
Institut für Informatik der

Friedrich-Schiller-Universität Jena

Automatic Generation

of Semantic Mashups

in Web Portals

Diplomarbeit

zur Erlangung des akademischen Grades

Diplom-Wirtschaftsinformatiker

vorgelegt von

Thomas Fischer

betreut von

Prof. Dr. Birgitta König-Ries Friedrich-Schiller-Universität Jena

Prof. Dr. Martin Welsch IBM Deutschland Research & Development GmbH

Fedor Bakalov Friedrich-Schiller-Universität Jena

Andreas Nauerz IBM Deutschland Research & Development GmbH

30. Oktober 2008

Department of Computer Science at

Friedrich-Schiller-University Jena

Automatic Generation

of Semantic Mashups

in Web Portals

Diploma Thesis

submitted for the degree of

Diplom-Wirtschaftsinformatiker

submitted by

Thomas Fischer

supervised by

Prof. Dr. Birgitta König-Ries Friedrich-Schiller-University Jena

Prof. Dr. Martin Welsch IBM Deutschland Research & Development GmbH

Fedor Bakalov Friedrich-Schiller-University Jena

Andreas Nauerz IBM Deutschland Research & Development GmbH

October 30, 2008

Abstract

The Web has become an important source for information, which are created by inde-

pendent providers. Web portals provide an unified point of access to content, data,

services and web applications located throughout the enterprise. However, Web users

have often only an insufficient available amount of time, to effectively use the available

information resources. This thesis proposes a mashup framework that automatically

mashes-up web portal content with related background information. The background

information are derived from information web services that are composed by an evo-

lutionary algorithm.

Author’s Statement

I hereby certify that I have prepared this diploma thesis independently, and that only

those sources, aids and advisors that are duly noted herein have been used and / or

consulted.

October 30, 2008 Thomas Fischer

Acknowledgements

I would like to thank all who have supported me in writing this thesis. Foremost, I

would like to thank my supervisors Prof. Dr. Birgitta König-Ries, Prof. Dr. Martin Welsch,

Fedor Bakalov and Andreas Nauerz, who enabled this thesis and shared with me a lot

of their expertise. Furthermore, I would like to thank my supervisors that they were

always available for me in order to help me and guide me in my research.

Special thanks go also to my family that have supported me throughout the entire pro-

cess.

x

Contents

1 Introduction 1

1.1 Characterization of the Problem Area . 1

1.2 Project Context . 9

1.3 Aims and Objectives . 10

1.4 Document Organization . 11

2 Requirements Analysis 13

2.1 Domain Description . 13

2.2 General Requirements . 14

2.3 Framework Requirements . 25

2.4 Conclusion . 29

3 Related Work on Mashups and Mashup Frameworks 31

3.1 Mashup Patterns and Characteristics . 31

3.2 Mashup Frameworks . 39

3.3 Conclusion . 56

4 Theoretical Foundations 57

4.1 Knowledge Representation on the Web 58

4.2 Description Logics (DL) . 68

4.3 Web Services . 71

4.4 Semantic Web Services . 75

4.5 Semantic Web Service Composition . 89

4.6 Multi-Criteria Decision Theory . 93

4.7 Conclusion . 97

5 Mashup Framework Architecture 99

5.1 Framework Overview . 99

5.2 Semantic Service Description Language 101

xii Contents

5.3 Knowledge Base . 102

5.4 Mashup Handler . 105

5.5 Application Registry . 110

5.6 Web Service Composition Module . 110

5.7 The User Model . 112

5.8 Personalization Module . 112

5.9 Presentation Module . 113

5.10 Conclusion . 113

6 Planning of Information Gathering by an Evolutionary Algorithm 115

6.1 General Concepts . 116

6.2 Evolutionary Process . 120

6.3 Formal Problem Definition . 126

6.4 Calculation of the Objective Functions . 130

6.5 Description of Evolutionary Operators . 141

6.6 Conclusion . 153

7 Implementation 155

7.1 Used Software and APIs . 158

7.2 Planner Implementation . 159

7.3 Mashup Handler . 162

7.4 Web Service Registry . 163

7.5 Presentation Module . 165

7.6 Conclusion . 165

8 Evaluation 167

8.1 Evaluation Conditions . 167

8.2 Analysis of the Planning Module . 170

8.3 Analysis of the Execution Module . 184

8.4 Conclusion . 186

9 Summary and Future Work 189

References 190

List of Figures 205

List of Tables 207

CHAPTER 1

Introduction

In this thesis, a framework for the automatic generation of mashups is proposed. This

chapter describes the context of this proposal. First, the problem area of this thesis

is characterized in Section 1.1. Section 1.2 covers the project context. In Section 1.3,

the aims and objectives of this thesis are outlined, followed by a description of the

organization of this document in Section 1.4.

1.1 Characterization of the Problem Area

The World Wide Web has been designed to provide an open environment of informa-

tion for humans and machines [BL]. Tim Berners-Lee has created the first web site at

the European Organization for Nuclear Research (CERN)1. The popularity of the Web

has been increasing continuously, but the growing amount of distributed data leads to

a dilemma: ”. . . the more distributed and independently managed that resources on the Web
become, the greater is their potential value, but the harder it is to extract value” [SH05, p.7].

Zilberstein and Lesser [ZL96] state that the increasing number of information sources

as well as the different levels of accessibility, reliability, and associated costs of these

information sources present a complex planning problem of information gathering. In

this context, web users often have the subjective experience of an information over-

load. This means that they have only an insufficient available amount of time, to effec-

tively use available information resources [Sav07]. A mitigation of this problem could

be achieved through human high level filtering of information as well as active with-

drawal of information sources [Sav07]. However, this has turned out to be not a final

approach, because the human agents may unwittingly neglect important information.

This could lead to a decreased quality of the decision making process or task execution.

1http://info.cern.ch

http://info.cern.ch

2 Introduction

Moreover, the trade offs between time, quality, and cost as well as the dynamic nature

of the internet lead to the insight that the human user is not an appropriate controller of

the information gathering process [ZL96], and this motivates the utilization of machine

based processing of data and information.

The extraction of useful information from the Web is addressed by research on (Web)

Information Retrieval (IR). “Information retrieval (IR) deals with the representation, storage,
organization of, and access to information items” [BYRN99, p.1]. The present Web search

types of information retrieval are mainly algorithmic search engines like Google2 or

Yahoo3 as well as dictionaries [Lew05, p.24] [BYRN99, p.3]. However, search engines

and dictionaries are not able to satisfy all information needs of a human user. Search

engines are often queried multiple times by users to gather and aggregate all necessary

information. Reasons are summarized in a recent thesis by Lewandowski [Lew05, p.32-

37]. First, there is a lack of complex query language support as it is usual in information

retrieval. Second, most users are untrained. While the first prevents potential complex

investigations on a high level, the second leads to a marginal use of boolean query

operators and advanced search forms, which would support more complex queries.

Furthermore, while search engines are able to cover large amounts of web pages, they

lack sufficient support for a huge mass of structured data sources that are not directly

exposed on a web site [RTA07] [Hor07, p.120], the so called deep Web [MJC+07]. Even if

a web site provides the required data, it is often not in a form that supports the current

user needs. It seems to be clear that there is still a demand on approaches, technologies

and tools [WH07] that consider personalized and efficient extraction as well as aggre-

gation of distributed information.

This thesis is motivated by the research on so called mashups that have gained wide

popularity in the last few years. In general, they address the problem specific ag-

gregation of data from a wide variety of types of data sources. A famous example

of a mashup is Housingmaps4 by Georg Rademacher. It reuses housing data from

Craigslist5 and places it on a Google Map6. The combination of functionality and data

sources from different providers leads to a new service that treats a specific problem

domain. In fact, neither Google Maps nor the data from Craigslist was initially cre-

ated for this purpose. Further examples can be found in the mashup directory Pro-

grammableWeb7, which currently contains 3456 mashups. The creation of mashups

2http://www.google.de
3http://www.yahoo.com
4http://www.housingmaps.com
5http://www.craigslist.org/
6http://maps.google.com/
7http://www.programmableweb.com/

http://www.google.de
http://www.yahoo.com
http://www.housingmaps.com
http://www.craigslist.org/
http://maps.google.com/
http://www.programmableweb.com/

1.1 Characterization of the Problem Area 3

promises to reduce the information overflow, if these applications are directly per-

sonalized to the needs of the human user and address specific tasks or problems in

a holistic manner. Even if there were a wide variety of existing mashups, the changing

tasks, knowledge, and expertise of web users require a mass of mashups that can not

be served by a relatively small set of developers. This motivates the creation of a frame-

work that automatically generates mashups.

The research on mashups has turned out a variety of mashup definitions. Merrill de-

fines mashups as web-applications that draw upon content retrieved from external data

sources to create an entirely new innovative service [Mer] (similarly [TSK08], [BN08]).

In addition, Nan Zang et al. define mashups as a coalescence of different data sources

and application programming interfaces (APIs) into an integrated experience [ZRN08,

p.3172]. While the first definition outlines the importance of content aggregation, the

second also considers aggregation of functionality. Wong et al. state that mashups

combine existing web based content and services to create new applications [WH07,

p.1435]. The importance of services is also outlined by Ankolekar et al. that describe

mashups as services from different sites that are pulled together in order to experience

data in a novel and enhanced way [AKTV07, p. 825]. This is similarly stated by Thor

et al. [RTA07] and Lathem et al. [LGS07]. In addition, Frederik De Keukelaere et al.

define mashups as applications that mix and merge content coming from different con-

tent providers in the browser [KBS+08].

In general, the definitions provide a consensus over the integration and aggregation of

different resources in mashups, while differences arise mostly from the types of con-

sidered resources. This is in accordance to Hoyer and Fischer [HF08] who provide an

overview about different definitions as well as different mashup frameworks. Func-

tionality and presentation integration is also a topic of some definitions, but there is

no clear mashup reference model. Unlike many other web technologies, mashups are

not standardised. Instead, mashup development has been furthered by thousands of

different developers.

Services are seen as important technology that serve the creation of mashups. This the-

sis distinguishes them, due to their different meanings in different research fields. A

service is defined as a “product of human, organizational, or computational activity meant
to satisfy a need, but not constituting an item of goods” [SH05, p.520]. A web service is a

special service that is defined as “functionality that could be engaged over the Web” [SH05,

p.520].

The current development of mashups can be done manual or semi-automatic with the

aid of tools. This thesis proposes a mashup framework for automatic generation of

mashups. Therefore, Chapter 3 characterizes and discusses different patterns and lim-

4 Introduction

itations of the existing mashup frameworks to describe the need for an automatic gen-

eration of mashups.

The next sections provide an overview about different research fields that are important

for this thesis. Section 1.1.1 describes the principles of the Web 2.0 as well as the Seman-

tic Web and outlines their relations to mashups. Section 1.1.2 describes the importance

of knowledge representation and ontologies for this thesis. In Section 1.1.3, the princi-

ples of software agents are characterized. Section 1.1.4 describes the fundamentals of

adaptive systems.

1.1.1 Web 2.0 and Semantic Web

Mashups are a principle of the Web 2.0 vision. The Web 2.0 is seen as a platform

that utilizes collective intelligence through collaboration, focuses on the importance

of data, drives the development process of applications towards the end-user, exerts

light weight programming models, and provides rich visualizations to the user [O’R].

Ankolekar et al. state that the Web 2.0 should adopt the rich technical infrastructure of

the so called Semantic Web, to exchange information across independent applications

[AKTV07].

The Semantic Web, described by Berners-Lee et al. [BLHL01], is a vision that focuses

on the extension of the current Web by machine readable and “understandable” meta

data. This is important, because the current web sites are designed for human con-

sumption. However, machines need access to structured collections of information and

inference rules that they could utilize to perform an automated reasoning. The meta

data refers to simple statements like “a car is a special transport vehicle” and should

be formalized in a machine processable way. The vocabulary terms of the statements

are typically derived from one or more ontologies, which are a conceptualization of the

domain of discourse [Gru93]. In general, this leads to a shared understanding of the

contents of the statements. Therefore, meta data is important to achieve a Web that

enables an easier cooperation between machines and humans [BLHL01]. In fact, since

mashups retrieve data from independent data sources, the Semantic Web seems to be

important to achieve a uniform understanding and formal description of data across

application boundaries and data providers.

The Semantic Web vision adopts important concepts and research topics such as knowl-

edge representation, ontologies as well as agents [BLHL01], which are considered be-

low in more detail.

1.1 Characterization of the Problem Area 5

1.1.2 Knowledge Representation and Ontologies

Knowledge representation and ontologies are important for mashups, because mashups

combine data from disparate sources that can be only combined by a shared under-

standing of the meaning of the data. The semantic description (meaningful to a ma-

chine) of Web data has been driven by the research community through the creation

of different standards, for instance, the Resource Description Framework (RDF) [KC],

the Resource Description Framework Schema RDF(S) [BR] and the Web Ontology Lan-

guage (OWL) [BvHH+]. These approaches provide a formal way to specify shared

vocabularies that can be used in statements about resources. Furthermore, they uti-

lize a syntax based on the Extensible Markup Language (XML) [BPSM+] and thus can

be effectively processed by machines. The approaches are explained in more detail in

Chapter 4.

The opportunities of combining the potentials of the Web 2.0 and the Semantic Web

drive increasingly the interest in development and utilization of ontologies [AKTV07].

The research community has defined the term ontology in different ways. The most

prominent definition was given by Gruber [Gru93], who specified an ontology as ”an
explicit specification of a conceptualization“. Conceptualizations can be shared among

agents. Therefore, the definition has been extended [CFLGP03, p.43] by Borst [Bor97,

p.12]: ”Ontologies are defined as a formal specification of a shared conceptualization“. Later,

Stuber et al. explained this definition in detail [RS98, p.25]8. The research commu-

nity has turned out further definitions of the term ontology (e.g. Guarino [Gua95],

Uschold and Jasper[UJ99], Bernaras et al. [AB96]). This thesis refers to the definition of

Borst[Bor97, p.12], which has been mentioned above.

It is important to note that an ontology distinguishes a priori the entities of the world

(material or immaterial objects, events, quantities etc.) which are modeled through

meta elements such as concepts and properties. Agents have to commit to this shared

conceptualization (“view” of the world) to achieve a shared model of the world.

Conceptualizations can be denoted as taxonomy or ontology. Each has a different con-

ceptualization quality. A taxonomy provides simply a hierarchy of concepts. This

means that it typically provides relationships like generalization and specialization.

8”A ’conceptualisation’ refers to an abstract model of some phenomenon in the world by having identified the
relevant concepts of that phenomenon. ’Explicit’ means that the type of concepts used, and the constraints on
their use are explicitly defined. For example, in medical domains, the concepts are diseases and symptoms, the
relations between them are causal and a constraint is that a disease cannot cause itself. ’Formal’ refers to the
fact that the ontology should be machine readable, which excludes natural language. ’Shared’ reflects the notion
that an ontology captures consensual knowledge, that is, it is not private to some individual, but accepted by a
group.”.[RS98, p.25]

6 Introduction

This is also part of an ontology, which itself can be more expressive through the defini-

tion of additional specifications, such as additional relationships between concepts or

restrictions on properties.

In accordance to the above explanations, a shared conceptualization seems to be im-

portant to achieve a shared understanding of the world within a mashup application.

Therefore, they are described in detail in Chapter 4.

1.1.3 Agents

Tim Berners-Lee figured out the importance of agents in the Semantic Web. Such agents

collect content from different data sources, process the information and share the results

with other ones [BLHL01]. In accordance to Russel and Norvig an agent is defined as

“anything that can be viewed as perceiving its environment through sensors and acting upon
that environment through actuators” [RN03, p.32]. Thus, an agent can be a human as well

as a software agent. However, if not stated otherwise, this thesis refers to agents as

software agents.

In the context of this thesis, a mashup agent would receive percepts from a sensor that

monitors user interests, expertise as well as other environmental data to adapt the in-

formation gathering process and to provide personalized information and functional-

ity. For instance, a changing user interest could result in the invocation of different web

services as well as a change of the user interface of the mashup application. The outside

Figure 1.1: Mashup Agents interact with environments through sensors and actuators

(adapted from [RN03, p.33])

visible behaviour of an agent is described by an agent function, which is implemented

by an agent program[RN03, p.32]. The agent program processes the inputs of the sen-

sors and returns the results.

Important to any agent is the concept of rationality. “A rational agent is one that does
the right thing” [RN03, p.34]. This means not that the agent is omniscient or perfect.

Rather, it means that the agent maximizes the expected performance of its actions. In

1.1 Characterization of the Problem Area 7

contrast, perfection would mean to maximize the actual performance [RN03, p.37].

This is clarified in the following simple example. The question is whether or not to

take an umbrella along today, if there is an 90% raining probability reported by the

wheather station. The software agent recommends to take the umbrella, which seems

to be straightforward. However, even if no rain falls, the decision of the agent is not

irrational. Instead, a perfect agent would have known that it will not rain today and

thus would not have recommended an umbrella. Unfortunately, it is not possible to

create such a perfect agent.

According to Russel and Norvig, a rational agent can be defined as follows:“For each
possible percept sequence, a rational agent should select an action that is expected to maximize
its performance measure, given the evidence provided by the percept sequence and whatever
built-in knowledge the agent has” [RN03, p.36]. This means that a mashup agent displays

those information and functionality that is expected to maximize the support of the

human agent and that is expected to have the highest utility for the human agent in

dependence on the modeled formal goals of the software agent. Agents often operate

in an informed way and therefore evaluate its present state by an evaluation function,

which considers the preferences of the human agent. Such decision theoretic aspects

are considered in Chapter 4.

The complexity of the agent program depends on the environment the agent is acting

in. For instance, the agent of the umbrella example has to adhere to the stochastic na-

ture. The environment can be specified along different dimensions (in accordance with

Russel and Norvig [RN03, p.41-42]). Mashup agents are acting in a partially observ-

able, stochastic, dynamic and distributed environment. The environment is based on

the resources of the entire available internet as well as the unity of users which interact

with the agent. The state of the internet as well as the user interests and preferences

can be only partially observed. In addition, the behaviour is not determinable in ad-

vance and thus stochastic. Furthermore, the environment changes dynamically during

the execution of the software agent program (e.g. web services become available or

unavailable). In addition, the data sources as well as functionality that should be ag-

gregated are distributed over the internet. This complexity of the environment has to

be taken into consideration in the development of a mashup framework, because it in-

fluences the approaches and implementation of the agent program.

Agents can act in single-agent or multi-agent environments. In multi-agent environ-

ments they may interact in competitive or cooperative manner. Due to this, mashups

could in principle proactively reuse mashed-up data from other mashup agents to sup-

port the users cooperatively.

Proactive behavior of agents is achieved by the definition of goals that have to be

8 Introduction

achieved by an agent through the execution of a corresponding plan [vRDW08, p.713].

The research mainly distinguishes between declarative and procedural goals [vRDW08,

p.713]. Declarative goals represent an intended state, which would correspond to the

goals of a mashup agent that gathers information to achieve some defined information

state. In contrast, procedural goals represent the aim of execution of some desired ac-

tion. Such an action could be buying a book or selling an item. The research community

has developed several approaches for agent based planning, which are considered in

Chapter 4.

The previous explanations on agents have outlined some important concepts. They are

clarified in subsequent chapters of this thesis that consider special aspects of agents in

the context of mashups.

1.1.4 Adaptive Hypermedia

The information needs and tasks of users are different and change dynamically. Hence,

personalization is important to mashups. This is currently not reflected in most mashup

definitions, because mashups per se are related to a specific domain of discourse. Nev-

ertheless, this thesis considers mashups as parts of complex adaptive systems that en-

able an automated personalization of the contents and functionality that are provided

to the user.

One important feature of any adaptive system is the user model, which is important to

achieve the adaption effect among the different users [BKN07]. Adaption in Web-based

systems includes adaptive navigation, adaptive search, adaptive recommendation as

well as adaptive contents and presentation [BKN07, p.409]. In fact, adaptive contents,

functionality, and presentation, which address the preferences of a human user, are im-

portant to mashups. In this context, the user model could contain information about

the knowledge or expertise of a user, his long term and short term interests, goals, and

tasks as well as data about the current environment or background of the user [BKN07,

p.1-12]. This promises to allow the adaptive mashup to model the information gather-

ing process as well as provided functionality differently among the users to reduce the

information overflow.

1.2 Project Context 9

1.2 Project Context

This thesis is part of the Minerva Portals9 project, which is a joint effort of the Institute

of Computer Science10 at the University of Jena11 and the IBM Deutschland Research

& Development GmbH12 in Boeblingen. The goal of the project is to create context-

adaptive web portals, which are more intuitive, dynamic and flexible than the current

web portals.

An enterprise portal provides an unified point of access to content, data, services and

web applications located throughout the enterprise. In addition, it enables collabora-

tion between human users as well as support for business processes. Unfortunately,

the mass of enterprise wide information makes it increasingly difficult to find informa-

tion and pages quickly. The research on context-adaptive portals tries to overcome this

problem.

The project mainly focusses on context-awareness and adaptivity. Context-awareness

means that the portal can be efficiently adjusted to fit the user’s current situation. Adap-

tivity means that the portal learns the behavior of the user and his information needs

to provide a fast accessible personalized subset of information. This shall reduce the

information overflow and therefore increase the efficiency in information gathering.

Adaptive mashups can be one part of such a context-adaptive portal. They could sup-

port the user with relevant and related background information as well as functionality

while he is reading business or scientific texts. This promises to reduce the time for

search on relevant background information. Furthermore, the decision quality may be

increases through a better understanding and evaluation of specialised texts. In ad-

dition, the adaptive mashup could support recurrent tasks (e.g. travel planning) by

integrating relevant functionality from disparate providers.

9http://www.minerva-portals.de/
10http://www.informatik.uni-jena.de/
11http://www.uni-jena.de/
12http://www-05.ibm.com/de/entwicklung/

http://www.minerva-portals.de/
http://www.informatik.uni-jena.de/
http://www.uni-jena.de/
http://www-05.ibm.com/de/entwicklung/

10 Introduction

1.3 Aims and Objectives

This thesis proposes a mashup framework architecture that fully automatically creates

personalized mashups based on a variety of different information web services. The

information web services are automatically selected and composed to retrieve back-

ground information. The resulting mashup provides background information in rela-

tion to a specific provided content of a web portal. Thus, the focus lies on automatic

content integration from different independent web service providers, which could be

located throughout the internet or the enterprise.

It was aimed to create a prototype that automatically creates semantic mashups, which

are adapted to tasks, interests, expertise and information needs of users.

This thesis defines semantic mashups as applications that are created by a software

agent that retrieves and merges data, functionality, or presentation from distributed,

disparate, and independent providers and transforms it into a representation meaning-

ful to the agent.

Furthermore, it was aimed to investigate present patterns of mashups and mashup

frameworks as well as economical incentives for their creation. This was important to

outline the limitations of the present approaches as well as the advantages of an auto-

matic generation of semantic mashups.

Most of the present mashups are based on information web services that were selected

by human agents. Furthermore, the aggregation of data from different sources is mostly

achieved through a manual wired data flow. However, the increasing number of avail-

able web services requires an efficient automatic selection and composition of such

ones, which is not addressed by the current mashup development frameworks. It was

aimed to overcome this problem by the utilization of semantic web service descriptions

for an agent based selection and composition of information web services.

It was intended to provide an approach that completely describes the available infor-

mation by formal statements, which refer to terms of a shared vocabulary, such that the

mashup agent is able to automatically merge the information.

In the current development approaches, the user or developer of a mashup directly in-

corporates his preferences, interests, and tasks into the mashup. However, interests,

experience and tasks are changing over time. Therefore, the mashups should adapt au-

tomatically to avoid unnecessary manual reengineering. This thesis states that person-

alization through automatic adaptation is one of the key elements of a mashup frame-

work to avoid information overflow. This promises to be important to support the

changing tasks and information needs of human agents appropriately. Therefore, the

system aims to plan the information gathering based on the present goals of the user to

1.4 Document Organization 11

achieve personalized compositions of information web services.

1.4 Document Organization

This thesis is organized as follows. Chapter 2 describes requirements for this proposal.

Chapter 3 considers related work on mashups and mashup frameworks and investi-

gates their patterns and characteristics. The limitations of these approaches will lead

to the insight that the stated requirements could not be fulfilled by the existing sys-

tems. Therefore, this thesis proposes the automatic generation of mashups. Chapter 4

describes in detail the theoretical foundations of the proposed approach. In Chapter 5,

the architecture of the systems is described, which is based on the stated requirements

as well as the theoretical foundations.

The key part of this thesis is an evolutionary algorithm that creates a plan for the gath-

ering of background information from available web services, which can be invoked to

derive a comprehensive set of data. The algorithm addresses the needs for a scalable

and multi-objective preference based planning of web service composition and is de-

scribed in detail in Chapter 6.

Chapter 7 describes the implementation of the proposal. Chapter 8 investigates the fea-

sibility and scalability of the proposed framework in a quantitative evaluation before

Chapter 9 concludes the thesis with a summary and an outlook to possible extensions.

12 Introduction

CHAPTER 2

Requirements Analysis

This chapter describes and formalizes the requirements for an automatic generation of

mashups. Section 2.1 gives an overview about the considered domain of this thesis.

Section 2.2 describes the general requirements on the mashup framework. It inves-

tigates different functional prerequisites and describes use cases and examples in the

proposed domain. Furthermore, it describes also common non-functional requirements

that should be considered. In Section 2.3, the high level requirements are formalized

in a set of related framework requirements, which are important to achieve an appro-

priate architecture for the automatic generation of mashups. Section 2.4 concludes this

chapter with a short summary.

2.1 Domain Description

This thesis considers the domain of the financial sector. The financial sector represents

an environment which requires to have relevant information timely as a foundation

of decision making. Financial information are increasingly available over the internet.

However, it is often difficult to utilize all available information in the decision making,

because they are distributed over the Internet as well as the intranet of the financial

enterprises. The gathering, merging, and visualization of all required data is therefore

difficult to achieve. Especially in a competitive market like banking, poor informa-

tion could result in poor decisions that affect the business performance significantly

[KMP98].

The above stated problem relates to the problem of information overload that has been

described in Chapter 1. Furthermore, the required aggregation and visualization of

data from disparate providers is the central objective of mashups. Therefore, the fi-

nancial domain should be suitable to show the automatic aggregation and provision of

14 Requirements Analysis

background information through the automatic generation of mashups.

The proposed approach will be also transferable to other domains, which is explained

as follows. In general, decision making requires the incorporation of background in-

formation to increase the quality of the decision making process. This is important

for strategic and operational decision making. Especially for operational decisions, the

available amount of time for the gathering and aggregation is limited. Therefore, the

framework could in general provide background information for the support of oper-

ational decisions. For instance in the health-care domain, the framework can support

the mash-up of medical patient data with background information to different phar-

maceuticals, treatment plans etc.. Furthermore, the framework could also support the

mash-up of domain specific technical and scientific texts to support the understanding

of complex contents.

This section explained the domain of the proposal. The next section describes the gen-

eral requirements on an architecture for automatic generation of mashups.

2.2 General Requirements

This section describes general requirements that should be considered in the architec-

ture of the system. The first part describes different business use cases of the system.

Based on these use cases, the common functional requirements of the framework are

stated in the second part. The third part considers non-functional requirements and

states important information criteria that have to be considered to create mashups that

are compliant with local regulations, laws and intra-organizational guidelines. The

fourth part of this section investigates requirements that originate from the research

on Data Warehouses and Online Analytical Processing. Similar to mashups, these sys-

tems integrate and aggregate information of enterprises to support decisions. The re-

quirements on such systems can therefore be also important for the development of

mashups.

2.2.1 Business Use Case

This thesis considers companies of the financial sector to create a business use case for

the mashup framework prototype. An existing approach that utilizes Semantic Web

technologies in the financial domain could be found in Castells et al. [CFL+04]. The

financial sector represents an environment which requires to have relevant information

timely as a foundation of decision making. It is often difficult to utilize all available in-

2.2 General Requirements 15

formation in an investment decision, because the information are distributed over the

Internet. The gathering, merging and visualization of all required data is therefore diffi-

cult to achieve. Especially in a competitive market like banking, poor information could

result in poor decisions that affect the business performance significantly [KMP98]. It

is important to note that the proposed approach should not replace the existing infor-

mation infrastructure, but it should help to drive the information gathering process for

background information more efficiently. Therefore, the resulting mashups do not con-

tain any investment recommendations, as it is done in financial decision-support agent

systems (see [TG02], [DSS08]).

Investment companies must anticipate market trends and evolutions to make compet-

itive investment decisions. These decisions are based on detailed research activities of

the investment company. Amongst others the research scope is related to different com-

panies, markets or technologies based on various data sources, such as financial ratios,

expert opinions, news releases etc.. These resources are increasingly available through-

out the Internet and should be therefore utilized in automatic generated mashups.

Figure 2.1 reflects the business use cases of the mashup framework prototype. It con-

tains two actors (a portfolio manager and a research analyst) that have corresponding

tasks such as portfolio management or information research. The system should aug-

ment existing contents by background information to enable the actors to perform their

tasks more efficiently. Tasks such as traveling are common to both actors, whilst invest-

ment research and portfolio management are only related to one actor.

2.2.1.1 Use Case: Portfolio Management

This thesis will not explain in detail strategies and concepts of investment theory, be-

cause it would exceed its capacity. Moreover, the focus relies on information gathering

from distributed data sources with a special use case in the financial domain. The in-

terested reader could refer to Radcliffe [Rad97], Fischer and Jordan [FJ95] or Fabozzi

[Fab98] for an overview about investment management.

A portfolio investment process contains generally the plan, the implementation of the

plan and the evaluation of the plan. According to Radcliffe, the general planning pro-

cess of investment decisions could be described in the following way [Rad97].

Planning

1. Investor Conditions

2. Market Conditions

3. Investment / Speculative Policies

16 Requirements Analysis

Figure 2.1: Business Use Case

2.2 General Requirements 17

4. Statement of Investment Policy

5. Strategic Asset Allocation

Implementation

1. Internal-External Management

2. Security-Manager Selection

3. Tactical Asset Allocation

Monitoring

1. Evaluate Statement of Investment Policy

2. Evaluate Investment Performance

The mashup framework could support different phases of the portfolio investment pro-

cess. In the planning stage, the decision maker aims to achieve an clearly defined Strate-

gic Asset Allocation (SAA) that represents the optimal combination and weighting of

various asset classes [Rad97, p.742]. The human agent has to incorporate information

about the investors financial situation as well as the present capital market conditions

to achieve an optimal SAA. The typical required data includes a variety of business ra-

tios, news, trends and time series.

Mashups of WebSphere Portal can serve as agents that automatically retrieve and merge

corresponding data to avoid unnecessary search in the Web or intranet. For instance,

a portfolio manager reads an assessment about a specific market (e.g. real-estate) on a

web portal page. Assessments are often created by analysts. The mashup augments

specific products and terms of the text with background data to enable the portfolio

manager to quickly read and understand the content. This means that risk measures,

performance indicators as well as charts are displayed on the mashup in relation to the

provided content and the managed portfolios. Based on the expertise of the decision

maker in the specific market, the system filters out irrelevant information to avoid an

information overflow.

The data should be based on real-time information such as time series, news, etc., if this

is important for the specific decision. The resulting analytic mashup enables the port-

folio manager to discover impacts and cross-relations in the market more efficiently.

In addition, the mashup can also contain references to other portfolio managers or ex-

perts of this field to enable collaboration.

18 Requirements Analysis

2.2.1.2 Use Case: Travel Management

Employees often work at different clients during the week, and thus spend much time

for travel planning. This means that they have to search for hotels near the client,

railroad, or airplane connections in accordance to the meetings and personal prefer-

ences. Furthermore, meetings could change in time and location. Therefore, people

often spend much time to refine the plans.

Mashups can support the user with mappings that incorporate hotel, travel and client

information. Furthermore, the mashups can automatically examine the relevant meet-

ings from various sources (e.g. calendar) and suggest possible hotels near the meeting

locations as well as trips by plane, car or railroad. Due to the automatic generation of

the mashup, the presented mashup is adapted if the situation changes (e.g meetings are

declined)1.

2.2.1.3 Use Case: Information Research

Information research is very important to investment banking. The daily political, tech-

nological and company news have to be analyzed to assess the influence on controlled

securities and industries. Mashups can automatically extract relevant news for a given

watch list or portfolio. Furthermore, the news can be mashed-up with detailed infor-

mation about technologies, products etc. concerning the expertise of the specific user.

2.2.2 Functional Requirements

The use cases clarify the following functional requirements for the framework. In gen-

eral, the given contents of a web portal have to be augmented with background data

[Req. F1].
Information overflow has to be avoided. Therefore, the system has to consider the inter-

ests, expertise and tasks of users [Req. F2]. This means that the mashups are different

among the users and therefore the systems has to create the mashups in an adaptive

way.

Financial data is increasingly available through information web services (e.g. stock

market time series and business news). Furthermore, also intra-organizational infor-

1It seems to be important that the user should also be able to look at the mashups on mobile phones
to avoid unnecessary and time consuming starts of a laptop. This is not considered by the this the-
sis. However, it seems to be promising to generate the mashup presentation for different technical
environments, while retaining on the same semantic data.

2.2 General Requirements 19

mation web services should be considered. In addition, web service offer the provision

of real time information, which are very important for financial decisions. As explained

in Chapter 1, web services are seen as important building blocks of mashups. Therefore,

the system should incorporate the background information from available information

web services [Req. F3].
The requirement on an adaptive behaviour of the system leads to insight that the under-

lying set of available information web services has to be selected dynamically [Req. F4],
because the predefinition of the selection in dependence to the different contents of the

portal as well as interests, expertise and tasks of users is not suitable. In addition, the

systems has to dynamically plan the composition of the web services, because data from

one web service has often to be used as an input of another web service. For instance,

one web service retrieves the stock symbols of a company, which are required in a sub-

sequent web service that returns the time series for this symbol. This planning process

has to be done also in an automated manner [Req.F5] to let the users concentrate on the

real problem domain. Furthermore, the system has to consider the invocation of the

web services [Req. F6].
In Chapter 1 the importance of a shared understanding of the meaning of the data by

the system has been figured out. Therefore, the data of the mashup (background data)

has to be represented in a formal way to achieve automatic processing of the informa-

tion [Req. F7]. Moreover, as stated in Chapter 1, machines need access to structured

collections of information and inference rules that they could utilize to perform an au-

tomated reasoning and processing. Therefore, the system has to utilize semantic tech-

nologies to enable an dynamic and automatic processing of the data [Req. F7].

2.2.3 Non-Functional Requirements

Non-functional requirements are based on service quality oriented aspects as well as

intra-organizational guidelines. The “Control Objectives for Information and Related

Technology” framework (CobiT)2 relates company objectives to the information tech-

nology architecture. It is important to adhere, because it is used by many of the top

companies all over the world. The basic principle of CobiT is that “IT resources are man-
aged by IT processes to achieve IT goals that respond to the business requirements” [ITG08]

(Figure 2.2). CobiT defines workflows that help to ensure the processing of informa-

tion, the handling of information resources and the execution of business services in

accordance to the business objectives and regulatory compliance demands. This is nec-

2http://www.isaca.org/cobit

http://www.isaca.org/cobit

20 Requirements Analysis

essary to setup an effective IT risk management. The CobiT framework was developed

by the “Information Systems Audit and Control Association” (ISACA)3 and is currently

maintained by the IT Governance Institute (ITGI). It is integrated with other control

frameworks for enterprise governance and risk management (e.g COSO) to manage

the “associated risks, such as increasing regulatory compliance and critical dependence of many
business processes on information technology (IT)” [ITG08] as well as decision processes.

Mashup frameworks have to adhere to the controlling aspects of information technol-

ogy. In fact, controlling is important to understand and manage risks and to exploit ben-

efits. Since there is a trend towards end-user development, the traditional IT manage-

ment will be affected, because there is a mass of independent created mashup applica-

tions that have to be compliant with regulatory standards, laws and intra-organizational

guidelines. Furthermore, these applications are used immediately after their creation.

This complicates the controlling in a way that is not part of traditional applications that

are audited, documented and secured in advance to their productive usage. In fact, if

mashups become a significant part of the enterprise wide business processes, the secu-

rity and blackout risks of theses systems have to be controlled [Req. NF6]. Otherwise,

in an uncontrolled environment the neglect of risk assessment could lead to unwanted

impacts that affect the performance or strategical position of the enterprise. Therefore,

it is very important that mashups are based on a sounding framework that allows also

the evaluation of the decisions and the quality of the decision related data.

CobiT defines effectiveness4, efficiency5, confidentially6, integrity7, availability8, com-

pliance9 and reliability10 as important information criteria[ITG08]. As a consequence,

the enterprise mashup framework architecture should also consider these criteria and

requirements to control decisions based on enterprise mashups while considering the

overall business [Req. NF1].
For instance in the financial domain, the management should be able to consider the

3http://www.isaca.org
4“Effectiveness deals with information being relevant and pertinent to the business process as well as being delivered

in a timely, correct, consistent and usable manner” [ITG08].
5“Efficiency concerns the provision of information through the optimal (most productive and economical) use of

resources” [ITG08].
6“Confidentiality concerns the protection of sensitive information from unauthorized disclosure” [ITG08].
7“Integrity relates to the accuracy and completeness of information as well as to its validity in accordance with

business values and expectations” [ITG08].
8“Availability relates to information being available when required by the business process now and in the future.

It also concerns the safeguarding of necessary resources and associated capabilities” [ITG08].
9“Compliance deals with complying with the laws, regulations and contractual arrangements to which the business

process is subject, i.e., externally imposed business criteria as well as internal policies” [ITG08].
10“Reliability relates to the provision of appropriate information for management to operate the entity and exercise

its fiduciary and governance responsibilities. ” [ITG08].

http://www.isaca.org

2.2 General Requirements 21

reliability of mashup data in an investment decision, to evaluate the quality of deci-

sions. This is also in accordance with Lippner [Lip07, p.142], who stated that the online

market research in investment decisions has no laws, no quality control, no quality reg-

ulations as well as no quality standards.

Web services are a technology that should enable the creation of “contracts” between

service provider and service requester. Based on these, the compliance could be con-

trolled by the responsible management on the level of the web services. In general, this

assumes that utilization of compliant web services leads to compliant mashup appli-

cations. Thus, the architecture should consider multiple information criteria for web

services and compositions of web services for mashups [Req. NF1].

Figure 2.2: The CobiT Cube

As explained in the previous chapter, mashups remix and merge data and functionality

retrieved from disparate providers. In the context of enterprises, the integration and ag-

gregation of contents has been already addressed by the research on Data Warehouses.

The next part investigates, if requirements on theses systems could be transfered to the

domain of mashups.

2.2.4 Mashups versus Data Warehouses and Online Analytical Processing

In the context of enterprises the relevance of information gathering from different enter-

prise data sources is addressed by the research on Data Warehouses (DW) and Online

Analytical Processing (OLAP). Devlin and Murphy introduced the concept of a data

warehouse in 1988 [DM88]. A data warehouse integrates and aggregates data from

different sources of the enterprise to support tactical and strategic decisions [Lus01,

p.131]. In fact, this is indeed very similar to some definitions of mashups that has been

22 Requirements Analysis

described in Chapter 1. Apatar11 is a prominent provider of a combined data ware-

house mashup solution.

A data warehouse increases the provision of information for decision makers and shows

off relevant alternatives through the usage of WHAT-IF analyses, scenarios, simula-

tions, time series and business ratios [MB00, p.37]. A key characteristic of a DW is

the query intensity of the processing, instead of transactional intensity in traditional

databases. In contrast to DWs, production databases are operative and provide com-

plete details of all transactions. They are without redundancy, change intensive and

have a complex data model [Lus01, p.131].

Often central DWs are combined with Data Marts. The DW is responsible to gather

Figure 2.3: Data warehouses and Data Marts

and integrate the data. The aim of the Data Mart is to query and analyse a part of

the whole data [Lus01, p.138]. For instance, a Data Mart could be related to a specific

branch of the company. Data Marts achieve higher response times for a special subset

of the DW data [MB00, p.411].

The extract-to-load (ETL) process of the data is very complex and thus DWs need sig-

nificant upfront efforts to achieve a data integration of different data sources [FHM05]

[RTA07]. As stated above, mashups (and may be also DWs) should leverage the techni-

cal infrastructure of the Semantic Web, which promises to make the data retrieval and

integration more flexible than current approaches.

