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1 Introduction

Heart diseases are the major death causes in the industrial world [1]. The
normal pumping function of the heart is controlled and activated by electric
impulses originating from a pacemaker source, normally the sinus node. These
electric impulses, measurable as potential differences, propagate through the
heart tissue by diffusive activation of neighbouring cells. A reduced function
of the heart can have different causes like a lacking supply of the heart cells
with blood or perturbations of the electrical activation pattern. In this work
the electrical activation is studied. It depends on many different influences
beginning with the regulation by the autonomous nervous system, the sinus
node activity, conduction failures up to lagging responses of the cells to the
activation due to, for example, a changed mineral balance or inflammation.
Perturbations of the electrical activation system can be investigated by a de-
scription of the heart tissue as an excitable media. Various mathematical
models of excitable media exist like the Hodgkin Huxley equations [2|, which
are derived especially for the impulse generation and propagation on nerve
cells or the FitzHugh Nagumo (FHN) equations [3]. The FHN equations are
used to describe excitable media in diverse fields as chemical reactions (e.g. the
Bhelousov-Zhabotinsky reaction or the catalysis of carbon monoxide), popu-
lation dynamics or epidemic spreads. Additionally they are a well-known and
tested model for the impulse propagation and generation in nerve and heart
cells. A feature of excitable media is the formation of spatio-temporal patterns
of the characteristic variable of the system. These patterns give information
about the system state. For heart diseases the spatio-temporal pattern of the
electric potential represents the state of health of the heart tissue and the kind
of underlying disease.

This work is focused on the investigation of spatio-temporal patterns, which
are characteristic for atrial fibrillation. The fibrillatory state of the atria is
often described by an irregular, chaotic pattern. The supposed origin is a rel-
atively regular local source of activity as a spiral wave or ectopic focus. These
sources lead to a perturbation of the propagation of the sinus node activations
over the atrial tissue. Of particular interest are the conditions and mecha-
nisms, leading to a fibrillatory state due to spiral waves or ectopic foci. By the
use of the mathematical model one is able to numerically calculate the wave-
front propagation to study the dependence of the occurrence of spiral waves,
for example, on the properties of the heart tissue. With this knowledge it is
possible to investigate interference of spiral waves with the wavefronts origi-
nating from the sinus node. Results of such a research can be compared to
time series analysis of electrocardiogram recordings of patients suffering from
atrial fibrillation or to experiments on atrial tissue.



The thesis will focus on the following questions:

e What are possible mechanisms or configurations yielding spiral wave pat-
terns and ectopic foci?

e What are the characteristic properties of spiral waves and ectopic foci?

e Does an interference of a spiral wave or an ectopic focus and periodic
generated wavefronts result in a fibrillatory state?

e What are the characteristic properties of this fibrillatory state?

To answer these questions, numerical calculations of the FitzHugh Nagumo
equations are performed for different spatial distributions of the model pa-
rameters that describe the local cell properties. Phase diagrams are derived,
which classify different states of heart dynamics in dependence of the control
parameters. The dependence of the occurrence of local sources on the spatial
parameter distribution is revealed in phase diagrams. Additionally, the prop-
erties of the spirals and the ectopic foci are determined. With this knowledge
the interaction of a spiral wave with regular excitations is studied in a two-
dimensional model of the atria for different pacing frequencies.

The thesis is organised as follows. In chapter 2 an introduction to atrial fibril-
lation is given and in chapter 3 the Hodgkin Huxley model is discussed, which
describes electrical impulse generation along nerve cells by the cell membrane
properties and ion channel conductivities. The simpler FitzHugh Nagumo
model is derived by phase space analysis in section 3.3 and analysed in section
3.4. Chapter 4 gives an overview of configurations, which can generate spiral
waves and fibrillatory patterns, as proposed in the literature and studied in
previous investigations. Description and results of numerical calculations of
more realistic scenarios are presented in chapter 5. Thereby, in section 5.2
the possibility to obtain ectopic activity by a spatial variation of the resting
state stability is analysed and the properties of the obtained ectopic focus are
presented. In section 5.3, mechanisms are investigated, which can generate spi-
ral waves, their properties are discussed and a comparison with experimental
studies of spiral waves is given. Finally, the interaction of a spiral wave with
regular sinus node activations is studied in section 5.4. In the final chapter 6
the results and their implications are summarised and an outlook is given on
prospective studies.



2 Atrial fibrillation

2.1 Definition and classification

Atrial fibrillation (AF) is the most common arrhythmia of the heart in clinical
practice in the industrial countries. Approximately one-third of hospitalisa-
tions for cardiac disrhythms are caused by AF [4] and about 4.5 million people
in the European Union have AF. The estimated prevalence lies between 4 out
of 1000 people up to 100 out of 1000 people, increasing with the age of the
person [5, 6] (see Figure 1). Since in the industrial countries the number of
people older than 60 years is growing, the impact of AF will increase.
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Figure 1: Prevalence vs. age of person (from [4]).

Atrial fibrillation is characterised by a fast irregular activation of the atria.
During normal sinus rhythm the atria is paced by about 60 atrial beats per
minute. In contrast, during AF the rate can increase up to 600 beats per
minute. Short periods of AF can yield palpitations, chest discomfort and light-
headedness. The uncoordinated activation leads to incomplete contraction of
the atria, and, as a consequence, staining of blood. Hence thromboemboli can
occur, which may propagate and lead to apoplectic stroke, pulmonary or other
embolism. The risk for ischemic stroke is increased from two up to seven times
for persons suffering from this disease |7]. Serious heart diseases can be pro-
moted by AF as well. For example, sustained AF can cause severe congestive
heart failures (CHF) after some time, which may be reversible, if the AF is
treated with proper rate and /or rhythm control. Atrial fibrillation can not only
promote other heart diseases. It is often also predisposed by several cardiac
disorders, e.g. coronary artery disease, pericarditis, mitral valve disease, con-
genital heart disease, CHF, thyrotoxic heart disease and hypertension. These
disorders are thought to assist AF by increasing the atrial pressure and/or by
causing atrial dilations. But the precise links are still not known.

Dependent on whether AF is accompanied by other cardiac diseases, it can
be divided into ’lone’ (idiopathic) AF and sustained AF. The term ’lone’ AF



is applied to patients under age 60 without clinical or echocardiographic ev-
idence of heart disease, which exhibit normally a more favourable prognosis.
Another classification criterion is the duration of fibrillation episodes of a cer-
tain patient. There exists acute (length < 24 hours) or chronic (recurrent) AF.
Chronic AF is in turn divided into paroxysmal, persistent and permanent AF.
Paroxysmal AF is characterised by self-terminating episodes (length < seven
days), persistent AF by longer episodes, which can be stopped by cardiover-
sion. If cardioversion failed, AF is termed permanent. The medical diagnosis
and therapy are supported by a good classification of AF in the single case.
On the other hand, different mechanisms are thought to generate and sustain
the diverse classes of AF.

2.2 Theories about the mechanisms of atrial fibrillation

The electrical conduction system of the heart (see Figure 2) consists of:
e the sinus or sinoatrial node, placed in the upper part of the right atrium
e the atrioventricular (AV) node in the lower part of the right atrium

e the bundle of His and the Purkinje fibres inside the septum between the

ventricles.

Sinoatrial
(SA) Node

Atrioventricular
(AV) Node

FA = Right Atrium
RV = Right Ventricle

LA = Left Atrium
LV = Left Ventricle

Figure 2: The electrical conduction system of the heart (from [8]).

During a normal sinus rhythm the sinus node electrically activates the right
atrium. This excitation travels orderly through the right atrium, excites the



left atrium and is then transferred to the ventricles through the AV node, the
bundle of His and the Purkinje fibres. There the electrical activation leads to
a contraction of the ventricles. The atria are paced by a frequency up to 12 Hz
during AF. Although they are excited at this high rate, ventricular fibrillation
is prevented by the filtering properties of the AV node. Every activation of
the atria has to pass the AV node before being transferred to the ventricles.
Hence, the effective 'heart rate’® is no longer controlled by the rhythm of the
sinus node, but it is determined by the interaction of the atrial rate and the
filtering properties of the AV node. The ventricular rate during AF is typically
in the region of 150 beats per minute.

An important mechanism for the maintenance and recurrence of AF is the
so called atrial remodelling. This means that the fibrillation itself alters the
electrophysiological properties of the atria, which in return facilitates the oc-
currence of AF. The atrial remodelling has effects on the organ, cell and molec-
ular level [9]. This changing of electrophysiological properties is a reason for
the difficulties to distinguish between mechanisms generating and maintaining
atrial fibrillation.

Different theories exist about the origin and the processes related with AF.
They all describe the disturbed propagation of the electrical excitation through
the atria. Three of them originate from the early twentieth century when AF
was recognised and studied extensively. Mines [10] and Garrey [11] developed
the idea that the fibrillation is maintained by multiple-simultaneous-reentrant
circuits. These reentrant circuits should only be stable if the wave length of the
excitation is shorter than the column of the muscle it appears on. The theory
of a single, rapid atrial reentry circuit, often called 'mother wave’, which pro-
duces irregular activation because of variable conduction through the atrial
tissue? was evolved by Lewis [12]. Another concept is the atrial hyperex-
citability first mentioned by Engelmann and Winterberg. Here, some cells of
the atrium act as pacemaker and maintain in this way the arrhythmia. These
pacemaker regions are called (rapidly discharging) ectopic foci. All three the-
ories are schematically shown in Figure 3.

In 1962 Moe [14] developed the concept of the 'multiple wavelet hypothesis’,
which is more a quantitative refinement of the former theories than a new
concept. It differs from the previous ones in that the reentry circuits do not
have to return to their starting point. The propagation should rather involve
multiple independent wavelets, which circulate around functionally refractory
tissue. So they could extinguish themselves, if they reach a path of reduced ex-
citability, or they propagate and maintain themselves and/or spawn daughter
wavelets. Hence, if a sufficient number of wavelets could maintain themselves,
the fibrillatory state is preserved.

Allesie et al. [15] performed mapping studies of atrial fibrillation in dog hearts,
maintained by the presence of acetylcholine. Their results support the theory
of Moe. Otherwise evidence emerged in some experiments for rapidly discharg-
ing ectopic foci in some clinical forms of AF [16], as well for the mother wave

!The effective ’heart rate’ is the ventricular rate during AF.
2Some regions can not follow the high frequency of activation.
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AVR AVR AVR
Multi-circuit reentry Mother wave Hyperexcitability
(Mines, Garrey) (Lewis) {Engelmann, Winterberg)

Figure 3: The three main hypotheses about the mechanisms generating and main-
taining AF developed in the 1920s (from [13]).

theory as a mechanism of experimental AF [17, 18]. These results led to the
conclusion that the three competing ideas about the mechanisms of AF can
describe the fibrillatory state accurately in different situations.

Recent experiments [19, 20, 21| with high resolution optical mapping of AF
reveal that the fibrillation is not that random as it is supposed by Moes the-
ory. Furthermore a critical number of wavelets seems not to be essential for
its maintenance. Some human studies (22, 23, 24, 25, 26, 27| and experiments
[19, 20, 21, 28| indicate that local left atrial sources seem to play a more criti-
cal role for AF. Hence the hypothesis of Lewis, that a small number of stable
reentrant circuits can maintain the fibrillatory state, is more consistent with
the experimental results. From the experiments [26, 27| one can conclude that
there are one or more stable pacemakers in the left atrium, which are generated
by a stable spiral wave or ectopic foci. These lead to a chaotic, fibrillatory-like
state through the propagation across the right atrium and the interaction with
the sinus node. This theory is investigated using the FitzHugh Nagumo model
in the following chapters.
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3 Description of the model

The electrical excitation or activation, mentioned in the last chapter, is de-
scribed on a cellular level by an action potential. This is the active response
of a cell to an external stimulus. It was intensively studied by Hodgkin and
Huxley [2], who developed a theoretical description of the cell reaction based
on equivalent circuit diagrams. Their work was honoured by the Noble price
for medicine in 1963.

