[MAXMONITOR];
8 i4 cur_tab_idx;
9 SCM ATTRIBUTE *attributes[MAXMONITOR];

10 i4 cur_atr_idx;
11 SCM INDEX *indexes[MAXMONITOR];
12 i4 cur_idx_idx;
13 SCM REFERENCE *references[MAXMONITOR*2];
14 i4 cur_ref_idx;
15 SCM STATISTICS *statistics[MAXMONITOR/2];
16 i4 cur_sts_idx;
17 } SCM;

Figure A.1: SCM (scm.h)

1 typedef struct _SCM_STATEMENT
2 {
3 char database[DB_MAXNAME];
4 u_i4 query_key;
5 char query_text[MAXQUERYLEN];
6 u_i4 frequency;
7 i4 time;
8 } SCM STATEMENT;

Figure A.2: SCM STATEMENT (scm.h)
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1 typedef struct _SCM_WORKLOAD
2 {
3 char database[DB_MAXNAME];
4 i4 idx;
5 u_i4 query_key;
6 u_i4 opf_cpu;
7 u_i4 opf_dio;
8 u_i4 qef_cpu;
9 u_i4 qef_dio;

10 u_i4 est_cpu;
11 u_i4 est_dio;
12 u_i4 pages_touched;
13 i4 time;
14 i4 wctime;
15 } SCM WORKLOAD;

Figure A.3: SCM WORKLOAD (scm.h)

1 typedef struct _SCM_TABLE
2 {
3 char database[DB_MAXNAME];
4 i4 table_id;
5 char name[DB_MAXNAME];
6 u_i4 frequency;
7 u_i4 est_cpu;
8 u_i4 act_cpu;
9 u_i4 est_dio;

10 u_i4 act_dio;
11 u_i4 est_tup;
12 u_i4 act_tup;
13 i4 structure;
14 u_i4 data_pages;
15 u_i4 overflow_pages;
16 i4 time;
17 } SCM TABLE;

Figure A.4: SCM TABLE (scm.h)

1 typedef struct _SCM_ATTRIBUTE
2 {
3 char database[DB_MAXNAME];
4 i4 attribute_id;
5 char name[DB_MAXNAME];
6 i4 table_id;
7 u_i4 frequency;
8 i4 statistics;
9 i4 time;

10 } SCM ATTRIBUTE;

Figure A.5: SCM ATTRIBUTE (scm.h)
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1 typedef struct _SCM_INDEX
2 {
3 char database[DB_MAXNAME];
4 i4 index_id;
5 char name[DB_MAXNAME];
6 i4 table_id;
7 i4 attribute_id;
8 u_i4 frequency;
9 i4 structure;

10 u_i4 data_pages;
11 u_i4 overflow_pages;
12 i4 time;
13 } SCM INDEX;

Figure A.6: SCM INDEX (scm.h)

1 typedef struct _SCM_REFERENCE
2 {
3 char database[DB_MAXNAME];
4 u_i4 query_key;
5
6 #define SCM_TYPE_TABLE 0
7 #define SCM_TYPE_ATTR 1
8 #define SCM_TYPE_INDEX 2
9

10 i4 object_type;
11 i4 object_id;
12 i4 table_id;
13 i4 time;
14 } SCM REFERENCE;

Figure A.7: SCM REFERENCE (scm.h)

1 typedef struct _SCM_ANALYZE
2 {
3 u_i4 cpu;
4 u_i4 dio;
5 u_i4 pages_touched;
6 char vindexes[MAXQUERYLEN];
7 } SCM ANALYZE;

Figure A.8: SCM ANALYZE (scm.h)
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B. Debugging Ingres

Query Execution Plans

QEPs can be visualised in Ingres via the command line terminal monitor or the Windows tool
Visual DBA. On the command line a QEP is printed when executing the command

set qep
The QEP will show how Ingres decided to join tables together, what indexes will be used and
what the estimated costs and cardinalities are. A QEP can help to identify problems with long-
running queries. An explanation of how to interpret a QEP can be found in [Cora].

Stop Before Execution

For the examination of the QEP the result of the query may not be of interest. In such a case the
actual execution of the query can be left out by executing

set optimizeonly

Trace Points

Trace points are used in Ingres for debugging purposes. Setting a trace point during runtime
of the DBMS triggers the execution of code that wouldn’t be executed otherwise. Trace points
are primarily used for debug output but some of the existing trace points can also change the
behaviour of the system. A trace point is activated by the command

set trace point IDENTIFIER
where IDENTIFIER is the name of the trace point. Trace points are not supported by Ingres
and therefore not documented at all – neither their names nor the meaning of their output. What
trace points exist may only be found out by searching the internet or looking at the code directly.
Trace points used in this work are explained where needed.

Trace File

Most of the debug output of the DBMS is sent to a local file when the trace file directive has
been set. With the command

set trace output ’/path/to/file’
Ingres will create the file and fill it with debug information coming e.g. from trace points.
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Thesen

1. Die stetig ansteigende Komplexität von Datenbank Management Systemen führt dazu,
dass eine manuelle Wartung dieser Systeme zu einer wachsenden Herausforderung für
Administratoren wird.

2. Ein Großteil der aufzubringenden Zeit wird für die Überwachung des Systems benötigt.

3. Der DBA hat selten die Möglichkeit die Anfragen an die Datenbank zu ändern und ist
stattdessen auf das physische Datenbankdesign begrenzt.

4. Durch das Konzept des Autonomous Tuning wird das DBMS selbstständiger und übernimmt
Aufgaben, die der DBA zuvor manuell durchführen musste.

5. Auto-Tuning basiert auf den Schritten der Überwachung, dem Sammeln und der Analyse
von Daten. Analyseergebnisse werden entweder automatisch angewandt oder dem DBA
präsentiert.

6. Die Erweiterung des Datenbank Management Systems Ingres um Fähigkeiten des Auto-
Tunings ermöglicht DBAs eine effizientere Administration ihres DBMS.

7. Mit dem Ingres Design Analyser wird das Anfrageverhalten an eine Datenbank aufgeze-
ichnet und zusammen mit Systemstatistiken über einen längeren Zeitraum gespeichert.

8. Eine aktive Überwachung der Daten ermöglicht die Alarmierung des DBAs im Falle einer
akuten Problemsituation.

9. Die manuell gestartete Analyse der aufgezeichneten Daten erkennt automatisch Probleme
und findet Lösungsmöglichkeiten.

10. Mit hypthetischen physischen Strukturen kann der interne Optimierer des DBMS genutzt
werden, um potentielle Verbesserungen auf ihre Wirksamkeit zu testen.

11. Änderungsvorschläge werden dem DBA visuell und textuell präsentiert. Er entscheidet,
welche Änderungen vorgenommen werden.

12. Mit effizienten Analyseverfahren kann die Problemerkennung und Lösungsfindung auch
automatisch während des Betriebs geschehen. Das System kann Änderungen dann selb-
stständig anwenden und dem DBA diese Arbeit abnehmen.

Ilmenau, den 04. September 2008

Alexander Thiem
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