While data warehouses are more concerned about the back-end (e.g. handling and

storing of data, Online Analytical Processing (OLAP) is more front-end oriented and

addresses the human data access [MB00, p.403]. OLAP provides dynamic and multidi-

mensional analyses on historical and consolidated data, to enable fast and interactive

11http://www.apatar.com

http://www.apatar.com

2.2 General Requirements 23

access to consistent and decision relevant data [MB00, p.402] [Lus01, p.130-131]. Thus,

OLAP systems focus on the analysis of the data and are independent from the transac-

tion of the business process as it is the case in Online Transactional Processing Systems

(OLTP).

The previous explanations show that DWs, OLAP and mashups have to some extent

similar objectives. Mashups and DWs are created to aggregate data from different

sources to support users with relevant information in the decision making process. Of

course, mashups has emerged from the consumer side, whereas data warehouses are

mostly part of the enterprise. However, enterprise mashups penetrate the enterprise

market on a level that enables “all” employees of a company to efficiently merge and

aggregate problem relevant data. Thus, mashups are in competition to the data ware-

houses. DWs define an extract-to-load process that specifies from which data sources

the data is gathered and how the data should be integrated. The present mashup frame-

works, which are considered in detail in subsequent sections, also specify such a pro-

cess, which is often supported by a graphical user interface that allows an wiring of

different data sources.

However, the amount of aggregated data of DWs is much higher than in mashups,

because mashups only combine problem relevant and problem specific data, whereas

DWs tend to integrate huge sets of enterprise data over a long time. This is a important

difference of both approaches.

Mashups integrate different APIs to provide different functionality and views for the

data, for instance, in the form of mappings. However, if mashups should be part of

the enterprise wide decision processes, the means for analyzing data should mani-

fold. Since, OLAP provides fast access to problem specific data and enables multi-

dimensional analyses, it is interesting to investigate requirements on OLAP systems,

which could be a guideline for additional requirements for decision oriented enterprise

mashups.

In the following, this thesis investigates some requirements on OLAP system, based

on a investigation of Muksch and Behme [MB00, p.404-408]. An OLAP system should

provide [MB00, p.404-408]:

• multidimensional perspectives.

• transparency (user has not to concern about technical things).

• access on variety of different data sources.

• stable response times and report views

• a client/server architecture.

24 Requirements Analysis

• dynamic maintenance of sparse data matrices.

• multiuser capabilities.

• cross dimensional operations over dimensions.

• intuitive data manipulation such as slice and dice, drill down, roll up, filtering as

well as absolute and relative visualization.

• flexible reports.

• an possible infinite number of dimensions and aggregation steps of data.

Multidimensionality means that the system provides different business ratios (such as

sales, costs, earnings etc.) related to different business relevant dimensions (e.g. deb-

itor, article, region, company location etc.). This promise is also important to mashups

that support decision processes.

Transparency of the system seems to be also important to mashups, because human

agents should be able to concentrate on their real problem.

Access to a variety of different data sources and aggregation of data is a key character-

istic of OLAP systems as well as mashups and thus has to be considered.

Important to any OLAP system is that the response times are low to achieve an appro-

priate human machine dialog that not interrupts the flow of thoughts of the human.

This seems to be also relevant for mashups.

The requirement of a client/server architecture is naturally addressed by many mashups,

which are often exposed on a web site and thus support also multiuser capabilities.

Cross dimensional operations as well as slice and dice, drill down, roll up and filtering

of data are key elements of OLAP systems. This should be adhered, to provide as much

analysis flexibility as possible for the user. The reason is straightforward, aggregated

data seems to be not valuable, if it could not be manipulated and transformed for spe-

cific decision purposes supported by a flexible reporting.

The above explanations outlined that DWs, OLAP and mashups have to some extent

similar objectives. The ETL process of DWs needs significant upfront efforts. Therefore,

mashup frameworks should provide simple and efficient means for the selection of data

sources as well as the aggregation of the data [Req. F4][Req. F5]. Furthermore, many re-

quirements on OLAP systems seem to be also important to mashups. Table 2.1 outlines

important requirements for mashups, which result from the above investigation.

2.3 Framework Requirements 25

Table 2.1: Additional Requirements

Requirement Description

[Req. F9] multidimensional perspectives

[Req. F10] rich analyse capabilities and intuitive data manipulation

[Req. NF2] transparency to the user (no technical details)

[Req. NF4] stable response times and report views

2.3 Framework Requirements

A framework for automatic generation of mashups has to consider versatile require-

ments, to achieve an appropriate system architecture [VAC+05, p.32,p.92]. In the do-

main of information technology the software architecture of a system could be defined

as a description of the system structure as well as its software components and sub-

structures. On the other hand, architecture as a discipline considers tasks and decisions

that conceptualize and realize the software architecture [VAC+05, p.46-47]. Vogel et

al. distinguishes between functional and non-functional dimensions of requirements

[VAC+05, p.94-98] [FB98]. This section describes the architectural requirements of the

mashup framework. They are derived from the general requirements of the previous

section.

2.3.1 Functional Requirements of the Framework

The following functional requirements should be considered in the mashup framework.

The system should:

• [Req. F1] be able to augment data of existing portlets with user relevant back-

ground information.

• [Req. F2] incorporate user interests, tasks and experience to achieve an adaption

effect among the mashups.

• [Req. F3] support information web services.

• [Req. F4] should select information web services automatically, based on the user

needs.

• [Req. F5] should plan the information gathering without user interaction.

• [Req. F6] should invoke the plan dynamically to gather the background informa-

tion.

26 Requirements Analysis

• [Req. F7] use semantic technologies to enable processing and inference by the

software agent.

• [Req. F8] support multidimensional perspectives

• [Req. F9] support rich analyse capabilities and intuitive data manipulation

Chapter 1 explained that a key part of any adaptive system is the user model. Require-

ment [Req. F2] describes the need for an user sensitive adaption among the mashups.

However, the creation and update of a fully functional user model is not part of this

thesis. Therefore, the thesis will only specify different tasks according to the business

use case. The different tasks are responsible for the adaption effect. For a fully func-

tional system, the current active task has to be specified based on the information from

the user model.

2.3.2 Non-functional Requirements of the Framework

As explained in the previous section, the utilization of web services and compositions

of web services has to consider different information criteria [Req. NF1]. The following

list specifies the criteria that should be considered. This list of course not indisputable,

but it should be appropriate to show the incorporation of multiple user preferences

into web service compositions. This thesis concentrates on QoS aspects of web service

compositions [SH05].

The considered criteria for compositions of web services are [Req. NF1]:

• COMPLETENESS: Completeness of a composition of web services denotes to

which percentage the effects of the web services support the specified goal. In

this context, the goal is a formalization of the required background information.

It is aimed to maximize this objective to achieve maximum support for the user

(maximization goal).

• CORRECTNESS: Correctness of a composition of web services is related to the

capability to be invoked in a correct ordering, such that preconditions of all web

services of the plan are fulfilled. The correctness is measured by the percentage of

web services that could be invoked correctly. The percentage of correct invocable

services should be maximized (maximization goal)

• LENGTH: The length of the web service composition is measured by the count

of web services of a specific composition. It is aimed to have only necessary web

services in the composition. Thus, the plan length should be minimized (mini-

mization goal).

2.3 Framework Requirements 27

• AVAILABILITY : Availability denotes if the web services of the composition are

ready for immediate usage. For one web service the availability is measured by

its probability of immediate readiness. The availability of a web service compo-

sition is measured by the total probability prob(X1 = 1, . . . , Xn = 1), whereby

Xi denotes a web service of the composition that can be 0 or 1 (unavailable or

available).

• ACCESSIBILITY: Accessibility denotes capability to serve a specific request. It

is measured by the success rate derived from previous requests. The composi-

tion success rate is processes by the total success rate prob(X1 = 1, . . . , Xn = 1),

whereby Xi could be 0 or 1 (no success or success).

• INTEGRITY: Integrity is a quality aspect that denotes the correctness of the in-

teraction in respect to the source. The integrity is measured on a scale of 0 until

5. A value of five represents a high integrity value. The composition integrity is

measured as the minimum integrity of the web services of the composition.

• PERFORMANCE: Performance is measured by the throughput and latency. Through-

put represents the number of Web service requests served at a given time period.

The composition performance is measured as the average number of requests that

could be served.

• RELIABILITY: Reliability represents the degree of being capable of maintaining

the service and service quality. The number of failures per month or year repre-

sents a measure of reliability of a Web service. The number of failures should be

minimized. The composition reliability is measured as the maximum number of

failures of all web services of the composition, because web services with a high

failure rate has to be considered.

• COMPLIANCE: Compliance denotes how a web service conforms with local

regulations, laws, and intra-enterprise standards. The compliance is measured by

a compliance value [0, . . . , 5]. The higher the value, the better is the compliance.

The composition compliance denotes the minimum compliance value.

• SECURITY: The security is measured by a security value [0, . . . , 5]. The higher

the security value, the better the security. The composition security is measured

as the minimum security value of all web services. This seems to be suitable,

because one total insecure web service could compromise the whole system.

• PRICE: The price of a web service composition is naturally an important objec-

tive. It is processed as the total amount of all web services and is measured in

Euro and per request. There could be also, basic agreements for web services that

28 Requirements Analysis

are not deducted per request. In this case the costs per request could be estimated

based on the total count of requests in a specific time period.

2.3.2.1 Runtime Requirements

Runtime requirements define qualities of the system while it is used, which are very

important for its acceptance by users[VAC+05, p.102] and fundamental for interactive

mashups[RTA07].

• [Req.NF2] Transparency: The system should be transparent (user has not to con-

cern about technical things).

• [Req.NF3] Users: The system should provide multiuser capabilities.

• [Req.NF4] Performance Behaviour: The creation of the mashup has to be per-

formed in an appropriate time regarding the user interaction. This means that the

system is scalable for also huge sets of available web services. However, there is

of course an trade-off between the amount of processed data and requested data

sources as well as the time of mashup generation. Due to this, the time seems to

be appropriate as long there is an significant time reduction for the information

gathering task of the human agent without interruption of the flow of thoughts

of the user.

• [Req.NF5] Usability: The user should be able to configure the modules by an

graphical user interface, to affect the behavior of the system.

• [Req.NF6] Security: The security of a mashup framework is important especially

to enterprise mashups, because the functionality and content could stem from

various untrusted providers [KBS+08]. The main problem is that if it appears

to a browser that content or code from different trust domains comes from the

same origin, this can lead to uncontrolled interaction[KBS+08]. An unwanted

behaviour of code and/or sniffing of the data can effect in the violation of lo-

cal regulations, corporate governance and loss of company performance as well

as strategic opportunities. Therefore, security has to be adhered by the mashup

framework architecture as possible. Since the framework should be developed

for a web portal, it could utilize its security features.

2.4 Conclusion 29

2.3.2.2 Development Requirements

The development requirements are common and depend in this case on the project

context. The application should be developed as a web application that can be run in

IBM WebSphere Portal12. Furthermore, the application components should be reusable,

maintainable and extensible, which is important for later project phases. In addition to

this thesis, the usage and program code have to be documented.

• [Req.NF7] Platform Independence: The mashup framework should be devel-

oped as web application that should be accessible throughout the WebSphere

portal.

• [Req.NF8] Reuseability: The application should be structured in a way that al-

lows an reuse of different modules without much effort.

• [Req.NF9] Maintainability: This means that changes of the web services as well

as of the knowledge base should be possible without redeployment of the frame-

work application.

• [Req.NF10] Extensibility: Extensibility is an important non-functional framework

requirement [VAC+05, p.101]. Due to this, the software architecture should be

structured loosely coupled way to enable the incorporation of new modules in

later project phases.

• [Req.NF11] Documentation: The usage of the system should be documented as

well as the program code.

2.4 Conclusion

This chapter has defined requirements for an automatic generation of mashups. It has

defined use cases within the financial domain that outlined important functional re-

quirements. In addition, non-functional requirements have been described that define

important criteria for the composition of web services. These multiple objectives have

to be considered in the mashup framework. In addition, this chapter analysed the adop-

tion of requirements from Data Warehouses and Online Analytical Processing, which

focus on the aggregation and analysis of data from different sources within the enter-

prise. The next chapter investigates related work on mashups and mashup frameworks,

to evaluate the present limitations and to outline the need for an automatic generation

of mashups.

12http://www-01.ibm.com/software/de/websphere/portal/index.html

http://www-01.ibm.com/software/de/websphere/portal/index.html

30 Requirements Analysis

CHAPTER 3

Related Work on Mashups and
Mashup Frameworks

In the last few years a variety of mashups has been developed and various frameworks

has been proposed. Section 3.1 provides an overview about the different characteristics

of mashups. Section 3.2 describes frameworks for the creation of mashups, in order to

identify limitations that are described in Section 3.2.4. Section 3.3 concludes this chapter

with an overview about the requirements that are not addressed by the existing mashup

frameworks.

3.1 Mashup Patterns and Characteristics

The structure and development of mashups is not standardized by an organization, as

it is done by the World Wide Web Consortium (W3C)1 or other organizations for many

other technologies. The missing standard or reference model motivates an investiga-

tion of mashup patterns. So far, mashup patterns have been only limitedly an object of

research. An initial survey about mashup patterns can be found in Wong et al. [WH08].

This characterization refers to existing mashups, registered at the mashup directory

ProgrammableWeb2, which contains more than 3400 existing mashups. Amongst other

things, it considers data, function and presentation related properties as well as client-

side and server-side processing. Furthermore, the delivery types of mashups are out-

lined. In addition, the characterization covers enterprise mashups and outlines the

differences of transactional and analytic mashups. Furthermore, this section describes

economic incentives for the provision of mashups. The final part of this section pro-

1http://www.w3.org/
2http://www.programmableweb.com

http://www.w3.org/
http://www.programmableweb.com

32 Related Work on Mashups and Mashup Frameworks

vides an overview about the identified mashup patterns.

3.1.1 Mashup Data

Mashups retrieve content from a set of different types of data sources to aggregate

[WH08] different data. These could be information web services [AKTV07] [TSP+07]

[Yee08, p.4] [TAR07], feeds, spreadsheets, CSV files, screen-scraped3 content [TAR07]

or even whole web pages [WH08]. In principle any structured or unstructured data

source could be the grounding of a mashup. This heterogeneity of is one of the key

characteristics of a mashup. Furthermore, it is important to denote that mashups com-

bine various types of data sources, and thus also specify how the data is merged and

aggregated.

In addition, Wong et al. [WH08] state that real-time behaviour is another important

property of mashups in fast changing environments such as news (e.g. BBC News Map

Mashup4) and financial information.

3.1.2 Mashup Functionality

Mashups do not necessarily combine only different types of data sources, they also

could integrate functionality from disparate providers. The aggregation of functional-

ity is often achieved through the incorporation of different Application Programming

Interfaces (APIs) offered by various providers (e.g. GoogleMaps5). An API is a set of

functions, procedures or classes that are provided by a library or web service and can

be classified as language-dependent or language-independent.

A language-dependent API utilizes the syntax of a programming language in a partic-

ular context. An example of such an API is the JavaScript6 library of Google Maps. The

JavaScript code has to be inserted or referenced in the HTML code of the web page, to

create a map as well as points on it (e.g. 5TVs uses the Google Maps JavaScript library

to place TV channels on a map7).

Language-independent APIs are not bound to a particular programming language.

Web services are prominent examples of such APIs. In fact, this merging of function-

3Screen scraping refers to the process of extracting data by software from the user interface output of
another application. In context of the Web, the screen scraper extracts data directly from the web page.

4http://dev.benedictoneill.com/bbc/
5http://code.google.com/apis/maps
6http://developer.mozilla.org/en/Core_JavaScript_1.5_Reference
7http://5tvs.com/internet-tv-maps/news

http://dev.benedictoneill.com/bbc/
http://code.google.com/apis/maps
http://developer.mozilla.org/en/Core_JavaScript_1.5_Reference
http://5tvs.com/internet-tv-maps/news

3.1 Mashup Patterns and Characteristics 33

ality refers to the composition of web services, such that outputs from one web service

can be used for the invocation of other web services.

Plenty of the manual developed mashups are restricted to read and filter [WH08] capa-

bilities on the aggregated data (e.g. Housingmaps8, 2RealEstateAuctions9). However,

also the update of mashup data from the mashup to the source data (bi-directional data

transfer) can be realized in mashups.

Collaboration and collective intelligence are key elements of the Web 2.0 vision. This

drives the creation of mashups that enable users to collaboratively read, reuse, add

and edit content, created by them or other humans (e.g. beenhere.TV10, ApartmentRat-

ings11, AnglingAtlas12). Thus, collaboration functionality can be an important part of

a mashup. Furthermore, mashups can also reuse the collaboration and personalization

data, which has been collected at different external providers [WH08]. This enables

the creation of a comprehensive personalization model. Yet, comprehensive views on

behavioural and interest related data of humans could lead to unwanted privacy con-

cerns. An example mashup is RottenNeighbour.com13. People are enabled to create

statements about good or bad neighbors. The information can be placed directly on

a map and are accessible by every web user. For instance, an employer can look for

good or bad neighbour information about an applicant. This personalized view on the

behaviour is not under control of the pertaining people and thus has to be evaluated

critical. Warner and Chun give an overview about privacy protection [WC08] in this

context.

Mashups often reference to external business processes to support real world effects.

AmzWish14 is a good example of such a mashup. It provides the personal Amazon15

wish list to other people. Furthermore, it enables them to click on an wish list item to

buy it for the creator of the list (or themselves) at the Amazon web site. In this case, the

user is not able to directly buy the item, but could click on a link that refers to a selling

process of a book selling company.

8http://www.housingmaps.com/
9http://www.2realestateauctions.com/

10http://www.beenhere.tv/
11http://www.apartmentratings.com/
12http://anglingatlas.com/
13http://www.rottenneighbor.com/
14http://www.widgetbox.com/widget/AmzWish
15http://www.amazon.com

http://www.housingmaps.com/
http://www.2realestateauctions.com/
http://www.beenhere.tv/
http://www.apartmentratings.com/
http://anglingatlas.com/
http://www.rottenneighbor.com/
http://www.widgetbox.com/widget/AmzWish
http://www.amazon.com

34 Related Work on Mashups and Mashup Frameworks

3.1.3 Mashup Presentation

The presentational styles of mashups are not limited. Mashups enable users to access

remixed data in a new visual way (by alternative user interfaces) that has not been

intended by the data provider [WH08]. Amongst others, data could be presented as

a spreadsheet, map, tree, chart or combinations of them. Mapping mashups are the

most prominent type of mashups (e.g. ProgrammableWeb contains more than 1700

mapping mashups). However, also other types of mashup presentation especially for

not location based data are increasingly important (e.g. Daily Mashup16 , mashfot17).

A mashup can also directly utilize the presentation of an independent provider. For

instance, it can use inline frames (called iframes). The iframes are part of the HTML

4.0 [RHJ99] standard and allow the embedding of external HTML code into a mashup

page. In this case the presentation of the external provider is directly utilized in the

mashup.

3.1.4 Mashup Delivery Types

The delivery type is another characteristic of a software application. Mashups can be

delivered as a web page, web service, web portal page, portlet18, widget19[WH08], or

as an other type of web-application as well as a desktop application.

The delivery type determines how data, functionality, and presentation of the mashup

is delivered. For instance, if a mashup is delivered as a web service, which aggregates a

specific set of feeds, it provides only aggregated data. Such mashups can be called data

mashups and can be utilized by other applications. Mashups delivered as widgets,

web pages etc. also define the presentation and the functionality in addition to the

aggregated data.

16http://dailymashup.com/
17http://www.mashfot.com/
18“A portlet is an application that provides a specific piece of content (information or service) to be included as

part of a portal page. It is managed by a portlet container, that processes requests and generates dynamic con-
tent. Portlets are used by portals as pluggable user interface components that provide a presentation layer to
information systems.“[Hep08]

19A widget is a little application that is not used as an separate program, instead it is incorporated into an
existing user interface or web page. Widgets are also sometimes called Gadgets or Applets.

http://dailymashup.com/
http://www.mashfot.com/

3.1 Mashup Patterns and Characteristics 35

3.1.5 Enterprise Mashups

Mashups can also be classified as special enterprise mashups. Enterprise mashups dif-

fer mainly in the amount of available data sources and functionality. Naturally, an en-

terprise has significant more intra-enterprise web services, databases etc. than a private

user. Besides this, the enterprise has to be compliant with local regulations and corpo-

rate governance. Furthermore, the decisions which are based on enterprise mashups

may lead to key impacts on the company performance, in contrast to mashups for pri-

vate users. Therefore, the development of an enterprise mashup framework has to

adhere to a variety of different requirements. Hoyer and Fischer state that enterprise

related mashups put a visual interface to the existing Service-Oriented Architecture

(SOA) of companies [HF08]. Mashups can and should therefore utilize the existing

investments in information technology.

3.1.6 Client-side vs. Server-side Mashups

Figure 3.1: Client-side vs. Server-side Mashups

Mashup types can be also characterized by client- or server-side processing. A client-

side mashup gathers and assembles data completely at the user client. Otherwise, it is

also possible to create the mashup completely at a server. In that case, the gathering

and aggregation of data as well as the presentation is created by the server and then

transmitted to the client. In fact, there can be of course also various hybrid forms of

server- and client-side mashups. For instance, the data of the mashup can be assem-

bled on the server, whereas the functionality and the presentation is generated at the

36 Related Work on Mashups and Mashup Frameworks

different clients in dependence to their needs.

3.1.7 Transactional vs. Analytic Mashups

Transactional and analytic mashups should be distinguished (Figure 3.2), because the

first are part of business processes (e.g. procurement), while the second are part of de-

cision processes (e.g. tactical asset allocation in investment decisions).

Transactional mashups change the state of the environment and create real world ef-

fects. For instance, in a procurement mashup data retrieved from external suppliers as

well as the internal data from SAP systems could be remixed. Furthermore, the mashup

could directly provide functionality to buy products and to control the status of the pro-

cess.

A mashup could be called analytic in the case of the utilization of information web

services or other data sources as part of decision processes, which are not directly part

of business transactions (e.g. Stockaholic20). However, decisions based on analytic

mashups can lead to transactions. Figure 3.2 provides an overview about the differ-

ences of transactional and analytic mashups in the enterprise environment.

Figure 3.2: Mashup Categories

3.1.8 Economical Characteristics of Mashups

Mashups are a concept of the so called Web 2.0 [O’R]. The Web 2.0 is a set of con-

cepts and principles that focus on software as a service (SaaS), importance of data

20http://www.editgrid.com/tnc/vincent/Stockaholic.new

http://www.editgrid.com/tnc/vincent/Stockaholic.new

3.1 Mashup Patterns and Characteristics 37

sources, users as co-developers, collective intelligence as well as lightweight user in-

terfaces [O’R]. However, present enterprise executives do not recognize mashups as a

very important factor. In a recent global survey by McKinsey [McK] only 21 percent

of 1046 executives stated that they are using mashups or plan to use them, while 54

percent do not consider mashups. Furthermore, 1801 of 2847 executives did not assess

this point of the survey. This scepticism about mashups could have several reasons that

should be investigated.

Mashups should be promising, if they create or fit into existing business models, enable

the creation of new business opportunities or addresses local regulations. Due to this,

an excerpt of business models of existing mashups is described below.

Plenty of mashups provide a unique entry point for special product categories (e.g.

top54u.com21) and items of different providers and reference to their existing selling

and buying business processes. The creator of the mashup is rewarded for sold or rent

items, which is in fact the incentive for the development of the mashup.

Furthermore, it is also possible that a mashup is completely based on an implemented

advertising business model [KBS+08]. This means that the provider of the mashup has

to provide a special mashup service that attracts many users and is the basis for the

reward of advertisements.

Mashups do not have to be necessarily consumer oriented, a service provider itself

could also provide mashups to streamline its access to business process transactions.

In addition, mashup business models should also consider the analytical decision sup-

port of agents as described in the previous section. A better and faster decision making

promises to directly result in reduced time and costs and therefore higher efficiency.

This short investigation shows that the scepticism of the executives of the McKinsey

survey seems to be a general aversion or lack of knowledge about this technology, than

the lack of business models. Instead, it seems that many of the executives do not per-

ceive the potentials of mashups, which could be a reason for the 1801 executives that

did not asses this point of the survey.

In a recent report of SERENA Software Inc., a provider of business mashups, the imple-

mentation of mashup technology for a client resulted in four million dollar annual cost

savings through the streamlining of development processes [Inc07].

In general it seems to be clear that the incorporation of existing enterprise technologies

as well as an easy enterprise-wide implementation should support the utilization of

mashup frameworks.

In the last years, the main focus of companies relied on the creation of service oriented

architectures (SOA). This is also confirmed by the McKinsey survey, where 80 percent of

21http://shopping.top54u.com

http://shopping.top54u.com

38 Related Work on Mashups and Mashup Frameworks

2615 executives said that they are using or plan to use Web Services in their enterprise

[McK, p.5]. Service-oriented computing can lead to improved quality of applications

through higher-level abstractions as well as standards-based interoperability [SH05,

p.78]. The implementation of such a SOA is a strategic decision of enterprises, which

has to be considered by the current scientific research. This means that new technolo-

gies should utilize the investments in SOA to make them attractive to the executives.

3.1.9 Conclusion

The previous explanations has described different mashup patterns, which are summa-

rized in Table 3.1. The mashup patterns are important to achieve a shared understand-

ing of the types of mashups.

Table 3.1: Summary of Mashup Patterns

Description

P1 Data, Functionality and Presentation: Mashups provide the aggregation of

various types of data sources and APIs from disparate providers. Further-

more, they visualize aggregated data in various ways.

P2 Delivery Types: Mashups could be delivered in a variety of different ways.

Mashups that provide only data are called data mashups and can be utilized

by other applications.

P3 Client- vs. Server-side: The creation of the mashup could be server-side or

client-side.

P4 Enterprise Mashups: In context of the enterprise, mashups can utilize intra-

organizational data sources and functionality. Furthermore, they have to be

compliant with local regulations, laws and intra-organizational guidelines.

P5 Transactional vs. Analytical Mashups: Analytic mashups support deci-

sions within the enterprise. Transactional mashups aggregate data and

functionality for specific business processes and support the execution of

transactions.

P6 Economical Characteristics: Mashups can support the streamlining of busi-

ness and decision processes. Furthermore, they could be part of consumer

oriented business models. Enterprise mashups should utilize the existing

investments in SOA to make them attractive to the executives.

3.2 Mashup Frameworks 39

3.2 Mashup Frameworks

This thesis proposes a framework for automatic generation of mashups. This section

therefore analyses related work on mashup frameworks. The first part describes ex-

isting approaches that are related to automatic creation of mashups. The second part

gives an overview about the mashup framework market, which is described in detail

in the third part of this section. The present limitations of mashup frameworks are

provided in the final part of this section, which will lead to insight that the creation of

mashups should be done in an automated manner.

3.2.1 Automatic Creation of Mashups

The automatic generation of mashup applications has been only limitedly part of re-

search activities.

Carlson et al. [CNPZ08] propose a mashup framework for automatic composite mashup

applications based on Lotus Expeditor. The framework focusses on mashups of non-

web service components (e.g. widgets). In contrast to Carlson et al., this thesis focuses

on the mash-up of background information provided by web services and not on the

composition of different widgets. This means that in this thesis the focus lies on the

aggregation of data, whereas in the approach of Carlson et al. different components

(e.g widgets) are aggregated that contain data, functionality and presentation.

However, Carlson et al. describe the programmatic inputs and outputs of an applica-

tion component by Web Service Description Language (WSDL) [CCMW] [CMRW].

The composite mashup applications are created by a match between a WSDL and a col-

lection of target WSDLs. The score is based on the number of matching terms found.

Furthermore, there is a second search performed that considers semantic matching on

the semantic annotations defined by SAWSDL [FL07]. Based on the two scores the best

matching component is selected.

The framework is mainly based on two paradigms: match and compose. Match refers

to ”Using the output from a single web service and finding a second web service that can take
that as input. The developer can continue this process and string together several web services
with application specific control-flow pattern in order to complete a business process“[CNPZ08].

Compose refers to: ”Starting with a known output and a known input, the developer uses
search techniques that can allow them to find one or more services that will transform the output
of the first web service into something that can be consumed by the final web service“[CNPZ08].

In general, the compose approach of the framework could be denoted as a forward

chaining approach, because the composite application is derived iteratively by adding

40 Related Work on Mashups and Mashup Frameworks

the best matching components to a starting component.

Forward chaining is often an inefficient approach [RN03, p.384] because it considers ir-

relevant actions (often called undirected search [KSKR05]). In this case, the framework

may suggests highly matching components, but these components could be irrelevant,

if they are not relevant to achieve the present goal. Therefore, the iterative selection of

highly matching components is not completely sufficient to create mashup applications

in an efficient way. As stated in Chapter 2 the composition of different components has

to be part of a planning process.

This thesis focusses on a scalable approach for composition of information web services

that efficiently walks through the search space. This is in accordance with Carlson et

al.[CNPZ08], who outline outline the importance of a process based integration ap-

proach for their future work.

3.2.2 Market Overview

The increasing interest in mashups has led to a variety of different tools, editors, repos-

itories and frameworks by business and research. The intention of this part is to give

an representative (not entire) overview about the mashup framework market.

An existing market overview of mashup tools can be found in Hoyer and Fischer

[HF08]. It classifies the mashup tools by their target group (consumer or enterprise)

as well as functionality.

This thesis has a focus on the skill requirements of target users, to point out general

limitations as well as the need for an automatic and adaptive generation of mashups.

The skill requirements of users depend on the development approach that is used to

create the mashup. The development approach of mashups could be based on manual,

semi-automatic (tool-supported) or automatic creation. The following explanations

describe these criteria in detail.

Manual creation means that data sources and functionality have to be integrated by

programming. This is very complex, due to high requirements on detailed program-

ming expertise [WH07] and knowledge about web technologies. The difficulty of pro-

gramming (even for experienced developers) is to transfer the problem domain repre-

sentation into an abstract, detailed, and technical language of the programming envi-

ronment [SBD03, p.287].

The information needs, preferences, interests etc. are different among users. Thus, man-

ual assembled mashups may have only a general scope that supports the preferences

of a variety of different users. Therefore, it is likely that often an appropriate mashup

is not available for a specific problem. Therefore, semi-automatic tools have been de-

3.2 Mashup Frameworks 41

Figure 3.3: Mashup Framework Market Overview

veloped that support end-user programming (EUP), to enable users to create, adapt or

extend applications on their own, in order to solve specific problems more efficiently

[SBD03, p.287].

End-user programming is an important trend of information technology and the Web

2.0 [O’R], because it promises that the applications directly fit with the user needs and

that the savings for development of applications in enterprises could be increased. This

trend ends up the classic software release cycle, which means that the time for newly

added functionality is decreased to weeks, days or hours. In this context, users as co-

developers become increasingly important to react quickly on changed requirements

[O’R]. End-user programmers has been defined as ”people who write programs, but not as
their primary job function“[MKB06]. In fact, the program is just written to achieve a main

goal more efficiently.

The existing end-user oriented tools are based on a variety of approaches such as wire

based integration of data and functionality, scripting languages, spread-sheets or pro-

gramming by demonstration. In the following, these categories are shortly outlined.

The majority of end-user oriented tools simplify the creation process on the data layer

through workflow based (piping) integration of data sources as well as through work-

42 Related Work on Mashups and Mashup Frameworks

flow based (wire) integration of functionality [HF08]. In the following, this is called the

wiring paradigm.

Besides the wire based approaches, some tools utilize spreadsheet functionality or are

integrated into spreadsheet standard software. Many people are familiar with spread-

sheets and thus these mashup systems promise to have a good usability.

Furthermore, the research has turned out systems that focus on programming by demon-

stration, which enables users to ”learn” the system by a set of examples.

Figure 3.3 gives an overview about the mashup framework landscape in relation to the

development paradigm as well as the required skills of the user. The skill of a user is

assumed to be divided into the categories developer, power user, and casual user.

A developer should be familiar with programming, web technologies, different APIs as

well as the usage of development tools. A power user has no programming skills, by

definition of this thesis, but does have detailed functional knowledge about a specific

tool or set of tools and thus is able to create complex mashups. Casual users only have

the skills to use the functions of a web browser and are able to navigate through the

Web.

3.2.3 Detailed Analysis

3.2.3.1 Tools based on the Wiring Paradigm

Wire-oriented tools such as Apatar22 [Khi08], IBM Damia [SAM+08], JackBe Presto

Wires23, Microsoft Popfly24, Yahoo Pipes25, Openkapow26, Proto Financial27, Anthracite28,

SABRE [MLA08] remix and merge data, functionality or presentation through a graph-

ical wiring of basic building blocks. This manual connection is sometimes called wiring

or piping of different modules, connectors, components or blocks. The available com-

ponents provide different functionality (e.g. data retrieval, data transformation, data

presentation etc.) and have to be connected to achieve the desired coordination of the

mashups. The tools often support different data source types such as RESTful and / or

SOAPful (e.g. Openkapow, Proto Financial) web services, databases, spreadsheets and

22http://www.apatar.com/product.html
23http://www.jackbe.com
24http://www.popfly.com/
25http://pipes.yahoo.com/pipes/
26http://openkapow.com/
27http://www.protosw.com/
28http://www.metafy.com/products/anthracite

http://www.apatar.com/product.html
http://www.jackbe.com
http://www.popfly.com/
http://pipes.yahoo.com/pipes/
http://openkapow.com/
http://www.protosw.com/
http://www.metafy.com/products/anthracite

3.2 Mashup Frameworks 43

Figure 3.4: JackBe Presto Wires Mashup Composer

CSV files.

In addition some tools such as Apatar and JackBe Presto provide also bi-directional

data transfer, in case of a change of the mashup data, the changes are published to the

initial data source. This enables enterprise mashups to be actively involved in business

processes transactions.

The data modules could be often connected to presentation blocks that provide differ-

ent presentation styles such as map, table, tree etc..

Proto is specialized to the financial domain and provides the creation of comprehensive

trading and research mashups as well as integrated functionality to analyse risks (e.g.

processing of Value at Risk (VaR), Beta and correlation metrics).

The IBM QED (Quick and Easily Done) Wiki uses various data sources to create views

on data. Furthermore it supports common Wiki functionalities like commenting, mes-

saging etc.. It has been replaced by Lotus Mashups. Lotus Mashups 29 provides an user

interface for assembling of personal, enterprise and Web content and is part of the IBM

Mashup Center30. Different widgets can be wired through a lightweight user interface.

The resulting mashed-up pages can be shared between the users.

29http://www-01.ibm.com/software/lotus/products/mashups/
30http://www-01.ibm.com/software/info/mashup-center/

http://www-01.ibm.com/software/lotus/products/mashups/
http://www-01.ibm.com/software/info/mashup-center/

44 Related Work on Mashups and Mashup Frameworks

BEA AquaLogic Pages31 is a web authoring and mashup framework. It provides Wiki

page like functionality to edit and create web pages. Furthermore, it provides drag-

and-drop components that can be wired (like a workflow) to other components directly

on a web page. The pages itself reuse data that has been created in advance in spe-

cific data spaces. The data could be retrieved from web services as well as from local

sources. The presentation offers the creation of tables, lists, images, maps and normal

texts.

The SABRE framework [MLA08] tries to bridge the gap between classical SOC applica-

tions and mashups. It uses the Reo coordination language to specify web service based

mashup logic. SABRE focuses exclusively on tools for data-driven service coordina-

tion. Reo coordination is specified by different connectors that enables, for instance,

the specification of parallel executions, synchronizations, transformations well as as

filters or FIFO buffers [MLA08]. The SABRE implementation is based on a graphical

mashup design tool as well as a runtime execution environment.

In general, the tools require basic skills about data processing, workflow concepts as

well as knowledge about the types of data sources such as databases, XML etc.. The

graphical user interface design simplifies the creation process. Due to this, they can be

used by power users or developers that have significant knowledge about the function-

ality of the framework.

3.2.3.2 Tools based on Spreadsheets

Spreadsheet-based tools such as StrikeIron SOA Express for Excel32, Extensio Excel Ex-

tender33 focus on the remix of data. Unlike the workflow-based tools, the data is di-

rectly interchanged at a spreadsheet. This means that the outputs of a data source are

written to cells that have been previously selected by the user. The cell values then serve

as inputs of subsequent data source queries. StrikeIron SOA Express and Extensio Excel

Extender utilizes SOAPful web services to create mashups. In addition Extensio Excel

Extender can provide access to SAP, several databases as well as flat files.

The tool usability promises to be good among all types of users, because many users

are already familiar with spreadsheets, especially in the enterprise environment. In

fact, the users are able to leverage the powerful processing capabilities of spreadsheets

to analyse data and create charts.

31http://www.bea.com/framework.jsp?CNT=index.jsp&FP=/content/products/aqualogic/pages/
32www.strikeiron.com/tools/tools_soaexpress.aspx
33www.extensio.com

http://www.bea.com/framework.jsp?CNT=index.jsp&FP=/content/products/aqualogic/pages/
www.strikeiron.com/tools/tools_soaexpress.aspx
www.extensio.com

3.2 Mashup Frameworks 45

Figure 3.5: StrikeIron SOA Express for Excel

3.2.3.3 Scripting Languages

The development of mashups is supported by various tools that are based on domain

specific scripting languages such as Google Mashup Editor34 (GME), Web Mashup

Scripting Language (WMSL) [SHSG07, p.1305], Dynamic Fusion of Web Data [RTA07]

[TAR07], WSO2 Mashup Server35.

GME allows developers to manually create mashups based on specific extensible markup

language constructs. The incorporation of different mashup specific tags (e.g. ”gm:list“,

”gm:map“, ”gm:search“ etc.) as well HTML, CSS and JavaScript leads to specific mashup

pages.

The Web Mashup Scripting Language (WMSL) [SHSG07, p.1305] enables the mashup of

different web services. Different sections enable the import of Web Service Description

Language (WSDL) files, XML-Schema definitions (XSD), OWL ontologies, and other

WMSL scripts directly into the HTML page.

RSSBus is a data feed generator that uses the RSS protocol as interchange mechanism.

The RSS 2.0 [Boa] extension allows to interchange any type of data, not only news items

or blog postings. The feeds itself are retrieved through special connectors. Amongst

34http://code.google.com/gme/
35http://ws02.org/projects/mashup

http://code.google.com/gme/
http://ws02.org/projects/mashup

46 Related Work on Mashups and Mashup Frameworks

others, it is possible to access a variety of Amazon web services, CRM systems, office

applications, emails as well as RESTful web services. However, there is no support for

SOAPful web services [RSS08].

Rahm et al. propose a framework architecture for the development of dynamic data in-

tegration mashups, which is based on a high-level scripting language [RTA07] [TAR07].

The scripting language defines a workflow by generic operators that can be applied to

different structured or unstructured data sources and web services. The operators are

set oriented and enable the classic set operations (e.g. union, intersection etc.) as well

as data transformation (e.g. fuse, aggregate) [RTA07].

<gm:page t i t l e ="Xmap 1 " a u t h e n t i c a t e =" f a l s e ">
. . .

<gm:map id="Xmap" s t y l e =" b o r d e r : s o l i d black 2px " c o n t r o l =" l a r g e "
maptypes=" t rue " data=" \${ X l i s t } " l a t r e f =" g e o : l a t " l n g r e f =" geo: long "
infotemplate=" XmapTemplate ">

<gm:handleEvent s r c =" X l i s t " />
</gm:map>

. . .
<gm:template id=" XmapTemplate ">

<div a l i g n =" c e n t e r " repeat=" t rue ">
<h3><gm:text r e f =" a t o m : t i t l e " /></h3>

</div>
</gm:template>

. . .
</gm:page>

Listing 3.1: Google Mashup Editor Excerpt of a Mapping Example

In general, it seems to be too complicated for a non-developer, to create such scripts

in an appropriate time, because complexer mashups will need much more script code.

Furthermore, the composition of the components is a hand-coded solution. This means

that the developer has to analyze the data sources manually to achieve an appropriate

data flow (mediation).

3.2.3.4 Programming

Tools are available that create mashups based on an integrated development environ-

ment (IDE). IBM WebSphere sMash36 is a development and execution environment for

dynamic web applications. It enables an easy reuse of web services and enables an

36http://www-01.ibm.com/software/webservers/smash

http://www-01.ibm.com/software/webservers/smash

3.2 Mashup Frameworks 47

rapid integration of different web services.

BungeeConnect37 is another platform that is offered as an online service. It is possible

to create comprehensive web applications. Bungee automates the import of publicly

available web services as well as traditional databases and data warehouses. However

this approach is nearly equal to a complete manual development of mashups, which is

supported by a variety of other IDEs.