Motivated by the Hodgkin Huxley theory, FitzHugh and Nagumo constructed
a much more simpler two variable model [3, 29|. For a discussion of the action
potential generation, their two coupled equations replace the four equations
of Hodgkin and Huxley, which exhibit qualitatively the same physiological be-
haviour, i.e. they have a similar stability behaviour as the Hodgkin Huxley
(HH) equations. Although the FitzHugh Nagumo (FHN) model was originally
used to describe neurons, it is a generic prototype for threshold triggered ex-
citable media, which belong to the general class of inhibitor-activator systems.
The activator variable is fast, whereas the inhibitor variable is slow. The uni-
versal feature of many excitable active systems lies in the structure of their
nullclines (see section 3.3 for more details). Quite generally there exists a S-
shaped (cubic) and a linear nullcline. The spatially extended form of the FHN
equations belongs to the general class of reaction-diffusion systems, which can
be used to study self-organised pattern formation far from equilibrium. Due
to the coupling of excitation and diffusion, a propagation of waves can arise in
these excitable media. For example, it has been seen in spiral wave dynamics
[30], the Bhelousov-Zhabotinsky reaction [31] and the morphogenesis of Dic-
tyostelium [32]. The FHN dynamics can also be obtained as mean-field limit
of an underlying microscopic chemical reaction model [33], that is based on a
birth-death description of the reaction mechanism and a random walk model
for the diffusion. Examples of activator-inhibitor systems in quite different
areas are given in Table 1.

system activator inhibitor

spatial propagation of action poten- membrane potential ion conductance
tials in nerves or heart cells

Bhelousov-Zhabotinsky reaction bromic acid (HBrOgy) ferrous ions (Fe?™)

carbon monoxide catalysis on Pt110 carbon monoxide 1x1 surface
coverage

spread of epidemics pathogen immunity

dynamics of populations prey predator

generation of spiral galaxies gravitation temperature

Table 1: Examples of activator-inhibitor systems.

3.1 The Hodgkin Huxley model

In the resting state a transmembrane potential V,, can be measured at a cell
membrane, due to different ion concentrations on both sides of the membrane.

11



The different ion concentrations arise, since ion transfer through the mem-
brane is in the passive state only possible for some ion types (e.g. potassium),
whereas other ion types can not cross the membrane and are thus accumulated
on one side. In this sense the membrane acts as a capacitor and a stationary
transmembrane potential according to the Nernst potential can be measured?.
If the membrane is stimulated externally by applying a current to the mem-
brane, inducing a voltage or mechanically irritating the cell, the properties of
the membrane change, resulting in modified ion concentrations and a different
transmembrane voltage. Hodgkin and Huxley [2| concluded from their exper-
iments with the giant squid axon, that this response of a cell to an external
stimulus can be divided into two classes:

e the sub-threshold linear behaviour and
e the trans-threshold nonlinear behaviour.

The threshold is given by the duration and the strength of the stimulus. An
applied current, as stimulus, can be either hyperpolarising, i.e. decreasing the
transmembrane potential, or depolarising, i.e. increasing the transmembrane
potential. In Figure 4 responses to hyper- and depolarisation of different
strengths are shown. It can be seen, that the change of the transmembrane
potential according to the resting potential (solid black line) is symmetric to
an applied current up to a certain current magnitude (here: I = 10uA). This
is known as the linear, passive response of the cell. For increased stimulus the
cell will actively respond by generating an action potential (Figure 5).

Since the membrane acts as an capacitor in the passive state, the linear
response can be described by an RC part in an electric circuit. This yields

with the capacitance C,,. The capacitive current g through the membrane
can be written as the change of the stored charge per time

90 oV
Tne = =% —C 2
e T

The trans-threshold behaviour is an active response to the stimulus and leads
to an action potential. For hyperpolarisation no action potential can be ob-
tained regardless of the size of the stimulus. The nonlinear behaviour of the
transmembrane potential is caused by the gating of ion channels. The most
important ion types for the generation of an action potential are sodium and
potassium. In the resting state the potassium channels are open, whereas the
sodium channels are closed. At the beginning of an action potential the potas-
sium channels close and the sodium channels open. This results in an increase
of the transmembrane potential due to the flux of positive sodium ions into
the cell. If the transmembrane potential reaches a certain value, the voltage-
dependent potassium channels open again, whereas the sodium channels close.

(3.2)

3The stationary transmembrane potential is about the Nernst potential of the potassium ions:

Ex = BFn {70 =~ Vi = —62mV..
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Figure 4: Time evolution of the transmembrane potential after application of dif-
ferent instantaneous current stimuli at t = 0. The different responses of the axon
according to the magnitude of the stimulating current can be seen. Up to an applied
current of 10puA, the change of the potential is symmetric to hyper- and depolarisa-
tion. The time course of the transmembrane voltage after a stimulus of I = 15uA4 is
an active response of the cell, the so-called action potential (see also Figure 5).

A flux of potassium ions to the outside of the membrane results, which reduces
the transmembrane voltage to its resting state value. The gating of the ion
channels is controlled by the transmembrane voltage. The current across the
membrane /[, of ion type a depends on the transmembrane potential V,, in re-
lation to the Nernst potential E, and the conductances g, of the ion channel,
which reads

I = go(Vin — Ey) . (3.3)

Through extensive voltage clamp experiments Hodgkin and Huxley [2] found a
mathematical description of the conductances of the ion channels. The potas-
sium conductance is given by

gk = grn*, (3.4)

where gx is the maximal conductance of the potassium channel. The gating
variable n, corresponds to the fraction of open potassium channels, and the
dependence on the fourth power of n in Eq. (3.4) was obtained by Hodgkin
and Huxley by fitting the theoretical model to experimental data. The time

13
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Figure 5: The transmembrane potential (upper part) and the three gating variables
n,m and h (lower part) vs. time during an action potential. The dotted line in the
upper graph represents the resting state potential. The parts are the depolarisation
(rising phase) (a), the peak (b), the repolarisation (decreasing phase) (c¢) and the
hyperpolarisation (d). The return to the resting potential shows the end of the action
potential.

evolution of the gating variable n follows a relaxation dynamics

— =a,(1—n) — Bun, (3.5)

where «,, and 3, are rate constants for the opening and closing of the potassium
channels. Both of these rate constants depend on the transmembrane voltage
Vin

~0.01(10 = (Vi — Viest))

Qp = _ Viest )
exp [10 (VTO Vies )] 1
Bn = 0.125exp [— (Vi — Viest) /80] . (3.6)

The resting potential of the cell is described by V.. The solution of the first
order differential equation (3.5) with constant coefficients is

n(t) = Neo — (Moo — o) exp(—t/7,) , (3.7)
where the relaxation time 7,, from the initial value ng to the steady state value

Op

a1 d (3.8)

Neo =

14



is given by
Tn = (o + Ba) " (3.9)

The conductance of the sodium channels,

gna = GNam’h (3.10)
depends on the two gating variables m and h. Following a stimulation, the
activation parameter m responds by a rapid increase, while the inactivation
parameter h decreases slowly. At the resting state, m is zero, corresponding
to a situation, where three of four sodium channels are closed (m to the power
of three). During an action potential m goes up to one. In contrast to this, h
is maximum in the resting state and zero during the action potential. As for
the gating variable n of the potassium channels, the time behaviour of m and
h is given by first order relaxation kinetics,

dm Moo — M

B 1 — _ _ >

dt Oém( m) Bmm m )

dh heo — h

- = an(l —h) — Bh = . (3.11)

o0

but the combination (gn, = gnam3h) yields a second-order conductance be-
haviour for the sodium channel. The rate parameters o and ( for the gating
of the sodium ion channel are [2]

0.1(25 = (Vp, — rest))
Om (Vi —Viest)

exp [%] 1
6171 4eXp [ ( rest)/lS}

- Vm - V;es
ap 0.07 exp [%} )
30 - Vm - V;"es -

B (exp { ( 10 t)} + 1) . (3.12)

All rate constants «; and f3; are measured in ms™*

. The kinetics of the gating

variables and the transmembrane voltage during an action potential can be
seen in Figure 5.

The complete response of one cell to a stimulus can be described with the
parallel-conductance model [34]. In Figure 6 the equivalent electrical circuit
is shown. According to Kirchhoff’s first law the sum over all currents must be
Zero

Ltim = 0.

I + Ina + I + Ipc — (3.13)

Here, Ix = ggn*(V,, — Ex) is the potassium current. The sodium current is
Ina = gnam3h(Vy, — Eng) and the stimulating current is given by Igy,. An
additional current I, = g, (V,, — EL), the leakage current, was introduced to
count for influences of other ions like calcium or chlorine. It is normally small.

15
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Figure 6: Equivalent electrical circuit diagram of the parallel conductance model. E;
is the Nernst potential and g; the conductance for the ion type i. C,, represents the

capacity of the membrane.

Using Irc, given by equation (3.2), the equations for the four variables of the
time dependent Hodgkin Huxley model are written as

ov,,
ot
d_n
dt
dm
dt
dh
dt

_ %(zstim Ik —Ine—1T1) . (3.14)
= ap(l—n)— G, (3.15)
= ap(l—m)—pFnm, (3.16)
= Oéh(l — h) — ﬁhh . (317)

The voltage dependent gating variables n, m and h, which were postulated by
Hodgkin and Huxley and derived by fitting the experimental data [2], later
turned out to be real structural properties of the ion channels [35, 36]. The
parameters of the model are summarised in Table 2.

parameter name variable range description
Vin -80...80 mV transmembrane voltage
Viest -60 mV resting potential
Cnm 1.0 mF Membrane capacitance
9Na 120.0 mS maximal sodium conductance
JK 36.0 mS maximal potassium conductance
Jr 0.3 mS maximal leakage conductance
Eng 55.0 mV sodium Nernst potential
Ex -72 mV potassium Nernst potential
Er -49.387 mV leakage Nernst potential

Table 2: List of parameters of the Hodgkin-Huxley model and their initial value or

parameter range (from [34]).

16



3.2 Spatial extension of the Hodgkin Huxley model

The induced transmembrane potential of an approximately spherical shaped
cell in a stimulating electrical field is the same over the entire cell membrane.
During an action potential the excitation of the whole cell can be viewed as
synchronous. But considering a long fibre of cells, the excited region is limited
and propagation of an activation to regions with cells in their resting state can
occur. The aim is to investigate the action potential conduction over a tissue.
Therefore one has to extend the Hodgkin-Huxley equations (3.14 - 3.17) to
include the ability of a spatial propagation of an action potential. The result
are the ’cable equations’, which are obtained by applying Kirchhoff’s laws to
the linear core conductor model [34]. For deriving the cable equations one
considers the electrical circuit diagram shown in Figure 7.

r,Ax r,Ax r,Ax [—
O, —NANAA NAA, AN
[T [l

L[—

CDi AN FaVaVa g A ——
r;Ax r;Ax r;Ax

X—

Figure 7: Linear core-conductor model for a single fibre in a restricted extracellular
space. I; and I, are the longitudinal intracellular and extracellular currents, ®; and
®. are the intracellular and extracellular potential per unit length and i,, describes
the current across the membrane of the cells.

In this approach, extracellular currents I, are expected to flow only in longi-
tudinal direction along the fibre, whereas the internal current [; is confined
to the axial direction. This is in general true since the fibre radius is many
magnitudes smaller than the fibre length. The second assumption is that there
exists axial symmetry. The properties of the membrane determine the trans-
membrane electrical behaviour of the fibre, shown as the open box in Figure
7. In the case of a trans-threshold (or near-threshold) stimulus the behaviour
is described by the Hodgkin-Huxley equations and can be represented by the
electrical circuit element shown in Figure 6. The representation as a passive
RC structure in the linear case (sub-threshold stimulus) is shown in Figure 8.
The variations of the internal and external spatial potential ®, . at the mem-
brane per unit length according to Ohm’s law are caused by the internal and
external currents I

09,

= Z[’L 5
ox r
0d,

= rd, . 3.18
e r (3.18)
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Figure 8: Electrical representation as an RC element of a cylindrical fibre element
of length Az under linear, sub-threshold conditions.