Figure 3.6: BungeeConnect Platform

3.2.3.5 Programming by Demonstration

Programming by demonstration enables users to learn a system by the provision of ex-

amples. The Internet Scrapbook [SK98] system allows users with little programming

skills to automate recurring browsing tasks. The user is enabled to demonstrate which

parts of a web page are interesting to him, by copying the relevant data from multiple

pages to a personalized mashed-up page. The extraction of the data is based on the

HTML structure of the specific web page.

Dapper38 is an online service that is able to create an API for any web site. The source

web site has to be initially specified, then the user can select graphically from some
37http://www.bungeelabs.com/
38http://www.dapper.net/

http://www.bungeelabs.com/
http://www.dapper.net/

48 Related Work on Mashups and Mashup Frameworks

sample outputs the fields that should be extracted.

Karma [TSK08] utilizes programming by demonstration to extract lists of data from

web pages through simple drag-and-drop of elements of a web page. The system lever-

ages the DOM tree information of the browser and creates a table of the data. The data

can be automatically joined with other tables derived from other pages, by a match of

attribute name and value pairs.

Huynh et al. propose the Potluck39 mashup tool, which enables users to create mashups

without the need of programming knowledge [HMK07]. Potluck takes as input a set of

URLs that contain the data that should be remixed. The datasets from the web pages

are shown in a tabular environment. Fields that represent the same semantic attribute

can be set as equal through a simple drag and drop of the field names. In this case, the

presentation is automatically rearranged. Thus, the mediation between the different se-

mantic heterogeneities is done implicitly by the user, while he is acting on the retrieved

data. Furthermore, the system enables the user to clean up and homogenize the data

in a faceted browsing environment[HMK07]. A faceted browsing environment, based

on a faceted classification, allows a user to explorative search in huge data sets by hier-

archical concepts[YSLH03]. A faceted classification allows the assignment of multiple

classifications to an entity, thus the entities could be ordered in different ways.

3.2.3.6 Framework Deployment

Mashup frameworks could be also characterised by its deployment approach. The

frameworks are deployed in various ways such as browser plugins, desktop applica-

tions or online services. Extensio, Apatar, Proto, StrikeIron SOA Express are desktop

applications. Microsoft Popfly, Yahoo Pipes, GME, BungeeConnect and Dapper are

prominent online services.

Browser embedded tools are added as plugins to the browser. The browser based

mashup of web pages often directly changes the appearance of the web page on the

client. These tools focus mainly on easy extraction of data from web pages and the

mashup of web pages while the user is surfing. This is in contrast to online services

that often directly create a mashup page.

Examples of browser embedded Tools are Karma [TSK08], Hunterer Gatherer [SZM+02],

Marmite [WH07] or Mashmaker [EG07b]. The Hunterer Gatherer system is a browser

based tool that leverages the DOM tree information to extract user selected contents

[SZM+02].

Marmite is a browser plugin that promises to be a mashup tool that enables end-users

39http://simile.mit.edu/potluck/

http://simile.mit.edu/potluck/

3.2 Mashup Frameworks 49

to create mashups without programming knowledge [WH07]. User can extract content

from web-pages, transform data and aggregate it with other data sources (i.e. databases

or web services) through an wire-oriented editor [WH07]. Users are immediately in-

formed about the state of the data between the operations through partial runs of the

data flow. The results are displayed as a spreadsheet.

MashMaker is a browser plugin that extends the normal process of browsing with

mashup functionality. MashMaker does not require the specification of the mashup

in advance by the users, as it is required by the workflow like tools [EG07b]. The soft-

ware guesses a mashup that the user would find useful, based on the current browser

content. At the end, the user even did not know the the page was mashed up 40. Fur-

thermore, MashMaker directly extracts entailed RDF data from a web site. If this is

not possible, the tool extracts structured data from the raw HTML. The raw data is re-

trieved thru special ”Extractors“ that could be created for each web site. The extractors

are stored on a special server and thus could be reused by all users of the framework

[EG07a] [EBG+07].

PiggyBank41 is able to process RDF data, which is embedded in web pages. Manual

development of web page specific screen scrapers (e.g. for Flickr pages) allows the

extraction of non-semantic data and their transformation to RDF. An advantage of Pig-

gyPank is that the user has not to concern about retrieving and remixing of data, which

is done automatically through the merging of RDF triples.

Mashmaker and Piggy Bank operate directly on RDF or use extractors to extract the

data. However, RDF documents could refer to different vocabularies. It is unclear how

the tools achieve ontology mediation or if the designers of the extractor components

have to refer to one defined shared vocabulary.

3.2.3.7 Data Mashup Tools

Data mashup tools like Apatar, IBM Damia, Denodo Enterprise Data Mashup42, Dy-

namic Fusion of Web Data [RTA07], Mashup Feeds [TSP+07, p.1128], Openkapow43,

RSS Bus [RSS07] [RSS08] retrieve, transform, aggregate and provide data to other ap-

plications. The tools virtually integrate content from any type of information source

such as web web service, database, xml, file, data warehouse, SAP, Siebel etc.. Fur-

thermore some tools such as Openkapow provide screen-scraping and thus offer the

40This behaviour is also an objective of this thesis, in regards to mashed up portlets in web portals.
41http://simile.mit.edu/piggy-bank/
42http://www.denodo.com/english/products.html
43http://openkapow.com/

http://simile.mit.edu/piggy-bank/
http://www.denodo.com/english/products.html
http://openkapow.com/

50 Related Work on Mashups and Mashup Frameworks

possibility to grab data directly from web-pages. The results are often published as

real-time data web services to other applications.

“Mashup Feeds is a system that enables mashup developers to describe new integrated web
service feeds as continuous queries over existing feeds and web services”[TSP+07, p.1128].

Continuous means that the system automatically saves requested data in relation to a

specific timestamp. Queries over the different timestamps are then called continuous

queries [TSP+07, p.1128]. In other words, the results of the same service (with different

timestamps) could be remixed. The system uses a scheduler to store the time series.

The query syntax is similar to a programming language and could only be created by

developers in a special developer module[TSP+07, p.1130].

PAYGO [MJC+07] proposes a new data integration architecture oriented to the Web. It

is not based on a single data integration schema (like in traditional databases), instead

it maintains a set of schemas that are clustered in relation to specific domains. Since an

exact matching of those schemas is not available, the mappings of PAYGO are approxi-

mate, which means that there could be simple statements about related schemas as well

as explicit user defined mappings. Thus the system provides mechanisms that enable

the improvement of semantic relationships over time. The improvement is based on

automated as well as suggestion related techniques that could also involve the feed-

back of the user.

Feed creators (or adapters [HF08]) provide special functionality to create feeds from a

variety of different resources. They are often the basis of other mashup tools that utilize

this functionality. IBM Mashup Hub is a server that stores and maintains information

about feeds and widgets. Feeds could be created from various data sources such as

CSV files, databases or XML files. Thus IBM Mashup Hub is a feed creator as well as

a repository. Dapper44 is an online service that is able to create an API that responds

XML data for any web site.

44http://www.dapper.net/

http://www.dapper.net/

3.2 Mashup Frameworks 51

3.2.4 Present Limitations of Mashup Frameworks

The following limitations of present mashup frameworks could be pointed out and are

described in detail below.

1. Users need knowledge about web technologies and / or programming

2. Users are overstrained to select appropriate building blocks of wire-based mod-

ules

3. Efficient selection of data sources (e.g., selection of information web services) is

not addressed by mashup frameworks and has to be done time consumingly by

the user

4. Users need knowledge about the structure and semantics of the data sources to

merge them manually

5. Mashups developed manually or by tools have to be maintained for further reuse

6. Mashup selection for a particular task or information need is a complex prob-

lem that could not be solved appropriately in an appropriate time by a user and

current mashup descriptions do not support machine enabled reasoning

7. Current frameworks do not consider automatic adaption of mashups

3.2.4.1 Users need knowledge about web technologies and / or programming

Programming or script based frameworks like RSSBus, Google Mashup or BungeeCon-

nect require knowledge about web technologies (e.g. WSDL, SOAP) and programming

to create mashups (see also [TSK08, p.140]). Therefore, it is difficult for casual users as

well as power users to create personalized mashup applications in an appropriate time.

It is likely that they could not achieve any productivity gains through the creation of a

mashup in relation to a manual aggregation of data and / or functionality.

Wire-oriented tools provide data retrieval modules that are related to specific tech-

nologies such as WSDL, HTTP, database etc., which requires knowledge about these

technologies to configure and select modules appropriately. This is in accordance with

Wong et al., who argue that most tools still require too much background knowledge

on web technologies and programming and focus mainly on lightweight user interfaces

[WH07].

Automatic generation of semantic mashups promises to overcome this problem, be-

cause the required interaction with the user is decreased significantly. Furthermore, the

knowledge requirements are relatively small, since the user may not even know that

the underlying data, functionality and presentation is mashed-up.

52 Related Work on Mashups and Mashup Frameworks

3.2.4.2 Users are overstrained to select appropriate building blocks of wire-based

modules

The selection of appropriate blocks (modules, connectors, components) of wire oriented

tools could be difficult. The end-users have to translate the problem and domain spe-

cific, high level representation of a problem into an abstract, detailed, and technical

workflow of components, blocks etc. In open systems like Popfly the count of blocks

increases steadily, which makes it increasingly difficult for the user to select building

blocks from the cloud. Otherwise, a limitation of the extension would restrict the func-

tionality of the whole framework. Therefore, tools like Popfly and Marmite try to over-

come this problem by a suggestion mechanism. However, often the suggestion is based

on a comparison of complex data types, instead of using semantics. The quality of

such a suggestion mechanism then depends on the assumption that developers de-

scribe equal concepts by equal complex data types, which is of course not mandatory.

The problem could be summarized as follows, the selection and extraction problem of

information is shifted to a selection and combination problem of appropriate building

blocks. The problem of appropriate block selection is similarly stated in [TSK08, p.140]

and Carlson et al. [CNPZ08]. Furthermore, especially unexperienced users will not be

able to use the tools out of the box. The time to study existing examples (learning by

example) as well as the functionality of the software has to be noted. Thus there seems

to be no significant time reduction for one time ad-hoc usage.

In a recent test of the Marmite system, Wong and Hong stated that many users with-

out programming knowledge do not understand the data flow concepts behind such

a wire-based editor[WH07] and could therefore not solve even simple problems. An-

other interesting result of this test was that, if users extracted some data from a source

they would like to have other attributes of this data without adding extra operators for

extraction and aggregation of related data[WH07].

Automatic generation of semantic mashups promises to overcome this problem, be-

cause the framework needs no user interaction to retrieve and merge relevant data.

This should enable the user to concentrate on the real domain problem or task.

3.2 Mashup Frameworks 53

3.2.4.3 E�cient selection of data sources (i.e., selection of information web

services) is not addressed by mashup frameworks and has to be done time

consumingly by the user

The fundamental drawback of basically all existing platforms is a lack of automatic

data source selection. This means that the user has to specify the web pages, web ser-

vices, data bases, files etc. the mashup should rely on. Manual data source selection

does not only require the location (e.g. URL) of the data sources, it requires also knowl-

edge about the structure and semantics of the information that could be retrieved. This

is important because otherwise the human agent could not evaluate if a specific data

source is appropriate for the specific problem.

The internet and intranet could contain millions of data sources, which leads to the in-

sight that the selection could be time consuming. Moreover, it is likely that the user

also does not know many of the information sources and therefore is limited to a set of

known ones, which may not satisfy requirements such as trust, reliability, security etc.

Thus, the decision quality could be influenced negatively.

This thesis is fully based on information web services. The web services selection of

an information web service is done automatically by utilization of semantic service de-

scriptions. Furthermore, it is intended to incorporate the user preferences, interests,

tasks and experience in the selection process.

3.2.4.4 Users need knowledge about the structure and semantics of the data

sources to merge them manually

The aggregation of different data is handled in various ways. Spreadsheet based tools

achieve the data flow through joint cells that are used as input and output fields. Sim-

ilarly, wire-oriented tools are based on a manually defined data flow. In any case the

alignment of different attributes has to be done manually or is suggested through com-

plex type comparison, as described above.

Automatic generation of semantic mashups promises to overcome this problem, be-

cause the data sources as well as the retrieved data are described completely semanti-

cally, which enables an automatic assembling of the data.

54 Related Work on Mashups and Mashup Frameworks

3.2.4.5 Mashups developed manually or by tools have to be maintained for further

reuse

The manual or tool-supported creation of mashups requires maintenance, if the mashups

should be reused. This seems to be likely, because the user has invested time and other

resources to create the mashup. Therefore, many frameworks provide repositories of

mashups. However, this requires to define processes that determine when the mashup

applications should be deleted as well as who is responsible for their maintenance. It

has also to be specified, which actors (e.g. employees) get access to this mashup ap-

plication or to specific populated data sources. Access rights seem to be important,

because otherwise the mashup framework could not be used for sensitive data.

Automatic generation of semantic mashups promises to overcome this problem, be-

cause the mashups are created ad-hoc and discarded after their usage. Thus, the sys-

tem requires no maintenance of the mashup applications. Moreover, the system main-

tains the information web services. This offers the possibility to create contracts be-

tween provider and requester that could be controlled by the management, which

should lead to compliant mashup applications that consider local regulations and intra-

organizational guidelines.

3.2.4.6 Mashup selection for a particular task or information need is a complex

problem that could not be solved appropriately in an appropriately time by

a user and current mashup descriptions do not support machine enabled

reasoning

Productivity gains can be achieved through an efficient reuse of existing mashups.

This means that the information selection and extraction problem is shifted towards

a mashup selection problem. ProgrammableWeb45 is an example of a mashup direc-

tory, which currently offers a list of 3046 mashups. It seems to be likely that the count

of mashups increases rapidly as more users become familiar with lightweight mashup

editors. In the context of ProgrammableWeb mashup selection is very difficult, because

it relies only on human readable information, which itself only provide a short descrip-

tion about the mashup as well as a list of used APIs and tags. The absence of a semantic

description of the capabilities of a mashup avoids an automated reasoning for mashup

selection.

Furthermore, it is also very difficult for a human to evaluate if a mashup fits his partic-

ular user needs, because he has to filter out a mashup based on a short description and

45http://www.programmableweb.com

http://www.programmableweb.com

3.2 Mashup Frameworks 55

a list of used APIs. This requires also the knowledge about the APIs itself, to evaluate

an mashup in relation to type, quality and reliability of the information provided by

the mashup. Furthermore, a selection of mashups should also consider trust issues.

Tag clouds 46 or special mashup vs. API matrices 47 are also not appropriate to large

scale repositories, because in the first case the user is forced to specify his information

needs only by a tag, which seems to be not detailed enough. In the second case, the

steadily increasing count of APIs and mashups [EG07b] leads to a huge matrix that is

difficult to oversee. Regarding this, the user is also forced to have a deep knowledge

about the APIs, to evaluate whether a combination of APIs meets his situational infor-

mation needs or not.

Furthermore, Wong and Hong figured out that many mashups on ProgrammableWeb

are poorly developed and only assembled for demonstration purposes to collect com-

munity feedback or to drive advertising revenue [WH08, p.36]. This means that even if

appropriate existing mashups could be selected, it is still unclear if those mashups are

working properly.

Automatic generation of semantic mashups promises to overcome these limitations,

because mashups are generated situational for each user, which avoids an time con-

suming selection of existing ones.

3.2.4.7 Current frameworks do not consider automatic adaption of mashups

The available frameworks allow the creation of mashups to reduce the time of informa-

tion gathering from disparate data sources. A high value could be achieved for those

mashups that support recurring tasks. For instance, a manager looks every week for

appropriate hotels and flights to his clients based on his meeting schedule. It would be

ideal if the manager could reuse the mashup each time. However, the mashups adapt

only in dependence of the data of the data sources. An example of an adaptive mobile

mashup is the Telar system[BN08]. The data is retrieved automatically and provides

data which is closely to the current location or point of interest (POI). The data is then

automatically displayed on a map. However, besides the current location or POI the

adaption should be also based on interests, tasks and experience of a user.

It has also to be considered that the available data sources are not static, this means that

there is no guarantee that a data source is available, when the mashup is invoked the

next time. Therefore, the mashup may has to be reengineered to avoid errors or crashes.

An automatic generation of mashups, which involves an automatic selection of the data

46http://www.programmableweb.com/search
47http://www.programmableweb.com/matrix

http://www.programmableweb.com/search
http://www.programmableweb.com/matrix

56 Related Work on Mashups and Mashup Frameworks

source close to usage, avoids time consuming reengineering and automatically consid-

ers changed interests, tasks and experiences.

3.3 Conclusion

This chapter has explained the common patterns and characteristics of mashups. The

characteristics and types of mashups are manifold, which was expectable, since there is

no standardization of mashups.

The mashup framework market is dominated by semi-automatic tools that provide an

graphical user interface to allow end-users to create mashups. However, as explained

in the previous section, the existing frameworks have several limitations. They do not

provide an efficient mean to select web services. Furthermore, the composition of the

different components has to be done manually, which could be time consuming. There-

fore, these systems do not address the requirements for an automatic generation of

mashups (see Chapter 2). Especially, the automatic selection and composition of web

services is not addressed by these frameworks. Therefore, a dynamic and automatic

gathering of background information can be therefore not achieved with the existing

frameworks.

CHAPTER 4

Theoretical Foundations

This thesis proposes the automatic generation of mashups. The mashups augment con-

tents with background information that have been dynamically retrieved from different

independent web services.

The previous chapter outlined the limitations of the existing frameworks as well as the

need for such an automatic generation. This chapter points out important theoretical

foundations of this thesis, which are required to achieve the automatic generation of

mashups.

Figure 4.1 outlines the main questions that are answered in this chapter.

As stated in the requirements analysis (Chapter 2), the automatic generation of mashups

Figure 4.1: Chapter Overview

should utilize semantic technologies to enable automatic processing and inference by

agents. Therefore, Section 4.1 and 4.2 give an overview about knowledge representa-

58 Theoretical Foundations

tion on the Web and theory of description logic.

The background information of the mashups are retrieved from web services. There-

fore, Section 4.3 describes the central principles of web services and service oriented

computing.

The existing mashup frameworks are based on a manual selection of web services. Fur-

thermore, many tools allow the composition of different web services through a wire

oriented approach. However, as stated in the previous chapter, the selection and com-

position of web services should be done automatically. This is addressed by the re-

search on Semantic Web Services, described in Section 4.4. Furthermore, Section 4.5

describes the theoretical foundations of the automatic planning of web service compo-

sition.

Finally, there is the need for an weighing of found web service compositions in depen-

dence to the information criteria, which have been stated in the requirements analysis

(Chapter 2). This topic is addressed by Multi-Criteria Decision Theory which is de-

scribed in Section 4.6.

4.1 Knowledge Representation on the Web

The Extensible Markup Language (XML) [BPSM+] provides data formats for docu-

ments and structured data and is the preferred syntax of many higher level approaches.

The structure of an XML document can be easily processed by a software agent. XML

provides no means to express the semantics of the format used by a document [SH05,

p.21]. However, this is important to share knowledge and information among different

independent and distributed applications. Listing 4.1 and 4.2 provide a simple example

of the problem.

<?xml version=" 1 . 0 " ?>
<name>

<foreName>Thomas</foreName>
<lastName> F i s c h e r</lastName>

</name>

Listing 4.1: XML Example 1

The contents of Listing 4.1 and Listing 4.2 have equivalent information (not equivalent

data). However, both XML documents do not specify any meanings to achieve a shared

understanding of the data. Therefore, agents are not able to infer that ”foreName”

could be seen as semantically equal to “preName‘ unless they commit to a shared vo-

cabulary.

4.1 Knowledge Representation on the Web 59

<?xml version=" 1 . 0 " ?>
<name>

<preName>Thomas</preName>
<surName> F i s c h e r</surName>

</name>

Listing 4.2: XML Example 2

Furthermore, the agents are not able to infer that the string ”foreName“ represents a

forename unless it is referenced to a shared vocabulary or it is directly defined in the

application code. However, the programmatic definition of the meanings is not suit-

able, because there is a huge mass of other XML enitites that could refer to forename,

for instance the German word ”Vorname“ or even the string ”fNm”. Thus, the pro-

grammatic definition would not be able to deal with other XML formats.

The research community has proposed frameworks such as RDF [BAB], RDF-S [BR]

and OWL [BvHH+] that provide more expressive meanings. Nevertheless, XML pro-

vides a structure that could be traversed by machines and thus is also often utilized by

higher level approaches.

4.1.1 Resource Description Framework (RDF)

The Resource Description Framework (RDF) is a framework for representing informa-

tion on the Web, motivated by an increasing demand on agent driven automation of

data processing outside the initial environment, as well as the combination of data from

different applications [KC]. RDF is based on formal concepts. In general, RDF allows

Figure 4.2: An RDF Graph Describing South Beach

anyone to make statements about any resource, which could be a material or immate-

rial thing. A statement is defined as a triple, consisting an subject s, predicate p and

object o, written as p(s, o). This means that an subject s has an predicate (or property)

p with value o.

60 Theoretical Foundations

RDF is based on a graph data model. A RDF graph G = (V, E) is a representation of

the document triples. Furthermore, a subgraph of a RDF graph is a subset of the triples

of the document. A node n ∈ V could be a subject s or object o, which is connected

through a directed arc (s, o) ∈ E that represents the predicate p. Figure 4.2 shows a

graph that provides different information about ”South Beach“ such as ”title“ and ”de-

scription“.

The vocabulary of RDF is based on URI references. A URI reference of a node (resource)

identifies the thing the node represents (e.g. ”http://www.example.org/place01“ rep-

resents ”South Beach“). Resources have to be not necessarily an existing network ad-

dress, they can be abstract. URI references are also used in predicates to specify rela-

tionships between nodes (e.g. ”http://www.example.org/description” represents the

property “description“). Besides URI references, the graph could also contain differ-

ent types of values such as integers, dates, strings etc.. Values are represented by plain

(e.g.”South Beach“) or typed literals. The data types of typed literals are related to XML

Schema data types (e.g. ”23”ˆˆ<http://www.w3.org/2001/XMLSchema#integer>).

It is also possible to insert blank nodes into the graph. Blank nodes have no shared

meaning or name. They are simply used to denote a unique node in the graph [KC],

which is not specified in more detail.

The whole RDF graph is derived by a logical conjunction of the statements. Two differ-

ent sets of statements can be merged by the union of the triples1. In fact, this enables

in general also a simple merge of statements that were derived from disparate data

sources and that utilize terms of a shared vocabulary.

RDF statements can be reified. Reification allows to insert statements as values of sub-

jects or objects, to build nested or chained graphs that enable, for instance, the specifi-

cation of doubt or support for statements [SH05, p.124].

<?xml version=" 1 . 0 " ?>
<rdf:RDF xmlns :rdf=" h t t p : //www. w3 . org/1999/02/22− rdf−syntax−ns# "

xmlns:ex=" h t t p : //www. example . org/">
< r d f : D e s c r i p t i o n r d f : a b o u t=" h t t p : //www. example . org/place01 ">

< r d f : t y p e r d f : r e s o u r c e =" h t t p : //www. example . org/Beach "/>
< e x : t i t l e >South Beach</ e x : t i t l e >
< e x : d e s c r i p t i o n >South Beach i s one of the popular areas of Miami Beach</

e x : d e s c r i p t i o n >
</ r d f : D e s c r i p t i o n >

</rdf:RDF>

Listing 4.3: RDF/XML Example

1If equal blank nodes are in the sets of triples, they have to be renamed, since they are only unique local
to the specific set.

4.1 Knowledge Representation on the Web 61

An RDF graph can be serialized in different XML based formats that enable an easy

processing of the document by software agents.

Listing 4.3 provides an example of a serialization of the RDF graph of Figure 4.2. The

URI references such as “rdf:Description“ are written as XML QNames (qualified names).

This means that they have a prefix that denotes the namespace URI as well as an local

name that refers to a qualified element or attribute of the namespace

(e.g. ”http://www.w3.org/1999/02/22-rdf-syntax-ns#” and “Description”) .

An important element of RDF is ”rdf:Description“, which captures statements about

specific resources. The ”rdf:about“ attribute specifies the URI reference of the resource

of the statement. Properties (e.g. ”http://www.example.org/title”) of the specific ver-

tex are added as sub elements of this resource element. It is important to denote that

the entities “rdf:Description” and “ex:description” have completely different meanings.

The first refers to a description about a specific resource, whereas the second denotes a

property of this resource.

The abbreviated form of the XML serialization directly incorporates the resource type

(e.g. “http://www.example.org/Beach”). Listing 4.4 provides an example of the ab-

breviated XML serialization.

<rdf:RDF
xmlns :rdf=" h t t p : //www. w3 . org/1999/02/22− rdf−syntax−ns# "
xmlns :ex :=" h t t p : //example . org/">

<ex:Beach r d f : a b o u t=" h t t p : //www. example . org/place01 ">
< e x : d e s c r i p t i o n >South Beach i s one of the popular areas of Miami Beach</

d c : d e s c r i p t i o n >
< e x : t i t l e >South Beach</ d c : t i t l e >

</ex:Beach>
</rdf:RDF>

Listing 4.4: RDF/XML Example - Abbreviated Notation

As described above, a RDF graph is based on a set of subject-predicate-object triples.

The direct serialization of the triples is shown in Listing 4.5.

< h t t p : //www. example . org/places /01>
< h t t p : //www. example . org/ d e s c r i p t i o n >

" South Beach i s one of the popular areas of Miami Beach " .
< h t t p : //www. example . org/place01>

< h t t p : //www. example . org/ t i t l e >
" South Beach " .

< h t t p : //www. example . org/place01>
< h t t p : //www. w3 . org/1999/02/22− rdf−syntax−ns# type>

< h t t p : //www. example . org/Beach>

Listing 4.5: RDF/XML Example - Triples Notation

62 Theoretical Foundations

The previous explanations have investigated how to formulate formal statements about

information. Mashup data should be represented by such statements to allow an auto-

matic processing and inferences by mashup agents.

However, RDF provides no means to define the terms of the vocabulary

(e.g. “http://www.example.org/Beach“) that is used throughout the statements. This

is addressed by RDF Schema (RDF-S) [BR] and the Web Ontology Language (OWL)

[BvHH+].

4.1.2 RDF Schema (RDF-S)

RDF-S [BR] is a minimal ontological language. It has capabilities to define classes (e.g.

“http://www.example.org/Beach“) and properties (e.g. ”http://www.example.org/title”),

and enables the specification of how they should be used together. Instances of a class

are referenced to its class through the “rdf:type” definition, which has already been

used in Listing 4.3. Furthermore, classes could be arranged in a hierarchy through the

subclass relationship “rdfs:subClassOf“, which is transitive. This means that A is also

Figure 4.3: RDF-S Hierarchy Example

a subclass of C, if class A is a subclass of B and B is a subclass of C. This holds similar

for the instances, which means that an instance i of class A is also an instance of type

C. The reader should note that this is very similar to the object-oriented understanding

of inheritance. However, RDF-S enables also the separate specification and inheritance

of properties through the definition of sub properties and thus differs from the object-

oriented approach.

A property has a specific domain and range. The range value specifies that instances

of this property are values of a specific class or type (e.g. ”xsd:integer“). The domain

relation determines that the property applies to a specific class [BR].

Listing 4.6 is based on the serialization of the graph of Figure 4.3 that specifies ”Lo-

cation“, ”City“ and ”Beach“ as classes. ”City“ and ”Beach“ are subclasses of the class

”Location“. Furthermore, it specifies the properties for title and description of loca-

tions.

4.1 Knowledge Representation on the Web 63

<?xml version=" 1 . 0 " ?>
< !DOCTYPE rdf:RDF [<!ENTITY xsd " h t t p : //www. w3 . org /2001/XMLSchema# ">] >
<rdf:RDF

xmlns :rdf=" h t t p : //www. w3 . org/1999/02/22− rdf−syntax−ns# "
xmlns : rdfs=" h t t p : //www. w3 . org /2000/01/ rdf−schema# "
xml:base=" h t t p : //www. example . org/">

< r d f : D e s c r i p t i o n r d f : I D=" Locat ion ">
< r d f : t y p e r d f : r e s o u r c e =" h t t p : //www. w3 . org /2000/01/ rdf−schema# Class "/>

</ r d f : D e s c r i p t i o n >

< r d f : D e s c r i p t i o n r d f : I D=" Beach ">
< r d f : t y p e r d f : r e s o u r c e =" h t t p : //www. w3 . org /2000/01/ rdf−schema# Class "/>
<rdfs : subClassOf r d f : r e s o u r c e =" # Locat ion "/>

</ r d f : D e s c r i p t i o n >

< r d f : D e s c r i p t i o n r d f : I D=" City ">
< r d f : t y p e r d f : r e s o u r c e =" h t t p : //www. w3 . org /2000/01/ rdf−schema# Class "/>
<rdfs : subClassOf r d f : r e s o u r c e =" # Locat ion "/>

</ r d f : D e s c r i p t i o n >

< r d f : P r o p e r t y r d f : I D=" t i t l e ">
<rdfs:domain r d f : r e s o u r c e =" # Locat ion "/>
< r d f s : r a n g e r d f : r e s o u r c e ="&xsd ; s t r i n g "/>

</ r d f : P r o p e r t y >

< r d f : P r o p e r t y r d f : I D=" d e s c r i p t i o n ">
<rdfs:domain r d f : r e s o u r c e =" # Locat ion "/>
< r d f s : r a n g e r d f : r e s o u r c e ="&xsd ; s t r i n g "/>

</ r d f : P r o p e r t y >
</rdf:RDF>

Listing 4.6: RDF-S Example

The previous investigation showed how to achieve a simple shared vocabulary. Nev-

ertheless, the expressiveness of RDF-S is limited. Amongst others things, it provides

no support for cardinality constraints on properties, transitive properties as well as

equivalence and disjointness relationships of classes and individuals. The Web On-

tology Language (OWL) [BvHH+] has more facilities to express an ontology and is

considered below in more detail.

64 Theoretical Foundations

4.1.3 Web Ontology Language (OWL)

The Web Ontology Language (OWL) [BvHH+] [MvH04] is build on top of RDF and

RDF-S. OWL provides the three sub languages OWL-Lite, OWL-DL and OWL-Full.

The usage of a language depends on the needed expressiveness of the ontology.

OWL-Lite is a light-weight approach that is not as complex as the other ones and en-

ables a quick migration of existing conceptualizations as well as a simple development

of tools. OWL-Lite supports class and property equivalence relationships. Further-

more, it is possible to denote two individuals as equal. In addition, properties could be

characterised as ”ObjectProperty“, ”DatatypeProperty“ as well as transitive, symmetric

or functional property [BvHH+]. Object properties reference from an instance of a class

to an instance of another class, whereas data type properties are related to an instance

of a data type. Functional properties denote that a property could not have more than

one value for a specific individual.

OWL-DL supports high expressiveness while retaining decidability. This means that

in contrast to OWL-Full, the inference processing time is guaranteed to be finite. Nev-

ertheless, OWL-DL contains all OWL language constructs. To achieve the decidability,

the language constructs have to be used under specific restrictions. For instance, a

class can not be an instance of another class. Furthermore, OWL-DL enables the spec-

ification of disjointness of classes and allows the creation of cardinality restrictions for

non-negative integers (instead OWL-Lite allows only O or 1 for cardinality restrictions).

Listing 4.7 provides an example of a shared vocabulary based on OWL-DL. It defines

the three OWL classes: ”Location“,”City“ and ”Beach“. Cities and beaches are special

locations. Furthermore, a city is denoted to be disjoint from a beach.

<?xml version=" 1 . 0 " ?>
<rdf:RDF

xmlns=" h t t p : //www. example . org/ontology . owl# "
xmlns :rdf=" h t t p : //www. w3 . org/1999/02/22− rdf−syntax−ns# "
xmlns:xsd=" h t t p : //www. w3 . org /2001/XMLSchema# "
xmlns : rdfs=" h t t p : //www. w3 . org /2000/01/ rdf−schema# "
xmlns:owl=" h t t p : //www. w3 . org /2002/07/owl# ">

<owl:Ontology r d f : a b o u t=" "/>
<owl :Class r d f : I D =" City ">

< o w l : d i s j o i n t W i t h>
<owl :Class r d f : I D=" Beach "/>

</o w l : d i s j o i n t W i t h>
<rdfs : subClassOf>

<owl :Class r d f : I D=" Locat ion "/>
</rdfs : subClassOf>

</owl :Class>

4.1 Knowledge Representation on the Web 65

<owl :Class r d f : a b o u t=" #Beach ">
<rdfs : subClassOf r d f : r e s o u r c e =" # Locat ion "/>
< o w l : d i s j o i n t W i t h r d f : r e s o u r c e =" # City "/>

</owl :Class>

<owl :ObjectProperty r d f : I D=" l o c a t e d I n ">
< r d f s : r a n g e r d f : r e s o u r c e =" # Locat ion "/>
<rdfs:domain r d f : r e s o u r c e =" # Locat ion "/>

</owl :ObjectProperty>

<owl:DatatypeProperty r d f : I D=" d e s c r i p t i o n ">
< r d f s : r a n g e r d f : r e s o u r c e =" h t t p : //www. w3 . org /2001/XMLSchema# s t r i n g "/>
<rdfs:domain r d f : r e s o u r c e =" # Locat ion "/>

</owl:DatatypeProperty>

<owl :Funct ionalProperty r d f : I D=" t i t l e ">
<rdfs:domain r d f : r e s o u r c e =" # Locat ion "/>
< r d f : t y p e r d f : r e s o u r c e =" h t t p : //www. w3 . org /2002/07/owl# DatatypeProperty "/>
< r d f s : r a n g e r d f : r e s o u r c e =" h t t p : //www. w3 . org /2001/XMLSchema# s t r i n g "/>

</owl :Funct ionalProperty>

<Beach r d f : I D =" place01 ">
< t i t l e r d f : d a t a t y p e =" h t t p : //www. w3 . org /2001/XMLSchema# s t r i n g ">

South Beach</ t i t l e >
< d e s c r i p t i o n r d f : d a t a t y p e =" h t t p : //www. w3 . org /2001/XMLSchema# s t r i n g ">

South Beach i s one of the popular areas of Miami Beach </ d e s c r i p t i o n >
</Beach>

</rdf:RDF>

Listing 4.7: OWL-DL Example

The ontology defines data type properties for the title and description of locations. Fur-

thermore, the title is a functional property that could have only one value per instance.

In addition, the example defines an object property ”locatedIn“ for locations. The range

and domain of this object property are instances of type ”Location“. Thus, locations

could be located in other locations. For instance, a beach could be located in a city.

Besides the formal definition of classes and properties, the ontology defines an instance

of the class ”Beach“ with the identifier ”place01“. The instance is described by the in-

herited properties ”title“ and ”description”.

In the previous parts of this section, the representation of knowledge on the Web has

been described. Such a formal representation is needed to enable inference by software

agents. The required semantical expressiveness determines if a simple vocabulary such

66 Theoretical Foundations

Table 4.1: SPARQL Result

x http://www.example.org/ontology.owl#place01

desc South Beach is one of the popular areas of Miami Beach

as RDF-S is sufficient or if more expressive approaches such as OWL-Lite and OWL-DL

should be used to represent knowledge.

4.1.4 SPARQL Query Language for RDF

SPARQL [PS] is a query language for RDF that supports different query types such as

SELECT, CONSTRUCT, ASK and DESCRIBE. A query language for RDF is impor-

tant to get relevant subsets of triples or to create graphs programmatically . Different

query forms are used throughout this thesis and are therefore described shortly.

Typically a SPARQL query defines a basic graph pattern that consists of a set of triple

patterns. Triple patterns are similar to RDF triples. However, they can furthermore con-

tain variables annotated by question marks (e.g. ?x). The SPARQL processor matches

the triple patterns to a given RDF graph and substitutes the variables by the values of

the matching triples. Thus, the SPARQL query may responds multiple solutions, if the

graph pattern exists more than once.

Listing 4.8 provides an example of a SELECT query, which is similar to a Structured

Query Language (SQL) SELECT query, except that it operates on triples.

The SPARQL query selects all subjects and descriptions that have the predicates

• “http://www.example.org/ontology.owl#title” with value "South Beach" and

• “http://www.example.org/ontology.owl#description”.

Instead of variables it is also possible to add numeric values or literals (e.g. “South

Beach”) to the query to precise it in more detail. The result of the query of Listing 4.8

on the data specified in Listing 4.7 is shown in Table 4.1.

PREFIX e x : < h t t p : //www. example . org/ontology . owl#>
SELECT ?x ? desc
WHERE

{ ?x e x : t i t l e " South Beach " .
?x e x : d e s c r i p t i o n ? desc . }

Listing 4.8: RDF/XML Example

It is further possible to add one or more optional graph patterns to the WHERE clause

as well as filter and order statements [PS]. Blank nodes can be denoted by a “_:” (e.g.

“_ : a“).

4.1 Knowledge Representation on the Web 67

The CONSTRUCT query creates an RDF graph that corresponds to the graph pattern

described in the WHERE clause.

In Listing 4.9 a graph is created for all subjects with title "South Beach“. The result-

ing graph (Listing 4.10) contains additionally the object property ”locatedIn”, which

relates to an instance of the class “City“ identified by ”place02“. Thus, it is possible to

create RDF graphs programmatically. Blank nodes could be also part of CONSTRUCT
queries to define structures.

PREFIX e x : < h t t p : //www. example . org/ontology . owl#>
CONSTRUCT{

?x e x : t i t l e " South Beach " .
?x e x : l o c a t e d I n e x : p l a c e 0 2 .

e x : p l a c e 0 2 a e x : C i t y .
e x : p l a c e 0 2 e x : t i t l e " Miami " . }

WHERE{ ? x e x : t i t l e " South Beach " . }

Listing 4.9: SPARQL CONSTRUCT Query

<rdf:RDF
xmlns :rdf=" h t t p : //www. w3 . org/1999/02/22− rdf−syntax−ns# "
xmlns:ex=" h t t p : //www. example . org/ontology . owl# "
xmlns:owl=" h t t p : //www. w3 . org /2002/07/owl# "
xmlns:xsd=" h t t p : //www. w3 . org /2001/XMLSchema# "
xmlns : rdfs=" h t t p : //www. w3 . org /2000/01/ rdf−schema# " >

< r d f : D e s c r i p t i o n r d f : a b o u t=" h t t p : //www. example . org/ontology . owl# place01 ">
< e x : t i t l e >South Beach</ e x : t i t l e >
< e x : l o c a t e d I n r d f : r e s o u r c e =" h t t p : //www. example . org/ontology . owl# place02 "/

>
</ r d f : D e s c r i p t i o n >

< r d f : D e s c r i p t i o n r d f : a b o u t=" h t t p : //www. example . org/ontology . owl# place02 ">
< e x : t i t l e >Miami</ e x : t i t l e >
< r d f : t y p e r d f : r e s o u r c e =" h t t p : //www. example . org/ontology . owl# c i t y "/>

</ r d f : D e s c r i p t i o n >

</rdf:RDF>

Listing 4.10: CONSTRUCT Query Result

The SPARQL ASK query returns a boolean value which is true if a specific graph pat-

tern could be matched. The query of Listing 4.11 asks for a triple with the predicate

”title“ and ”South Beach“ as the corresponding value. The query returns “TRUE” on

the data of Listing 4.7.

68 Theoretical Foundations

PREFIX e x : < h t t p : //www. example . org/ontology . owl#>
ASK { ? x e x : t i t l e " South Beach " . }

Listing 4.11: SPARQL ASK Query

The above explanations investigated how knowledge could be represented. Further-

more, it was explained how to extract data from formal semantic descriptions through

the SPARQL query language. The SPARQL language is used throughout the thesis to

check if specific graph patterns are fulfilled by the given semantic data and to create

RDF graphs programmatically.

4.2 Description Logics (DL)

This section describes the knowledge representation by Description Logics in a formal

way. Description Logics address the formal compact and effective representation of in-

formation, while allowing reasoning tasks to be performed in a computational effective

way [BCM+07]. Thus logic-based semantics as well as the emphasis on reasoning as a

central service denote Description Logics.

Reasoning is central to Description Logics: “reasoning allows one to infer implicitly rep-
resented knowledge from the knowledge that is explicitly contained in the knowledge base”

[BCM+03, p.43]. Furthermore, DL systems are knowledge representation systems, thus

they aim to answer queries in a reasonable time.

The KL-ONE system was one of the earliest frameworks that addressed these features

and has been based on the experience of semantic networks. It provided a formal log-

ical basis for the representation of classes (or concepts) as well as relationships (often

called roles) between the classes [BCM+07]. These principle are central to the family of

formalisms of Description Logic [BCM+07, p.47].