I/ AX

The external and internal currents I, I; are changed by the transmembrane
current i,,

o, .
ax - Zm )
oI, _
= . 1
e im (3.19)

These equations fulfil the conservation-of-current principle of Kirchhoft’s cur-
rent law. The membrane current i,, = 0V,,,/0t is described by equation (3.14).
It is either just the capacitive current in the sub-threshold response or the non-
linear ion currents in the trans-threshold case. The transmembrane potential
can now be rewritten as V,, = ®; — ®.. Using equations (3.18) and (3.19) its
second derivative with respect to x reads

0%V, 0*°®;, 0°®, ol; ol

- =t e = (1 i - 2
0x? 0x? 0x? i oz e ox (ri 4 7e)im (3.20)

With
oV,

ot
and r; + r. = r, the space- and time-dependent equations of the Hodgkin-
Huxley model are

im:IK+INa+IL+C _'_[stim

v, 11 1<

5 E(FAVm) s ;Ia(vmat> ; (3.21)
on
Fril a,(1—n)—G.n, (3.22)
om
oh

In equation (3.21) the sum over the currents is given by
4
Itot - Z Ia(vma t) - Istz’m + gNamSh(vm - Esz)
a=1
+ gKn4(Vm — EK) + §L(Vm — EL) . (325)
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A generalisation to more than one space dimension is straightforward. The
equation (3.21) is known as the cable equation.

3.3 The FitzHugh Nagumo model

The FitzHugh Nagumo (FHN) model consists of two coupled non-linear differ-
ential equations, which simplified the four differential equations (3.21-3.24) of
the Hodgkin Huxley model. The FHN equations show qualitatively the same
action potential course as the more realistic HH equations. Furthermore their
spatial extensions can be used as description for propagating action potentials.
The FHN model was derived from phase space analyses of the HH model by
Richard FitzHugh [3, 29].

The analysis of the phase space is a mathematical technique for studying ordi-
nary differential equations (ODEs). Solutions of ODEs describe curves (called
paths) in the phase space, whose coordinates are the dependent variables of
the system. The state of a physical system is represented by a phase point,
which travels along a certain path. Phase space analysis is especially impor-
tant for ODEs, for which an explicit solution in closed form (an analytical
solution) can not be obtained. An overall description of the solutions of these
ODEs can be given by exploring special paths (singular points, separatrices
and limit cycles), because they determine the topological behaviour of all paths
in the phase space. Especially interesting are the so-called nullclines. These
are obtained by setting the time derivatives of the variables equal to zero.
Accordingly, if the system depends only on two variables, the nullcline of one
variable gives the steady state value of this variable as a function of the second
variable. By setting both time derivatives zero (this corresponds to finding
the intersections of the nullclines), singular, stable and unstable points can be
obtained, which describe stable and unstable steady states of the system.
The Hodgkin Huxley model has four independent variables and the correspond-
ing four-dimensional phase space can not be directly visualised. Therefore it
is reasonable to study at first the properties of a reduced system by omitting
one or two coordinates of the phase space. Since the time constants of the four
variables differ by magnitudes, it is suggestive to divide them into two pairs.
The transmembrane potential V;,* and the gating variable m (where the cor-
responding relaxation time is 7,,) that vary rapidly, and the gating variables
h and n, which vary slowly®. Since in a short time the changes of h and n are
negligible compared to V,,, and m, the behaviour of V,, and m can be studied
by setting h and n to a constant resting value and solving the resultant reduced
V,m system. The next step is to analyse the effects of changing h and/or n
on the behaviour of the reduced system. Then h and n are reintroduced into
the system.

In Figure 9 the (V,m) phase space is shown. The m nullcline corresponds
to the equation mq.(V;,) (Equation (3.8) with n replaced by m), whereas the

4The time constant is 7v = Cm/gm with gm = gx + gne + gL
5The time constants Th, Tn are about one order of magnitude larger than 7v and 7,,. Explicit
values of the time constants can be found in Tables 1 and 2 in ref. [2].
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Figure 9: upper graph: (V,m) phase space of the Hodgkin Huxley model. lower
graph: Section of the (V,m) phase space to show points A and B in more detail
(from [3]).

V., nullcline gives the steady state value of V,,, as a function of m. It can be
calculated by setting dV//dt = 0 and solving for m

] _ . . 1/3
gNah(Vm - ENa)

As one can see in Figure 9 there are three intersections A, B and C of the
two nullclines, which are the singular or equilibrium points. Stability analy-
ses yield, that A and C are stable, while B is a saddle point. The point A
corresponds to a stable resting state of the system and C to a stable excited
state. One can find two paths leading directly to point B for t — +o00, which
are called threshold separatrices®. Along these paths a threshold phenomenon
occurs [37]. That means, paths to the right of the separatrices will approach A

Sseparatrix = boundary separating two modes of behaviour of the ODE
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Figure 10: (V,m) phase space diagram for different values of h (from [3]).

and paths to the left will converge to C. The system shows no recovery, since
A and C represent stable states. If an instantaneous current pulse is applied
or a potential induced, the phase point moves from the resting state A along
the line named 't=0" in Figure 9 (lower graph). If the phase point crossed
the threshold separatrix, it moves to C. Otherwise it returns to A. Thus the
threshold AV, = V(A) — V (threshold) results in an ’all or non’ response of the
system.

The influence of changes of n,h or Iy, can be studied by equation (3.26).
For a fixed V,,, a positive change of I, or n will increase m. The same is
true for a negative change of h. Hence the V), nullcline raises in response to
an increase of I, or n. The m nullcline is not changed, since it does not
depend on n,h or Iyy,. In Figure 10 both nullclines are shown for different
values of h. The points A and B move towards each other, if the V,, nullcline is
lowered by increasing h or decreasing Iy, or n. This leads to a displacement
of the resting potential (point A) to more negative values and a decrease of
the threshold magnitude AVj. If the lowering of the nullcline is continued, A
and B will coalesce and vanish, if a critical value of n,h or Iy, is passed.
Accordingly, all solutions will approach C, since it is the only remaining stable
point. If the V,, nullcline is raised on the other hand, B and C will move and
approach each other until eventually vanishing, so that all solutions will move
to A. In this case, the system is not excitable and the resting potential changes
to positive values.

Now, let us consider the (V,m,h) phase space. If V,, is displaced by an in-
stantaneous current pulse of size AV;, h equals hy(0). Since V,, is negative,
h decreases and the V' nullcline raises. Therefore B is moving to the left and
taking the threshold separatrices away from the phase point. Consequently
the phase point will return to A. If the initial current pulse is greater than the
threshold, the phase point starts moving to the left to C. As in the former case,
the threshold separatrices moves to more negative potentials. Hence, whether
the phase point is overtaken by the separatrices or not, decides, if excitation
takes place or not. If the phase point reaches C, it stays in the excited state
and no recovery occurs. In the case of the (V;m, h) phase space the threshold
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Figure 11: (V,m) phase space diagram for paths after different initial current pulses
corresponding to solutions of the complete HH equation. (1) represents the rising
phase of the action potential, (2) the peak, (3) the decrease of the potential and (4)
the positive after-potential (from [3]).

for a current pulse is increased compared to the (V,m) phase space. Thus h
can be characterised as the variable producing accommodation, i.e. increasing
the threshold.

If n is reintroduced into the system, the plateau in V,, (the excited state) is
no longer stable. This can be understood by the fact, that the V' nullcline now
raises farther to the left during an action potential and points C and B vanish.
Accordingly, the phase point has to return to the resting state at A. Another
effect is that point A moves to positive potentials, which leads to a positive
after-potential (the hyperpolarisation), when the phase point approaches point
A. Since now the membrane potential is positive, n and h change their sign.
Hence n and h return to their resting values and the V' nullcline falls again.
The singular point A returns slowly to the resting state. The time interval,
during which B is absent, describes the absolute refractory period, because no
other stable state than the resting state is accessible. The relative refractory
period is the time interval, where B returns but is far away from A, and there-
fore an increased threshold value is obtained. In Figure 11 paths for different
initial current pulses are drawn.

Different phenomenological ways for the reduction of the Hodgkin Huxley
model to the FitzZHugh Nagumo equations exist. As was discussed above, the
kinetics of m are very fast compared to that of n and h. With every change
of n or h, m can be considered to change instantaneously to its steady state
value my(V;,) at a certain transmembrane voltage. Furthermore, in the given
parameter range of the Hodgkin Huxley equations, the sum n + h is constant
(approximately 0.8). So the four variable system can be reduced to two equa-
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tions with the variables V,,, and n:

OV B
me = —gnam> (V;2)(0.8 = n) (Vi — Eny)
- gKn4(Vm - EK) - gL(Vm - EL) + Istim 5

Due to the fact that the nullcline of V,,, is cubic and that of n is linear, the two
equations for V,,, and n can be converted into the FitzHugh Nagumo equations:

ou 0?

gu _ pou 3
i D8I2—|—c(v—|—u w3+ z),
ov 1

where a, b and ¢ are constants, which control the velocity of excitation, recovery
and the threshold for self-excitation, respectively. The variable z represents
the stimulus. The diffusive term Dd?u/0x? is introduced in analogy to the
space- and time-dependent Hodgkin Huxley model, where D prescribes the
diffusion coefficient. A constant for the time evolution of u is defined by 1/c.
On the other hand ¢/b defines a time constant for the time evolution of v.
Thus, for numerical calculations a maximal time step size is determined by

1 1 ¢
At = —min(—, =) .
mln(c,b)

A relationship between time and space is given by the diffusion coefficient
D = Az?/At. Thus a condition for the maximal spacing Az = v DAt is
obtained. In all calculations time steps and spacings are applied, which obey
these conditions and represent a continuum description.

A physiological interpretation of u and v is given by R. FitzHugh in [29], i.e. u
is roughly associated with the membrane voltage and v is the so-called recovery
variable, corresponding to the gating variables h and n. To understand this
one can look again at the phase space of the Hodgkin Huxley model. As was
described before, the HH model is split into two subsystems (V,m) and (n, h).
The pair (V, m) corresponds to u and represents excitability. The variable v is
commensurate to the pair (h,n), which represents accommodation and refrac-
toriness. To set up a simplified model with retained physiological properties,
one can eliminate one dimension from each subsystem by linear projection.
The variables n and (—h) can be replaced by their average v = 0.5(n — h),
since their curves have similar shapes during an action potential. From a ge-
ometrical viewpoint, the path of an action potential in the (n,h) plane can
be fitted by the line n + h = 0.85. Consequently this line is considered as a
v axis and points of the (n,h) plane are projected onto lines with constant
v = 0.5(n — h). In the same way, with u = V — 36m, points of the (V,m)
plane are projected onto lines of constant u. The lines of constant u are nearly
parallel to the threshold separatrices of the (V,m) system. Hence the char-
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Figure 12: (n, h) phase space diagram (left graph) and (V, m) phase diagram (right
graph) to illustrate the projection lines and the simplification method to yield w,v
coordinates (from [3]).

acteristic threshold phenomenon” is preserved. In Figure 12 the projections

and paths during an action potential are shown. Results obtained from the
Hodgkin Huxley equations (3.21- 3.24) and the FitzHugh Nagumo equations
(3.28) can be compared by solving the HH equations and then calculating uppy
and vyy from:

UHH — V —36m s

Then the behaviour of uyy and vyy can be compared with that of upy and
vpn, which were calculated according to equations (3.28). This is shown in
Figure 13. Three stimuli of the same size were applied at ¢t = 0,8 and 24. In
both models two action potentials are obtained. The sign of the activation
variable of the FitzHugh Nagumo model is changed in comparison to ugy.
Given that it only depends on the definition of the transmembrane potential,
i.e. if the transmembrane potential is defined as . — ®; or with the opposite
sign, this is no important difference. The diverse parts of an action potential
are obtained in both models for ugy and —upy, including the rising phase, the
peak, the decrease, the hyperpolarisation and finally the recovery to the rest-
ing value. Both figures show just two action potentials although three stimuli
were applied. The small peak of the activation variable in the left figures at
t = 8 is a vestige of the second stimuli. In this case the applied current was
not large enough to yield a second action potential, because the cells were
still in their relative refractory period. Accordingly both models include the
property of refractoriness in an analogous way. The differences in the shape
of the activation and inactivation variable of the FHN model compared with
the HH equations are not important for investigating the main features of the

"The threshold phenomenon is represented by the divergence of paths when approaching the
point B.
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Figure 13: Comparison of the FitzHugh Nagumo equations (3.28) with the Hodgkin
Huxley equations (3.21-3.24). The variables upy and vpp are the activation and inac-
tivation variables of the FitzHugh Nagumo equations and wyg, vy were calculated
from V,,,,m,n and h from the Hodgkin Huxley equations by Equation (3.29).

models like threshold behaviour and refractoriness. They play an important
role, when comparing simulated action potentials with measured ones from
different cell types, where the shape is the discriminating property. Hence, if
the qualitative behaviour of action potentials and their propagation is stud-
ied, the FitzHugh Nagumo model can be applied as a reduced version of the
Hodgkin Huxley model.