In accordance to the above explanations, the basic syntactic building blocks of Descrip-

tion Logics are atomic concepts, atomic roles, and individuals. The creation of com-

plex concepts could be achieved by a defined set of constructors that define the expres-

siveness of the language [BCM+07, p.49].

Description Logics languages are distinguished by their constructors. The basic lan-

guage is AL (attributive language), which is a minimal language that is of practical

interest, and which serves as a base for the other languages of this family. It is formed

according to the following syntax rule [BCM+07, p.52], whereby C and D are arbitrary

4.2 Description Logics (DL) 69

concepts. Furthermore, A is an atomic concept and R is an atomic role (or property).

C, D → A | (atomic concept)

> | (universal concept)

⊥ | (bottom concept)

¬A | (atomic negation)

C u D | (intersection)

∀R.C | (value restriction)

∃R.> | (limited existential quantification)

AL could express various statements, for instance, let City and Capital denote two

atomic concepts, then theAL concept CityuCapital denotes all cities that are a capital,

while City u ¬Capital describes all cities which are not a capital.

Further expressiveness could be achieved through more constructors such as

(see [BCM+07, p.52, p.534]):

• F functional properties

• U union

• E full existential quantification of roles

• C negation of arbitrary concepts

• N number restrictions (cardinally restrictions)

• I inverse roles

• R intersection of roles

• H role hierarchy

• O nominals

• Q qualified number restrictions

• S abbreviation for ALCR+ that extends ALC by transitive roles.

OWL-DL and OWL-Lite have been introduced in the previous section. As described

previously, OWL-Lite is based on a reduced set of constructors in contrast to OWL-

DL. OWL-DL and OWL-Full have the same set of constructors but differ in the usage

of them [BCM+07, p.467]. However, the expressiveness of OWL-Full goes beyond the

standard Description Logic framework and is denoted by its undecidability [BCM+07,

p.480]. In the context of Description Logics theory, OWL-DL is based on SHOIN and

OWL-Lite is SHIF . The possible use of data type properties is denoted by an addi-

tional (D).

70 Theoretical Foundations

In general there is a trade-off between expressiveness and difficulty of reasoning. In-

vestigation of the computational complexity and decidability of Description Logics is

therefore an important topic.

4.2.1 Structure of DL-based Systems

The logical structure of a DL knowledge base is based on a so called TBox and a ABox
(KB = 〈TBox, ABox〉).
The TBox contains intensional knowledge and is build through the definition of con-

cepts and properties [BCM+03, p.12]. The relationships among the concepts form a

lattice like structure. In other words, the TBox contains the terminology of the vo-

cabulary (e.g. a Woman could be defined as a female person by the definition of

Woman ≡ Person u Female).

The ABox contains extensional knowledge and denotes knowledge specific to the indi-

viduals (e.g the concept assertion Female u Person(ANNA) or the role assertion

hasChild(ANNA, JACOB)). Thus, the ABox contains assertions about the named in-

dividuals in terms of the defined vocabulary. Furthermore, the ABox dependence on

the current circumstances and is part of constant change. This is not the case to inten-

sional knowledge [BCM+07].

4.2.2 Inference

Knowledge representation systems, which are structured by ABox and TBox go beyond

the specification of concepts, roles and assertions. They provide reasoning services,

which are able to extract implicit knowledge [BCM+07, p.67]. Inference is an important

topic of Description Logics. In the following the central inference tasks are listed (see

[BCM+07, 68] for a formal definition).

• Satisfiability

• Subsumption

• Equivalence

• Disjointness

Satisfiability checks that an expression (newly defined concept based on other con-

cepts) does not denote the empty concept. This means that the reasoner checks if there

is an interpretation that satisfies the axioms of the expression. Satisfiability is a key

inference task, because other inference mechanisms could be reduced to the checking

of unsatisfiability [BCM+07]. Subsumption denotes whether a concept is more general

4.3 Web Services 71

than another concept. Equivalence checks, if two concepts are equivalent. In contrast,

disjointness checks if two concepts are disjoint.

The individuals of a knowledge base make reasoning more complex and require there-

for extensions to the TBox reasoning techniques. The reasoning service has to take into

account both TBox and ABox and thus, the reasoning problem becomes more complex.

Since reasoning algorithms are not the central topic of this thesis, a detailed desrip-

tion of different alogrithms such as “structural subsumption algorithms” as well as

“tableau-based algorithms” is neglected. The interested reader could refer to Baader et

al. for a detailed investigation [BCM+07].

The previous two sections described the semantic representation of knowledge. This is

the basis for a suitable representation of the mashup data. For an automatic processing

of the data, the framework has to provide a shared vocabulary that is used to describe

mashup data. Thus, the mashup framework has to define an ontology.

4.3 Web Services

Several mashup definitions outline the importance of web services to mashups (see

Chapter 1). In fact, this thesis proposes a mashup framework based on the invocation

of different web services. It is therefore suitable to describe their central principles.

Despite the fact that services and web services could be interpreted differently in dif-

ferent domains, this thesis defines web services as functionality that could be engaged

over the Web [SH05].

The central intention of the utilization of web services is the creation of a Service-

Oriented Architecture (SOA) that supports loosely coupling, implementation neutrality

and flexible configuration of independent components [SH05, p.76]. In this context im-

plementation neutrality means that only the interface of the component is important to

the architecture and not its internal implementation.

The utilization of standardised web services enable the interoperability of software that

has been turned out by different independent developers. Furthermore, the web service

standards enable the creation of general purpose tools that could be used to manage the

different artifacts [SH05, p.78].

However, interoperability does not automatically support automated agent processing.

In fact, standards such as WSDL provide and defined technical description of web ser-

vices [CCMW] [CMRW], but they do not define the meanings of the messages that has

72 Theoretical Foundations

Figure 4.4: The general architecture model for Web Services

([SH05, p.20])

been exchanged or the effects that they do create. This is addressed by the research on

Semantic Web Service Description Languages.

Web services could serve as information sources (often called information web ser-

vices). In this case, they return specific information or content in dependence to the

specific request values. However, web services could also create real-world effects.

This means that the invocation of a web service could, for instance, perform a ticket

ordering or something else. This thesis focusses on the former types of web services.

The influences of this assumption are outlined at the relevant points of the subsequent

chapters.

4.3.1 General Architecture Model for Web Services

The general architecture of the web service environment is based on a web service

provider, a web service requester and a web service broker.

The web service provider creates a description of the implemented web service. The

description of the web service is published by a web service broker. Human or soft-

ware agents, which need a web service, query the broker to find one that is suitable for

their needs. The description of the found service is then used to invoke the web service.

Figure 4.4 gives an overview about this general model.

In context of the present mashup frameworks, the web service selection is done manu-

ally. Most tools provide an internal directory that maintains the available web services.

Users could search this directory and add related components (or blocks) for invocation

4.3 Web Services 73

to their mashup. The interaction between web service provider and requester can be

based on a simple request-response schema. Furthermore, the composition of different

web services can lead to more complex applications.

As the count of web services is increasing steadily, the manual selection becomes more

and more difficult, because the user has to evaluate, if a web service is relevant for his

problem. Thus, the directories implement search and filter techniques to reduce the

overflow of web services. However, often a standalone web service is not able to ful-

fill the needs of the agent. In fact, a real productivity gain can be often only achieved

through the incorporation of different web service into the mashup application. How-

ever, in case of compositions of web services the user has to evaluate how the web

service have to be combined to achieve the present goal and at the same time which

services should be selected. This problem leads to combinatorial explosion that is diffi-

cult to oversee by a human agent.

The aim of this thesis is to overcome this problem by an fully automatic web service se-

lection and composition. However, this requires a service description that is based on

an expressive service description language and that could be processed and utilized

for inference by a software agent.

4.3.2 Considered Types of Web Services

An important type of web services are so called SOAPful web services. The name is de-

rived from the underlying special protocol. The Simple Object Access Protocol (SOAP)

is a protocol for exchanging XML messages, which can use, for instance, HTTP, SMTP

as its underlying transport protocol. A detailed description of the format of SOAP

messages could be found in Singh and Huhns [SH05, p.21-36] as well as in the SOAP

specification [SOA].

Also central to mashups are so called RESTful web services. REST means Represen-

tational State Transfer and has been proposed by Roy Fielding [Fie00]. The REST ar-

chitectural style is not a standard, but utilizes existing standards such as HTTP, URI

or representations such as XML. REST means that the invocation of a URI responds a

representation of a source that transfers the client application into a specific state. Fur-

thermore, like in a state machine, the client application could utilize other URIs of the

returned document to get into another state. This is the basic principle that made the

Web so popular and it is underlying to many web services[SH05].

In fact, most RESTful services use a defined set of URL parameters to query internal

databases and perform the application logic. The HTTP response contains mostly a

XML document that denotes the representation of this resource.

74 Theoretical Foundations

The previous explanations outlined shortly the most important types of web services

in context of this thesis.

4.3.3 Web Service Description Language (WSDL)

A web service description is central to the service-oriented model, because agents need

this description to located suitable services and invoke the service. Therefore, the de-

scription of a web service is placed on a directory (the broker) that could be searched

by the agent. However, the central question is how a description should look like to

achieve interoperability and automated processing by agents.

The Web Service Description Language (WSDL) is a special XML format to describe

web services [CCMW] [CMRW]. Version 2.0 has substantial differences in comparison

to WSDL 1.1. It supports the description of RESTful web services in a holistic way

(WSDL 1.1 only supported GET and POST HTTP requests). However, the current tool

and API support for WSDL 2.0 is not mature. Instead, WSDL 1.1 is supported by a

variety of tools and is used throughout the industry.

WSDL 1.1 describes services as collections of endpoints (also often called ports). Fur-

thermore, WSDL distinguishes between the abstract definition of endpoints and ex-

changed messages from their concrete utilization.

The abstract definitions refer to messages and port types. Port types are a collection of

operations. The concrete utilization is specified by bindings (e.g. HTTP GET / POST or

SOAP 1.1) as well as data format specifications for the exchanged messages [CCMW].

The WSDL document of a web service could be used to automatically configure a web

service client. The client is able to interact with the web service, based on the defined

message structure. However, WSDL does not define any meanings of the exchanged

messages and the created effects of the web services. Therefore, a software agent is not

able to automatically select web services based on its semantics.

The introduction of semantic descriptions for web services is addressed by the the re-

search on Semantic Web Services.

4.4 Semantic Web Services 75

4.4 Semantic Web Services

In recent years the research interest in Semantic Web Services (SWS) has increased to a

huge research field[KKR08]. Nowadays, web services have gained wide popularity in

the mashup community, because they provide an language-independent procedure to

invoke functionality over the Web and to retrieve information from different sources.

The existing web service standards provide a good interoperability. However, for an

automatic selection of web services as well as the dynamic composition of web services

the expressiveness of the existing standards is not enough.

Automatic composition of web services is the central topic of this thesis, because it

promises to gather and remix mashup data without user intervention. The semantic

description of a web service requires a suitable semantic service description language

[KKRK06]. The research community has turned out different standards that are de-

scribed in the following.

4.4.1 SAWSDL

SAWSDL [FL07] is an annotation mechanism that provides the extension of WSDL 1.1

and 2.0 with additional semantics.

SAWSDL is in the status of a W3C recommendation. The approach is based on and

closely related to the predecessor WSDL-S [AFM+]. The annotation is achieved through

the use of XML extensibility elements. SAWSDL provides two basic types of annota-

tions, the model reference and the schema mapping.

4.4.1.1 Model References

Model references are used to relate semantic concepts of an ontology to inputs, out-

puts, operations and XML schema elements etc.. The annotation mechanism itself is

independent from the used ontology language of the shared vocabulary.

Listing 4.12 [FL07] annotates an XML schema element, named ”OrderRequest“, by the

corresponding concept of an ontology. The schema element is then referenced to an

input of a message of the WSDL document, and thus the input is annotated by a se-

mantic concept of an ontology. This annotation provides semantics to the exchanged

messages. However, this describes the web service insufficiently. Instead, a "service
should be described by the state change that takes place upon successful execution of the service"

[KKRM05].

76 Theoretical Foundations

Therefore, the model references can be utilized to annotate operations with external

representations of the preconditions and effects.

. . .
<xs :e lement name=" OrderRequest " sawsdl:modelReference=" h t t p : //www. w3 . org

/2002/ws/sawsdl/spec/ontology/purchaseorder # OrderRequest ">
<xs:complexType>

<xs :sequence>
<xs :e lement name=" customerNo " type=" x s : i n t e g e r " />
<xs :e lement name=" orderItem " type=" item " minOccurs=" 1 " maxOccurs="

unbounded " />
</xs :sequence>

</xs:complexType>
</xs :e lement>
. . .

Listing 4.12: SAWSDL XML Schema Element Annotation

4.4.1.2 Schema Mappings

Schema mappings are very important, to achieve an effective mediation between the

semantic data and specific XML formats of input and output messages of the web ser-

vice. This achieves data mediation between the agent and the web service.

This mediation is important because a direct alignment of the inputs and outputs of

different independent web services is very difficult to achieve.

The often automatically generated technical WSDL descriptions are independent from

the agent. This means that inputs and outputs of web services, described by XML

schema elements, could be described differently among different web services even if

they have equal semantics. The problem is to transform one or more outputs of differ-

ent web services into the input format of the subsequent web service that should utilize

the existing information.

The following examples clarify this problem. The first web service responds a list of

persons (Listing 4.13) containing the name and age of the person.

<?xml version=" 1 . 0 ">
<output>

<person>
<name>

<f i rs t_name>Thomas</f i rs t_name>
<last_name> F i s c h e r</f i rs t_name>

</name>
<age>24</age>
</person>

4.4 Semantic Web Services 77

</output>

Listing 4.13: Web Service 1 XML Responded Output

The subsequent web service needs as input another XML format (Listing 4.14), but the

same information. For instance, the subsequent web service could respond the address

of the person given its name and age.

<?xml version=" 1 . 0 ">
<input>

<forename>Thomas</forename>
<surname> F i s c h e r</surname>
<age_of_person>24</age_of_person>

</input>

Listing 4.14: Web Service 2 XML Needed Input

A straightforward solution of the problem would be to directly transform the XML

document by XSLT. However, this is not a scalable solution for a composition of web

services, because a XSLT document has to be created for every possible combination

of two or more web services. Furthermore, the inputs of the subsequent service could

be based on multiple effects from different predecessor services. This makes a direct

transformation very difficult to achieve.

The two types of SAWSDL schema mappings, Lifting-Schema-Mapping and Lowering-

Schema-Mapping, overcome this problem. The basic idea is to transform (lift-up) the

XML output of a service into a semantic description through XSLT, which is called the

Lifting-Schema-Mapping.

Subsequent web services will need other XML formats as inputs. Therefore the seman-

tic data is lowered back to a XML format that could serve as an input of the subsequent

web service. The lowering is achieved through the use of SPARQL and XSLT. SPARQL

is used to query the semantic data, to retrieve the required triples of the subsequent

web service. The result of the query is then transformed by XLST in accordance to the

XML schema of the input of the subsequent web service.

In fact, the shared vocabulary provides the means to create mappings for each web

service independently from the other ones as well as the possibility to merge automat-

ically the triple data of different outputs of web services.

78 Theoretical Foundations

Listing 4.15, shows an example Lifting XSLT for the output of web service one

(Listing 4.13), which results in the semantic data of Listing 4.16.

<?xml version= ’ 1 . 0 ’ ?>
< x s l : t r a n s f o r m version=" 2 . 0 "

xmlns :xs l=" h t t p : //www. w3 . org /1999/XSL/Transform "
xmlns :rdf=" h t t p : //www. w3 . org/1999/02/22− rdf−syntax−ns# "
xmlns:hash=" x a l a n : //exmaple . org/hasher "
extension−element−p r e f i x e s =" hash "
xmlns:ex=" h t t p : //example . org/ontology # "
< x s l : o u t p u t method=" xml " version=" 1 . 0 " encoding=" iso−8859−1" indent=" yes " /

>
< x s l : t e m p l a t e match="/">

<rdf:RDF>
< x s l : f o r−each s e l e c t ="//person ">

<ex:Person r d f : a b o u t=" h t t p : //example . org/person /{\$companyNameHash} ">
< e x : f i r s t n a m e >< x s l : v a l u e−of s e l e c t =" . name/f i rs t_name "/></ e x : f i r s t n a m e

>
<ex: las tname>< x s l : v a l u e−of s e l e c t =" . name/last_name "/></lastname>
<ex :age>< x s l : v a l u e−of s e l e c t =" age "/></ex_age>

</ex:Person>
</ x s l : f o r−each>
</rdf:RDF>

</ x s l : t e m p l a t e >
</ x s l : t r a n s f o r m >

Listing 4.15: Web Service 1 LiftingSchemaMapping

The lifted data is an individual that is an instance of the class person described in the

domain ontology.

<rdf:RDF>
<ex:Person r d f : a b o u t=" h t t p : //example . org/person /123121 ">

< e x : f i r s t n a m e >Thomas</ e x : f i r s t n a m e >
<ex: las tname> F i s c h e r</lastname>
<ex :age>24</ex_age>

</ex:Person>
</rdf:RDF>

Listing 4.16: Web Service 1 Output RDF

For the invocation of the subsequent service the data has to be lowered. The schema

mapping of Listing 4.17 lowers the semantic data to the required XML format. At first,

the agent uses the predefined SPARQL query to retrieve the required information. In

the example the agent retrieves all individuals that are a person and that are specified

by their name and age. In fact, this is the information, which is required by the subse-

4.4 Semantic Web Services 79

quent service. The results of the SPARQL query are transformed by an XSLT template

to the XML input format of the web service. The result is equal to the required input of

web service two (Listing 4.14) and could therefore serve as input of web service two.

<?xml version=" 1 . 0 " encoding="UTF−8" ?>
<lowering xmlns :xs l=" h t t p : //www. w3 . org /1999/XSL/Transform ">

<sparqlQuery>
PREFIX e x : &l t ; h t t p : //example . org/ontology#> ;
SELECT ? f i r s t ? l a s t ? age
WHERE {

?y r d f : t y p e ex :Person .
?y e x : f i r s t n a m e ? f i r s t .
?y ex : las tname ? l a s t .
?y ex :age ? age .

}
</sparqlQuery>
<transform>
< ! [CDATA[

< x s l : t r a n s f o r m vers ion = " 2 . 0 "
xmlns:minerva =" h t t p : // 12 7 .0 .0 .1 / ontology/minerva−p o r t a l s #"
xmlns :xs l =" h t t p : //www. w3 . org /1999/XSL/Transform "
xmlns:sp =" h t t p : //www. w3 . org /2005/ sparql−r e s u l t s #" >
< x s l : o u t p u t method="xml " vers ion = " 1 . 0 " encoding ="UTF−8"

indent =" yes " />
< x s l : t e m p l a t e match="/ s p : s p a r q l ">

<?xml vers ion ="1 .0" >
< x s l : f o r−each s e l e c t =" s p : r e s u l t s / s p : r e s u l t ">
<input >
<forename>

< x s l : v a l u e−of s e l e c t =" sp:b inding [@name= ’ f i r s t ’] / s p : l i t e r a l " />
</forename>
<surname>

< x s l : v a l u e−of s e l e c t =" sp:b inding [@name= ’ l a s t ’] / s p : l i t e r a l " />
</surname>
<age>

< x s l : v a l u e−of s e l e c t =" sp:b inding [@name= ’ age ’] / s p : l i t e r a l " />
</age>
</input >
</ x s l : f o r−each >

</ x s l : t e m p l a t e >
</ x s l : t r a n s f o r m >
]] >
</transform>
</lowering>

Listing 4.17: web Service 2 LoweringSchemaMapping

80 Theoretical Foundations

The advantage of the specification of such mappings is that for each web service (not for

each connection) a lifting and lowering schema mapping could be created that depends

only on the specific web service. This ensures that each web service is developed inde-

pendently from the structure and description of other services. However, it is assumed

that all mappings use terms of the shared vocabulary.

4.4.2 SA-REST

Lathem et al. propose the manual creation of mashups from RESTful services [LGS07],

which are described by SA-REST, a novel semantic service description language. The

SA-REST language is independent from the concepts of mashups, but it could be lever-

aged to create them. SA-REST is build on the ideas of SAWSDL and has similar se-

mantic support. This means that it uses model references to annotate technical descrip-

tions with service inputs, outputs, operations and faults [LGS07]. The annotations of

SA-REST (and SAWSDL) reference to classes of ontologies, to describe the service in

a semantic way. Neither SA-REST nor SAWSDL restrict to a specific type of ontology

language.

SA-REST incorporates also the concept of lifting and lowering schema mappings to

achieve data mediation. This means that the inputs of the RESTful service are derived

from SPARQL queries on semantic data and corresponding XSLT, which is called the

lowering. The outputs of the services are lifted to a semantic representation through

XSLT [LGS07].

The annotation technique is the key point of SA-REST that differs from SAWSDL. Lathem

et al. propose to embed the annotation into RDFa [BAB]. RDFa uses XHTML [BIM+]

extensions to annotate XHTML pages with semantics. Thus the web service annotation

of SA-REST could be added directly to the XHTML page that describes the services

to combine the machine and human readable service descriptions. This means that

the subjects, predicates are directly added to appropriate XHTML elements (e.g. div-

Element).

Furthermore it is possible to use GRDDL [Con] to add annotations to the HTML page.

GRDDL simply transforms the annotated document through an predefined XSLT into

another format, which could be RDF or any other format.

4.4 Semantic Web Services 81

Listing 4.18 [LGS07] provides an example of an GRDDL annotated web page.

<html x m l n s : s a r e s t =" h t t p : // l s d i s . cs . uga . edu/SAREST# ">
. . .

<meta about=" h t t p : // c r a i g s l i s t . org/search/">
<meta property=" s a r e s t : i n p u t "

content=" h t t p : // l s d i s . cs . uga . edu/ont . owl# Location_Query "/>
<meta property=" s a r e s t : o u t p u t "

content=" h t t p : // l s d i s . cs . uga . edu/ont . owl# Locat ion "/>
<meta property=" s a r e s t : a c t i o n " content="HTTP GET"/>
<meta property=" s a r e s t : l i f t i n g "

content=" h t t p : // c r a i g s l i s t . org/api/ l i f t i n g . x s l "/>
<meta property=" s a r e s t : l o w e r i n g "

content=" h t t p : // c r a i g s l i s t . org/api/lowering . x s l "/>
<meta property=" s a r e s t : o p e r a t i o n "

content=" h t t p : // l s d i s . cs . uga . edu/ont . owl# Locat ion_Search "/>
</meta>
. . .

</html>

Listing 4.18: SA-REST Service Description

Independently from the used annotation technique, SA-REST provides a means to add

service descriptions of RESTful services directly to the HTML page, which avoids the

separation and maintenance of a technical and a human readable description docu-

ment.

Lathem et al. state that it is possible to transform any SA-REST description into SAWSDL:

”Due to the fact that SA-REST is a derivative of SAWSDL it follows that a SAWSDL can be
generated from an SA-REST annotated page“ [LGS07]. This implicates that RESTful ser-

vices could be described in WSDL which are annotated by SAWSDL. In fact this was

already explained earlier. However, the authors also state that tools based on WSDL

are not able to cover RESTful services [LGS07]. This is contradicting to the explanations

above. In fact, WSDL 1.1 allows only HTML GET and POST operations. In addition,

WSDL 2.0 provides HTTP PUT and DELETE operations. Due to this, for many RESTful

information web services WSDL 1.1 seems to be powerful enough to describe them.

Any enterprise mashup framework has also to consider SOAPful services in order to

utilize strategic investments in Service-Oriented-Architectures (SOA) and standardiza-

tion made by companies. The description of SA-REST is intended to support only

RESTful services.

The above analysis pointed out that description and semantic annotation of RESTful

services based on SA-REST. However, real advantages in comparison to SAWSDL could

82 Theoretical Foundations

not be figured out. In fact, SA-REST has the disadvantage that it does not support

SOAPful web services. In context of this thesis, RESTful and SOAPful web services

should be used for web service composition. Therefore SA-REST as semantic descrip-

tion approach seems to be not suitable.

4.4.3 OWL-S

The Web Ontology Language for Web Services (OWL-S) [MBH+04] is an upper on-

tology for web services that contains statements about the web service profile, web

service model and web service grounding.

The service profile is intended to support the selection of a web service and describes

inputs, outputs, preconditions and effects of a web service.

The web service model describes how the web service could be used by a client. It

could be be used to make a more in-depth analysis for the selection of a web service or

it could support the composition of web services.

[MBH+04]. Listing 4.19 shows an example of a description of the web service profile.

The considered web services returns addresses for a given company name. The inputs

and outputs of the described in th web service profile reference to the process of the

OWL-S description.

. . .
< p r o f i l e : P r o f i l e r d f : I D="COMPANY_ADDRESS_PROFILE">

< s e r v i c e : i s P r e s e n t e d B y r d f : r e s o u r c e =" #COMPANY_ADDRESS_SERVICE"/>
<prof i l e : serv iceName xml:lang=" en ">

Company Address S e r v i c e
</prof i l e : serv iceName>
< p r o f i l e : t e x t D e s c r i p t i o n xml:lang=" en ">

This s e r v i c e provides company address information .
</ p r o f i l e : t e x t D e s c r i p t i o n >

< p r o f i l e : h a s I n p u t r d f : r e s o u r c e =" #_companyName"/>
<pr o f i l e : ha s Ou t p ut r d f : r e s o u r c e =" #_name"/>
<pr o f i l e : ha s Ou t p ut r d f : r e s o u r c e =" # _ s t r e e t "/>
<pr o f i l e : ha s Ou t p ut r d f : r e s o u r c e =" # _ c i t y "/>
<pr o f i l e : ha s Ou t p ut r d f : r e s o u r c e =" # _ s t a t e "/>
<pr o f i l e : ha s Ou t p ut r d f : r e s o u r c e =" # _zip "/>
<pr o f i l e : ha s Ou t p ut r d f : r e s o u r c e =" # _country "/>
< p r o f i l e : h a s _ p r o c e s s r d f : r e s o u r c e =" #COMPANY_ADDRESS_PROCESS" />

</ p r o f i l e : P r o f i l e >
. . .

Listing 4.19: OWL-S Service Profile Example

4.4 Semantic Web Services 83

The OWL-S model of a web service is described by process descriptions. A process in

OWL-S is defined by its inputs, outputs, preconditions and results. The preconditions

and results has to be described by a logic expression. Amongst others the specification

supports KIF, PDDL, SWRL and since OWL-S 1.2 [MBD+] also SPARQL as logical lan-

guages.

OWL-S defines atomic, simple and composite processes. An atomic process corre-

sponds to an action that is performed in a single interaction. This means that there are

no subprocesses and that the process could be directly invoked, if the preconditions are

fulfilled. An atomic process is referenced to a grounding that specifies how to construct

the messages. Simple processes are similar to atomic processes, however there is no ref-

erence to a grounding. They are used as special views of atomic or on top of composite

processes.

A composite process refers to multiple interactions and could be based on other com-

posite or non-composite processes. The decomposition in it subprocesses is described

by control constructs such as ”If-Then-Else“, ”Split“, ”Join”, “Repeat-While”, “Repeat-

Until“. The control constructs are similar to a programming language. However it is

important to note that the process model could not be directly executed, it is simply a

description of how the client could achieve the intended behaviour [MBH+04]. Listing

4.20 shows the process model of the atomic company address service.

. . .
<process :ProcessModel r d f : I D="COMPANY_ADDRESS_PROCESS_MODEL">
< s e r v i c e : d e s c r i b e s r d f : r e s o u r c e =" #COMPANY_ADDRESS_SERVICE"/>
<p r o c e s s : h a s P r o c e s s r d f : r e s o u r c e =" #COMPANY_ADDRESS_PROCESS"/>
</process :ProcessModel>

<process :AtomicProcess r d f : I D="COMPANY_ADDRESS_PROCESS">

<process :has Input r d f : r e s o u r c e =" #_companyName"/>

<process :hasOutput r d f : r e s o u r c e =" #_name"/>
<process :hasOutput r d f : r e s o u r c e =" # _ c i t y "/>
<process :hasOutput r d f : r e s o u r c e =" # _ s t r e e t "/>
<process :hasOutput r d f : r e s o u r c e =" # _ s t a t e "/>
<process :hasOutput r d f : r e s o u r c e =" # _zip "/>
<process :hasOutput r d f : r e s o u r c e =" # _country "/>

</process :AtomicProcess>
. . .

Listing 4.20: OWL-S Process Model and Atomic Process

84 Theoretical Foundations

Listing 4.21 shows exemplarily the description of an input and a output.

. . .
< !−−I n p u t s−−>
< p r o c e s s : I n p u t r d f : I D="_companyName">
<process:parameterType r d f : d a t a t y p e =" h t t p : //www. w3 . org /2001/XMLSchema#anyURI "

>
h t t p : //proton . semanticweb . org /2005/04/ protonu#Company
</process:parameterType>
</p r o c e s s : I n p u t>

< !−−Outputs−−>

<process :Output r d f : I D=" _ c i t y ">
<process:parameterType r d f : d a t a t y p e =" h t t p : //www. w3 . org /2001/XMLSchema#anyURI "

>
h t t p : //proton . semanticweb . org /2005/04/ protonu# City

</process:parameterType>
</process :Output>
. . .

Listing 4.21: OWL-S Definition of Inputs and Outputs

OWL-S supports the specification of preconditions and results. Listing 4.22 expresses

the preconditions of the company address service in terms of its required triples (SPARQL

ASK query). The result is a SPARQL CONSTRUCT query that "simulates" the result-

ing triple structure. The resulting graph contains blank nodes of the created types of

information as well as data and object properties. This specifies clearly the type of

individuals that are created by the information web service as well as their relations

between them.

<p r o c e s s : h a s P r e c o n d i t i o n>
<expr:SPARQL−Condition>

PREFIX r d f : &l t ; h t t p : //www. w3 . org/1999/02/22− rdf−syntax−ns#> ;

PREFIX pup: &l t ; h t t p : //proton . semanticweb . org /2005/04/ protonu#> ;
PREFIX psys : &l t ; h t t p : //proton . semanticweb . org /2005/04/ protons#> ;
PREFIX ptop: &l t ; h t t p : //proton . semanticweb . org /2005/04/ protont#> ;
PREFIX minerva: &l t ; h t t p : / /1 27 . 0 . 0 . 1/ ontology/minerva−p o r t a l s#> ;
ASK { ?x r d f : t y p e pup:Company ;

psys:mainLabel ?y . }
</expr:SPARQL−Condition>

</p r o c e s s : h a s P r e c o n d i t i o n>

< p r o c e s s : h a s R e s u l t >

4.4 Semantic Web Services 85

< p r o c e s s : R e s u l t r d f : I D=" CompanyAddressResult ">
< p r o c e s s : h a s E f f e c t >

<expr:SPARQL−Expression>
PREFIX r d f : &l t ; h t t p : //www. w3 . org/1999/02/22− rdf−syntax−ns#> ;
PREFIX pup: &l t ; h t t p : //proton . semanticweb . org /2005/04/ protonu#> ;
PREFIX psys : &l t ; h t t p : //proton . semanticweb . org /2005/04/ protons#> ;
PREFIX ptop: &l t ; h t t p : //proton . semanticweb . org /2005/04/ protont#> ;
PREFIX minerva: &l t ; h t t p : / /1 27 .0 . 0 . 1/ ontology/minerva−p o r t a l s#> ;
CONSTRUCT { ?x r d f : t y p e pup:Company ;

p t o p : l o c a t e d I n _ : a .

_ : a r d f : t y p e pup:PostalAddress ;
psys:mainLabel " " ;
p t o p : l o c a t e d I n _ : c ;
p t o p : l o c a t e d I n _ : s ;
p t o p : l o c a t e d I n _ : l .

_ : c r d f : t y p e pup:City ;
psys:mainLabel " " .

_ : s r d f : t y p e p u p : S t r e e t ;
psys:mainLabel " " .

_ : l r d f : t y p e pup:Country ;
psys:mainLabel " " .

}
WHERE { ?x r d f : t y p e pup:Company ;

psys:mainLabel ?y .
}

</expr:SPARQL−Expression>
</ p r o c e s s : h a s E f f e c t >

</ p r o c e s s : R e s u l t >
</ p r o c e s s : h a s R e s u l t >
. . .

Listing 4.22: OWL-S Definition of Preconditions and Effects

The grounding of OWL-S specifies the concrete realization of a web service. The atomic

processes of OWL-S are mapped to WSDL operations. Furthermore, the inputs and out-

puts of an atomic service are mapped to messages in WSDL specific message mappings

as well as transformations. Furthermore, the atomic processes could be mapped to

related operations of the WSDL file [MBD+].

86 Theoretical Foundations

4.4.4 WSMO

The Web Service Modeling Ontology (WSMO) is a comprehensive framework that aims

to automate (totally or partially) the discovery, selection, composition, mediation, exe-

cution and monitoring of web services.

WSMO is based on the Web Service Modeling Framework [FB02] (WSMF) and consists

of different main elements such as ontologies, goal repositories, web services and me-

diators.

”Ontologies provide the terminology used by other WSMO elements to describe the relevant
aspects...“[dBBD+05]. Due to this, ontologies are also used to describe the terminology

of the web services.

A goal represents a user desire that should be achieved through the invocation of web

services. Therefore, a goal specifies wanted capabilities that the human agent is inter-

ested in.

A key objective of WSMO is a strict decoupling of the different resources. However, this

leads to heterogeneities in data, ontologies, protocols and processes. Therefore media-

tors are one of the key elements of WSMO [dBBD+05]. WSMO provides four different

types of mediators: mediators that link two goals (ggMediator), mediators that resolve

mismatches between ontologies (ooMediator), mediators that link web services to goals

(wgMediator) as well as mediators between web services (wwMediator)[dBBD+05].

4.4.4.1 Ontologies in WSMO

Ontologies contain various concepts,which are the basic elements of the shared con-

ceptualization. WSMO enables the creation of concept hierarchies through the speci-

fication of super and sub concepts. Furthermore a concept could be specified by sev-

eral attributes. The attributes are filled by values at the instance level of the concept

[dBBD+05].

Class ontology
hasNonFunct ionalPropert ies type nonFunct ionalProper t ies
importsOntology type ontology
usesMediator type ooMediator
hasConcept type concept
hasRela t ion type r e l a t i o n
hasFunction type funct ion
hasIns tance type i n s t a n c e
hasAxiom type axiom

Listing 4.23: WSMO Ontology Defintion

4.4 Semantic Web Services 87

To achieve an expressive ontology, relations between concepts are also part of WSMO.

Similar to the concepts, the relations could be arranged in an hierarchy by the definition

of sub relations. Each relation could be specified by non-functional properties as well

as parameters.

WSMO further allows the definition of functions. Functions are special relations that

are based on multiple domains with a unary range. The value of the range depends on

the domain value.

In addition, WSMO enables the specification of instances for relations and concepts

as well as axioms that represent logical expressions [dBBD+05]. WSMO is based on

WSML [ST08], which is an ontology language. Like OWL, WSML has also different sub

languages that differ in their expressiveness. WSML-Core is the basic ontological lan-

guage. WSML-DL is a description logic similar expressive as OWL-DL [ST08]. The sub

languages WSML-Flight and WSML-Rule are directed towards logical programming.

WSML-Full unifies WSDML-DL and WSML-Rule by First-Order Logic [ST08]. It is also

possible to import different ontologies in WSML. Especially, also OWL-DL and RDF-S

ontologies could be imported [ST08].

4.4.4.2 Web Service Description

WSMO web service descriptions contain non-functional properties, imported ontolo-

gies, mediators, as well as capability and interfaces of the web service.The ontologies

are responsible to achieve an shared understanding and meaning of the web service

[dBBD+05].

Class webService
hasNonFunct ionalPropert ies type nonFunct ionalProper t ies
importsOntology type ontology
usesMediator type { ooMediator , wwMediator }
hasCapabi l i ty type c a p a b i l i t y m u l t i p l i c i t y = s ing le−valued
h a s I n t e r f a c e type i n t e r f a c e

Listing 4.24: WSMO Web Service Description Defintion

88 Theoretical Foundations

Class c a p a b i l i t y
hasNonFunct ionalPropert ies type nonFunct ionalProper t ies
importsOntology type ontology
usesMediator type { ooMediator , wgMediator }
hasSharedVariables type sharedVar iables
hasPrecondit ion type axiom
hasAssumption type axiom
hasPostcondi t ion type axiom
h a s E f f e c t type axiom

Listing 4.25: WSMO Capability Defintion

Important to the web service description is the definition of the functionality or ca-

pability. As often in WSMO, capabilities could be related to non-functional proper-

ties, ontologies and mediators. Important is the possibility of the definition of precon-

ditions,assumptions, postconditions and effects as well as shared variables between

them. This determines under which circumstances the web services could be executed

and how it changes the state of the world.

The definition of interfaces for the web service is important to specify the interaction

schema with the web service (choreography) as well as the orchestration (functionality

from other web services).

The choreography specifies the interaction from the client to the web services, which is

based on a set of different states that are achieved through several state changes.

The orchestration specifies the use of other web services. Similar to the choreography

this description is state based and provides in addition the support of mediators (e.g.

mediation between web services).[dBBD+05]

WSMO services could be grounded based on WSMO or also based on SAWSDL. WSMO

defines endpoint description properties that reference from a WMSO web service to the

appropriate WSDL service. The ”withGrounding“ property of WSMO is utilized to ref-

erence from a interface of WMSO to corresponding part of the WSDL document.

4.4.5 WSMO-Lite

WSMO-Lite has been created to define a light-weight service ontology, which is directly

build on the newest W3C standards [VKF]. Besides a light-weight service ontology,

WSMO-Lite defines a annotation mechanism for WSDL. Instead to WSMO, it does not

define formal user goals and mediators. WSMO uses the WSML language for the de-

scription of semantic model. WSMO-Lite allows the use of any ontology language with

an RDF syntax (e.g. OWL).

The information model of the service ontology is represented by a domain ontology.

4.5 Semantic Web Service Composition 89

Functional descriptions of web services are described as capabilities. Such capabilities

define preconditions that have to hold before the invocation as well as effects that are

created through the invocation of the service. Furthermore, WSMO-Lite models non-

functional descriptions that are represented by an ontology [VKF].

WSMO-Lite does not specify any semantic behavioural descriptions. If such a one is

needed, other existing technologies have to be adopted. The annotation mechanism

of SAWSDL is utilized by WSMO-Lite, but does not influence the WSMO-Lite service

ontology itself. The concrete semantics of preconditions and effects are not defined as

part of WSMO-Lite. Thus, different logical languages could be used [VKF].

WSMO-Lite is currently a working draft. To the best of the authors knowledge, there

are no tools and semantic web service test collections available that support WSMO-

Lite and that could be utilized in the thesis.

4.4.6 MicroWSMO

MicroWSMO [KVG08] is a framework that focusses on the description of RESTful ser-

vices. It defines a microformat for RESTful APIs as well as a service model based on

RDFS to express semantics. MicroWSMO is only available as a working draft, therefore

it is not considered in more detail. However, independent from the final approach, it

would be preferable to be able to utilize SOAPful and RESTful web services.

4.5 Semantic Web Service Composition

Web services are language-independent and allow an easy integration of heterogeneous

systems through standards-based interoperability. However, to yield powerful appli-

cations, the web services have to be composed, because it is likely that a single web

service is often not able to fulfill all user needs.

The task of putting services together to achieve a desired functionality is called web

service composition [SH05]. The present mashup frameworks are often based on a

manual wiring of a specific flow of web services. The limitations of these frameworks

were described in Chapter 3. In contrast, automatic web service composition promises

to achieve a real efficiency gain in information gathering through a significantly re-

duced time for selection and composition of web services.

Web service composition is a kind of a planning problem and involves search and logic

inference of Artificial Intelligence (AI). Planning is the task of the creation of a sequence

90 Theoretical Foundations

of actions that achieve a desired goal [RN03, p.375]. This means that a planner has to

create a sequence of web services that could be invoked by the software agent to achieve

its present goal. Actions in AI planning based approaches are specified by precondi-

tions and effects. The preconditions have to hold before the agent invokes the action.

The effects describe how state changes after the execution of the action [RN03, p.379].

In advance to the concrete planning process, the majority of planners transforms the

goals, inputs and outputs of web services as well as preconditions and effects in a First-

Order-Logic (FOL) problem representation.

The classical planners use the STRIPS language as representation language [RN03, p.377].

STRIPS describes states, goals and actions by first-order logic literals. The STRIPS lan-

guage has several restrictions, which allows the transformation of the actions into purely

propositional literals. This makes the planning problem more simple and efficient,

however, for some real domains it is not expressive enough [RN03, p.379]. Therefore,

extensions such as the Action Description Language (ADL) have been created.

The planning formalisms have been unified in the Planning Domain Description Lan-

guage (PDDL), which has sub languages for STRIPS, ADL and Hierarchical Task Net-

works (HTN) [RN03, p.377] (explained below).

4.5.1 Algorithms

The following planning algorithms are not only specific to web services and thus are

used in different planning problems. Planning algorithms could be based on forward

or backward state-space search [RN03, p.382]. In a forward-based state-space search

planning problem (I, A, G), the planner has to find a sequence or chain of actions A
that transfer the initial state I into an desired goal state G. Similarly, backward based

state-space search starts at a given goal state G and searches for a sequence of actions

A that this is based on the initial state I.

However, forward- and backward-chaining have important differences. The first con-

siders irrelevant actions, the approach is often called undirected search [KSKR05], and

thus is too inefficient for practical problems [RN03, p.384]. Instead, backward chaining

considers only relevant actions. An action is called relevant, if it contributes to the main

goal or it contributes to the achievement of a subgoal of a subsequent action. However,

Russel and Norvig state that without the introduction of appropriate heuristics both

approaches are not very efficient [RN03, p.386].

In this context, Lin et al. [LQH+06]propose an example of a DL based planner based

on backward-chaining, which utilizes heuristics to prune the search space.

State-space search does not utilize problem decomposability and does not search for

4.5 Semantic Web Service Composition 91

different subgoals independently. Furthermore, it is based on total ordered-plan search

[RN03]. This problem is addressed by Partial-Order Planning (POP).

Planning graphs could be utilized to achieve better heuristic estimates for total-order

and partial-order planners. They are created incrementally, starting from the initial

state. The GRAPHPLAN algorithm could directly create a plan from the planning graph

[RN03] by backward search.

The SATPLAN algorithm translates the planning problems into propositional logic and

applies algorithms for satisfiability.

Another important approach to planning are Hierarchical Task Networks (HTNs). In

HTN planning [RN03] the high level plan is decomposed into sub plans, which have

to be predefined, until primitive actions are present that could be executed by the agent.

4.5.2 Closed-World Assumption

The existing SWS composition planners (e.g. [LQH+06]) are based on the closed-world

assumption. This means ”that any conditions that are not mentioned in a state are assumed
as false“ [RN03, p.377]. However, from their nature description logics such as OWL

are open world. Thus, if something it is not stated it is not assumed to be false. The

information in ABoxes of DL is therefore generally assumed to be incomplete [BCM+07,

p.75].

4.5.3 Classi�cation of Planning Approaches for Web Service Composition

This thesis focuses on the characterization of existing approaches of web service com-

position and their current limitations. In accordance to Schumacher et al. [SHS08]

planning systems could be classified as follows:

• Static vs. Dynamic Composition

• Functional- vs. Process-Level Composition

While in a dynamic composition approach the web services are planned at invocation

time, the static composition first generates the plan and then invokes the web services.

Functional-level composition means that a web service is considered as an atomic en-

tity. This means that the web service is specified by its inputs, outputs, preconditions

and effects (IOPE) and requires only a simple request-response interaction. Atomic web

services are also those ones, which are provided as a black-box and thus the underlying

behaviour and interactions are not visible. Instead, process-level composition consid-

92 Theoretical Foundations

ers the internal interactions of a web service [SHS08], which would correspond to a

more complex interaction schema.

A detailed and present comparison of a representative set of SWS composition planners

could be found in Schumacher et al. [SHS08, p.79-104] and is thus not reflected by this

thesis. Moreover, this thesis concentrates on the open problems for SWS composition

that has been identified by the research community.

4.5.4 Open Topics of Semantic Web Service Composition

The research literature has pointed out the following open topics:

1. Appropriate incorporation of user preferences in the matching process [KKR04]

[SHS08, p.93-94] [LYGW06]

2. Scalability of planning algorithms [KSKR05] [SHS08, p.93-94]

3. Adaptive discovery (adaptive composition) [SHS08, p.93-94]

User preferences are important to both automatic web service selection [KKR04] as well

as dynamic web service composition, because the offers of a web service will often dif-

fer from the requests. Furthermore, the objectives are manifold and the preferences

(importance) of each objective are different among users. Therefore, only when the

user preferences are properly described and are part of the composition request, the

services composition can be really executed without user’s intervention [LYGW06].

Li et al. propose an extended OWL-S model for the incorporation of user preferences.

The approach models different user preferences by the definition of rule sets [LYGW06].

König-Ries and Klein [KKR04] propose an approach based on fuzzy sets. The general

intention is the measure the degree of membership between a service offer and the

fuzzy sets if the service request that represent the requester’s preferences. Thus, the

membership value represents the matching value.

The scalability of planning algorithms is another open research topic. In this context,

scalability means the ability to consider large sets of web services in the planning pro-

cess. Furthermore, it could focus also on the scalability with respect to length of the

plans or the number of users that work with a planning system.

Adaptive discovery means that the agent is adapting the discovery of web services with

respect to changed user interest, tasks etc..

The previous explanations described open topics of semantic web service composi-

tion. As stated in the requirements preferences, adaptive discovery and adaptive com-

position as well as scalability are important to this mashup framework, because the

mashups should adapt based on the interests, expertise and tasks of a user. Further-

4.6 Multi-Criteria Decision Theory 93

more, the increasing number of available RESTful and SOAPful web services demands

scalable mashup solutions. In order to address the current open research topics, limi-

tations of existing mashup frameworks as well as stated requirements, this thesis pro-

poses its own approach to web service composition planning. The approach, which is

described in detail in Chapter 6, addresses the scalability of web service composition

planning as well as the incorporation of user preferences.

4.6 Multi-Criteria Decision Theory

As pointed out in the previous chapter, the incorporation of user preferences into the

planning process is an open research topic. It is therefore important, to provide an

sounding framework that is able to weight different alternative web service composi-

tions in dependence of the user preferences. The objectives of a human agent could be

very different and conflicting. Thus, a selection of a composition alternative out of a set

of different ones is not as straightforward as it might looks.

It is important to note that decision theory does not prescribe how to achieve the dif-

ferent alternatives. Instead, it is intended to give a sounding framework which deter-

mines the weighting of a alternative. Economic research has come up with a variety of

approaches to handle conflicts of objectives during the evaluation of different alterna-

tives.

Table 4.2 provides different web service composition alternatives, specified by the val-

ues of the different objectives. The objectives correspond to the information criteria that

has been stated in the requirements analysis (see Chapter 2). The start and goal state

of the planning problem are not relevant at this point, because the objective functions

are already processed. It could be assumed that a planner turns out such a list of alter-

natives or that different alternatives have to be weighted during the planning. In fact,

the question is, which of the alternatives should be selected, with respect to the user

preferences.

The economic research has proposed different approaches to handle such goal conflicts,

to weight different alternatives, and to prune the set of alternatives. In this context, an

alternative Ai is a vector ~xi with values xh
i of the defined objectives

h ∈ {CORRECTNESS, COMPLETENESS, . . . , PRICE}.
The following sections explain shortly different methods that could be used to prune

the set of available alternatives (Dominance Concepts) as well as to select (Trade-off

Models, Multi Attributive Utility Theory (MAUT)) an alternative, while adhering user

preferences.

94 Theoretical Foundations

Table 4.2: Web Service Composition Decision Matrix

C
om

pl
et

en
es

s
in

%

C
or

re
ct

ne
ss

in
%

Pl
an

Le
ng

th

To
ta

lA
va

il
ab

il
it

y

To
ta

lA
cc

es
si

bi
li

ty

M
in

im
um

In
te

gr
it

y

A
vg

.S
er

ve
d

R
eq

ue
st

s

A
vg

.N
um

be
r

of
Fa

il
ur

es

M
in

im
um

C
om

pl
ia

nc
e

M
in

im
um

Se
cu

ri
ty

To
ta

lP
ri

ce
pe

r
R

eq
ue

st

Max Max Min Max Max Max Max Min Max Max Min

A1 100 100 5 0.70 0.90 5 13 2 5 3 0.5

A2 85 100 4 0.90 0.90 5 13 2 5 3 0.1

A3 100 50 6 0.70 0.90 5 13 2 5 3 0.5

A4 100 100 5 0.70 0.90 4 26 2 5 4 0.6

A5 100 100 6 0.90 0.60 5 13 0 0 3 0.1

4.6.1 Dominance Concepts

Dominance concepts offer the possibility to exclude alternatives from the decision prob-

lem. The strict dominance determines all alternatives that are efficient. An alternative

is efficient, if it is not dominated by another alternative.

Or more formally, an alternative Ai is inefficient if there is another alternative Aq such

that for all objectives h = 1, . . . , H, xh
q � xh

i holds true and there exists at least one h
such that xh

q � xh
i . In this case, Aq dominates Ai.

In the example decision problem of Table 4.2, A3 is dominated by A1. All other alterna-

tives are goal efficient.

The advantage of dominance concepts is the reduction of the set of alternatives. How-

ever, if there are a lot of different dimensions, often many alternatives are not domi-

nated. The remaining alternatives can be treated by other multi-attributive methods.

4.6.2 Trade-o� Models

4.6.2.1 Linear Combination

It is possible to weight the different goals through a linear combination.

f (~xi) = ∑
h

wh ∗ xh
i

4.6 Multi-Criteria Decision Theory 95

The value of the objective h at the alternative ~xi is denoted by xh
i . The decision maker

incorporates his preferences into the weightings wh ∈ [0, 1] of this linear combination.

However, this approach has significant shortcomings. The dimensions of the goals as

well as the scales are different. Thus, such a linear combination compares apples and

oranges.

For instance, the completeness values (scale [0, 100]) influence the total value of the

linear combination much more than the the values of the total availability [0, 1]. This

distorts the preferences between the objectives that have been incorporated into the

weightings wi.

The economic research recommends to measure the objectives on a unique dimension

for all the objectives. Such a measure is the utility and this is considered by the Multi-

Attributive Utility Theory (MAUT) explained subsequently.

4.6.2.2 Goal Programming

In goal programming, the decision maker defines a desired target vector ~t with the

objective values t1, . . . , tH. Or in other words, the decision maker specifies his ideal al-

ternative.

A solution candidate is then evaluated in dependence of the distance between candi-

date and goal vector. The best alternative is the one with the minimum distance to the

target vector.

min
k

∑
i=h
|xh

i − th|

In this context, xh
i denotes the value of objective h of alternative i.

This approach has several difficulties. First, the decision maker has to know the ideal

vector in dependence to the problem. Second, the importance of different objectives

is distorted by the difference of the scales and dimensions of the objectives. Third, an

appropriate distance measure has to be defined.

4.6.2.3 Lexicographic Ordering

In a lexicographic ordering the decision maker creates an ordering of goals with an

decreasing importance. The decision is made under successive consideration of the

goals in dependence to the ordering. In each loop not optimal alternatives are declined.

For instance, the following ordering could be state by the decision maker :

COMPLETENESS � CORRECTNESS � COMPLIANCE � . . . � PRICE

96 Theoretical Foundations

. In the first iteration all not optimal alternatives concerning the CORRECTNESS are

declined. For Table 4.2 this would delete alternative A2. In the second iteration the

CORRECTNESS is considered. Since alternative A3 has been deleted by the domi-

nance, there is could be not other alternative declined. This process is executed until all

objectives has been considered or only one alternative is remaining.

Lexicographic ordering could be utilized to reduce a set of available alternatives. How-

ever, the difficulty of this approach is to find a suitable ordering.

4.6.3 Multi-Attributive Utility Theory (MAUT)

Multi-Attributive Utility Theory describes the preferences for different objectives by

values of utility functions. A utility function specifies for each possible value x of an

objective the utility u(x) ∈ R for the human agent. It is also possible to specify a utility

function for non-quantitative, thus qualitative goals.

The creation of a utility function requires an complete and transitive preference order

of the values of the alternatives of a specific goal.

The decision maker has a preference order between alternatives Ai and Aj, if he prefers

Ai over Aj (Ai � Aj) or he prefers Aj over Ai (Aj � Ai) or he is indifferent between

Ai and Aj (Ai ∼ Aj). The preference order is complete if there exists such a preference

for each pair of alternatives. The preference order is transitive if Ai � Aj and Aj � Az

leads to Ai � Az.

The Multi-Attributive Utility Theory (MAUT) specifies the total utility by an additive

utility function.

U(~x) =
H

∑
h=1

λh ∗ uh(xh) with scaling factor λh > 0 and ∑
h

λh = 1

The additive utility function sums the different utility values of the different objectives.

Thus the preferences are specified by utility values. Different utility scales are adjusted

by so called scaling factors λh. The scaling factors are not comparable with weight-

ings, because a weighting implicates the importance of a specific objective. Instead, in

MAUT the preference is provided by the different utility functions of the different ob-

jectives. The different scales of the utility functions are balanced by the scaling factors

to avoid a distortion of the preferences.

The theoretical backgrounds for the creation of the utility functions and the calculation

of the scaling factors is not part of this thesis, because this should be typically inves-

4.7 Conclusion 97

tigated with the modeling of the user interests, tasks and experience. Nevertheless,

MAUT is a theoretical exact method for the measurement of utilities, if the prerequi-

sites are fulfilled. A detailed description of the prerequisites of MAUT, the creation

of utility functions and the calculation of scaling factors could be found in Klein and

Scholl [Sch04].

This section has outlined different approaches that enable the pruning of a set of dif-

ferent alternatives as well as the selection of a "best" alternative. In the context of web

service composition, this means the selection of the plan that meets the needs of the

agent. For this thesis, those approaches are important that create a preference value for

the different alternatives (e.g. simple linear combinations). However, the straightfor-

ward usage of the values of the different objectives for the weighing is not appropriate

since, the different scales and dimensions distort the relation of the importance of the

objectives. Therefore the objectives should be measured by the utility, which could be

aggregated by to the total utility of the alternative (web service composition). The to-

tal utility could be utilized in the optimization algorithm proposed in this thesis (see

Chapter 6) to drive the optimization.

4.7 Conclusion

This chapter has described several theoretical backgrounds that are important to achieve

the automatic generation of mashups. It can be concluded that the mashup framework

should utilize and ontology to enable automatic processing and inference on data. Fur-

thermore, the web services have to be described by an semantic service description

language that covers the description of the capabilities of the web services.

The automatic composition of the different web services refers to AI planning, which

has several open topics. Therefore,this thesis proposes its own approach for web service

composition. The next chapter explains the resulting architecture of the framework,

which is based on the previous investigations.

98 Theoretical Foundations

CHAPTER 5

Mashup Framework Architecture

This chapter outlines the architecture of the mashup framework. The architecture is

based on the requirements stated in Chapter 2. Furthermore, the approach addresses

the limitations of existing mashup frameworks that were described in Chapter 3. Sec-

tion 5.1 provides an overview about the architecture. The subsequent sections describe

the main modules of the mashup agent.

5.1 Framework Overview

Figure 5.1: Mashup Agent

The mashup framework can be characterized as an agent, which is denoted by a knowl-

edge base as well as an agent program. The agent program is based on different mod-

100 Mashup Framework Architecture

ules that enable an user-sensitive automatic composition of information web services

as well as their execution without user interaction. The gathered data is aggregated

and returned as a mashup.

The knowledge base KB = 〈TBox, ABox〉 of the mashup agent is based on Description

Figure 5.2: General Mashup Process

Logic. The domain model of Figure 5.1 represents the TBox of the agent knowledge

base, which is used throughout the framework for reasoning purposes. The ABox of

the knowledge base is dynamic and represents the mashup data, which is gathered

and maintained by the agent program.

Figure 5.2 describes the general process of the agent program. The initial content re-

trieved from the content provider is just a plain string. The “Mashup Handler” trans-

fers the initial content to an external unstructured text analysis web service that is able

to extract the meanings of the content. The unstructured text analysis service returns

an semantic representation of the entities of the content. The semantic representation

of the entities is achieved through assertional statements and thus is part of the ABox

of the agent knowledge base. At the same time, these statements represent the start

information state (start ABox state) of the mashup agent.

Based on the data of the user model as well as some personalization rules, the person-

alization engine defines a goal state that should be achieved by the agent. The goal

state represents the background information that should be presented in the mashup.

(The formal representation of the goals is explained in Chapter 6.)

The start and goal state are given to a planning module for web service composition.

This module creates a composition of web services (a plan) that is able to gather the

necessary data to achieve the final goal state. The “Application Registry” serves the

planner with the web services that have to be considered in the planning process. Fur-

thermore, it maintains the references to the endpoints of the web services, which are

located somewhere in the Web.

The generated plan of the “Service Composition Module” is then dynamically invoked

by the “Mashup Handler”, which transforms the outputs of the web services into an

5.2 Semantic Service Description Language 101

semantic representation. The semantic statements utilize the terms of the shared vo-

cabulary of the mashup agent. In fact, the final mashup data is completely represented

by assertional statements (ABox), which use the predefined terms of the TBox (see “Do-

main Model” Figure 5.1).

The mashup data (ABox) is then given to the “Presentation Module” that generates an

appropriate presentation for the data.

The previous explanations outlined the general mashup process and introduced the

responsible modules, which are detailed in subsequent sections.

5.2 Semantic Service Description Language

A semantic service description language is the prerequisite for a dynamic selection

and composition of different web services. Furthermore, the capabilities and expres-

siveness of the approach influence the development of the planning module. However,

also the execution of the created plan has to be adhered. Data mediation is therefore

also a central topic.

The agent utilizes OWL-S and SAWSDL. SAWSDL is used to annotate the schemes of

the WSDL files by schema mappings for lifting and lowering of data to achieve the data

mediation between the atomic web services (see Chapter 4).

The planning module utilizes OWL-S web service descriptions. The message mappings

to WSDL as well as the transformations of OWL-S are not utilized since this is already

achieved by the SAWSDL lifting and lowering schema mappings.

The availability of a test collections is one plus of OWL-S. The test collection is speci-

fied in Chapter 8. However, OWL-S provides also an expressive ontology that allows

the specification of preconditions and results in different logical languages. Thus, the

utilization of OWL-S seems to be appropriate to show the feasibility of automatic gen-

eration of user sensitive mashups based on dynamic service composition. In contrast

to WSMO, OWL-S is supported by an widespread use of the underlying web ontology

language (OWL), which provides tools that could be leveraged. In addition, the avail-

ability of the test collection was important for the selection of OWL-S. SA-REST has not

been selected because it does not support SOAPful web services.

The research community argues that there is only little effort in the comparative eval-

uation of different SWS description approaches [KKR08]. Therefore, it is not clear for

which applications a specific SWS description language is more suitable and this could

also not answered in this thesis. Thus, OWL-S has been selected, because it seemed to

102 Mashup Framework Architecture

provide the best premises.

In general, the strict separation of the execution and the planning module enables the

development and testing of other planning approaches that are based on other SWS

languages such as DSD, WSMO etc. (see Section 4.4).

5.3 Knowledge Base

Figure 5.3: The Mashup Agent Knowledge Base

The knowledge base KB = 〈TBox, ABox〉 is an important aspect of the mashup agent

to achieve a uniform understanding of the processed data. The TBox is based on the

PROTON upper level ontology1 as well as the LSDIS Finance Ontology2.

The PROTON ontology has been developed in the Semantic Knowledge Technologies

(SEKT)3 project. The ontology is represented in OWL-Lite and split into different mod-

ules (e.g. system, top, upper, knowledge management). The LSDIS Finance OWL on-

tology is connected to the upper level ontology to achieve the financial specialization.

Furthermore, the TBox is manually extended by some other terms that were needed for

the descriptions of the web services.

The ontology engineering approach is similar to the methodology described by Swartout

et al. [SRKR97]. The project utilizes a predefined upper level ontology that is extended

1http://proton.semanticweb.org/
2http://lsdis.cs.uga.edu/projects/meteor-s/wsdl-s/ontologies/LSDIS_Finance.owl
3http://www.sekt-project.com/

http://proton.semanticweb.org/
http://lsdis.cs.uga.edu/projects/meteor-s/wsdl-s/ontologies/LSDIS_Finance.owl
http://www.sekt-project.com/

5.3 Knowledge Base 103

for special purposes and could be pruned as needed.

The agent knowledge base is dynamic for the ABox. Therefore, it is empty in the initial

state of the agent. The state is changed in case of the generation of instances of the

ontological classes and properties. Instances are generated at three subprocesses of the

architecture: in the extraction of semantic data from the content provider (unstructured

text analysis), in the service execution phase (data lifting) or in the planning phase (in-

stance simulation). Details on the instance generation are explained in subsequent parts

of the thesis.

Due to the above explanations, the TBox is equal for all instances of the mashup agent,

while the ABox depends on the contents of the mashup provider as well as the invoked

web services and is therefore maintained separately. Currently, an proactive sharing of

these information among different agent instances is not intended, but could be a topic

for further research.

104 Mashup Framework Architecture

Figure 5.4: Excerpt of Proton Top Level Concepts

5.4 Mashup Handler 105

5.4 Mashup Handler

The “Mashup Handler” is responsible for the invocation of the external web services.

Furthermore, it also invokes the unstructured text analysis web service.

5.4.1 Unstructured Text Analysis

The provision of personalized background information that augment a given content

is central to the framework. Unfortunately, most of the content that could be retrieved

from the Web or local files and databases is not described semantically. The unstruc-

tured text analysis service has to extract and annotate entities of a given text by concepts

of a shared vocabulary. For instance, the text “Siemens AG increases earnings” should

be annotated by the ontology concept “Company” for the entity “Siemens AG”. This

means that the component has to identify “Siemens AG” as an instance of the class

“Company”. In fact, it would be ideal to have the whole content annotated by semantic

concepts as well as relations (properties) between the identified entities.

The Apache Unstructured Information Management Architecture (UIMA)4, which was

originally developed by IBM5, as well as the Calais Web Service6 by ClearForest, a

Thomson Reuters Company, provide unstructured text analysis functionality.

5.4.1.1 Apache UIMA

UIMA is an open source framework that provides a platform for the analysis of un-

structured contents such as text, audio or video. The pluggable architecture enables the

reuse of newly developed and existing components [Fou08]. Furthermore, the UIMA

architecture takes care of the chaining of different analysis components to achieve a full

working application that transforms unstructured content to structured ones.

UIMA comes along with a set of sandbox components such as the OpenCalais Anno-

tator, the Simple Server etc.. The OpenCalais Annotator is a component that makes

the Calais Web Service (Section 5.4.1.2) available to UIMA. The Simple Server is impor-

tant, because it allows to provide the UIMA processing capabilities as a RESTful web

service[Fou08].

UIMA provides a powerful platform for the development of content analysis engines

4http://incubator.apache.org/uima/
5http://www.alphaworks.ibm.com/tech/uima
6http://www.opencalais.com

http://incubator.apache.org/uima/
http://www.alphaworks.ibm.com/tech/uima
http://www.opencalais.com

106 Mashup Framework Architecture

Table 5.1: Excerpt of Calais Entities, Events and Facts

Entities Events/Facts

Anniversary Acquisition

City Alliance

Company AnalystEarningsEstimate

Continent AnalystRecommendation

Country Bankruptcy

Currency BusinessRelation

that could be chained to analyse the content in detail. However, the UIMA framework

is not used in the current prototype, because the current analysis capabilities of Calais

are enough to show the feasibility of the proposed framework. Nevertheless, UIMA

seems to be a suitable platform for unstructured text analysis that should be consid-

ered in the future.

5.4.1.2 Calais Web Service

The Calais Web Service creates semantic meta data for any type of textual content. It

is currently free for commercial and non-commercial use. The web service uses meth-

ods like natural language processing and machine learning to analyze the content and

extract entities, facts and events. Table 5.1 provides an excerpt of current identifiable

elements.

The Calais Web Service could be called by SOAP 1.1/1.2 or by HTTP POST. Amongst

others, the output format could be set to RDF/XML. Furthermore, the web service

requires as input the type of content such as “TEXT/RAW”, “TEXT/HTML”, “TEX-

T/XML” or “TEXT/TXT”. The type of content could be utilized to neglect the HTML

tags of the content and escape necessary characters.

The RDF/XML response of Calais provides statements about the found entities, events

and facts, which are represented as instances of classes specified in the Calais ontology.

Listing 5.1 shows an instance of a company.

< r d f : D e s c r i p t i o n r d f : a b o u t=" h t t p : //d . openca la i s . com/comphash−1/9dd2192a−4cd2
−3b9a−ac2f−b6a0d1fed773 ">

< r d f : t y p e r d f : r e s o u r c e =" h t t p : //s . openca la i s . com/1/type/em/e/Company"/>
<c:name>IBM</c:name>

</ r d f : D e s c r i p t i o n >

Listing 5.1: RDF/XML Example

5.4 Mashup Handler 107

Currently, the Calais ontology is not public. Naturally, the namespaces and local names

differ from the knowledge base of the mashup framework. As a result, reasoning

about the Calais response fails as long as there is no ontology mediation.

The mediation is achieved in the following way. Classes of the Calais ontology are cre-

ated manually in the agent domain ontology. Then the classes are set to be equivalent

(by “owl:equivalentClass“) to the corresponding class of the domain ontology.

The main label of each entity of Calais is described by the property ”c:name“. Therefore,

this property has been added to the knowledge base and specified to be equivalent to

the related property ”psys:mainLabel“ of the domain ontology (see Listing 5.2). Thus,

the reasoning services of the knowledge base process the instances of the Calais ontol-

ogy as instances of the domain ontology.

The above explained ontology mediation approach seem to be suitable, because the

ontology of Calais is not published yet, and thus could not be directly imported and

aligned. Furthermore, the count of entities which could be extracted is ”relatively“

small and could therefore be added manually to the domain ontology. However, if the

ontology of Calais is published a direct alignment should be considered. Listing 5.2

shows a mediation example.

<?xml version=" 1 . 0 " ?>
<rdf:RDF>

< r d f : D e s c r i p t i o n r d f : a b o u t=" h t t p : //s . openca la i s . com/1/type/em/e/Company">
<rdfs : subClassOf r d f : r e s o u r c e =" h t t p : //proton . semanticweb . org /2005/04/

protons # E n t i t y "/>
<owl :equiva lentClass r d f : r e s o u r c e =" h t t p : //proton . semanticweb . org /2005/04/

protonu#Company"/>
<rdfs:comment r d f : d a t a t y p e =" h t t p : //www. w3 . org /2001/XMLSchema# s t r i n g ">

C a l a i s Company Term</rdfs:comment>
< r d f : t y p e r d f : r e s o u r c e =" h t t p : //www. w3 . org /2002/07/owl# Class "/>

</ r d f : D e s c r i p t i o n >
< r d f : D e s c r i p t i o n r d f : a b o u t=" h t t p : //s . openca la i s . com/1/pred/name">

< r d f : t y p e r d f : r e s o u r c e =" h t t p : //www. w3 . org /2002/07/owl# DatatypeProperty "/>
< r d f s : r a n g e r d f : r e s o u r c e =" h t t p : //www. w3 . org /2001/XMLSchema# s t r i n g "/>
<owl :equivalentProperty r d f : r e s o u r c e =" h t t p : //proton . semanticweb . org

/2005/04/ protons #mainLabel "/>
<rdfs:domain r d f : r e s o u r c e =" h t t p : //proton . semanticweb . org /2005/04/ protons #

E n t i t y "/>
<rdfs:comment r d f : d a t a t y p e =" h t t p : //www. w3 . org /2001/XMLSchema# s t r i n g ">

c a l a i s e n t i t y name</rdfs:comment>
</ r d f : D e s c r i p t i o n >

</rdf:RDF>

Listing 5.2: Mediation of Calais and Domain Ontology

108 Mashup Framework Architecture

5.4.2 Web Service Execution

The invocation of a web service is done dynamically through an automatic configura-

tion of the implemented web service client by the given WSDL file. The system sup-

ports SOAPful and RESTful web services. The data mediation between the web ser-

vices is achieved by lifting and lowering schema mappings referenced in the WSDL file

(SAWSDL). Figure 5.6 provides an overview about the process of lifting and lowering

Figure 5.5: Generation of the Assertional Statements of the TBox through Lifted Web
Services Outputs

of data (see also Chapter 4). For each web service of the plan the present semantic data

is queried by SPARQL to retrieve the inputs of the service. The resulting output data is

lifted to achieve assertional statements that could be added to the ABox of the mashup

agent knowledge base. The central principle is outlined in Figure 5.5.

The previous explanations have turned out how unstructured text could be annotated

by semantic concepts and how dynamic web service execution as well as the generation

of the ABox data is achieved.

5.4 Mashup Handler 109

Figure 5.6: Sequence diagram of SAWSDL Lifting and Lowering of two RESTful Ser-
vices

110 Mashup Framework Architecture

5.5 Application Registry

The ”Application Registry“ maintains the end-point references as well as the main se-

mantic properties of the information web services. OWL-S has been selected as the web

service description approach in combination with SAWSDL. The registry maintains the

following data about the web services:

• ID: Unique identifier of the web service,

• OWL-S URL: The URL of the OWL-S description,

• SAWSDL URL: The URL of the SAWSDL description,

• Inputs: A set of input parameters,

• Outputs: A set of output parameters,

• Preconditions: A set of preconditions,

• Effects: A set of effects.

It is assumed that all web services are described as atomic services. Thus, the invo-

cation is based on a simple request-response interaction. Therefore, each atomic web

service of the registry could be described by a set of inputs, outputs, preconditions and

effects (IOPEs). The IOPE data is maintained in the registry, to achieve fast access to

these information. At runtime, a dynamic parsing and reasoning about the OWL-S de-

scription seems to be not suitable, because this not very time efficient 7. It would lead

to a slow down of the planning process, if the system requests the IOPEs several times.

Instead, the OWL-S descriptions are preprocessed into an internal data structure of the

registry, which leads to a significant faster access to the required information, because

the data is maintained in the main memory.

5.6 Web Service Composition Module

It is the aim of the mashup agent to augment existing content by background informa-

tion. The existing content has been analysed by an unstructured text analysis service,

which created initial assertional statements of the ABox about the entities of the con-

tent. These statements represent the start information state of the mashup agent. The

aim of the web service composition module is to find a plan that transfers the mashup

agent from this start information state to a desired goal information state represented

by a formal goal (see Chapter 6). The goal information state represents the desired

7This has been identified in first tests of the reasoning about the web service descriptions

5.6 Web Service Composition Module 111

background information of the final mashup.

The research has pointed out that scalability is an ongoing and important objective for

web service composition [KSKR05] [SHS08, p.93-94]. In accordance to the stated re-

quirements, scalability is also important to the mashup framework, because the count

of available SOAPful and RESTful services is increasing and an appropriate planning

performance of the systems has to be ensured.

The planning engine is based on an evolutionary algorithm for information web ser-

vice composition. The evolutionary planner performs a stochastic and parallel search

at different points of the search space. The intention is to utilize the information of dif-

ferent points of the search space to achieve a more scalable search, even for large sets of

available information web services.

In addition, the approach offers the possibility to incorporate the user preferences for

price, performance etc. of web service compositions through the utilization of multi-

criteria decision theory (see Section 4.6).

A reuse of an existing available planner has been considered and discarded, because a

reuse without adaption would not directly address the open research topics. Further-

more, an adaptation of an existing system by this evolutionary approach appeared to

require a lot of integration efforts as well as study about the selection of a suitable base

system. Instead, it seemed to be suitable to create a lightweight planner that is devel-

oped especially for automatic generation of mashups and thus is close to the specific

planning problem.

The reuse of an external matchmaker has also been considered, but has been identified

as not appropriate. In accordance to Schumacher et al.[SHS08, p.91], a planner based on

a sequential composition of consecutive calls of a logic-based semantic service match-

maker may not finds a desired solution, if the matcher does not adhere to the planning

state information as well as combined effects from more web services.

In this context, the planner matches for each consecutive pair of planned services S and

S′ the outputs of S with the inputs of S′. This means that the preconditions of S′ have to

be fulfilled in the specific planning state. In this context the planning state also contains

the effects of S [SHS08, p.91].

However, as mentioned above, if the matcher could not maintain state information,

combined effects from different services would be neglected. In fact, the desired mashup

information state will often be be based on combined information effects. Thus, the

reuse of an separate and external matchmaker seemed to be not promising.

The explanations have outlined that the proposed approach for planning of web ser-

112 Mashup Framework Architecture

vice composition addresses existing open research topics, which are important to the

automatic creation of mashups. The details of the planning module are described in

Chapter 6.

5.7 The User Model

The user model is important to achieve the adaption effect among different users of

the web portal. The creation of an appropriate user model involves the specification of

the features that have to be modeled such as knowledge, interests, goals, background

and individual traits [BKN07, p.5]. In general, the adaption effect of the mashup is

expressed by changed mashup content.

The user model could also contain the utility functions of a user for different attributes

of web services such as price, performance etc. (see Section 4.6) to achieve an adaption

effect on the web service composition in dependence to attributes of the web services.

The provision of context related information could be utilized to achieve an adaption

for different environments (e.g. mobile applications).

However, the modeling, creation and update of user models is not part of this thesis.

The prototype supports the adaption of data based on a set of predefined task, which

could be manually changed by the user. Each task represents a desired goal that is used

by the planner to create a plan that retrieves the desired mashup data.

5.8 Personalization Module

The personalization module defines the present goal of the agent. A goal relates to a

specific task of the user, which has been predefined in a task model. The aim of the

personalization modules is to predict the present task of the user in dependence of the

provided content, user model and contextual information.

The personalization module should also be responsible for the update of the user model,

because the interests, tasks etc. are changing over time.

The realization of the personalization module is not in the scope of this thesis. There-

fore, the prototype system defines only a set of tasks (goal information states) that could

be manually changed by the user.

5.9 Presentation Module 113

5.9 Presentation Module

The presentation module generates the mashup presentation based on the final ABox.

In the context of this framework, this means that the presentation module has to trans-

form the RDF triples that represent the ABox into a light-weight representation

(e.g. HTML + different JavaScript libraries) that could be consumed by a human agent.

Castells et al.. [CFL+04] propose a special information gathering system for financial

information that visualizes financial information represented as RDF statements by a

model-based approach. For each class of the corresponding ontology one or more pos-

sible presentation models are created that specify the appearance (e.g. order, structure)

of the RDF data [CFL+04].

Another RDF presentation approach is the Fresnel [BLP05] display vocabulary for RDF.

Fresnel specifies what information of an RDF graph should be presented as well as how

the information should appear. Fresnel is a browser-independent display vocabulary

and is a purely declarative language. In general, Fresnel defines so called Lenses that

define which data should be retrieved. Amongst others, this could be specified as a

SPARQL query. The format vocabulary specifies how the selected data should appear.

If the RDF presentation vocabulary becomes standard, also the presentation of the se-

mantic data could be shared between independent applications.

It is not in the scope of this thesis to investigate and evaluate in detail different ap-

proaches for the presentation of RDF data (which represent the mashup data). How-

ever, to shows the feasibility and advantage of the automatic mashup generation, a

simple model-driven approach has been developed. The approach utilizes the men-

tioned separation of the selection and formatting of data and is explained in Chapter 7,

which provides an overview about the implementation of the mashup framework.

5.10 Conclusion

This chapter has described the architecture of the mashup framework for automatic

generation of mashups. The architecture covers the mash-up of contents with back-

ground information [Req. F1].Furthermore, the purposes of the different modules of

the architecture has been explained. Important for the mashup framework is the dif-

ference of the TBox and the ABox of the knowledge base. The TBox is based on the

terms defined in the OWL ontology. The ABox refers to instances of the classes of the

ontology. These instances represent the mashup data at each state of the agent. There-

fore, the mashup data is completely described semantically and addresses requirement

114 Mashup Framework Architecture

[Req. F7] of the requirements analysis (see Chapter 2).

The background information are retrieved through the invocation of information web

services ([Req. F3]). This chapter has outlined how the data mediation between the web

services is achieved to enable an dynamic execution of plans [Req. F6]. The planning

of the web service composition is addressed by an evolutionary algorithm that is de-

scribed in Chapter 6 ([Req. F5] [Req. F6]).
The personalization module and user model address in principle the state requirements

on adaptivity([Req. F2]), but are not in scope of this thesis. Furthermore, the presenta-

tion module provides basic visualization techniques, which have to be extended in the

future work to address the requirements on rich analyse capabilities and intuitive data

manipulation ([Req. F9).

CHAPTER 6

Planning of Information Gathering
by an Evolutionary Algorithm

The mashup framework agent gathers and remixes background information based on

a set of available information web services. It is likely that the complex information

needs could not always be served by a single web service. Therefore, the mashup agent

plans the information gathering. In general, this means that the agent specifies which

web services have to be invoked as well as the ordering of their invocation.

The proposed planning module searches for a plan based on an evolutionary strategy,

which traverses the search space through a special stochastic hill-climbing. This means

that the algorithm evaluates and maintains simultaneously a population of states (plans)

of the search space. New states (plans) are created from old states by special operators

for mutation and recombination, which are based on the principles of the natural evo-

lution. The incorporation of preferences and goals is achieved by a special evaluation

function that weights the generated plans.

Section 6.1 introduces the general concepts of evolutionary algorithms. Section 6.2 re-

lates the evolutionary concepts to the problem of web service composition planning

and describes the resulting evolutionary process. Section 6.3 defines the final optimiza-

tion problem. The considered states of the state space are evaluated by an objective

function drives the optimization process and which is described in Section 6.4. Section

6.5 provides a detailed description of the evolutionary operators, which are important

for the evolutionary strategy of the search process. Finally, Section 6.6 concludes this

chapter with a short summary.

116 Planning of Information Gathering by an Evolutionary Algorithm

6.1 General Concepts

Evolutionary algorithms solve optimization problems based on the principles of the

natural evolution. The algorithms are different in how they imitate natural processes

like mutation or recombination, thus a variety of different models exist today[Wei07].

For that reason, it is suitable to analyse the common evolutionary principles and fac-

tors.

The natural evolution has developed highly complex strategies for the creation, retain-

ment, and adaptation of species, based on the foundations of the chemical evolution

[Wei07, p.2-9]. The individuals of a species build a common population. The phe-

notype (or appearance) of an individual is defined by the genome, which is the total

of all genes of an individual. The genes are part of a chromosome and are important

for the inheritance and variance of the genetic code. A gene could have often several

occurrences that are called alleles. For instance, the hair color gene could have the oc-

currences black, brown etc..

Evolution is only present, if the frequency of alleles is changing significantly. For in-

stance, there is a significant change towards individuals with a brown hair. The evo-

lutionary factors for mutation and selection influence the frequency of the alleles, and

thus are important to drive the evolution.

Selection denotes which individuals are selected for recombination as well as which

individuals remain in the population of the next generation. The former case is called

parent selection, whereas the latter process is called environment selection.

The parent selection influences the capability to find a partner for the creation of chil-

dren. It is important to the species to get good descendants to retain the species in the

future. The environment selection determines if an individual (parent or child) sur-

vives and is present in the next generation of the population [Wei07, p.11-12].

As explained above, selection influences the frequency of different alleles through dif-

ferent counts of alleles in descendant populations. Furthermore, it is based on the phe-

notypical characteristics. This means that the appearance of the specific individual as

well as its performance within the population influence the selection.

Mutation is another important evolutionary factor. It is the foundation for a frequent

change of the population of the evolutionary process. Mutations are errors of children

that occur during the recombination of the parent individuals. The change of the allele

frequency could be small or even very big and this depends on the mutation probabil-

ity. It is often preferred to have only small mutations, which change the allele frequency

through several mutation steps within a variety of generations. In contrast, big changes

often go along with very elementary negative performance impacts. Individuals with

6.1 General Concepts 117

a bad performance often have not such a high chance to survive in the population very

long [Wei07, p.11].

In contrast to selection and mutation, the recombination does not change the frequency

of alleles in the population. However, genes are highly dependent from each other

[Wei07, p.11], and the interconnections between them could lead to very different phe-

notypical characteristics. Therefore, recombination is also an important evolutionary

factor that serves new phenotypical characteristics [Wei07, p.11] and drives the evolu-

tion of the species.

The previous explanations described the evolutionary strategy based on selection, mu-

tation and recombination, which is utilized in search algorithms. The next section gives

an short overview about the different approaches to search. Furthermore, it outlines

the importance of an evolutionary strategy for the problem of web service composition

planning.

6.1.1 Search

Intelligent agents aim to maximize their performance measure, by a search through

the state space of the underlying problem. For instance, the proposed mashup agent

searches for a suitable plan that helps to achieve the information goal.