In addition, the comparison between results calculated from the Hodgkin Hux-
ley equations and the FitzHugh Nagumo equations (Figure 13) gives an impres-
sion of the ranges of the variables upy and vpy. The resting transmembrane
potential of V,,, & —62 mV is represented by upg = 1.2 for vpg = —0.6. The
peak value of the transmembrane voltage during an action potential is V,,, = 40
mV, whereas upy is approximately —1.6 at maximum. Thus the range of the
activation variable upy of [1.5, —1.3] reflects the range of the transmembrane
voltage of [—80,40] mV. The range of the inactivation variable of [—0.7,1.2]
corresponds to the the range of the gating variables n and h of [0, 1].
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3.4 Analytical reduction of the Hodgkin Huxley model

To determine the properties and physiological ranges of the three coefficients
a,b and ¢ of the FitzHugh Nagumo equations (3.28):

2
% = D%—l—c(v—l—u—u?’/fi—irz),
% = —%(u—a—l—bv),

an analytical transformation of the HH equations to the FHN equations is
sought. Abbott and Kepler [38| proposed a procedure to reduce the four dy-
namical variables (V,, m,n, h) to two (u,v). It consists of two steps:

e Replacing the gating variable m for the activation of the sodium channels
by its asymptotic value m (V)

e Introducing an auxiliary potential variable U and replacing A and n by
their asymptotic values he(U) and n..(U)

The first step can be done, because the time scale associated with m is much
smaller than that of h or n (see chapter 3.3), i.e. one gives up some accuracy of
the model over very short time scales. By neglecting the differential equation
(3.23) for m, the reduced Hodgkin-Huxley system reads:

oV,

OW = _ftot(v'ﬂw mw(vm)ﬂ n, h) )
dn
E - an(l_n)_ﬁnn7
‘;_ZL = ap(1—h) = Buh, (3.30)

where
jtot - gKn4(Vm - EK) + gNa(moo(Vm))Sh(Vm - ENa) + gL(Vm - EL) .

A simple replacement of h and n by their asymptotic values ho(V;,) and
Neo(Vin) would destroy the ability of the model to generate action potentials,
since it would equalise the time scales of m,n and h. Consequently, the action
potential would be terminated by n and h as quickly as m could initiate it.
To account for the retarded reaction of n and h to a variation of the membrane
voltage V,,, one can introduce an auxiliary potential variable U. With this
potential U, n and h can be replaced by their asymptotic values n.(U) and
heo(U). The replacing of the gating variables by their asymptotic values is
possible, because in the Hodgkin-Huxley model the gating variables depend
only on V,,, and do not directly influence each other. The resulting equations
are

oV

CW = —Ztot(vm,moo(vm),noo((])a h’OO(U>> )
dU
— p— ! 1
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with

it = grne(U)(Vin — Ex) + gr.(Vin — Ep)
+ G (Vi) hoo(U) (Vi — Ena) - (3.32)

The time dependence of U can be obtained by equating the time derivative of
Iioy at constant V,,, in Equation (3.25) and 4. in the reduced form (3.32)

a]tot dh(Vm) 8]t0t dn(Vm) (3%1;0,; dhoo(U) 4 a:ztot dnoo(U)) dU

oh  dt on  dt Oh. dU one, dU dt (3.33)

Equation (3.33) ensures, that the implicit time dependence of iy, (U()) mimics
the time dependence of iy in the full Hodgkin-Huxley model through changes
of the variables h and n, whereas V,,, and m are constant.
The time evolution of n is obtained by inserting Equations (3.9) and (3.8) into
Equation (3.5):
dn N (P) —n(t)
dt T (D)

Noo(P) is the asymptotic value of n for a certain potential ®, which can be
given by V,, or U. Replacing now n by its asymptotic value for U yields:

(3.34)

dn._ Neo(Vin) — oo (U) |

T x 3.35
dt Tn(Vin) (3:35)
The equivalent equation for h is:

dat (Vi)

Inserting (3.35) and (3.36) into Equation (3.33) yields the conditional equation
for g(V,n, U):

dau A
with
A B ajtot hoo(Vm) — hOO<U) 4 a[tot noo(Vm) — noo(U)
| oh (Vi) on Tn(Vin) hhoo()
(3.38)
and . -
B _ 82tot dhOO(U) T aZtOt anO(U) (339)

Ohs dU One dU

The functions heo (P), oo (P), Moo (P), 7, (P) and 7,(P) with the potential & =
Vi or U are obtained by inserting Equation (3.6) into (3.9) and (3.8) as well
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as Equation (3.12) into (3.11)
0.07 exp(—®/20)

hoo(®) = 0.07 exp(—®/20) + 1/ [exp (30 — ®)/10) + 1] ’
@ - 0.01(10 — @)/ [exp ((10 — ®)/10) — 1]

Moot 0.01(10 — @)/ [exp ((10 — ©)/10) — 1] + 0.125 exp(—/80)
(@) = 0.01(25 — @)/ [exp ((25 — ®)/10) — 1]

> ~0.01(25 — @)/ [exp ((25 — ®)/10) — 1] + dexp(—®/18) ’

1
(®) = ST ep(=3/20) + 1/ [oxp (30 = 9)/10) = 1]
1
T(®) =

0.01(10 — @)/ [exp ((10 — ®)/10) — 1] + 0.125 exp(—D/80)

To identify the parameters a, b and c of the FitzHugh Nagumo equations (3.28),
one has to compare these equations with the reduced Hodgkin-Huxley equa-
tions (3.31). Therefore one has to solve the conditional equations for gtot(Vm, U)
and ¢(V;,,U) with the nonlinear function heo(P), neo(P), Moo (P), 7,(P) and
7h(®). As a consequence no simple relationship between the parameters of the
Hodgkin-Huxley model and the parameters a,b and ¢ of the FHN equations
exists.

Another way to determine the effect of the parameters a,b and c is to study
numerical solutions of the time dependent FHN equations without spatial de-
grees of freedom. These solutions are shown in Figure 14. Each diagram shows
the solutions for the variation of one parameter, whereas the other parameters
are kept constant at the standard values: a = 0.7, b = 0.8, ¢ = 3.5 with time
steps At = 0.01. To determine, which parameter defines the refractory period
and the excitation threshold, two stimuli were applied: one at t = 0 and the
second at t = 9. The small peak, seen at about ¢ = 9 in most cases, repre-
sents a passive response of the cell as described in chapter 3.1, i.e. the second
stimulus is applied during the refractory period and can thus not activate an
action potential. R. FitzHugh [29] proposed a physiological meaningful range
for the parameters:

2
be(0,1); ae(1—§b,1); b<c?.

In Figure 14 I the influence of different values of parameter b on the time
evolution of u is shown. If a is set equal to 0.7, one can extract from the
physiological parameter range given by R. FitzHugh a lowest value of b =
0.45 (green dash-dotted line) and an upper value b = 0.99 (black solid line).
The red dashed line (b = 0.8) shows, for comparison, the result for u with
the standard parameters mentioned above. Decreasing of b yields a second
action potential, but its shape is changed in comparison to the first one. This
demonstrates that the refractory period is not yet completed, but the threshold
for excitation was overcome. Additionally the stability of the resting state is
reduced, which is indicated by the oscillation around the resting potential. In
summary, decreasing b leads to a decrease of the threshold for excitation and
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Figure 14: Numerical solutions for u in dependence of time ¢ after application of
two stimuli at £ = 0 and ¢t = 9 for the FHN model. The parameters are: a = 0.7,
b = 0.8, ¢c = 3.5 and time steps At = 0.01. Decreasing of b leads to a reduced
excitation threshold and a reduced stability of the resting state (I). The variation of
a (II) changes the duration of the refractory period. Parameter ¢ does not influence
the refractory period, but the strength of the cell response to a stimulus (III).

the stability of the resting state.

The effect of variations of the parameter a are shown in Figure 14 II. The
value a = 0.47 (green dash-dotted line) is the lower boundary value for b = 0.8
and a = 0.99 corresponds to the upper boundary. a = 0.7 was chosen as the
standard value for a. It can be seen that the decrease of a below a critical value
(here: a = 0.6) leads to a second action potential as in the case of variation of
the b parameter in Figure 14 I. In the present case, however, the shape of the
second action potential is similar to that of the first one, which indicates that
the refractory period is almost finished. Additionally, the shape of the action
potential is changed for different values of a, i.e. the increase is stronger and
the second decrease is slower for increased a. Consequently, a decrease of the
parameter a in the FHN model shortens the length of the refractory period.
The potential oscillates around the resting state for smaller a, but this effect
is not as strong as for reduced values of b. This shows, that the parameters a
and b mainly determine the refractory period and the stability of the resting
state, respectively. However, both parameters also influence the corresponding
other property.
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Figure 15: Numerical solutions for u in dependence of x after application of one
stimulus at ¢t = 0 for the spatio-temporal FHN model (3.28) in one dimension. The
parameters are a = 0.7, b = 0.8, ¢ = 5.5 and D = 0.1 with timesteps At = 0.01
and grid size Az = 0.1. The dotted lines correspond to solutions at time ¢t = 2, the
dashed lines at ¢t = 6, and solid lines at ¢t = 12. A decrease of a or b, and an increase
of ¢ yield an increased conduction velocity. For a > 0.9 and ¢ < 3.5 no propagation
occurs.

Figure 14 IIT shows the results for different ¢ values. The minimal value of
¢ in the physiological range is given by vb = v/0.8 ~ 0.9 (green dash-dotted
line). No upper boundary exists for parameter c¢. For all values of ¢ the
second stimulus can not excite a second action potential. This shows that the
refractory period is not influenced by ¢. But an increase of ¢ results in a higher
magnitude, a stronger decline at the beginning and an increased duration of
the action potential. For strongly decreased c¢ (here: ¢ = 0.9) even the first
impulse can not excite an action potential. These changes reveal that ¢ changes
the ability of the cell to respond to a stimulus and the strength of this response.

Atrial fibrillation is described by spatio-temporal patterns of the membrane
voltage. Hence the FitzHugh Nagumo model has to be analysed according to
spatial and temporal degrees of freedom. The conduction velocity of an exci-
tation wave in the spatio-temporal FHN model is mainly determined by the
diffusion coefficient D characterising the spreading of the voltage. But addi-
tionally it is influenced by the parameters a, b, and ¢, because they change cell
properties like the excitation threshold, the refractory period and the ability to
respond to a stimulus. These influences are studied in numerical simulations of
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the spatio-temporal FHN model in one dimension (Figure 15). The standard
parameters of the simulations are a = 0.7, b= 0.8, ¢ = 5.5, D = 0.1 with time
steps At = 0.01 and grid size Ax = 0.1. An increased value of ¢ compared to
the time dependent case is used, since for smaller values of ¢ propagation of
the excitation will fail due to the influences of the diffusion.

In Figure 15 II solutions of Equations (3.28) are shown for different values
of the parameter a. A decrease of a leads to an increase of the conduction
velocity of the excitation wave. If a exceeds a certain value (here a > 0.9), the
excitation wave becomes unstable and conduction is suppressed after a certain
distance. For the parameter b (Figure 15 I) this effect is absent, but a decrease
of b results in an increase of the wave speed as well. The behaviour is inverted
for the parameter ¢ (Figure 15 III): an increase of ¢ triggers an increase of the
speed of the travelling wave. If ¢ is reduced below a critical value (¢ < 3.5),
the wave becomes unstable and the propagation of the wave front is stopped.
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4 Simple scenarios for atrial fibrillation mechanisms

After this study of the main properties of the FitzHugh Nagumo model, an
overview of scenarios, discussed in the literature, to investigate the generating
mechanism of AF is given in this chapter. In the early twentieth century first
attempts have been made to theoretically describe atrial fibrillation. Since
this time, many studies were performed to investigate the mechanisms of AF.
Three main theories have been established (see section 2.2 for a description).
The underlying concept of two of them is reentry and among these essentially
three different mechanisms of reentry were proposed. They are schematically
sketched in Figure 16.

Closed circuit reentry Leading circle reentry Spiral wave reentry

Figure 16: Different kinds of reentry discussed in the literature (from [13]).

In 1913 Mines [39] proposed that the reentry occurs in closed circuits. This
requires that the core of the reentry circuit is inexcitable. In anatomical tissue
this can be caused by obstacles like the pulmonary veins or the venae cavae,
by regions of inexcitability caused by cicatrices or heart diseases, and by the
arrangement of potential conducting pathways. Since the circuit is closed, the
time for one circulation, the circuit time, is given by the path length divided
by the conduction velocity. Closed circuit reentry can only occur, if the cir-
cuit time is greater than the refractory period of the substrate. In AF the
substrate seems to be more functional than fixed [40], but the closed circuit
reentry can not account for the dynamic nature of reentry in arrhythmias. To
improve the circuit theory, Allessie et al. [41] introduced the leading circle
concept in 1977 as a first detailed conceptual model of functional reentry. In
this concept a leading circle establishes itself at the smallest circuit size, which
can be continuously active. The product of conduction velocity and refrac-
tory period prescribes the wavelength® and defines the minimum circuit size
for reentry. In this case the circuit time and consequently the fibrillation rate
depend solely on the refractory period. An important difference to the closed
circuit concept is that the core of the leading circle is continuously excited by
invading centripetal impulses from the circulating reentrant wave.

A more generalised concept of continuous activity in excitable media, the spi-
ral wave concept, was put forward by Pertsov et al. [43]. In this concept
the core is fully excitable, but not excited. From a kinematic theory of spiral

8This was defined by Mines [39] and later quantified by Wiener and Rosenblueth [42].
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waves, proposed by Mikhailov and Zykov [44], it is known that the stability
of spiral waves depends strongly on the curvature of the wavefront. The key
concept behind is the source-sink relationship of the propagating activation
wave. The wavefront can propagate as long as unexcited but excitable cells,
the so called ’sink’; are activated by the diffusive current from the source, i.e.
the depolarised cells at the wavefront. Thus there exists a relationship be-
tween the source current and the amount of tissue being excited by the source
current. In Figure 17 this relationship is schematically shown for different cur-
vatures of the wavefront. For a concave curvature the sink decreases with the
ongoing propagation up to the point, that no excitable tissue is reachable and
the propagation fails. A planar wavefront diffuses straightforward with a con-
stant conduction velocity. The velocity is increased for a concave curvature,
because a smaller sink is attached to the source compared to the case of the
planar wave. This results in a larger current from the activated cells to the
excitable tissue and thus a faster activation of the sink. A decreased velocity
is obtained for a convex wavefront, where a larger sink is connected to the
source. Propagation may fail in this case, if the source current available for
excitation is reduced too much to yield an activation. The necessary condition
for a circulation is the appearance of a velocity gradient along the wavefront.
Hence, the convex curvature has to increase from the outside to the inside of
the spiral wave along the activation wavefront. A limitation of the spiral wave

Convex wavefront Planar wavefront Concave wavefront
ML Y

Figure 17: Explanation of different stabilities of propagating waves in dependence
on the curvature of their wavefront. In the case of a concave wavefront the sink is
reduced by the propagation leading to the failing of this propagation. If the wavefront
is convex, the propagation can fail as well, if the sink is too large in relation to the
source.

approach is the difficulty to predict the stability and the rate of reentry based
on simple electrophysiological properties as conduction velocity and refractory
period.

In experiments indirect evidences were found that support all three kinds of
reentry. One prediction of the leading circle concept is, for example, that the
number of waves accommodated in the atria should be related to the wave-
length. Indeed it was found by Rensma [45], that the ability to induce AF in
dog hearts is related to the wavelength under various conditions. In addition,
the rate of functional reentry seems to be related to the refractory period as
predicted by the leading circle concept [46]. On the other hand, only spiral
waves could be directly visualised? in high-density mapping studies [47, 48, 49].
Up to now it is under discussion, which of the reentry mechanisms is most reli-
able. The great limitation of the leading circle concept is the missing account

9The visualisation is carried out with voltage sensitive dyes.
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Figure 18: Video frames showing the generation of a spiral wave by crossfield stimu-
lation in a homogeneous and isotropic array. (a) Basic planar wave propagates from
left to the right. (b)-(j) Time course of a second generated wave front. The pictures
show the activation pattern at the following intermediate steps. (b) Premature pla-
nar wave is initiated perpendicularly from the bottom to the border of the array.
(c) The second wave, initiated in (b), breaks into the refractory tail of the first one
and develops a pronounced curvature. (d)-(j) The wave front curls and a clockwise
rotating spiral is initiated (from [43]).

for key biophysiological properties like electrotonic interaction!® or complex
properties of the medium and dynamic core behaviours. The predictions of
the spiral wave concept seem to correspond more closely to the results of clin-
ical and experimental observations [50|. Hence, it is currently the favoured
mechanism of reentry.

In numerical studies [43] and in experiments [51] the generation of spiral waves
is often performed by crossfield stimulation (see Figure 18). A planar wave is
initiated and a second premature planar wave, perpendicular to the first, is
excited with some delay. The second wave front can break into the refractory
tail of the first one and develop a pronounced curvature, which can lead to a
curling of the wavefront and thus a rotating spiral. Extensive studies of the
properties of spiral waves in dependence of the ratio of recovery to excitation
rate and in dependence on the excitation threshold have been performed by
Winfree [52].

Many experimental observations [51, 53, 54| show that spiral waves can be
anchored and stabilised by anatomical obstacles. This was investigated by nu-
merical simulations [55, 56, 57| of spiral waves on a two-dimensional circular
area with a circular hole inside and no-flux boundary conditions!! (see Figure
19). In these simulations the spiral wave is stabilised by the obstacle and its
properties depend on the size of this obstacle. From an anatomical viewpoint
the obstacle represents inexcitable tissue. In section 5.3 the generation of spiral
waves by obstacles, corresponding to functionally modified tissue, is studied in
detail based on the FitzHugh Nagumo equations.

10The current flow between neighbouring cells, which changes the local action potential morphol-

ogy.
Ydu/dn = 0. u is the potential. n is the unit vector perpendicular to the boundary.
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R=1.2 R=0.46 R=0

Figure 19: Reentry in an annulus with various values for the inner radius R; and a
fixed outer radius R, = 5.2 cm. Snapshots of activity for A) R; = 1.2 cm, B) R; =
0.46 cm, and C) R; = 0.0 cm, no hole (from [56]).

Over a long time the multiple wavelet theory by Moe et al. (see section 2.2) was
the favoured theory to explain AF, since atrial fibrillation is a chaotic process
with irregular spatio-temporal patterns of the voltage. The multiple wavelets
were associated with multiple reentry circuits or spiral wave breakups and the
fibrillatory pattern should result from the primary arrhythmia mechanism. In
the last years, studies [19, 27, 26, 58| show that the fibrillatory pattern is not
caused by the generating mechanism itself. The irregularity has rather two
different origins. On the one hand it can be caused by the spatially variable
properties of the atrial tissue leading to perturbations and changes of con-
ducted waves. This effect is known as ’fibrillatory conduction’. On the other
hand, it might be caused by the interference of different wavefronts, e.g. waves
generated by a single source (ectopic focus or spiral wave) and periodic and
regular wavefronts emanating from the sinus node. In numerical simulations
[59, 60] fibrillatory conduction is studied by spatial variations of acetylcholine,
which is the cause of an additional potassium current. The spatial patterns
can lead to spiral wave breaks and these are visible as irregular patterns in the
simulated electrocardiogram.

In this work the focus is on the second proposed mechanism: the interaction
of a stable reentrant source and the activation waves generated by the sinus
node. The results are presented in the following chapter.
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5 Irregular wave patterns caused by physiologically mod-
ified regions

The emergence of irregular wave patterns due to the disturbance of initially
regular waves by physiologically modified regions is studied in this chapter.
The first step is the investigation of mechanisms and configurations, which
can yield an ectopic focus (section 5.2) or a spiral wave (section 5.3). Thereby,
the cell properties like excitability and refractoriness are modified in local re-
gions by spatial variations of the parameters b and ¢ of the FitzHugh Nagumo
model (3.28). The analyses focus on the generating mechanisms of these irreg-
ularities, the conditions and limits for their occurrence, and their properties
and influence on the characteristics of an overall fibrillatory state. With these
results, the interference of regular planar excitation waves with the irregular
wave patterns is investigated in a two-dimensional model including both atria.
Spatial variations of the fibrillation rate and the generation of certain spatio-
temporal patterns are analysed and presented in section 5.4. At the beginning
of this chapter, the methodology of the calculations is explained, including the
modelling of physiologically modified regions, which we shortly call ’obstacles’
in the following. Also, the method of solving the FitzHugh Nagumo equations
and the analyses of the solutions are discussed in section 5.1.

5.1 Methodology

The basis of this work is the numerical calculation of the FitzHugh Nagumo
equations

du Pu u 5

% D(@%—a—y?)—i—c(vau—u/?ﬂ—z),

ov 1

= = _Z(u-— . q
5 C(u a+bv) (5.1)

The wave patterns observed in the atria are approximated as two-dimensional,
because the activation waves propagate mainly on the surface of the atrial
tissue due to its small thickness (in contrast to the ventricular tissue). For
simplicity, the calculations are carried out on a two-dimensional square sim-
ulation area. This simulation area can be considered to represent an isolated
section of atrial heart tissue as used in experiments [53, 61, 62|. In this respect,
the calculations neglect the complex geometry of the atria.

Physiologically modified regions, i.e. the obstacles, are modelled by a circular
variation of parameter b or ¢ around a centre (xg, o) according to

b(z,y) = bo— (bo — brea) exp(—\/(x —20)% + (¥ — %0)?/&) (5.2)
c(z,y) = co—(co— Crea) eXP(—\/@ —0)? + (¥ — %0)?/&c)

where ¢g = 5.5 and by = 0.6 represent the standard values of the calculation,
corresponding to healthy tissue. The parameters c,.q and beq are the reduced
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Figure 20: Schematic representation of the simulation area. The circles labelled with
& show different sizes of obstacles. The dots of the circles marked with '1’, 2’ and
"3’ represent observation sites for the frequency analysis (see section 5.1.1).

values of parameter b and ¢, which represent the physiologically modified prop-
erties. The correlation length & defines the distance, where the parameters b
and ¢ have increased to a value of by — (by — byeq) /€ and ¢y — (co — Crea) /€, TESPEC-
tively. In the following & is called the obstacle size. The standard parameters
of the calculations are a = 0.7 and D = 0.1. A schematic representation of
the simulation area with two representative obstacles of different size is shown
in Figure 20. As initial condition the whole simulation area represents cells
in the excitable resting state. Thus the activation variable v and the inacti-
vation variable v are set to the resting state values of u = —1.2 and v = 0.6.
The boundary conditions of the simulation area are of von Neumann type, i.e.
Ou/On = 0 with 7 as the unit vector perpendicular to the boundary. Note
that v is a scalar variable associated with each space point without coupling to
neighbouring ones. Physically, the von Neumann boundary conditions mean
that no flux of u is present over the boundary. If u were conserved, it would
be reflected at the boundary. However, u is not a conserved quantity, due to
the reaction term du/dt = c(v +u — u®/3 + 2) in eq. (3.28), which creates
sources'? and sinks for u. Moreover, since the activation wavefront of the FHN
model is followed by a refractory tail, it can not excite backwards and is thus
not reflected. Numerical calculations of the spatial FHN model reveal, that

12 A source is, for example, an applied current z.
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these boundary conditions describe the experimental configuration in the most
faithful way:.

The two nonlinear coupled partial differential equations (PDEs) are solved
with the MATLAB®© software. The calculation is based on the finite element
method (FEM). In this method the simulation area is split into a union of sim-
ple geometric objects (here: triangles). The triangles form a mesh and each
vertex is called a node. The solution w(x,t) of the PDE is expressed in terms
of a series of basis functions ®(x),

w(z,t) = Z U (£)®;() - (5.4)

A suitable basis are 'tent’ or ’hat’ functions, which are linear at the triangles
and take the value 0 at all nodes z; except of z;. The coefficients U, (t) are the
values of the solution at the nodes.

For the explicit solution, the differential equations are transformed into a sys-
tem of algebraic equations by a method called 'the variational method’ in the
finite element approach. In this method the differential equations are multi-
plied with the basis function ®(z) and integrated over the triangular mesh.
The task is then to minimise the integral.