The objective of search is to define an algorithm that traverses the state space efficiently.

At this point it seems to be important to denote that the states of the search space are

different from the information states that were mentioned in previous chapters. Plans

are generated during the search and represent states of the search space. The solution

state (plan) is then used to invoke the web services to achieve the desired goal informa-

tion state.

In general, search algorithms could be classified as uninformed search or informed

search (often called heuristic search) [RN03, p.73]. In an uninformed search the agent is

blind. This means that the search algorithm simply generates states of the search space

and evaluates if a specific state is a goal state or not. The uninformed search agent is

not able to determine how good a state is, thus it is not able to compute a gradual state

weighting. Instead in an informed search the agent is able to evaluate if one state is

more promising than another. Thus, informed search strategies require the definition

of an evaluation function.

Example strategies of uniformed search are breadth-first, depth-first, depth-limited

search or iterative deepening search. Popular informed search strategies are greedy

best-first, branch & bound as well as local search algorithms [RN03].

Local search algorithms are important to problems in which the path to the solution is

118 Planning of Information Gathering by an Evolutionary Algorithm

irrelevant. For instance, portfolio optimization requires only the final portfolio and not

the order in which the assets are added to the portfolio during the optimization.

Example strategies of local search algorithms are hill-climbing, stochastic hill-climbing

as well as evolutionary strategies that are a special form of stochastic hill-climbing.

Russel and Norvig [RN03] outline that local search algorithm only require a constant

amount of memory, because they only maintain the information of the current state

and not the path to the state. Furthermore, these algorithms are able to search more

efficiently in large state spaces [RN03]. In fact, such an scalability is important for web

service composition planning, because the state space is increasing as more and more

web service become available.

Standard hill-climbing agents continually get into the direction of an increasing value

of the objective function, in case of a maximization objective. Furthermore, they do not

perceive any predecessor states. Hill-climbing only considers the immediate neighbour

states, and thus operates local. The progress of the standard hill-climber towards an

Figure 6.1: One-dimensional state space landscape evaluated by an objective function

optimum is often rapid. However, the found solution is not necessary the global max-

imum. Search algorithms could be trapped in local maxima, as shown in Figure 6.1. A

local maximum is defined as a peak that is higher weighted than each of its neighboring

states [RN03, p.113]. A plateaux is a special local maxima that is flat and a hill-climber

may finds no way off the plateau. Sequences of local maxima are called ridges. If a

standard hill-climber is once trapped in a local maxima it will have no chance to escape

from it. This drawback is addressed by several variants of hill-climbing.

Stochastic hill-climbing selects randomly among the possible uphill moves and tends

to converge not as fast as the standard algorithm. This leads sometimes to better solu-

tions [RN03].

Another favorite stochastic hill-climber approach is simulated annealing, which is able

6.1 General Concepts 119

to perform up and downhill moves. Simulated annealing selects randomly a move, if

it improves the situation the move is accepted. Otherwise, the algorithm accepts also

moves which not improve the situation, but only with a specific probability [RN03].

This offers the algorithm the chance to escape from local maxima.

Evolutionary algorithms are stochastic hill-climbers that perform a parallel search on

the state space. Thus, they adhere at the same time different states of the state space,

which are modified (mutated) and recombined to create new states that address the

problem better than its parent states.

In addition to the mentioned approaches, there is also a group of local search strategies

that are special to continuous state spaces [RN03]. However, continuous state spaces

are not relevant to this thesis, because this would require a derivable objective function.

The present state space is a discrete set that is formed by the permutation of the set of

web services.

6.1.2 Related Work

Bleul et al. [BWG07] propose an evolutionary algorithm for web service composition

within the Web Service Challenge1. The knowledge base of the system is based on a

taxonomy implemented in XSD Schema [WBG07]. In contrast this thesis proposes an

DL knowledge base, which is more expressive than a taxonomy. The service composi-

tion is based on the input and output parameters of the web services [BWG07]. Instead,

the proposed approach also considers the preconditions and effects of web services.

Furthermore, this thesis has a different approach to the handling of goal conflicts. Bleul

et al. [BWG07] propose the computation of multiple objective functions based on a hi-

erarchical evaluation, which is similar to a lexicographic ordering of the objectives (see

Section 4.6). In contrast, this thesis handles the goal conflicts directly and proposes in

addition the incorporation of user preferences into the objective function.

Furthermore, this thesis considers also the execution of plans and its actions and utilizes

real world web services for the proof of concept.

1http://www.ws-challenge.org/

http://www.ws-challenge.org/

120 Planning of Information Gathering by an Evolutionary Algorithm

6.2 Evolutionary Process

The overall objective of the proposed algorithm is to generate a plan that composes dif-

ferent atomic information web services. In general, the evolutionary algorithm evolves

a population of plans to find one that is suitable for the given problem.

The problem of web service composition planning is relaxed to the search for an ap-

Figure 6.2: Directed-Acyclic-Graph (DAG) of a Web Service Composition

propriate Directed Acyclic Graph (DAG). Figure 6.2 shows an example of such a DAG.

The Graph G = (V, E) is based on a set of nodes, whereby each node represents an

atomic web service. The web service is denoted by its identifier defined by the applica-

tion registry. An arrow from a node A to node B denotes that the web service of node A
should be invoked in advance to the web service of node B. This is important because

this enables the web service of node B to utilize the information created by the former

web service. Or in other words, the outputs of the former web service could be used

in the latter one. In accordance to the previous explanations, the DAG represents the

phenotype of a plan.

The algorithm starts with a random set of possible solution candidates (web service

compositions, plans) and performs a simulated evolution. Based on the calculated per-

formances of the plans, the promising plans are selected for a pairwise recombination.

The newly generated children are then mutated in different ways with a predefined

probability. The mutation of plans changes the web services identifiers as well as the

topology. The topology determines the position of a web service in dependence to the

other web services. In addition, growing and shrinking of plans is also considered, be-

cause the final plan length is not known in advance. The mutation of the individuals

leads to plans that are not acyclic. Furthermore, these mutated plans could contain a

specific web service more than one time. Therefore, the system uses an operator that

repairs the plans. The repaired individuals are then weighted and added to the popula-

tion. However, the plan population has only a predefined size, which leads to another

selection. The environment selection determines which plans survive for the next gen-

eration of the population. Figure 6.3 and Algorithm 1 outline the evolutionary process.

6.2 Evolutionary Process 121

Figure 6.3: Process of the Evolutionary Algorithm

Algorithm 1: Evolutionary Algorithm for Web Service Composition Planning

g← 0 /* Index of the Generation */1

P(g)← create random plan population of size µ2

weighting of P(g)3

while Termination condition not true do4

P1 ← select parent plans for λ children out of P(g) /* Parent Selection */5

P2 ← recombine the parent plans of P1 /* Recombination */6

P3 ←mutate service identifiers of the plans of P2 with probability probS7

P4 ←mutate topology structure of the plans of P3 with probability probT8

P5 ← grow the plans of P4 with probability probGr9

P6 ← shrink the plans of P5 with probability probSh10

P7 ← repair the plans of P611

weighting of P712

g← g + 113

P(g)← select µ plans out of P7 ◦ P(g− 1) /* Environment Selection */14

return best plan out of P(g)15

The previous explanations provided an overview about the evolutionary process for

web service composition, which is detailed in subsequent sections.

122 Planning of Information Gathering by an Evolutionary Algorithm

6.2.1 Genotype Representation

This section proposes various genotypical representations of directed-acyclic graphs

and outlines the most suitable one. This is important because the evolutionary oper-

ators do not directly change the directed-acyclic graph (phenotype), they change the

representation or encoding (genotype) of the graph. Furthermore, such an investiga-

tion is important to support an efficient implementation of the evolutionary operators.

Encodings could introduce new local optima that are not present to the phenotypical

problem. For instance standard-binary encodings are exposed to Hamming cliffs that

divide the phenotypical adjacency landscape and make an optimization more difficult

[Wei07, p.54-55]. In such a situation often the Gray Code is used, because it has the

property that all neighbour values of a discrete search space dimension could be repre-

sented by a binary string with Hamming distance one [Wei07, p.54-55].

The web service identifier of the following encodings are not transformed into a binary

representation, which would require a lot of transformations during the search process.

The following examples refer to the DAG of Figure 6.2.

Figure 6.4: Adjacency-Matrix Chromosome Encoding

Cormen et al. propose two standard representations for a graph G = (V, E), the adja-

cency list and the adjacency matrix [CLRS01, p.22]. Both encodings support directed

as well as undirected graphs.

In the adjacency-matrix representation (Figure 6.4), the vertices are numbered and rep-

6.2 Evolutionary Process 123

resent the corresponding web service identifiers. The set of graph nodes V represents

the web services of a specific plan, which form a |V|x|V|matrix A = (aij) such that

aij =

{
1 i f (i, j) ∈ E,

null otherwise.

A tuple (i, j) ∈ E represents a directed arc from node i to node j. This encoding needs

Θ(V2) memory and is independent from the number of edges. However, Figure 6.4

shows that for sparse graphs, those for which the count of directed arcs |E| is signif-

icant smaller than |V|2, the algorithm has to maintain unnecessary memory. In this

context most of the cells have a null value. However, this problem could be addressed

through the representation of the values of the matrix as bit strings.

Nevertheless, it seems to be complicated to define efficient evolutionary operators for

this representation. Especially, the recombination of different matrices could be more

difficult than in other representations.

In the following adjacency-list encoding, the web service nodes of the DAG are stored

in a list K. The notation K[i] represents the element at index i of the list. The topol-

ogy of the DAG is represented by a second list L, which contains sets of nodes. Thus,

∀i, j : i = 0, .., length(K)− 1 , j ∈ L[i] there is an directed arc (K[i], j) ∈ E in the graph.

The list representation is preferable, because the implementation of recombination

Figure 6.5: Adjacency-List Chromosome Encoding

operators could be based on the manipulation of lists and sublists. Furthermore, the

amount of memory of the adjacency-list is Θ(V + E), which performs for sparse graphs

better than the matrix representation.

In the context of directed and acyclic graphs, this thesis proposes a special version of

the adjacency-list representation, which provides an simple determination of the acyclic

feature of a specific graph. Figure 6.6 represents this encoding. In difference to the pre-

vious representation, the topology contains no web service identifier information. This

is important, because mutation changes the web service identifiers. In the former rep-

resentation this would require a change of the identifier at all related positions of the

topology. In the proposed representation this is not necessary, because the topological

information are separated from the web service keys.

124 Planning of Information Gathering by an Evolutionary Algorithm

The genotype contains a list K of web service keys and a second list T that contains the

topology. The list T is a list of sets of topological levels. A topological level is equal

to a position (index) of a service in the list K. (In Figure 6.6 the topological levels are

denoted by a “L”, however, this should only outline the principle. In the concrete repre-

sentation the level is simply an integer value.) A topological level l ∈ T[i] corresponds

to a directed arc (K[i], K[l]) ∈ E.

As mentioned previously, this encoding also specifies a light-weight rule that deter-

mines the existence of cycles. An encoded plan of length L has no cycles, if

∀l ∈ T[i] : l > i i = 0, 1, 2, . . . , L

holds true. This allows an efficient repair of the genotypes towards directed and acyclic

graphs.

Figure 6.6: Adjajency-List Chromosome Encoding 2

In accordance with Weicker [Wei07], the differences of the phenotype and genotype are

visualized in Figure 6.7.

Instead of a direct evaluation of the phenotypical plan representation by the function f ,

the weighting of a plan is based on the genotypical evaluation function fWC. Further-

more, the decoder function decode determines the appearance of a plan based on the

genotypical data. The processed weighting (utility) of the individual is stored in the

weighting value of the individual, which is used in the selection of the individuals.

The evolutionary operators for recombination and mutation modify the genotype in-

formation. In fact, this genotypical information determines the performance of the in-

dividual plan that is weighted by the evaluation function fWC.

In accordance to the explanations above, the final genotype G is a tuple G = (G.R, G.F),

whereby G.R ∈ G denotes the representation of the DAG and G.F ∈ R denotes the

value of the objective function (or evaluation function) of the individual.

6.2 Evolutionary Process 125

Figure 6.7: Genotype vs. Phenotype Representation

This section has investigated the genotypical representation of the directed-acyclic graphs.

Each plan, represented by a DAG, is a state of the state space of the search problem. The

next section defines the final problem and explains the calculation of the objective func-

tion that drives the search.

126 Planning of Information Gathering by an Evolutionary Algorithm

6.3 Formal Problem De�nition

This section defines the final search problem for web service composition planning,

which represented as an optimization problem of a objective function. A web ser-

vice composition is assumed to be represented as a directed acyclic graph (DAG) G =
(V, E) The set of nodes V = {v1, ..., vn} represents n web services, which are connected

through a set of directed connections (k, l) ∈ E ⊂ VxV. In this thesis the web services

of the DAG are assumed to be different. This means that no web service is more than

ones in the plan. This has not necessarily to be the case for all web service composi-

tions. However, to simplify the weighting of appropriate states this is assumed in the

following.

The planner has to find a specific DAG that transfers the software agent from an initial

state to the desired goal state. In the following a specific solution (adjacency-list repre-

sentation) state in the state space is denoted by x to simplify the notation of the problem
2.

A single-objective optimization problem (Ω, f ,�) is defined by the state space Ω, a

Figure 6.8: Directed-Acyclic-Graph (DAG) of a Web Service Composition

weighting function f : Ω → R as well as a relation for comparison �. The weighting

function assigns a rating to each solution candidate (state) x ∈ Ω.

The set of global optima is defined by :

χ = {x ∈ Ω | ∀x′ ∈ R : f (x) � f (x′)} (see [Wei07, p. 21]).

However, planning is based on multiple objectives such as correctness, completeness,

length, reliability, price etc. of plans. As discussed in Chapter 2, these objectives have

to be adhered for the planning process, which makes the search for a solution much

more difficult than in single-objective optimization problems.

While single-objective problems may only have one unique optimal solution, a multi-

objective problem could have a set of possible solutions vectors. Multi-objective prob-

lems arise in many areas such as economics, finance, engineering and computer science
2Each solution refers to two lists that represent the web services and the topological information.

6.3 Formal Problem Definition 127

and are addressed by decision theory, Operations Research (OR), computer science and

related disciplines. The complexity of multi-objective problems is sometimes difficult to

solve in traditional approaches of OR [CLV07] and motivate the use of multi-objective

evolutionary algorithms.

Different objectives are computed by objective functions. Since the objectives are often

conflicting (e.g. completeness versus length) as well as operate on different scales (e.g.

price versus performance), the question is how to align the different objectives appro-

priately (see Section 4.6).

The general multi-objective problem searches for a solution x∗ (a state of the state space)

that optimizes the vector function ~f (x) = [f1(x), f2(x), ..., fk(x)]T.

~f (x) =


f1(x)
f2(x)

...

fk(x)


It is clear that in most cases no optimum exists such that

∀x∈Ω(fi(x∗) ≥ fi(x))

holds true. This means that there is not solution x∗ that strictly dominates all other so-

lutions. Instead, multi objective problems are denoted by a so called Pareto-optimum,

which represents the set of possible solutions that are efficient. This means that the

Pareto-optimal set contains only solutions that are not dominated by an other solution

(see Section 4.6).

The selection of a suitable solution out of the Pareto-optimal set is then based on the

preference structure of the specific agent. Thereby, the goal conflicts can be handled a

priori, a posteriori or progressive in the optimization.

In an a priori preference articulation, the preferences of the decision maker are directly

incorporated into the objective function of the problem. This avoids a search spread

over the complete Pareto-frontier.

In an a posteriori preference articulation the search algorithm has to return the Pareto-

optimal set to the decision maker, which uses decision theory to select a suitable alter-

native. Furthermore, this selection could be also done by the software agent with one

of the methods specified in Section 4.6. However, Bleul et al. [BWG07] state that the

Pareto-optimization has disadvantages for evolutionary web service composition plan-

ning, because it spreads the search over the complete Pareto frontier and slows down

128 Planning of Information Gathering by an Evolutionary Algorithm

the performance. In fact, it seems to be appropriate to specify the preferences a pri-

ori, because the preference information should be available from the user model, in the

context of this framework.

In a progressive preference articulation the optimization algorithm interacts directly

with the decision maker. This is not considered here, because this contradicts with the

stated requirement for an automatic generation of plans without user interaction.

The final web service composition optimization problem is defined as (ζ, fWC, >).

fWC(x) = w1 ∗ compl(x) + w2 ∗ corr(x) + w3 ∗ length(x)

The search space ζ represents all possible permutations of web services. Furthermore,

the multi-objective (weighting) function fWC should be maximized for x ∈ ζ. The

weighting function fWC plays an important role, because the algorithm derives the di-

rection of the optimization from it and is based on several sub functions which depend

on the different objectives of the search.

In accordance to the definition above, the goal conflicts are handled a priori. The main

objectives CORRECTNESS, COMPLETENESS and LENGTH are weighted by a spe-

cific linear combination to drive the optimization. These objectives are assumed to be

equal for all users of the system. This seems to be suitable, because plans that are not

correct or complete and which have a huge mass of unnecessary web services could

not be invoked and thus have no utility for the user. Therefore, the static weight-

ings w1, w2, w3 of the linear combination do not change and are important to drive the

search.

The sub function compl(x) processes the COMPLETENESS of a solution candidate

x in dependence to the desired goal state. Furthermore, it is important to achieve

an correct plan that could be invoked by the software agent, this is specified by the

CORRECTNESS function corr(x). In addition, the plan should only contain necessary

services to avoid unnecessary workload and costs. This could be achieved by short

compositions. Therefore, the length function length(x) has to be a part of the weighting

function.

Alternatively, we could define an extended objective function fWC∗, which adheres the

specific QoS preferences of a user u ∈ ϕ. ϕ represents the set of users (or better user

models) of the web portal.

fWC∗(x, u) = w1 ∗ compl(x) + w2 ∗ corr(x) + w3 ∗ length(x) + w4 ∗ utility(x, u)

The composition utility utility(x, u) measures the total composition utility for a specific

user. It incorporates different QoS objectives of the composition, which are handled by

6.3 Formal Problem Definition 129

Multi-Attributive Utility Theory (MAUT) and therefore consider the user preferences.

The composition utility contains the following sub objectives:

• RELIABILITY

• SECURITY

• PRICE

• PERFORMANCE

• INTEGRITY

• ACCESSIBILITY

• AVAILABILITY

• COMPLIANCE

The extended version of the algorithm is not considered in the remaining sections, be-

cause an implementation would require a suitable user model that specifies the pref-

erences. The definition of such a user model involves also the automatic creation and

update of the user model. Since, this is not part of this thesis, the extended version

has not been considered in the implementation and the investigation concentrates on

the described weighting function fWC. Nevertheless, an preference based weighting of

different solution candidates promises to be feasible in such an evolutionary algorithm,

because higher weighted plans are preferred by the algorithm and thus the plans with

the higher utility should be part of the final population.

The above descriptions defined the optimization problem. The multiple objective func-

tion of the problem is represented by a linear combination and is important to drive the

optimization. The following section describes the calculation of the objective functions.

130 Planning of Information Gathering by an Evolutionary Algorithm

6.4 Calculation of the Objective Functions

This section describes the calculation of the different objective functions of the proposed

total weighting function fWC.

In general, the function fWC has to provide a gradual weighting instead of an absolute

[Wei07, p.23], because otherwise the search would be uninformed. This implicates that

also the objective functions should provide a gradual weighting. For instance in an

absolute weighting of the correctness, the function only determines if a possible web

service composition is correct or not correct. This leads to a lack of information about

partial good solutions, and thus the direction of the search could not be specified as

detailed as in a gradual weighting.

The proposed planner is a static planner that first generates the plan and then invokes

it. Dynamic planning with the proposed evolutionary process seems to fit not very

well, because this would in general cause the invocation of a lot of unnecessary web

services. Furthermore, the invocation of the web services would slow down the whole

search. Therefore the proposed planner is static. The objectives could therefore be only

specified by the descriptions of the web services.

The web service descriptions are important to evaluate the specific actions of the plan

in context of the whole plan. This means the descriptions are used to evaluate if a plan

is correct and complete. It is assumed that the correctness and completeness are mea-

sured in percent of completeness and percent of correctness. Therefore these objectives

have to be maximized and their weightings in the total function have to be greater than

zero (w1, w2 > 0). The length objective of a plan counts the web services. This objective

has to be minimized to achieve short plans, thus the weighting of the objective has to

be smaller than zero (w3 < 0).

For the evaluation of the correctness and completeness of a plan, it would be ideal to

check if the state transitions by the actions (information web services) of the plan could

be correctly applied and if the final state is the desired information state. Figure 6.9

shows the partial ordered list of web services that could be derived from the DAG.

It is necessary to have an expressive web service description to specify the correctness

Figure 6.9: Change of the Information State through Information Web Services

and completeness of such plans. This is in accordance with König-Ries et al. [KKRM05],

who state that it is important to have an unambiguous functional description of the of-

6.4 Calculation of the Objective Functions 131

fered web services as well as the required functionality by the requester. Furthermore,

the web service description should be pure state orientated.

The previous explanations implicate that the description of transferred messages is not

enough to specify the behaviour of the web service. Thus, the composition of web ser-

vices by considering only the inputs and outputs of web services is not exact, because

it neglects the preconditions and effects of web services. Therefore, it would be better

if the inputs and outputs are part of the preconditions and effects, which itself should

be state oriented.

The proposed planner is a functional-level planner that considers atomic web services

that are based on a simple-request response interaction schema. Due to this, for each

web service one specific set of inputs, outputs, preconditions and effects have to be

considered in the planning process, thus also in the evaluation of the current plans.

As explained above, the description of web services and their evaluation should be

state oriented, which could not be achieved by the evaluation of transferred messages.

However, the consideration of inputs and outputs could serve as an heuristic, which

is important for many search processes. Especially for information web services this is

suitable, because they create no real world effects. This means the preconditions and

effects of the services are relaxed to the state of the required information before the in-

vocation and the information state of the world after the execution. The state have not

to model effects such as “purchase”, “renting“ etc., which would make the description

of the preconditions and effects more complex. Instead, it is possible to describe only

the information state before the execution and the resulting information state after the

execution of the web service.

In Chapter 5 the information states has been assumed to be represented as states of the

ABox of the knowledge base. This means the information states are represented as RDF

statements that refer to the terms (TBox) defined in OWL. Therefore, considering only

the inputs and output concepts of a web service is still an heuristic, because specifying

the inputs and outputs of a transferred message is not as expressive as the specification

of triples before and after the execution of a web service. In fact, the triples of an OWL

vocabulary do not only specify the concepts of instances, they also define object prop-

erties between the instances.

This thesis proposes a simulation of the information states for a correct evaluation of

the plan. The simulation of the different information states is based on a simulation of

the triple structures that are required by a web services (precondition) and are gener-

ated through its invocation (effect). In this context, checking the precondition of a web

service is performed by a SPARQL ASK query that proves if the current information

state provides the required triples. Furthermore, the SPARQL CONSTRUCT query is

132 Planning of Information Gathering by an Evolutionary Algorithm

Figure 6.10: Information State Simulation in the Planning Stage vs. Invocation in the
Execution Stage

used to simulate the generated triples of the resulting information state.

Therefore, the preconditions and effects of the web services are described as SPARQL

ASK and CONSTRUCT queries within the OWL-S web service descriptions.

The inputs, outputs, preconditions and effects of a web service are derive from its OWL-

S description. In Chapter 5 the preprocessing of these information into the registry was

proposed. In fact, the evolutionary algorithm processes the objective function as often

as states have to be evaluated during the search. Therefore, a fast access to these infor-

mation is required to avoid an unnecessary slow down of the search process.

The next section describes the exact simulation of the states of the plan in detail. The

subsequent sections utilize this simulation to specify the evaluation of the correctness

and completeness of plans. The simulation of the plan is costly and could therefore be

not done for every considered state of the search process. Therefore, the subsequent

sections also describe the heuristic calculation of the objectives, which are important to

drive the optimization.

6.4.1 Information State Simulation

Planning is the task of the creation of a sequence of actions that achieve an desired goal

[RN03, p.375]. The planner simulates the behaviour of the different actions and thus is

able to determine if the final information state is complete and if the ordering of the ac-

tions is correct. The simulation is based on the simulation of the structure of the ABox

6.4 Calculation of the Objective Functions 133

statements that are created and requested by the different web services.

The simulation of the information states is shown in Figure 6.10. In the planning process

for each web service the preconditions describe the structure of required information

and the effects describe the structure of generated output statements.

The preconditions are described by a SPARQL ASK query, which evaluates if the struc-

ture of required input statements could be served by the available ABox structure. If

this is true, an SPARQL CONSTRUCT query is used to generate the structure of triples

that are created by the invocation of the web service.

In general, this is similar to the execution process described in Chapter 5. This means

that triples are required as inputs of the web service and output triples are generated by

the web service. However, in case of the simulation, the triples contain only the types

of instances as well as blank nodes that are used to create the object properties between

different instances.

Listing 6.1 and 6.2 provide an example description of a precondition and a effect de-

scription of a web services.

<p r o c e s s : h a s P r e c o n d i t i o n>
<expr:SPARQL−Condition>

PREFIX r d f : &l t ; h t t p : //www. w3 . org/1999/02/22− rdf−syntax−ns#> ;
PREFIX pup: &l t ; h t t p : //proton . semanticweb . org /2005/04/ protonu#> ;
PREFIX psys : &l t ; h t t p : //proton . semanticweb . org /2005/04/ protons#> ;
PREFIX ptop: &l t ; h t t p : //proton . semanticweb . org /2005/04/ protont#> ;
PREFIX minerva: &l t ; h t t p : / /1 27 . 0 . 0 . 1/ ontology/minerva−p o r t a l s#> ;
ASK { ?y r d f : t y p e minerva:Stock .

?y psys:mainLabel ?name .
}

</expr:SPARQL−Condition>
</p r o c e s s : h a s P r e c o n d i t i o n>

Listing 6.1: SPARQL-based Goal Representation

The example is based on a stock quote web service described by OWL-S. The stock

quote service requires input instances of the type “minerva:Stock” that are specified by

their “mainLabel”. The SPARQL ASK query is used throughout the planning to evalu-

ate if this precondition is fulfilled for a given ABox.

Listing 6.2 specifies the result of the stock quote web service. If the precondition is

fulfilled, then the SPARQL CONSTRUCT query is used to generate the output infor-

mation. In this case, the stock quote web service creates a “minerva:hasQuote” object

property for the exsiting stock instance. The object property relates a stock quote in-

stance that is denoted by a blank node. The blank node specifies that it is of type “min-

erva:StockQuote“ and that it is described by data and price.

134 Planning of Information Gathering by an Evolutionary Algorithm

< p r o c e s s : h a s R e s u l t >
< p r o c e s s : R e s u l t r d f : I D=" CompanyAddressResult ">
< p r o c e s s : h a s E f f e c t >
<expr:SPARQL−Expression>

PREFIX r d f : &l t ; h t t p : //www. w3 . org/1999/02/22− rdf−syntax−ns#> ;
PREFIX pup: &l t ; h t t p : //proton . semanticweb . org /2005/04/ protonu#> ;
PREFIX psys : &l t ; h t t p : //proton . semanticweb . org /2005/04/ protons#> ;
PREFIX ptop: &l t ; h t t p : //proton . semanticweb . org /2005/04/ protont#> ;
PREFIX minerva: &l t ; h t t p : / /1 27 .0 . 0 . 1/ ontology/minerva−p o r t a l s#> ;
CONSTRUCT { ?y r d f : t y p e minerva:Stock ;

minerva:hasQuote _ : a .

_ : a r d f : t y p e minerva:StockQuote ;
minerva:date " " ;
minerva :pr ice " " . }

WHERE { ?y r d f : t y p e minerva:Stock .
?y psys:mainLabel ?name . }

</expr:SPARQL−Expression>
</ p r o c e s s : h a s E f f e c t >
</ p r o c e s s : R e s u l t >
</ p r o c e s s : h a s R e s u l t >

Listing 6.2: SPARQL-based Goal Representation

It is important to note that in the simulation only one instance of “minerva:StockQuote”

is created, instead in the real world invocation the service could respond a set of stock

quotes. However, during the simulation only the structure of available information is

important to determine the correctness or completeness of the composition.

Algorithm 2 provides an overview about the general steps of the simulation process.

The ABoxStartModel represents the available semantic information provided by the con-

tent (the semantics were extracted by the Calais web service). The partial ordering of

the web services, which could be derived from the DAG, is used to simulate the plan

invocation. For each web service the algorithm checks the precondition (ASK query).

If the precondition is true, then the CONSTRUCT query is executed and the resulting

simulated statements are added to the simulated ABox (ABoxSimulated).

The previous explanations outlined how the information states of the plan could be

simulated by SPARQL ASK and CONSTRUCT queries, which simulate the change of

the ABox described by the terms of the TBox. The expressiveness of this simulation is

based on the expressiveness of the described instances of the ABox. In the context of

6.4 Calculation of the Objective Functions 135

Algorithm 2: Simulation of Information States during the Planning Process
Data: KB = 〈TBox, ABoxStartModel〉, Genotype of the DAG

Result: ABoxSimulated

ABoxSimulated ← ABoxStartModel1

for all web services of the partial order derived from the DAG do2

queryASK ← webServicei.precondition /* get the precondition */3

bool ← execute(queryASK) /* evaluate if the precondition is true */4

if preCondition == true then /* web service precondition is true */5

queryCONSTRUCT ← webServicei.e f f ect /* simulate the effect */6

ABoxSimulated ← ABoxSimulated ∪ execute(queryCONSTRUCT)7

return ABoxSimulated8

this framework, OWL has been used as the description logic. Thus, the expressiveness

of the information state simulation could not be more than what could be expressed in

OWL.

However, at this point we could also state that the SPARQL processing makes the sim-

ulation very costly and it is not appropriate to simulate each plan. Heuristics are there-

fore needed that drive the optimization towards a promising plan (state), which is then

evaluated by the more exact simulation (see Figure 6.11). The next section specifies the

concrete objective functions and their heuristics.

Figure 6.11: Heuristic versus Exact Evaluation of Plans

6.4.2 Calculation of the Objective Completeness

The completeness measures to which degree the goal of the planning process is achieved.

The previous explanations outlined how the output triples of the information web ser-

vice could be simulated, this is used to exactly evaluate the completeness of a graph.

The goal of the final plan is specified by an SPARQL ASK query that asks for those

136 Planning of Information Gathering by an Evolutionary Algorithm

triple structures that should be created by the invocation of the plan.

Listing 6.3 shows a goal represented as a SPARQL ASK query. The goal specifies that

the agent is interested in a set of specific triple patterns.

PREFIX r d f : < h t t p : //www. w3 . org/1999/02/22− rdf−syntax−ns#>
PREFIX pup: < h t t p : //proton . semanticweb . org /2005/04/ protonu#>
PREFIX psys : < h t t p : //proton . semanticweb . org /2005/04/ protons #>
PREFIX ptop: < h t t p : //proton . semanticweb . org /2005/04/ protont #>
PREFIX minerva: < h t t p : / /1 27 .0 . 0 . 1/ ontology/minerva−p o r t a l s #>
ASK { _ : a r d f : t y p e pup:Company ;

p s y s : d e s c r i p t i o n " " ;
minerva:hasWikiPage " " ;
minerva:hasLogo " " ;
minerva :depic t ion " " ;
p t o p : l o c a t e d I n " " .

_ :b r d f : t y p e pup:PostalAddress .
}

Listing 6.3: SPARQL-based Goal Representation

The pattern describes that the agent would like to have information about a company.

Furthermore, the company instances should have data type properties that contain in-

formation about the description, WikiPage, logo and pictures of the company. In addi-

tion each of the desired individuals should have an object property to a postal address.

The SPARQL and RDF based representation of the information goal describes the de-

sired structure of the information state on the basis of triples and is thus as expressive

as the underlying approach for semantic description of information.

Algorithm 3 outlines the calculation of the exact completeness function.

The agent first simulates the plan and than executes the ASK query that represents the

Algorithm 3: Exact Calculation of the Completeness of a Plan

Data: Goal queryGoal
ASK, KB = 〈TBox, ABoxStartModel〉 , Genotype of the DAG

Result: Completeness c ∈ {0, 1}
ABoxSimulated ← simulate(KB = 〈TBox, ABoxStartModel〉 , Genotype)1

b← execute(queryGoal
ASK) on KB = 〈TBox, ABoxSimulated〉2

if b == true then /* plan is complete */3

return 14

else /* plan is not complete */5

return 06

goal on the simulated ABox. However, the SPARQL ASK query returns only TRUE

6.4 Calculation of the Objective Functions 137

or FALSE and provides no gradual weighting. Therefore such a representation of the

goal would make the agent blind. This means that algorithm would perform an unin-

formed search. As explained previously, a gradual evaluation of the goal fulfillment is

required.

One option is to process the partial completeness of the triple pattern of the RDF graph,

which could be difficult and costly to process. Furthermore, the simulation itself is very

costly.

Therefore it is more promising to specify an heuristic for the calculation of the com-

pleteness, which is gradual and could be processed without much effort. Furthermore,

the goal representation is refined to a list of wanted concepts and data type properties.

This means that only desired output concepts and data type properties are stated. In

the following this thesis denotes concepts and data type properties as resources.

Algorithm 4 outlines the processing of the heuristic function. The heuristic function

Algorithm 4: Heuristic Calculation of the Completeness of a Plan
Data: KB = 〈TBox, ABoxStartModel〉,

List of wanted output resources wantedResources,

Genotype of the DAG

Result: Completeness c ∈ [0, 1]
for all web services of the partial order derived from the DAG do1

outputResources← outputResources ∪ webServicei.outputs2

c← containsAll(outputResources, wantedResources)3

return Completeness c4

gathers the output resources of all web services and merges them into one set. The

operation "‘containsAll"’ checks, if for all wanted resources w ∈ wantedResources there

is a resources c ∈ outputResources such that c subsumes w (c v w). This means that

it checks that each output resource of the list of wanted concepts is addressed by an

either equal or more specific output resource of the plan.

The heuristic leverages the hierarchy of the DL knowledge base to evaluate the sub-

sumes relationships for the concepts as well as concrete roles (data type properties). In

fact, subsumes is one of the central reasoning services of a DL knowledgebase.

Instead to the exact completeness function, the heuristic provides gradual results based

on the percentage of served wanted concepts of the plan.

The previous explained heuristic does not take into consideration that there are often

web services that do not directly contribute to the goal state, but instead contribute to

the overall plan. This means that intermediate web services have to be considered, even

138 Planning of Information Gathering by an Evolutionary Algorithm

if their output resources are not directly stated in the goal. Therefore another additional

heuristic has been created that counts the number of promising web services.

A promising web services is a service which creates an output that is part of the plan-

ning goal or that is required as an input of another promising web service.

Algorithm 5 outlines the calculation of this heuristic. For each web service the algo-

rithm checks if it directly or indirectly contributes to the goal. The treshold is impor-

tant, because the important services could not be checked in one run.

Both, the heuristic for the completeness and the count of important web services drive

Algorithm 5: Heuristic Calculation of the Count of Promising Web Services
Data: Genotype of the DAG,

List of wanted output resources wantedResources
Result: Count of promising web services count ∈ Z

importantWebServices← create an empty set for the important web services1

i← 02

for i ≤ treshold do3

for all web services of the partial order derived from the DAG do4

if webServicei has an output resources that subsumes a resource of wantedResources5

then

add webServicei to the set of importantWebServices6

add the inputs of webServicei to the wantedResources7

count← importantWebServices.size8

return count9

the optimization towards the objective of completeness.

The previous explanations have described an exact calculation of the completeness and

two heuristics that drive the optimization process. The next section describes the cal-

culation of the correctness of the plans.

6.4.3 Calculation of the Objective Correctness

The correctness of a plan determines if it could be invoked correctly such that the pre-

conditions of each web service are fulfilled3. Therefore, correctness ensures that the

web services are ordered correctly.

3Postconditions have been neglected, because the information web services typically have no post con-
ditions.

6.4 Calculation of the Objective Functions 139

Algorithm 6: Exact Calculation of the Correctness of a Plan
Data: KB = 〈TBox, ABoxStartModel〉,Genotype of the DAG

Result: Percentage of correctness c ∈ [0, 1]
ABoxSimulated ← simulate(KB = 〈TBox, ABoxStartModel〉 , Genotype)1

count← get the count of web services with fulfilled preconditions from the simulation2

c← count/ number of web services of the plan3

return (Percentage of correctness c)4

Similar to the calculation of the completeness it is possible to evaluate the correctness

on the basis of the simulation of the plan. Since, the simulation checks the preconditions

of each information web service of the plan with an SPARQL ASK query, the algorithm

is able to evaluate if all preconditions are fulfilled.

It is important to note, that the SPARQL ASK query of the precondition checks different

RDF triple patterns of the simulated semantic data (simulated ABox). This means that

there is still the possibility that the plan could not be invoked fully, even if the simu-

lation has evaluated it as a correct plan. The reason is straightforward, the simulation

assumes that for a given input, the web service is able to create an answer. However, in

the real world this is not true in any case. The accessiblilty is a measure of the success

rate for requests (see Chapter 2) and gives and additional motivation for the incorpora-

tion of QoS attributes directly into the planning process.

Algorithm 6 outlines the calculation of the exact correctness. The algorithm simply

counts the number of services, which have fulfilled preconditions and thus could be

in general invoked with the available information. As stated above, the simulation of

plan needs a lot of processing time. Therefore, the correctness is also supported by an

heuristic function.

The heuristic correctness function is based on the inputs and outputs of the web ser-

vices. Thus, it checks if for each web services if the inputs are served by information

from the mashup content or by an output of one or more predecessor web services. Of

course, this is only a heuristic, but it is used to drive the search in a promising direction.

Algorithm 7 outlines the calculation of the heuristic evaluation of the correctness of a

plan.

This section has explained the calculation of the correctness of the plan, which ensures

the general invocability of the web services. The heuristic correctness of the plan is an

important measure to drive the optimization process towards a promising state. If a

heuristic correct and heuristic complete solution is found, the algorithm checks the ex-

140 Planning of Information Gathering by an Evolutionary Algorithm

Algorithm 7: Heuristic Calculation of the Correctness of a Plan
Data: KB = 〈TBox, ABoxStartModel〉,

Available Input Resources from the Content inResources,Genotype of the DAG

Result: Percentage of correctness c ∈ [0, 1]
count← 0 /* count of web services with fulfilled inputs */1

for all web services of the partial order derived from the DAG do2

serviceOutputResources← get output resources of predecessors of webServicei3

if containsAll(webServicei.inputs, inResources ∪ serviceOutputResources) == 14

then /* all inputs of the web service are served */5

count← count + 16

else7

/* do nothing,inputs are not fully served */

c← count/ number of web services of the plan8

return (Percentage of correctness c)9

act correctness of the plan. If the simulation confirms the solution of the heuristic the

algorithm has found the desired plan. The next section explains the calculation of the

length objective, which is important to achieve short plans.

6.4.4 Calculation of the Objective Length

The length of a plan is an important objective, because it is assumed that unnecessary

long plans lead to higher execution times and unnecessary costs. Therefore, the length

of the plans should be minimized. The objective function fWC is maximized by the

algorithm. Therefore, the weighting of the length objective has to be smaller than zero

(w3 < 0) to minimize the length.

The calculation of the length is simple, because the plan length is denoted by the count

of web services in the genotypical encoding, which could be retrieved easily.

First tests of the algorithm as shown that the algorithm performs better, when the count

of unimportant web services is considered instead of the count of all web services.

The calculation is still simple, since the count of important services has been already

specified for the completeness, thus the objective could be processed

countO f UnImporatantService = length− countO f ImportantWebServices .

This section explained the calculation of the objective functions of the optimization

6.5 Description of Evolutionary Operators 141

problem. It is important to note that the exact calculation of the objectives is often to

costly and slows down the performance of the algorithm. It is therefore suitable to

determine appropriate heuristics that drive the optimization towards a promising state

of the state space. In this context, a promising state is a state that is heuristic correct

and complete. Ones a suitable state is achieved, the exact calculation is performed to

ensure the quality of the plan.

The stated heuristics work well with the proposed algorithm (see Chapter 8) and their

performance depends mainly on how fast the subsumes relation between the resources

could be processed. As explained in Chapter 4, subsumption is an important inference

task in DL knowledge bases. Therefore, it is important for future research to increase

the performance of these heuristics or to find other heuristics to improve the speed of

the planning process.

6.5 Description of Evolutionary Operators

The previous section defined the optimization problem and described the calculation

of the objective function. This section describes the operators that are used to generate

new states (plans) within the search process.