Inserting the basis set decomposition of w(z,t) into the variational equation
yields the set of equations to solve. A detailed description of the FEM can be
found in [63, 64]. Important for the accuracy and correctness of the solutions is
the size of the grid. It has to be optimised, so that the change of the variables
between two nodes is smaller than an appropriate tolerance €. Therefore, the
20x%20 simulation area is decomposed into 4225 node points and 8192 triangles.
The nonlinearity u?(Z, t) in the FHN equations (3.28) is treated as an inhomo-
geneity, which is independent of the solution u(Z, ¢;) at the actual time step ;.
This inhomogeneity can be approximated by the solution u(Z,t;_1) of the last
time step. We finally obtain

ow(z,t;) 0 < Ow(Z, t;)

€ Ao —
ozr

TR > + gw(Z,t;) =h, (5.5)

with @ = (u,v)? and

ol 8 A A R

This approximation is always possible, if the time step At is chosen small
enough, since then u varies only very little within At.

The time-dependent solutions u(z, y, t) and v(x, y, t) can be visualised by three-
dimensional graphs and their evolution as a movie of these graphs. But these
movies require a manual inspection. For an automatic analysis one can detect
the phase singularities of the solutions and investigate the frequency distribu-
tion within the simulation area. Both techniques are explained in the following
section.
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5.1.1 Methods for analysing the activation patterns

The detection of the phase singularity provides an automatic analysis of spiral
waves by the lifetime of the phase singularity and their time evolution. Thus
one can automatically classify the solutions of the numerical calculations ac-
cording to the following aspects: (i) generation of a spiral wave, (ii) temporal
stability of spiral waves, and (iii) motion of the spiral waves. A schematic
graph of a spiral wave is shown in Figure 21. Additionally, one can see the

Figure 21: Schematic graph of a spiral wave (from [50]). The solid black line marks
the activation wavefront, which propagates in direction of the arrows. The repolari-
sation front is represented by the red solid line. The thin dotted line represents the
pathway of the tip of the spiral, the phase singularity.

propagation directions of the activation and repolarisation wavefront. Gen-
erally the activation generated by the spiral wave propagates from the inside
of the spiral (thick dashed line in Figure 21) to the outside of the excitable
medium. In the simplest case the shape of the spiral wave is constant and it
rotates with constant angular velocity around a circle of constant size. But it
can also move around in various ways, e.g. by meandering.

The phase singularity is the point of coincidence of the convex curved activation
front (black line), which starts at the inner part of the spiral and propagates
to the outside, and the repolarisation front (red line), which follows the ac-
tivation front. The phase singularity corresponds to a non-excited point at
the inner tip of the wavefront with an uncertain phase, because all phases of
activity meet there. Its time evolution is shown in Figure 21 by the thin dotted
line. The definition of the phase singularity is based on phase space analysis.
The phase angle is defined as the angle of the coordinates of the phase space
variables (e.g. V (t),V(t — 7)) around the phase space origin for all time val-
ues at this point. It lies in the range of —m and 7. One can create a phase
map by assigning the phase angle to each point of the spatial grid at a certain
time. The phase singularity describes in this sense a point, where the phase
is uncertain, whereas the neighbouring sites show a continuous progression of
phase around the phase singularity. The mathematical definition of the phase
singularity is given by:

n = 7{ dsVd (5.7)
C
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where n is the topological charge, ®(r) the local phase and C' a closed curve.
If n equals 27, the area enclosed by C' includes a phase singularity.
Different methods |60, 65, 66] have been proposed for the automatic detection
of phase singularities. In this work a variation of the detection algorithm,
proposed by Zou et al. [60] and based on a combination of Bray’s method [65]
with an image-analysis method, is used. The flow diagram of the detection
algorithm is shown in Figure 22.
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Figure 22: Schematic graph of algorithm for detection of phase singularities.

The location of phase singularity candidates by Bray’s method is based on
the calculation of n using equation (5.7). The first step is to determine the
two phase space variables. In experiments only one variable is measured, the
voltage V. The corresponding variable in the FHN model is the activation
variable u. The second variable of the phase space u(x,y,t + 7) is recreated
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from u(x,y,t) by the time-delay 7. It is important, that the two variables
are linearly independent. To fulfil this condition, 7 has to be chosen in such
a way, that paths in the phase space (u(z,y,t),u(z,y,t + 7)) describe closed
curves. Thus 7 should be approximately the duration of the increase of the
action potential. If 7 is chosen too large, the paths in the phase space cross.
The phase space is constructed by calculation of the phase angle:

u(z,y,t+ 1) —u(z, y))
U(Ji,y,t) —ﬂ(l‘,y) .

O(z,y,t) = arctan ( (5.8)

In earlier works, the value of u(z,y) was taken as the mean of u(z,y,t) over
all time records at the point (z,y). In this work @(z,y) = 0.04 is chosen from
the phase space as a point surrounded by all trajectories. This guarantees that
the phase is well-defined in the range [0, 27]. The line integral eq. (5.7) at a
point (z,y) is calculated by the following steps:

(i) evaluation of V& as the difference of ® between two points,

(ii) choice of a set of points lying on a circle of a certain diameter around the
investigated point,

(iii) summation over the difference of V® between two adjacent points on the
circle multiplied with the distance between the points.

The radius for the circle is set to 0.5. Hence, points closer than 0.5 to the
boundary can not be analysed by this method. Points, for which the integral
yields values larger than 7, are defined as a phase singularity. Due to numeri-
cal errors and the chosen algorithm the value of 27 is practically not obtained
here for a phase singularity.

The idea of the image-analysis method is to find the points, at which the cur-
vature of the wavefront changes from convex to concave, i.e. the point between
the activation and the repolarisation front. Therefore, first contour lines of the
activation waves are constructed. The threshold for the contour line is set to
u = —0.8. With this value one obtains two contour lines for every excitation
waves, since u reaches the threshold value twice, at the rise and the decrease
of u. To analyse the curvature of the contour line, the angles between a point
and its adjacent neighbours are calculated as shown in Figure 23. To minimise
local noise effects due to the sampling of the contour line, one consecutively
constructs lines between pairs of points at a certain distance r (see Figure 23),
and calculates the angle between these lines. Here, r is set to 1. The time of
the analysis is minimised by checking, if the contour line exhibits a change of
curvature from convex to concave. Otherwise it does not contain a phase sin-
gularity. This is done by calculation of the cross product of the lines of a point
to its neighbours. If the contour line changes its curvature, the cross product
should change the sign at a certain point. Hence, only contour lines, where the
cross product exhibits this change of sign, are analysed further. Phase singu-
larities correspond to the points with the minimal angle. Hence, the next step
is an ascending sorting of the angles according to their values and eliminating
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Figure 23: Hlustration for the calculation of the angles between the points of the
contour line (from [60]).

of angles from the further analysis, whose values are above a certain threshold.
The threshold is set to 2.8 radians. To assure that no detection errors occur for
the first phase singularity candidates, the integral (5.7) is calculated for these
first candidates by Bray’s method as described before. If it is larger than ,
the point is classified as a phase singularity. If already phase singularities were
detected in frames before, it is tested, if the phase singularity candidates are
the consecutive places of the formerly detected phase singularities or if they are
new phase singularities. Therefore the potential phase singularity candidates
are judged by the ’last frame rule’ [60]. That means, the smallest distance
between the phase singularity candidate and the phase singularities, detected
in the frame before, is computed. If the distance is larger than a threshold
value (here: 1 space unit), the point is analysed by Bray’s method in order to
determine, whether it is a new phase singularity or a detection error.

If the distance is smaller than the threshold value or the phase singularity can-
didate is defined as phase singularity by Bray’s method, the last step of the
detection algorithm is an analysis by the so-called interval rule. This rule pre-
vents false positive detection of points very close to each other to be identified
as distinct phase singularities. Therefore the number of points is computed,
which are lying between this point and previously detected phase singularities
in the same frame and contour line. If this number is larger than a certain
value (here: 7), then the point is conclusively classified as a phase singularity.
Otherwise it is eliminated. The various steps in the analysis are repeated for
all points on a contour line and for all contour lines in one frame. To reduce
the computation time, but still obtain a consecutive detection of one phase
singularity, the analysis is performed every ten timesteps.

The second analysis deals with the frequency distribution caused by the distur-
bance of the excitation wave by the obstacle. Therefore u(z,y,t) is recorded
at special sites of the simulation area as schematically shown in Figure 20.
These recordings are analysed by a detection routine of the action potential.
Only peaks after a simulation time ¢ > 10 (corresponding to 1000 time steps)
are used for further analysis to assure that the activation pattern has already
stabilised. The inverse of the mean over the time intervals between consecu-
tive peaks determines the frequency at the investigated point. Subsequently,
the local frequencies are averaged over the different observation sites. In this
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way one obtains a spatial distribution of the frequency of excitation and an
average frequency of the whole spiral. This provides valuable insights into the
properties of the activation pattern, as e.g. the fibrillation rate and typical
spatial patterns of the excitation.

5.2 Ectopic activity

In this section the possibility to obtain ectopic foci with the FHN model and
their properties are investigated. Ectopic foci are regions in the atria distinct
from the sinus node, which generate activation waves. In optical mapping
studies and spatial resolved ECG recordings, they are often localised in the
regions of the pulmonary veins. Ectopic foci are assumed to be hyperactive
cells, which are self-excitatory, i.e. the transmembrane potential raises without
external stimulation until the threshold value is reached and an action poten-
tial results. In Figure 24 the time evolution of the transmembrane potential
of a hyperactive cell is shown.

2

Figure 24: Time evolution of u for a region of ectopic activity. The resting state is
not stable and wu raises until the threshold value is crossed, resulting in an action
potential.

To model a tissue with changed properties resulting in ectopic activity, the
resting state stability b is spatially varied according to Equation (5.2). To
analyse the conditions necessary for ectopic activity, a manual inspection of
the solutions u(z,y,t) and a frequency analysis as described in section 5.1.1 is
performed. The results of these analyses yield a dynamical phase diagram of
the ectopic activity in dependence on the characteristic size &, of the hyperac-
tive tissue and the difference in the stability of the resting state Ab = by — breq
(see Figure 25). As can be seen in the diagram, different time evolutions of
u are obtained. Large sizes of hyperactive tissue result in an ectopic activity
as described before, i.e. the modified tissue is self-excitatory and generates
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Figure 25: Ectopic activity in dependence on &, and Ab. The dotted line marks the
region of ectopic activity. No ectopic foci can be observed below Ab ~ 0.25 and for
sizes of hyperactive tissue smaller than &, ~ 0.4.

activation waves, which propagate radially. Thus it acts as a pacemaker. If
& is decreased below a critical value (& = 0.5 for Ab =~ 0.45), the ectopic
activity vanishes and only small oscillations of the activation variable u are
found. These oscillations around the resting state value are observed in the
modified region, where the stability b is reduced. The oscillations reflect the
instability of this patch of tissue. An activation is not attained due to the
strong diffusive current from the modified tissue to the surrounding. If &, is
decreased further, the system is kept in the resting state as long as there is
no external stimulation. A constant value of u = 1.2 is then obtained in the
whole simulation area.

If the difference of excitability Ab is reduced for a constant size of hyperac-
tive tissue, the transition from ectopic activity to a stable resting state in the
whole system is observed as well. A minimal Ab ~ 0.25 is required to obtain
ectopic activity. The results of the frequency analysis are shown in Figure 26.
If &, is increased for a certain value of Ab, the frequency of the ectopic activ-
ity increases until a saturation occurs. The saturation value of the frequency
is mainly determined by the refractory period of the tissue. The refractory
period in turn depends on the strength and speed of the cell reaction, which
are influenced by changes of parameter b. Larger values of b yield a slower
reaction and a smaller strength and thus a longer refractory period. Hence,
the saturation frequency is decreased with decreasing Ab.
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Figure 26: Frequency of ectopic activity in dependence of the size &, of hyperactive
tissue for different values of Ab. With increasing &, the frequency increases and
eventually saturates, since the frequency of ectopic activity is determined by the
refractory period of the tissue. Decreasing Ab at fixed & yields a decrease of the
frequency.

5.3 Spiral waves

Now the possibility to generate spiral waves by ’anchoring’ of planar excitation
waves to obstacles is studied, as well as the influence of the obstacle properties
on the characteristic properties of the waves. The obstacles, e.g. the pul-
monary veins themselves, the venae cavae themselves, or some localised region
of modified tissue, influence the propagation of an incident wave. The obstacle
tissue is considered to be not fully excitable. They are modelled as cells with a
reduced excitability by spatial variation of parameter ¢ according to Equation
(5.3). Thereby, b = 0.6, a = 0.7 and D = 0.1.

Two different configurations are investigated. First the obstacle is located near
the boundary, which may be realised in the heart in sections near non-excitable
tissue like the heart valves or surgery scars. In the second configuration the
obstacle is located in the centre of the simulation area to mirror an experiment
performed by Ikeda et al. [53]. In the first configuration the obstacles centre
is chosen as zy = 10 and by the condition y, = &, + 0.5 to assure that the
influence of the boundary is negligible. An activation wavefront is expected
to enter the tissue from the boundary. Hence, an excitation wave is generated
by the application of a depolarising current I = —1 for a duration ¢; at the
region 0 < z < 20, 0 < y < 0.5. In all cases we chose t; = 1. This yields an
action potential, which propagates regularly through the simulation area. This
configuration does not generate a spiral wave. The activation wave propagates
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symmetrically around the obstacle, enters the tissue behind the obstacle and
meets its symmetric counterpart. Since the excitation vanishes if two activa-
tion wavefronts collide or one wavefront enters the refractory tail of a previous
excitation, no spiral wave occurs. Thus the initial conditions have to be modi-
fied to force the excitation wave to propagate only on one side of the obstacle.
Therefore the initial values for v and v are chosen inhomogeneously now with
u = 1.6 and v = 0.0 in the region = > 10 and y < 10, while kept at u = 1.2 and
v = 0.6 in the remaining part. This means that the tissue is in the refractory
state initially.

The combination of the results of the phase singularity detection and the man-
ual analysis yields the dynamical phase diagram shown in Figure 27, which is
analogous to the phase diagram for the ectopic focus shown in Figure 25. It
describes the behaviour of the excitation wave according to the number of cir-
culations around the obstacle depending on &. and Ac.
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Figure 27: Number of circulations of the excitation wave depending on the obstacle
size &. and the difference in excitability Ac. The dashed line marks the region, where
stable spiral waves are observed.

As seen in this figure different behaviours are distinguishable. For small ob-
stacle sizes (. < 0.4) the activation wave is not influenced by the obstacle.
If the initially refractory tissue returned to the resting state, the excitation
activates this region, which leads to a curved wavefront. But the curvature is
not sufficiently strong to initiate a circulation. Hence, no spiral wave can be
obtained and the excitation simply propagates through the simulation area. In
Figure 28 (solid blue line) the time evolution of an initially planar excitation
wave perturbed by a small obstacle is shown. Increasing the obstacle size for
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Figure 28: Contourplot of the time evolution of variable u for ucontour = —0.8,
Ac = 3.5 and two different obstacles sizes . = 0.2 (blue solid lines) and & = 2.0
(red dashed line). Initially the planar excitation wave propagates regularly (¢ < 2.5).
If the initially refractory tissue is excitable, this region is activated and a curved
wavefront results (¢t 2 6.0). For £ = 0.2 the curvature of the wavefront is not
sufficiently strong to yield a circulation. For . = 2.0 the strong perturbation by the
obstacle yields a much more pronounced curvature and thus a stable spiral wave.

a constant Ac yields a stronger perturbation, resulting in a more pronounced
curvature of the wavefront. For . larger than a critical obstacle size of approx-
imately 0.4, the curving of the wave leads to a circulation of the excitation, a
reentry. If the reentry radius is too small, the excitation meets its refractory
tail and vanishes after two or three circulations. Otherwise a stable circulation,
a spiral wave, can develop (red dashed line in Figure 28). If £. is increased
beyond &. = 3.5 for Ac = 4.5, a breakup of the spiral wave occurs, due to the
strongly decreased excitability of the obstacle, as shown in Figure 29. After
some time (approximately ¢ ~ 32 for {. = 5.0 and Ac = 4.5) the underlying
spiral wave stabilises and the breakup disappears.

Decreasing the difference of the excitability Ac for a certain obstacle size
& 2 0.4 yields a decreased number of circulations of the excitation wave around
the obstacle due to the reduced perturbation of the wave by the obstacle. For
& =~ 0.4 a transition from a state without circulations (Ac < 3.5) to a state
with two circulations (Ac ~ 4.5) is observed. Increasing the obstacle size
moves the transition to smaller values of Ac. In addition, stable spiral waves
are obtained. For large obstacle sizes £, 2 1 two circulations are obtained for
the range 1.5 < Ac < 2.5, three circulations for Ac & 2.5, and stable spiral
waves for Ac 2 3. These transitions are independent of the obstacle size. They
are obtained for all values of £. 2 1.

To summarise, for an obstacle size £. < 0.4 no reentry is observed for the
physiologically meaningful values of Ac. Increasing the obstacle size yields
circulations of the excitation wave, stable spiral waves and finally for Ac ~ 4.5
spiral wave breakup patterns. A decrease of the difference of excitability Ac
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Figure 29: Contourplot of the time evolution of u for ucontour = —0.8, & = 5.0 and
Ac = 4.5. The strong perturbation by the obstacles results in a breakup of the
waves emanating from the spiral (see the change of pattern from ¢t = 8.0 to 12.0 and
t = 20.0 to 24.0). After some time (¢ = 32.0) the spiral stabilises and no breakup is
observed anymore for much larger times. The pattern becomes stationary.

results in a decrease of the numbers of reentries to two circulations for £, 2> 1,
while for & < 0.9 reentry completely fails. In conclusion, stable spiral waves
are obtained in the range of {. 2 1 and Ac 2 3.0.

Analysing the path of the phase singularities of the spiral waves reveals, that
all spiral waves (without consideration of spirals for £ < 3.5) are fixed in space
and do not move through the simulation area. However, a difference between
spirals for Ac ~ 4.5 and Ac < 3.5 is observed, which we describe in more

detail next.
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Figure 30: Left panel: Time evolution of phase singularity of spiral waves for Ac =
4.5 (black dots) and Ac = 3.0 (red crosses). The black dots prescribe a circle,
whereas the pattern of the red diamonds does not prescribe a simple path. Right
panel: Dependence of circle diameter r on obstacle size &. for Ac = 4.5. The diameter
is directly proportional to the obstacle size.

In Figure 30 (left graph) the time evolutions of the phase singularities of spi-
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rals for Ac = 4.5 (black curve) and Ac = 3.0 (red curve) are shown. The
phase singularities for Ac = 4.5 lie approximately on a circle with a diameter
r, implying that the spiral wave propagates around the obstacle. The circle
diameter r is directly proportional to the obstacle size . as can be seen in
Figure 30 (right graph). For Ac = 3.0, however, such circle is not obtained,
indicating that the tip of the spiral meanders in the region of the obstacle.
To conclude, the spiral wave for Ac = 4.5 is directly anchored to the obstacle.
This phenomenon is known as anatomical reentry, where the reentry radius
and the fibrillation rate are dependent on the obstacle size. The counterpart
is the functional reentry, where the fibrillation rate and reentry radius are in-
dependent of the obstacle size. In this case, the perturbation by the obstacle
creates a pronounced curvature sufficient for circulation, but the size of the
obstacle does not influence the properties of the spiral itself like the frequency
and reentry diameter.

For an intermediate value Ac = 3.5, the reentry radius depends only for
& < 2.5 on the obstacle size. Moreover, it takes a longer time for the spi-
ral wave to anchor to the obstacle, i.e. the circular path for the time evolution
of the phase singularity is not obtained until ¢ &~ 25.0. For Ac = 3.0 this an-
choring is not observed even for very long simulation times (¢ ~ 100.0). Thus,
one can conclude that a transition from anatomical reentry for Ac ~ 4.5 to
functional one for Ac < 3.5 occurs.

Another evidence for this transition yields the frequency analysis. The fre-
quency in dependence of &. for different values of Ac is shown in Figure 31.
For Ac = 4.5 the frequency of excitation emanating from the spiral wave de-
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Figure 31: The inverse of frequency of spiral wave in dependence on obstacle size &,
for different values of Ac. The frequency of the spiral is inversely proportional to
the obstacle size for Ac = 4.5 and for Ac = 3.5 up to an obstacle size of &, ~ 2.5.
For Ac = 3.0 the reentry frequency is independent of &,.
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creases with increasing obstacle size &.. An approximation for the frequency
is given by the inverse of the circulation time 7 ~ r /v with the circle diameter
r and the angular conduction velocity v. Since the conduction velocity is con-
stant and r ~ ., f ~ 1/&. On the other hand, for smaller values of Ac the
frequency is independent of the obstacle size £.. The different dependencies of
the frequency on the obstacle size support the conclusion, that two types of
reentry are observed, functional and anatomical reentry.

In the second configuration the obstacles are located in the centre of the sim-
ulation area to mirror the experiment performed by Ikeda et al. [53]. In this
experiment a nearly rectangular area of atrial tissue was placed on a electrode
plaque in a tissue bath. Holes with different diameters were created and a
reentrant wave was initiated by crossfield stimulation (for a description see
section 4). The experimental setup and a section of atrial tissue with a hole
is shown in Figure 32. The resulting behaviour of the wavefront was, amongst

Electrical Cables to
the Mapping System

Figure 32: Left panel: A representative section of isolated canine right atrial endo-
cardial appendage with its adjacent atrial chamber with a hole of 10 mm diameter. S
indicates superior, A appendage, I inferior and P pectinate (from [53]). Right panel:
Schematic graph of the electrode plaque mounted on the floor of the tissue bath.
The endocardial side of the atrium is mounted on the plaque (from [53]).

others, classified according to, whether the spiral is anchored by the obstacle
and by the relationship between hole size and cycle length of the reentry. It
was observed, that for large obstacle sizes (6, 8 and 10 mm) the reentrant wave
attaches to the obstacle. For smaller obstacle diameters, in contrast, the wave
was meandering around it, since the tip of the spiral got variably closer to or
further away from the hole.

The missing anchoring for small hole sizes is explained by Ikeda with the
source-sink relationship. The sink is increased for smaller obstacles, since a
larger number of cells has to be depolarised by the activation wavefront. If the
source-sink ratio is decreased below a certain critical ratio, the wavefront de-
taches from the obstacle. Another result of the experiment is a positive linear
correlation between the hole diameter and the cycle length for hole diameters
larger than 4 mm. The cycle length is defined as the time interval for one
circulation.

For the corresponding set-up in the simulation the following initial state and
parameters are used: an obstacle, modelled according to equation (5.3), is lo-
cated in the middle of the two-dimensional simulation area, i.e. g = yo = 10,
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t=215

Figure 33: Contourplot of the time evolution of u for ucontour = —0.8, & = 0.1
and Ac = 4.5. The generated excitation, similar to an activation pattern after
crossfield stimulation in experiments, results in a spiral wave. The perturbation of
the wavefront for ¢ = 21.5 reveals the influence of the obstacle.

and a reentrant wave is generated by the application of a current in the region
0 <z <10and 10 <y < 10.5. The tissue behind the wave is in the refractory
state initially, i.e. u(y < 10) = 1.6 and v(y < 10) = 0.0, in order to force the
wave to propagate in the positive y direction. This wavefront represents the
activation pattern directly after application of a crossfield stimulation. It is
reentrant due to the curvature of the wavefront induced by the activation of
the excitable tissue in x direction.

In Figure 33 the time evolution of the activation wavefront for an obstacle size
of £, = 0.1 and difference in excitability of Ac = 4.5 is shown. One can see, that
a spiral wave is obtained. The small perturbation of the wavefront curvature
at t = 21.5 in the region x = y = 10 demonstrates the influence of the obsta-
cle. The difference in excitability of Ac = 4.5 reflects an almost inexcitable
tissue, corresponding to the hole in the experiments. A frequency analysis is
performed for different values of the obstacle size . and the difference in ex-
citability. The results are shown in Figure 34. The mean cycle length measured
in the experiments is represented by the inverse of the frequency, calculated
in the simulations. An inversely proportionality of the reentry frequency on
the obstacle size can be observed for £ < 2.5 and Ac = 4.5 and 3.5, in ac-
cordance with the experiments. Additionally, for £ 2 3.0 a breakup of the
reentrant wave can be observed, which is not found in the experiments. This
could be caused by the modified conduction and cell properties and not a di-
rect consequence of the obstacle. This is the reason for the changed frequency
dependence for obstacle sizes £. 2 3.0.