6.5.1 Selection

The selection is mapping from a population of size r into a population of selection

candidates of size s, thereby the weighting ∈ R influences the mapping of the selection.

The selection operator is therefore formally defined as:

Selξ : (G ×R)r → (G ×R)s .

Furthermore, ξ is a specific state of the random number generator and G denotes the

genotype. The random number generator influences the generation of new states as

well as the behaviour of the evolutionary operators. One instance of the random num-

ber generator creator is used by the whole planning module. This is preferable, because

the random number generator could be optionally set to a specific seed value. The seed

value is a unique key for a sequence of random numbers. Normally, this option is not

used by the framework. However, the seed value could be used to reproduce results

and investigate the sensitivity of parameters during the evaluation. Therefore,the uti-

lization of the seed value makes different analysis comparable.

142 Planning of Information Gathering by an Evolutionary Algorithm

6.5.1.1 Parent Selection

The parent selection determines the parent individuals that are used for the recombi-

nation.

Each individual (state) of the population should have a chance to be selected, because

otherwise the effort of its maintenance would be not appropriate [Wei07, p.66].

The selection influences the diversity of a population. For instance, if the selection is

strict, it selects only the best individuals, and thus the algorithms converges very fast

towards a specific state. This could lead to a population that contains only equal indi-

viduals. Such a population is called a converged population. However, as explained

earlier, a fast convergence could trap the search in a local optima [Wei07]. In a con-

verged population, the recombination operator is not able to create new children. Thus,

the change depends then on the mutation, which could lead to the case that the algo-

rithm is not able to escape from the local optima. Diversity is therefore important for

the population to consider different states of the state space and not only one state sev-

eral times (The concrete diversity measure of the genotype is described in Chapter 8).

The research has turned out a variety of selection strategies such as fitness propor-

Algorithm 8: Tournament Selection
Data: population P,tournament probability probt

Result: the selected plans SP
SP is a empty list of the selected plans1

i← 12

for i ≤ selectionsize do3

T ← create a random tournament between two random plans4

if next random number r ∈ [0, 1] < probt then /* highest performance wins5

tournament */

get the plan with the greater weighting6

else /* smallest performance wins tournament */7

get the plan with the smaller weighting8

add the winner to SP9

i← i + 110

return (the selected list of plans SP)11

tional selection and tournament selection to avoid an too fast convergence of the al-

gorithm [Wei07].

The proposed algorithm is based on a tournament selection strategy. In the tournament

6.5 Description of Evolutionary Operators 143

selection two random plans (states) of the population are selected to perform a tour-

nament against each other. The tournament probability denotes the probability that

the plan with the higher performance (weighting) wins the tournament, and thus is

selected for recombination. Thus, a higher tournament probability tends to drive the

selection to the individuals with the better performance. In each tournament the winner

is added to the candidates for recombination. The tournament supports the retainment

of diversity, because also worse plans have a chance to be part of the recombination

phase if the worse plan wins the tournament against the better plan. In addition, the

tournament could be itself only contain worse plan, such that in every case a worse

plan is selected for recombination. Algorithm 8 outlines the basic principle of the tour-

nament selection.

6.5.1.2 Environment Selection

The environment selection is another form of selection. Recombination and Mutation

create children (states) that are added to the population. However, the population has

a predefined size and therefore not all individuals could survive. The environment se-

lection determines which of the individuals are present in the next generation of the

population. Possible strategies are the deletion of the individuals with the smallest per-

formance, the deletion of the oldest individuals or random deletion.

This evolutionary algorithm deletes directly the worse individuals. Thus, the best per-

forming individuals survive. However, the deletion adheres that each individual could

be only ones in the population. This is very important to remain the diversity of the

population.

This section has explained the parent and environment selection of the evolutionary

algorithm. The parent selection is important to determine the set of individuals that are

recombined. The recombination operator is described in the next section.

144 Planning of Information Gathering by an Evolutionary Algorithm

6.5.2 Recombination

The recombination is mapping from a population of size r into a population of children

of size s. The recombination operator is formally defined as:

Recξ : (G)r → (G)s .

The recombination is only meaningful if r ≥ 2 and s ≥ 1. The operator does not change

the allele frequency. Moreover, it is responsible to create new interdependencies be-

tween different genes. The interdependencies are important to create new phenotypical

characteristics. In fact, the nodes between the graph are highly interdependent, because

the resulting ordering specifies, if a genotype is correct.

Algorithm 9 outlines the principle of the two-point crossover that has been imple-

mented. The sub function is assumed to operate on the list of web services as well

as on the topology of the genotype. The two-point crossover cuts the genotypes at two

indexes and recombines the intermediate parts of the genotypes. An example of a dou-

ble crossover is shown in Figure 6.12. In this case, the topological levels four and five

are interchanged between the two different plans.

Algorithm 9: Recombination through a Two-Point Crossover
Data: selected plans P, CP is a empty list of the selected plans

Result: the child plans CP
temp← P1

for tuple (G1, G2) of genotypes of temp do2

temp.remove(G1) and temp.remove(G2)3

point1← new random number ∈ [0, min(G1.length, G2.length))4

point2← new random number ∈ [0, min(G1.length, G2.length)− point1) + point15

G1new ← G1.sub[0, point1)&G2.sub[point1, point2)&G1.sub[point2, G1.length)6

G2new ← G2.sub[0, point1)&G1.sub[point1, point2)&G2.sub[point2, G2.length)7

CP.add(G1new) and CP.add(G2new)8

return (the recombined children CP)9

6.5 Description of Evolutionary Operators 145

Figure 6.12: Two-Point Crossover

146 Planning of Information Gathering by an Evolutionary Algorithm

6.5.3 Mutation

The mutation is a mapping from a population of size r into a population of size r. The

mutation operator is formally defined as:

Mutξ : (Gr)→ (Gr) .

ξ is a specific state of the random number generator and G denotes the genotype.

The general mutation has several occurrences. The mutation of web service identi-

fiers (Figure 6.13) changes the list of considered web services of the genotype with an

predefined probability. This mutation changes the plan significantly, because the new

web service has another web service description and this influences the weighting of

the genotype.

The topology mutation changes the topological information of the DAG. This muta-

tion disarranges connections (Figure 6.14) as well as whole topological levels (Figure

6.15). The change of the topological information influences also the weighting function,

because this mutation could lead to a change in the correctness of the considered plan.

6.5 Description of Evolutionary Operators 147

Figure 6.13: Mutation of the web service identifier

148 Planning of Information Gathering by an Evolutionary Algorithm

Figure 6.14: Mutation of the topology connections through the disarrangement of spe-
cific edges of the DAG

6.5 Description of Evolutionary Operators 149

Figure 6.15: Mutation of the topological level through a disarrangement of a whole
level of the DAG

150 Planning of Information Gathering by an Evolutionary Algorithm

6.5.3.1 Growing and Shrinking of Plans

Growing and shrinking are special types of topological mutations of plans.

Growξ : (G)→ (G)

A solution is grown by adding a new topological level at a random position of the DAG.

The new topological level contains a random web service and random connections.

Algorithm 10 outlines the computation of the genotypical grow. The grow probability

Figure 6.16: Growing of the solution by adding a new topological level at a random
position of the DAG

denotes the probability that a genotype of the population is grown. The newly added

web service is randomly selected from the available ones which are registered in the

web service registry.

A solution is shrunk through the random deletion of a topological level of the geno-

type. The prinicple is outlined in Figure 6.17.

6.5 Description of Evolutionary Operators 151

Algorithm 10: Growing of Plans
Data: population, growProbability, maxServiceIdenti f ier
Result: population

for each genotype of the population do1

if next random number ∈ [0, 1] ≤ growProbability then2

newPosition← next random number ∈ [0, planLength)3

serviceIdenti f ier ← random number ∈ [0, maxServiceIdenti f ier]4

topology← random topological level for connection5

add serviceIdenti f ier to list of web services at index newPosition6

add topology to the topology at index newPosition7

Shrinkξ : (G)→ (G)

Algorithm 11 outlines the random shrinking of a genotype of the population. The

shrink probability specifies the probability that a genotype of the population is shrunk.

In addition, the topological level that should be deleted is also specified by a random

number which is derived from an uniform distribution. Thus, not only the last position

of the plan is deleted also inderemedatiate positions could be deleted to shrink the plan.

Algorithm 11: Shrinking of Plans
Data: population, shrinkProbability
Result: population

for each genotype of the population do1

if next random number ∈ [0, 1] ≤ shrinkProbability then2

position← next random number ∈ [0, planLength)3

remove position from list of web services4

remove position from list of topological levels5

152 Planning of Information Gathering by an Evolutionary Algorithm

Figure 6.17: Shrinking of the solution by a whole topological level

6.6 Conclusion 153

6.5.4 Repairing of Plans

The repair operator is mapping from a population of size r into a population of children

of size r. The operator is formally defined as:

Repairξ : (G)→ (G) .

During the evolutionary process, different operators are applied on the individuals.

These operators create errors that are not in accordance with the general genotypical

representation. This means that the mutation and recombination create plans which

contain cycles or which contain duplicate web services. The repairing operator repairs

the genotypes such that they are acyclic and contain no duplicate web services. For in-

stance, if there are duplicate web services, one service is mutated randomly to another

service. Therefore, the repair operator does not solve the problem. It simply changes

the genotypes randomly such that they are compliant with the requirements.

This section has explained the evolutionary operators of the algorithm. The next section

explains the implementation of the operators and the other components of the planning

module.

6.6 Conclusion

This chapter has described the planning module of the mashup framework. The plan-

ning uses and evolutionary strategy to perform an efficient search for web service

compositions. The algorithm addresses the requirement (see Chapter 2)for an scalable

and performant approach for web service composition ([Req. NF4]). Furthermore, this

chapter has described the weighing of different web service composition alternatives

based on multiple objectives that relate to the information criteria defined in Chapter 2.

154 Planning of Information Gathering by an Evolutionary Algorithm

CHAPTER 7

Implementation

In a software architecture, the reduction of the complexity of the system as well as

the provision of easy adaptivity are key objectives that could be achieved by the cen-

tral principle of loosely coupling[VAC+05, p.113]. This means that the components of

the architecture should be connected as few as possible, which should lead to an easy

adaptivity of components independently from the other ones. The mashup framework

supports loosely coupling, because the mashup agent is responsible to create an ad-hoc

composition of the registered information web services that are invoked to retrieve the

mashup data.

Modularity is the general basis of an loosely coupled system and is also related to sep-

aration of concerns and information hiding. Information hiding achieves that only

those informations are presented to other components which are relevant [VAC+05,

p.124]. The modularization of the framework components supports the requirements

[Req. NF8], [Req. NF9] and [Req. NF10] of the requirements analysis (see Chapter 2).

Each module could be accessed by a defined interface, and thus the internal code of the

modules could be changed without affecting the other ones. Furthermore, the frame-

work could be extended by other modules. Each framework module contains func-

tionality that is clearly separated and thus supports the adaptivity, the reuse and the

enhancement of the architecture.

The agent program is developed as a portlet web application that could be deployed

on the IBM WebSphere Portal. The domain model (TBox of the knowledge base) as well

as the web service descriptions are located on a separate application server. Therefore,

they could be maintained and changed independently from the application logic of the

agent program.

The agent program is based on two main classes. The class “MashupFrameworkPort-

let” is an extension of a generic portlet that is responsible to handle external requests.

The portlet conforms to Version 2.0 of the Java Portlet Specification [Hep08]. The class

156 Implementation

Figure 7.1: Class Diagram Framework Base Classes

“Framework” ensures that the different modules are loaded correctly and maintains

the references to them. After the mashup framework is properly initialized, the portlet

container could invoke the portlet to handle request from the client.

The agent program could be invoked by an action request [Hep08]. Furthermore, the

portlet container could make a serve resource request [Hep08] to get the mashup pre-

sentation based on the present ABox state of the agent.

The naming of the components of the architecture, the documentation and the structure

of the interfaces etc. is based on a consistent format.

Figure 7.2 outlines the packet structure of the implementation, which is in accordance

to the modules defined in the architecture.

157

Figure 7.2: Mashup Framework Packet Diagram

158 Implementation

7.1 Used Software and APIs

• IBM WebSphere Portal [Web] Version 6.1

• Apache Tomcat [APAa] Version 6.0: Apache Tomcat is a Servlet container de-

veloped by the Apache Software Foundation. It implements the JavaServlet and

JavaServer Pages specifications and provides a web server environment to run

Java code. The web service descriptions for OWL-S and WSDL as well as the on-

tologies are served through the web server. Thus, they are not directly part of the

mashup agent and could therefore adapted and extended without much effort.

Furthermore, the web server is responsible to run a set of self-implemented web

services that were written in Java.

• Jena: The application utilizes the Jena framework [JEN] that provides an API

to handle RDF and OWL. Furthermore, it provides RDF parsers for reading and

writing purposes as well as an implementation of SPARQL called ARQ to query

RDF documents.

• Pellet: The Pellet [PEL] open source1 reasoner is used in addition to the Jena

framework to support extensive OWL-DL reasoning. Pellet supports a variety of

reasoning services and optimization technigues.

• JAXB [JAX] Version 2.1: The Java Architecture for XML Binding (JAXB) is used

to map Java classes to a XML serialization. This means that Java objects could be

marshalled into a XML serialization and vice versa.

• Apache Axis2/Java [APAb] Version 1.4: Apache Axis2 is a core engine for web

services. Apache Axis2 supports SOAP 1.1 and SOAP 1.2 as well as RESTful web

services (see Requirement [Req.F4].

• SAWSDL4J [SAW]: The API is an implementation of the SAWSDL specification

and extends the WSDL4J API.

• WSDL4J [WSD]: The Web Service Description Language for Java Toolkit (WSDL4J)

allows the creation, representation, and manipulation of WSDL documents.

• Xalan-Java [XAL] Version 2.7.0: Xalan-Java is an XSLT processor that could trans-

form XML documents into other XML document types. Xalan is used for the

XLST transformation of the SAWSDL schema mappings.

1Clark & Parsia LLC http://clarkparsia.com/support provides also commercial support contracts for
Pellet.

http://clarkparsia.com/support

7.2 Planner Implementation 159

The Eclipse 3.3 IDE2 has been utilized for the development of the web application. The

semantic documents has been developed with Protégé3.

7.2 Planner Implementation

The evolutionary planner has been implemented in Java, in accordance with the other

modules of the architecture. The classes are part of the package of the planner. The

utilization of an existing Java API for evolutionary algorithms has been considered and

discarded, because the complex genetic encoding requires the implementation of new

operators and weighting functions. Therefore, it seemed to be suitable to implement

the algorithm independent from an existing system.

Figure 7.3 and Figure 7.4 show the main classes of the planning engine.

The main logic of the evolutionary algorithm is encapsulated in the ”EvolutionaryAl-

Figure 7.3: Class Diagram of the Planner

gorithm” class. In accordance to the previous explanations, the encoding of the DAG is

implemented in the class ”AdjacencyListChromosome“. The class ”WeightingCalcula-

tor“ is responsible for the performance measurement of a specific plan.

The evolutionary algorithm drives the optimization based on the evolutionary factors

for selection, mutation and recombination. Each of the operators is implemented in a

related class.

2http://www.eclipse.org/
3http://protege.stanford.edu/

http://www.eclipse.org/
http://protege.stanford.edu/

160 Implementation

Figure 7.4: Class Diagram Evolutionary Algorithm

Figure 7.5: Class Diagram Selection

7.2 Planner Implementation 161

Figure 7.6: Class Diagram Operators

Random numbers are used throughout the algorithm to generate the initial population

and to manipulate it. The random numbers are always derived from one Java random

number generator that creates numbers with a uniform distribution. Therefore it is

possible to set so called seed values. A seed values specifies exactly the sequence of

numbers that are created randomly. Therefore, such a seed value is important to run

the algorithm with the same start conditions for different parameters. This enables an

correct comparison of the different results.

The previous figures and explanations outlined shortly the classes of the the planning

package. A detailed description of the classes could be found in the Java documentation

of the implementation.

162 Implementation

Figure 7.7: Class Diagram Mashup Handler

7.3 Mashup Handler

The ”Mashup Handler“ is responsible for the invocation of the unstructured text anal-

ysis web service as well as the ”Service Handler“. The functionality is encapsulated in

two associated classes (see Figure 7.7).

The ”UnstructuredTextHandler“ class contains a simple wrapper of the Calais web ser-

vice. It uses an Axis2 ”ServiceClient“ that is configured by the public available service

description4.

The ”Service Handler“ class uses also an Axis2 ”Service Client“. Furthermore, it main-

4http://api.opencalais.com/enlighten/?wsdl

http://api.opencalais.com/enlighten/?wsdl

7.4 Web Service Registry 163

tains the ABox state during the plan execution and is responsible for the lifting an low-

ering of the data.

The class ”HasherRDF_ID“ is utilized in the lifting schema mappings of the WSDL files.

The Xalan XSLT processor provides the hash function as an extension function to the

XSLT documents. Since, the instances of the ontology are generated by the XSLT trans-

formations, the hasher is important to achieve unique URI for the different instances of

the ABox.

7.4 Web Service Registry

The registry is based on two classes: ”WebServiceRegistry“ and ”WebService“. The

class ”WebService“ defines the attributes of a web service that are maintained by the

registry. The class ”WebServiceRegistry“ gives access to the list of all web services. The

preprocessing of the OWL-S descriptions assumes that the web services do not change

their functional parameters, because these changes have to be propagated to the OWL-

S descriptions and the registry as to be updated. However, such an dynamic change

could not been found to be present at existing real world services. The interfaces of

these web services are static. Thus a frequent change of the IOPEs (and therefore of the

OWL-S description) of a specific web service at runtime could be neglected.

The present registry does not detect web services which are down in the meanwhile.

Thus, it does not deactivate them automatically. However, this could be implemented

as an extension and does not affect the feasibility of this approach. For instance, a

predefined message could be send at different times to check the availability5.

5This approach seems to be of course only preferable for free web services

164 Implementation

Figure 7.8: Class Diagram Web Service Registry

7.5 Presentation Module 165

7.5 Presentation Module

The presentation module generates the mashup presentation based on a model-driven

approach. The model driven approach defines several presentation models such as ta-

ble or map. The presentation models contain the the data of the specific presentation

style. Furthermore, a presentation model could have a set of sub models to support

nested visualizations. For instance, a mapping model typically is supported by a set of

point models, which are added as sub models to the map model. In addition, the points

could also have several sub information represented by different kinds of presentation

models (e.g. point contains table models). The visualization of each presentation model

is defined in a template and could be generated by a template engine. For instance, a

map model could be used to generate a GoogleMap or a YahooMap. The type of map

only depends on the template that has been selected. Figure 7.9 shows the class dia-

gram of the implemented presentation models.

The relevant data of the presentation models is retrieved by different selectors.

A selector makes a SPARQL query on the RDF data of the mashup (the ABox of the

knowledge base). The selectors could be separated in instance selectors and data se-

lectors. Instance selectors return the instances of a specific concept. For example, the

company selector returns the URIs of all company instances. The list of these instances

is then given to a data selector (e.g. table selector) that retrieves all the information for

this instance and adds it to the presentation model.

The previous explanations pointed out an approach to generate dynamically a presen-

tation for RDF data. The difficulty of the generation relies in a suitable transformation

of the RDF triples into an artifact that could be consumed by a human agent. Since the

presentation module is not in the direct focus of this thesis, it has been only developed

to denote the general usability of the framework.

7.6 Conclusion

This chapter has described the implementation of the mashup framework. The imple-

mentation of the proposed approach was subject of an evaluation that is described in

the next chapter.

166 Implementation

Figure 7.9: Class Diagram Presentation Models

CHAPTER 8

Evaluation

The proposed framework for automatic generation of semantic mashups has been sub-

ject of an evaluation. Section 8.1 describes the conditions of the evaluation such as the

used web service test collection, hardware as well as the random number generator.

As explained in Chapter 6, the planning engine is based on a stochastic hill-climber that

traverses the search space by an evolutionary strategy. It can be not guaranteed that the

algorithm finds a solution, because the random generation and manipulation of states

does not guarantee that every state of the state space will be considered. Therefore the

planner has been part of a quantitative evaluation, which is described in Section 8.2.

Besides the planning of the information gathering, the invocation of created plans is

an important part of this framework, which is investigated in Section 8.3. Section 8.4

concludes this chapter with a short summary about the results of the evaluation.

8.1 Evaluation Conditions

This section describes important conditions that have to be considered in the evaluation

of the framework as well as in the comparison with other frameworks.

8.1.1 Semantic Web Service Test Collection

The investigation of the planning and execution of the mashup agent has to be based

on a web service test collection. The requirements on the test collection are versatile,

but are based on the stated requirements of Chapter 2. The web service test collection:

• has to contain semantic web service descriptions for each web service.

• has to contain description of web services based on WSDL to enable the configu-

ration of the web service client of the agent.

168 Evaluation

• has to contain SAWSDL annotations for lifting and lowering schema mappings to

achieve the data mediation between the web services.

• has to contain SOAPful and RESTful web services to utilize both important types.

• has to be large to evaluate the scalability of the planning approach.

• should utilize financial and related web services that support the stated use cases.

The manual creation or a large test collection that adheres all requirements is very time

consuming, because the correct semantic description of existing web services as well

as their pretesting needs a lot of time. In addition, it would be useful to utilize a stan-

dard test collection that allows the comparison of different planning and execution ap-

proaches. Unfortunately, there is no big available repertory of different web service

test collections. This is in accordance with Küster and König-Ries [KKR08], who stated

that the past investments in test collections does not reflect the huge research activities

in semantic web services.

The Online Portal for Semantic Services (OPOSSum) [KKRK08] has been created to pro-

vide a comprehensive semantic web service repository. Furthermore the existing web

service test collections are mainly based on OWL-S and could not be seen as a standard,

which makes it difficult to test it against other SWS description languages [KKRK08].

However, an evaluation of the framework is needed to investigate the feasibility, scal-

ability and performance of this approach. Therefore OWL-S has been selected as the

semantic web service description language (see Chapter 5).

This thesis proposes the following approach for the creation of the test collection, which

is based on a set of 1000 web services descriptions. 990 of the descriptions has been re-

trieved from OPOSSum [KKRK08] and are described by OWL-S 1.1. This part of the test

collection is abstract. This means it contains a huge number of semantic descriptions,

but do not relate to WSDL descriptions of existing web services. This is a problem, be-

cause the execution of the framework could only be tested by real world web services.

Therefore the other web services descriptions has been created manually. They are

based on OWL-S 1.2 and SAWSDL, because the definition of preconditions and results

in SPARQL is not available in OWL-S 1.1. The OWL-S 1.2 descriptions refer to real

SOAPful and RESTful that are used to test also the execution of the plans.

The test collection has also some assumptions that have to be stated at this point. Since

the OWL-S 1.1 and 1.2 inputs, outputs, preconditions and results are preprocessed by

the mashup agent registry, both types could be handled. However, the OWL-S 1.1 web

service descriptions of the test collection contain no preconditions and results defined

in SPARQL. Therefore, the exact calculation (simulation) of the plan is not possible, if

the considered plan contains such web services. Nevertheless, the heuristic planning

8.1 Evaluation Conditions 169

process could be executed, because it relies only on the input and outputs of a web ser-

vice.

Another problem with the test collection is based on the different utilized ontologies.

The retrieved OWL-S 1.1 web service descriptions use not the terms of the domain on-

tology of the framework to described inputs and outputs. Instead, they are based on

several other ontologies. These are loaded in addition to the domain ontology into

the ontology manager of the agent. It has to be considered, that this influences the

subsumes inference of the planning process, because the different ontologies are not

mediated with the framework ontology. Therefore, the subsumes relation will find no

subclass relations between web services described by resources of different ontolo-

gies. Nevertheless, the descriptions are considered in the planning process. Moreover,

this does not reduce the state space that has to be traversed by the evolutionary algo-

rithm, because the application does not know in advance that the outputs of a specific

web service do not subsume with other resources.

So far, the test collection has only minor influence on the evaluation of the framework,

because the planning problems could be stated in a way that the correct solution could

only incorporate web services that could be also invoked. However, the algorithm does

not consider the case that the test collection contains several equal web services. This

means web services that provide the same functionality, but different QoS attributes.

The current implemented weighting function (fWC) is not able to distinguish between

such equal web services and thus will select both. Therefore it is better to extend the

weighting function such that it is able to incorporate the QoS preferences of the user.

This should avoid an selection and composition of a set of equal web services if the

penalty for too long plans is high enough.

As outlined in Chapter 6, the user model and the formal concretion of user preferences

is a requirement that is not part of this thesis and could be done in the future work. The

proposed web service test collection has therefore no multiple equal web services.

8.1.2 Used Hardware

The evaluation of the mashup agent has been performed on an Intel(R) Core 2 CPU

6400 with 2.13Ghz and 2GB RAM. The main memory for the execution of the algorithm

has been restricted to a maximum of 1024 MB.

170 Evaluation

8.2 Analysis of the Planning Module

This section analyses the planning process. The next section describes the resulting

state space and defines the different considered planning problems.

8.2.1 De�nition of Planning Problems

8.2.1.1 State Space

The search algorithm traverses the discrete state space by stochastic hill-climbing com-

bined with an evolutionary strategy. The state space is increasing as more and more

web services become available. It is assumed that each web service could be only ones

in the plan. The state space is defined by the set of all permutations of atomic web

services registered at the library, if only the resulting partial ordering of the DAG is

considered. For instance, if the registry contains 1000 web services S = 0, 2, . . . , 999

then each of the 1000! permutations is a state that could be a possible solution of the

problem. Thus, the discrete state space would have 1000! = 4, 0e + 2567 states. In-

stead if the registry contains only 100 web services, the number of states would be

100! ∼ 9, 3e + 157. It is therefore important to evaluate the scalability of the agent.

8.2.1.2 Planning Problem [P1] - Traveling

<name> t r a v e l </name>
<mashupInputs> h t t p : //proton . semanticweb . org /2005/04/ protonu# City</

mashupInputs>
<mashupInputs> h t t p : //proton . semanticweb . org /2005/04/ protonu#Company</

mashupInputs>
<mashupOutputs> h t t p : //proton . semanticweb . org /2005/04/ protonu# Hotel</

mashupOutputs>
<mashupOutputs> h t t p : //proton . semanticweb . org /2005/04/ protonu# S t r e e t </

mashupOutputs>
<mashupOutputs> h t t p : //proton . semanticweb . org /2005/04/ protont # longitude</

mashupOutputs>
<mashupOutputs> h t t p : //proton . semanticweb . org /2005/04/ protont # l a t i t u d e </

mashupOutputs>
<mashupPrecondition></mashupPrecondition>
<mashupEffect></mashupEffect>

</task>

Listing 8.1:]Task Description - Planning Problem [P1]

8.2 Analysis of the Planning Module 171

The first planning problem addresses the traveling use case (Listing 8.1). The goal of

the task is to get information about hotels, streets as well as longitude and latitude

information. The available mashup inputs are also stated. However, if the provided

content contains no such information, the planning process considers this. The mashup

preconditions of this task model could be used to denote the triple required and gener-

ated triple structures. Since, the algorithm does not use the exact completeness (it uses

the exact correctness), these values are not stated.

The mashup outputs define the goal of the planning process based on the description

of resources, which are concepts such as Hotel and Street as well as roles (properties)

such as longitude and latitude.

8.2.1.3 Planning Problem [P2] - Company Research

This planning problem is more complex than the first one, because it requires to find

intermediate web services that do not directly contribute to the goal information state.

<task>
<name>research</name>
<mashupInputs> h t t p : //proton . semanticweb . org /2005/04/ protonu# City</

mashupInputs>
<mashupInputs> h t t p : //proton . semanticweb . org /2005/04/ protonu#Company</

mashupInputs>
<mashupOutputs> h t t p : // 12 7 . 0 . 0 .1 / ontology/minerva−p o r t a l s . owl# StockQuote</

mashupOutputs>
<mashupOutputs> h t t p : // 12 7 . 0 . 0 .1 / ontology/minerva−p o r t a l s . owl#StockSymbol</

mashupOutputs>
<mashupOutputs> h t t p : // 12 7 . 0 . 0 .1 / ontology/minerva−p o r t a l s #hasWikiPage</

mashupOutputs>
<mashupOutputs> h t t p : //proton . semanticweb . org /2005/04/ protonu#NewspaperIssue

</mashupOutputs>
<mashupPrecondition></mashupPrecondition>
<mashupEffect></mashupEffect>

</task>

Listing 8.2:]Task Description - Planning Problem [P2]

172 Evaluation

8.2.2 Performance and Scalability Analysis

This analysis evaluates the performance and scalability of the algorithm for the plan-

ning problems [P1] and [P2]. For each problem the planner has been randomly exe-

cuted to solve by the planner fifty times. The parameters of the algorithm have been

the following:

• Library Size: 1000

• Population Size: 8

• Selection Size: 8

• Selection Type: Tournament Selection

• Crossover: Two-Point Crossover

• Service Mutation Probability: 0.2

• Topology Mutation Probability: 0.7

• Grow Probability: 0.3

• Shrink Probability: 0.3

Figure 8.1, 8.2 outline the results for the different problems. The diagrams shows the

weighting of the best individual of the population in dependence to the number of gen-

erations. In both problems the algorithm converges for the first generations relatively

fast. For the former problem the algorithm comes in all cases to a correct and complete

solution. In the most runs it needed maximum 1000 generations. Some outliers need

more than the 1000 generations.

The latter problem is more complex and the algorithm also needs more generations to

come to a solution. For two runs the algorithm has been stopped at the maximum of

10000 generations, the curves are not shown in the diagram. The other runs solved the

problem in the average in 25 seconds, which seems to be acceptable.

In 3 runs the solutions achieved not the utility of 80, because they were correct and

complete, but had an additional not necessary web service.

It could be therefore concluded that the algorithm is able to solve such problems and

that they could be solved in an acceptable time regarding the a web service registry of

1000 web services. Furthermore, the more complex a problem is the more generations

are required by the algorithm.

8.2 Analysis of the Planning Module 173

Figure 8.1: Performance Analysis of Problem [P1]

174 Evaluation

Figure 8.2: Performance Analysis of Problem [P2]

8.2 Analysis of the Planning Module 175

The scalability in dependence to the registry size is very important. The following anal-

ysis is based on planning problem [P2] and investigates the scalability of the agent for

the registry size. The planner is executed iteratively with registry sizes between 150

and 1000 registered web service descriptions. For each registry size the planner is run

for 9 different seed values of the random number generator to ensure the comparabil-

ity. Figure 8.3 shows the median of the count of evaluated states in dependence to the

registry size. The count of evaluated states is calculated by the number of invocations

of the weighting function until a solution has been found. For instance, the weighting

function could evaluate 1000 states (plans) of the states space and then have a correct

and complete solution. In this case the measure is 1000. Figure 8.3 shows the median

of the values of the different runs.

It could be concluded, that an increasing registry size requires the evaluation of more

states. This was expected, however, it is important to note that the state space increases

much more faster than the algorithm has to evaluate more states. Therefore, the algo-

rithm has a good scalability even for this large registry sizes. For instance, for 100 web

services the state space has 100! ∼ 9, 3e + 157 states, whereas for 1000 web services the

state space has 1000! ∼ 4, 0e + 2567 states. At the same time, the median of required

states has multiplied by round about five. Furthermore, in all cases the algorithm has

found a correct and complete solution.

Figure 8.3: Scalability Analysis of Problem [P2]

176 Evaluation

8.2.3 Parameter Sensitivity Analysis

The parameter sensitivity analysis investigates the change of the performance of the

planning algorithm in accordance to the variation of one parameter. This seems to be

important to evaluate the planning process in different parameter setting.

The basic parameters of the algorithm have been the following:

• Library Size: 1000

• Population Size: 8

• Selection Size: 8

• Selection Type: Tournament Selection

• Crossover: Two-Point Crossover

• Service Mutation Probability: 0.2

• Topology Mutation Probability: 0.7

• Grow Probability: 0.3

• Shrink Probability: 0.3

The considered parameters for the sensitivity analysis are:

• Population size pSize ∈ [2, 20]

• Selection size sSize ∈ [2, 20]

• Service mutation probability sMutProb ∈ [0, 1]

• Topology mutation probability tMutProb ∈ [0, 1]

The sensitivity analysis is computed for a set of 5 different seed values of the random

number generator to ensure the comparability of the results.

The mutation probability is an important parameter that should be not round about

0.2 (see Figure 8.4). If the mutation probability is to big the algorithms has to evaluate

more states. For service mutation probabilities greater or equal than 0.5 the algorithm

converges not to a solution state. This is acceptable, because as explained in Chapter 6,

big mutations also go along with great negative impacts, and this is confirmed by this

diagram.

8.2 Analysis of the Planning Module 177

Figure 8.4: Sensitivity Analysis of Service Mutation Probability of Problem [P2]

178 Evaluation

Figure 8.5 shows the topology mutation analysis. The topology mutation should be not

to small, because otherwise the algorithm comes not to a solution. This is not straight-

forward. However, the topology mutation does not change the services itself, it changes

only their placement. If the topology mutation is to small the algorithm is not able to

come quickly to different coordinations and thus such an higher probability drives the

optimization better.

Figure 8.5: Sensitivity Analysis of Topology Mutation Probability of Problem [P2]

8.2 Analysis of the Planning Module 179

In Figure 8.6 and Figure 8.7, the sensitivity of the population size and the selection

size are investigated. However, there could be no clear trend detected. Thus, a higher

population size not necessary increases the performance of the algorithm. Therefore,

there could be not clear trend stated.

Figure 8.6: Sensitivity Analysis of Population Size of Problem [P2]

180 Evaluation

Figure 8.7: Sensitivity Analysis of Selection Size of Problem [P2]

8.2 Analysis of the Planning Module 181

8.2.4 Diversity Analysis

The usage of a population of solution candidates offers the possibility to search parallel

at different points of the state space. This advantage is only present, if the different so-

lution candidates (states) are not identical. However, the presence of several solution

candidates itself makes no evidence for diversity.

Diversity could be measured in different ways and has to be adapted to the problem.

Popular measures are the Shanon entropy or the substring diversity [Wei07, p.62-63].

For the existing problem a substring oriented diversity seems to be appropriate, be-

cause it adheres also the diversity of subparts of the plans. Furthermore, we compute

the diversity on the partial order that is given by the web service keys of the genotype.

Thus, the topological connections of the DAG are neglected. This seems to be suitable,

because finally the partial ordering of the web service is the only information that is

needed to invoke the services, since the execution stage is based on the SAWSDL lifting

and lowering. Nevertheless, the topological information are needed in the planning

process to process the heuristic functions.

For a population P the diversity is defined as

DiversitySubstring (P) =
s ∗ #

(⋃
1≤i≤s Substring

(
Gi.R

))
∑1≤i≤s #Substring (Gi.R)

.

The function Substring(G.R) returns a set of possible substrings of the partial ordered

list of web service identifiers of the genotype. If the population is converged the diver-

sity is 1, which is the minimum of the function. The following example calculates the

substring diversity for a predefined population P. Since, the substring diversity is only

measured on the partial list of web services, the concrete topological information of the

example population are neglected, to simplify the notation.

P = 〈〈10, 2, 3, 8〉, 〈1, 2, 3〉〈3, 8, 5〉〉

Substring(〈10, 2, 3, 8〉) = {〈10〉, 〈2〉, 〈3〉, 〈8〉, 〈10, 2〉, 〈2, 3〉, 〈3, 8〉, 〈10, 2, 3〉, 〈2, 3, 8〉, 〈10, 2, 3, 8〉}

Substring(〈1, 2, 3〉) = {〈1〉, 〈2〉, 〈3〉, 〈1, 2〉, 〈2, 3〉, 〈1, 2, 3〉}

Substring(〈3, 8, 5〉) = {〈3〉, 〈8〉, 〈5〉, 〈3, 8〉, 〈8, 5〉, 〈3, 8, 5〉}

182 Evaluation

⋃
1≤i≤s

Substring
(

Gi.R
)

=

{〈10〉, 〈2〉, 〈3〉, 〈8〉, 〈1〉, 〈5〉, 〈10, 2〉, 〈2, 3〉, 〈3, 8〉, 〈1, 2〉, 〈8, 5〉, }

∪ {〈10, 2, 3〉, 〈2, 3, 8〉, 〈1, 2, 3〉, 〈3, 8, 5〉, 〈10, 2, 3, 8〉}

DiversitySubstring (P) =
3 ∗ 16

22
∼ 2, 18

A converged population is a special population in which each solution candidate is

equal. Thus the diversity measure is the smallest in this case. This is an sight for the end

of the optimization or if the present optima is not global the algorithm has converged

to early.

The diversity has been analysed for three random runs of the algorithm on problem

[P2]. The parameters of the problem has been the following:

• Library Size: 1000

• Population Size: 14

• Selection Size: 8

• Selection Type: Tournament Selection

• Crossover: Two-Point Crossover

• Service Mutation Probability: 0.2

• Topology Mutation Probability: 0.7

• Grow Probability: 0.3

• Shrink Probability: 0.3

At the start of the algorithm the diversity is high throughout all runs, which is ex-

pectable, because the random start population should have an high diversity. Then the

algorithm relatively fast converges towards a specific direction, where the best weight-

ing of the population is round about 60. This also decreases the diversity of the popu-

lation, which is expectable because the agent now has already some problem relevant

web services more than one times in the population. The recombination operator leads

to similar substructures in child genotypes and therefore the diversity decreases. The

diversity the is always between 7 and 5. This means the population is never converged.

The reason is very simple. Since the environment selection does not allow a specify

genotype more than ones, the population does not converge completely. However, this

is no problem and all runs come to a final complete and correct solution.

Interestingly, the diversity changes not between the generation∼ 1200 and∼ 2200. This

8.2 Analysis of the Planning Module 183

could be an evidence that the population is trapped in a local maxima where it could

not escape for a longer time. This means the newly generated plans are not able to dis-

place the existing ones. However, finally the algorithm comes to a complete and correct

solution.

Figure 8.8: Diversity Analysis Problem [P2] - Weighting of three considered runs

Figure 8.9: Diversity Analysis Problem [P2] - Diversity of three considered runs

184 Evaluation

8.3 Analysis of the Execution Module

This section analysis the execution of the provided plans. The content is based on a

financial text that is unstructured and provided by a portlet of the web portal (see Fig-

ure 8.10). Furthermore, the task is assumed to be to find company information. The

text is given to the mashup framework by the user interface and the planning process

is started. The results of the planning process is a plan (see Figure 8.11)that could be

invoked by the mashup agent. Figure 8.12 shows a part of the resulting mashup data

that is provided to the user.

Figure 8.10: Execution Screenshot 1

8.3 Analysis of the Execution Module 185

Figure 8.11: Execution Screenshot 2

186 Evaluation

Figure 8.12: Execution Screenshot 3

This section outlined shortly the execution of the mashup framework and a possible re-

sult of the information gathering process. The amount of available information thereby

depend on the ability of the web services to serve the requests. Thus, even if there

is a suitable plan, it is not guaranteed that all needed information could be retrieved.

Therefore, the QoS attributes are important to achieve a differentiation among the web

services, which could be part of future work.

8.4 Conclusion

This chapter evaluated the planning module of the mashup framework as well as the

execution of the create plans.

The planning module was evaluated by two different predefined problems. A problem

related to a task of a user. The planner is able to compositions of web services. The

planner could not guarantee that if finds a solution, even if there is one solution in the

state space. This is based on the stochastic nature of the algorithm. However, in the

evaluation the planner has solved the problems very efficiently and only in two runs of

8.4 Conclusion 187

one considered test set of 50 runs, the algorithm could not create a complete and correct

plan. Furthermore, the algorithm is scalable in dependence to the amount of registered

web services. In fact, this scalability was one of the main objectives for the selection of

this planning approach.

The generated plans can be also invoked dynamically, which has been tested several

times and was shown in this thesis by an example.

188 Evaluation

CHAPTER 9

Summary and Future Work

The objective of this thesis was to automatically generate mashups that provide back-

ground information for a given content.

The thesis has first stated several requirements for an automatic generation of mashups.

The investigation about mashup patterns and existing mashup frameworks has shown

that the existing mashup frameworks have fundamental limitations. These limitations

let to the insight that an automatic generation of mashups is needed. Furthermore,

these existing frameworks are also not able to fulfill the requirements of this thesis.

The theoretical investigation outlined the different research areas that are related to an

automatic generation of mashups.

This thesis has proposed a framework for automatic generation of semantic mashups

in web portals. The framework is based on an intelligent agent that is able to auto-

matically compose different information web services. The information web services

provide the background data that is utilized in the mashup.