For smaller values of Ac (Ac = 2.5 or 1.5) and obstacle sizes . 2 3.5 the
breakup of the wave leads to a formation of two counter-rotating spiral waves.
A transition is observed between a state for Ac 2 3.5 (£, < 2.5), where the
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Figure 34: Left panel: Mean cycle length vs. hole diameter measured in the experi-
ment of Ikeda. A positive linear correlation is found. Right panel: Mean cycle length
(inverse frequency 1/f) vs. obstacle size &. calculated from simulation. For Ac = 4.5
the mean cycle length is approximately inversely proportional to the obstacle size,
in agreement with the experiment.

frequency depends on the obstacle size, and a state for Ac < 3.5, where the
frequency is independent of the obstacle size. This is reminiscent of the tran-
sition from anatomical to functional reentry, as it was observed for obstacles
near the boundary. In contrast to the boundary affected situation, spiral waves
are observed here even for small values of &. (< 0.5). On the other hand, the
breakup patterns of the wave do not vanish with time for large obstacles. Con-
sequently, a small distance of an obstacle to non-excitable tissue, represented
by the boundaries in the simulation, can result in a suppression of reentry
for small obstacles and a stabilisation of regular patterns for larger .. This
might be an explanation for termination of atrial fibrillation by catheter abla-
tion, since the cuts, applied near obstacles like the pulmonary veins, represent
boundaries as used in the simulations.

5.4 A spiral wave interacting with sinus node excitations

In previous studies [67, 68] the focus of simulations was on the influence of
pacing on spiral waves, with the motivation to suggest a possible therapy to
suppress fibrillation or tachycardia. In these simulations the pacing was ap-
plied to the region, where the spiral wave was located. Davidenko [68] found
that the pacing leads to an annihilation of the reentrant activity or to a shift
of the spiral core.

In this work the study focuses on the influence of the reentrant activity onto
regular paced excitation waves, which represent wavefronts emanating from
the sinus node. Thereby, the spiral wave and the sinus node are located in
separated regions, which are only connected by a small region. This configu-
ration is based on electrocardiogram recordings and frequency measurements,
which exhibit a regular pattern in the left atrium and an irregular one in the
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right atrium. In the model, this is represented by a stable pacemaker in the
left atrium and normal sinus node excitations in the right. It is shown that the
influence of the stable pacemaker yields a fibrillatory state in the right atrium.
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Figure 35: Schematic graph of the simulation area used for the investigation of the
interference of a spiral wave with regular planar excitations. The solid black lines
represent the von Neumann boundaries. The blue dashed lines are the contour lines
for u = —0.8 of the spiral wave. The red dotted line represents a excitation wave of
the regular pacing. The black crosses (labelled "1’ and ’2’) mark two representative
observation sites, where the frequency is measured.

In our numerical calculations the configuration is realised by dividing the sim-
ulation area into two rectangular regions linked by a small bridge (see Figure
35). The spiral wave is initiated in the region 0 < z,y < 10, which represents
the left atrium. It is generated by a planar excitation wave anchoring to an
obstacle at xy = 10 and yo = 1 of size £ = 0.5 and difference of excitability
Ac = 4.5, as described in section 5.3. The circulation time of the spiral wave
is approximately 11. Regular planar activation waves are generated after the
spiral wave has stabilised (¢ = 10) in the right atrium, represented by the re-
gion 11 < x < 21 and 0 < y < 10. This is done by the application of a current
I = —1 with duration ¢; = 1 in every nth time step in the region 11 < x < 21
and y < 0.5. The frequency of these activations is thus fpace = 1/n. The
resulting patterns for different values of the pacing frequency fpace are stud-
ied by frequency analysis and manual inspection. The frequency dispersion is
specified by taking the average and standard deviation over 16 different points
in the right atrium. The results are analysed in terms of the ratio of the pacing
frequency fpace to the reentry frequency fipiras = 1/11.0 in the left atrium.
For small pacing frequencies (n > 10) the influence of the activation wave-
fronts emanating from the spiral onto the regular waves, due to the pacing,
is negligible. Small deformations of the regular planar excitation waves can
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Figure 36: Time evolution of u at observation sites '1’ (black solid line) and "2’ (red
dashed line) (marked in Figure 35) for pacing frequencies a) 0.909 and b) 1.176. A
regular pattern analogous to sinus rhythm is observed for the small frequency. In
contrast, for the large frequency the time course of u exhibits an irregular pattern,
which is similar to fibrillatory patterns in the ECG of AF patients.

be observed, but the measured frequencies resemble approximately the pac-
ing frequency and the overall spatio-temporal pattern of u exhibits a regular
pattern (see Figure 36 a). Almost no spatial dispersion of the frequencies is
observed (o ~ 0.005).

If the pacing frequency is increased, the time evolution of u at the observation
sites '1” and ’2’ (see Figure 35) possesses a strongly changed, irregular pattern
similar to those observed in the ECG of patients with atrial fibrillation. In
Figure 36 the time evolutions of u for two frequencies (a) fpace = 0.909 and (b)
fpace = 1.276 are shown. Two effects are observed for the increased pacing fre-
quency. The shape of the action potential changes if the time interval between
two activations is decreased, as seen for observation site "1’ (black solid line).
In this way, the refractory period shortens as a response to the fastened pacing.
This is known as action potential restitution and is a well-known phenomenon
of atrial tissue.

As a second effect unsuccessful activations can be observed (red dashed line
in Figure 36 b). These result from a breakup of the planar excitation wave-
front due to the interference with the spiral wave. This breakup leads to
the formation of a second spiral wave seen in the marked area in Figure 37.
The spatial variation of the measured frequencies increases by a factor of 100
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Figure 37: Contourplot of the time evolution of activation variable u (for ucontour =
—0.8) for interaction of spiral wave with regular pacing at frequency 1.276. The
pattern in the right part of the simulation area becomes more irregular with time,
whereas the spiral wave in the left part is not influenced. After ¢ = 180 the evolution
of a spiral wave in the upper left corner of the right part of the simulation area is
seen.

(0 =~ 0.15) compared to small pacing frequencies. In some regions the time
intervals between consecutive activations are prolonged, because these regions
are often passed by activation wavefronts leading to a partial reinitialisation of
the refractory period. Thus, no action potentials are generated and the total
refractory period is prolonged. In other regions no breakup of waves occurs
and consequently a frequency close to the pacing frequency of the sinus node
activity is obtained.

To conclude, the interference of the wavefronts emanating from the spiral in
the left part of the simulation area with the planar excitation waves, yields an
irregular, fibrillatory-like pattern in the right part of the simulation area for
large pacing frequencies. The spiral wave in the left part is almost unchanged.
Our simulations reveal, that for a relatively large range of pacing frequencies
(0.9 < f < 1.1) a regular pattern is observed, and only at the upper limit of
reasonable pacing frequencies (f ~ 1.28) the irregularity in the voltage distri-
bution u(z,y,t) emerges. This could be a reason, why the fibrillatory state of
the atria is often temporary and provoked by stress.
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6 Summary and Outlook

The aim of this work was to answer the four questions given in the intro-
duction. Answers were found by numerical calculations of the well-known
FitzHugh Nagumo model (3.28) with different spatial distributions of the pa-
rameters and configurations of the simulation area.

The ectopic activity was studied on a two-dimensional squared simulation area
with von Neumann boundary conditions. The resting state stability was re-
duced in circular regions of the tissue by a spatial variation of the parameter
b as a model of hyperactive cells. The result of the numerical calculation re-
veals the possibility to obtain ectopic activity by this mechanism. A minimal
size of hyperactive tissue is necessary for ectopic activity as well as a minimal
difference of the resting state stability. With increasing size of the hyperactive
tissue, the excitation rate increases and saturates. The saturation frequency
depends on the parameter b, which controls both the refractory period and the
difference of resting state stability. Consequently, if the difference of resting
state stability is decreased, the frequency of the ectopic focus decreases.

For the spiral wave patterns it was found that a possible generating mecha-
nism is the anchoring of a planar excitation wave by an obstacle. To uncover
this mechanism, an obstacle was modelled as a patch of modified tissue with
reduced excitability. This was achieved by a spatial variation of the parame-
ter ¢ in the FHN equations. A planar excitation wave was generated at the
boundary and forced to propagate on one side of the obstacle initially, due
to inhomogeneous initial conditions with refractory tissue on the other side of
the obstacle. As a consequence a circulation of the wave occurs. A dynami-
cal phase diagram was derived, which allows one to distinguish the different
behaviours of the activation wave in dependence of the obstacle size and the
difference in the excitability. A transition from a state with negligible pertur-
bation of the activation wavefront by the obstacle to a state with a number
of circulations of the wave, stable spiral waves or even breakup patterns is
observed. In a certain range of obstacle size and difference of excitability,
reentry circuits are stable. The spiral waves in this range differ by the depen-
dence of their frequency, reentry path and diameter on the obstacle properties.
These properties can become independent of the obstacle size, if the difference
of excitability is decreased. This behaviour corresponds to a transition from
anatomical to functional reentry as observed in experiments.

A second configuration was studied for a more specific comparison with an
experiment, performed by Tkeda et al. [53]. The experiment investigated the
perturbation of an initially generated reentrant wave by a hole inside a section
of canine atrial tissue. This was modelled by an obstacle located in the middle
of the two-dimensional square simulation area. A planar excitation wave was
generated aside of the obstacle in front of a refractory region, which represents
an activation pattern observed after crossfield stimulation in experiments. The
modelling shows the emergence of a reentrant wave. Moreover, the analysis of
the spiral wave frequency in dependence of the obstacle size yields results in ac-
cordance with the experiment. Additionally, for large obstacle sizes breakup of
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waves occur that result in irregular activation patterns. These were found also
in the boundary affected configuration, but there a transition of the irregular
pattern to a stable spiral wave appears. A comparison of the two situations
reveals, that a small distance of the obstacle to the boundary stabilises exci-
tation waves interacting with an obstacle. This yields a more stable, regular
activation pattern. The von Neumann boundary conditions represent inex-
citable tissue as the heart valves or operation scars in the heart. Hence, the
observed stabilisation of the activation wave, due to the decreased distance to
the boundary, could be an explanation for the termination of atrial fibrillation
by catheter ablation. It seems promising to study this effect in more detail by
introducing boundaries into the system, representing patterns of scars applied
by catheter ablation.

The perturbation of a regular planar excitation in the right atrium by a spiral
wave in the left atrium was shown to be a possible generating mechanism for
fibrillation in the right atrium. In the modelling of this effect the simulation
area was separated into two squared two-dimensional regions connected by a
small bridge. A spiral wave was initiated in the left region by anchoring of a
planar wave to an obstacle near the boundary, as investigated before. Planar
excitation waves were generated by periodic application of a stimulating cur-
rent at one boundary in the right part of the simulation area with different
pacing frequencies. For small pacing frequencies, representing a typical 1 Hz
sinus node rhythm, the interference of the spiral wave and the regular pacing
is small and (almost) no change of the activation pattern in the right part of
the simulation area occurs.

If the frequency is increased, the perturbation by the spiral wave becomes more
pronounced and the activation pattern in the right part becomes irregular. The
time evolution of the potential u, measured at certain points, exhibits charac-
teristic features, in close resemblance to the ones found in electrocardiogram
recordings during fibrillation in the right atrium. Additionally, an increased
spatial variation of the excitation frequency in the right part of the simula-
tion area is obtained, emphasising the observed irregularity of the activation
pattern. The irregular patterns are observed for high pacing frequencies. This
fact can be an explanation, why atrial fibrillation is often provoked by stress,
which causes a fastened heart beat. Prospective studies should investigate this
effect, for example, by the analysis of activation patterns caused by different
distributions of the pacing frequency. This would represent more closely the
natural variations of the sinus node rhythm. The frequency is known to de-
pend on the state of health, the stress level and activity status of the patient.
Furthermore, a comparison of characteristic properties of simulated Electro-
cardiograms with ECG recordings from the atria of patients, measured by for
example a HALO catheter, should be carried out. Finally, it would be inter-
esting to investigate also the perturbation of regular excitation waves in the
right atrium by an ectopic focus in the left atrium.
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