The web service composition planning module is an important component of the archi-

tecture. This thesis proposed its own approach to web service composition planning

to achieve an scalable solution for the mashupframework. The planning algorithm is

based on an evolutionary algorithm that efficiently traverses through the search space

of the planning problem.

The feasibility and scalability of this approach have been investigated in an evaluation

of the framework. The evaluation confirmed that automatic generation of mashups by

web service composition is feasible. Furthermore, the performance of the evolutionary

planner tends to be good also on large sets of available web services.

In the future work the framework could be extended at different points. First, theres is

a need for an user model that could be utilized to achieve the automatic adaption of the

framework based on the user interests, expertise and tasks.

190 Summary and Future Work

Furthermore, the RDF presentation has to be extended to provide richer analyse capa-

bilities and data manipulation options.

In the planning module the incorporation of the QoS preferences into the planning pro-

cess seems to be important to adhere all information criteria. Furthermore, the perfor-

mance of the algorithm may could be further increased through better heuristic weigh-

ing functions for correctness and completeness of plans.

References

[AB96] J. Corera A. Bernaras, I. Laresgoiti. Building and reusing ontologies for

electrical network applications. In European Conference on Artificial Intelli-
gence (ECAI 96) Budapest, Hungary, page 298âĂŞ302, 1996.

[AFM+] Rama Akkiraju, Joel Farrel, John Miller, Meenakshi Nagarajan, Marc-

Thomas Schmidt, Amit Sheth, and Kunal Verma. Web Service Semantic

- WSDL-S. Website. Available online at http://www.w3.org/Submission/

WSDL-S/; visited on August 28th 2008.

[AKTV07] Anupriya Ankolekar, Markus Krötzsch, Thanh Tran, and Denny Vrandecic.

The two cultures: mashing up web 2.0 and the semantic web. In Carey L.

Williamson, Mary Ellen Zurko, Peter F. Patel-Schneider, and Prashant J.

Shenoy, editors, WWW, pages 825–834. ACM, 2007.

[APAa] Apache Tomcat. Website. Available online at http://tomcat.apache.org;

visited on August 28th 2008.

[APAb] Axis2. Website. Available online at http://ws.apache.org/axis2/; visited

on August 28th 2008.

[BAB] Ben Adida and Mark Birbeck. RDFa Primer: Bridging the Human

and Data Webs. Website. Available online at http://www.w3.org/TR/

xhtml-rdfa-primer/; visited on September 2th 2008.

[BCM+03] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi,

and Peter F. Patel-Schneider, editors. The Description Logic Handbook: Theory,
Implementation, and Applications. Cambridge University Press, 1 edition,

2003.

[BCM+07] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi,

and Peter F. Patel-Schneider, editors. The Description Logic Handbook: Theory,

http://www.w3.org/Submission/WSDL-S/
http://www.w3.org/Submission/WSDL-S/
http://tomcat.apache.org
http://ws.apache.org/axis2/
http://www.w3.org/TR/xhtml-rdfa-primer/
http://www.w3.org/TR/xhtml-rdfa-primer/

192 References

Implementation, and Applications. Cambridge University Press, 2 edition, 9

2007.

[BIM+] Mark Baker, Masayasu Ishikawa, Shinichi Matsui, Peter Stark, Ted Wugof-

ski, and Toshihiko Yamakam. XHTML Basic 1.1. Website. Available online

at http://www.w3.org/TR/xhtml-basic/; visited on August 28th 2008.

[BKN07] Peter Brusilovsky, Alfred Kobsa, and Wolfgang Nejdl, editors. The Adaptive
Web: Methods and Strategies of Web Personalization (Lecture Notes in Computer
Science). Springer, 1 edition, 6 2007.

[BL] Tim Berners-Lee. Realising the Full Potential of the Web. Website. Avail-

able online at http://www.w3.org/1998/02/Potential.html; visited on

May 05th 2008.

[BLHL01] Tim Berners-Lee, James Hendler, and Ora Lassila. The Semantic Web.

Scientific American, pages 29–37, May 2001. Available online at http:

//www.sciam.com/article.cfm?id=the-semantic-web; visited on August

8th 2008.

[BLP05] Chris Bizer, Ryan Lee, and Emmanuel Pietriga. Fresnel - Display Vocabu-

lary for RDF. Website, 06 2005. Available online at http://www.w3.org/

2005/04/fresnel-info/manual/; visited on September 2th 2008.

[BN08] Andreas Brodt and Daniela Nicklas. The telar mobile mashup platform

for nokia internet tablets. In Alfons Kemper, Patrick Valduriez, Noured-

dine Mouaddib, Jens Teubner, Mokrane Bouzeghoub, Volker Markl, Lau-

rent Amsaleg, and Ioana Manolescu, editors, EDBT, volume 261 of ACM
International Conference Proceeding Series, pages 700–704. ACM, 2008.

[Boa] RSS Advisory Board. RDF/XML Syntax Specification (Revised). Web-

site. Available online at http://www.rssboard.org/rss-specification;

visited on August 28th 2008.

[Bor97] W. N. Borst. Construction of Engineering Ontologies for Knowledge Sharing and
Reuse. PhD thesis, University of Twente, Enschede, The Netherlands, 1997.

[BPSM+] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, FranÃğois

Yergeau, and John Cowan. Extensible Markup Language (XML) 1.1 (Sec-

ond Edition). Website. Available online at http://www.w3.org/TR/xml11;

visited on August 13th 2008.

http://www.w3.org/TR/xhtml-basic/
http://www.w3.org/1998/02/Potential.html
http://www.sciam.com/article.cfm?id=the-semantic-web
http://www.sciam.com/article.cfm?id=the-semantic-web
http://www.w3.org/2005/04/fresnel-info/manual/
http://www.w3.org/2005/04/fresnel-info/manual/
http://www.rssboard.org/rss-specification
http://www.w3.org/TR/xml11

References 193

[BR] Dan Brickley and R.V.Guha. RDF Vocabulary Description Language

1.0RDF Schema. Website. Available online at http://www.w3.org/TR/

rdf-schema/; visited on September 2th 2008.

[BvHH+] Sean Bechhofer, Frank van Harmelen, Jim Hendler, Ian Horrocks, Deb-

orah L. McGuinness, Peter F. Patel-Schneider, and Lynn Andrea Stein.

OWL Web Ontology Language Reference. Website. Available online at

http://www.w3.org/TR/owl-ref/; visited on March 28th 2008.

[BWG07] Steffen Bleul, Thomas Weise, and Kurt Geihs. Making a fast semantic ser-

vice composition system faster. In CEC/EEE, pages 517–520. IEEE Com-

puter Society, 2007.

[BYRN99] Ricardo A. Baeza-Yates and Berthier A. Ribeiro-Neto. Modern Information
Retrieval. ACM Press / Addison-Wesley, 1999.

[CCMW] Erik Christensen, Francisco Curbera, Greg Meredith, and Sanjiva Weer-

awarana. Web Service Description Language 1.1. Website. Available online

at http://www.w3.org/TR/wsdl; visited on August 28th 2008.

[CFL+04] Pablo Castells, Borja Foncillas, Rubén Lara, Mariano Rico, and Juan Luis

Alonso. Semantic web technologies for economic and financial information

management. In Christoph Bussler, John Davies, Dieter Fensel, and Rudi

Studer, editors, ESWS, volume 3053 of Lecture Notes in Computer Science,

pages 473–487. Springer, 2004.

[CFLGP03] Óscar Corcho, Mariano Fernández-López, and Asunción Gómez-Pérez.

Methodologies, tools and languages for building ontologies: Where is their

meeting point? Data Knowl. Eng., 46(1):41–64, 2003.

[CLRS01] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford

Stein. Introduction to Algorithms. The MIT Press, 2nd edition, 9 2001.

[CLV07] Carlos A. Coello Coello, Gary B. Lamont, and David A. Van Veldhuizen.

Evolutionary Algorithms for Solving Multi-Objective Problems (Genetic and Evo-
lutionary Computation). Springer, 2nd ed. edition, 9 2007.

[CMRW] Roberto Chinnici, Jean-Jacques Moreau, Arthur Ryman, and Sanjiva Weer-

awarana. Web Service Description Language 2.0 Part1: Core Language.

Website. Available online at http://www.w3.org/TR/wsdl20/; visited on

August 28th 2008.

http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/owl-ref/
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl20/

194 References

[CNPZ08] Michael Pierre Carlson, Anne H.H. Ngu, Rodion Podorozhny, and

Liangzhao Zeng. Automatic mash up of composite applications. In Int.
Conf on Service-Oriented Computing (ICSOC-08), 2008.

[Con] Dan Connolly. Gleaning Resource Descriptions from Dialects of Languages

(GRDDL). Website. Available online at http://www.w3.org/TR/grddl/;

visited on September 2th 2008.

[dBBD+05] Jos de Bruijn, Christoph Bussler, John Domingue, Dieter Fensel, Martin

Hepp, Uwe Keller, Michael Kifer, Birgitta KÃűnig-Ries, Jacek Kopecky,

RubÃl’n Lara, Holger Lausen, Eyal Oren, Axel Polleres, Dumitru Roman,

James Scicluna, and Michael Stollberg. Web Service Modeling Ontology

(WSMO). Website, 06 2005. Available online at http://www.w3.org/

Submission/WSMO/; visited on September 2th 2008.

[DM88] Barry A. Devlin and Paul T. Murphy. An architecture for a business and

information system. IBM Systems Journal, 27(1):60–80, 1988.

[DSS08] Rafal Drezewski, Jan Sepielak, and Leszek Siwik. Generating robust in-

vestment strategies with agent-based co-evolutionary system. In Marian

Bubak, G. Dick van Albada, Jack Dongarra, and Peter M. A. Sloot, editors,

ICCS (3), volume 5103 of Lecture Notes in Computer Science, pages 664–673.

Springer, 2008.

[EBG+07] Rob Ennals, Eric Brewer, Minos Garofalakis, Michael Shadle, and Prashant

Gandhi. Intel mash maker: join the web. SIGMOD Rec., 36(4):27–33, 2007.

[EG07a] Robert Ennals and Minos N. Garofalakis. Mashmaker: mashups for the

masses. In Chee Yong Chan, Beng Chin Ooi, and Aoying Zhou, editors,

SIGMOD Conference, pages 1116–1118. ACM, 2007.

[EG07b] Robert Ennals and David Gay. User-friendly functional programming for

web mashups. In Ralf Hinze and Norman Ramsey, editors, ICFP, pages

223–234. ACM, 2007.

[Fab98] Frank J. Fabozzi. Investment Management (2nd Edition). Pearson Education,

2 edition, 10 1998.

[FB98] Xavier Franch and Pere Botella. Putting non-functional requirements into

software architecture. In In, 9th International Workshop on Software Specifica-
tion and Design, pages 60–67, 1998.

http://www.w3.org/TR/grddl/
http://www.w3.org/Submission/WSMO/
http://www.w3.org/Submission/WSMO/

References 195

[FB02] Dieter Fensel and Christoph Bussler. The Web Service Modeling Frame-

work WSMF. Electronic Commerce Research and Applications, 1(2):113–137,

2002.

[FHM05] Michael J. Franklin, Alon Y. Halevy, and David Maier. From databases

to dataspaces: a new abstraction for information management. SIGMOD
Record, 34(4):27–33, 2005.

[Fie00] Roy Thomas Fielding. Architectural Styles and the Design of Network-
based Software Architectures. PhD thesis, UNIVERSITY OF CALIFORNIA,

IRVINE, 2000.

[FJ95] Donald E. Fischer and Ronald J. Jordan. Security Analysis and Portfolio Man-
agement. Prentice Hall, 6 fac sub edition, 1 1995.

[FL07] Joel Farrell and Holger Lausen. Semantic Annotations for WSDL and XML

Schema. Website, 08 2007. Available online at http://www.w3.org/TR/

sawsdl/; visited on September 2th 2008.

[Fou08] Apache Software Foundation. UIMA Overview & SDK Setup. PDF,

04 2008. Available online at http://incubator.apache.org/uima/

downloads/releaseDocs/2.2.2-incubating/docs/pdf/overview_and_

setup.pdf; visited on March 28th 2008.

[Gru93] T. R. Gruber. Towards Principles for the Design of Ontologies Used for

Knowledge Sharing. In N. Guarino and R. Poli, editors, Formal Ontology
in Conceptual Analysis and Knowledge Representation, Deventer, The Nether-

lands, 1993. Kluwer Academic Publishers.

[Gua95] Nicola Guarino. Formal ontology, conceptual analysis and knowledge rep-

resentation. Int. J. Hum.-Comput. Stud., 43(5-6):625–640, 1995.

[Hep08] Stefan Hepper. Java Portlet Specification Version 2.0, 01 2008. Available

online at http://jcp.org/aboutJava/communityprocess/final/jsr286/

index.html; visited on August 16th 2008.

[HF08] Volker Hoyer and Marco Fischer. Market overview of enterprise mashup

tools. In Int. Conf on Service-Oriented Computing (ICSOC-08), 2008.

[HMK07] David F. Huynh, Robert C. Miller, and David R. Karger. Potluck: Data

mash-up tool for casual users. In Karl Aberer, Key-Sun Choi, Natasha Frid-

man Noy, Dean Allemang, Kyung-Il Lee, Lyndon J. B. Nixon, Jennifer Gol-

beck, Peter Mika, Diana Maynard, Riichiro Mizoguchi, Guus Schreiber,

http://www.w3.org/TR/sawsdl/
http://www.w3.org/TR/sawsdl/
http://incubator.apache.org/uima/downloads/releaseDocs/2.2.2-incubating/docs/pdf/overview_and_setup.pdf
http://incubator.apache.org/uima/downloads/releaseDocs/2.2.2-incubating/docs/pdf/overview_and_setup.pdf
http://incubator.apache.org/uima/downloads/releaseDocs/2.2.2-incubating/docs/pdf/overview_and_setup.pdf
http://jcp.org/aboutJava/communityprocess/final/jsr286/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr286/index.html

196 References

and Philippe Cudré-Mauroux, editors, ISWC/ASWC, volume 4825 of Lec-
ture Notes in Computer Science, pages 239–252. Springer, 2007.

[Hor07] Ian Horrocks. Semantic web: the story so far. In W4A ’07: Proceedings of
the 2007 international cross-disciplinary conference on Web accessibility (W4A),
pages 120–125, New York, NY, USA, 2007. ACM.

[Inc07] SERENA Software Inc. MICROS SYSTEMS SEES MACRO QUALITY

IMPROVEMENT WITH SERENA. Website, 10 2007. Available on-

line at http://www.serena.com/docs/repository/products/successes/

success-story-MICROS-Systems.pdf; visited on March 28th 2008.

[ITG08] Cobit 4.1 Excerpt. Website, 2008. Available online at http:

//www.isaca.org/AMTemplate.cfm?Section=Downloads&Template=

/ContentManagement/ContentDisplay.cfm&ContentID=34172; visited on

August 13th 2008.

[JAX] JAXB. Website. Available online at https://jaxb.dev.java.net/; visited

on August 28th 2008.

[JEN] Jena - A Semantic Web Framework for Java. Website. Available online at

http://jena.sourceforge.net/; visited on August 28th 2008.

[KBS+08] Frederik De Keukelaere, Sumeer Bhola, Michael Steiner, Suresh Chari, and

Sachiko Yoshihama. Smash: secure component model for cross-domain

mashups on unmodified browsers. In Jinpeng Huai, Robin Chen, Hsiao-

Wuen Hon, Yunhao Liu, Wei-Ying Ma, Andrew Tomkins, and Xiaodong

Zhang, editors, WWW, pages 535–544. ACM, 2008.

[KC] Graham Klyne and Jeremy J. Carroll. Resource Description Framework

(RDF): Concepts and Abstract Syntax. Website. Available online at http:

//www.w3.org/TR/rdf-concepts/; visited on August 28th 2008.

[Khi08] Alex Khizhnyak. Apatar Connector Guide. Website, 2008. Available online

at http://www.apatarforge.org/wiki/display/GUI/Apatar+Connector+

Guides; visited on August 8th 2008.

[KKR04] Michael Klein and Birgitta König-Ries. Integrating preferences into service

requests to automate service usage. In First AKT Workshop on Semantic Web
Services, Milton Keynes, UK, Dezember 2004.

http://www.serena.com/docs/repository/products/successes/success-story-MICROS-Systems.pdf
http://www.serena.com/docs/repository/products/successes/success-story-MICROS-Systems.pdf
http://www.isaca.org/AMTemplate.cfm?Section=Downloads&Template=/ContentManagement/ContentDisplay.cfm&ContentID=34172
http://www.isaca.org/AMTemplate.cfm?Section=Downloads&Template=/ContentManagement/ContentDisplay.cfm&ContentID=34172
http://www.isaca.org/AMTemplate.cfm?Section=Downloads&Template=/ContentManagement/ContentDisplay.cfm&ContentID=34172
https://jaxb.dev.java.net/
http://jena.sourceforge.net/
http://www.w3.org/TR/rdf-concepts/
http://www.w3.org/TR/rdf-concepts/
http://www.apatarforge.org/wiki/display/GUI/Apatar+Connector+Guides
http://www.apatarforge.org/wiki/display/GUI/Apatar+Connector+Guides

References 197

[KKR08] Ulrich Küster and Birgitta König-Ries. On the empirical evaluation of se-

mantic web service approaches: Towards common SWS test collections. In

Proceedings of the 2nd IEEE International Conference on Semantic Computing
(ICSC2008), Santa Clara, CA, USA, August 2008.

[KKRK06] Ulrich Küster, Birgitta König-Ries, and Michael Klein. Discovery and me-

diation using diane service descriptions. In First Workshop of the Semantic
Web Service Challenge 2006 - Challenge on Automating Web Services Mediation,
Choreography and Discovery, Palo Alto, California, USA, March 2006.

[KKRK08] Ulrich Küster, Birgitta König-Ries, and Andreas Krug. OPOSSum - an on-

line portal to collect and share sws descriptions. In Proceedings of the 2nd
IEEE International Conference on Semantic Computing (ICSC2008), Demo Ses-
sion, Santa Clara, CA, USA, August 2008.

[KKRM05] Michael Klein, Birgitta König-Ries, and Michael Müssig. What is needed

for semantic service descriptions - a proposal for suitable language con-

structs. International Journal on Web and Grid Services (IJWGS), 1(3/4):328–

364, 2005.

[KMP98] Jasna Kuljis, Robert D Macredie, and Ray J Paul. Information gather-

ing problems in multinational banking (uk). In HICSS ’98: Proceedings of
the Thirty-First Annual Hawaii International Conference on System Sciences-
Volume 6, page 622, Washington, DC, USA, 1998. IEEE Computer Society.

[KSKR05] Ulrich Küster, Mirco Stern, and Birgitta König-Ries. A classification of is-

sures and approaches in service composition. In First International Workshop
on Engineering Service Compositions (WESC05), pages 00–00, Amsterdam,

Netherlands, December 2005.

[KVG08] Jacek KopeckÃ¡, Thomas Vitvar, and Karthik Gomadam. Microwsmo.

PDF, 03 2008. Available online at http://cms-wg.sti2.org/TR/d12/v0.

1/20080724/d12_v01_20080724.pdf; visited on September 28th 2008.

[Lew05] Dirk Lewandowski. Web Information Retrieval: Technologien zur Infor-

mationssuche im Internet. DGI-Schriften zur Informationswissenschaft 7,

Frankfurt am Main, 2005. Available online at http://www.durchdenken.

de/lewandowski/web-ir/; visited on May 05th 2008.

[LGS07] Jon Lathem, Karthik Gomadam, and Amit P. Sheth. SA-REST and

http://cms-wg.sti2.org/TR/d12/v0.1/20080724/d12_v01_20080724.pdf
http://cms-wg.sti2.org/TR/d12/v0.1/20080724/d12_v01_20080724.pdf
http://www.durchdenken.de/lewandowski/web-ir/
http://www.durchdenken.de/lewandowski/web-ir/

198 References

(S)mashups : Adding Semantics to RESTful Services. In Semantic Com-
puting, 2007. ICSC 2007. International Conference on, pages 469–476, 2007.

[Lip07] William E. Lipner. The future of online market research. Journal of Adver-
tising Research, 47:142–146, 06 2007.

[LQH+06] Fen Lin, Lirong Qiu, He Huang, Qing Yu, and Zhongzhi Shi. Description

logic based composition of web services. In Zhong-Zhi Shi and Ramakoti

Sadananda, editors, PRIMA, volume 4088 of Lecture Notes in Computer Sci-
ence, pages 199–210. Springer, 2006.

[Lus01] Markus Lusti. Data Warehousing und Data Mining: Eine Einführung in
entscheidungsunterstützende Systeme (Springer-Lehrbuch). Springer, 2. über-

arb. u. erw. aufl. edition, 10 2001.

[LYGW06] Yingjie Li, Xueli Yu, Lili Geng, and Li Wang. Research on reasoning of

the dynamic semantic web services composition. In Web Intelligence, pages

435–441. IEEE Computer Society, 2006.

[MB00] Harry Mucksch and Wolfgang Behme. Das Data Warehouse Konzept. Ar-
chitektur - Datenmodelle - Anwendungen. Dr. Th. Gabler Verlag, 9 2000.

[MBD+] David Martin, Mark Burstein, Grit Denker, Daniel Elenius, Joseph Gi-

ampapa, Drew McDermott, Deborah McGuinness, Sheila McIlraith, Mas-

simo Paolucci, Bijan Parsia, Terry Payne, Evren Sirin, Naveen Srinivasan,

and Katia Sycara. OWL-S 1.2 Pre-Release. Website. Available online at

http://www.ai.sri.com/daml/services/owl-s/1.2/; visited on Septem-

ber 13th 2008.

[MBH+04] David Martin, Mark Burstein, Jerry Hobbs, Ora Lassila, Drew McDermott,

Sheila McIlraith, Srini Narayanan, Massimo Paolucci, Bijan Parsia, Terry

Payne, Evren Sirin, Naveen Srinivasan, and Katia Sycara. OWL-S: Se-

mantic Markup for Web Services. Website, 11 2004. Available online at

http://www.w3.org/Submission/OWL-S/; visited on August 13th 2008.

[McK] McKinsey. How businesses are using Web 2.0: A McKinsey Global

Survey. Website. Available online at http://www.mckinseyquarterly.

com/How_businesses_are_using_Web_20_A_McKinsey_Global_Survey_

1913_abstract; visited on May 19th 2008.

http://www.ai.sri.com/daml/services/owl-s/1.2/
http://www.w3.org/Submission/OWL-S/
http://www.mckinseyquarterly.com/How_businesses_are_using_Web_20_A_McKinsey_Global_Survey_1913_abstract
http://www.mckinseyquarterly.com/How_businesses_are_using_Web_20_A_McKinsey_Global_Survey_1913_abstract
http://www.mckinseyquarterly.com/How_businesses_are_using_Web_20_A_McKinsey_Global_Survey_1913_abstract

References 199

[Mer] Duane Merrill. Mashups: The new breed of Web app. Web-

site. Available online at http://www.ibm.com/developerworks/library/

x-mashups.html; visited on March 28th 2008.

[MJC+07] Jayant Madhavan, Shawn R. Jeffery, Shirley Cohen, Xin Dong, David Ko,

Cong Yu, Alon Halevy, and Google Inc. Web-scale data integration: You

can only afford to pay as you go. In In Proc. of CIDR-07, 2007.

[MKB06] Brad A. Myers, Andrew Jensen Ko, and Margaret M. Burnett. Invited re-

search overview: end-user programming. In Gary M. Olson and Robin

Jeffries, editors, CHI Extended Abstracts, pages 75–80. ACM, 2006.

[MLA08] Ziyan Maraikar, Alexander Lazovik, and Farhad Arbab. Building mashups

for the enterprise with sabre. In Int. Conf on Service-Oriented Computing
(ICSOC-08), 2008.

[MvH04] Deborah L. McGuinness and Frank van Harmelen. OWL Web Ontology

Language Overview. Website, 02 2004. Available online at http://www.

w3.org/TR/owl-features/; visited on March 28th 2008.

[O’R] Tim O’Reilly. What is Web 2.0. Website. Available on-

line at http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/

30/what-is-web-20.html; visited on May 19th 2008.

[PEL] Pellet. Website. Available online at http://pellet.owldl.com; visited on

August 28th 2008.

[PS] Eric Prud’hommeaux and Andy Seaborne. SPARQL Query Lan-

guage for RDF. Website. Available online at http://www.w3.org/TR/

rdf-sparql-query/; visited on September 13th 2008.

[Rad97] Robert C. Radcliffe. Investment: Concepts, Analysis, Strategy (5th Edition).
Addison Wesley, 5 edition, 1 1997.

[RHJ99] Dave Raggett, Arnaud Le Hors, and Ian Jacobs. HTML 4.01 Specification.

Website, 09 1999. Available online at http://www.w3.org/TR/html4; vis-

ited on March 28th 2008.

[RN03] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.

Prentice Hall, Englewood Cliffs, New Jersey, 2 edition, 2003.

[RS98] D. Fensel R. Studer, V.R. Benjamins. Knowledge engineering: principles

and methods. Data and Knowledge Engineering, (25):161–197, 1998.

http://www.ibm.com/developerworks/library/x-mashups.html
http://www.ibm.com/developerworks/library/x-mashups.html
http://www.w3.org/TR/owl-features/
http://www.w3.org/TR/owl-features/
http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html
http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html
http://pellet.owldl.com
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/html4

200 References

[RSS07] RSSBus. An RSS feed of favorite photos from each of your Flickr con-

tacts. Website, 08 2007. Available online at http://blog.rssbus.com/

AnRSSFeedOfFavoritePhotosFromEachOfYourFlickrContacts.aspx; vis-

ited on Aug 26th 2008.

[RSS08] Rssbus description. Website, 2008. Available online at http://www.

rssbus.com/docs/rssbus.pdf; visited on August 10th 2008.

[RTA07] Erhard Rahm, Andreas Thor, and David Aumueller. Dynamic fusion of

web data. In XSym, pages 14–16, 2007.

[SAM+08] David E. Simmen, Mehmet Altinel, Volker Markl, Sriram Padmanabhan,

and Ashutosh Singh. Damia: data mashups for intranet applications. In

Jason Tsong-Li Wang, editor, SIGMOD Conference, pages 1171–1182. ACM,

2008.

[Sav07] Reijo Savolainen. Filtering and withdrawing: strategies for coping with

information overload in everyday contexts. Journal of Information Science,

33(5):611–621, 2007.

[SAW] SAWSDL4J. Website. Available online at http://lsdis.cs.uga.edu/

projects/meteor-s/opensource/sawsdl4j/; visited on August 28th 2008.

[SBD03] Eric Schwarzkopf, Mathias Bauer, and Dietmar Dengler. Towards intuitive

interaction for end-user programming. In IUI ’03: Proceedings of the 8th in-
ternational conference on Intelligent user interfaces, pages 287–289, New York,

NY, USA, 2003. ACM.

[Sch04] Armin Scholl. Planung und Entscheidung. Vahlen Franz GmbH, 6 2004.

[SH05] Munindar P. Singh and Michael N. Huhns. Service-Oriented Computing: Se-
mantics, Processes, Agents. John Wiley and Sons, 1 edition, 2005.

[SHS08] Michael Schumacher, Heikki Helin, and Heiko Schuldt, editors. CASCOM:
Intelligent Service Coordination in the Semantic Web (Whitestein Series in Soft-
ware Agent Technologies and Autonomic Computing). Birkhäuser Basel, 1 edi-

tion, 9 2008.

[SHSG07] Marwan Sabbouh, Jeff Higginson, Salim Semy, and Danny Gagne. Web

mashup scripting language. In WWW ’07: Proceedings of the 16th interna-
tional conference on World Wide Web, pages 1305–1306, New York, NY, USA,

2007. ACM.

http://blog.rssbus.com/AnRSSFeedOfFavoritePhotosFromEachOfYourFlickrContacts.aspx
http://blog.rssbus.com/AnRSSFeedOfFavoritePhotosFromEachOfYourFlickrContacts.aspx
http://www.rssbus.com/docs/rssbus.pdf
http://www.rssbus.com/docs/rssbus.pdf
http://lsdis.cs.uga.edu/projects/meteor-s/opensource/sawsdl4j/
http://lsdis.cs.uga.edu/projects/meteor-s/opensource/sawsdl4j/

References 201

[SK98] Atsushi Sugiura and Yoshiyuki Koseki. Internet scrapbook: Automating

web browsing tasks by demonstration. In ACM Symposium on User Interface
Software and Technology, pages 9–18, 1998.

[SOA] SOAP Version 1.2. Website. Available online at http://www.w3.org/TR/

soap12-part0/; visited on August 28th 2008.

[SRKR97] B. Swartout, P. Ramesh, K. Knight, and T. Russ. Toward distributed use of

large-scale ontologies, 1997. AAAI Symposium on Ontological Engineer-

ing, Stanford.

[ST08] Nathalie Steinmetz and Ioan Toma. WSML Language Reference. Website,

08 2008. Available online at http://www.wsmo.org/TR/d16/d16.1/v1.0/;

visited on August 28th 2008.

[SZM+02] Monica M. C. Schraefel, Yuxiang Zhu, David Modjeska, Daniel Wigdor,

and Shengdong Zhao. Hunter gatherer: interaction support for the creation

and management of within-web-page collections. In WWW, pages 172–181,

2002.

[TAR07] Andreas Thor, David Aumueller, and Erhard Rahm. Data Integration Sup-

port for Mashups Sixth International Workshop on Information Integration

on the Web, iiWeb, Vancouver, Canada, 2007.

[TG02] Chiu-Che Tseng and Piotr J. Gmytrasiewicz. Real time decision support

system for portfolio management. In HICSS, page 79, 2002.

[TSK08] Rattapoom Tuchinda, Pedro A. Szekely, and Craig A. Knoblock. Building

mashups by example. In Jeffrey M. Bradshaw, Henry Lieberman, and Stef-

fen Staab, editors, Intelligent User Interfaces, pages 139–148. ACM, 2008.

[TSP+07] Junichi Tatemura, Arsany Sawires, Oliver Po, Songting Chen, K. Selcuk

Candan, Diviyakant Agrawal, and Maria Goveas. Mashup feeds: contin-

uous queries over web services. In SIGMOD ’07: Proceedings of the 2007
ACM SIGMOD international conference on Management of data, pages 1128–

1130, New York, NY, USA, 2007. ACM.

[UJ99] M. Uschold and R. Jasper. A Framework for Understanding and

Classifying ontology applications, 1999.

[VAC+05] Oliver Vogel, Ingo Arnold, Arif Chughtai, Edmund Ihler, Uwe Mehlig,

Thomas Neumann, Markus Vï£¡lter, and Uwe Zdun. Software-Architektur:

http://www.w3.org/TR/soap12-part0/
http://www.w3.org/TR/soap12-part0/
http://www.wsmo.org/TR/d16/d16.1/v1.0/

202 References

Grundlagen - Konzepte - Praxis. Spektrum Akademischer Verlag, 1 edition,

9 2005.

[VKF] Thomas Vitvar, Jacek Kopecký, and Dieter Fensel. WSMO-Lite:

Lightweight Semantic Descriptions for Service on the Web. PDF.

Available online at http://wsmo.org/TR/d11/v0.2/20080304/d11v02_

20080304.pdf; visited on September 2th 2008.

[vRDW08] M. Birna van Riemsdijk, Mehdi Dastani, and Michael Winikoff. Goals in

agent systems: a unifying framework. In AAMAS ’08: Proceedings of the
7th international joint conference on Autonomous agents and multiagent sys-
tems, pages 713–720, Richland, SC, 2008. International Foundation for Au-

tonomous Agents and Multiagent Systems.

[WBG07] Thomas Weise, Steffen Bleul, and Kurt Geihs. Web service composi-

tion systems for the web service challenge - a detailed review. Tech-

nical Report 34-2007111919638, November 2007. Permanent Identifier:

urn:nbn:de:hebis:34-2007111919638.

[WC08] Janice Warner and Soon Ae Chun. A citizen privacy protection model for

e-government mashup services. In Soon Ae Chun, Marijn Janssen, and

José Ramón Gil-García, editors, DG.O, volume 289 of ACM International
Conference Proceeding Series, pages 188–196. Digital Government Research

Center, 2008.

[Web] Web Portal Software from WebSphere. Website. Available online at http:

//www.ibm.com/websphere/portal; visited on August 28th 2008.

[Wei07] Karsten Weicker. Evolutionäre Algorithmen (2. Auflage). Teubner, Stuttgart,

2007.

[WH07] Jeffrey Wong and Jason I. Hong. Making mashups with marmite: towards

end-user programming for the web. In Mary Beth Rosson and David J.

Gilmore, editors, CHI, pages 1435–1444. ACM, 2007.

[WH08] Jeffrey Wong and Jason Hong. What do we "mashup" when we make

mashups? In WEUSE ’08: Proceedings of the 4th international workshop on
End-user software engineering, pages 35–39, New York, NY, USA, 2008. ACM.

[WSD] WSDL4J. Website. Available online at http://sourceforge.net/

projects/wsdl4j; visited on August 28th 2008.

http://wsmo.org/TR/d11/v0.2/20080304/d11v02_20080304.pdf
http://wsmo.org/TR/d11/v0.2/20080304/d11v02_20080304.pdf
http://www.ibm.com/websphere/portal
http://www.ibm.com/websphere/portal
http://sourceforge.net/projects/wsdl4j
http://sourceforge.net/projects/wsdl4j

References 203

[XAL] Xalan-Java. Website. Available online at http://xml.apache.org/

xalan-j/; visited on August 28th 2008.

[Yee08] Raymond Yee. Pro Web 2.0 Mashups: Remixing Data and Web Services (Ex-
pert’s Voice in Web Development). Apress, 2 2008.

[YSLH03] Ka-Ping Yee, Kirsten Swearingen, Kevin Li, and Marti Hearst. Faceted

metadata for image search and browsing. In CHI ’03: Proceedings of the
SIGCHI conference on Human factors in computing systems, pages 401–408,

New York, NY, USA, 2003. ACM.

[ZL96] S. Zilberstein and V. Lesser. Intelligent Information Gathering Using Deci-

sion Models, 1996.

[ZRN08] Nan Zang, Mary Beth Rosson, and Vincent Nasser. Mashups: who? what?

why? In Mary Czerwinski, Arnold M. Lund, and Desney S. Tan, editors,

CHI Extended Abstracts, pages 3171–3176. ACM, 2008.

http://xml.apache.org/xalan-j/
http://xml.apache.org/xalan-j/

204 References

List of Figures

1.1 Mashup Agents interact with environments through sensors and actuators 6

2.1 Business Use Case . 16

2.2 The CobiT Cube . 21

2.3 Data Warehouses and Data Marts . 22

3.1 Client-side vs. Server-side Mashups . 35

3.2 Mashup Categories . 36

3.3 Mashup Framework Market Overview . 41

4.1 Chapter Overview . 57

4.2 An RDF Graph Describing South Beach 59

4.3 RDF-S Hierarchy Example . 62

4.4 The general architecture model for Web Services 72

5.1 Mashup Agent . 99

5.2 General Mashup Process . 100

5.3 The Mashup Agent Knowledge Base . 102

5.4 Excerpt of Proton Top Level Concepts . 104

5.5 Generation of the Assertional Statements of the TBox through Lifted Web

Services Outputs . 108

5.6 Sequence diagram of SAWSDL Lifting and Lowering of two RESTful Ser-

vices . 109

6.1 One-dimensional state space landscape evaluated by an objective function 118

6.2 Directed-Acyclic-Graph (DAG) of a Web Service Composition 120

6.3 Process of the Evolutionary Algorithm . 121

6.4 Adjacency-Matrix Chromosome Encoding 122

6.5 Adjacency-List Chromosome Encoding 123

6.6 Adjajency-List Chromosome Encoding 2 124

206 List of Figures

6.7 Genotype vs. Phenotype Representation 125

6.8 Directed-Acyclic-Graph (DAG) of a Web Service Composition 126

6.9 Change of the Information State through Information Web Services . . . 130

6.10 Information State Simulation in the Planning Stage vs. Invocation in the

Execution Stage . 132

6.11 Heuristic versus Exact Evaluation of Plans 135

6.12 Two-Point Crossover . 145

6.13 Mutation of the web service identifier . 147

6.14 Mutation of the topology connections through the disarrangement of

specific edges of the DAG . 148

6.15 Mutation of the topological level through a disarrangement of a whole

level of the DAG . 149

6.16 Growing of the solution by adding a new topological level at a random

position of the DAG . 150

6.17 Shrinking of the solution by a whole topological level 152

7.1 Class Diagram Framework Base Classes 156

7.2 Mashup Framework Packet Diagram . 157

7.3 Class Diagram of the Planner . 159

7.4 Class Diagram Evolutionary Algorithm 160

7.5 Class Diagram Selection . 160

7.6 Class Diagram Operators . 161

7.7 Class Diagram Mashup Handler . 162

7.8 Class Diagram Web Service Registry . 164

7.9 Class Diagram Presentation Models . 166

8.1 Performance Analysis of Problem [P1] . 173

8.2 Performance Analysis of Problem [P2] . 174

8.3 Scalability Analysis of Problem [P2] . 175

8.4 Sensitivity Analysis of Service Mutation Probability of Problem [P2] . . . 177

8.5 Sensitivity Analysis of Topology Mutation Probability of Problem [P2] . 178

8.6 Sensitivity Analysis of Population Size of Problem [P2] 179

8.7 Sensitivity Analysis of Selection Size of Problem [P2] 180

8.8 Diversity Analysis Problem [P2] - Weighting of three considered runs . 183

8.9 Diversity Analysis Problem [P2] - Diversity of three considered runs . . 183

8.10 Execution Screenshot 1 . 184

8.11 Execution Screenshot 2 . 185

8.12 Execution Screenshot 3 . 186

List of Tables

2.1 Additional Requirements . 25

3.1 Summary of Mashup Patterns . 38

4.1 SPARQL Result . 66

4.2 Web Service Composition Decision Matrix 94

5.1 Excerpt of Calais Entities, Events and Facts 106

208 List of Tables

List of Algorithms

1 Evolutionary Algorithm for Web Service Composition Planning 121

2 Simulation of Information States during the Planning Process 135

3 Exact Calculation of the Completeness of a Plan 136

4 Heuristic Calculation of the Completeness of a Plan 137

5 Heuristic Calculation of the Count of Promising Web Services 138

6 Exact Calculation of the Correctness of a Plan 139

7 Heuristic Calculation of the Correctness of a Plan 140

8 Tournament Selection . 142

9 Recombination through a Two-Point Crossover 144

10 Growing of Plans . 151

11 Shrinking of Plans . 151

	Titlepage
	Abstract
	Acknowledgements
	Contents
	1 Introduction
	1.1 Characterization of the Problem Area
	1.2 Project Context
	1.3 Aims and Objectives
	1.4 Document Organization

	2 Requirements Analysis
	2.1 Domain Description
	2.2 General Requirements
	2.3 Framework Requirements
	2.4 Conclusion

	3 Related Work on Mashups and Mashup Frameworks
	3.1 Mashup Patterns and Characteristics
	3.2 Mashup Frameworks
	3.3 Conclusion

	4 Theoretical Foundations
	4.1 Knowledge Representation on the Web
	4.2 Description Logics (DL)
	4.3 Web Services
	4.4 Semantic Web Services
	4.5 Semantic Web Service Composition
	4.6 Multi-Criteria Decision Theory
	4.7 Conclusion

	5 Mashup Framework Architecture
	5.1 Framework Overview
	5.2 Semantic Service Description Language
	5.3 Knowledge Base
	5.4 Mashup Handler
	5.5 Application Registry
	5.6 Web Service Composition Module
	5.7 The User Model
	5.8 Personalization Module
	5.9 Presentation Module
	5.10 Conclusion

	6 Planning of Information Gathering by an Evolutionary Algorithm
	6.1 General Concepts
	6.2 Evolutionary Process
	6.3 Formal Problem Definition
	6.4 Calculation of the Objective Functions
	6.5 Description of Evolutionary Operators
	6.6 Conclusion

	7 Implementation
	7.1 Used Software and APIs
	7.2 Planner Implementation
	7.3 Mashup Handler
	7.4 Web Service Registry
	7.5 Presentation Module
	7.6 Conclusion

	8 Evaluation
	8.1 Evaluation Conditions
	8.2 Analysis of the Planning Module
	8.3 Analysis of the Execution Module
	8.4 Conclusion

	9 Summary and Future Work
	References
	List of Figures
	List of Tables

